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Abstract

In this dissertation convergence of binomial trees for option pricing is investi-
gated. The focus is on American and European put and call options. For that
purpose variations of the binomial tree model are reviewed.

In the first part of the thesis we examine the convergence behavior of the already
known trees from the literature (CRR, RB, Tian and CP) for the European op-
tions. The CRR and the RB tree suffer from irregular convergence, so our first
aim is to find a way to get the smooth convergence. We first show what causes
these oscillations. That will also help us to improve the rate of convergence. As
a result we introduce the Tian and the CP tree and we prove that the order of
convergence for these trees is O

(
1
n

)
.

Afterwards we introduce the Split tree and explain its properties. We prove the
convergence of it and we derive an explicit first order error formula. In our set-
ting, the splitting time tk = k∆t is not fixed, i.e. it can be any time between 0
and the maturity time T . This is the main difference compared to the model from
the literature. Namely, we show that the good properties of the CRR tree when
S0 = K can be preserved even without this condition (which is mainly the case).

We achieved the convergence of O
(
n−

3
2

)
and we typically get better results if

we split our tree later.

In addition, we examine the behavior of the split tree when applied to American
options. This will require some modifications - depending on the initial stock price
and the type of option - to take care for the early exercise feature of American
options.
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Abstract (Deutsch)

In dieser Dissertation wird die Konvergenz von Binomialbäumen zur Optionsbew-
ertung untersucht. Der Schwerpunkt liegt auf Amerikanischen und Europäischen
Put und Call Optionen. Zu diesem Zweck werden Variationen des Binomialbaum-
modells besprochen.

Im ersten Teil dieser Arbeit untersuchen wir das Konvergenzverhalten von Bi-
nomialbäumen für Europäische Optionen aus der einschlägigen Literatur (CRR,
RB, Tian und CP). Da die CRR und RB Bäume Oszillationen im Konvergen-
zverhalten aufweisen, ist unser erstes Ziel das Auffinden von Möglichkeiten, um
glatte Konvergenz zu erreichen. Dazu untersuchen wir zunächst die Ursachen für
diese Oszillationen, was uns letztlich zu einer Verbesserung der Konvergenzrate
führt. In der Folge stellen wir die Tian und CP Bäume vor und beweisen, dass
die Konvergenzordnung für diese Bäume O( 1

n
) ist.

Im Anschluss führen wir die sogenannten Split-Bäume ein und erläutern ihre
Eigenschaften. Wir zeigen, dass diese Bäume konvergieren und leiten explizite
Fehlerformeln erster Ordnung her. In unserem Setting ist die Trennungszeit
tk = k∆t nicht fixiert, d.h. sie kann frei zwischen dem Startzeitpunkt 0 und der
Laufzeit T gewählt werden. Dies ist der wesentliche Unterschied im Vergleich zur
existierenden Literatur. Wir zeigen, dass die positiven Konvergenzeigenschaften
der CRR Bäume im Fall S0 = K (was in der Praxis typischerweise nicht der
Fall ist) erhalten bleiben, selbst wenn diese Bedingung nicht erfüllt ist. Wir

erzielen eine Konvergenzordnung von O(n−
3
2 ) und zeigen auf, dass ein später

Trennungszeitpunkt für unsere Binomialbäume bessere Resultate liefert.

In einem weiteren Kapitel untersuchen wir das Verhalten des Split-Baums bei
der Bewertung amerikanischer Optionen. Hierzu erweist es sich als zweckmäßig -
in Abhängigkeit vom Startwert des Aktienpreises und des Typs der Option-, das
Verfahren so zu modifizieren, dass der Möglichkeit der vorzeitigen Ausübung bei
amerikanischen Optionen Rechnung getragen wird.
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Chapter 1

Introduction

In the last decades derivatives have become increasingly important in the world
of finance. Trading call options started in the Chicago Board Options Exchange
in 1973 (CBOE). Options had also been traded earlier but CBOE created an
orderly market with well - defined contracts. Trading put options started in 1977
and today many other exchanges throughout the world trade options. The first
completely satisfactory equilibrium option pricing model has been introduced by
F. Black and M. Scholes [5]. R.C. Merton [32] extended their model in several
important ways in the same year. They made a basis for many subsequent aca-
demic studies. Their studies have shown that option pricing theory is relevant to
almost every area of finance. Unfortunately, Black - Scholes and Merton articles
are quite advanced. Luckily, W.F. Sharpe derived the same results using only
elementary mathematics.

The binomial approach to option pricing grew out of a discussion between M. Ru-
binstein and W.F. Sharpe at a conference in Ein Borek, Israel. They suggested
the following principle: if an economy with three securities can only attain two
future states, one such security will be redundant. In other words, each single
security can be replicated by the other two, a fact later known as market com-
pleteness. This observation lead them to a two-state model, but it should be
verified that the economic properties of the Black-Scholes diffusion approach are
preserved. This was the birth of the binomial option pricing.

Applying binomial trees is a useful and very popular technique for pricing an op-
tion, since it is easy to implement. It was introduced by J.C. Cox, S.A. Ross and
M. Rubinstein in [9] and R.J. Redleman and B.J. Bartter in [40] independently.
A binomial tree can be identified with a diagram that represents all different
possible paths that might be followed by a stock price over the life of the option.
One of the advantages of the binomial tree is that it can be adapted to options
with different types of payoff structure, including American options. Since there
is no closed form solution for the price of American options, this is an advantage
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of the binomial trees.

The binomial approach is based on the concept of the weak convergence. We
construct the discrete - time model S(n) so that convergence in distribution to
the continuous process S is ensured. This means that the expectations calculated
in the binomial tree can be used as approximations of the option prices in the
continuous models, at least for bounded option payoffs (and with further con-
siderations for more general payoffs). Unfortunately, the models defined by J.C.
Cox, S.A. Ross and M. Rubinstein (short CRR) and by R.J. Redleman and B.J.
Bartter (short RB) have a slow convergence which also is often highly irregular.
This motivated other scientists to modify binomial trees suitably to obtain an
improved convergence.

Developments of the tree methods can be categorized into three groups. The
first group is ”Modifications of conditions on parameters”. Namely, CRR and
RB specified the moment-matching conditions so that the moments of the bino-
mial tree converge to those of the continuous process when the number of steps
used for the discretization goes to infinity (in the CRR tree the first moment
is matched exactly and the second only asymptotically, while for RB both are
matched exactly). The construction of the new trees differ mainly in the dis-
cretization process used, the number of moments to be matched and the way it is
done as well as wheter to impose symmetry on the tree or not. Some important
trees from this category are suggested by R. Jarrow and A. Rudd in [16]. They
discretized the log risk-neutral stock process and imposed symmetry on the move-
ment probabilities. Tian in [46] suggested to match the first three raw moments
exactly in spot space. More about trees from this category can be found in [20],
p.425.

The second group is ”Design of trees with special features”. The main focus of
this thesis is on this category. Tian in [47] introduced a tilt parameter into the
model. The idea is to tilt a tree so that a node in the tree coincides with the
strike price at the maturity of the option. As a result, we get a smooth con-
vergence which allows us to additionally use extrapolation methods. Chang and
Palmer in [7] (short CP) proposed a similar idea. They constructed the tree so
that the strike is at the geometric average of two nodes, i.e. the midpoint of
two nodes in log-space. Leisen and Reimer in [31] first specified the movement
probabilities in the bond measure and the stock measure and then from there
they determined the movement sizes. In addition, the tree was constructed such
that the strike is at the center of the tree. Joshi [19] proved that Leisen and
Reimer’s tree has a second order convergence. Joshi in [18] introduced the Split
tree. The idea of this tree is to have the tree centered around the strike value
in log scale. To achieve this, a time depended drift is introduced for the first k
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steps of the tree and afterwards, when we are already in desired position, there
is no drift, i.e. we continue with a CRR tree for the rest of the steps. In this
paper k is fixed to be k = bn

2
c. The main novel result of this thesis is to prove the

convergence of the Split tree and to see what is happening if we choose another k.

The third group is the ”Introduction of acceleration techniques”. Hull and White
in [15] applied the ”Control Variate” technique to the binomial trees. The idea
is to use European options as a control to American options, so the American
option price is adjusted by the error we get by pricing European options. Broadie
and Detemple in [6] introduced the so called ”Smoothing” technique. The idea
is to replace the continuation value one time step before the maturity with the
Black - Scholes price. The motivation is that the Black - Scholes price has a con-
tinuous derivative, while the continuation value does not. As a result, the price
converges with much fewer oscillations and more smoothly. In the same paper
they also used Richardson extrapolation. This helps with removing the error.

Outline of the thesis

Chapter 2 contains an introduction to binomial trees. We gave definitions of some
basic type of options and the weak convergence is introduced. Afterwards some
properties of the binomial trees are explained and we introduced CRR and RB
tree.

In Chapter 3 we discussed more about properties of the CRR tree. We prove that
this model has a good performance if we have S0 = K. Afterwards we state and
prove the Main theorem. This theorem (Theorem 6) gives the order of conver-
gence of the binomial trees for the digital and European call options, but also it
gives the error term. These results motivated the introduction of the Tian and
the CP tree. These two models achieve a convergence of O

(
1
n

)
Chapter 4 is the central part of our work. First, we introduce the Split tree and
explain its properties. Afterwards, we prove the convergence of it and we found an
explicit first order error formula (helpful discussions on this topic with G. Leduc
have been very much appreciated). In our setting, the splitting time tk = k∆t
is not fixed, i.e. it can be any time between 0 and the maturity time T . This is
the main difference compared to the model suggested by Joshi. Namely, we show
that the good properties of the CRR tree when S0 = K can be preserved even
without this condition (which is mainly the case). We achieved the convergence

of O
(
n−

3
2

)
and we typically get better results if we split our tree later.

The last chapter is reserved for American options. We state the result of Amin and

3
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Khanna and we perform a numerical analysis. Different situations are observed
and we compare all introduced models. Some discussion about drift in general is
presented here, which might help for further research for American options.

4
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Chapter 2

Introduction to binomial trees

Derivatives have become very important in the world of finance over the last
decades. In many stock exchanges all over the world options are traded actively.
Consequently, there is a market request for mathematical models to price them
which makes pricing options one of the most important problems in applied math-
ematics. In this chapter we present some types of options, the fundamental Black
- Scholes formula for pricing European call and put options, and theoretical and
practical aspects of binomial trees as numerical method for option pricing.

2.1 Option types

A derivative is a financial instrument whose value depends on the values of other
financial instruments (or derives from), its underlying assets. An option is a
simple financial derivative. For example, a stock option is a derivative whose
value depends on the price of a stock. There exist also options on equity, foreign
currencies, bonds, goods as oil, gold, etc. There exist two basic types of so-called
vanilla options.

Definition 1. A call option is a contract which gives its holder the right (but
not the obligation) to buy a certain fixed amount of the underlying asset for an
already agreed price on or before a certain date. A put option is the contract
which gives its holder the right (but not the obligation) to sell a certain fixed
amount of the underlying asset for an already agreed price on or before a certain
date.

An option is not binding, i.e. the holder is not obligated to buy or sell, which
gives rise to the term ”option”. There exist three important groups of options:

• European options,

• American options,
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• Exotic options (barrier options, Asian options, Bermudan options, etc).

In this thesis the focus will be on European and American options. The name is
not connected with the geographical position of the holder, but on the way the
option can be used. European options can be exercised only on a certain date,
the exercise date (or maturity time). American options can be exercised at any
time between now and the maturity time. We denote the maturity time by T . If
T is +∞ the option is called perpetual.

European call option

Let us assume that a holder wants to buy a European call on one share of a stock.
This means that the holder has the right to buy this share at time t = T for the
strike price K, which is known at the beginning of the contract, i.e. at time t = 0.
Let S(T ) be the share price at maturity. If S(T ) > K, the holder of the option
buys the share for the price K and he can sell it immediately at the market for
the price S(T ). His gain will be S(T ) − K. If S(T ) < K, the rational holder
will decide not to exercise the option. As a consequence, there is no gain from
holding the option. Combining these two cases, we get that the final payment of

V (S) = (S(T )−K)+ = max{S(T )−K, 0}.

This is also presented in the Figure 2.1.

S(T )10 20 30 40

V (S)

−5

10

20

0

Figure 2.1: Payoff of a European call option with strike price K = 20

Example 1. Let us say we have the situation where an investor buys a European
call option with a strike price of $60 to purchase 100 shares of some company.
The current stock price is $58, the expiration date of the option is one year and
the price of an option to purchase one share is $5. Since we have 100 shares,
the initial investment is $500. If the stock price, after one year, is less than $60,
the investor will choose not to exercise, since there is no point in buying a share

6
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for $60 which value is less than $60. In this case the investor will lose the initial
investment of $500. If the stock price is above $60, the investor will decide to
exercise the option. Let us assume that the option price is $70. By exercising the
option, the investor will buy 100 shares for $60 per share. If she sells the shares
immediately, she will gain $10 per share, i.e. $1000, ignoring transaction costs.
After taking the initial costs into account, the investor is left with a net profit of
$500. Nevertheless, it is possible to make a loss. Assume that the value of the
company’s option at the maturity is $63. After exercising the option, the investor
would gain 100 × ($63 − $60) = $300 and taking initial costs into account, she
is left with −$200. However, without exercising she would lose $500, which is a
bigger loss than $200. We can conclude that call option should always be exercised
at the expiration date if the stock price is above the strike price.

European put option

The holder of a European put has the right to sell one share of a stock at maturity
time T for the strike price K. Now we have that in case when K > S(T ) the
holder will decide to sell the share for price K. On the other hand, if K < S(T )
the holder will decide not to exercise the option. Combining these two cases, we
get that the final payment is

V (S) = (K − S(T ))+ = max{K − S(T ), 0}.

There is also a case for the put option where the loss can occur, similar to the
call option. Payoff of the European put option is also presented in Figure 2.2.

S(T )10 20 30 40

V (S)

−5

10

20

0

Figure 2.2: Payoff of a European put option with strike price K = 20

American options

There exist also American put and call options. As we have seen, European calls
and puts can be exercised only at the maturity time T . American puts and calls

7
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can be exercised at any time between 0 and time T . A closed-form solution of
American options is hardly ever available, therefore the usage of the numerical
methods is of great importance. In Chapter 6 we will see how to apply binomial
trees to calculate prices of American options numerically.

Exotic options

Put and call options are also known as plain vanilla options. An exotic option is
an option which differs from a common American or European option in terms
of the underlying asset or when and how the investor receives a certain payoff.
We will present Asian and Barrier options as an example of exotic options.

Asian options

An Asian option is a path dependent exotic option. The payoff of an Asian op-
tion depends on the average price of the underlying asset over a certain period
of time. An Asian option can protect the investor from short term market ”ma-
nipulations”, which can occur close to maturity. We have Asian call options with
payoff (S−K)+ and Asian put option with payoff (K−S)+, where S is an average
price over time period [0, T ]. Average in continuous time is obtained by:

S =
1

T

∫ T

0

S(t)dt.

For the discrete case, with sample points t1, t2, ..., tn, we consider arithmetic and
geometric average:

S =
1

n

n∑
i=1

S(ti)

S =

(
n∏
i=1

S(ti)

) 1
n

.

Barrier options

Another example of path dependent options are barrier options. A barrier option
is an option where the payoff depends on whether the path of the underlying asset
has reached some pre-specified barrier B during the life time of the contract.
There are two main types of barrier options: knock-out and knock-in barrier
options.
Knock-out barrier options have the following payoffs:

8



2.2. The stock price model

(S(T )−K)+ · 1
{

max
t∈[0,T ]

S(t) < B

}
up-and-out barrier call

(K − S(T ))+ · 1
{

max
t∈[0,T ]

S(t) < B

}
up-and-out barrier put

(S(T )−K)+ · 1
{

min
t∈[0,T ]

S(t) > B

}
down-and-out barrier call

(K − S(T ))+ · 1
{

min
t∈[0,T ]

S(t) > B

}
down-and-out barrier put

Knock-in barrier options have the following payoffs:

(S(T )−K)+ · 1
{

max
t∈[0,T ]

S(t) ≥ B

}
up-and-in barrier call

(K − S(T ))+ · 1
{

max
t∈[0,T ]

S(t) ≥ B

}
up-and-in barrier put

(S(T )−K)+ · 1
{

min
t∈[0,T ]

S(t) ≤ B

}
down-and-in barrier call

(K − S(T ))+ · 1
{

min
t∈[0,T ]

S(t) ≤ B

}
down-and-in barrier put

There exist more types of options. For more details we refer to [41].

2.2 The stock price model

After introducing the main types of options our aim is to find a model which
represents the dynamics of the underlying asset. In the 1970s the famous formu-
lae for pricing European puts and calls were introduced. They were introduced
by Black and Scholes [5] and by Merton [32], and are known as Black-Scholes
formulae (short BS). Merton and Scholes received the Nobel Memorial prize in
Economics Sciences in 1997 for this work. We next present the one-dimensional
BS model.

In the Black-Scholes model, the dynamics of the stock prices are described as

S(t) = s0e
(µ− 1

2
σ2)t+σW (t), s0 = S(0),

where µ is the drift, σ is the volatility and W is a one-dimensional Brownian
motion with respect to the probability measure P . This dynamic can also be
represented as an SDE

9
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dS(t) = µS(t)dt+ σS(t)dW (t).

The arbitrage free price of a derivative can be calculated, under some suitable
conditions, as an expectation of the discounted payoff under the equivalent mar-
tingale measure

V = E(e−rTg(S(T ))) (2.2.1)

where g is a payoff function, r is the risk-free interest rate and T is the maturity
time. Moreover, using Girsanov’s Theorem our SDE can be rewritten as

dS(t) = rS(t)dt+ σS(t)dW̃ (t),

where W̃ is a one-dimensional Brownian motion with respect to the risk-neutral
probability measure Q. The corresponding solution is given by

S(t) = S(0)e(r− 1
2
σ2)t+σW̃ (t).

More details and conditions specified for the payoff function of the option such
that the results we stated above hold can be found in, e.g. [24]. The next result
is the famous result for pricing European put and call options. It was introduced
by Fischer Black, Myron Scholes and Robert Merton in 1973 and it is perhaps
the world’s most well-known model for option pricing. Now we will state the
Black-Scholes formula (from now on BS formula).

Corollary 1. Consider a market model consisting of one stock and a bond with
constant market coefficients and maturity time T > 0, t ∈ [0, T ]. Then, the price
of a European call option with the strike price K > 0 is given by

CC(t) = S(t)Φ(d1(t))−Ke−r(T−t)Φ(d2(t)),

where

d1(t) =
ln
(
S(t)
K

)
+
(
r + 1

2
σ2
)

(T − t)

σ
√
T − t

(2.2.2)

d2(t) =
ln
(
S(t)
K

)
+
(
r − 1

2
σ2
)

(T − t)

σ
√
T − t

= d1(t)− σ
√
T − t, (2.2.3)

where Φ is the distribution function of the standard normal distribution. The
price of the European put is given by

CP (t) = Ke−r(T−t)Φ(−d2(t))− S(t)Φ(−d1(t)).

The proof can be found in [24], Corollary 3.9, page 88.

10



2.3. Binomial trees

2.3 Binomial trees

2.3.1 Option valuation and replication

In this section we introduce the concept of binomial trees. Namely, we first show
how one-step binomial trees behave and afterwards we extend our theory to n-
step binomial trees. A binomial tree can be represented as a diagram which shows
us different possible paths that might be followed by the stock price over the life
of the option.

Let us assume we have a stock whose price is S(t) and a risk-free bond B(t).
For the sake of notation we will use St and Bt respectively, and since we are
considering only a one-step binomial tree, t ∈ {0, T}. The risk-free bond, for
simplicity, will be set to B0 = 1 and is assumed to grow linearly in time [0, T ]
with interest rate r. The stock price, on the other hand, has the initial value
S0 = s0 with the possibility to increase to S0u with probability p or to decrease
to S0d with probability 1− p, where we require the coefficients u, d to be u > d.
The principle of modern financial mathematics will help us choosing the factors
u and d. Namely, we want to have an arbitrage - free market. What does an
arbitrage - free market mean? For that purpose, let us first give a definition of
arbitrage.

Definition 2. A self financing and admissible pair (φ, c) consisting of a trading
strategy φ and a consumption process c is called an arbitrage opportunity if the
corresponding wealth process satisfies X(0) = 0 and for X(T ) we have

X(T ) ≥ 0,P(X(T ) > 0) > 0.

A typical example of arbitrage is any kind of free lottery, i.e. any possibility to
win something where we have no initial costs. Since we will assume that our
market is an arbitrage-free market, u and d have to satisfy

d < 1 + rT < u. (2.3.1)

If relation (2.3.1) does not hold, we can generate money without investing our
own funds by either selling the stock short (if we have u ≤ 1 + rT ) or financing a
stock purchase by a credit (in the case d ≥ 1+rT ). From now on, we will assume
that relation (2.3.1) holds.

Let us assume that we want to price a European call option with strike price K
using a one-step binomial tree. This means that the payoff is

V = (ST −K)+.

11
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Then, the price of this option at time t = 0 using the relation (2.2.1) is

E
(

1

1 + rT
(ST −K)+

)
=

1

1 + rT
(us0 −K)q,

where ds0 < K < us0. To justify this, we will introduce the replication strategy.

Corollary 2. In the arbitrage-free market we have: if two cash flows are identical
at some time in the future, then they have the same value today.

This means that for our example of a European call we have to find a replication
strategy (ϕ0, ϕ1), where ϕ0 is the amount invested in the money market account
at time t = 0 and ϕ1 is the number of shares which have to be held at time t = 0
so that the investor, at time T , has exactly the same amount of money as if he
has a call option. Due to the two possible final payments us−K and 0 we have
that ϕ0 and ϕ1 have to satisfy

ϕ0(1 + rT ) + ϕ1us = us−K
ϕ0(1 + rT ) + ϕ1ds = 0.

Solving this system we find that the unique replication strategy is

ϕ0 = − d(us−K)

(u− d)(1 + rT )
, ϕ1 =

us−K
(u− d)s

which leads us to the price of the call option via replication

scall = ϕ0 + ϕ1s

= − d(us−K)

(u− d)(1 + rt)
+
us−K
u− d

=
1

1 + rT

1 + rT − d
u− d

(us−K)

=:
1

1 + rT
q(us−K).

This brings us to the next result.

Theorem 1. (Risk-neutral valuation and replication) In the one - period
binomial tree, where u > 1 + rT > d, the unique arbitrage-free price sH of the
option H = g(S(T )) in the arbitrage - free model is given by

12



2.3. Binomial trees

sH =
1

1 + rT
[qg(us) + (1− q)g(ds)]

= EQ
(

1

1 + rT
H

)
,

where the expected value EQ is given with respect to the probability measure Q
which is determined by

Q

(
ST
s0

= u

)
= q =

1 + rT − d
u− d

,

and 0 < q < 1. Moreover,

EQ
(
ST
s0

)
= 1 + rT =

BT

B0

.

The proof can be found in [23] on page 17.

2.3.2 General binomial trees

In this subsection, we examine the general n-period binomial model. The n-
period binomial model was first introduced by Cox, Ross and Rubinstein in 1979
in [9] and by Rendleman and Barrter in [40]. Basically, it is not very different
to the one-period binomial model, i.e. we repeat the one-step binomial tree over
and over. Let T be the maturity time. Then, we divide the time interval [0, T ]
into n equally sized subintervals, i.e. let

∆t =
T

n
, ti = i

T

n
= i∆t, i = 0, 1, ..., n.

Then, the risk-free security and the stock, with the fixed interest rate, are given
by

B
(n)
ti = (1 + r∆t)i ,

S
(n)
ti = s0u

Xidi−Xi , i = 0, 1, ..., n,

where the number of up movements Xi is binomially distributed with parameters
i and p, i.e. Xi ∼ B(i, p), where p is the probability. Then the growth of the
stock price is given by

S
(n)
i+1 =

{
uS

(n)
i with probability p

dS
(n)
i with probability 1− p,

13



Chapter 2. Introduction to binomial trees

for i = 0, 1, ..., n− 1. We again assume we have an arbitrage-free market, i.e.

d < 1 + r∆t < u.

S0

uS0

dS0

u2S0

udS0

d2S0

u3S0

uS0

dS0

d3S0

Figure 2.3: One-dimensional binomial tree with 3 steps

Assume we have a one-dimensional Black-Scholes model with stock price dynam-
ics under the risk-neutral measure given by

dS(t) = S(t)(rdt+ σdWt), S(0) = s0 > 0,

where σ > 0 is volatility parameter, r is the risk-free interest rate and W is a one
dimensional Brownian motion with respect to the risk-neutral measure Q. The
time horizon T > 0 is fixed.

The focus of this section is on risk-neutral binomial approximations to the log-
normal stock price process. In the theory of option pricing a fundamental result
states that in a complete market the option price is given as the discounted
expected payoff under the risk-neutral measure Q

14



2.3. Binomial trees

EQ
(
e−rTg(S(t), t ∈ [0, T ])

)
, (2.3.2)

where g is a payoff function of the path-dependent financial instrument with
maturity T and underlying S. Here we are interested mostly in European and
American put and call options. We will consider American options in greater de-
tail in Chapter 5. Usually, this expectation cannot be calculated explicitly so we
have to apply numerical methods to approximate the desired quantity. The most
famous numerical methods are Monte Carlo simulations, numerical methods for
PDEs and the lattice approach. The topic of this thesis is the lattice approach,
more precisely binomial trees.

What is a lattice approach? The aim of the lattice approach is to construct a
discrete-time process S(n) and we want that this process converges weakly to our
continuous-time process S. On the next couple of pages we will explain how to
do it.

Let us put now the binomial tree in a more formal shape. If n ∈ N is the number
of periods in the discrete model, then in binomial approximation of the stock
price we have two possible scenarios per period

E (n) := {ω : {1, 2, ..., n} → {1,−1}}
endowed with the product σ-field

F (n) :=
n⊗
k=1

P ({1,−1}) := σ
(
Z

(n)
k |k = 1, 2, ..., n

)
.

Here P (.) is a power set and Z
(n)
k : E (n) → {1,−1} is the coordinate mapping

with Z
(n)
k (ω) = ωk.

Now we can define a binomial process on
(
E (n),F (n)

)
with the same starting point

as the initial value of the continuous time process s0

S(n)(k + 1) = S(n)(k)eα(n)∆t+β
√

∆tZ
(n)
k+1 , k = 0, 1, ..., n− 1 (2.3.3)

where β > 0 is a constant , α(n) is a deterministic function of n and ∆t = T
n

is
the grid size of the discrete time model.
From here we have that

u = u(n) := eα(n)∆t+β
√

∆t

and
d = d(n) := eα(n)∆t−β

√
∆t (2.3.4)

15



Chapter 2. Introduction to binomial trees

Theorem 2. (Risk-neutral valuation and replication) Each option g in an
n-period binomial model can be replicated by an investment strategy in the stock
and the bond. The initial costs of this strategy determine the option price and are
given by

c0 = EQ(n)(e−rTg),

where the measure Q(n) is the product measure of the one-period transition mea-
sures Q

(n)
i which are determined by

Q
(n)
i

(
S

(n)
i+1

S
(n)
i

= u

)
= q =

er∆t − d
u− d

,

and for which we have

S
(n)
0 = EQ(n)(e−rTS(n)

n ).

From the last equation, we can see that the expected relative return of the stock
and the bond, under the measure Q(n), coincide. This motivates calling Q(n) the
risk-neutral measure. The risk-neutral probability q gives us the market view on
the likelihood that the favorable one-period return u is attained and it can be dif-
ferent from the physical probability p. More details can be found in, e.g [23], [25].

Let us now generalize this approach. For that purpose we will give two algorithms:
one for European options and later one for American options.

The algorithm

Consider first a path-independent European option, i.e. an option with payoff
g(ST ), which can only be exercised at maturity. We want to approximate the
price EQ(g(S)) by using En(g(S(n))). The next algorithm explains how to do it:

1. Tree initialization

• Calculate the possible values of the stock at maturity

S
(n)
k+1 = S

(n)
k eα(n)∆t+β

√
∆tZ

(n)
k+1 , k = 0, 1, ..., n− 1

• Calculate the option value at maturity

V (n)(T, S(n)
n ) = g(S(n)

n )

for all possible values of S
(n)
n .

2. Backward induction

16



2.4. Trees and continuous-time models

• For i = n− 1, ..., 0 do

V (n)(i∆t, S
(n)
i ) = e−r∆t

[
qV (n)((i+ 1)∆t, uS

(n)
i )

+ (1− q)V (n)((i+ 1)∆t, dS
(n)
i )
]

3. Return En(g(S
(n)
n )) = V n(0, s) as the discrete time approximation for the

option price, S
(n)
0 = s.

The option price is equal to its expected payoff in a risk-neutral world discounted
at the risk-free interest rate. If we add more steps to the binomial tree, the
risk-neutral valuation principle will still hold.

2.4 Trees and continuous-time models

As we have seen, a binomial approach leads to a modeling framework for option
pricing which is easy to compute. Naturally, we are now interested if our model
is in any reasonable way related to the Black-Scholes stock price model for which
the stock price {St, t ∈ [0, T ]} is assumed to follow a geometric Brownian motion,
i.e.

St = s · exp

((
r − 1

2
σ2

)
t+ σWt

)
,

where Wt is one-dimensional Brownian motion and σ > 0 a given constant which
describes the volatility of the stock price movements. More precisely, as the
period length ∆t tends to zero

• do we have weak convergence of the stock price paths in the sequence of
increasing binomial models to the given geometric Brownian motion?

• does the sequence of binomial option prices
(
EQ(n)

(
e−rTg

))
n

converge to
the corresponding option price in the Black-Scholes model?

The answer to these questions is related to the concept of weak convergence of
the corresponding stochastic process. The Central Limit Theorem and Donsker’s
theorem are here very helpful.

2.4.1 Weak convergence

Let us first understand what we mean by weak convergence.

17



Chapter 2. Introduction to binomial trees

Definition 3. Let M be a metric space with the Borel σ-field B(M), i.e. the
smallest σ field containing all open subsets of M , and let Pn, n ∈ N, and P be
probability measures on (M,B(M)). The sequence {Pn} is said to converge weakly
to P , denoted by

Pn
w

=⇒ P,

if for every bounded, continuous function f : M → R we have

lim
n→∞

∫
M

f(x)dPn(x) =

∫
M

f(x)dP (x).

Moreover, if Xn and X are random variables, n ∈ N, with state space M defined
on probability space (Ωn,Fn, Pn) and (Ω,F , P ) respectively, then the sequence
{Xn} is said to converge weakly to X, denoted by

Xn
w

=⇒ X,

if for every bounded, continuous function f : M → R we have

lim
n→∞

EPn (f(Xn)) = EP (f(X)),

i.e. if the corresponding probability distributions converge weakly.

Weak convergence of random variables is the same as weak convergence of their
distributions. The range of all the random elements has to be the same, while
the underlying probability spaces may be different.

One of the main results of weak convergence is Donsker’s Theorem which can
be seen as a process version of the Central Limit Theorem. Here we will give a
special case of it

Theorem 3. Donsker’s theorem (special case) For given stock price param-
eters r (drift) and σ (volatility) the price process of the binomial tree converges
(in distribution) towards the price process in the Black-Scholes model if the first
two moments of the relative log-returns of both models coincide, i.e. if we have

E

(
ln

(
S (∆t)

S(0)

))
= E(n)

(
ln

(
S(n) (1)

S(n)(0)

))
E

(
ln

(
S (∆t)

S(0)

)2
)

= E(n)

(
ln

(
S(n) (1)

S(n)(0)

)2
)
.

By Donsker’s theorem, to achieve weak convergence, we need to have the first two
moments of the log-increments of the discrete and the continuous model matched.
For practical purposes, it is very important that weak convergence also holds if

18



2.4. Trees and continuous-time models

the moment matching conditions are only valid asymptotically (see [33]). To
achieve that, we will choose the sequance (α (n))n, the constant β > 0 and the
sequence of probability measures

(
P (n)

)
n

on
(
E (n),F (n)

)
n

such that the following
conditions are satisfied:

1. ∀n ∈ N, the random variables Z
(n)
k , k = 1, 2, ..., n, are independent and

identically distributed.

2. The first two moments of the one-period log-returns of S are asymptotically
matched, i.e.

µ(n) : =
1

∆t
EP (n)

(
ln

(
S(n)(k + 1)

S(n)(k)

) ∣∣S(n)(k)

)
=

1

∆t
EP (n)

(
ln

(
S(n)(k)eα(n)∆t+β

√
∆tZ

(n)
k+1

S(n)(k)

)∣∣S(n)(k)

)

= α(n) + β

√
1

∆t
EP (n)

(
Z

(n)
k+1

)
= α(n) + β

√
1

∆t
(2pn − 1) (2.4.1)

σ2(n) : =
1

∆t
V arP (n)

(
ln

(
S(n)(k + 1)

S(n)(k)

) ∣∣S(n)(k)

)
=

1

∆t
V arP (n)

(
ln

(
S(n)(k)eα(n)∆t+β

√
∆tZ

(n)
k+1

S(n)(k)

)∣∣S(n)(k)

)
=

1

∆t
V arP (n)

(
α(n)∆t+ β

√
∆tZ

(n)
k+1

)
= β2V arP (n)

(
Z

(n)
k

)
= 4β2pn(pn − 1) (2.4.2)

are such that as n→∞,

µ(n)→ r − 1

2
σ2 (2.4.3)

and
σ2(n)→ σ2. (2.4.4)

Under these conditions we will have that the linear interpolation of

S(n)(k + 1) = S(n)(k)eα(n)∆t+β
√

∆tZ
(n)
k+1 , k = 0, 1, ..., n− 1

converges weakly to the stock price process. The drift parameteres (α (n))n are
allowed to be non-constant in n. The schemes with α(n) ≡ α constant are referred
to as conventional schemes. We will impose following condition:
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Chapter 2. Introduction to binomial trees

Assumption: The sequence (α (n))n is assumed to be bounded, i.e. it is assumed
to be of order O (1).

The next theorem tells us the conditions which should be satisfied so that we
have (2.4.3) and (2.4.4) (see [25] and [33], Proposition 2, page13).

Theorem 4. (Theorem on drift invariance) Let S(n) be a risk-neutral bi-
nomial scheme. Then the moment matching conditions (2.4.3) and (2.4.4) are
satisfied if and only if β = σ. In particular, convergence to the first two moments
of the one-period log-returns in the continuous time model is of order∣∣∣∣µ(n)−

(
r − 1

2
σ2

)∣∣∣∣ = O

(
1

n

)
and

∣∣σ2(n)− σ2
∣∣ = O

(
1

n

)
. (2.4.5)

Proof. By Taylor expansion of the exponential function and (2.3.4) we have

u(n) = 1 + β

(
T

n

) 1
2

+

(
α(n) +

1

2
β2

)
T

n
+

(
1

6
β3 + α(n)β

)(
T

n

) 3
2

+(
1

2
α2(n) +

1

2
β2α(n) +

1

24
β4

)(
T

n

)2

+ o

(
1

n2

)

d(n) = 1− β
(
T

n

) 1
2

+

(
α(n) +

1

2
β2

)
T

n
−
(

1

6
β3 + α(n)β

)(
T

n

) 3
2

+(
1

2
α2(n) +

1

2
β2α(n) +

1

24
β4

)(
T

n

)2

+ o

(
1

n2

)
which implies

q(n) =
er∆t − d(n)

u(n)− d(n)

=
1

2
+ c1(n)

(
T

n

) 1
2

+ c2(n)

(
T

n

) 3
2

+ o

(
1

n
3
2

)
(2.4.6)

with

c1(n) =
1

2β

(
r − α(n)− 1

2
β2

)
c2(n) =

1

2β

(
1

2
(α(n)− r)2 +

1

6
β2 (α(n)− r) +

1

24
β4

)
where we used a Taylor expansion for er∆t, too. We should notice that c1(n) and
c2(n) are of order O(1). Now consider
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2.4. Trees and continuous-time models

µ(n)
(2.4.1)

= α(n) + β
(n
T

) 1
2

(2q(n)− 1) = r − 1

2
β2 + 2βc2(n)

T

n
+ o

(
1

n

)
and

σ2(n)
(2.4.2)

= 4β2q(n)(1− q(n)) = β2 − 4β2c2
1(n)

T

n
+ o

(
1

n

)
.

The moment matching conditions (2.4.2) and (2.4.3) are satisfied if and only if
β = σ. From those equations we can also conclude that∣∣∣∣µ(n)−

(
r − 1

2
σ2

)∣∣∣∣ = O

(
1

n

)
and

∣∣σ2(n)− σ2
∣∣ = O

(
1

n

)
which proves the theorem.

We have only a condition on β, i.e. the weak convergence is ensured independently
of the choice of the sequence (α(n))n. This leaves space for suitable good choices
of α(n) to improve the convergence behavior. These choices will play a central
role in the next chapter where we will concentrate more on the choice of the drift
parameter and explore more properties of it.

2.4.2 CRR and RB trees

In Theorem 4 we have seen some conditions which a binomial tree should satisfy
such that we have week convergence to the Black-Scholes stock price process.
This means, if we have a bounded payoff, the parameters of the binomial tree
must be chosen such that option prices converge to the continuous-time limit,
i.e. discrete distribution of the asset price (represented by the binomial tree)
must converge to the continuous-time limit of the lognormal distribution. As we
have shown in the previous section, this means that we must have (approximate)
equality of the first two moments of continuous and discrete model. There are
many possibilities to satisfy the moment matching conditions since we have two
equations and three parameters: p, u and d. In this chapter we will focus on two
of them. The first suggestion was given by Cox, Ross and Rubinsten (CRR from
now on) in [9] and they suggested the following parameters:

u = eσ
√

∆t, d =
1

u
, p =

1

2

(
1 +

(
r − 1

2
σ2

)
1

σ

√
∆t

)
.

Since p is a probability of an up-movement, it is only well defined if

0 ≤ 1

2

(
1 +

(
r − 1

2
σ2

)
1

σ

√
∆t

)
≤ 1 ⇐⇒ n >

(r − 1
2
σ2)2

σ2
T.
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Here we have α ≡ 0 and β = σ. For these parameters we have that the first
moment of the log increments is exactly matched but the second one is matched
asymptotically:

µ(n) = r − 1

2
σ2,

σ(n)2 = σ2 −
(
r − 1

2
σ2

)2

∆t.

Another property of this model is, since α ≡ 0, there is no drift and the tree is
symmetric in the log-scale around the initial value log(S0).
The main drawback of this model is that the convergence is not smooth. We will

later show that the order of convergence is O
(

1√
n

)
, but since it is not smooth we

cannot apply an extrapolation method to speed it up. Also oscillations between
even and odd n can be observed. This is known as the even-odd effect. But if
we consider only even n (or odd n) then these oscillations are not present. In the
Figure 2.4 the even-odd problem is shown. More details about the convergence
of the CRR tree are presented in Section 3.1.
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Figure 2.4: European call option price obtained using CRR model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes = 11.6573.

The second suggestion was given by Rendleman and Bartter [40](RB from now
on):

p =
1

2
, u = e(r− 1

2
σ2)∆t+σ

√
∆t, d = e(r− 1

2
σ2)∆t−σ

√
∆t,
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2.4. Trees and continuous-time models

and with these parameters we match both moments exactly. Here we have α = r−
1
2
σ2, which means this tree is tilted with regard to initial value, but the probability
p is fixed which is an advantage in the implementation of the model since it
requires less operation counts because of the symmetry in the probabilities. This
speeds up the algorithm. The RB model unfortunately also suffers from irregular
convergence which can be seen in Figure 2.5.
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Figure 2.5: European call option price obtained using RB model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes = 11.6573.

A comparison between these two models is given in Bock [1], where the author
has shown that the absolute error for both models has a very similar convergence
pattern, but the CRR model delivers better results for the relative error. In this
thesis the focus will be on the models derived from the CRR model.

23



Chapter 2. Introduction to binomial trees

24



25

Chapter 3

Advanced and modified trees

In the previous chapter we have seen the basic structure of the binomial trees.
Now the natural question which arises is: can we have better results using suitably
modified binomial trees? Answering this question will be the main topic of this
chapter.

3.1 Why and when is a CRR tree good?

Let us first look in great detail at the convergence behavior of the CRR tree.
Diener and Diener showed in [10] that the convergence rate for CRR trees for
European calls is O

(
1
n

)
. We want to see now under which circumstances we get

the best behavior of the CRR tree. These results will motivate us to introduce
modified binomial trees. We will first focus on results given by Diener and Diener
and afterwards we will expand our research. Their result in our notation is:

Theorem 5. In the n-period CRR binomial model, if S0 = 1, the binomial price
C(n) at t = 0 of the European call with strike price K and maturity T = 1
satisfies

C(n) = CBS +
e−

d21
2

24σ
√

2π

A− 12σ2(∆2
n − 1)

n
+O(

1

n
√
n

),

where

∆n = 1− 2

{
ln(S0

K
) + n ln d

ln(u
d
)

}
,

A = −σ2(6 + d2
1 + d2

2) + 4(d2
1 − d2

2)r − 12r2,

{x} is the fractional part of x, CBS is the price obtained by the Black - Scholes
formula and d1 and d2 are the coefficients in the Black - Scholes formula, i.e. as
in (2.2.3).
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p

1− p

S̃0

˜S0u

S̃0d

S̃0
S̃0

˜S0u2

˜S0d2

˜S0u3

˜S0u

S̃0d

˜S0d3

˜S0d4

˜S0d2

˜S0u2

˜S0u4

K

∆n

Figure 3.1: Binomial tree with ∆n, log-scale

As we can see, the coefficient of 1
n

in the error depends on the quantity ∆n. Let
us investigate this coefficient.

Let l := l(n) be an integer value such that

S(n)(l − 1) := S0u
l−1(n)dn−l+1(n) < K ≤ S0u

l(n)dn−l(n) := S(n)(l),

i.e. S(n)(l− 1) and S(n)(l) are the terminal nodes adjacent to the strike value K.
The non constant factor ∆n can be rewritten also for the general type of trees,
i.e. using u(n) and d(n) from (2.3.4) we get (with, of course β = σ)

∆n := 1− 2{−a(n)} := 1− 2

{
−1

2
n+

ln
(
s0
K

)
+ α(n)T

2σ
√
T

√
n

}
. (3.1.1)

Chang and Palmer have shown in [7] that ∆n can also be represented as

∆n = 1− 2
ln
(
S(n)(l)
K

)
ln
(

S(n)(l)

S(n)(l−1)

) . (3.1.2)

and thus, it measures the distance between the strike value and its adjacent ter-
minal values in log-scale, which is illustrated in Figure 3.1. Now we can conclude
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that ∆n is strictly increasing on
(
S(n)(l − 1), S(n)(l)

]
with

∆n =

{
1 for K = S(n)(l)

0 for K =
√
S(n)(l − 1)S(n)(l)

, (3.1.3)

and it converges to −1 as K tends to S(n)(l − 1). This is the reason why we
have oscillations in the CRR binomial call price around the Black - Scholes price.
Controlling this might help us getting smooth convergence.

Let a(n) be, as in (3.1.3), the quantity

a(n) :=
ln
(
K
S0

)
− n ln d

lnu− ln d
. (3.1.4)

Then we have

[x] := k(n) := [a(n)] + 1 = a(n) + 1− {a(n)}, (3.1.5)

where [x] denotes the integer part of x and {x} := x − [x]. Then, the fractional
part {a(n)} is always bounded between 0 and 1.

Now we assume the following: u and d have a converging expansion of type

u = u(n) =
1

2
+ σ

1√
n

+ u2
1

n
+ ...

d = d(n) =
1

2
− σ 1√

n
+ d2

1

n
+ ...

For example, parameters u and d from the CRR model satisfy this converging
expansion. Then we have the following result (see [10])

Corollary 3. The integer k(n) defined by (3.1.5) has the following asymptotic
expansion with bounded coefficients:

k(n) =
1

2
n+ a−1

√
n+ a0 + 1− {a(n)}+O

(
1√
n

)
(3.1.6)

where

a−1 =
1

4σ

(
2 ln

(
K

S0

)
− (u2 + d2) + σ2

)
,

a0 = 2

(
2 ln

(
K

S0

)
− (u2 + d2)− σ2

)
(u2 − d2))
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This means, the function a(n) has an asymptotic expansion of type a(n) = 1
2
n+

a−1

√
n+O

(
1√
n

)
in the model under consideration here. The first term does not

give any contribution to k for even n (its fractional part is zero), and for odd
n it brings a contribution of 1

2
to k. This explains the oscillations of order 1

n

between even and odd values of n in the price C(n). Further, for the same parity
of n, when a(n) is far away from an integer value, its fractional part k changes
continuously, but it will have a discontinuity every time a(n) crosses an integer.
On the other hand, in the case of the call at the money, i.e. K = S0, one has
a(n) = n

2
(for the CRR tree, i.e. when u = 1

d
) and thus the price C(n) oscillates

but the asymptotic expansion with bounded coefficient is much easier to compute
as k is simply equal to 0 for even n and 1

2
for odd n. Thus, there is no scallop

here. In Figure 3.2 we can see that the CRR tree is indeed smooth for K = S0.
We will take this up again in a more general setting when introducing the split
tree in Chapter 4.
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Figure 3.2: European put option obtained using CRR model: S0 = 100, K = 100,
σ = 0.25, r = 0.1, T = 1, Black-Scholes =5.4595

Now combining all these results we end up with

Corollary 4. The CRR tree admits a smooth convergence for S0 = K and the
order of it for this case is O

(
1
n

)
.

We have seen that the CRR model behaves better compared to other models in
case of S0 = K, i.e. there is no scallop. But, usually we have initial values given
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3.2. Advanced trees

and we cannot choose them freely. Can we maybe create a similar behavior of
the CRR tree if we plays it suitably around K? Answering this question will be
the main idea of the next few sections.

From now on, we will say that

u = eασ
2∆t+σ

√
∆t, d = eασ

2∆t−σ
√

∆t

where α = α(n) is in general a bounded sequence depending of n. In [7] they

consider all possible choices of u and d such that u
d

= e2σ
√

∆t and n ln(ud) is
bounded. If we look at our statement again, we will see that these two statements
are equivalent. This is a more general approach, since for α = 0 we get the CRR
model, for α = r

σ2 − 1
2

we get the RB model. The reason why we consider this
more general case is that it allows us to see how our tree behaves for different
values of α, also known as a drift.

3.2 Advanced trees

In [7] Chang and Palmer concentrated on getting smooth convergence rather
than faster convergence, since once we have smooth convergence we can apply
extrapolation methods and improve our rate of convergence. The next theorem
is the main theorem from [7] and it tells us that the rate of convergence of digital
and European options is O

(
1
n

)
but it gives us motivation how to improve the

results. It is a slight generalization of Diener and Diener [10], but it has a simpler
proof.

Theorem 6 (Main Theorem - Chang and Palmer). For the n-period binomial
model, where

u = eασ
2∆t+σ

√
∆t, d = eασ

2∆t−σ
√

∆t, (3.2.1)

with α an arbitrary bounded function of n, if the initial stock price is S0 and the
strike price is K with maturity time T . Then

1. the price of a digital call option satisfies

Cd(n) = e−rTΦ(d2) + e−rT e
−d22

2√
2π

[
∆n√
n
− d2∆2

n

2n
+ Bn

n

]
+O

(
1
n

)
and

2. the price of a European call options satisfies
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C(n) = CBS + S0e
−
d21
2

24σ
√

2πT

An−12σ2T (∆2
n−1)

n
+O( 1

n
),

where

Bn =
d3

1+d1d2
2+2d2−4d1

24
+

(2−d1d2−d2
1)
√
T

6σ
(r − ασ2) + Td1

2σ2 (r − ασ2)2,

An = −σ2T (6 + d2
1 + d2

2) + 4T (d2
1 − d2

2)(r − ασ2)− 12T 2(r − ασ2)2.

The price of a European call option with maturity T is given by (from [37]):

C(n) = S0

n∑
k=j

(
n

k

)
p̂kq̂n−k −Ke−rT

n∑
k=j

(
n

k

)
pkqn−k,

where 0 < p < 1, p = er∆t−d
u−d , q = 1− p, p̂ = pue−r∆t, q̂ = 1− p̂ and

j = [γ] where γ =
ln
(
K
S0

)
− n ln d

ln
(
u
d

) .

The price of a digital call option is given by:

Cd(n) = e−rT
n∑
k=j

(
n

k

)
pkqn−k

and its Black-Scholes price is given by e−rTΦ(d2), while for the European call it
is given by SΦ(d1)−Ke−rTΦ(d2).
The following lemma, an extension of a result of Uspensky from [48], is our
fundamental tool for proving the Main theorem, Theorem 6.

Lemma 1. Provided that p → 1
2

as n → ∞ and 0 ≤ j = jn ≤ n + 1 for n
sufficiently large,

n∑
k=j

(
n

k

)
pkqn−k =

1√
2π

ξ2∫
ξ1

e−
u2

2 du+
q − p

6
√

2πnpq

(
(1− ξ2

2)e−
ξ22
2 − (1− ξ2

1)e−
ξ21
2

)

+
1

12n
√

2π

(
ξ2e
− ξ

2
2
2 (ξ2

2 − 1)− ξ1e
− ξ

2
1
2 (ξ2

1 − 1)

)
+ o

(
1

n

)
,

where ξ1 =
j−np− 1

2√
npq

and ξ2 =
nq+ 1

2√
npq

.
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Proof of the Main theorem. Assume that n is large enough such that we have
0 < p < 1 and 0 ≤ γ ≤ n+ 1, which implies that 0 ≤ [γ] ≤ n+ 1.

Proof of part 1: Let us first expand probability p in powers of ∆t
1
2 up to third

order. Then by definition of u and d and using the Taylor expansion

p =
er∆t − d
u− d

=
1

2
+ α∆t

1
2 + β∆t

3
2 + o

(
∆t

3
2

)
(3.2.2)

where

α =
r − (λ+ 1

2
)σ2

2σ
, β =

σ4(4λ+ 1)− 4σ2r + 12(r − λσ2)2

48σ
.

Next, we compute

ξ1 =
j − np− 1

2√
npq

= − 1

2
√
npq

(−2j + 2np+ 1). (3.2.3)

Since j = γ + {−γ}, −2γ + n+ 2nα∆t
1
2 = d2

√
n and using (3.2.2):

−2j + 2np+ 1 = −2j + 1 + n+ 2nα∆t
1
2 + 2nβ∆

3
2 + o(∆t

1
2 )

= ∆n + d2

√
n+ 2βT∆t

1
2 + o(∆t

1
2 ). (3.2.4)

Also, because pq = p(1− p) = 1
4
− α2∆t

3
2 and using the binomial series theorem

1

2
√
pq

= 1 + 2α2∆t+O(∆t
3
2 ). (3.2.5)

Hence, using (3.2.3), (3.2.4) and (3.2.5)

−ξ1 = d2 +
∆n√
n

+
δ

n
+ o

(
1

n

)
,with δ = 2T (α2d2 + β

√
T ). (3.2.6)

Next, we examine the terms in Lemma 1 one by one. Let

I :=

ξ2∫
ξ1

e−
u2

2 du =

∞∫
ξ1

e−
u2

2 du−
∞∫
ξ2

e−
u2

2 du =: I1 − I2.
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First we estimate I1. Using f(x) :=
x∫
d2

e−
u2

2 du, which is an even function, we get

I1 =

−ξ1∫
−∞

e−
u2

2 du =

d2∫
−∞

e−
u2

2 du+

−ξ1∫
d2

e−
u2

2 du = Φ(d2)
√

2π + f(−ξ1).

For some η between −ξ1 and d2, by a Taylor expansion we have

f(−ξ1) = e−
d22
2 (−ξ1 − d2)− d2e

− d
2
2
2

2
(−ξ1 − d2)2 +

f
′′′

(η)

3!
(−ξ1 − d2)3,

where f
′′′

(η) = −e− η
2

2 + η2e−
η2

2 is bounded. Then it follows from (3.2.6) that

f(−ξ1) = e−
d22
2

[
∆n√
n

+
δ

n
− d2∆2

n

2n

]
+ o

(
1

n

)
,

so

I1 = Φ(d2)
√

2π + e−
d22
2

[
∆n√
n

+
δ

n
− d2∆2

n

2n

]
+ o

(
1

n

)
. (3.2.7)

Now we are going to estimate I2. Since p → 1
2

and q → 1
2

as n → ∞, we have
ξ2√
n

=
nq+ 1

2

n
√
pq
→ 1 as n → ∞, which implies that we can find n0 such that ξ2 ≥ 2

for n ≥ n0. Then, when n ≥ n0,

|I2| ≤
∞∫
ξ2

e−udu = e−ξ2 = e
−nq+

1
2√

npq = o

(
1

n

)
. (3.2.8)

From (3.2.5) and (3.2.2)

1

2
√
pq

= 1 +
2α2T

n
+O

(
1

n
3
2

)
p− q =

2α
√
T√
n

+O

(
1

n
3
2

)
so that we have

q − p
√
npq

= −4α
√
T

n
+O

(
1

n2

)
.
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Next, note that (1− ξ2
2)e−

ξ22
2 − (1− ξ2

1)e−
ξ21
2 → −(1− d2

2)e−
d22
2 as n→∞. Hence

q − p
6
√

2πnpq

(
(1− ξ2

2)e−
ξ22
2 − (1− ξ2

1)e−
ξ21
2

)
=
−4α
√
T

6n
√

2π

(
−(1− d2

2)e−
d22
2

)
+ o

(
1

n

)
.

(3.2.9)

Using −ξ1 → d2 and ξ2 →∞ as n→∞, we get

1

12n
√

2π
(ξ2e

− ξ
2
2
2 (ξ2

2 − 1)− ξ1e
− ξ

2
1
2 (ξ2

1 − 1)) =
d2e
− d

2
2
2 (d2

2 − 1)

12
√

2π

1

n
+ o

(
1

n

)
.

(3.2.10)

Putting (3.2.7) - (3.2.10) in Lemma 1, we obtain

erTCd(n) =
n∑
k=j

(
n

k

)
pkqn−k

= Φ(d2) +
e−

d22
2

√
2π

{
∆n√
n
− d2∆2

n

2n

+

[
δ +

(
2α
√
T

3
− d2

12

)
(1− d2

2)

]
1

n

}
+ o

(
1

n

)
.

(3.2.11)

Now multiplying the last term by e−rT and replacing α and δ by their definitions,
we prove the first part of the main theorem.

Proof of part 2: Now we will use Lemma 1 with p, q, ξ1, ξ2 replaced by their
hatted versions p̂, q̂, ξ̂1, ξ̂2 and obtain

n∑
k=j

(
n

k

)
p̂kq̂n−k =

1√
2π

ξ̂2∫
ξ̂1

e−
u2

2 du+
q̂ − p̂

6
√

2πnp̂q̂

(
(1− ξ̂2

2)e−
ξ̂22
2 − (1− ξ̂2

1)e−
ξ̂21
2

)

+
1

12n
√

2π

(
ξ̂2e
− ξ̂

2
2
2 (ξ̂2

2 − 1)− ξ̂1e
− ξ̂

2
1
2 (ξ̂2

1 − 1)

)
+ o

(
1

n

)
,

where

ξ̂1 =
j − np̂− 1

2√
np̂q̂

and ξ̂2 =
nq̂

+

12√
np̂q̂

.
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Our next step is to estimate p̂. Using formula (3.2.1) and another Taylor expan-
sion, we arrive at

p̂ =
u− ude−r∆t√

np̂q̂
=

1

2
+ α̂∆t

1
2 + β̂∆t

3
2 + o

(
∆t

3
2

)
where

α̂ =
r − (λ− 1

2
)σ2

2σ
, β =

σ4(4λ− 1)− 4σ2r − 12(r − λσ2)2

48σ
. (3.2.12)

Now by replacing p, q, α and β in the derivation of (3.2.6) by the same quantities

with hats on and using the fact that −2γ + n+ 2nα̂∆t
1
2 = d1

√
n, we get

−ξ̂ = d1 +
∆n√
n

+
δ̂

n
+ o

(
1

n

)
, where δ̂ = 2T (α̂2d1 + β̂

√
T ).

Proceeding as we did to get (3.2.11) and using the hatted version of p, q, ξ1, ξ2,
α, β, δ and using d1 instead of d2, we obtain the relation

n∑
k=j

(
n

k

)
p̂kq̂n−k = Φ(d1) +

e−
d1

2

√
2π

×

{
∆n√
n

+

[
δ̂ − d1∆2

n

2
+

(
2α̂
√
T

3
− d1

12

)
(1− d2

1)

]
1

n

}
+ o

(
1

n

)
.

(3.2.13)

Now if we multiply (3.2.13) with S0, (3.2.11) with Ke−rT , then subtracting and

using S0e
− d

2
1
2 = Ke−rT e−

d22
2 , we get

C(n) = S0Φ(d1)−Ke−rTΦ(d2) +
S0e

− d
2
2
2 Cn√

2π

1

n
+ o

(
1

n

)
,

where Cn is

Cn = δ̂ − δ − σ∆2
n

√
T

2
+

(1− d2
1)
√
T

12
(8− (α̂− α)− σ)− σ

√
T (d1 + d2)

12
(8α− d2).

Simplifying the last equation we get the second part of the Main theorem.

In the Main theorem we have again the coefficient ∆n. Until now we just proved
the theorem, but our next step is to use it and see how we can improve our results
by controlling this coefficient.
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3.2.1 The Tian tree

Convergence in the CRR and RB trees is almost always nonsmooth because the
position of K oscilates between the two adjacent stock prices so that ∆n oscillates
between 1 and -1. To overcome this problem, Tian [47] suggested that we take a
new drift which will move our tree such that the adjacent node is placed exactly
at the point K, i.e. ∆n = 1. This will be done in the following way: We determine
the node closest to the strike price K by solving the following equation:

K = S0u(n)ad(n)n−a.

This leads us to:

a(n) =
ln
(
K
S0

)
− n ln (d(n))

ln(u(n))− ln(d(n))
.

The right hand side of the last equation is usually not an integer, i.e. lα(n)− 1 <
a(n) < lα(n), lα(n) ∈ N. To ensure that the terminal node is placed exactly on
the strike value K, for the given sequence (lα(n))n we define sequence (α̃(n))n
such that

α̃(n) :=
ln
(
K
S0

)
− (2lα(n)− n)σ

√
∆t

T
. (3.2.14)

For any number of periods n, the Tian model S
(n)
α̃(n) is defined as the process (2.4.1)

with β = σ and with the new drift α̃(n). The new parameter is not constant,

it depends on the number of periods. The process S
(n)
α̃(n) is defined such that the

corresponding equation K = S0u(n)ad(n)n−a is solved by

aα̃(n)(n) =
1

2
n+

ln
(
K
S0

)
− α̃(n)T

2σ
√
T

√
n = lα(n), (3.2.15)

where the last equation follows from (3.2.14). It follows now that the quantity
aα(n) obtained for the Tian model is integer-valued. Hence,

ln

(
S

(n)
α̃(n)

(l)

K

)
ln

(
S

(n)
α̃(n)

(l)

S
(n)
α̃(n)

(l−1)

) = 0

i.e. by (3.1.3)

S
(n)
α̃(n) = K, ∀n ∈ N.
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This means that for any number of periods n, the terminal distribution of the
Tian model assigns probability mass to the point K. As a consequence, we get
∆n = 1, i.e. it does not depend on n.

It is left to show that the model suggested by Tian converges to the Black -
Scholes value, i.e. we have to ensure weak convergence. Since we have β = σ, it
is left to show that the sequence of drift parameters (α̃(n))n) is bounded. In that
case, the moment matching conditions are satisfied for the risk-neutral transition
probabilities and weak convergence follows by the Main theorem. Comparing to
the CRR model, in Tian’s model the mass points are moved by a small distance.
This can be seen by writing the new drift (α̃(n))n) in terms of the original one.
By (3.2.14) and (3.2.15):

α̃(n) =
2σ√
T
√
n

(aα(n)− lα(n)) + α,

and this implies, since −1 ≤ aα(n)− lα(n) ≤ 0,

− 2σ√
T
√
n

+ α ≤ α̃(n) < α.

Observe that the new drift α̃(n) in Tian’s model differs from the original drift by

α̃(n) = α + o(1). (3.2.16)

Moreover, the new drift satisfies Assumption 1, i.e. α̃(n) = O(1), and we can
formulate:

Proposition 1. The sequence of processes
(
S

(n)
α̃(n)

)
n∈N

defined by Tian’s model

with linear interpolation and an appropriate time-scaling converges weakly to the
stock price process S.

Since ∆n is found to be independent of n, compared to other methods with
constant drift α, Tian’s model shows a more improved convergence behavior of
the discretization error in the approximation of the terminal stock price. Let us
now see how the Main theorem changes with ∆n obtained by Tian’s model.

Proposition 2. Let K ∈ R. The binomial model S
(n)
T ian suggested by Tian admits

the following representation of the discretization error:

• The discretization error of the digital call option is

Cd(n) = e−rTΦ(d2) +
e−rT e

−d22
2

√
2π

[
1√
n
− d2

2n
+
Bn

n

]
+O

(
1

n

)
and
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• The discretization error of the price of a European call options satisfies

C(n) = CBS +
S0e

− d
2
1
2

24σ
√

2πT

An
n

+O

(
1

n

)
,

where

Bn =
d3

1+d1d2
2+2d2−4d1

24
+

(2−d1d2−d2
1)
√
T

6σ
(r − ασ2) + Td1

2σ2 (r − ασ2)2,

An = −σ2T (6 + d2
1 + d2

2) + 4T (d2
1 − d2

2)(r − ασ2)− 12T 2(r − ασ2)2.

In Tian’s model, the discretization error converges smoothly along the upper

bound given by exp
(
− 1

2
d2

2(x)√
2πn

)
. The convergence for digital options is not faster,

but for European call options we get convergence order O
(

1
n

)
. By smooth con-

vergence we imply that the coefficient of the leading error term is constant and
the oscillations of the higher order terms are negligible. As a result, the Berry
Esséen bound remains tight and extrapolation methods can be applied.

As we already know, the CRR model is not smooth, but we have just shown that
Tian’s model is. The model suggested by Tian shows smaller pricing errors as
more time steps are used, which is not the case in the CRR model. The rate
of convergence is not improved, but this is not a drawback since extrapolation
methods can be used to improve the rate of convergence.

We applied Tian’s model to the same example as we did with the CRR and
RB models, where irregular convergence and the even-odd problem was visible.
In Figure 3.3 the even-odd problem is still noticeable, but the scallop effect is
gone. To avoid the even-odd problem, in practice we usually use only even or
odd step numbers. If we now look at Figure 3.4, we can notice the almost smooth
convergence and that the even-odd oscillations have disappeared.

3.2.2 The Chang and Palmer tree

Similar to Tian’s approach, Chang and Palmer [7] (CP from now on) suggested
that we move our tree such that the strike value is placed on the geometric
average of two adjacent nodes, i.e. to have ∆n = 0. The original drift α in this
model is replaced by some sequence of drift parameters (α(n))n∈N such that K =√
S(n)(l(n))S(n)(l(n)− 1). As a consequence, the discretization error will exhibit

a higher order of convergence. This model is also known as ”the centered binomial
model”. Let us investigate this in more detail: Assume S

(n)
α is the binomial
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Figure 3.3: European call option price obtained using Tian model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes =11.6573.

process (2.4.1) with β = σ and α(n) = α constant in n. As in Tian’s model, lα(n)

denotes the corresponding integers such that K ∈
(
S

(n)
n (lα(n)− 1), S

(n)
n (lα(n))

]
.

Then, the sequence for the new drift parameter will be given by

α(n) =
ln
(
K
S0

)
− (2lα(n)− n− 1)σ

√
δt

T
. (3.2.17)

By (3.2.17) the CP model is defined such that the equation s0u(n)ad(n)n−a = K
is solved by

aα(n)(n) :=
1

2
n+

ln
(
K
S0

)
− α(n)T

2σ
√
T

√
n = lα(n)− 1

2
.

which leads us to

ln

(
S

(n)
α(n)

(l)

K

)
ln

(
S

(n)
α(n)

(l)

S
(n)
α(n)

(l−1)

) =
1

2

i.e. by (3.1.3)

38



3.2. Advanced trees

200 400 600 800 1000
11.62

11.63

11.64

11.65

11.66

steps

op
ti

on
p
ri

ce
Tian BS

(a) Tian with even number of steps

200 400 600 800 1000
11.62

11.63

11.64

11.65

11.66

steps

op
ti

on
p
ri

ce

Tian BS

(b) Tian with odd number of steps

Figure 3.4: European call option price obtained using Tian model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes =11.6573.
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Chapter 3. Advanced and modified trees

K =
√
S

(n)
α(n)(lα(n)− 1)S

(n)
α(n)(lα(n)),∀n ∈ N. (3.2.18)

As we can see from (3.2.18), for any number of periods n, the terminal distribution
of the corresponding CP model is such that the pointK is at the geometric average
of two neighboring mass points. Now we can conclude, using (3.1.3), that in this
model ∆n = 0 always and this will improve our order of convergence.

Our next aimis to show that we want to show α(n) = α + o(1). Since the
probability mass is moved only by a small distance, this is a direct consequence.
Similar to the case in Tian’s model, we can conclude

α(n) =
2σ√
T
√
n

(
aα(n)− lα(n) +

1

2

)
+ α, (3.2.19)

where aα(n) is solution of the equation S0u(n)ad(n)n−a = K in the original model.
From (3.2.19)

α− σ√
T
√
n
≤ α(n) < α +

σ√
T
√
n
,

which shows our assertion.

We now can conclude these results in the following position.

Proposition 3. The sequence of processes
(
S

(n)
α(n)

)
n∈N

defined by the Chang and

Palmer model with linear interpolation and an appropriate time-scaling converges
weakly to the stock price process S.

Then, we can formulate the Main theorem as follows.

Theorem 7 (Main Theorem - Chang and Palmer). For the n-period binomial
model, where

u = eασ
2∆t+σ

√
∆t, d = eασ

2∆t−σ
√

∆t,

with α an arbitrary bounded function of n, if the initial stock price is S0 and the
strike price is K with maturity time T , we have that

1. the price of a digital call option satisfies

Cd(n) = e−rTΦ(d2) + e−rT e
−d22

2√
2π

Bn
n

+O
(

1
n

)
and

2. the price of a European call option satisfies
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3.2. Advanced trees

C(n) = CBS + S0e
−
d21
2

24σ
√

2πT
An+12σ2T

n
+O( 1

n
),

where

Bn =
d3

1+d1d2
2+2d2−4d1

24
+

(2−d1d2−d2
1)
√
T

6σ
(r − ασ2) + Td1

2σ2 (r − ασ2)2,

An = −σ2T (6 + d2
1 + d2

2) + 4T (d2
1 − d2

2)(r − ασ2)− 12T 2(r − ασ2)2.

This theorem tells us that the order of convergence is improved from 1√
n

to 1
n

for
both digital and European call options, i.e. we have

lim sup
n→∞

{
sup
K∈R

∣∣∣Q(n)
(
S

(n)
CP ≥ K

)
− Φ(d2(K))

∣∣∣√n} = 0

and

lim sup
n→∞

{
sup
K∈R

∣∣∣Q(n)
(
S

(n)
CP ≥ K

)
− Φ(d2(K))

∣∣∣n} > 0,

which means if the binomial process is defined according to the CP model, the
Berry-Esséen bound ceases to be tight and, in addition, the leading discretization
error term converges monotonically.
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Figure 3.5: European call option prices obtained using CP model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes =11.6573.
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(a) CP with even number of steps
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(b) CP with odd number of steps

Figure 3.6: European call option prices obtained using CP model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes =11.6573.
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3.2. Advanced trees

Let us now see how the previous example works with the CP model. As men-
tioned before, also in Figure 3.5 the even-odd problem appears. On the other
hand, in Figure 3.6 oscillations are not visible. From now on, we will use only
even or odd step numbers.

Next we show CRR, Tian and CP model together in Figure 3.7. It is visible that
only CRR model is oscillating. CP and Tian have almost the same behavior, but
CP model is slightly faster.
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Figure 3.7: European call: S0 = 95, K = 100, σ = 0.25, r = 0.1, T = 1,
Black-Scholes =11.6573.

Tillting the tree so that the neighboring node hits the strike value, or the geomet-
ric average of the two neighboring nodes, in CP and Tian’s model is done in the
last step and it does not have to be that this adjacent node is in the middle. In
the next chapter, we present a different model which has the same idea of tilting
the tree so that we get better convergence, but carries it out in a slightly different
way.
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Chapter 4

The split tree

We have seen that Tian [47] had a good idea to shift a tree a little bit so that
the strike price ends up on the closest node which leads to smoother convergence.
Chang and Palmer1 [7] followed this idea, but they shifted the tree so that the
strike price ends up on the geometrical average of the neighboring nodes which
leads to faster convergence. But for both models we get a well positioned strike
price at the end of the tree. Would we have better results if the strike price
is on a node somewhere in the middle of the tree and then continue with the
plain CRR method, since we have shown that the CRR model works well for
the case S0 = K? This gives us an idea to combine the Tian/CP tree with the
CRR tree. In [18], Joshi2 suggested tjos idea and introduced the so-called Split
tree. Combining two different models into one will be the main topic of this
chapter. First we introduce the Split tree and afterwards we prove convergence
of it. For this purpose we follow the work of G. Leduc3 from [27]. Results are
shown numerically and there we also discussed results for different splitting times.

In the Split tree we want our tree to be centered around the strike value in log
scale. For that purpose, we will use a time dependent drift. As we have seen,
in the CRR tree in log-scale there is no drift, i.e. α = 0, which means that
it is symmetric around its initial value. The main drawback of this tree is its
slowness and non-smooth convergence, i.e. O( 1√

n
), hence we cannot improve it

using extrapolation methods. But, if S0 = K we have shown that we have smooth
convergence. This has motivated us to introduce the Split tree. The idea behind
this tree is that we combine two trees. Let us say we have n steps. In the first
k = bn

2
c steps we want to have a drift which will get the center of the tree at the

same level as a strike, and after that we do not have any drift, i.e. we continue

1K. Palmer was really helpful with explaining the Main theorem personally
2M. Joshi was really helpful with explaining properties of this model personally.
3G. Leduc participated directly in proving convergence of the Split tree and getting the

explicit error formula.



Chapter 4. The split tree

with the CRR tree

α1 =
n ln(K

S0
)

kT
(4.0.1)

which leads us to

u1 = e
ln( KS0

)
k

+σ
√

∆T (4.0.2)

and

d1 = e
ln( KS0

)
k
−σ
√

∆T (4.0.3)

for the first half of the tree, and

α2 = 0, u2 = eσ
√

∆t, d2 =
1

u
. (4.0.4)

for the second half of the tree. This model was first introduced in [18]. First of all,
we can conclude that Assumption 1 is satisfied - for both drifts. Let us now say
we have ∆n1 for the first half of the steps, and ∆n2 for the rest (the non-constant
factor defined in (3.1.2)). The tree in the first half can be considered as Tian
tree (if we put n

2
in Tian’s drift, we get the same drift as in the Split tree), so we

can conclude that ∆n1 = 1. After that we always have that the strike value is on
the node (actually in every second step), but the tree is symmetric around the
strike value in the log space so there are no oscillations which means that ∆n2 = 1.

To avoid arbitrage opportunities, we have to have

d1 < er∆t < u1.

Let us investigate this property in more details. Before that we assume that
k ∈ (0, n), i.e. we allow to split the tree at any time. Here we excluded 0 and n
since, if k = 0, it means we already have S0 = K and if k = n then we do tilting
until the end, i.e. there is no splitting. The above no arbitrage condition leads
to the relation

1

k
ln

(
K

S0

)
− σ
√

∆t < r∆t <
1

k
ln

(
K

S0

)
− σ
√

∆t

⇐⇒ ln

(
K

S0

)
< k(r∆t+ σ

√
∆t) < ln

(
K

S0

)
+ 2σ

√
∆t.

The expression r∆t+σ
√

∆t is always positive and it will not cause any problems,
but r∆t− σ

√
∆t might be negative. Therefore we will consider two cases:

1.

k >
ln
(
K
S0

)
r∆t+ σ

√
∆t
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which yields a condition on k only reasonable for K > S0, since r∆t +
σ
√

∆t > 0.

2. If r∆t− σ
√

∆t < 0 then

k(r∆t− σ
√

∆t < 0) < ln

(
K

S0

)
,

which only yields a reasonable condition on k for K < S0. In this case we
have

k >
ln
(
K
S0

)
r∆t− σ

√
∆t
.

In our model, we will assume r∆t − σ
√

∆t < 0 since we are interested in the
case when n→∞. This yields that we do not have an upper bound for k. This
conclusion is also expected, since if we do not split at all we will end up with
Tian tree. Another interesting case is when S0 = K. If we plug this into u1 and
d1, we end up with a CRR model, i.e. there is no splitting needed since we are
already in a desired position.

We summarize the method in the form of an algorithm as follows

Algorithm for the Split tree

1. Tree Initialization
Divide the tree into 2 subtrees:

• For m = 1, 2, ..., k − 1 do

Sn(m+ 1) = Sn(m)e
lnK−lnS

k
+σ
√

∆tZnk+1 , S0 = s0.

For m = k, ..., n− 1 do

Sn(m+ 1) = Sn(m)eσ
√

∆tZnk+1 .

• Calculate the option value at maturity for all possible values of Snn

Vn(n) = g (Snn) .

2. Backward induction
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Chapter 4. The split tree

S0

K
S0u1

S0d1

Splitting

Figure 4.1: Split tree
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4.1. Optimal time for splitting the tree - best tilting

• For i = n− 1, ..., k + 1 calculate the value of the option by

Vn(i∆t, S
(n)
i ) = e−r∆t

[
p2V

(n)((i+ 1)∆t, u2S
(n)
i )

+ (1− p2)V(n)((i+ 1)∆t, d2S
(n)
i

]
.

• For i = k, ..., 1 calculate the value of the option by

Vn(i∆t, S
(n)
i ) = e−r∆t

[
p1V

(n)((i+ 1)∆t, u1S
(n)
i )

+ (1− p1)V(n)((i+ 1)∆t, d1S
(n)
i

]
.

3. Return e−rTVn(0).

We are now interested in the following questions:

1. Is it the best way to split the tree in the middle, i.e. with respect to time?

2. Do we have weak convergence?

3. What is the order of convergence?

4. Is the Split tree really good?

4.1 Optimal time for splitting the tree - best

tilting

Joshi introduced the Split tree as we have defined it in the previous section in
[18]. In that paper he splits the tree after k =

⌊
n
2

⌋
steps. We now want to

investigate what will happen if we split the tree earlier or later. First, we will
show numerically how does the Split tree behave for different time of splitting and
then we will prove it afterwards. In Figure 4.2 we can see results for European
put options where K = 100, S0 = 95, r = 0.1, σ = 0.25, n = 100 : 2 : 4000
and the black line is the Black - Scholes value for these parameters. As we can
see in Figure 4.2, we have better performance in the second picture, when we do
splitting later, i.e. convergence is faster. This gives us some space for research.
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(a) Splitting after 1/4 steps
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(b) Splitting after 3/4 steps

Figure 4.2: European put option prices obtained using Split model: S0 = 95,
K = 100, σ = 0.25, r = 0.1, T = 1, Black-Scholes =7.1411.

n 1/4 1/2 3/4 CP Tian
100 7.1923 7.1559 7.1438 7.1551 7.1057
200 7.1656 7.1480 7.1421 7.1496 7.1259
400 7.1530 7.1443 7.1415 7.1450 7.1333
500 7.1505 7.1436 7.1414 7.1444 7.1351
800 7.1469 7.1426 7.1412 7.1434 7.1376
1000 7.1457 7.1423 7.1412 7.1428 7.1382
2000 7.1434 7.1417 7.1411 7.1420 7.1397
4000 7.1422 7.1414 7.1411 7.1415 7.1404

Table 4.1: European put: S0 = 95, K = 100, σ = 0.25, r = 0.1, T = 1, Black -
Scholes value = 7.1411.

These results can be also seen in Table 4.1. In this table, we compared the results
obtained by splitting after 1

4
, 1

2
and 3

4
of the steps, from the CP model and results

obtained from the Tian model. At the first glance, we can conclude that all
models are smooth. Second, we can notice better performance for later splitting.
Note that by splitting after k = 3

4
n steps, we already have after 800 steps the

best result from CP and Tian, while CP and Tian need n = 4000. On top of
this, only for the split tree with k = 3

4
n, we obtain the exact result. To verify the

order of convergence we used a log-log plot (Figure 4.3). We plotted the errors
of the Split tree for splitting after n

4
, n

2
and for 3n

4
, then Tian, CP and CRR. It
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Figure 4.3: Order of convergence

is visible that splitting after 3n
4

has the best performance and it is the only tree
which has order of convergence between 3

2
and 2. More about the comparison

between the models can be found in the next section.

4.2 Convergence of the Split tree

As it is not clear at all how fast the split tree converges, the main aim of this
section is to find a first-order error formula for approximation of St by {S(n)

t }∞n=1.
For that purpose, we will follow the work of G. Leduc from [27]. Let us first
introduce the flexible CRR tree. In this model, we define the probability pn of
jumping from the current state S

(n)
t to S

(n)
t un as

pn :=
er∆t − dn
un − dn

,

where

un : = exp

(
σ
√

∆t+ ασ2∆t+ µn
2σ

T
(∆t)

3
2

)
,

dn : = exp

(
−σ
√

∆t+ ασ2∆t+ µn
2σ

T
(∆t)

3
2

)
,
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Chapter 4. The split tree

with |µn| ≤ L, for some L > 0. As we can notice, for the case when α = 0 and

µn = 0 we have the classic CRR scheme, and for α =
r− 1

2
σ2

σ2 , µn = 0 we end up
with the RB tree.

Let us take a closer look at our Split tree. There we have

S(n)(k + 1) = S(n)(k)e
lnK−lnS

k
+σ
√

∆tZnk+1

for the first part, and

S(n)(k + 1) = S(n)(k)eσ
√

∆tZnk+1

for the rest, which leads us to

α1 =
lnK − lnS0

kσ2∆t
, µn1 = 0,

α2 = 0, µn2 = 0.

This means that we can apply already known results for the flexible CRR tree
also to our case. For that purpose, let us first check the first two moments:

µ(n) :=
1

∆t
EPn

(
ln

(
Sn(k + 1)

Sn(k)

)
|Sn(k)

)
=

lnK − lnS

k
+ σ

√
1

∆t
EPn(Zk+1),

σ2(n) :=
1

∆t
V arPn

(
ln

(
Sn(k + 1)

Sn(k)

)
|Sn(k)

)
= σ2V arPn (Zn

k ) ,

and for the second part of the tree

µ(n) :=
1

∆t
EPn

(
ln

(
Sn(k + 1)

Sn(k)

)
|Sn(k)

)
= σ

√
1

∆t
EPn(Zk+1),

σ2(n) :=
1

∆t
V arPn

(
ln

(
Sn(k + 1)

Sn(k)

)
|Sn(k)

)
= σ2V arPn (Zn

k ) .

In Chapter 2.4 we have seen that for convergence we need to match the first two
moments at least asymptotically and to have a bounded drift, i.e. the following
assumption has to be satisfied.

Assumption 1: The sequence (α (n))n is assumed to be bounded, i.e. it is
assumed to be of order O (1).

Since k ≤ n, we have that α1 = lnK−lnS
kσ2∆t

and µ1 = lnK−lnS
k∆t

are bounded, i.e. our
new (α (n))n satisfies Assumption 1 and knowing our results from Chapter 2, we
can conclude that as n→∞,
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4.2. Convergence of the Split tree

µ(n)→ r − 1
2
σ2

σ2(n)→ σ2.

So, we have shown that the moment-matching conditions, in both parts of the
split tree where we are given that k(n) and n− k(n) go to infinity for n→∞, of
the one-period log-return are fulfilled and β = σ, which implies weak convergence.
Now it is left to investigate the rate of convergence.

Let us assume we have n steps and let N 3 k ∈ [0, n]. If ∆1 is for the first part
of the tree (Tian), and ∆2 for the second part (CRR), then we have, since

∆n = 1− 2

{
ln
(
S0

K

)
+ n ln(d)

ln
(
u
d

) }
that

∆1 = 1− 2


ln
(
S0

K

)
+ k

(
ln
(
K
S0

)
k
− σ
√

∆t

)
2σ
√

∆t


= 1− 2

{
−k

2

}
=

{
1 for k even

0 for k odd

and

∆2 = 1− 2

{
−kσ

√
∆t

2σ
√

∆t

}
= 1− 2

{
−k

2

}
=

{
1 for n− k even

0 for n− k odd.

If n is even, then we have that both ∆1 and ∆2 are equal to 1. However, if n is
odd, we have ∆1 = 1 and ∆2 = 0 or vice versa.

Our next aim is to investigate the rate of convergence of the Split tree and for
that purpose we follow the work of [27]. In this paper, Leduc found a general
first-order error formula of the flexible CRR tree for European options which mo-
tivated us to search for a general error formula for the Split tree, i.e. to find an
error formula depending on splitting time.

We are now interested in payoff functions which are piecewise smooth. For that
purpose we consider a payoff function g which is piecwise ∈ C(3) and

|g(l)(x)| ≤ Q(1 + xp) for l = 0, 1, 2, 3 and every x ≥ 0, (4.2.1)
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for some integer p ≥ 1 and some Q ∈ R. By g is piecewise C(3) function we mean
there exists a partition 0 < K1 < ... < KN < ∞ of [0,∞) and N + 1 functions
g0, ..., gN ∈ C(3) such that

g = g01[0,K1) + g11[K1,K2) + ...+ gN1[KN ,∞).

This class of payoffs we will call K(3)
p . We define a norm || · ||(3)

p on K(3)
p being

equal to the smallest value of Q such that (4.2.1) holds. For any integer m ≥ 0

we define K(m)
p and || · ||(m)

p analogously.

Let us assume that we want to split the tree after k steps, N 3 k ∈ (0, n), which
means that we now have the freedom to choose when to split the tree. Then tk is
the maturity time for the first part of the tree, and T − tk is the maturity time
for the second part of the tree. Let E1,n,α

tk
g (x) and E2,n

T−tkg (x) be defined as the
discounted expectation of a payoff function g when the spot price is x and the
maturity is T . The first discounted expectation relates to the first part of our
tree, i.e. here tk is the maturity time and α tells us there is a drift included.
The second discounted expectation relates to the second part of the tree, i.e. the
maturity time for this part of the tree is T − tk and we do not have any drift. We
are now interested in finding an explicit first order error formula for

E1,n,α
tk

(
E2,n
T−tkg

)
(x) .

Notation For every t, x ≥ 0 and a polynomially bounded function g we have

Etg(x) := e−rtEx(g(St)),

E (n)
t g(x) := e−rtEx(g(S

(n)
t )),

which tells us that Et and E (n)
t are discounted expectations. Since they are semi-

group operators and independent, we have Et+sg = EtEsg, E (n)
t+sg = E (n)

t E
(n)
s g and

E (n)
t Esg = EsE (n)

t g.

If g ∈ K(3)
p , then g can be split into a linear combination of a function which is

differentiable and in K(3)
p plus digital options and call options, i.e.

g(x) = h(x) +
N∑
l=1

∆g(Kl)1[Kl,∞)(x) +
N∑
l=1

∆g′(Kl) max(x−Kl, 0), (4.2.2)
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4.2. Convergence of the Split tree

where h is also in C(1) and belongs to K(3)
p . From [7] and [10] the error formulae

for digital and call options are known, now the idea is to find the error formulae
for the C(1) part of g, i.e. for h. For simplicity, we will focus on continuous payoff
functions g. For that purpose we will again use our Main theorem.

If S0 = x is given, then for the European option with payoff g, maturity T
obtained by pricing with a flexible CRR scheme, an error is expressed by

ErrnT (g)(x) := e−rTEx(g(g(S))− e−rTEx(g(g(S
(n)
T ))

:= Etg(x)− E (n)
t g(x)

Let us recall once again the main theorem, but this time we will write it up with
the new notation so that it is easier to follow the work of [27].

Theorem 8 (Main Theorem - Chang and Palmer). For the n-period binomial
model, where

u = eσ
√

∆t+ασ2∆t, d = e−σ
√

∆t+ασ2∆t,

with α an arbitrary bounded function of n. For every x > 0, the error of a
European call option ErrnT (CK)(x) satisfies

E2,n
T−tkh (x) = ET−tkh (x) +

Λn
T−tk(x)

(
n

n−k

)
n

+O
(
n−3/2

)
where

Λn
T−tk(x) =

xe−
d2
1
2

24σ
√

2π (T − tk)
(
A− 12σ2 (T − tk)

(
∆2
n−k − 1

))
,

A = −σ2 (T − tk)
(
6 + d2

1 + d2
2

)
− 12 (T − tk)2 (r)2 + 4 (T − tk)

(
d2

1 − d2
2

)
(r) ,

∆n−k = 1− 2

{
ln (x/K) + n ln (d2)

ln (u2/d2)

}
,

d1 =
(ln( xK)+(r+ 1

2
σ2)(T−tk))

σ
√

(T−tk)

d2 =
(ln( xK)+(r− 1

2
σ2)(T−tk))

σ
√

(T−tk)
= d1 − σ

√
(T − tk).

Adding our discussion about ∆, we get
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1. Case: ∆1 = 1 and ∆2 = 1

We have Λn
T−tm(x) = xAe−

d2
1
2

24σ
√

2π(T−tm)
in both parts

2. Case: ∆1 = 1 and ∆2 = 0

We have Λn
T−tm(x) = xAe−

d2
1
2

24σ
√

2π(T−tm)
for the first part, and for the second

Λn
T−tm(x) = x(A+12σ2T )e−

d2
1
2

24σ
√

2π(T−tm)
, which is identical to Λn

T−tm(x) with A replaced

by Ã = A+ 12σ2T so it has identical convergence behavior.

This result will help us to understand better the rate of convergence. Another
important result from [27] is given as follows.

Theorem 9 (General first-order error formula). Let {S(n)} be a flexible CRR

scheme and let p ≥ 1. For every continuous g in K(3)
p , if 0 < K1 < ... < KN <

∞ defines a partition of [0,∞) for which g is C(1) on the corresponding closed
subintervals, then for every x > 0

ErrnT (g)(x) =

ΥT (g, x) +
N∑
l=1

∆g′(Kl)Λ
n
T (Kl, x)

n
+O

(
n−

3
2

)
, (4.2.3)

where

ΥT (g, x) =

(
1

2
∆̂2 −

1

3
∆̂3 +

1

4
∆̂4

)
e−rTEx

(
S2
Th
′′(ST )

)
+

1

24

4∆̂3 − 5∆̂4

σ
√
T

e−rTEx

(
S2
Th
′′(ST )ηT

(
ST
x

))
+

1

24

∆̂4

Tσ2
e−rTEx

(
S2
Th
′′(ST )

(
η2
T

(
ST
x

)
− 1

))
and

ηT (z) =
ln(z)− (r − 1

2
σ2T )

σ
√
T

,

∆̂2 = −σ4T 2α + α2σ4T 2 + r2T 2 + rT 2σ2 +
5

12
σ4T 2 − 2T 2rσ2α,

∆̂3 = 2rT 2σ2 − 2σ4T 2α + 2σ4T 2,

∆̂4 = 2σ4T 2.

Since the proof of this theorem is rather technical, we will focus only on the main
things which we need for our problem. A detailed proof can be found in [27].
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4.2. Convergence of the Split tree

Let us first state some important properties of the flexible CRR scheme. The
next lemma, also from [27], tells us that the values obtained by the flexible CRR
scheme are indeed close to the real values.

Lemma 2 (Properties of {S(n)}∞n=1). Every flexible CRR scheme {S(n)}∞n=1 sat-
isfies the following properties:

P1 (Berry-Esseen property) There exists a constant Q such that for every
t ∈ T

n
N, in the interval T

2
≤ t ≤ T ,

sup
z
|F
S

(n)
t

(z)− FSt(z)| ≤ Qn−
1
2 .

where F
S

(n)
t

and FSt are cumulative distribution functions of S
(n)
t and St,

with S
(n)
0 = S0.

P2 (Local estimate of the distance to 1) For integers k ≥ 0 and I the iden-
tity function,

δ
(n)
k := En∆t(|I − 1|k)(1) = O

(
n−

k
2

)
.

P3 (Local error of the difference from 1) For integers k = 2, 3, 4, there ex-
ists ∆̂k such that

∆
(n)
k : = Errn∆t((I − 1)k)(1)

= e−r∆tE1((S∆t − 1)k − (S
(n)
∆t − 1)k)

=
∆̂k

n2
+O

(
n−

5
2

)
.

P4 (Local and global estimates for log and power functions) We have

En∆t(| ln I|)(1) = O
(
n−

1
2

)
.

Furthermore, for every fixed real number γ,

En∆t(Iγ) = E∆t(I
γ) +O

(
n−2
)

and consequently

En∆t(Iγ − 1) = O
(
n−

1
2

)
,

max
j=0,...,n

|Enj∆t(Iγ)(x)− Ej∆t(Iγ)(x)| = xγO
(
n−1
)
,

max
j=0,...,n

|Enj∆t(Iγ)(x)| = xγO(1).
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P5 (Remainder related local estimate) For any integer β and any integer
N > 0,

En∆t

∣∣∣∣∣∣
I∫

1

uβ(I − u)Ndu

∣∣∣∣∣∣
 (1) = O

(
n−

N+1
2

)
.

Next we want to introduce Error localization and Error localization expansion
formula. We want to have a step-by-step approach of the error corresponding to
the steps in the binomial approach. It is already known that

E (n)
∆t g(x) = g (xu(n)) p(n) + g (xd(n)) (1− p(n))

is a discounted expectation in a single - time step tree, while E (n)
tj g(x) is for a

j-time-step tree. This leads us to

E (n)
tj+1

g = E (n)
∆t g

(
E (n)
tj g

)
i.e,

E (n)
tj+1

g = E (n)
∆t g

(
E (n)

∆t g
(
...
(
E (n)

∆t g
)))

︸ ︷︷ ︸
j+1 times

. (4.2.4)

Because of the semigroup and commutation properties of E (n), we have

E (n)
tj+tk

g = E (n)
tj E

(n)
tk
g = E (n)

tk
E (n)
tj g,

which can be extended to

E (n)
tj Etkg = EtkE

(n)
tj g.

This tells us that we can evaluate an option in 2 steps: let T be a maturity time
and tj is some time before maturity. Then, one can first value the option with
the maturity of T − tj, which depends on the stock price, and then consider it as
an option with maturity tj to get the value at time 0. We can use an even more
general approach, similar like in (4.2.4): we first evaluate an option with maturity
∆t, then use this as a payoff of another option with maturity ∆t and continue
this way until we reach the full maturity T . So, our first step is to calculate E (n)

∆t g.

Since the goal is to estimate ET using E (n)
T , using this procedure we get
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4.2. Convergence of the Split tree

E (n)
∆t g = E∆tg − (E∆tg − E (n)

∆t g) = E∆tg − Errn∆tg.

Then in the second step

E (n)
2∆tg = E (n)

∆t (E (n)
∆t g) = E (n)

∆t (E∆tg − Errn∆tg) = E (n)
∆t (E∆tg)− E (n)

∆t (Errn∆tg),

and since

E (n)
∆t E∆tg = E∆tE∆tg − (E∆tE∆tg − E (n)

∆t E∆tg) = E2∆tg − Errn∆tE∆tg,

we get

E (n)
2∆tg = E2∆tg − E (n)

∆t (Errn∆tg)− Errn∆tE∆tg.

If we continue this procedure, we end up with

E (n)
tm g = Etmg −

m−1∑
j=0

E (n)
tm−tj+1

(Errn∆tEtjg). (4.2.5)

This shows that if we can calculate the local errors with sufficient accuracy, then
we can estimate the global error from these local errors. Equation (4.2.5) is
equivalent to

Errntmg =
m−1∑
j=0

E (n)
tm−tj+1

(Errn∆tEtjg), (4.2.6)

i.e. evaluating a European option with maturity tm, we will decompose the er-
ror (with respect to the Black - Scholes model) into the sum of the discounted

expected values, with respect to E (n)
tm−tj+1

, of the single step errors Errn∆tEtjg.
Since

E (n)
tm−tj+1

= Etm−tj+1
− Errntm−tj+1

,

replacing the term E (n)
tm−tj+1

by Etm−tj+1
on the right-hand side of (4.2.5), results

in additional error terms - the compound error is then

−Errntm−tj+1
(Errn∆tEtjg).

This leads us to the following theorem.
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Theorem 10 (Error localization formula). Let n,m ≥ 1 be integers and let g be
a polynomially bounded function. Then

Errntmg =
m−1∑
j=0

E (n)
tm−tj+1

(Errn∆tEtjg)−
m−1∑
j=0

Errntm−tj+1
(Errn∆tEtjg). (4.2.7)

Theorem 10 tells us that the error Errnm∆th can be decomposed into two terms -
the main term of the error, denoted by MErrnm∆th, which is the sum of the local
errors, and the compound error term, denoted by CErrnm∆th, which is the sum
of the errors of the local errors, and both of them should be analyzed separately
i.e.

MErrnm∆th(x) :=
m−1∑
j=0

E (n)
m∆t−(j+1)∆t(Err

n
∆tEj∆th),

CErrnm∆th(x) :=
m−1∑
j=0

Errnm∆t−(j+1)∆t(Err
n
∆tEj∆th).

Analyzing the local errors using Taylor expansion, where the summation
∑N

k=2

is understood to vanish in the case N < 2, we get

Lemma 3 (Local error expansion formula). For every integer N ≥ 0, p ≥ 1,

x ≥ 0 and h ∈ C(n) ∩ K(N+1)
p ,

Errn∆th(x) =
N∑
k=2

∆
(n)
k xkh(k)(x)

k!
+Rn,N

∆t (IN+1h(n+1))(x), (4.2.8)

where, for every function Ψ,

Rn,N
∆t (Ψ)(x) :=

1

N !
Errn∆t

 I∫
1

Ψ(xu)(I − u)N

uN+1
du

 (1).

Proofs can be found in [27]. Combining the error localization formula with the
local error expansion formula, we end up with

Proposition 4 (Error localization expansion formula). Let m∆t be the m − th
time step, M ≥ 0 be an integer and assume that h ∈ C(M) ∩ K(M+1)

p . Then, for
every integer N ≥ 0 and every x > 0

Errnm∆th(x) = MErrntmh(x)− CErrntmh(x)
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where

MErrntmh(x) = m
N∑
k=2

∆
(n)
k

k!
xk

∂k

∂xk
Etm−1(h)(x)

+mRn,N
∆t

(
IN+1 ∂

N+1

∂xN+1
Etm−1h

)
(x), (4.2.9)

CErrntmh(x) =
m−1∑
j=1

N∑
k=2

∆
(n)
k

k!
Errntm−tj+1

(
Ik

∂k

∂xk
Etjh

)
(x) (4.2.10)

+
m−1∑
j=1

Rn,N
T
n

(
Errntm−tj+1

(
IN+1 ∂

N+1

∂xN+1
Etjh

))
(x)

+
N∑
k=2

∆
(n)
k

k!
Errntm−1

(
Ik

∂k

∂xk
h

)
(x)

+Rn,M
T
n

(
Errntm−1

(
IM+1 ∂

M+1

∂xM+1
h

))
(x).

The proof can be found in [27].

Application to our case

We have seen that we can calculate the error after every step - which is good for
our case since we are splitting our tree, which can happen after any step, but we
still do not know the optimal splitting time. In Proposition 4 we will use this
formula with N = 4, because if h ∈ C(4) ∩ K(5)

p then each of the remainders in
fomulae (4.2.9) and (4.2.10) are of order n−

5
2 , which makes them in total of order

n−
3
2 and thus negligible. Our first aim is to show that A, B, C, D and E are

negligible, with hk(x) = ET−tkg(x)−
ΛnT−tk

(x) n
n−k

n
,where

MErrntkh(x) = k

N∑
m=2

∆
(n)
m

m!
xm

∂m

∂xm
Etk−1

(h)(x)

+ kRn,N
T
n

(
IN+1 ∂

N+1

∂xN+1
Etk−1

g

)
(x)︸ ︷︷ ︸

A

,

and
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CErrntkh(x) =
k−1∑
j=1

N∑
m=2

∆
(n)
m

m!
Errntk−tj+1

(
Im

∂m

∂xm
Etjh

)
(x)︸ ︷︷ ︸

B

+
k−1∑
j=1

Rn,N
T
n

(
Errntk−tj+1

(
IN+1 ∂

N+1

∂xN+1
Etjh

))
(x)︸ ︷︷ ︸

C

+
N∑
m=2

∆
(n)
m

m!
Errntk−1

(
Im

∂m

∂xm
h

)
(x)︸ ︷︷ ︸

D

+Rn,M
T
n

(
Errntk−1

(
IM+1 ∂

M+1

∂xM+1
g

))
(x)︸ ︷︷ ︸

E

.

To prove that all these terms are negligible, we consider each of them separately.

But first we have to show that the function hk(x) = ET−tkg(x) −
ΛnT−tk

(x) n
n−k

n

is bounded. We will do this in 2 steps, i.e. first we will show that h
(1)
k (x) =

ET−tkg(x) is bounded, and afterwards the same for h
(2)
k (x) =

ΛnT−tk
(x) n

n−k
n

, where

hk(x) = h
(1)
k (x) + h

(2)
k (x). From the definitions of the put and the call options

we know they are bounded, so it is their expected value. On the other hand, in
the case of h2(x) we have to consider the two values of Λn

T−tk(x), check comments
after Theorem 8. But, if we look carefully, it is enough to show the boundness
only for the one case since the difference is only a constant. For T̃ = T − tk

Λn
T̃

(x) =
xe−

d2
1
2

24σ
√

2π (T − tk)

(
−σ2T̃ (6 + d2

1 + d2
2)− 12T̃ 2r2 + 4T̃ (d2

1 − d2
2

)
which is a collection of terms of the form C1xe

− d2
1
2 + d2

1C2xe
− d2

1
2 + d1C3xe

− d2
1
2 .

Let us consider a function xe−
d2
1
2 as x exp

(
− (α ln (x) + β)2), where α and β are

some constants. Then it is easy to show that the function is bounded using
elementary calculus.

d

dx

(
x exp

(
− (α ln (x) + β)2)) = − exp

(
− (β + α lnx)2) (2 (lnx)α2 + 2βα− 1

)
,

so this function has an extremum (maximum) at x = exp
(

1−2αβ
2α2

)
. We also have
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4.2. Convergence of the Split tree

lim
x→±∞

x exp
(
− (α ln (x) + β)2) = 0, lim

x→0
x exp

(
− (α ln (x) + β)2) = 0,

which means our function is bounded.
Now, for j,m = 0, 1, 2, ..., F , F ∈ N

Term A
We will make the following assumption, which is typically satisfied in our appli-
cations:
Condition A: We have that there exists a constant Q, which does not depend
on j, or k, or m, such that

‖xjh(k)
k (x)‖∞ < Q

where Q is bounded (definition of the norm).

Then, using Condition A, for N = 4 and if

h∗(x) = IN+1 ∂
N+1

∂xN+1
Etk−1

hk(x), (4.2.11)

by Lemma 6.3 in [27], we have

h∗(x) = Etk−1

(
IN+1 ∂

N+1

∂xN+1
hk

)
(x).

Now IN+1 ∂N+1

∂xN+1hk is bounded. Therefore, h∗(x) is bounded, i.e.

‖Rn,N
T
n

(h∗)‖∞ ≤ QO
(
n−

5
2

)
m‖Rn,N

T
n

(h∗)‖∞ ≤ QO
(
n−

3
2

)
.

Term B

Now we consider
k−1∑
j=1

4∑
m=2

∆
(n)
m

n2
Errntk−tj+1

(
Im

∂m

∂xm
Etjh

)
(x). Since

∆(n)
m

P3
=

∆̂m

n2
+O(n−

5
2 ),

and with h∗∗m (x) = Im ∂m

∂xm
Etjh satisfying condition A, we have
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‖Errntk−tj+1
h∗∗m‖ = O(n−1).

Then, (using Remark 1 bellow) we get

B ≤ n

4∑
m=2

∆̂m

n2

1

n
= O(n−2).

Remark 1. Suppose g satisfies condition A. Then, for every 1 ≤ k ≤ n, we have
that terms A, C, E are of order O(n−

3
2 ). Moreover,

k−1∑
j=1

4∑
m=2

∆
(n)
m

n2
Errntk−tj+1

(
Im

∂m

∂xm
Etjh

)
(x) ≤ 2Q

k−1∑
j=1

4∑
m=2

∆̂m

n2

≤ 2Qn
4∑

m=2

∆̂m

n2
= O(n−1)

Term C Since IN+1 ∂N+1

∂xN+1Etjh is as (4.2.11) in case A, combining methods used
in B and then A again, we can conclude that this term is also negligible.

Term D Since the function h∗∗m (x) satisfies term A, we can use similar arguments
as for B.

Term E Since the function Rn,M
T
n

is similar to the function in A, we will use the

same arguments.

This tells us that only the first term of (4.2.9) has to be considered, all others are

O(n−
3
2 ), hence negligible.

We have shown

ErrnT (g)(x) = e−rTEx(g(ST ))− e−rTEx(g(S
(n)
T )) (4.2.12)

= ETg(x)− E (n)
T g(x).

Chang and Palmer in [7] have shown

EnT g (x) = ETg (x) +
Λn
T (K, x)

n
+O

(
n−3/2

)
. (4.2.13)
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The idea is to use this expression to get the error term for the second part of our
tree. There we have that the time to maturity is T − tk, i.e. n − k time steps,
which leads us to the expression of the error term

E2,n
T−tkg (x) = ET−tkg (x) +

(
n

n− k

)
Λn
T−tk(x)

n
+O

(
n−3/2

)
. (4.2.14)

Proposition 4, i.e. the Error localization expansion formula, leads us to

ErrnT
n
Etk−1

h(x) = MErrnT
n
Etk−1

h(x)− CErrnT
n
Etk−1

h(x), (4.2.15)

which we have shown is equal to

ErrnT
n
Etk−1

h(x) = k

N∑
m=2

∆
(n)
m

m!
xm

∂m

∂xm
Etk−1

(h) (x) .

where we use that

h (x) = ET−tkg (x) +
Λn
T (K, x)

(
n

n−k

)
n

(4.2.16)

and, since ET
n
Etk−1

= Etk , we have

E1,n,λ
tk

(
E2,n
T−tkg

)
(x)

(4.2.14)
= E1,n,λ

tk

(
ET−tkg +

(
n

n−k

)
Λn
T−tk

n

)
(x) +O

(
n−

3
2

)
(4.2.15)

= Etk

(
ET−tkg +

(
n

n−k

)
Λn
T−tk

n

)
(x)

− k
N∑
m=2

∆
(n)
m

m!
xk

∂m

∂xm
Etk−1

(
ET−tkg +

(
n

n−k

)
Λn
T−tk

n

)
(x)

+O
(
n−

3
2

)
,

i.e

E1,n,λ
tk

(
E2,n
T−tkg

)
(x) = ET (g) (x) +

1

n
Etk
(

Λn
T−tk

(
n

n− k

))
(x)

− k
N∑
m=2

∆
(n)
m

m!
xm

∂m

∂xm
Etn−1 (g) (x)

− k

n

N∑
m=2

∆
(n)
m

m!
xk

∂m

∂xm
Etk−1

(
Λn
T−tk

(
n

n− k

))
(x)

+O
(
n−

3
2

)
.

(4.2.17)
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In the next step, we will discuss these 4 terms in more details. To make notations
easier to follow, we will put T̃ = T − tk.

1.

ET (g) (x) = xΦ (d1)−Ke−rT̃Φ (d2)

d1 =
(ln( xK)+(r+ 1

2
σ2)T̃)

σ
√
T̃

d2 =
(ln( xK)+(r− 1

2
σ2)T̃)

σ
√
T̃

= d1 − σ
√
T̃

2. The second term of (4.2.17) is

1

n
Etk

 n

n− k

 xe−
d2
1
2

24σ
√

2πT̃

(
−σ2T̃

(
6 + d2

1 + d2
2

)
− 12T̃ 2r2 + 4T̃

(
d2

1 − d2
2

)
r
) (x)

=
1

n− k
−σ2T̃

24σ
√

2πT̃
Etk
(
xe−

d2
1
2 (6 + d2

1 + d2
2)

)
− 1

n− k
12T̃ 2r2

24σ
√

2πT̃
Etk
(
xe−

d2
1
2

)
+

1

n− k
4rT̃

24σ
√

2πT̃
Etk
(
xe−

d2
1
2

(
d2

1 − d2
2

))
.

Let us now first calculate these expectations. To do that, we will use Gaus-
sian integrals and we will replace x with Stk , where Stk = e(r− 1

2
σ2)tk+σWtk ,

Wtk - Brownian motion. Then

d1 = d1(Stk) =
ln
(
Stk
K

)
+
(
r + 1

2
σ2
)
T̃

σ
√
T̃

=
(r − 1

2
σ2)tk + σWtk − ln(K) + rT − rtk + 1

2
σ2T − 1

2
σ2tk

σ
√
T̃

=
σWtk − σ2tk −

(
r + 1

2
σ2
)
T − ln(K)

σ
√
T − t

=
Wtk − σtk√

T̃
−

lnK −
(
r + 1

2
σ2
)
T

σ
√
T̃

=
Wtk − σtk√

T̃
− C√

T̃
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where

C =
lnK −

(
r + 1

2
σ2
)
T

σ
.

On the other hand, we get

d2 =
Wtk − σT√

T̃
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T̃
.

Then

d2
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W 2
tk

T̃
− Wtk (2σtk + 2C)

T̃
+ C̃1,

d2
2(Stk) =
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(4.2.18)
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where the last integral is a Gaussian integral
+∞∫
−∞

e−Ay
2+By−Ddy =

√
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A
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and
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(4.2.19)
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where we this time used also next Gaussian integrals

+∞∫
−∞

y2e−Ay
2+Bydy =

√
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4A
5
2

e
B2

4A ,

+∞∫
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√
πB

A
3
2

e
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4A .

We get analogous results for E

(
xd2

2e
− d2

1
2

)
, just instead of C̃1 we will have

C̃2, so we will call it g2(tk) which shows us that non of the three expected
values depend on x and that makes our fourth step really easy.

3. The next, third, term of (4.2.17) is
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Let us now write the derivatives of ET (h) (x). But before we start, we will
first write some basic properties which we will use. We have
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∂x
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4. As shown in the second step, non of the expected values depend on x, thus
we get that the fourth term is equal to 0.

Now, putting everything together we end up with

Theorem 11. For the n-period Split tree binomial model, where tk = k∆t is the
splitting time and x > 0 arbitrarily, we have that the explicit first order error
formula of E1,n,µ

tk

(
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T−tkg

)
(x) is given by
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where ĝ(tk), g1(tk) and g2(tk) are defined as in (4.2.18) and (4.2.19).

Theorem 11 is the main result of this thesis. We have shown in Section 3.1 that
the CRR tree has a good performance for the case S0 = K, i.e. it has smooth
convergence and the order of convergence is O (n−1). With Theorem 11 we have
shown that these good properties of the CRR tree are preserved under splitting
regardless of the position of S0 and K.
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Chapter 5

American options

In this chapter, our focus will be on American options. To be more precise, we
put our focus on American put options since American calls on a stock with-
out dividends are known to be equivalent to its European counterpart. In the
previous chapters we have shown convergence of European type options and we
investigated the rate of convergence. Unfortunately, something like that is not
possible for American options since the American option valuation tast involves
the additional problem of choosing the optimal exercise time. But, Amin and
Khana in [2] proved that, under some general set of conditions, American type
option values obtained by discrete time models converge to their respective con-
tinuous time values. For the European case we have seen that there exists a
formula, the Black-Scholes formula, which gives us the value of European put
and call options in closed form. Unfortunately, something like that does not exist
for American options.

American options can be exercised at any time before maturity. The optimal
exercise time is unknown and it is usually represented by a random stopping
time τ ∗. Because of that, a closed-form solution usually does not exist and the
binomial model is of great importance for this case as it provides an easy modi-
fication to introduce the possibility to choose the exercise time in an optimal way.

The value of an American option is given by

sup
τ∈T0,T

EQ(e−rτg(S(τ)))

where g is a payoff function and T0,T is the set of all stopping times in [0, T ]
with respect to the natural filtration of W with values in [0, T ]. As in a binomial
model we only have finitely many states, there exists an optimal stopping time
τ ∗n for every n such that the approximation in binomial model is given by

En(e−rτ
∗
ng(S(n)(τ ∗n))).



Chapter 5. American options

The main difference in the algorithm for American options compared to the al-
gorithm for European options is that in the backward induction, in each node of
the tree, the exercise value has to be compared to the value obtained by hold-
ing the option at least until the next time period and then exercise it optimally
afterwards.

1. Tree initialization

• Calculate the possible values of stock at maturity

S(n)(k + 1) = S(n)(k)eα(n)∆t+β
√

∆tZ
(n)
k+1 , k = 0, 1, ..., n− 1.

• Calculate the option value at maturity

V (n)(T, S(n)(n)) = g(S(n)(n)).

2. Backward induction

• For i = n− 1, ..., 0 do

Ṽ (n)(i∆t, S(n)(i)) = e−r∆t
[
pV (n)((i+ 1)∆t, uS(n)(i))

+ (1− p)V (n)((i+ 1)∆t, dS(n)(i))
]

and set

V (n)(i ·∆t, S(n)(i)) = max{Ṽ (n)(i ·∆t, S(n)(i)), g(S(n)(i))}.

• Return V n(0).

If the payoff function is continuous and uniformly integrable, and the limit dif-
fusion satisfies linear growth and Lipschitz conditions, it is showed in [2] that
American option prices converge to their continuous-time values. As the modi-
fication of the algorithm compared to the European option case is very simple,
binomial trees are the typical choice for the numerical method when prices of
American options have to be computed.

Since τ ∗ is in [0, T ] and S(n) is tight, we have that (S(n), τ ∗) is tight in C[0, T ]×
[0, T ]. Then there exists a subsequence which converges to the weak limit. Let
us say (S, τ) is that limit. The distribution of τ may depend on the particular
subsequence, but the distribution of S will not. Moreover, it is not clear whether
τ is a stopping time with respect to the filtration generated by S. [2] showed that
τ is ”in some appropriate sense” a legitimate stopping time with respect to S in
two steps:
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1. They showed that there exists a subsequence nk such that Wnk,εk → W .
From the continuity of S and W we have that (Snk,εk ,Wnk,εk) is tight in
C[0, T ].

2. Let (η,B) be the limit of a particular subsequence (Snk,εk ,Wnk,εk). Then
they show that (η,B) is indeed a solution to

dη(t) = µ(t, η(t))dt+ σ(t, η(t))dB(t), 0 ≤ t ≤ T

with η(0) = S(0) and B is a Brownian motion. This will imply that (η,B)
has the same distribution as (S,W ), and hence (Snk,εk ,Wnk,εk)→ (S,W ).

The Split tree has a comparable performance to standard methods for the Amer-
ican options, too. Let us discuss the behavior of American put options in more
details. We will consider two cases: one when we are initially in the in-the-money
situation, i.e. K > S0, and another where K < S0. We will start with K > S0.
If we are in-the-money, then we would like to stay in that position as long as it is
possible, since we are already in a good position and we do not want to lose it. In
this case splitting later is preferable. On the other hand, if we have K < S0, then
we suggest an early split to come to the area of interest, i.e. the in-the-money
part as only there early exercise makes sense at all. Let us see numerically how
this looks like. In this example, we use K = 100, S0 = 95, r = 0.1, σ = 0.25 and
T = 1. In Figure 5.1 some oscillations are visible at the beginning, but later we
have smooth convergence. On the other hand, Tian has also oscillations. But,
if we change the splitting time, we can achieve better oscillation patterns. For
the American type of options, we have the opposite situation. Namely, if we
split the tree after 3n

4
steps, we have much more oscillations than splitting after

n
2
. On the other hand, we have a pretty nice and smooth convergence in the n

4

case. These results are also given in the Table 5.1. For the Tian model we have
smooth convergence after 500 steps. In the case where we split the tree after 1

4

steps, we have all the time smooth convergence. For the Split tree we have some
oscillations between 300 and 500 steps and for the 3

4
we have oscillations all the

way. But, in the case of 3
4

even though we have oscillations we are much closer
to the real value and much earlier is visible that we are going into that direction.
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(d) Splitting after 3/4

Figure 5.1: American put option: S0 = 95, K = 100, σ = 0.25, r = 0.1, T = 1
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n Tian 1/4 1/2 3/4
40 8.7398 8.9286 8.7992 8.7785
80 8.7581 8.8429 8.7865 8.7709
100 8.7623 8.8270 8.7823 8.7654
120 8.7621 8.8169 8.7796 8.7727
140 8.7650 8.8108 8.7790 8.7683
160 8.7647 8.8051 8.7775 8.7720
180 8.7665 8.8012 8.7770 8.7692
200 8.7660 8.7981 8.7763 8.7719
280 8.7679 8.7901 8.7750 8.7709
300 8.7678 8.7887 8.7746 8.7714
380 8.7688 8.7851 8.7738 8.7700
400 8.7690 8.7842 8.7739 8.7713
420 8.7689 8.7837 8.7734 8.7712
500 8.7693 8.7816 8.7732 8.7704
1000 8.7703 8.7763 8.7722 8.7709
2000 8.7708 8.7738 8.7718 8.7712
4000 8.7711 8.7725 8.7715 8.7713

Table 5.1: American put: S0 = 95, K = 100, σ = 0.25, r = 0.1, T = 1, BS value
for European put = 7.1411.

n Tian 1/4 1/2 3/4
40 0.3518 0.2115 0.2855 0.3155
100 0.3582 0.2971 0.3219 0.3424
200 0.3602 0.3284 0.3453 0.3518
400 0.3610 0.3284 0.3453 0.3518
420 0.3611 0.3284 0.3453 0.3518
440 0.3610 0.3284 0.3453 0.3518
500 0.3612 0.3481 0.3551 0.3577
580 0.3613 0.3481 0.3551 0.3577
600 0,3612 0.3481 0.3551 0.3577
620 0.3613 0.3481 0.3551 0.3577
800 0,3614 0.3532 0.3576 0.3592
1000 0.3615 0.3549 0.3584 0.3597
2000 0.3616 0.3583 0.3601 0.3607
4000 0.3617 0.3600 0.3609 0.3613

Table 5.2: American put options: K = 40, S0 = 50, r = 0.05, σ = 0.2, T = 1, BS
value for European put = 0.3436.
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(c) Splitting after 1/2
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(d) Splitting after 3/4

Figure 5.2: American put options: K = 40, S0 = 50, r = 0.05, σ = 0.2, T = 1
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Let us now consider the case where K < S0. In this example we used K = 40,
S0 = 50, r = 0.05, σ = 0.2 and T = 1. We have smooth convergence for all
splitting cases, but in Tian some small oscillations at the beginning are visible.
Results are presented in Table 5.2 and Figure 5.2.

Now we want to compare the Split model with the CRR, Tian and CP models and
we want to consider different situations. We also want to see how these models
behave when the put is deep-in-the-money and deep-out-of-the-money. We will
consider an example of an American put where S0 = 70 σ = 0.2, r = 0.05, T = 1
are fixed and we will change K. The results can be seen in Table 5.3.

In the Figure 5.3 we have a situation where we are deep-out-of-the money. In
this case we have smooth convergence for all the cases except for the CRR. In
the Figure 5.4 a deep-in-the-money situation is presented and we can see much
better performance if we split after n

2
and 3n

4
than if we split after n

4
, and some

oscillations are visible for CRR and Tian.
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Figure 5.3: American put: S0 = 70, K = 50 σ = 0.2, r = 0.05, T = 1

But, if we are in the deep-in-the-money situation, we would like to stay there as
long as it is possible. Then moving our tree such that the strike value hits its
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Figure 5.4: American put: S0 = 70, K = 85 σ = 0.2, r = 0.05, T = 1

middle node does not seem to be a good solution, since half of the nodes will lose
their good position. Since having a strike value at the node brings us a smoother
convergence, let us try to shift the tree just as much as needed to bring the closest
node to hit the strike value. In other words, we will use Tian’s drift (3.2.14) but
now not until the last step. Namely, we will again do splitting, but with a slightly
different drift. For the first k steps we will use

α̃1(n) :=
ln
(
K
S0

)
− (2lα(n)− k)σ

√
∆t

tk
, (5.0.1)

and for the rest α̃2(n) = 0. In Table 5.4 we present the results for the classic Split
tree, CRR, Tian, CP and for the modified Split tree. There we used K = 100
σ = 0.2, r = 0.05, T = 1 and for the initial value we took S0 ∈ {90, 100, 110}.
We plot these results in Figure 5.5. The first thing which is noticeable is that we
have a lot of small oscillations. Let us check why is this happening. Namely, if
we plug the new drift into (3.2.15), we get

aα̃1 =
1

2
k +

(2l − k)
√
n

2
√
k
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and this is not an integer for every number of steps. In other words, the number
of up movements in the tree is not an integer number, which means we do not
end up with a strike value on the node, which leads us to an oscillation pattern.
We obtain a similar behavior if we use the drift from the CP model.

Given the performance of the split tree for American options we see potential in
its application. However, it seems that we need a more specified approach than
in the European option case to cope with the early exercise feature of American
options in a satisfying way. This is clearly an area for future research.
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Figure 5.5: American put options: K = 100, S0 = 90, r = 0.05, σ = 0.2, T = 1
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Figure 5.6: American put options: K = 100, S0 = 90, r = 0.05, σ = 0.2, T = 1
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Parameters n 1/4 1/2 3/4 CRR Tian CP
100 4.2576 4.2576 4.2576 4.2576 4.2576 4.2732
200 4.2605 4.2605 4.2605 4.2605 4.2605 4.2683
400 4.2619 4.2619 4.2619 4.2619 4.2619 4.2658

K = 70 500 4.2622 4.2622 4.2622 4.2622 4.2622 4.2653
BS = 3.9015 800 4.2626 4.2626 4.2626 4.2626 4.2626 4.2645

1000 4.2627 4.2627 4.2627 4.2627 4.2627 4.2643
100 10.7686 10.6629 10.6443 10.6433 10.6338 10.6434
200 10.6923 10.6503 10.6420 10.6410 10.6379 10.6422
400 10.6633 10.6450 10.6410 10.6409 10.6391 10.6413

K =80 500 10.6582 10.6440 10.6409 10.6412 10.6394 10.6411
BS = 9.3662 800 10.6511 10.6426 10.6407 10.6409 10.6398 10.6409

1000 10.6488 10.6422 10.6406 10.6409 10.6400 10.6409
100 15.0974 15.0382 15.0337 15.0333 15.0323 15.0352
200 15.0507 15.0345 15.0327 15.0339 15.0336 15.0346
400 15.0401 15.0352 15.0345 15.0345 15.0340 15.0346

K = 85 500 15.0387 15.0350 15.0344 15.0349 15.0347 15.0351
BS = 12.9238 800 15.0371 15.0350 15.0346 15.0344 15.0342 15.0345

1000 15.0366 15.0350 15.0348 15.0349 15.0347 15.0349
100 0.9753 1.0240 1.0439 1.0728 1.0670 1.0779
200 1.0225 1.0475 1.0576 1.0746 1.0693 1.0747
400 1.0468 1.0595 1.0646 1.0729 1.0706 1.0733

K = 60 500 1.0518 1.0620 1.0660 1.0729 1.0708 1.0730
BS=1.009 800 1.0592 1.0656 1.0682 1.0717 1.0712 1.0726

1000 1.0617 1.0668 1.0689 1.0719 1.0713 1.0724
100 0.0695 0.0954 0.1053 0.1217 0.1193 0.1219
200 0.0938 0.1080 0.1132 0.1210 0.1205 0.1219
400 0.1072 0.1146 0.1173 0.1214 0.1210 0.1217

K = 50 500 0.1100 0.1160 0.1182 0.1215 0.1212 0.1217
BS = 0.1168 800 0.1143 0.1181 0.1194 0.1216 0.1213 0.1217

1000 0.1157 0.1188 0.1199 0.1216 0.1214 0.1217

Table 5.3: American put: S0 = 70 σ = 0.2, r = 0.05, T = 1,
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Chapter 6

Conclusion

In this thesis we have introduced the most famous models for option pricing us-
ing binomial trees. First, we have seen the basic properties of the the CRR and
the RB tree and the first problems appeared there. Afterwards we tried to fix
these problems by introducing the Tian and the CP model. But the real focus of
this thesis was on the Split tree model. The split tree model combines the Tian
and the CRR tree. Namely, the idea of this model is to use the best from both
models: we start with a drift which moves our tree so that we end up with the
strike value on the middle node and afterwards we continue with the CRR tree,
since we have shown that the CRR tree behaves pretty well when it starts with
the strike value. Our main aim was to prove that this new model converges to
the price obtained by the continuous model. We were also interested in the rate
of convergence and what would be the optimal splitting time. As the result we
ended up with Theorem 11. The importance of this theorem is that it tells us
that we will have smooth convergence regardless of our parameters - the position
of the strike and asset price will not ruin it. Also, the speed of convergence is at
least as good as in the Tian and in the CP.

The foregoing chapter also showed that the Split tree has a big potential for the
application on Anerican options. However, while we have smooth convergence
in many cases, the convergence is not as fast as the one of the CRR, the Tian
and the CP model. Possible ways to improve this can be the use of extrapolation
methods or suitable modifications of the drift in the first part of the Split tree.
There, our results showed an improved speed of convergence for the price of losing
the smooth convergence. Thus, further research on the application of the Split
tree for American options is necessary.
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Appendix

Theorem 12. (Donsker’s theorem) If ξ1, ξ2,... are independent and identi-
cally distributet with mean 0 and variance σ2, and if Xn is the random function
defined by

Xn
t (ω) =

1

σ
√
n
Sbntc(ω) + (nt− bntc) 1

σ
√
n
ξbntc+1(ω)

with Sn = ξ1 + ξ2 + ... + ξn, (S0 = 0). Then Xn => W as n → ∞, where W
denotes Brownian motion (compare [4]).

Theorem 13. (Slutsky’s theorem) Let (M,d) be a metric space. Let (Xn
1 , X

n
2 )n

be a sequence of (M ×M)-values random variables defined on a probability space(
Ω(n),F (n), P (n)

)
. Suppose that X

(n)
1 =>w X1 for some M-valued random vari-

able X1. If for all ε > 0,

P (n) (d (Xn
1 , X

n
2 ) > ε)→ 0,

then X
(n)
2 =>w X1 (compare [11])

Theorem 14. (Berry-Esséen inequality) Let X1, X2, ...Xn be independent
random variables such that EXj = 0 and E |X|3 <∞ (j = 1, ..., n). We write

σ2
j = EX2

j , Bn =
n∑
j=1

σ2
j , F (n)(x) = P

(
B
− 1

2
n

n∑
j=1

Xj < x

)
and

L(n) = B
− 3

2
n

n∑
j=1

E |Xj|3 .

Then,

sup
∣∣F (n)(x)− Φ(x)

∣∣ ≤ AL(n),

where Φ(x) denotes the standard normal distribution function and A is some
positive constant (compare [36]).
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