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1 Introduction

This paper is a continuation of a joint paper with B. Martin [MS] dealing with
the problem of direct sum decompositions. The techniques of that paper are
used to decide wether two modules are isomorphic or not. An positive answer
to this question has many applications - for example for the classification of
maximal Cohen-Macaulay module over local algebras as well as for the study
of projective modules. Up to now computer algebra is normally dealing with
equality of ideals or modules which depends on chosen embeddings. The present
algorithm allows to switch to isomorphism classes which is more natural in the
sense of commutative algebra and algebraic geometry.

Let R be a finitely generated (local) k-algebra without zerodivisors. Let
M and M’ be two modules given via minimal representation matrices A and
A'. Then M ~ M' if and only if there are matrices U,V € GI(R) such that
UAV = A'. We shall descibe a finite algorithm to either compute the matrices
U and V or to disprove isomorphism.



2 The space of transformation matrices

Throughout this paper we assume R to be a finitely generated, local (or graded)
k-algebra without zerodivisors and any (any graded) module M as given as
cokernel of a map of free modules. The presentation matrix of this map is
assumed to represent a minimal system of generators of its image and is denoted
by A(M) or simply A.

The case of a graded module is handled analogously. Therefore, we restrict
ourself to the local settings.

Let two modules M and M' be given by their representation matrices A and
A'. Assume the modules to be isomorphic. There are two quadratic matrices
U and V such that UAV = A'. By the above properties of the representations
both matrices have to be invertible, U € Gl,,,(R) and V € Gl,,,(R).

Now, let’s look from the other side: Starting with two representation ma-
trices A and A’ a necessary condition for an isomorphism of the represented
modules M and M’ is an identical size of both matrices. Denote this size by
mzxn, m,n € N. The sufficient condition for an isomorphism is again the exis-
tence of matrices U € Gl (R) and V € Gl,(R) with UAV = A’. That means,
we have to resolve the equation

XA—A'Y =0, X € M(R), Y € My(R) (1)

and to look for a pair (Xo, Yp) of regular matrices among all solutions of (1).
First, we determine the module of all possible transformations (X,Y) €
M (R)zM,(R). Let us consider the matrix A as map

¢(A) : Hom(R™, R™) — Hom(R",R™)
just by multiplying with A from the right. Analogously, we set
Y(A") : Hom(R"™, R") — Hom(R"™, R™)
to be the map induced by the multiplication with A’ from the left. The map
® 4,41y : Hom(R™, R™)xHom(R", R") — Hom(R",R™)

given by ®4 41 (X,Y) = XA — A'Y is a well defined module homomorphism
and its kernel is the module Tr(4 41y of possible transformations. Tr(4, ) can
be computed in a single syzygy computation.

3 Finding a regular transformation

Let T'r(4,4r) be given by generators (X;,Y;), @ = 1,...,7. We are searching
for linear combinations X (f) = > ;_; f;X; and Y (f) = YI_, f;¥; such that
det(X (f)) # 0 and det(Y (f)) # 0 simultaniously.



3.1 The local case

At this point the local case is much easier to handle. For the invertibility of
X(f) and Y (f) it is sufficient that its constant parts have full rank. Hence,
we can restrict ourself to X°(c) = YI_, ¢;X{ and Y¢(¢) = 35, ¢; Y with X°¢
and Y°¢ denoting the constant parts of the corresponding matrices and ¢; €
k. It follows that det(X°(c)) and det(Y°(c)) are homogeneous polynomials of
degree m and n respectively in the indeterminates ¢;, ¢ = 1,...,7. We have to
find a point P, not lying on the projective hypersurface determined by F(c) =

det(X°(c))det(Y°(c)).
Lemma 3.1 M and M' are isomorphic if and only if F(c) # 0.

Proof: This statement is obvious.

Now, assuming that F'(c) # 0, we can recursively insert m + n + 1 different
integer values for any ¢; on which F' depends. As deg(F) < m + n for one of
these values F' does not vanish and we can repeat the procedure with F(c; = p;)
instead of F. Choosing at the end arbitrary (for example 0) values for the free
¢; (Those on which F' does not depend!) we obtain the desired point P.

3.2 The global homogeneous case

Here, the algorithm is in principle the same, but, we had to apply it to the set
of purely constant matrices. Thus, we had to determine this vector space first.

Denote by (X/*,Y;™) the non-constant parts of the generators of Tr(4, 1.
To eliminate them we had to compute their syzygies with the generators (X;, Y;).
That means, if M =< (X[*,Y;™) > +Tr(,4) then V =< M, M > Syz(M) is
just the vector space of constant transformations. The algorithm of the local
case completes the computation.

4 The algorithm

Here we give the ”pseudo”-code of the algorithm.

M := iso_modules(A, A')
INPUT: (A, A’) - a pair of representation matrices of modules M, M’
OUTPUT: (Xo, Ys) - a pair of transformation matrices if M, M' are isomorphic
and FALSE otherwise

A := minimize(A4)

A" := minimize(A")

IF (size(A)#size(A’')) THEN return FALSE END
M := transformation(A4,A")

M¢ := constant_part(M)

F := det_of_linear_combination (M €)

IF (F ==0) THEN return FALSE END



P := point_outside_surface(F)

IF (P == () THEN return FALSE END
(Xo0,Yo) := linear _comb(M, P)

return (Xo,Yp)

The constant_part procedure computes the vector space of all constant trans-
formations depending on the ordering as described above. Note, that in case
char k = 0 a point P exists whenever F' # 0 whereas in char k = p this must not
be true. It follows the code of the main subprocedure - the other are selfevident.

M := transformation(A, A"

INPUT:  as above
OUTPUT: M - the module of all solutions of XA — A'Y = 0, where every
column is of dimension m? + n? and represents a pair of matrices (X,Y)

A := kontra hom(A)
A" := ko_hom(A")

C := concat(A,—A")
M := syz(C)

return M
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