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Abstract

In this thesis we explicitly solve several portfolio optimization problems in a very realis-
tic setting. The fundamental assumptions on the market setting are motivated by practical
experience and the resulting optimal strategies are challenged in numerical simulations.

We consider an investor who wants to maximize expected utility of terminal wealth by
trading in a high-dimensional financial market with one riskless asset and several stocks.
The stock returns are driven by a Brownian motion and their drift is modelled by a
Gaussian random variable. We consider a partial information setting, where the drift is
unknown to the investor and has to be estimated from the observable stock prices in ad-
dition to some analyst’s opinion as proposed in [CLMZ06]. The best estimate given these
observations is the well known Kalman-Bucy-Filter. We then consider an innovations pro-
cess to transform the partial information setting into a market with complete information
and an observable Gaussian drift process.

The investor is restricted to portfolio strategies satisfying several convex constraints.
These constraints can be due to legal restrictions, due to fund design or due to client’s
specifications. We cover in particular no-short-selling and no-borrowing constraints. One
popular approach to constrained portfolio optimization is the convex duality approach of
Cvitanic and Karatzas. In [CK92] they introduce auxiliary stock markets with shifted mar-
ket parameters and obtain a dual problem to the original portfolio optimization problem
that can be better solvable than the primal problem.

Hence we consider this duality approach and using stochastic control methods we first
solve the dual problems in the cases of logarithmic and power utility. Here we apply a
reverse separation approach in order to obtain areas where the corresponding Hamilton-
Jacobi-Bellman differential equation can be solved. It turns out that these areas have a
straightforward interpretation in terms of the resulting portfolio strategy. The areas differ
between active and passive stocks, where active stocks are invested in, while passive stocks
are not.

Afterwards we solve the auxiliary market given the optimal dual processes in a more
general setting, allowing for various market settings and various dual processes. We obtain
explicit analytical formulas for the optimal portfolio policies and provide an algorithm
that determines the correct formula for the optimal strategy in any case. We also show
optimality of our resulting portfolio strategies in different verification theorems.

Subsequently we challenge our theoretical results in a historical and an artificial simu-
lation that are even closer to the real world market than the setting we used to derive our
theoretical results. However, we still obtain compelling results indicating that our optimal
strategies can outperform any benchmark in a real market in general.
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Zusammenfassung

In dieser Arbeit lösen wir explizit mehrere Portfoliooptimierungsprobleme in einer sehr
realistischen Umgebung. Die grundlegenden Annahmen an den Aufbau des Marktes sind
durch praktische Erfahrungen motiviert und die resultierenden optimalen Portfoliostrate-
gien werden in numerischen Simulationen überprüft.

Wir betrachten eine Investorin, die den erwarteten Nutzen ihres Endvermögens max-
imieren möchte, indem sie in einem hoch-dimensionalen Finanzmarkt mit einer risikolosen
Anlage und vielen Aktien handelt. Die Steigerungsraten der Aktien werden durch eine
Brownsche Bewegung getrieben und ihr Drift wird durch eine normalverteilte Zufallsvari-
able modelliert. Da der Investorin diese Drift nicht bekannt ist, sind wir in einem Modell
unter partiellen Informationen, wo die Drift durch die beobachtbaren Aktienpreise, sowie
die Meinungen von Analysten geschätzt werden muss, wie es in [CLMZ06] vorgeschlagen
wird. Gegeben diese Beobachtungen ist der beste Schätzer der gut bekannte Kalman-Bucy-
Filter. Anschließend benutzen wir einen Innovationsprozess, um das Modell unter par-
tiellen Informationen in einen Markt mit vollständigen Informationen und einem beobacht-
baren normal-verteilten Driftprozess zu transformieren.

Die Investorin darf nur Portfoliostrategien implementieren, die gewisse konvexe Nebenbe-
dingungen einhalten. Diese Nebenbedingungen können von gesetzlichen Vorgaben, vom
Fondsdesign oder von Kundenvorgaben können. Wir behandeln insbesondere die Verbote
von Leerverkäufen und dem Leihen vom Bargeld. Ein bekannter Ansatz in der Portfo-
liooptimierung unter Nebenbedingungen ist der konvexe Dualitätsansatz von Cvitanic und
Karatzas. In [CK92] führen sie Hilfsaktienmärkte mit verschobenen Marktparametern ein
und erhalten ein duales Problem zum ursprünglichen Portfoliooptimierungsproblem, das
besser lösbar als das ursprüngliche Problem sein kann.

Daher betrachten wir diesen Dualitätsansatz und lösen die dualen Probleme mittels
stochastischer Kontrollmethoden für logarithmischen und potenzierten Nutzen. Dabei
nutzen wir einen inversen Separationsansatz, um Bereiche zu erhalten, auf denen die
zugehörige Hamilton-Jacobi-Bellman Differentialgleichung gelöst werden kann. Wir stellen
fest, dass diese Bereiche mit aktiven und passiven Aktien in der resultierenden Portfolios-
trategie zusammenhängen, wobei die Investorin in aktive Aktien investiert und in passive
nicht.

Anschließend lösen wir den Hilfsmarkt mit dem optimal dualen Prozess unter sehr allge-
meinen Bedingungen, die auf viele Marktmodelle und duale Prozesse zutreffen. Wir leiten
explizite analytische Formeln für die optimalen Portfoliostrategien her und erhalten einen
Algorithmus, der die richtigen Formeln für die optimalen Portfoliostrategien in jedem Fall
bestimmt. Außerdem zeigen wir die Optimalität unserer resultierenden Portfoliostrategien
in unterschiedlichen Verifizierungssätzen.

Schließlich testen wir unsere theoretischen Ergebnisse in einer historischen und einer
künstlichen Simulation, die beide sogar näher am echten Markt sind als unser theoretisches
Marktmodell. Dennoch erhalten wir überzeugende Ergebnisse, die zeigen, dass unsere
optimalen Strategien eine beliebige Benchmark in einem echten Markt übertreffen können.
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”One might say that to attempt to estimate the expected return on the market
is to embark on a fool’s errand.”

[Merton, 1980]
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1 Introduction

1.1 Motivation

In financial mathematics the main objective is to develop models that describe the
financial market and its actors. This way the theory of financial mathematics aims to
reproduce and explain observations made in the real world financial market. In some
areas like portfolio optimization an additional goal is to derive instructions for an agent
who wants to optimizes his actions.
In general there are two important assumptions to meet in the set-up of a new model:

1. The model has to be realistic.
The more properties and details of the real world market are met in the model, the
better its results can be applied to a real world problem. The more simplifications
and assumptions are introduced to the model, the less reliable its outcome becomes.

2. The results have to be applicable.
In the best case scenario the resulting instructions to the agent are given analytically
or explicitly so she can act immediately following precise instructions. If the results
are just given up to a numerical simulation, then on the one hand the agent needs
to wait before being able to apply the results and on the other hand the results are
inaccurate which might lead to an inaccurate action of the agent.

Of course these assumption oppose each other since the most realistic model might be
too complicated to be sufficiently solvable, while many explicitly solvable models are sim-
plified too much to be able to adequately model the real financial market.
From a theoretical point of view the first assumption is most important because it leads to
scientific advances in research. Therefore most literature on portfolio optimization focuses
on developing more complex models including more details of the real market. However
from a practical point of view the first assumption is only of interest if the second assump-
tion is met after all, since otherwise there is no application possible. Subsequently the
practical approach of course also wants its model to be as realistic as possible.

In this thesis the objective will be to derive a compromise such that the resulting model
is as realistic as possible given the instructions to the agent can be computed explicitly
in a reasonable amount of time. To our knowledge there is no literature yet that provides
explicit solutions in a setting as detailed as ours.
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1 Introduction

The literature on financial markets goes back to Markowitz’ Mean-Variance-Approach
[Mar52] being the first result to explain the effect of diversification and deriving an optimal
asset allocation in a one-period model.

Modern portfolio theory goes back in particular to Merton in [Mer71] who was among
the first to set-up and solve a continuous-time portfolio optimization problem. At around
the same time the infamous Black-Scholes-Formula to estimate implied volatility got de-
rived in [BS73]. A broad introduction to the early concepts in probability theory is given
in [Shi80]. Karatzas et al were among the first to derive very general solutions and meth-
ods to continuous-time portfolio optimization in [KLS87] and [KLSX91].

The Master’s thesis [Von14] preceding this work was motivated by [GV13] who examine
the effect of estimating unknown parameters on the utility of portfolio strategies. This
thesis is motivated by the challenge of finding optimal strategies under various restrictions
like partial information, convex constraints, high dimensionality and explicit computabil-
ity.

The problem of estimating the unknown growth rate of the stocks was first discussed
in [Mer80]. A wide summary on filtering results including the Kalman or Kalman-Bucy
filter can be found in the books [EAM95], [LS01] or [BC09]. A Bayesian approach to this
filter is presented in [BW96].

One of the first to formulate the continuous-time portfolio optimization problem under
partial information is Lakner in [Lak95] and [Lak98]. Our setting of partial information
is similar to those in [CLMZ06] and [BUV12] who use the same filter for the unknown
growth rate of the stocks as we do.
There are various other papers discussing partial information and general parameter uncer-
tainty. [Rog01] show that parameter uncertainty is way more serious than transaction costs
and [KZ07] show that plug-in strategies in general won’t work. Partial information in a
Hidden-Markow-Model are considered for instance in [SH04] and [HPS07], while [BDL10]
and [PS08] consider the growth rate to follow various stochastic differential equations.
[Bre06] additionally derived the structure of the value function in a partial information
setting and derived ordinary differential equations that are very similar to the differential
equations that we will solve. [GKSW14] additionally introduce expert opinions to their
partial information setting.

Cvitanic and Karatzas developed in [CK92] the very important duality approach to
continuous-time portfolio optimization under convex constraints. A summary of methods
to dealing with constrained portfolio optimization is given in [Cvi97].

Constrained portfolio optimization under partial information is dealt with in [Sas07]
using a continuous-time Markov chain model for the drift. [DV15] constrain their portfolio
strategies with the L1-norm and examine the loss due to estimation.

[PS11] consider portfolio optimization under partial information where they derive dy-
namic constraints depending on a risk measure.

2



1.2 Outline of this thesis

1.2 Outline of this thesis

In the following section we start by introducing the general setting of this thesis. This
includes defining the market model and stating any assumptions or restrictions on the
market or the acting agents. In particular we emphasise the necessity for the fund manager
to be able to calculate any resulting portfolio strategy. Therefore the setting is as realistic
as possible and any restricting assumptions are used to make the results analytically
computable.

In the second chapter we present some basic results. We solve our portfolio optimization
problem for deterministic portfolios that turns out to be the optimal stochastic portfolio
at t = 0. We introduce our notion of partial information and how to use filtering results to
get from partial to completely observable information using the innovations process. We
also introduce convex constraints in the notion of [CK92] and recall their basic results on
convex duality that we will apply in the following.

The third chapter is about solving the portfolio optimization problem under logarithmic
utility but with a no short-selling and a no borrowing constraint. The corresponding dual
problem can be solved using basic techniques from linear algebra. We present an algorithm
that determines the optimal portfolio strategy explicitly.

The fourth chapter is about solving the same constrained portfolio optimization prob-
lem under power utility. We start in Section 4.1 by solving the unconstrained portfolio
optimization problem under partial information using a stochastic control approach. This
problem was first solved in [CLMZ06] using a martingale approach, leading to the same
optimal strategy in a slightly more complicated form. In order to solve the constrained
problem in Section 4.2, we consider a stochastic control approach for the correspond-
ing dual problem. The resulting HJB-equation contains non-differentiable terms that we
get rid of by a localization argument, the reverse separation approach. This leads to
various HJB-equations on subsets of the parameter-space that locally solve the original
HJB-equation. The corresponding primal problems are solved in Section 4.3.

The main effort to solving our optimization problem lies in finding the structure of
the optimal dual process. It turns out that the investor only needs to determine which
stocks are active and passive, referring to those stocks the optimal strategy does invest in
respectively doesn’t. This structure is mostly determined by the convex support function
given the constraints. Section 4.4 is about describing this structure of the dual problem
and the partitioning of the domain of the value function with respect to the structure of
the optimal dual process. This is used in Section 4.5 to sketch the solution of the complete
portfolio optimization problem.

In Chapter 5 we prove a generalized approach to solving the auxiliary market for any
utility function. Also we consider further convex constraints for which portfolio optimiza-
tion problems can be solved explicitly.

In Chapter 6 we simulate our derived optimal portfolio strategies to monitor their per-
formance under realistic conditions. First we consider a historical market and observe an
impressive outperformance of our strategies in Section 6.2. We challenge this result in
Section 6.3 with simulated markets where we can still observe outperformance.

3



1 Introduction

In the last chapter we present an outlook on further research that might follow this
thesis and open questions that still have to be considered. The appendix begins with a
short list of the most important notations used throughout this thesis and continues with
a list of technical proofs of several results.

1.3 The market setting

Most of the results in the following chapters aim at solving a specific class of portfo-
lio optimization problems. Therefore we start by introducing the basic settings of the
market that we want to work with and state and reason most of the assumptions needed
throughout the following chapters.

The basic idea is very conventional. We consider an investor whose objective is to
maximize her initial wealth by investing in some given stock market. We want this market
and the investor to behave as realistically as possible, where ’as possible’ presumes that
the resulting market still has to be solvable and the resulting optimal strategy has to be
computable. We introduce the following properties to our market to make it more realistic:

• A high-dimensional stock market:
Most investors are only limited to some specific sector, region or investment grade
and hence remain with up to 100 or more stocks to choose from. Therefore we need
to allow for a high-dimensional stock market.
Unfortunately lots of important one-dimensional results in portfolio optimization
and in particular under convex constraints cannot be transformed trivially to a
high-dimensional setting. Additionally lots of results are only given implicitly and
therefore need numerics to get solved. This often becomes too time-consuming when
the number of stocks increases to some reasonable level.

• Only observable information:
Another important assumption that is often neglected is to restrict the knowledge
of the investor. It is fairly realistic for the investor to be able to observe the market
and read out the stock prices. On the other hand it is rather optimistic to assume
the investor to know the underlying market factors.
We will specify the investor’s knowledge in detail below when introducing the market.
In particular this means that any resulting portfolio strategy has to be adapted to
some observation filtration FS .

• Expert’s opinions:
The investor is allowed to use one external input other than her observations of the
stock prices: there will be experts providing estimates on the future growth rates
of the available stocks. In practice these estimates form the foundation of most
investment decisions anyway. Also they are necessary since the investor cannot base
her future investments just on historical observations since historical estimates often
are too unreliable.

4



1.3 The market setting

• Convex constraints:
It is well known that most optimal unconstrained portfolio strategies invest huge
amounts into single stocks and therefore tend to go bankrupt very easily. Also the
investor might have to face several restrictions from his client, his supervisor and
legal regulations.
Hence it is reasonable to limit the admissibility set for the portfolio strategies a priori
to avoid these kinds of problems anyway.

• Computable results:
In order to generate results that can actually be applied, it is not enough to show
uniqueness and existence. Often it is not even enough to determine the solution up to
some implicit formula, since the subsequent numerics might be too time-consuming
when the number of stocks gets larger. This is in particular important for portfolio
strategies that have to be implemented almost instantly where the investor cannot
wait several hours for the solution to be derived only approximately.
Hence it is necessary to either generate analytical results or at least explicit formulas
such that an algorithm does not need numerics to determine the solution.

Of course the last point contradicts the idea of modelling completely realistic, but the goal
will always be to model as realistically as possible such that the computability is still given.

Our model consists of a Black-Scholes-type market with one risk-less bond Bt ∈ R and
d > 1 risky assets St ∈ Rd on a filtered probability space (Ω,F , (Ft),P) with dynamics

dBt = Btrtdt

dSt = diag (St) (µtdt+ σtdWt) .

Here rt ∈ R is the interest rate of the bond, µt ∈ Rd are the growth rates of the stocks,
Σt = σtσ

>
t is the variance-covariance matrix of the stocks and (Wt)t∈[0,T ] is a standard

d-dimensional F-Brownian motion.
The investor is allowed to buy and sell stocks while her remaining wealth is invested into
the bond. Her portfolio strategy is given by a progressively measurable process (πt)t∈[0,T ]

that satisfies the usual conditions on admissibility. πt ∈ Rd are the percentages of wealth
invested in the d stocks at time t. The remaining wealth 1−π>t 1 is automatically invested
in the bond.
The wealth process (Xt)t∈[0,T ] is a real-valued non-negative process given by its dynamics
with initial wealth X0 = x0:

dXt = Xt

((
rt + π>t (µt − rt1)

)
dt+ π>t σtdWt

)
The investor’s aim will always be to maximize her expected utility of terminal wealth.

π∗ = arg max
π∈A

E [U(Xπ
T )]

5



1 Introduction

Here A is the set of admissible strategies, U : R+ 7→ R∪ [−∞] is a utility function, [0, T ] is
the investment horizon and Xπ

t is the wealth process when investing according to portfolio
strategy π ∈ A. By restricting the set A we can introduce any constraint on the admissible
strategies.

In order to keep our market setting solvable and the resulting optimal strategies com-
putable, we have to specify some of the previous parameters in more detail and introduce
some simplifications:

• The risk-aversion α:
The investor needs to know her (client’s) risk-aversion, described by a utility func-
tion U that satisfies the usual conditions. We will mostly focus on the cases of
logarithmic utility U(x) = log(x) and power utility U(x) = 1

αx
α for α < 0.

The case of logarithmic utility is almost always the limiting case of power utility
for α → 0. Hence the risk-aversion parameter α ∈ (−∞, 0] entirely describes the
risk-aversion of the portfolio.
Although there are good reasons for using logarithmic utility like the easy solvability
of most portfolio optimization problems, there are also major drawbacks. Logarith-
mic utility tends to lead to very risky strategies and in our cases it mostly ignores
several sources of uncertainty.
We use negative power utility since these utility functions are more risk averse. We
do not additionally calculate the respective results for positive power utility since
the calculations and results are essentially the same. Also these utility functions
are even less risk averse than logarithmic utility and therefore sometimes lead to
degenerated solutions. However the calculations of Chapter 4 can be repeated for
positive power utility as well.

• Deterministic and known market parameters: rt and σt
Obviously all market parameters evolve stochastically in the future. However we
cannot model them entirely arbitrary, if we want to achieve an applicable and com-
putable strategy. Fortunately the short term risk-free interest rate is usually known
to the portfolio manager quite well and the current variance-covariance matrix of the
market can usually be estimated from observing the market quite adequately. Also
both parameters don’t change significantly in a short period of time, when compared
to the possible changes of the growth rates of the stocks.
Therefore we model both parameters deterministic and known.

• Time-independent market parameters: rt = r, σt = σ and µt = µ
Obviously the market parameters change over time. However, neither the interest
rate r nor the covariance matrix σσ> change significantly in a short period of time,
when compared to the possible changes of the growth rates of the stocks. Hence a
constant approximation of these parameters is often sufficient.
On the other hand the growth rates of the stocks are very volatile and very hard
to estimate such that a time-independent average most likely won’t be worse than a
bad fitting time-dependent approach.
Also we will not be able to trade continuously in practice anyway (for instance due

6



1.3 The market setting

to transaction costs). Therefore we only need to know the average future behaviour
of the stocks until our next trading opportunity. These ”expected average market
parameters” can hence be modelled time-independently.

• Normally distributed average growth rate µ:
We already motivated to use a time-independent average future growth rate. How-
ever we should not consider it being deterministic as this is the most crucial param-
eter to our portfolio strategy.
In practice analysts give estimates about the future behaviour of the stocks in the
market. Assuming they provide their expectations µ0 of the future growth rates µ
together with their uncertainty (covariances Σ0) of their estimates, we may model
the future growth rates as a multidimensional normal distributed random variable:

µ ∼ N (µ0,Σ0)

where µ0 and Σ0 are provided by the analyst.
On the one hand the assumption of a normal distribution is the natural choice for
a parameter like the growth rate. One can hardly expect an analyst to specify a
whole distribution of his expectations but rather at most two parameters. On the
other hand the assumption of a normal distribution enables us to calculate explicit
filtering results and therefore lots of explicit portfolio strategies.

• Time-continuous trading:
While the continuous-time portfolio optimization problem is very well understood
in general, any discrete-time factor makes handling and solving this problem signif-
icantly harder.
Therefore we need to allow the investor to trade continuously in time, while knowing
that this is not possible in practice. When actually applying a continuous portfolio
strategy we need to define points of time, when the investor may update his stock
positions to the current optimal amount.

• No transaction costs:
We will also pass on introducing transaction costs into our market setting, although
these may influence the structure of any time-continuous portfolio strategy consid-
erably. However by restricting the admissibility set significantly and hence reducing
the amount of wealth that can be shifted with each trade (and by not trading very
often in practice) we reduce the impact of transaction costs anyway.

The market setting as described here will be used in any derivation or result in the
following unless explicitly stated otherwise.
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2 Basic Results

As describe in the above Section 1.3, our model consists of a multidimensional Black-
Scholes-type market with one risk-less bond B and d risky assets S on a filtered probability
space (Ω,F , (Ft),P).

dBt = Btrdt B(0) = 1

dSt = diag (St) dRt S(0) = S0 (2.1)

= diag (St) (µdt+ σdWt)

The initial values of the stocks are observable to the investor, the market parameters r
and σ are time-independent, deterministic and observable, while µ is time-independent,
but stochastic and not observable. Wt is a standard d-dimensional F-Brownian motion
that is independent of µ.
Any resulting optimal strategy has to be adapted to the observation filtration (FSt ), that
is generated by the observable information from the stock prices augmented by null sets.

The average future growth rate µ is modelled normally distributed

µ ∼ N (µ0,Σ0) (2.2)

where µ0 and Σ0 are provided by the analyst being his expectation and uncertainty about
the future average growth rate µ.

The investor’s aim will be to maximize her expected utility of terminal wealth:

π∗ = arg max
π∈A

E [U(Xπ
T )] (2.3)

where A is the set of admissible strategies, U : R+ 7→ R ∪ [−∞] is a utility function,
[0, T ] is the investment horizon and Xπ

t is the wealth process when investing according to
portfolio strategy π ∈ A.

9



2 Basic Results

2.1 The optimal deterministic portfolio

As a motivation we will first calculate the optimal deterministic portfolio strategy in
our market setting with stochastic growth rate µ. Later on this strategy can be used as
a benchmark to the stochastic strategy. We consider the wealth process Xt for a self-
financing trading strategy πt:

dXt = Xt

((
r + π>t (µ− r1)

)
dt+ π>t σdWt

)
, X0 = x0,

Xt = x0 exp

(
rt+

∫ t

0

(
π>s (µ− r1)− 1

2
π>s Σπs

)
ds+

∫ t

0
π>s σdWs

)
For logarithmic utility we maximize the following expected utility of terminal wealth:

E [logXT ] = log x0 + rT + E
[∫ T

0

(
π>t (µ− r1)− 1

2
π>t Σπt

)
dt

]
+ E

[∫ T

0
π>t σdWt

]
= log x0 + rT +

∫ T

0

(
π>t (µ0 − r1)− 1

2
π>t Σπt

)
dt

Hence we want to maximize the integral over
(
π>t (µ0 − r1)− 1

2π
>
t Σπt

)
for all admissible

processes π. Point-wise maximization of this term already leads to an admissible solution,

hence we consider the first order condition: 0
!

= (µ0− r1)T −ΣπtT . Since Σ is symmetric
and positive definite the second order condition ensures the optimizer to be a maximizer:

π∗log,det = Σ−1(µ0 − r1)

Hence the optimal deterministic strategy is the Merton Plug-In strategy. This is shown
in more Detail in [BUV12, (3.6)]. However, note that the uncertainty of the analyst (the
covariance matrix Σ0) doesn’t even enter the formula supporting the idea that logarithmic
utility is not very risk averse.

For power utility we need to maximize the following expected utility of terminal wealth:

E
[

1

α
Xα
T

]
=

1

α
xα0E

[
exp

(
αrT +

∫ T

0
απ>t (µ− r1)dt−

∫ T

0

α

2
π>t Σπtdt+

∫ T

0
απ>t σWt

)]
For simplicity we will only consider the optimal time-independent deterministic strategy
such that the expectation value becomes

1

α
xα0 exp

(
αrT + απ>(µ0 − r1)T +

1

2
α2T 2π>Σ0π −

1

2
αTπ>Σπ +

1

2
α2Tπ>Σπ

)
.

Now for both, positive and negative α, maximizing E
[

1
αX

α
T

]
is equivalent to maximizing

the inner term π>(µ0−r1)T+ 1
2αT

2π>Σ0π− 1
2Tπ

>Σπ+ 1
2αTπ

>Σπ. Again we consider the

first order condition: 0
!

= (µ0−r1)+αTΣ0π−Σπ+αΣπ = (µ0−r1)+(αTΣ0 − (1− α)Σ)π.

10



2.1 The optimal deterministic portfolio

Here we need to assume that α is small enough or negative such that (1− α)Σ− αTΣ0 is
positive definite and the second order condition ensures the optimizer to be a maximizer.
The optimal portfolio strategy then becomes:

π∗det,pow =
(
αTΣ0 − (1− α)Σ

)−1
(µ0 − r1)

=
1

1− α

(
Σ− α

1− α
TΣ0

)−1

(µ0 − r1)

=
1

1− α
Σ−1

(
Σ−1

0 −
α

1− α
TΣ−1

)−1

Σ−1
0 (µ0 − r1)

Now for power utility the optimal portfolio strategy does account for the uncertainty Σ0

of the analyst, shifting the variance Σ by some fraction of Σ0. In case of negative power
utility the optimal strategy gets reduced compared to the logarithmic case above. Positive
power utility vice versa leads to increasing the optimal investment, hence increasing the
involved risk.

Obviously, a deterministic portfolio strategy cannot account for any observations of the
market evolution, therefore this approach does not lead to satisfactory results. However,
these optimal strategies both start at t = 0 with the same values than their corresponding
optimal stochastic strategies that we will see later on.
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2 Basic Results

2.2 Partial Information

Our market setting is in particular motivated by [CLMZ06] and [BUV12] where the
investor doesn’t know all the values of the underlying processes and random variables
which is interpreted as ’partial information’. This section will give a short introduction
to the theoretical background on partial information and we prove some results that are
used within this thesis.
Since the resulting portfolio strategies have to be adapted to the observation filtration
(FSt )t∈[0,T ], the best estimator for µ at time t is the conditional expectation given the
information up to time t. This conditional expectation is called the ’filter’.

µ̂t := E
[
µ| FSt

]
(2.4)

As pointed out by [CLMZ06] this filter can be motivated via a Bayesian approach with
normal prior and posterior distribution:

Proposition 2.1
Let Rt = µt+σWt be the observable return on the stocks and let the prior distribution of
µ be N (µ0,Σ0). Then the filter µ̂t is the posterior distribution of µ given the observation
until time t that is normally distributed as follows:

µ
∣∣Rt ∼ N(γt (Σ−1

0 µ0 + Σ−1Rt
)
, γt

)
(2.5)

where γt =
(
Σ−1

0 + tΣ−1
)−1

Proof. The Theorem of Bayes claims for conditional densities:

fµ|Rt(x) =
fRt|µ(Rt)fµ(x)

fRt(Rt)
∝ fRt|µ(Rt)fµ(x)

where ∝ denotes ’proportional to’, hence equal up to some constant.
With µ ∼ N (µ0,Σ0) and Rt|µ ∼ N (µt,Σt) we get:

fµ|Rt(x) ∝ fRt|µ(Rt)fµ(x)

∝ exp

(
− 1

2t
(Rt − xt)>Σ−1(Rt − xt)−

1

2
(x− µ0)>Σ−1

0 (x− µ0)

)
∝ exp

(
−1

2

(
x>
(
tΣ−1 + Σ−1

0

)
x− 2x>

(
Σ−1Rt − Σ−1

0 µ0

)))
∝ exp

(
− 1

2

((
x−

(
Σ−1

0 + tΣ−1
)−1 (

Σ−1
0 µ0 + Σ−1Rt

))> (
tΣ−1 + Σ−1

0

)
·
(
x−

(
Σ−1

0 + tΣ−1
)−1 (

Σ−1
0 µ0 + Σ−1Rt

))))
∝ exp

(
−1

2

(
(x− µ̂t)>γ−1

t (x− µ̂t)
))

As fµ|Rt has to be a density and the resulting formula is proportional to the density of a
normal distribution, the assumption follows immediately.
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2.2 Partial Information

Alternatively it is well known that this filter can also be calculated as a degenerated
version of the Kalman-Bucy filter (cf. [BUV12]):

Lemma 2.2
Let Rt := µt+ σWt be the observable returns on the stocks and µ ∼ N (µ0,Σ0). Then

µ̂t := E
[
µ| FSt

]
= γt

(
Σ−1

0 µ0 + Σ−1Rt
)

(2.6)

γt := Var
(
µ|FSt

)
=
(
Σ−1

0 + tΣ−1
)−1

where γt is the conditional variance given the information in FSt .

Proof. We prove this by one step of the (degenerated) time-discrete Kalman-Filter as
described in chapter 4.5 in [EAM95] with signal µ ∼ N (µ0,Σ0) and observation Rt.
We set their parameters to x0 = µ,A = Id,Q = 0 for the signal and C = t · Id,R = tΣ for
the observation. Following formulas (5.12) and (5.13) in [EAM95] we start with the first
’time updates’ µ̂1|0 = µ0 and Σ̂1|0 = Σ0 and we follow with

E
[
µ| FSt

]
= µ̂t = µ0 + Σ0t (tΣ0t+ Σt)−1 (Rt − tµ0)

= µ0 +
(
tI + ΣΣ−1

0

)−1
(Rt − tµ0)

=
(
tI + ΣΣ−1

0

)−1
( (
tI + ΣΣ−1

0

)
µ0 − tµ0 +Rt

)
=
(
tI + ΣΣ−1

0

)−1 (
ΣΣ−1

0 µ0 +Rt
)

=
(
tΣ−1 + Σ−1

0

)−1 (
Σ−1

0 µ0 + Σ−1Rt
)

Var
(
µ|FSt

)
= γt = Σ0 − Σ0t (tΣ0t+ Σt)−1 tΣ0

= Σ0 − Σ0 (Σ0t+ Σ)−1 tΣ0

= Σ0 −
(
tI + ΣΣ−1

0

)−1
tΣ0

= Σ0 −
(
tΣ−1 + Σ−1

0

)−1
tΣ−1Σ0

=
(
tΣ−1 + Σ−1

0

)−1 ( (
tΣ−1 + Σ−1

0

)
Σ0 − tΣ−1Σ0

)
=
(
tΣ−1 + Σ−1

0

)−1

Remark 2.3 (Interpretation)
Note that we can actually observe the returns R(t) = µt+ σWt from the stock prices via

Ri(t) = log
Si(t)

Si(0)
+

1

2
Σiit (2.7)

where the stock prices Si(s) are observable for s ≤ t and the variance Σ is known to the
investor. Therefore the value of the filter is known at any time.

The analysts provide their estimates (µ0,Σ0) at t = 0 and the investor observes the
stock returns Rt = R(t) until time t. We observe for the resulting filter:

µ̂0 = µ0 and lim
t→∞

µ̂t = µ (2.8)

13



2 Basic Results

Hence at time t = 0 the best guess for µ is the estimate of the analyst itself, while for
t → ∞ the filter converges to the true (and unknown) value of µ. Note that the second
equality is rather theoretical as it depends crucially on the unrealistic assumption that µ
is time-independent, which is only reasonable for a small investment horizon.

Remark 2.4
Alternatively one could also model the risk premium θ := σ−1(µ − r1) instead of the
growth rate µ as it is done in [CLMZ06]. Then the risk premium gets modelled nor-
mally distributed θ ∼ N (θ0,∆) with θ0 = σ−1(µ0 − r1) and ∆ = σ−1Σ0(σ−1)>. The
corresponding filter θ̂t := E

[
θ| FSt

]
hence is given by the following formulas by [LS01,

Thm.10.3]:

θ̂t = γθt

(
WQ
t + γ−1

0 θ0

)
= P>D̂t

(
PWQ

t +D−1Pθ0

)
γθt = Var

(
θ|FSt

)
= P>D̂tP

Here WQ
t = Wt + θt = σ−1(Rt− rt) is a Brownian motion with respect to the risk-neutral

measure Q. P is an orthogonal matrix that diagonalizes ∆ such that ∆ = P>DP with
D = diag (...di...) and D̂t := diag (...δi...) is diagonal with δi := di

1+dit
.

One can easily show that both approaches are equivalent:

θ̂t = σ−1(µ̂t − r1).

2.2.1 From partial to completely observable information

Our market model (2.1) includes the unknown and unobservable parameters µ and Wt.

dBt = Btrdt

dSt = diag (St) dRt

where dRt = µdt+ σdWt

= rdt+ σdWQ
t

where WQ
t = Wt+θt = σ−1(Rt−rt) is a Brownian motion with respect to the risk-neutral

measure Q. Therefore it is equivalent whether the investor can observe the stock prices St,
the returns Rt or the risk-neutral Brownian motion WQ

t . We observe for the observation
filtration FS = FR = FQ ⊂ F .
We won’t use the Brownian motion WQ

t with respect to the risk-neutral measure Q, but
instead we define the innovation process Vt via its dynamics:

dVt := dWt + σ−1 (µ− µ̂t) dt (2.9)

= σ−1 (dRt − µ̂tdt)

Vt = σ−1

(
Rt −

∫ t

0
µ̂sds

)
(2.10)
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2.2 Partial Information

From (2.10) we observe that the innovations process is completely observable, since it only
consists of σ, Rt and µ̂t.
Hence we may update our market setting from the original partial information setting to
a setting with complete information using the innovation process Vt:

dSt = diag (St) (µdt+ σdWt)

= diag (St) (µ̂tdt+ σdVt) (2.11)

While we cannot observe µ and Wt, all parameters in (2.11) are known at time t.
Additionally we get the following nice results:

Theorem 2.5 (Fujisaki, Kallianpur, Kunita)
The innovation process Vt with dVt = dWt + σ−1 (µ− µ̂t) dt is a standard FS-Brownian
motion under the physical measure P.

Proof. The proof is done via Lévy’s characterization of a Brownian motion.
Obviously V0 = 0 since Wt is a Brownian motion.
First we show that Vt is a martingale with respect to FR = FS . Let s ≤ t.

E
[
Rt| FRs

]
= Rs + E [Rt −Rs]
= Rs + E [µ(t− s) + σ(Wt −Ws)]

= Rs + E [µ] (t− s)

E
[∫ t

0
µ̂udu

∣∣∣∣FRs ] =

∫ s

0
µ̂udu+ E

[∫ t

s
µ̂udu

]
=

∫ s

0
µ̂udu+

∫ t

s
E
[
E
[
µ| FRu

]]
du

=

∫ s

0
µ̂udu+ E [µ] (t− s)

hence

E
[
Vt| FRs

]
= σ−1

(
E
[
Rt| FRs

]
− E

[∫ t

0
µ̂udu

∣∣∣∣FRs ])
= σ−1

(
Rs −

∫ s

0
µ̂udu

)
= Vs

Secondly we consider the quadratic covariation of Vt where we use formula (2.9).

Vt = Wt +

∫ t

0
σ−1

(
µ− E

[
µ
∣∣∣FRs ]) ds

The quadratic covariation of a standard Lebegues integral
∫
...dt is zero and the quadratic

covariation of a multidimensional Brownian motion is t · Id, hence

〈V 〉t = 〈W 〉t + 0 = t · Id.
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Lemma 2.6
The filter µ̂t is a martingale with respect to the filtration FS under the innovations process
Vt and the physical measure P. Its dynamics are explicitly given with respect to the
innovations process Vt by

dµ̂t = γt(σ
−1)>dVt. (2.12)

Proof. We apply the Itô-formula to the d+1-dimensional function f(t, w)

f(t, w) = γt
(
Σ−1

0 µ0 + Σ−1µt+ Σ−1σw
)

with derivatives (note that ∂tγt = −γtΣ−1γt)

∂tf(t, w) = γtΣ
−1µ− γtΣ−1γt

(
Σ−1

0 µ0 + Σ−1µt+ Σ−1σw
)

= γtΣ
−1µ− γtΣ−1f(t, w)

∂wf(t, w) = γtΣ
−1σ

∂2
wwf(t, w) = 0

Hence we observe for the filter µ̂t = f(t,Wt)

dµ̂t = df(t,Wt) = ∂tf(t,Wt)dt+ ∂wf(t,Wt)dWt + 0

= γtΣ
−1
(
(µ− f(t,Wt))dt+ σdWt

)
= γtΣ

−1
(
(µ− µ̂t)dt+ σdWt

)
= γt(σ

−1)>dVt

Therefore µ̂t is a local martingale with

sup
t∈[0,T ]

E [〈µ̂〉t] = sup
t∈[0,T ]

E
[∫ t

0
tr(γsΣ

−1γs)ds

]
= sup

t∈[0,T ]

∫ t

0
∂str(γs)ds

= sup
t∈[0,T ]

tr(γt)− tr(Σ0) <∞

hence µ̂t is an L2-martingale.

Remark 2.7
For the filter for the risk premium θ we observe the same results with dynamics

dθ̂t = γθt dVt.
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2.3 Constrained Optimization

2.3 Constrained Optimization

Our portfolio optimization setting relies in particular on the ability to include convex
constraints on the admissible portfolio strategies. This section will give a short introduc-
tion to the theoretical background of handling convex constraints as it was introduced by
[CK92] including their main results needed for this thesis.

In our market setting we consider the constrained portfolio optimization problem of
[CK92]. We want to maximize expected utility of terminal wealth (2.3) where the portfo-
lio strategy (πt)t∈[0,T ] ∈ A additionally has to remain in some closed convex set K ⊆ Rd
for all t ∈ [0, T ]. This problem is dealt with in the following.

We start by defining the support function of −K as it is known from convex analysis,

δ(x) := δ(x|K) := sup
π∈K

(−π>x). (2.13)

The support function δ is a convex function on its effective domain K̃,

K̃ :=
{
x ∈ Rd

∣∣∣ δ(x|K) <∞
}
. (2.14)

We observe immediately

δ(x) + π>x ≥ 0 for all π ∈ K and x ∈ K̃. (2.15)

Now we introduce the auxiliary markets Mν of [CK92].

dBν
t = Bν

t

(
r + δ (νt)

)
dt (2.16)

dSνt = diag (Sνt )
(

(µ+ νt + δ(νt)1) dt+ σdWt

)
= diag (Sνt )

(
(µ̂t + νt + δ(νt)1) dt+ σdVt

)
The process ν ∈ D is defined to be any square-integrable and FSt -progressively measurable

processes with E
[∫ T

0 δ (νt) dt
]
<∞. Hence for ν ∈ D we observe in particular νt ∈ K̃ for

all t ∈ [0, T ].

For ν = 0 we observe our original market. Hence these auxiliary markets are considered
to be ’versions’ of the original market, where the market parameters µ and r get updated
by functionals of νt. We will see below that these updates always result in a ’better’
market with respect to maximizing utility of wealth.

In each of these auxiliary markets Mν we define the processes (2.17):

the risk-premium: θ̂νt := σ−1 (µ̂t + νt − r1) = θ̂t + σ−1νt (2.17)

the deflator: βνt := exp

(
−
∫ t

0
r + δ (νs) ds

)
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2 Basic Results

the ’change of measure’-process: Zνt := exp

(
−
∫ t

0
θ̂ν>s dVs −

1

2

∫ t

0
θ̂ν>s θ̂νsds

)
dZνt = −Zνt θ̂ν>s dVt

the ’state of the world’-process: Hν
t := βνt Z

ν
t

the risk-neutral measure: Qν defined via
dQν

dP

∣∣∣∣
FSt

= Zνt

the Qν-Brownian motion: V Q,νt := Vt +

∫ t

0
θ̂νsds

Note that the Qν-Brownian motion V Q,νt that is defined via the innovations process equals

the Qν-Brownian motion WQ,ν
t that gets defined via the original Brownian motion:

WQ,ν
t := Wt +

∫ t

0
θνsds = Wt +

∫ t

0
θs + σ−1νsds

= Vt +

∫ t

0
θ̂s + σ−1νsds = Vt +

∫ t

0
θ̂νsds = V Q,νt

The auxiliary market with respect to the risk-neutral measure Qν reads as follows:

dBν
t = Bν

t

(
r + δ(νt)

)
dt

dSνt = diag (Sνt )
(

(r + δ(νt))1dt+ σdV Q,νt

)
For any self-financing portfolio process with πt ∈ K for all t ∈ [0, T ], we observe the

dynamics of the wealth process Xν
t in the auxiliary market Mν .

dXν
t = Xν

t

((
r + δ (νt) + π>t (µ̂t + νt − r1)

)
dt+ π>t σdVt

)
= Xν

t

((
r + δ (νt)

)
dt+ π>t σdV

Q,ν
t

)
= Xν

t

((
r + δ (νt) + π>t νt

)
dt+ π>t σdV

Q,0
t

)
In each of these auxiliary markets we can solve the standard (unconstrained) portfolio
optimization problem of maximizing utility of terminal wealth. The resulting optimal
portfolio strategy will be denoted by πν .

Remark 2.8
We have seen in equation (2.15) that δ(νt) + π>t νt ≥ 0 for all t. However, since the wealth
process in the original market Xt equals the wealth process in the auxiliary market M0,
we observe:

dXν
t

Xν
t

=
(
r + δ(νt) + π>t νt

)
dt+ π>t σdV

Q,0
t ≥ rdt+ π>t σdV

Q,0
t =

dX0
t

X0
t

=
dXt

Xt
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Hence the wealth process for an admissible portfolio strategy π in any of the auxiliary
markets is at least as good (large) as the wealth process for this strategy in the original
market. Hence if we find a process ν ∈ D such that the optimal portfolio strategy πν in the
auxiliary market Mν satisfies δ(νt) + ν>t π

λ
t = 0 then we also found an optimal portfolio

strategy for our original market. This is the conclusion of the following theorem. The
optimal choice for the process ν will be called λ.

Theorem 2.9 ([CK92] and [Sas07] for partial information)
Suppose there is a process λ ∈ D, such that the optimal unconstrained portfolio strategy
πλ of the auxiliary market Mλ satisfies for all t ∈ [0, T ]

πλt ∈ K and δ(λt) + λ>t π
λ
t = 0

Then πλt is the optimal portfolio strategy for the original constrained portfolio optimization
problem (2.3).

Proof. The proof is given in detail in [CK92, Prop.8.3], respectively in [Sas07] and is based
upon the idea described above in Remark 2.8:

Xν
t = X0

t ⇔ dXν
t = Xν

t

(
rdt+ π>t σdV

Q,0
t

)
⇔ δ (νt) + ν>t π

ν
t = 0

Remark 2.10 (On the support function)
Although Theorem 2.9 provides an explicit equation to solve for λ, in most cases we cannot
find λ explicitly this way.
In case δ is differentiable at λ we observe from δ(λt) + λ>t π

λ
t = 0:

πλt = −δ′(λt)

Unfortunately we will see in the following examples that if δ is differentiable at some point,
then the derivative is often 0 or −ei. The resulting optimal strategies then become π∗ = 0
or π∗ = ei, hence not investing at all or investing everything in one stock. Both results
don’t seem to be reasonable results in general, so we have to consider that the optimal λ
can be on non-differentiability points of the support function δ.

However, additionally to Theorem 2.9 we have the following duality theorem:

Theorem 2.11 (Dual optimality, [CK92])
If there exists an optimal portfolio strategy π∗ for the constrained portfolio optimization
problem (2.3), then there exists an optimal dual process λ ∈ D that satisfies Theorem 2.9
with π∗ = πλ.
Vice versa, if there exists an optimal dual process λ ∈ D, satisfying Theorem 2.9, then
πλ ∈ K is the optimal portfolio strategy for the original constrained optimization problem.
In both cases the process λ solves the following dual problem:

E
[
Ũ
(
Yλ(x0)Hλ

T

)]
≤ E

[
Ũ
(
Yλ(x0)Hν

T

)]
for all ν ∈ D (2.18)
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Here Ũ(y) = U(I(y)) − yI(y) with I(y) = U ′−1(y) is the convex dual function of U

and Yν(x) = (X ν)−1 (x) with X ν(y) = E
[
Hν
T I
(
yHν

T

)]
.

Proof. The proof is given in Appendix A.2.1, conditions (A) and (D).

Example 2.12 (choices of K)
First we state some examples for possible sets of constraints K and their corresponding
support functions.

1. K = Rd i.e. the unconstrained case

δ(x) =

{
0, if x = 0 i.e. K̃ = {0}
∞, else

2. K = [0,∞)d i.e. no short-selling

δ(x) =

{
0, if x ∈ K̃ = [0,∞)d

∞, if x /∈ K̃

In particular δ(x) is differentiable on the interior of K̃ with ∂xδ(x) = 0.

3. K =
{
π ∈ Rd

∣∣π>1 ≤ 1
}

i.e. no borrowing

δ(x) =

{
−x1, if x ∈ K̃ = {x ∈ Rd

∣∣xi = x1 ≤ 0 for all i}
∞, if x /∈ K̃

4. K =
{
π ∈ Rd

∣∣ ‖π‖2 ≤ 1
}

i.e. bounded L2-norm

δ(x) = ‖x‖2 for all x ∈ K̃ = Rd

In particular δ(x) is differentiable on Rd with ∂xδ(x) = x
‖x‖2

.

5. K =
{
x ∈ [0,∞)d

∣∣x>1 ≤ 1
}

i.e. no short-selling and no borrowing

δ(x) = max
j

(xj)
− =

0, if x ∈ [0,∞)d

−xi, if xi = min
j

xj < 0
i.e. K̃ = Rd

In particular δ(x) is differentiable on the relative interiors of each part of K̃ with

∂xδ(x) =

0, if x ∈ (0,∞)d

−ei, if xi = min
j

xj < 0 and xi < xj for all j

In Section 5.1 we present further constraints and their corresponding support functions.
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2.3 Constrained Optimization

Example 2.13 (the idea of [CK92])
In order to understand the idea behind the auxiliary markets approach of [CK92] we
consider the following easy example in 2 dimensions, where the set of admissible strategies
K is given by a bounded L2-norm: K =

{
π ∈ Rd

∣∣ ‖π‖2 ≤ 1
}

.

Let the market parameters be given by r = 0 and Σ =

(
0.3 0.05
0.05 0.15

)
.

Then under logarithmic utility we consider three different examples µ1, µ2, µ3 for the
growth rate µ with their corresponding optimal Merton strategies πi = Σ−1µi.

µ1 =

(
0.3
0.4

)
, µ2 =

(
0.2
−0.2

)
, µ3 =

(
−0.5
−0.1

)
; π1 =

(
0.59
2.47

)
, π2 =

(
0.94
−1.65

)
, π3 =

(
−1.65
−0.12

)
All three optimal unconstrained strategies πi are not admissible and we need to introduce

auxiliary markets Mν as described above. In Proposition 5.5 below we will describe how
to get the optimal choices for the dual processes ν in this setting. The optimal strategies
in the auxiliary markets are given by πν = Σ−1(µ+ ν + δ(ν)1− r1− δ(ν)1) = Σ−1(µ+ ν)
and hence the optimal constrained strategies in the original market are also given by
πνi = Σ−1(µi + νi).
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2 Basic Results

We observe that the additional term ν shifts the original µ non-linearly closer to zero
such that the strategy πν = Σ−1(µ+ ν) just touches the border of the admissibility region
K. The direction of the arrows drawn above goes approximately to zero, slightly rotated
by the correlation in Σ.
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3 Constrained optimization under
logarithmic utility

In this chapter we consider the constrained portfolio optimization problem (2.3) under
partial information as introduced in Section 2.2 for the case of logarithmic utility. It is well
known that the logarithmic utility function has favorable properties like the easy derivation
of optimal results, but unfavorable properties like the low risk-aversion. However, due to
the easy handling we are able to derive the optimal portfolio strategies in our market
setting without too much effort. In Chapter 4 we will also consider power utility functions
to be able to vary the investor’s risk-aversion.

We restrict the set of admissible strategies π ∈ A to strategies with πt ∈ K for all
t ∈ [0, T ] for some closed convex set K. In equation (3.7) we specify the constraints K
further to forbid short-selling and borrowing.

According to Section 2.3 and [CK92], in order to solve the constrained portfolio opti-
mization problem, we can solve the unconstrained portfolio optimization problem in the
auxiliary market Mλ where λ is chosen according to Theorem 2.11:

dBλ
t = Bλ

t

(
r + δ (λt)

)
dt (3.1)

dSλt = diag
(
Sλt

) (
(µ̂t + λt + δ(λt)1) dt+ σdVt

)
where λ = arg min

ν∈D
E
[
Ũ
(
Yλ(x0)Hν

T

)]
(3.2)

It is well known that the auxiliary market under logarithmic utility can be solved quite
easily. [BUV12] and [CK92] showed that the optimal portfolio strategy in our setting is
just given by the Merton Plug-In strategy.

πλt = Σ−1 (µ̂t + λt − r1) (3.3)

Hence the only problem left to solve is the dual optimization problem (3.2). For logarithmic
utility we get:

U(x) = log(x),

I(y) = (U ′)−1(y) = 1/y,

Ũ(y) = U(I(y))− yI(y) = log(1/y)− 1,

X λ(y) = E
[
Hλ
T I
(
yHλ

T

)]
= 1/y,

Yλ(x) =
(
X λ
)−1

(x) = 1/x.
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3 Constrained optimization under logarithmic utility

and Hν
t is given in (2.17). Hence

λ = arg min
ν∈D

E
[
Ũ
(
Yλ(x0)Hν

T

)]
= arg min

ν∈D
E
[
log

(
x0

Hν
T

)
− 1

]
= arg min

ν∈D
E
[
log
(

(Hν
T )−1

)]
= arg min

ν∈D
E
[∫ T

0
r + δ(νt) +

1

2

∥∥∥θ̂νt ∥∥∥2

2
dt+

∫ T

0
θ̂ν>t dVt

]
= arg min

ν∈D
E
[∫ T

0
δ(νt) +

1

2

∥∥∥θ̂νt ∥∥∥2

2
dt

]
. (3.4)

Here the last equality assumes E
[∫ T

0 θ̂ν>t θ̂νt dt
]
< ∞ which follows from µ̂t and νt ∈ D

being squared integrable. Point-wise minimization now leads to

λt = arg min
ν∈K̃

(
δ(ν) +

1

2
(µ̂t + ν − r1)>Σ−1(µ̂t + ν − r1)

)
for all t (3.5)

Since [CK92, Remark 11.1] showed that the resulting dual process λ defined by (3.5) is
already FS-progressively measurable, this indeed solves the dual problem (3.4). Hence
the dual optimization problem (3.2) results in the point-wise minimization of the convex

function δ(νt) + 1
2

∥∥θ̂νt ∥∥2

2
over all admissible values νt ∈ K̃.

In the following we fix some t ∈ [0, T ] and abbreviate µ = µ̂t and λ = λt such that we
have to solve

λ = arg min
ν∈K̃

(
δ(ν) +

1

2
(µ+ ν − r1)>Σ−1(µ+ ν − r1)

)
. (3.6)

Remark 3.1
The point-wise minimization in equation (3.5) could also be derived by applying a stochas-
tic control approach to (3.4). The controlled process would be defined as follows.

Xν
t :=

∫ t

0
δ(νs) +

1

2
θ̂ν>s θ̂νsds+

∫ t

0
θ̂ν>s dVs

i.e. dXν
t =

(
δ(νt) +

1

2
θ̂ν>t θ̂νt

)
dt+ θ̂ν>t dVt

such that λ = arg min
ν∈K̃

E [Xν
T ] .

Remark 3.2
If we assume δ to be differentiable at λ we can derive the solution of (3.6) by differentiating
the argument of the ’argmin’, leading to 0 = δ′(λ) + Σ−1(µ+ λ− r1). Hence

λ = −Σδ′(λ)− (µ− r1)
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and πλ = Σ−1(µ+ λ− r1) = −δ′(λ)

We have already seen this result in Remark 2.10 and motivated why the assumption of
differentiability is unrealistic.

From a theoretical point of view the minimization of a convex, quadratic function like
in problem (3.6) is rather trivial and can be solved numerically. Unfortunately we have
already motivated in Section 1.3 why numerical solutions are not satisfactory and for a
large number of dimensions this won’t work properly enough anyway as the following
lemma indicates:

Lemma 3.3 (accuracy of λ)
Let’s consider the p-norm to be the underlying metric.
The necessary condition: To gain an accuracy of ε for πλ, λ needs an accuracy of ε‖Σ‖p.
The sufficient condition: If λ has an accuracy of ε/‖Σ−1‖p, then πλ has an accuary of ε.

Proof. Consider an arbitrary solution: πλ
′

:= Σ−1(µ−r+λ′). Then πλ−πλ′ = Σ−1(λ−λ′).
The necessary condition:
If ‖πλ − πλ′‖p < ε then ‖λ− λ′‖p ≤ ‖Σ‖p‖πλ − πλ

′‖p < ε‖Σ‖p.
The sufficient condition:
If ‖λ− λ′‖p < ε/‖Σ−1‖p then ‖πλ − πλ′‖p ≤ ‖Σ−1‖p‖λ− λ′‖p < ε.

Remark 3.4
If we are looking for an accuracy per digit we need to use p = ∞ in Lemma 3.3. The
induced matrix-norm is the row-sum-norm.
In the DAX-30-Simulation (in [Von14]) we observe ‖Σ‖∞ ≈ 0.6 and ‖Σ−1‖∞ ≈ 1000.
Hence in order to gain an accuracy of 0.1% for πλ, we need ε = 0.05% = 5 · 10−4 and
therefore a λ-accuracy in [5 · 10−7, 3 · 10−4] in every dimension.
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3 Constrained optimization under logarithmic utility

3.1 The convex dual problem

Following the previous lemma and remarks it seems necessary to solve the dual problem
(3.6) as explicitly as possible. Therefore we fix some time t ∈ [0, T ] and the set of convex
constraints K to no short-selling and no borrowing:

K =
{
x ∈ [0,∞)d

∣∣x>1 ≤ 1
}

(3.7)

with δ(x) = max
j

(xj)
− =

0, if x ∈ [0,∞)d

−xi, if xi = min
j

xj < 0
, K̃ = Rd

Additionally we state the following ’matrix inversion formulas’ that we will use frequently
in the following sections:(

A B
C D

)−1

=

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
(3.8)

Note in particular the matrix notations described in Appendix A.5.

We start with some minor lemmas that lead to the solution of the dual problem (3.6):

λ = arg min
ν∈K̃

(
δ(ν) +

1

2
(µ+ ν − r1)>Σ−1(µ+ ν − r1)

)
Lemma 3.5 (reduction of dimension)
Let the optimal portfolio strategy πλ (3.3) of the d-dimensional portfolio optimization
problem fulfil πλi = 0. Then the optimal solution π̄λ̄ of the d-1-dimensional problem
generated by the dimensions I = {1, ..., d} \ {i} equals (πλ)I . Also λ̄ = λI .

Proof. To simplify notation we assume without loss of generality r = 0.
The original portfolio optimization problem in d dimensions leads to the optimal solutions:

πλ = Σ−1(µ+ λ) where λ = arg min
ν∈Rd

(
δ(ν) +

1

2
(µ+ ν)>Σ−1(µ+ ν)

)
The reduced portfolio optimization problem in d-1 dimensions has the following solutions:

π̄λ̄ = Σ̄−1(µ̄+ λ̄) where λ̄ = arg min
ν̄∈Rd−1

(
δ(ν̄) +

1

2
(µ̄+ ν̄)>Σ̄−1(µ̄+ ν̄)

)
where Σ̄ = ΣI,I and µ̄ = µI . Obviously if λ̄ = λI , then

ΣI,I π̄
λ̄ = Σ̄π̄λ̄ = µ̄+ λ̄ = µI + λI = ΣI,·π

λ = ΣI,I(π
λ)I + ΣI,i(π

λ)i = ΣI,I(π
λ)I

and since ΣI,I is a covariance matrix and hence invertible, the proof is completed.
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3.1 The convex dual problem

Now we show that λ̄ = λI . Therefore note

0 = πλi = (Σ−1)i,·(µ+ λ) (3.9)

⇒ (Σ−1)i,i(µi + λi) = −(Σ−1)i,I(µI + λI)

⇒ (µi + λi) = −((Σ−1)i,i)
−1(Σ−1)i,I(µI + λI)

= Σi,I(ΣI,I)
−1(µI + λI) (3.10)

and from the matrix inversion formula (3.8):

(Σ−1)I,I = (ΣI,I)
−1 + (ΣI,I)

−1ΣI,i

(
Σi,i − Σi,I(ΣI,I)

−1ΣI,i

)−1
Σi,I(ΣI,I)

−1

and hence ν = λ minimizes the following term:

δ(ν) +
1

2
(µ+ ν)>Σ−1(µ+ ν)

= max
j
{0,−νj}+

1

2
(µI + νI)

>(Σ−1)I,·(µ+ ν) +
1

2
(µi + νi)

>(Σ−1)i,·(µ+ ν)

(3.9)
= max

j
{0,−νj}+

1

2
(µI + νI)

>(Σ−1)I,·(µ+ ν)

(3.9)
= max

j
{0,−νj}+

1

2
(µI + νI)

>(Σ−1)I,·(µ+ ν)− 1

2
(µi + νi)

>(Σ−1)i,·(µ+ ν)

= max
j
{0,−νj}+

1

2
(µI + νI)

>(Σ−1)I,I(µI + νI)−
1

2
(µi + νi)

>(Σ−1)i,i(µi + νi)

(3.8)
= max

j
{0,−νj}+

1

2
(µI + νI)

>(ΣI,I)
−1(µI + νI)

+
1

2
(µI + νI)

>(ΣI,I)
−1ΣI,i

(
Σi,i − Σi,I(ΣI,I)

−1ΣI,i

)−1
Σi,I(ΣI,I)

−1(µI + νI)

− 1

2
(µi + νi)

> (Σi,i − Σi,I(ΣI,I)
−1ΣI,i

)−1
(µi + νi)

(3.10)
= max

j
{0,−νj}+

1

2
(µI + νI)

>(ΣI,I)
−1(µI + νI) (3.11)

Now let’s assume for the optimal dual process: λi < minj∈I{0, λj}.
But then δ is differentiable in λ with δ′(λ) = −ei. Hence πλ = ei with πλi = 1 6= 0.
This is a contradiction to the assumptions of the lemma. Therefore

λi ≥ min
j∈I
{0, λj}

⇒ −λi ≤ max
j∈I
{0,−λj}

⇒ max
j
{0,−νj} = max

j∈I
{0,−νj} for the optimal ν = λ

But then (3.11) is just the equation that we have to solve to determine λ̄ and it gets
minimized by λI .
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3 Constrained optimization under logarithmic utility

Hence under logarithmic utility those stocks we don’t invest in don’t affect the optimal
strategy. It is rather undesirable that not even their correlation gets taken into account
for the optimal solution. In the case of power utility in Chapter 4 this results does not
hold true any more.

Now let’s start to determine the optimal dual solution.

Definition 3.6 (active and passive)
Let πλ be the optimal constrained portfolio strategy with optimal dual process λ.
Then we define the ’active dimensions’ I and the ’passive dimensions’ J :

I :=
{
i ∈ {1, ..., d}

∣∣πλi > 0
}

J :=
{
j ∈ {1, ..., d}

∣∣πλj = 0
}

Sometimes we will also refer to I and J as the ’active stocks’ and ’passive stocks’, identi-
fying a dimension with the corresponding stock.

Lemma 3.5 allows to delete all passive stocks from the market setting before solving the
portfolio optimization problem under logarithmic utility.

Lemma 3.7 (areas of λ)
For each active stock i, i.e. πλi > 0, we get λi ≤ 0.
Vice versa if λj > 0 for some j, then j is a passive stock, hence πλj = 0.

Proof. Let πλi > 0 and assume λi > 0.
Then consider the strategy πλε with λε = λ− εei for some 0 < ε < λi.
Note that δ(λ) = δ(λε) since λi > 0, (λε)i > 0 and λj = (λε)j for all j 6= i.
Then for all ε > 0

λ = arg min
ν∈Rd

2δ(ν)+(µ− r1 + ν)>Σ−1(µ− r1 + ν)

⇒ 2δ(λε) + (µ− r1 + λε)
>Σ−1(µ− r1 + λε) ≥ 2δ(λ) + (µ− r1 + λ)>Σ−1(µ− r1 + λ)

⇒ −2(µ− r1 + λ)>Σ−1(εei) + (εei)
>Σ−1(εei) ≥ 0

⇒ −2ε(πλ)>ei + ε2(Σ−1)ii ≥ 0

⇒ (Σ−1)iiε ≥ 2πλi

⇒ πλi ≤
1

2
ε(Σ−1)ii for all ε > 0

⇒ 0 < πλi ≤ lim
ε→0

1

2
ε(Σ−1)ii = 0

But the last line is a contradiction, hence λi ≤ 0.
Vice versa if λi > 0 we get by the same argumentation πλi = 0.

Corollary 3.8
If all stocks are positively correlated, i.e. Σij ≥ 0 for all i, j, then λi ≥ −(µi − r) for all i.
Hence if πλi > 0, then λi ∈

(
−(µi − r), 0

]
and if λi > 0 then πλi = 0.
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3.1 The convex dual problem

Proof. πλj ≥ 0 for all j, hence (µ− r1 + λ)i = Σi,·π
λ ≥ Σi,iπ

λ
i ≥ 0,

hence λi ≥ r − µi for all i.
If additionally πλi > 0, we get (µ− r1 + λ)i = Σi,·π

λ ≥ Σi,iπ
λ
i > 0,

hence λi > r − µi for all i.
The rest follows by Lemma 3.7.

Remark 3.9
The condition in Corollary 3.8 is strict in the sense that we really need all stocks to be
positively correlated. Otherwise we can construct a counterexample to Corollary 3.8 as in
the following setting:

Σ =

(
0.10 0.05
−0.05 0.10

)
, µ =

(
0.25
−0.25

)
, r = 0 ⇒ πM = Σ−1(µ− r1) =

(
3
−1

)
Due to the extreme values in µ and the resulting extreme values in the Merton-strategy,
the optimal constrained strategy is trivially observed. (Also compare Algorithm 3.20 to
derive the optimal solutions analytically.)

πλ =

(
1
0

)
⇒ λ =

(
−0.15

0.20

)
�
(
−0.25

0.25

)
= −µ

Then the corresponding optimal dual process λ does not fulfil λi ≥ −(µi − r) for i = 2.

Corollary 3.10
Let all stocks be positively correlated.
Then all dimensions i with µi − r ≤ 0 can be deleted.

Proof. Let µi − r ≤ 0 for some i and assume πλi > 0.
Then by Corollary 3.8 we get −(µi − r) < λi ≤ 0, hence µi − r > 0.
This is a contradiction, hence πλi = 0 and by Lemma 3.5 dimension i can be deleted.

At this point we may state the first important result describing the structure of the
optimal dual process λ.

Theorem 3.11 (structure of λ)
Let I and J be the active and passive dimensions of the optimal constrained portfolio
strategy. Define λ̄ := mink λk.
Then λi = λ̄ for all i ∈ I (and λj ≥ λ̄ for all j ∈ J).

Proof. Assume there is some i ∈ I with λi > λ̄.
Consider λε = λ− εei for 0 < ε < λi − λ̄. Then δ(λε) = δ(λ) and for all ε > 0

λ = arg min
ν∈Rd

2δ(ν)+(µ− r1 + ν)>Σ−1(µ− r1 + ν)

⇒ 2δ(λε) + (µ− r1 + λε)
>Σ−1(µ− r1 + λε) ≥ 2δ(λ) + (µ− r1 + λ)>Σ−1(µ− r1 + λ)

⇒ −2(µ− r1 + λ)>Σ−1(εei) + (εei)
>Σ−1(εei) ≥ 0

⇒ −2ε(πλ)>ei + ε2(Σ−1)ii ≥ 0
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3 Constrained optimization under logarithmic utility

⇒ (Σ−1)iiε ≥ 2πλi

⇒ 0 < πλi ≤
1

2
ε(Σ−1)ii for all ε

⇒ 0 < πλi ≤ lim
ε→0

1

2
ε(Σ−1)ii = 0

This is a contradiction, hence λi = λ̄ for all i ∈ I.
On the other hand λj ≥ mink λk = λ̄ is obvious.

Remark 3.12 (Interpretation)
Theorem 3.11 is the most important result in deriving the optimal dual process λ for
logarithmic utility in this chapter since it describes the structure of λ given the active
and passive dimensions. This result is quite surprising, since it reveals that each active
dimensions i (or stock that will be invested in) gets treated equally by reducing the corre-
sponding expected growth rate µi by the same amount (adding λ̄ < 0). Additionally the
growth rates of each passive dimensions (or stock that will not be invested in) get reduced
less.
Most surprisingly we will see throughout this thesis that the structure of the optimal dual
process in general only gets effected by the structure behind the support function δ and
not (as one might expect) by other assumptions like the choice of a utility function.

Remark 3.13 (the boundary between active and passive)
There can be situations with j ∈ J where πλj = 0 and λj = λ̄.
This happens if dimension j is just not good enough to be invested in.
Consider the following setting:

Σ =

(
0.1 0
0 0.2

)
, µ =

(
0.15
0.05

)
, r = 0 ⇒ πM = Σ−1(µ− r1) =

(
1.50
0.25

)
Algorithm 3.20 leads to the following optimal solution.

λ =

(
−0.05
−0.05

)
⇒ πλ =

(
1
0

)
Hence λ̄ = −0.05 = λ2 although πλ2 = 0.

Theorem 3.14 (explicit calculation of λ)
Let I and J be the active and passive dimensions of the optimal constrained portfolio
strategy. Define λ̄ := mink λk. Then one of the following cases holds true:

1. If πM ∈ K then λ = 0. Else:

2. If λ̄ > 0 ⇔ µ− r1 < 0 then λ = −(µ− r1).

3. If λ̄ = 0 then
λJ = −(µ− r1)J + ΣJIπ

λ
I

= −(µ− r1)J + ΣJI(ΣII)
−1(µ− r1)I
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3.1 The convex dual problem

4. If λ̄ < 0 then

λ̄ =
1− (µI − r1I)>(ΣII)

−1
1I

1
>
I (ΣII)−11I

λJ = −(µ− r1)J + ΣJIπ
λ
I

= −(µ− r1)J + ΣJI(ΣII)
−1(µI − r1I + λ̄1I)

Proof. The optimal dual solution λ minimizes the positive function F (ν) where

F (ν) := 2δ(ν) + (µ− r1 + ν)>Σ−1(µ− r1 + ν)

Case 1 is trivial. The unconstrained strategy is already admissible, therefore we don’t
need to consider auxiliary markets.

In Case 2 let µ− r1 < 0.
Then for λ = −(µ− r1) > 0 we get F (λ) = 2δ(λ) = 0 since λ > 0.
But F is a positive function, hence λ = −(µ− r1) minimizes F .
Vice versa let λ̄ > 0 and hence λ > 0.
Then by Lemma 3.7 πλ = 0 and hence λ = −(µ− r1) and hence µ− r < 0.

In the Cases 3 and 4 we observe(
πλI
0J

)
= πλ = Σ−1

(
µI − r1I + λ̄1I
µJ − r1J + λJ

)
⇒

(
ΣIIπ

λ
I

ΣJIπ
λ
I

)
= Σπλ =

(
µI − r1I + λ̄1I
µJ − r1J + λJ

)
⇒ λJ = −(µ− r1)J + ΣJIπ

λ
I

and πλI = (ΣII)
−1
(
µI − r1I + λ̄1I

)
(3.12)

In Case 4 we have additionally λ̄ < 0 and hence δ(λ̄) is differentiable in R.
Hence

F (λ) = 2δ(λ) + (µ− r1 + λ)>Σ−1(µ− r1 + λ)

= 2δ(λ̄) + (µ− r1 + λ)>πλ

= −2λ̄+ (µ− r1 + λ)>I π
λ
I

= −2λ̄+
(
µI − r1I + λ̄1I

)>
(ΣII)

−1
(
µI − r1I + λ̄1I

)
= λ̄2

1
>
I (ΣII)

−1
1I + 2λ̄

(
−1 + (µI − r1I)>(ΣII)

−1
1I

)
+ (µI − r1I)>(ΣII)

−1(µI − r1I)
=: F (λ̄)

Differentiating leads to the optimal result.

0 = ∂λ̄F = 2λ̄1>I (ΣII)
−1
1I − 2 + 2(µI − r1I)>(ΣII)

−1
1I

with ∂2
λ̄F = 21>I (ΣII)

−1
1I > 0

⇒ λ̄ =
1− (µI − r1I)>(ΣII)

−1
1I

1
>
I (ΣII)−11I
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3 Constrained optimization under logarithmic utility

Remark 3.15
Note that the Cases 1-3 in Theorem 3.14 are equivalent to only using the ’no-short-selling’
constraint. On the other hand Case 4 corresponds to the restriction to always invest 100%
of your wealth:

1
>πλI

(3.12)
= 1

>(ΣII)
−1

(
µI − r1I + 1

1− (µI − r1I)>(ΣII)
−1
1

1>(ΣII)−11

)
= 1

>(ΣII)
−1 (µI − r1I) +

(
1− (µI − r1I)>(ΣII)

−1
1

)
= 1
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3.2 Determining the correct case and active dimensions

3.2 Determining the correct case and active dimensions

Theorem 3.14 provides four different cases for the optimal dual solution λ, but it does
not determine the correct case for some specific time and filter value. Additionally it
requires knowledge about the active and passive dimensions I and J that we don’t know
yet. In this section we will provide several results about choosing the correct case and the
correct active dimensions and close with an algorithm that provides the respective correct
choices.

Remark 3.16
In each active dimension i the given growth rate µi gets reduced by the same amount
λi = λ̄. However we cannot conclude to invest in those stocks with largest µi, with largest
(σ−1(µ−r1))i or with largest πMi = (Σ−1(µ−r1))i as the following easy counterexamples
show.

Consider the following setting with large volatility for stock 1:

σ =

(
0.6 0.1
0.1 0.1

)
, µ =

(
0.10
0.06

)
, r = 0 ⇒ πM = Σ−1(µ− r1) =

(
−0.88

6.08

)
The optimal solution is given by Algorithm 3.20.

I = {2} , λ =

(
−0.03
−0.04

)
⇒ πλ =

(
0
1

)
Although µ1 > µ2 only stock 2 enters the optimal constrained strategy.

Now consider the following setting with large correlation between the stocks:

σ =

(
0.25 0.16
0.1 0.1

)
, µ =

(
0.10
0.05

)
, r = 0 ⇒ πM = Σ−1(µ− r1) ≈

(
−0.62

3.77

)
The optimal solution is given by Algorithm 3.20.

I = {1} , λ ≈
(
−0.012
−0.009

)
⇒ πλ =

(
1
0

)
Although (σ−1µ)1 ≈ 0.22 < 0.28 ≈ (σ−1µ)2 and πM1 ≈ −0.62 < 3, 77 ≈ πM2 only stock 1
enters the optimal constrained strategy.

However, we can show in the following lemmas that several intuitively false choices of
active and passive dimensions in fact lead to non-admissible solutions, revealing that the
choice was wrong:

Lemma 3.17 (Choice of I in Case 3)
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 3 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.

If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < 0.
2) Let j ∈ J with λj > 0 be a passive dimension (by Lemma 3.7).

If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.
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3 Constrained optimization under logarithmic utility

Proof. The proof is given in Appendix A.3.1.

Lemma 3.18 (Choice of I in Case 4)
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 4 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.

If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < λ̄′.
2) Let j ∈ J with λj > λ̄ be a passive dimension (by Theorem 3.11).

If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.

Proof. The proof is given in Appendix A.3.2.

Corollary 3.19 (Dimensions on the boundary)
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 4 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.

If j ∈ J is a passive dimension that is almost invested in, hence λj = λ̄ according to
Remark 3.13, then j can also be considered an active dimension.
In particular:

Let j ∈ J with πj = 0 and λj = λ̄ be a passive dimension that is almost invested in.
Then: If we choose I ′ = I ∪ {j} and J ′ = J \ {j} we get λ′ = λ and π′ = π.

Proof. The proof is given in Appendix A.3.3.

Obviously the same holds true in Case 3 for λ̄ = 0.

Algorithm 3.20 (solving the portfolio optimization problem explicitly)
The constrained portfolio optimization problem with dual problem (3.6) gets solved via
going through the following four cases until hitting an admissible solution.
When hitting an admissible solution this provides the optimal dual process and the optimal
constrained portfolio strategy.
Recall that µ is short for the filter value µ̂t at our current time t.

1. Compute the optimal unconstrained strategy πM = Σ−1(µ− r1).
If πM ∈ K then λ = 0 and πλ = πM .
Else continue.

2. If µ− r1 < 0 then λ = −(µ− r1) and πλ = 0.
Else continue.

3. For each ∅ 6= I ⊂ {1, ..., d} (with J = {1, ..., d} \ I) compute

πλI = (ΣII)
−1(µ− r1)I with πλJ = 0J

λJ = −(µ− r1)J + ΣJIπ
λ
I with λI = 0I

If πλ /∈ K or λj < 0 for some j ∈ J , then I was the wrong choice.
Else continue.
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3.2 Determining the correct case and active dimensions

4. For each ∅ 6= I ⊆ {1, ..., d} (with J = {1, ..., d} \ I) compute

λ̄(I) =
1− (µI − r1I)>(ΣII)

−1
1I

1
>
I (ΣII)−11I

πλI = (ΣII)
−1
(
µI − r1I + λ̄(I)

1I

)
with πλJ = 0J

λJ = −(µ− r1)J + ΣJIπ
λ
I

If λ̄(I) ≥ 0 or πλ /∈ K or λj < λ̄(I) for some j ∈ J , then I was the wrong choice.
Stop whenever a solution is admissible.

Recall that any relational operator applied to vectors is meant component-wisely.

Theorem 3.21
The above algorithm always results in the unique strategy.

Proof. Case 1:
If the optimal unconstrained strategy is admissible, there is nothing left to solve. Otherwise
Theorem 3.14 ensures that the optimal λ is in one of the Cases 2 to 4. Therefore by checking
all possibilities we find in particular the optimal choice.

Case 2: (λ̄ > 0)
Theorem 3.14 shows that Case 2 is equivalent to checking the condition µ − r1 < 0 and
leads to πλ = 0.

Cases 3 (λ̄ = 0) and 4 (λ̄ < 0):
By Theorem 2.9 we know that if λ ∈ K̃, πλ ∈ K and λ>πλ+δ(λ) = 0 then πλ is already the
optimal portfolio strategy for the constrained portfolio optimization problem. Obviously
λ ∈ K̃ = Rd is always true.

By the structure of the optimal solution in Case 3 we observe if πλ ∈ K:

λ =

(
0I
λJ

)
and πλ =

(
πλI
0J

)
⇒ λ>πλ = 0

Hence if λj ≥ 0 for all j ∈ J then δ(λ) = 0 and hence λ>πλ + δ(λ) = 0. Therefore (λ, πλ)
is the optimal solution.

On the other hand in Case 4 we observe if πλ ∈ K:

λ =

(
λ̄1I
λJ

)
and πλ =

(
πλI
0J

)
with 1

>
I π

λ
I = 1 ⇒ λ>πλ = λ̄

Hence if λj ≥ λ̄ for all j ∈ J and λ̄ < 0 then δ(λ) = −λ̄ and hence λ>πλ + δ(λ) = 0.
Therefore (λ, πλ) is the optimal solution.

Remark 3.22 (Non-unique active and passive dimensions)
The proof of Theorem 3.21 shows that every choice of I that does not harm the structural
assumptions made in Algorithm 3.20, satisfies the assumptions of Theorem 2.9 and hence
the resulting admissible strategy is the optimal solution.
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3 Constrained optimization under logarithmic utility

As the optimal portfolio strategy in our market setting is unique, two different but admis-
sible choices of I can only lead to the same resulting optimal strategy. This happens in
view of Corollary 3.19 whenever some stock is on the boundary between being an active
or passive dimension. For instance in the situation as described in remark (3.13) both
choices I = {1} and I = {1, 2} lead the same (optimal) strategy.

Remark 3.23
The Algorithm 3.20 is a very fast and explicit way to determine the optimal solution.
If we wanted to solve the dual optimization problem (3.6) with a standard non-linear
optimization approach, we would need to consider Rd possible choices for λ with some
numerical approach. Algorithm 3.20 on the other hand only needs to check four cases and
several choices of active dimensions and hence at most 1+1+(2d−2)+(2d−1) = 2d+1−1
possible choices for the optimal dual process λ. Additionally the algorithm can stop as
soon as it detects an admissible solution.

Therefore when implementing the algorithm in Chapter 6 we add an additional step to
sort the different choices for I approximately such that the algorithm checks those choices
first that are more plausible to appear. This decreases the running time of the algorithm
substantial as we will see in Chapter 6.

Remark 3.24
When comparing our structured form of the optimal solution to the quite involved formulas
provided in [CK92, Ex. 14.9] for the two-dimensional case, one realizes the immense gain
of using Algorithm 3.20.
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4 Constrained optimization under
power utility

This chapter contains the main part of this thesis. We consider the constrained portfolio
optimization problem (2.3) under partial information and convex constraints. We restrict
the set of admissible strategies π ∈ A to strategies in the closed convex set K that consists
of the no short-selling and the no borrowing constraints as introduced in (3.7):

π ∈ A =
{
π admissible strategy

∣∣∣πt ∈ K for all t ∈ [0, T ]
}

K =
{
x ∈ [0,∞)d

∣∣∣x>1 ≤ 1
}

This results in the following support function δ.

δ(x) = max
j

(xj)
− =

0, if x ∈ [0,∞)d

−xi, if xi = min
j

xj < 0
, K̃ = Rd

Remark 4.1 (Choice of utility function)
In the previous chapter we solved this problem under logarithmic utility. We observed that
the resulting optimal portfolio strategy only uses the filter value µ̂t, but not its variance
γt. This is a quite common feature of results under logarithmic utility and gives reason to
consider logarithmic utility being too less risk averse.

Power utility (4.1) on the other hand generalizes logarithmic utility in the class of
constant relative risk aversion utility functions. Also it provides the opportunity to adjust
any personal risk-aversion level via the risk-aversion parameter α, where the risk aversion
increases when α decreases towards −∞.

U(x) =
1

α
xα

{
for α ∈ (−∞, 0) negative power utility

for α ∈ (0, 1) positive power utility
(4.1)

Note that we also see in the literature that most results under power utility converge to
the respective results for logarithmic utility when α goes to 0.

Since considering both, positive and negative power utility, might significantly compli-
cate the notation in our derivations we will only focus on one. Positive power utility is
known to be even less risk averse than logarithmic utility and hence it is considered eco-
nomically less important. Therefore we will focus on negative power utility in the following
derivations of this chapter.
However note that the whole approach of this chapter can also be conducted for positive
power utility.
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4 Constrained optimization under power utility

In Section 4.1 we start by solving the unconstrained portfolio optimization problem un-
der partial information and observe a different optimal portfolio strategy than the Merton
strategy.
In Sections 4.2 and 4.3 we solve the constrained portfolio optimization problem by a re-
verse separation approach. We separate the dual admissibility region into several cases
that can each be solved analytically. In Section 4.4 we examine these cases in more detail
and in particular the regions of the domain of the dual value function that correspond to
these cases.
Finally in Section 4.5 we combine the separated cases and sketch the proof to derive
optimality for the whole portfolio optimization problem.
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4.1 The unconstrained optimization problem

4.1 The unconstrained optimization problem

Under logarithmic utility the optimal unconstrained solution is given by the Merton
strategy. Since this strategy is known to be too simple, this fortunately does not hold true
for power utility. In the following subsections we present different approaches leading to
the optimal unconstrained strategy (4.2).

πunc
t =

1

1− α
Σ−1C(t)γ−1

t (µ̂t − r1) (4.2)

where C(t) =

(
γ−1
T −

1

1− α
(T − t)Σ−1

)−1

4.1.1 Martinagale approaches

There are several martingale approaches that deal with unconstrained portfolio opti-
mization problems under partial information. One of the first to derive a quite explicit
solution are Cvitanic et al:

Theorem 4.2 ([CLMZ06])
The optimal unconstrained portfolio strategy in our market setting is given by

πunc
t = (σ−1)>P>A−1

t P θ̂t (4.3)

where θ̂t = σ−1(µ̂t − r1) is the filter for the risk-premium θ = σ−1(µ − r1) with initial
distribution θ ∼ N (θ0,∆). This filter is described in Section 2.2 as

θ̂t = E
[
θ| FSt

]
= P>D̄t

(
PWQ

t + D̄−1
0 Pθ0

)
.

Here P is an orthogonal matrix that diagonalizes ∆ such that

D = diag (..., di, ...) , where D = P∆P>

D̄t := diag (..., δi(t), ...) , where δi(t) =
di

1 + dit

At := diag (..., Ai(t), ...) , where Ai(t) = (1− α)− αδi(t)(T − t)

Proof. The proof is given in [CLMZ06, Appendix A.1].
Additionally we show in Appendix A.4.3 that this form of the optimal unconstrained
solution can also be derived via another approach, verifying that (4.2) and (4.3) are the
same formula.

The main ingredient of the proof in [CLMZ06] is the ability to explicitly calculate the
following conditional expectation:

Lemma 4.3
Define

Zt := exp

(
−
∫ t

0
θ̂>s dW

Q
s −

1

2

∫ t

0

∥∥θ̂s∥∥2
ds

)
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4 Constrained optimization under power utility

θ̄t := P θ̂t , θ̂t = P>D̄t

(
PWQ

t +D−1
0 Pθ0

)
then

EQ
[(

ZT
Zt

)α∣∣∣∣FSt ] =
n∏
i=1

gα
(
T − t, θ̄i(t), δi(t)

)
where gα(τ, x, y) =

√
(1 + yτ)α+1

1 + yτ(α+ 1)
exp

α(1 + α)x2τ

2(1 + yτ(α+ 1))

Proof. Note that W̄Q
t := PWQ

t is also a Brownian motion and hence the components of
θ̄t are independent of each other.

θ̄t = P θ̂t = D̄t

(
W̄Q
t +D−1

0 θ̄0

)
⇒ θ̄i(t) = δi(t)W̄

Q
i (t) +

δi(t)

di
θ̄i(0)

Therefore we get

Zt = exp

(
−
∫ t

0
θ̂>s dW

Q
s −

1

2

∫ t

0

∥∥θ̂s∥∥2
ds

)
= exp

(
−
∫ t

0
θ̄>s dW̄

Q
s −

1

2

∫ t

0

∥∥θ̄s∥∥2
ds

)
=

n∏
i=1

exp

(
−
∫ t

0
θ̄i(s)dW̄

Q
i (s)− 1

2

∫ t

0
θ̄i(s)

2ds

)
︸ ︷︷ ︸

=:Zi(t)

⇒ EQ
[(

ZT
Zt

)α∣∣∣∣FSt ] =

n∏
i=1

EQ
[(

Zi(T )

Zi(t)

)α∣∣∣∣FSt ]
Now the calculation continues like in [CLMZ06].

In particular we get for t = 0

EQ
[(

ZT
Z0

)α∣∣∣∣FS0 ] = EQ
[
exp

(
−α

∫ T

0
θ̂>t dW

Q
t −

α

2

∫ T

0

∥∥θ̂t∥∥2
dt

)]
=

n∏
i=1

√
(1 + diT )α+1

1 + diT (α+ 1)
exp

α(1 + α)θ̄i(0)2T

2(1 + diT (α+ 1))

whenever Zt can be expressed component-wisely

Remark 4.4
There are lots of martingale approaches trying to solve similar problems. In particular
[BDL10] and [Lak98] can be used to calculate this form of the optimal solution, which is
shown in Appendix A.4.1 and A.4.2.
However each of these approaches requires values that are not trivially observed like the
orthogonal diagonalization of ∆ or the square root σ of the covariance matrix Σ = σσ>.
Hence this form of the optimal unconstrained portfolio strategy is not yet in perfect shape.
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4.1.2 Stochastic control approach

In this section we want to present a stochastic control approach to deal with the uncon-
strained portfolio optimization problem under partial information. We will come up with
the explicit solution (4.2) for the optimal portfolio strategy without the drawbacks of the
above martingale approaches and provide a verification theorem.

Our goal is to maximize expected power utility U(x) = 1
αx

α for α < 0 under the obser-
vation filtration FS . The resulting stochastic control problem is to determine V (0, x0, µ0)
where the value function is given by

V (t, x, µ) := sup
π∈A(t,x,µ)

E
[

1

α
Xα
T

∣∣∣∣ (Xt, µ̂t) = (x, µ)

]
(4.4)

Here A(t, x, µ) is the set of admissible strategies in [t, T ] such that (Xt, µ̂t) = (x, µ). Note
that A = A(0, x0, µ0).
In order to make the controlled process Markov, we also need to consider the dynamics of
the filter given in (2.12). Then the controlled process evolves like

d

(
Xt

µ̂t

)
=

(
Xt

(
r + π>t (µ̂t − r1)

)
0

)
dt+

(
Xtπ

>
t σ

γt(σ
−1)>

)
dVt

If the Bellmann principle holds for t1 > t we get

V (t, x, µ) = sup
π∈A(t,x,µ)

E
[
V
(
t1, Xt1 , µ̂t1

)∣∣ (Xt, µ̂t) = (x, µ)
]

With Itô’s formula it follows

V (t, x, µ) = sup
π∈A(t,x,µ)

E
[
V (t) +

∫ t1

t
Vt(s) + Vx(s)Xs

(
r + π>s (µ̂s − r1)

)
ds

+

∫ t1

t
Vx(s)Xsπ

>
s σ + Vµ(s)>γs(σ

−1)>dVs

+
1

2

∫ t1

t
tr
(
HV (s) · a(s)

)
ds

∣∣∣∣(Xt, µ̂t) = (x, µ)

]
where we abbreviate V (s) := V (s,Xs, µ̂s) with derivatives Vt, Vx, Vµ and Hessian matrix
HV . a(s) is called diffusion matrix.

a(s) :=

(
Xsπ

>
s σ

γs(σ
−1)>

)(
Xsπ

>
s σ

γs(σ
−1)>

)>
=

(
Xsπ

>
s ΣπsXs Xsπ

>
s γs

γsπsXs γsΣ
−1γs

)
tr
(
HV (s) · a(s)

)
= Vxxa11 + V >xµa21 + tr (Vµxa12 + Vµµa22)

= Vxxa11 + 2V >xµa21 + tr (Vµµa22)

Now if
∫ t1
t Vx(s)Xsπ

>
s σ + Vµ(s)>γs(σ

−1)>dVs is a martingale and we may switch the
supremum with the integration, we observe for t1 → t the following HJB-equation.

0 = sup
π∈A(t,x,µ)

E
[∫ t1

t
Vt(s) + Vx(s)Xs

(
r + π>s (µ̂s − r1)

)
ds
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4 Constrained optimization under power utility

+
1

2

∫ t1

t
tr
(
HV (s) · a(s)

)
ds

∣∣∣∣(Xt, µ̂t) = (x, µ)

]
⇒ 0 = sup

π

(
Vt + Vxx

(
r + π>(µ− r1)

)
+

1

2
tr (HV · a)

)
(4.5)

where a is a quadratic function in x. The HJB-equation (4.5) has to be solved with respect
to the boundary condition

V (T, x, µ) = sup
π∈A(T,x,µ)

E
[

1

α
Xα
T

∣∣∣∣ (XT , µ̂T ) = (x, µ)

]
=

1

α
xα for all x, µ

Now we can find the optimal control π∗ that maximizes the HJB-equation (4.5) by
considering the derivative of its inner part with respect to π:

0
!

= Vxx(µ− r1) + Vxxx
2Σπ∗ + xγtVxµ

⇒ π∗ = − Vx
xVxx

Σ−1(µ− r1)− 1

xVxx
Σ−1γtVxµ (4.6)

Solving the HJB-equation

We solve the HJB-equation by first plugging in π∗:

0 = Vt + rxVx − (µ− r1)>Σ−1(µ− r1)
V 2
x

Vxx
− (µ− r1)>Σ−1γt

Vx
Vxx

Vxµ

+
1

2
x2π>ΣπVxx + xπ>γtVxµ +

1

2
tr
(
VµµγtΣ

−1γt
)

= Vt + rxVx − (µ− r1)>Σ−1(µ− r1)
V 2
x

Vxx
− (µ− r1)>Σ−1γt

Vx
Vxx

Vxµ

+
1

2

1

Vxx

(
Vx(µ− r1)> + V >xµγt

)
Σ−1

(
(µ− r1)Vx + γtVxµ

)
− Vx
Vxx

(µ− r1)>Σ−1γtVxµ −
1

Vxx
V >xµγtΣ

−1γtVxµ +
1

2
tr
(
VµµγtΣ

−1γt
)

= Vt + rxVx −
1

2
(µ− r1)>Σ−1(µ− r1)

V 2
x

Vxx

− 1

2

1

Vxx
V >xµγtΣ

−1γtVxµ −
Vx
Vxx

(µ− r1)>Σ−1γtVxµ +
1

2
tr
(
VµµγtΣ

−1γt
)

Now we use the multiplicative ansatz

V (t, x, µ) = U(x)ef(t,µ) =
xα

α
ef(t,µ)

with corresponding boundary condition f(T, µ) = 0 for all µ.
This leads to the following HJB-equation:

0 = ft + αr − 1

2

α

α− 1
(µ− r1)>Σ−1 (µ− r1)− α

α− 1
(µ− r1)>Σ−1γtfµ
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4.1 The unconstrained optimization problem

− 1

2

α

α− 1
f>µ γtΣ

−1γtfµ +
1

2
f>µ γtΣ

−1γtfµ +
1

2
tr
(
fµµγtΣ

−1γt
)

= ft + αr − 1

2

α

α− 1
((µ− r1) + γtfµ)>Σ−1 ((µ− r1) + γtfµ)

+
1

2
f>µ γtΣ

−1γtfµ +
1

2
tr
(
fµµγtΣ

−1γt
)

We improve the ansatz further:

f(t, µ) =
1

2
(µ− r1)>A(t)(µ− r1) + k(t) (with symmatric A)

with ft(t, µ) =
1

2
(µ− r1)>A′(t)(µ− r1) + k′(t)

fµ(t, µ) = A(t)(µ− r1)

fµµ(t, µ) = A(t)

with corresponding boundary conditions A(T ) = 0 and k(T ) = 0.
The HJB-equation then becomes a quadratic differential equation in (µ− r1).

1

2
(µ− r1)>A′(t)(µ− r1) + k′(t)

= ft = −αr − 1

2

α

1− α
(µ− r1)>

(
Id+ γtA(t)

)>
Σ−1

(
Id+ γtA(t)

)
(µ− r1)

− 1

2
(µ− r1)>A(t)γtΣ

−1γtA(t)(µ− r1)− 1

2
tr
(
A(t)γtΣ

−1γt
)

Hence solving the HJB-equation (4.5) boils down to solving two ordinary differential
equations in t.

A′(t) = − α

1− α
(
Id+ γtA(t)

)>
Σ−1

(
Id+ γtA(t)

)
−A(t)γtΣ

−1γtA(t) (4.7)

k′(t) = −αr − 1

2
tr
(
A(t)γtΣ

−1γt
)

(4.8)

Solving the ordinary differential equations

The first ODE is a matrix Ricatti equation that can only be solved numerically in
general. However in our case, we can solve it explicitly by defining B(t) := Id + γtA(t)
and vice versa A(t) = γ−1

t (B(t)− Id) with corresponding boundary condition B(T ) = Id.
Hence A′(t) = γ−1

t B′(t) + Σ−1B(t) and the ODE (4.7) then becomes

γ−1
t B′(t) = − α

1− α
B(t)>Σ−1B(t)−B(t)>Σ−1(B(t)− I)

Now we define C(t) := B(t)γt hence B(t) = C(t)γ−1
t with corresponding boundary condi-

tion C(T ) = γT and derivative B′(t) = C ′(t)γ−1
t + C(t)Σ−1.

If additionally C is symmetric then ODE (4.7) becomes

γ−1
t C ′(t)γ−1

t = − α

1− α
γ−1
t C(t)Σ−1C(t)γ−1

t − γ
−1
t C(t)Σ−1(C(t)γ−1

t − Id)− γ−1
t C(t)Σ−1
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4 Constrained optimization under power utility

⇒ C ′(t) = − 1

1− α
C(t)Σ−1C(t)

To solve this remaining differential equation we use D(t) := C−1(t) with corresponding
boundary condition D(T ) = γ−1

T = Σ−1
0 + TΣ−1. Then C ′(t) = −D−1(t)D′(t)D−1(t) and

ODE (4.7) becomes

−D−1(t)D′(t)D−1(t) = C ′(t) = − 1

1− α
D−1(t)Σ−1D−1(t)

Hence D′(t) = 1
1−αΣ−1 and the boundary condition leads to the resulting

D(t) = γ−1
T −

1

1− α
(T − t)Σ−1

and C(t) =

(
γ−1
T −

1

1− α
(T − t)Σ−1

)−1

=

(
γ−1
t −

α

1− α
(T − t)Σ−1

)−1

.

Indeed C(t) is symmetric.

Now consider the second ordinary differential equation (4.8).

k′(t) = −αr − 1

2
tr
(
A(t)γtΣ

−1γt
)

, k(T ) = 0

⇒ k(t) = αr(T − t) +
1

2

∫ T

t
tr
(
(C(s)− γs)Σ−1

)
ds

To solve the remaining integral, note that the matrix logarithm only fulfils the following
chain rule: ∂t log detM(t) = tr

(
M(t)−1∂tM(t)

)
.

Applying this chain rule twice, with M(s) := γ−1
s respectively M(s) := C(s)−1 we observe∫ T

t
tr
(
γsΣ

−1
)
ds =

∫ T

t
tr
(
M(s)−1∂sM(s)

)
ds

=

∫ T

t
∂s log detM(s)ds

= log det γ−1
T − log det γ−1

t∫ T

t
tr
(
C(s)Σ−1

)
ds = (1− α)

∫ T

t
tr

(
C(s)

1

1− α
Σ−1

)
ds

= (1− α)

∫ T

t
tr
(
M(s)−1∂sM(s)

)
ds

= (1− α)

∫ T

t
∂s log detM(s)ds

= (1− α) log detC(T )−1 − (1− α) log detC(t)−1
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= (1− α) log det γ−1
T − (1− α) log detC(t)−1

Note that det γ−1
t and detC(t)−1 are positive as γt and C(t) are symmetric and positive

definite. Hence the formulas are well-defined and result in the solution for k(t).

k(t) = αr(T − t) +
1

2

∫ T

t
tr
(
(C(s)− γs)Σ−1

)
ds

= αr(T − t)− 1

2
log det γ−1

T +
1

2
log det γ−1

t +
1− α

2
log det γ−1

T −
1− α

2
log detC(t)−1

= αr(T − t)− α

2
log det γ−1

T +
1

2
log det γ−1

t −
1− α

2
log det

(
γ−1
t −

α

1− α
(T − t)Σ−1

)

The candidate solutions of the stochastic control approach

Finally we are able to plug the derived value function V = V (t, x, µ) into the equation
(4.6) for the optimal strategy at time t:

π∗(t, x, µ) = − Vx
xVxx

Σ−1(µ− r1)− 1

xVxx
Σ−1γtVxµ

=
1

1− α
Σ−1(µ− r1) +

1

1− α
Σ−1γtfµ

=
1

1− α
Σ−1(µ− r1) +

1

1− α
Σ−1γtA(t)(µ− r1)

=
1

1− α
Σ−1B(t)(µ− r1)

=
1

1− α
Σ−1C(t)γ−1

t (µ− r1)

=
1

1− α
Σ−1

(
γ−1
T −

1

1− α
(T − t)Σ−1

)−1

γ−1
t (µ− r1)

Hence we get the optimal unconstrained portfolio strategy as presented in (4.2):

πunc
t = π∗(t,Xt, µ̂t)

=
1

1− α
Σ−1C(t)γ−1

t (µ̂t − r1)

=
1

1− α
Σ−1

(
γ−1
T −

1

1− α
(T − t)Σ−1

)−1

γ−1
t (µ̂t − r1)

Remark 4.5
Note the similarity of the optimal unconstrained portfolio strategy to the optimal deter-
ministic portfolio strategy derived in Section 2.1: πdet

t = πunc
0 for all t.

It is also possible to use this stochastic control approach to derive the optimal portfolio
strategy in the form of Section 4.1.1. This is shown in Appendix A.4.3.
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4 Constrained optimization under power utility

Theorem 4.6 (verification)
Define the candidates V̄ and π̄ for value function and optimal control as derived in the
previous stochastic control approach.

V̄ (t, x, µ) :=
xα

α
exp

(
1

2
(µ− r1)>A(t)(µ− r1) + k(t)

)
π̄(t, x, µ) :=

1

1− α
Σ−1C(t)γ−1

t (µ− r1)

where A(t), C(t) and k(t) are given as above.
Then they solve the stochastic control approach (4.4) of our constrained portfolio opti-

mization problem, hence V̄ = V and π̄ = π∗ where

V (t, x, µ) := sup
π∈A(t,x,µ)

E
[

1

α
Xα
T

∣∣∣∣ (Xt, µ̂t) = (x, µ)

]
and π∗ := arg max

π∈A
E
[

1

α
Xα
T

]
Proof. Let (t, x, µ) ∈ [0, T )× R+ × Rd, π ∈ A and s ∈ [t, T ) be arbitrary and let τ be an
arbitrary stopping time with values in [t, T ].
As V̄ ∈ C1,2,2 we get with the Itô formula

V̄ (s ∧ τ,Xs∧τ , µ̂s∧τ ) = V̄ (t, x, µ) +

∫ s∧τ

t
V̄t(u) + LπV̄ (u)du

+

∫ s∧τ

t
V̄x(u)Xuπ

>
u σ + V̄µ(u)>γu(σ−1)>dVu (4.9)

where LπV̄ (u) = V̄x(u)Xu

(
r + π>u (µ̂u − r1)

)
+

1

2
V̄xx(u)Xuπ

>
u ΣπuXu

+ V̄ >xµ(u)γuπuXu +
1

2
tr
(
V̄µµ(u)γuΣ−1γu

)
where we use the notation V̄ (u) := V̄ (u,Xu, µ̂u). Here the sub-indices u indicate time-
dependency of the corresponding variables, the other sub-indices of V̄ are the respective
derivatives of V̄ (t, x, µ).
Now for each n ∈ N define the stopping time

τn := inf

{
s ≥ t

∣∣∣∣ ∫ s

t

∥∥σ−1γuV̄µ(u)
∥∥2

2
du ≥ n or

∫ s

t

∥∥∥V̄x(u)Xuσ
>πu

∥∥∥2

2
du ≥ n

}
∧ T

Hence τn → T as n→∞ and therefore for any n ∈ N the stopped process∫ s∧τn

t
V̄x(u)Xuπ

>
u σ + V̄µ(u)>γu(σ−1)>dVu

is a martingale with zero expectation.
Now we use τn in (4.9) and take conditional expectations on both sides.

E
[
V̄ (s ∧ τn, Xs∧τn , µ̂s∧τn)

∣∣ (Xt, µ̂t) = (x, µ)
]
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4.1 The unconstrained optimization problem

= V̄ (t, x, µ) + E
[∫ s∧τn

t
V̄t(u,Xu, µ̂u) + LπV̄ (u,Xu, µ̂u)du

∣∣∣∣ (Xt, µ̂t) = (x, µ)

]
V̄ (t, x, µ) satisfies the HJB-equation (4.5), hence we observe for the right hand side:

V̄t(u,Xu, µ̂u) + LπV̄ (u,Xu, µ̂u) ≤ 0 for all π ∈ A
V̄t(u,Xu, µ̂u) + LπV̄ (u,Xu, µ̂u) = 0 if π = π∗

This leads for each u ∈ [t, T ] and π ∈ A(t, x, µ) to the following equations:

E
[
V̄ (s ∧ τn, Xs∧τn , µ̂s∧τn)

∣∣ (Xt, µ̂t) = (x, µ)
]
≤ V̄ (t, x, µ) for all π ∈ A(t, x, µ)

E
[
V̄ (s ∧ τn, Xs∧τn , µ̂s∧τn)

∣∣ (Xt, µ̂t) = (x, µ)
]

= V̄ (t, x, µ) if π = π∗

By Lemma 4.7 we can apply dominated convergence and observe for n→∞

V̄ (t, x, µ) ≥ E
[
V̄ (s,Xs, µ̂s)

∣∣ (Xt, µ̂t) = (x, µ)
]

for all π ∈ A(t, x, µ)

V̄ (t, x, µ) = E
[
V̄ (s,Xs, µ̂s)

∣∣ (Xt, µ̂t) = (x, µ)
]

if π = π∗

Since V̄ (s,Xs, µ̂s)→ V̄ (T,XT , µ̂T ) = 1
α(XT )α for s→ T we get by dominated convergence

V̄ (t, x, µ) ≥ E
[

1

α
(XT )α

∣∣∣∣ (Xt, µ̂t) = (x, µ)

]
for all π ∈ A(t, x, µ)

⇒ V̄ (t, x, µ) ≥ sup
π∈A(t,x,µ)

E
[

1

α
(XT )α

∣∣∣∣ (Xt, µ̂t) = (x, µ)

]
= V (t, x, µ)

Since we get equality for π = π̄ we get V (t, x, µ) = V̄ (t, x, µ) with optimizer π∗ = π̄.

Lemma 4.7
There is an integrable random variable Y with

∣∣V̄ (s ∧ τn, Xs∧τn , µ̂s∧τn)
∣∣ ≤ Y .

Proof. The function f is a second order polynomial in µ, hence

f(t, µ) ≤ Ct(1 + ‖µ‖22)

where the leading constant Ct may depend on time t. However t ∈ [0, T ] is in a compact
interval, hence f(·, µ) is uniformly continuous in t and attains its supremum as a maximum.

f(t, µ) ≤ C(1 + ‖µ‖22)

for some upper bound C ≥ maxt∈[0,T ]Ct <∞. Therefore

∣∣V̄ (t, x, µ)
∣∣ = − 1

α
xαef(t,µ) ≤ − 1

α
xαeC(1+‖µ‖22)

⇒
∣∣V̄ (s ∧ τn, Xs∧τn , µ̂s∧τn)

∣∣ ≤ − 1

α
Xα
s∧τn exp

(
C(1 + ‖µ̂s∧τn‖

2
2)
)

≤ − 1

α
sup
s∈[t,T ]

Xα
s exp

(
C(1 + ‖µ̂s‖22)

)
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4 Constrained optimization under power utility

≤ − 1

α
sup
s∈[t,T ]

Xα
s · sup

s∈[t,T ]
exp

(
C(1 + ‖µ̂s‖22)

)
=: Y

Now on the one hand Xs > 0 is uniformly continuous in [t, T ], hence M := infs∈[t,T ]Xs > 0
and sups∈[t,T ]X

α
s ≤Mα <∞.

And on the other hand µ̂t is a martingale, hence ‖µ̂s‖22 is a submartingale since ‖·‖22
is a convex function. Hence exp

(
C(1 + ‖µ̂s‖22)

)
is also a submartingale and by Doob’s

maximal inequality we get

E

[
sup
s∈[t,T ]

exp
(
C(1 + ‖µ̂s‖22)

)]
≤
(

C

C − 1

)C
E
[
exp

(
C(1 + ‖µ̂T ‖22)

)]
<∞

Hence E [Y ] <∞.
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4.2 The convex dual problem: a reverse separation approach

4.2 The convex dual problem: a reverse separation approach

The main point of Chapter 4 is to solve our constrained portfolio optimization problem
(2.3) under partial information as introduced in Section 2.2 and under the convex con-
straints (3.7).
According to Section 2.3 we may equivalently solve the unconstrained portfolio optimiza-
tion problem in the auxiliary market Mλ (2.16) where the dual process λ is chosen ac-
cording to Theorem 2.11:

dBλ
t = Bλ

t

(
r + δ (λt)

)
dt

dSλt = diag
(
Sλt

) (
(µ̂t + λt + δ(λt)1) dt+ σdVt

)
and λ = arg min

ν∈D
E
[
Ũ
(
Yλ(x0)Hν

T

)]
(4.10)

In our setting we get the following components:

I(y) = U ′−1(y) = y
1

α−1

Ũ(y) = U(I(y))− yI(y) =
1− α
α

y
α
α−1

X λ(y) = E
[
Hλ
T I
(
yHλ

T

)]
= y

1
α−1E

[(
Hλ
T

) α
α−1

]
Yλ(x) =

(
X λ
)−1

(x) = xα−1E
[(
Hλ
T

) α
α−1

]1−α

and dHν
t = −Hν

t

(
(r + δ(νt))dt+ θ̂ν>t dVt

)
with θ̂νt = σ−1(µ̂t− r1+ νt) is given in (2.17).

In this section we solve the convex dual problem (4.10) for the optimal dual process λ:

λ = arg min
ν∈D

E
[
Ũ
(
Yλ(x0)Hν

T

)]
= arg min

ν∈D

1− α
α

E
[(
Yλ(x0)Hν

T

) α
α−1

]
= arg min

ν∈D

1− α
α

xα0E
[
E
[
(Hλ

T )
α
α−1

]−α
(Hν

T )
α
α−1

]
= arg min

ν∈D

1− α
α

xα0E
[
(Hλ

T )
α
α−1

]−α
E
[
(Hν

T )
α
α−1

]
= arg min

ν∈D

1− α
α

E
[
(Hν

T )
α
α−1

]
since x0 > 0 and Hλ

T > 0

= arg max
ν∈D

E
[
(Hν

T )
α
α−1

]
since α < 0 (4.11)

Unfortunately the dual problem does not simplify as much as under logarithmic utility.
The remaining dual problem (4.11) can be solved using a stochastic control approach with
value function

V (t, h, µ) := sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
(4.12)
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4 Constrained optimization under power utility

Here D(t, h, µ) is the set of admissible control processes ν ∈ D such that (Hν
t , µ̂t) = (h, µ).

The stochastic control problem is to determine V (0, 1, µ0) and the optimal dual process λ
such that

V (0, 1, µ0) = sup
ν∈D(0,1,µ0)

E
[

(Hν
T )

α
α−1

∣∣∣∣ (Hν
0 , µ̂0) = (1, µ0)

]
= E

[
(Hλ

T )
α
α−1

]
In order to make the controlled process Markov, we also need the dynamics of the filter.

d

(
Hν
t

µ̂t

)
=

(
−Hν

t (r + δ(νt))
0

)
dt+

(
−Hν

t (µ̂t − r1 + νt)
>(σ−1)>

γt(σ
−1)>

)
dVt

If the Bellmann principle holds for t1 > t we get

V (t, h, µ) = sup
ν∈D(t,h,µ)

E
[
V
(
t1, H

ν
t1 , µ̂t1

)∣∣ (Hν
t , µ̂t) = (h, µ)

]
With Itô’s formula we get

V (t, h, µ) = sup
ν∈D(t,h,µ)

E
[
V (t) +

∫ t1

t
Vt(s)− Vh(s)Hν

s (r + δ(νs))ds

+

∫ t1

t
Vµ(s)>γs(σ

−1)> − Vh(s)Hν
s (µ̂s − r1 + νs)

>(σ−1)>dVs

+

∫ t1

t

1

2
tr(HV (s) · a(s))ds

∣∣∣∣(Hν
t , µ̂t) = (h, µ)

]
where we use the notation V (s) := V (s,Hν

s , µ̂s) with derivatives Vt, Vh, Vµ and Hessian
matrix HV . a(s) is called the diffusion matrix.

a(s) :=

(
−Hν

s (µ̂s − r1 + νs)
>(σ−1)>

γs(σ
−1)>

)(
−Hν

s (µ̂s − r1 + νs)
>(σ−1)>

γs(σ
−1)>

)>
=

(
(Hν

s )2(µ̂s − r1 + νs)
>Σ−1(µ̂s − r1 + νs) −Hν

s (µ̂s − r1 + νs)
>Σ−1γs

−Hν
s γsΣ

−1(µ̂s − r1 + νs) γsΣ
−1γs

)
tr(HV (s) · a(s)) = Vhh(s) · a11(s) + Vhµ(s)> · a21(s) + tr(Vµh(s) · a12(s) + Vµµ(s) · a22(s))

= Vhh(s) · a11(s) + 2a12(s)Vhµ(s) + tr(Vµµ(s) · a22(s))

= (Hν
s )2(µ̂s − r1 + νs)

>Σ−1(µ̂s − r1 + νs)Vhh(s)

− 2Hν
s (µ̂s − r1 + νs)

>Σ−1γsVhµ(s) + tr(Vµµ(s) · γsΣ−1γs)

If the usual suitable conditions hold, we observe the HJB-equation (4.13) for any fixed t.
Of course these conditions have to be verified in the verification later on.

0 = sup
ν∈D(t,h,µ)

E
[ ∫ t1

t
Vt(s)− Vh(s)Hν

s (r + δ(νs))ds

+

∫ t1

t

1

2
(Hν

s )2(µ̂s − r1 + νs)
>Σ−1(µ̂s − r1 + νs)Vhh(s)ds
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−
∫ t1

t
Hν
s (µ̂s − r1 + νs)

>Σ−1γsVhµ(s)ds

+

∫ t1

t

1

2
tr(Vµµ(s) · γsΣ−1γs)ds

∣∣∣∣(Hν
t , µ̂t) = (h, µ)

]
⇒ 0 = sup

ν∈K̃

(
Vt − Vhh(r + δ(ν)) +

1

2
h2(µ− r1 + ν)>Σ−1(µ− r1 + ν)Vhh

− h(µ− r1 + ν)>Σ−1γtVhµ +
1

2
tr(Vµµ · γtΣ−1γt)

)
(4.13)

The HJB-equation (4.13) has to be solved with respect to the boundary condition

V (T, h, µ) = sup
ν∈D(T,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣∣ (Hν
T , µ̂T ) = (h, µ)

]
= h

α
α−1

Then the optimal control λ at time t gets chosen by:

λ = arg max
ν∈K̃=Rd

(
− Vhδ(ν) +

1

2
h(µ− r1 + ν)>Σ−1(µ− r1 + ν)Vhh − (µ− r1 + ν)>Σ−1γtVhµ

)
(4.14)

The reverse separation approach

Unfortunately we cannot expect δ to be differentiable at the optimal λ as we have
motivated in Remark 2.10. Therefore we need to consider the following reverse separation
approach:

We split the domain K̃ of the dual optimization parameter ν into several
disjoint regions, such that in each region δ(ν) is differentiable (’separation’).
These regions are defined with respect to the yet unknown optimal control, the
resulting dual process λ (’reverse’).

We will call these regions ’Cases’, indicating that in each case λ is in one of these regions.
Consider Example 4.44 and in particular the left hand side of Figure 4.1 to get an idea
of how this separation can look like for K̃ = R2. In order to be able to use this reverse
separation approach we need the following assumption for the moment. We will stick to
this assumption for the following two sections.

Assumption 4.8
Assume that the optimal dual control process λ stays in the same case for all t.

Remark 4.9 (Interpretation)
Note that this assumption has to be understood as a simplification with two purposes. On
the one hand it simplifies notation and on the other hand it allows us to solve the different
cases separately.

Obviously the optimal dual process will almost surely not stay in whatever current
case it starts in. However the main idea behind the stochastic control approach is to
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4 Constrained optimization under power utility

derive an HJB-equation that solves the optimization problem locally. But locally we will
always stay in whatever current case we start in, hence locally Assumption 4.8 actually
holds. And therefore given this assumption we are able to solve our optimization problem.
Additionally note that we will see in section 4.4 that we are almost surely always in
the interior of some region such that there actually is some local neighbourhood that is
completely contained in the region of the current case and hence the HJB-equation is well
defined. Again consider Figure 4.1 to get an idea of how this separation can look like.

Remark 4.10 (Interpretation of the value function)
Another important point to be interpreted are the resulting (primal or dual) value func-
tions. By definition, the (primal) value function is the expected utility of terminal wealth
given some current time and values of the state processes X and µ̂. However the value
functions resulting from any separated case of the reverse separation approach are purely
theoretical tools to derive the locally optimal solutions of the respective case.

The value of one of these separated value functions on the other hand would be the
expected utility of terminal wealth if the investor was to invest according to the rules of
the starting case but for the whole investment period even when the parameters leave this
current case. This could be made explicit after determining the correct cases in Section 4.4
by stopping at the boundaries of the corresponding region, say with stopping time τ , and
using a boundary condition V (τ, ·, ·) computed from continuing with the same strategy
and the same δ as before up to terminal time T .

If one wanted to derive the complete value function of the whole optimization problem,
one would most likely have to consider another modelling approach than ours. However
we think that this value function has to be some weighted mean of our separated value
functions, weighted by the probabilities of how much the optimal solution is in the different
cases.

Under the no short-selling and no borrowing constraints with δ(ν) = maxj{0,−νj}, we
use the following reverse separation approach on the optimal dual process λ:

Case 1) λ = 0.
This case is equivalent to πλ = πunc ∈ K. Hence the optimal unconstrained
portfolio strategy is already admissible.

Case 2) λ ∈ Rd>0

Then δ(λ) = 0 and we will show below that πλ = 0 as with logarithmic utility.

Case 3) λ ∈ Rd≥0 \
(
Rd>0 ∪ {0}

)
.

Then δ(λ) = 0 and we will see later on that this would be the relevant case to
consider if we were to only consider the no short-selling constraint.

Case 4) λ ∈ Rd \ Rd≥0 (equivalent to mini λi < 0)
Then δ(λ) = −mini λi is still not differentiable, but we will show that δ can be
made differentiable by an easy transformation. Also we will see later on that
this will be the relevant case to consider for most real-life situations.
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4.2 The convex dual problem: a reverse separation approach

Note that these cases are the same cases that we already derived under logarithmic utility
in Theorem 3.14. This is due to the observation that the underlying structure of λ mainly
depends on the admissibility set K and not on the utility function U .

Remark 4.11
In Case 1 there obviously is nothing left to solve. In particular this is a case that is de-
tectable a priori as we only need to calculate the optimal unconstrained portfolio strategy.
Case 2 on the other hand is detectable a priori, too, as the following theorem shows.

Proposition 4.12 (Case 2)
The optimal dual λ satisfies λ > 0 if and only if µ− r1 < 0.
In that case λ = −(µ− r1) and πλ = 0.

Proof. ”⇒”
As δ(ν) = 0 for ν ∈ (0,∞)d the HJB-equation (4.13) becomes:

0 = sup
ν∈Rd

(
Vt − Vhhr +

1

2
h2(µ− r1 + ν)>Σ−1(µ− r1 + ν)Vhh

− h(µ− r1 + ν)>Σ−1γtVhµ +
1

2
tr(Vµµ · γtΣ−1γt)

)
λ = arg max

ν∈Rd

(
1

2
h2(µ− r1 + ν)>Σ−1(µ− r1 + ν)Vhh − h(µ− r1 + ν)>Σ−1γtVhµ

)
with boundary condition V (T, h, µ) = h

α
α−1 . Differentiation leads to the optimal dual λ:

0
!

= hΣ−1(µ− r1 + λ)Vhh − Σ−1γtVhµ

⇒ λ = −(µ− r1) + γt
Vhµ
hVhh

Now the HJB-equation becomes

0 = Vt − Vhhr −
1

2
V >hµγtΣ

−1γt
Vhµ
Vhh

+
1

2
tr(Vµµ · γtΣ−1γt) , V (T, h, µ) = h

α
α−1

This differential equation gets solved easily as follows:

V (t, h, µ) = h
α
α−1 exp

(
α

1− α
r(T − t)

)
⇒ λ = −(µ− r1) + γt

Vhµ
hVhh

= −(µ− r1) (4.15)

However solving the auxiliary market Mλ (2.16) for λ = −(µ− r1) is trivial and leads to
πλ = 0. In particular as λ > 0 we conclude µ− r1 = −λ < 0.

”⇐”
If vice versa µ− r1 < 0 then define λ := −(µ− r1) > 0. Hence δ(λ) = 0 and the function

V (t, h, µ) = h
α
α−1 exp

(
α

1−αr(T − t)
)

solves the optimization problem given above with

optimal control λ. In particular we get πλ = 0.
Note that the verification in both cases is trivially given by Theorem 4.13.
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4 Constrained optimization under power utility

Theorem 4.13 (Verification in Case 2)
Define the candidates for value function and optimal control as derived in Proposition
4.12:

V̄ (t, h, µ) := h
α
α−1 exp

(
α

1− α
r(T − t)

)
λ̄(t, h, µ) := −(µ− r1)

Then they solve the stochastic control approach (4.12) in Case 2, hence V̄ = V and λ̄ = ν∗,
where

V (t, h, µ) := sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
and ν∗ := arg max

ν∈D
E
[
(Hν

T )
α
α−1

]
Proof. Let (t, h, µ) ∈ [0, T )× R+ × Rd, ν ∈ D and s ∈ [t, T ) be arbitrary and let τ be an
arbitrary stopping time with values in [t, T ].
As V̄ ∈ C1,2,2 we get with Itô’s formula

V̄ (s ∧ τ,Hν
s∧τ , µ̂s∧τ ) = V̄ (t, h, µ) +

∫ s∧τ

t
V̄t(u) + Lν V̄ (u)du (4.16)

−
∫ s∧τ

t
V̄h(u)Hν

u(µ̂u − r1 + νu)>(σ−1)>dVu

where Lν V̄ (u) = −V̄h(u)Hν
u (r + δ(νu))

+
1

2
(Hν

u)2(µ̂u − r1 + νu)>Σ−1(µ̂u − r1 + νu)Vhh(u)

Here we use the notation V̄ (u) := V̄ (u,Hν
u , µ̂u). While most sub-indices indicate time-

dependency of the corresponding variables, sub-indices of V̄ are the respective derivatives
of V̄ (t, h, µ).
Now for each n ∈ N define the stopping time

τn := inf

{
s ≥ t

∣∣∣∣ ∫ s

t

∥∥∥V̄h(u)Hν
u(µ̂u − r1 + νu)>(σ−1)>

∥∥∥2

2
du ≥ n

}
∧ T

Hence τn → T as n→∞ and therefore for any n ∈ N the stopped process∫ s∧τ

t
V̄h(u)Hν

u(µ̂u − r1 + νu)>(σ−1)>dVu

is a martingale with zero expectation.
Now we use τn in (4.16) and take conditional expectations on both sides.

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

= V̄ (t, h, µ) + E
[∫ s∧τn

t
V̄t(u,H

ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u)du

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
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4.2 The convex dual problem: a reverse separation approach

V̄ (t, h, µ) satisfies the HJB-equation (4.13), hence we observe for the right hand side:

V̄t(u,H
ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u) ≤ 0 for all ν ∈ D
V̄t(u,H

ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u) = 0 if ν = λ̄

This leads for each u ∈ [t, T ] and ν ∈ D(t, h, µ) to the following equations:

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]
≤ V̄ (t, h, µ) for all ν ∈ D(t, h, µ)

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

= V̄ (t, h, µ) if ν = λ̄

By Lemma 4.14 we can apply dominated convergence and observe for n→∞

V̄ (t, h, µ) ≥ E
[
V̄ (s,Hν

s , µ̂s)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

for all ν ∈ D(t, h, µ)

V̄ (t, h, µ) = E
[
V̄ (s,Hν

s , µ̂s)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

if ν = λ̄

Since V̄ (s,Hν
s , µ̂s) → V̄ (T,Hν

T , µ̂T ) = (Hν
T )

α
α−1 for s → T we conclude by dominated

convergence

V̄ (t, h, µ) ≥ E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
for all ν ∈ D(t, h, µ)

⇒ V̄ (t, h, µ) ≥ sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
= V (t, h, µ)

Since we get equality for ν = λ̄ we get V (t, h, µ) = V̄ (t, h, µ) with optimizer ν∗ = λ̄.

Lemma 4.14
There is an integrable random variable Y with

∣∣V̄ (s ∧ τn, Hν
s∧τn , µ̂s∧τn)

∣∣ ≤ Y .

Proof. Since α
α−1 ∈ (0, 1) and α

1−α < 0 we observe

h
α
α−1 ≤

{
1 if h ≤ 1

h if h > 1

⇒ 0 < h
α
α−1 ≤ (1 + h)

and exp

(
α

1− α
r(T − t)

)
≤ 1

Hence
∣∣V̄ (t, h, µ)

∣∣ = h
α
α−1 exp

(
α

1−αr(T − t)
)
≤ 1 + h and∣∣V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ ≤ 1 +Hν

s∧τn
≤ 1 +M =: Y

where the last line holds with E [Y ] <∞ because Hν
u > 0 is uniformly continuous in [t, T ]

and hence attains its supremum M := sups∈[t,T ]H
ν
u <∞.
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4 Constrained optimization under power utility

4.2.1 The dual problem in Case 3

In the next step we want to solve the dual problem in Case 3. Note that together
with the trivial Cases 1 and 2 this case would be the correct reverse separation approach
when only considering the no-short-selling constraint. This follows in particular from the
observations on the domain of the value function in Section 4.4. Recall Case 3:

λ ∈ Rd≥0 \
(
Rd>0 ∪ {0}

)
hence λi = 0 for some dimensions i

λj > 0 for some dimensions j

During this section we will allow without loss of generality λ ∈ Rd≥0. This simplification
works because we know a priori if we were in the Cases 1 or 2 and then we would not
consider Case 3 anyway. On the other hand if we are in Case 3 the optimal result cannot
be in the regions of Case 1 or 2 as shown in Proposition 4.12 and Remark 4.11. Also the
optimal result that we will derive in the following is still in Rd≥0 \

(
Rd>0 ∪ {0}

)
.

In Case 3 we observe in particular δ(λ) = 0 on Rd≥0. However we still cannot differentiate
to find the optimal solution for λ, since differentiability would only be given on the interior
Rd>0, which is the region of Case 2, that we don’t want to consider here. Hence we need a
different approach, that widens the dual domain to the whole of Rd.

First we reconsider the HJB-equation (4.13):

0 = sup
ν∈Rd≥0

(
Vt − Vhhr +

1

2
h2(µ− r1 + ν)>Σ−1(µ− r1 + ν)Vhh

− h(µ− r1 + ν)>Σ−1γtVhµ +
1

2
tr(Vµµ · γtΣ−1γt)

)
with boundary condition V (T, h, µ) = h

α
α−1 . The optimal control λ gets chosen by (4.14):

λ = arg max
ν∈Rd≥0

(
1

2
h2(µ− r1 + ν)>Σ−1(µ− r1 + ν)Vhh − h(µ− r1 + ν)>Σ−1γtVhµ

)

We use the multiplicative ansatz V (t, h, µ) = h
α
α−1 ef(t,µ) and get since h > 0 and α < 0:

λ = arg max
ν∈Rd≥0

(
1

2

α

(1− α)2
(µ− r1 + ν)>Σ−1(µ− r1 + ν) +

α

1− α
(µ− r1 + ν)>Σ−1γtfµ

)

= arg min
ν∈Rd≥0

(
1

2

1

(1− α)2
(µ− r1 + ν)>Σ−1(µ− r1 + ν) +

1

1− α
(µ− r1 + ν)>Σ−1γtfµ

)
The corresponding HJB-equation with this λ becomes

ft = − α

1− α
r − 1

2

α

(1− α)2
(µ− r1 + λ)>Σ−1(µ− r1 + λ)
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4.2 The convex dual problem: a reverse separation approach

− α

1− α
(µ− r1 + λ)>Σ−1γtfµ −

1

2
f>µ γtΣ

−1γtfµ −
1

2
tr(fµµγtΣ

−1γt) (4.17)

with boundary condition f(T, µ) = 0.
Standard non-linear optimization provides the ’penalty method’ to handle this kind of
constrained optimization problems. The penalty method allows the optimization parame-
ter ν to be in the whole space Rd while some penalty function P penalizes it if being in the
former constrained region. Therefore we introduce the following auxiliary unconstrained
problems for k ∈ N:

λ(k) = arg min
ν∈Rd

(
1

2

1

(1− α)2
(µ− r1 + ν)>Σ−1(µ− r1 + ν)

+
1

1− α
(µ− r1 + ν)>Σ−1γtfµ + c(k)P (ν)

)
(4.18)

where (c(k))k∈N > 0 is an increasing sequence of constants with c(k) →∞ and P is a penalty
function with P (ν) = 0 on Rd≥0 and P (ν) > 0 otherwise. Then the optimal solutions of

the auxiliary problems converge to the optimal solution of the original problem λ(k) → λ
as shown in [Kru12, Sec.8.1]. We choose the following penalty function P ∈ C1:

P (ν) :=
1

2

1

(1− α)2

d∑
i=1

(ν−i )2 =
1

2

1

(1− α)2

∥∥ν−∥∥2

2

(
= 0⇔ ν ∈ Rd≥0

)
∂νP (ν) =

1

(1− α)2

d∑
i=1

(−ν−i )ei = − 1

(1− α)2
· ν−

Since the penalty function is differentiable on the whole of Rd, the unconstrained auxiliary
problems (4.18) can be solved explicitly by differentiating:

0
!

=
1

(1− α)2
Σ−1(µ− r1 + λ(k)) +

1

1− α
Σ−1γtfµ −

ck
(1− α)2

(λ(k))−

⇒ 0 = (µ− r1 + λ(k)) + (1− α)γtfµ − ckΣ(λ(k))−

⇒ λ(k) − ckΣ(λ(k))− = −(µ− r1)− (1− α)γtfµ

Now we need to differ whether the λ
(k)
i are positive or negative. Therefore we collect their

indices in I(k) and J (k) where

I(k) :=
{
i
∣∣∣λ(k)
i ≤ 0

}
J (k) :=

{
j
∣∣∣λ(k)
j > 0

} with I(k)∪̇J (k) = {1, ..., d}

However we know from non-linear optimization that λ(k) → λ and λ ∈ Rd≥0 \
(
Rd>0 ∪ {0}

)
hence λi = 0 for some i ∈ I and λj > 0 for some j ∈ J .
Therefore there is some k0 such that I(k) = I(k0) and J (k) = J (k0) for all k ≥ k0. We will
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4 Constrained optimization under power utility

call I = I(k0) the active dimensions and J = J (k0) the passive dimensions in Case 3 and
we will see later on that this is well-defined in the sense of Definition 3.6.

Now we solve (4.18) for k ≥ k0.(
λ

(k)
I

λ
(k)
J

)
− ck

(
ΣII ΣIJ

ΣJI ΣJJ

)(
−λ(k)

I

0J

)
=

(
−(µ− r1)I
−(µ− r1)J

)
− (1− α)

(
(γtfµ)I
(γtfµ)J

)

⇒

{
λ

(k)
I + ckΣIIλ

(k)
I = −(µ− r1)I − (1− α)(γtfµ)I

λ
(k)
J + ckΣJIλ

(k)
I = −(µ− r1)J − (1− α)(γtfµ)J

⇒

{
λ

(k)
I = −

(
IdI + ckΣII

)−1(
(µ− r1)I + (1− α)(γtfµ)I

)
λ

(k)
J = −ckΣJIλ

(k)
I − (µ− r1)J − (1− α)(γtfµ)J

(4.19)

Now for k →∞ we get ck →∞ and λ(k) → λ. Hence the first line of (4.19) leads to:

(
IdI + ckΣII

)−1
=

1

ck

(
1

ck
IdI + ΣII

)−1

−→
k→∞

0II

⇒ λI = lim
k→∞

λ
(k)
I = 0II

(
(µ− r1)I + (1− α)(γtfµ)I

)
= 0I

The second line of (4.19) leads to the solution for λJ :

−ckΣJIλ
(k)
I = ckΣJI (IdI + ckΣII)

−1 ((µ− r1)I + (1− α)(γtfµ)I)

= ΣJI

(
1

ck
IdI + ΣII

)−1

((µ− r1)I + (1− α)(γtfµ)I)

−→
k→∞

ΣJI(ΣII)
−1
(
(µ− r1)I + (1− α)(γtfµ)I

)
⇒ λJ = lim

k→∞
λ

(k)
J

= ΣJI(ΣII)
−1
(
(µ− r1)I + (1− α)(γtfµ)I

)
−
(
(µ− r1)J + (1− α)(γtfµ)J

)
Combining these solutions we obtain the optimal λ.

λ = JI ·
(
(µ− r1) + (1− α)γtfµ

)
(4.20)

where JI :=

(
0II 0IJ

ΣJI(ΣII)
−1 −IdJ

)
(4.21)

At this point we observe that Case 3 has to be divided further into 2d subcases, depend-
ing on which dimensions are active or passive. For J = ∅ we immediately get λ = 0 hence
this is Case 1 and we will see in the following that I = ∅ just leads to Case 2.
Finally we need to consider 2d− 2 subcases that we will call Cases (3, I) for each possible
choice of active dimensions I.
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4.2 The convex dual problem: a reverse separation approach

Solving the HJB-equation

In the following we will solve the HJB-equation (4.17) in subcase (3, I) with the following
ansatz.

f(t, µ) =
1

2

1

1− α
(µ− r1)>A(t)(µ− r1) +

1

1− α
k(t) with symmetric A

This ansatz needs the boundary conditions A(T ) = 0, k(T ) = 0 and the following deriva-
tives:

ft(t, µ) =
1

2

1

1− α
(µ− r1)>A′(t)(µ− r1) +

1

1− α
k′(t)

fµ(t, µ) =
1

1− α
A(t)(µ− r1)

fµµ(t, µ) =
1

1− α
A(t)

The optimal λ from (4.20) becomes using this ansatz

λ = JI
(
Id+ γtA(t)

)
(µ− r1)

and the HJB-equation (4.17) becomes:

1

2

1

1− α
(µ− r1)>A′(t)(µ− r1) +

1

1− α
k′(t)

= ft = − α

1− α
r − 1

2

α

(1− α)2
(µ− r1 + λ)>Σ−1(µ− r1 + λ)

− α

1− α
(µ− r1 + λ)>Σ−1γtfµ −

1

2
f>µ γtΣ

−1γtfµ −
1

2
tr(fµµγtΣ

−1γt)

= − α

1− α
r

− 1

2

α

(1− α)2
(µ− r1)>

(
Id+ JI + JIγtA(t)

)>
Σ−1

(
Id+ JI + JIγtA(t)

)
(µ− r1)

− α

(1− α)2
(µ− r1)>

(
Id+ JI + JIγtA(t)

)>
Σ−1γtA(t)(µ− r1)

− 1

2

1

(1− α)2
(µ− r1)>A(t)γtΣ

−1γtA(t)(µ− r1)− 1

2

1

1− α
tr(A(t)γtΣ

−1γt)

= − α

1− α
r (4.22)

− 1

2

α

(1− α)2
(µ− r1)>(Id+ γtA(t))>(Id+ JI)>Σ−1(Id+ JI)(Id+ γtA(t))(µ− r1)

− 1

2

1

1− α
(µ− r1)>A(t)γtΣ

−1γtA(t)(µ− r1)− 1

2

1

1− α
tr(A(t)γtΣ

−1γt)

To simplify notation we introduce the following matrix in Case (3, I)

Σ
(3,I)
J :=

(
Id+ JI

)>
Σ−1

(
Id+ JI

)
(4.23)

59



4 Constrained optimization under power utility

=

(
IdI (ΣII)

−1ΣIJ

0JI 0JJ

)
·
(

(Σ−1)II (Σ−1)IJ
(Σ−1)JI (Σ−1)JJ

)
·
(

IdI 0IJ
ΣJI(ΣII)

−1 0JJ

)
=

(
IdI (ΣII)

−1ΣIJ

0JI 0JJ

)
·
(

(Σ−1)II + (Σ−1)IJΣJI(ΣII)
−1 0IJ

(Σ−1)JI + (Σ−1)JJΣJI(ΣII)
−1 0JJ

)
=

(
IdI (ΣII)

−1ΣIJ

0JI 0JJ

)
·
(

(ΣII)
−1 0IJ

0JI 0JJ

)
=

(
(ΣII)

−1 0IJ
0JI 0JJ

)
Note that the HJB-equation (4.22) is quadratic in (µ − r1) without linear term and
therefore can be split up. We observe the following two ODEs for the quadratic and
the constant part of (4.22):

A′(t) = − α

1− α
(Id+ γtA(t))>Σ

(3,I)
J (Id+ γtA(t))−A(t)γtΣ

−1γtA(t) (4.24)

k′(t) = −αr − 1

2
tr
(
A(t)γtΣ

−1γt
)

(4.25)

where the boundary conditions A(T ) = 0 and k(T ) = 0 stay unchanged.

Solving the ordinary differential equations

Fortunately in this case the matrix Ricatti equation (4.24) can also be solved explicitly.
We define B(t) := Id + γtA(t) and vice versa A(t) = γ−1

t (B(t) − Id) with corresponding
boundary condition B(T ) = Id. Hence A′(t) = Σ−1(B(t)−Id)+γ−1

t B′(t) and ODE (4.24)
becomes

γ−1
t B′(t) = − α

1− α
B(t)>Σ

(3,I)
J B(t)−B(t)>Σ−1(B(t)− Id)

Now we define C(t) := B(t)γt hence B(t) = C(t)γ−1
t with corresponding boundary condi-

tion C(T ) = γT and derivative B′(t) = C ′(t)γ−1
t +C(t)Σ−1. If additionally C is symmetric

then ODE (4.24) becomes

γ−1
t C ′(t)γ−1

t = − α

1− α
γ−1
t C(t)Σ

(3,I)
J C(t)γ−1

t − γ
−1
t C(t)Σ−1(C(t)γ−1

t − Id)− γ−1
t C(t)Σ−1

⇒ C ′(t) = − α

1− α
C(t)Σ

(3,I)
J C(t)− C(t)Σ−1C(t)

= −C(t)

(
α

1− α
Σ

(3,I)
J + Σ−1

)
C(t)

To solve this remaining ODE we useD(t) = C(t)−1 with corresponding boundary condition
D(T ) = γ−1

T . Then C ′(t) = −D−1(t)D′(t)D−1(t) and ODE (4.24) becomes

−D−1(t)D′(t)D−1(t) = C ′(t) = −D−1(t)

(
α

1− α
Σ

(3,I)
J + Σ−1

)
D−1(t)
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4.2 The convex dual problem: a reverse separation approach

Hence D′(t) = α
1−αΣ

(3,I)
J + Σ−1 and the boundary condition leads to the resulting

D(t) = γ−1
T − Σ−1(T − t)− α

1− α
(T − t)Σ(3,I)

J

and C(t) =

(
γ−1
t −

α

1− α
(T − t)Σ(3,I)

J

)−1

.

Indeed C(t) is symmetric.

Now we can solve the second ODE (4.25):

k′(t) = −αr − 1

2
tr
(
A(t)γtΣ

−1γt
)

= −αr − 1

2
tr
(
(C(t)− γt)Σ−1

)
⇒ k(t) = α(T − t)r +

1

2

∫ T

t
tr
(
C(s)Σ−1

)
ds− 1

2

∫ T

t
tr
(
γsΣ

−1
)
ds

= α(T − t)r +
1

2

∫ T

t
tr
(
C(s)Σ−1

)
ds− 1

2
log det γ−1

T +
1

2
log det γ−1

t

Here the last line holds du to the chain rule ∂t log detM(t) = tr
(
M(t)−1∂tM(t)

)
applied

to M(s) = γ−1
s with ∂tγ

−1
t = Σ−1.

Since γ−1
t is symmetric and positive definite, det γ−1

t is positive and hence the log is well-
defined. Unfortunately the other integral cannot be calculated explicitly, it needs to be
approximated numerically.

The candidate solutions of the stochastic control approach

In order to point out the underlying case we will refer in the following to the optimal
dual solution λ in Case (3, I) as follows:

λ(3,I)(t, µ) = JIC(3,I)(t)γ−1
t (µ− r1) (4.26)

where JI =

(
0II 0IJ

ΣJIΣ
−1
II −IdJ

)
and C(3,I)(t) :=

(
γ−1
t −

α

1− α
(T − t)Σ(3,I)

J

)−1

Now we only need to verify this stochastic control approach.

Theorem 4.15 (Verification in Case (3, I))
Define the candidates for value function and optimal control as derived above.

V̄ (t, h, µ) := h
α
α−1 ef(t,µ)

λ̄(t, h, µ) := λ(3,I)(t, µ)
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4 Constrained optimization under power utility

Then they solve the stochastic control approach (4.12) in Case (3, I), hence V̄ = V and
λ̄ = ν∗, where

V (t, h, µ) := sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
and ν∗ := arg max

ν∈D
E
[
(Hν

T )
α
α−1

]
Proof. Let (t, h, µ) ∈ [0, T )× R+ × Rd, ν ∈ D and s ∈ [t, T ) be arbitrary and let τ be an
arbitrary stopping time with values in [t, T ].
As V̄ ∈ C1,2,2 we get with Itô’s formula

V̄ (s ∧ τ,Hν
s∧τ , µ̂s∧τ ) = V̄ (t, h, µ) +

∫ s∧τ

t
V̄t(u) + Lν V̄ (u)du (4.27)

+

∫ s∧τ

t
V̄µ(u)>γu(σ−1)> − V̄h(u)Hν

u(µ̂u − r1 + νu)>(σ−1)>dVu

where Lν V̄ (u) = −V̄h(u)Hν
u (r + δ(νu))

+
1

2
(Hν

u)2(µ̂u − r1 + νu)>Σ−1(µ̂u − r1 + νu)Vhh(u)

+Hν
u(µ̂u − r1 + νu)>Σ−1γuVhµ(u) +

1

2
tr
(
Vµµ(u) · γuΣ−1γu

)
Here we use the notation V̄ (u) := V̄ (u,Hν

u , µ̂u).
While most sub-indices indicate time-dependency of the corresponding variables, sub-
indices of V̄ are the respective derivatives of V̄ (t, h, µ).
Now for each n ∈ N define the stopping time

τn := inf

{
s ≥ t

∣∣∣∣ ∫ s

t

∥∥∥V̄µ(u)>γu(σ−1)>
∥∥∥2

2
du ≥ n

or

∫ s

t

∥∥∥V̄h(u)Hν
u(µ̂u − r1 + νu)>(σ−1)>

∥∥∥2

2
du ≥ n

}
∧ T

Hence τn → T as n→∞ and therefore for any n ∈ N the stopped process∫ s∧τ

t
V̄µ(u)>γu(σ−1)> − V̄h(u)Hν

u(µ̂u − r1 + νu)>(σ−1)>dVu

is a martingale with zero expectation.
Now we use τn in (4.27) and take conditional expectations on both sides.

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

= V̄ (t, h, µ) + E
[∫ s∧τn

t
V̄t(u,H

ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u)du

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
Since V̄ (t, h, µ) satisfies the HJB-equation (4.13) in Case (3, I), we observe for the above
right hand side:

V̄t(u,H
ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u) ≤ 0 for all ν ∈ D
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4.2 The convex dual problem: a reverse separation approach

V̄t(u,H
ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u) = 0 if ν = λ̄

This leads for each u ∈ [t, T ] and ν ∈ D(t, h, µ) to the following equations:

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]
≤ V̄ (t, h, µ) for all ν ∈ D(t, h, µ)

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

= V̄ (t, h, µ) if ν = λ̄

By Lemma 4.16 we can apply dominated convergence and observe for n→∞

V̄ (t, h, µ) ≥ E
[
V̄ (s,Hν

s , µ̂s)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

for all ν ∈ D(t, h, µ)

V̄ (t, h, µ) = E
[
V̄ (s,Hν

s , µ̂s)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

if ν = λ̄

Since V̄ (s,Hν
s , µ̂s) → V̄ (T,Hν

T , µ̂T ) = (Hν
T )

α
α−1 for s → T we conclude by dominated

convergence

V̄ (t, h, µ) ≥ E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
for all ν ∈ D(t, h, µ)

⇒ V̄ (t, h, µ) ≥ sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
= V (t, h, µ)

Since we get equality for ν = λ̄ we get V (t, h, µ) = V̄ (t, h, µ) with optimizer ν∗ = λ̄.

Lemma 4.16
There is an integrable random variable Y with

∣∣V̄ (s ∧ τn, Hν
s∧τn , µ̂s∧τn)

∣∣ ≤ Y .

Proof. Since α
α−1 ∈ (0, 1) we observe

h
α
α−1 ≤

{
1 if h ≤ 1

h if h > 1
hence 0 < h

α
α−1 ≤ 1 + h

The continuous function f is a second order polynomial in µ, hence there are constants
Ct such that

f(t, µ) ≤ Ct(1 + ‖µ‖22)

The leading constants Ct may depend on time t, however t ∈ [0, T ] is in a closed interval,
hence f(·, µ) is uniformly continuous in t and attains its supremum as a maximum.

f(t, µ) ≤ C(1 + ‖µ‖22)

for some upper bound C ≥ maxt∈[0,T ]Ct <∞.
Hence ∣∣V̄ (t, h, µ)

∣∣ = h
α
α−1 ef(t,µ) ≤ (1 + h)eC(1+‖µ‖22)

⇒
∣∣V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ ≤ (1 +Hν

s∧τn) · eC(1+‖µ̂s∧τn‖
2
2)

≤ (1 +M) · eC(1+‖µ̂s∧τn‖
2
2) =: Y
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4 Constrained optimization under power utility

where M := sup
s∈[t,T ]

Hν
u

Now on the one hand Hν
s > 0 is uniformly continuous in [t, T ], and hence attains its

supremum M = sups∈[t,T ]H
ν
u <∞.

And on the other hand µ̂t is a martingale, hence ‖µ̂s‖22 is a submartingale since ‖·‖22
is a convex function. Hence exp

(
C(1 + ‖µ̂s‖22)

)
is also a submartingale and by Doob’s

maximal inequality we get

E

[
sup
s∈[t,T ]

exp
(
C(1 + ‖µ̂s‖22)

)]
≤
(

C

C − 1

)C
E
[
exp

(
C(1 + ‖µ̂T ‖22)

)]
<∞

Hence E [Y ] <∞.

4.2.2 The dual problem in Case 4

Case 4 is the most important case to consider, since it contains in particular most of
those cases where the optimal unconstrained solution invests more money than admissible.
This can be seen in more detail from the observations on the domain of the value function
in Section 4.4. In Case 4 we are in the following situation

λ ∈ Rd \ Rd≥0

hence λi = λ̄ for the dimensions i ∈ I
λj > λ̄ for the dimensions j ∈ J

where λ̄ := min
k∈{1,...,d}

λk < 0

Again we will call I the active and J the passive dimensions. Since the corresponding
optimal portfolio strategy will satisfy πJ = 0J this is compatible with Definition 3.6.
Additionally we will see in the following that there can be several choices of I and J that
lead to the unique optimal solution. This happens for the same reasons than in Corollary
3.19 for logarithmic utility: If a dimension k is on the boundary between being active and
being passive, than it satisfies πk = 0 (’passive’) but also λi = λ̄ (’active’) and for both
choices k ∈ I or k ∈ J we get the same optimal solution.

To avoid notational difficulties we will therefore assume in the following that there are no
parameters (t, h, µ) in our current stochastic control problem (4.12) such that the optimal
solution contains any boundary dimensions. This can be done without loss of generality
since this is a null-set anyway and hence not relevant for maximizing a standard expecta-
tion value. However the observation from logarithmic utility will also hold true for power
utility: It does not change the optimal solution whether a boundary dimension is consid-
ered active or passive.

At this point we observe that Case 4 also has to be divided further into 2d sub-cases,
similar to Case 3. In the following we will therefore assume to be in Case (4, I), being Case
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4.2 The convex dual problem: a reverse separation approach

4 with active dimensions I. It is obvious that the active dimensions cannot be empty, since
they collect those dimensions i with minimal λi out of finitely many dimensions. Hence
we get 2d − 1 subcases to consider.

We want to solve the stochastic control approach (4.12) in Case (4, I). In order to solve
the corresponding HJB-equation (4.13) we need to consider an auxiliary problem such
that δ(λ) = −λ̄ gets differentiable in λ. Note that the distance between the λi = λ̄ and
the λj > λ̄ is larger than zero, hence there is some ε-ball around the parameters (t, h, µ)
such that the resulting active dimensions I don’t switch within this ε-ball.

In the following we consider an auxiliary problem that maps the domain of the sup-
port function δ in Case (4, I) bijectively into a new domain such that δ(λ) = −λ̄ gets
differentiable.

Without loss of generality we simplify notation by assuming 1 ∈ I. First we define the
new domain GI and the linear bijection ϕI , both depending on the active dimensions I.

GI :=
{
x ∈ R× R|J |

∣∣∣x1 < 0, xj > x1 for all j ∈ J
}

ϕI : GI → HI :

(
x1

xJ

)
7→
(
x11I

xJ

)
⇒ (ϕI)−1 : HI → GI :

(
xI
xJ

)
7→
(
x1

xJ

)
Obviously the image HI := Im(ϕI) ⊂ Rd collects just all admissible solutions for the
optimal λ in Case (4, I) and satisfies

·⋃
∅6=I⊆{1,...,d}

HI = Rd \ Rd≥0

The mapping ϕI is bijective and linear in the sense that it can be written using matrices.

ϕI(x) = Φx where Φ :=

(
1I 0IJ
0J IdJ

)
∈ Rd×1+|J |

and (ϕI)−1(x) = Ψx where Ψ :=

(
e>1 0>J
0JI IdJ

)
∈ R1+|J |×d

Since λ ∈ Im(ϕI) = HI we may define the auxiliary parameter λ̃.

λ̃ := (ϕI)−1(λ) =

(
λ1

λJ

)
∈ GI

And since ϕI is a bijection we can reduce our problem from finding the optimal λ ∈ HI

to finding the optimal λ̃ ∈ GI .
Additionally we get the following nice property in GI :

Although the support function δ is not differentiable with respect to λ we observe that
δ ◦ ϕI is differentiable with respect to λ̃ on GI .

(δ ◦ ϕI)(λ̃) = δ

((
λ11I

λJ

))
= max{−λ1, 0} = −λ1

65



4 Constrained optimization under power utility

⇒ (δ ◦ ϕI)′(λ̃) = −e1

Deriving the optimizer

Now we can go back to solving our original stochastic control problem. With λ = ϕI(λ̃)
respectively ν = ϕI(ν̃) its HJB-equation (4.13) becomes:

0 = sup
ν̃∈GI

(
Vt − Vhh(r + (δ ◦ ϕI)(ν̃)) +

1

2
h2
(
µ− r1 + ϕI(ν̃)

)>
Σ−1

(
µ− r1 + ϕI(ν̃)

)
Vhh

− h
(
µ− r1 + ϕI(ν̃)

)>
Σ−1γtVhµ +

1

2
tr(Vµµ · γtΣ−1γt)

)
(4.28)

with boundary condition V (T, h, µ) = h
α
α−1 . The optimal λ̃ gets chosen by (4.14):

λ̃ = arg max
ν̃∈GI

(
− hδ(ϕI(ν̃))Vh +

1

2
h2
(
µ− r1 + ϕI(ν̃)

)>
Σ−1

(
µ− r1 + ϕI(ν̃)

)
Vhh

− h
(
µ− r1 + ϕI(ν̃)

)>
Σ−1γtVhµ

)
= arg max

ν̃∈GI

(
− h(δ ◦ ϕI)(ν̃)Vh +

1

2
h2(µ− r1 + Φν̃)>Σ−1(µ− r1 + Φν̃)Vhh

− h(µ− r1 + Φν̃)>Σ−1γtVhµ

)
Now we get the optimal λ̃ by differentiating:

0
!

= hVhe1 + h2Φ>Σ−1(µ− r1 + Φλ̃)Vhh − hΦ>Σ−1γtVhµ

⇒ Φ>Σ−1(µ− r1 + Φλ̃) = − Vh
hVhh

e1 + Φ>Σ−1γt
Vhµ
hVhh

(4.29)

In (4.29) there are 1 + |J | equations for 1 + |J | unknown variables. In the first line we get:

− Vh
hVhh

+
(
1
>
I 0>J

)
Σ−1γt

Vhµ
hVhh

=
(
1
>
I 0J

)
Σ−1(µ− r1 + Φλ̃)

=
(
1
>
I (Σ−1)II 1

>
I (Σ−1)IJ

)
(µ− r1 + Φλ̃) (4.30)

= 1
>
I (Σ−1)II(µI − r1I + λ11I) + 1

>
I (Σ−1)IJ(µJ − r1J + λJ)

and in the other |J | lines of (4.29) we get:

(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

=
(
0JI IdJ

)
Σ−1(µ− r1 + Φλ̃)

=
(

(Σ−1)JI (Σ−1)JJ

)
(µ− r1 + Φλ̃)

= (Σ−1)JI(µI − r1I + λ11I) + (Σ−1)JJ(µJ − r1J + λJ)
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⇒ (Σ−1)JJ(µJ − r1J + λJ) = −(Σ−1)JI(µI − r1I + λ11I) +
(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

Now the matrix inversion formula (3.8) leads to

(µJ − r1J + λJ) = −
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

)
(Σ−1)JI(µI − r1I + λ11I)

+
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

(4.31)

When plugging (4.31) into equation (4.30) and frequently applying the matrix inversion
formula (3.8), we get the optimal solution for λ̄ = λ1 = λ̃1.

1
>
I (Σ−1)II(µI − r1I + λ11I)

= −1>I (Σ−1)IJ(µJ − r1J + λJ)− Vh
hVhh

+
(
1
>
I 0>J

)
Σ−1γt

Vhµ
hVhh

= 1
>
I (Σ−1)IJ

(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

)
(Σ−1)JI(µI − r1I + λ11I)

− 1>I (Σ−1)IJ
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

− Vh
hVhh

+
(
1
>
I 0>J

)
Σ−1γt

Vhµ
hVhh

= −1>I (ΣII)
−1ΣIJ(Σ−1)JI(µI − r1I + λ11I)

+ 1
>
I (ΣII)

−1ΣIJ

(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

− Vh
hVhh

+
(
1
>
I 0>J

)
Σ−1γt

Vhµ
hVhh

⇒ 1
>
I (ΣII)

−1(µI − r1I + λ11I)

= 1
>
I (ΣII)

−1ΣIJ

(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

− Vh
hVhh

+
(
1
>
I 0>J

)
Σ−1γt

Vhµ
hVhh

= − Vh
hVhh

+
(
1
>
I 1

>
I (ΣII)

−1ΣIJ

)
Σ−1γt

Vhµ
hVhh

= − Vh
hVhh

+
(
1
>
I (ΣII)

−1 0>J
)
γt
Vhµ
hVhh

⇒ 1
>
I (ΣII)

−1
1Iλ1

= −1>I (ΣII)
−1(µI − r1I)−

Vh
hVhh

+
(
1
>
I (ΣII)

−1 0>J
)
γt
Vhµ
hVhh

When introducing the notation gI :=
(
1
>
I (ΣII)

−1
1I

)−1
the optimal λ̄ = λ1 = λ̃1 becomes

λ̄ = −gI1>I (ΣII)
−1(µ− r1)I − gI

Vh
hVhh

+ gI
(
1
>
I (ΣII)

−1 0>J
)
γt
Vhµ
hVhh

(4.32)
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4 Constrained optimization under power utility

Finally from equation (4.31) we get the optimal λJ :

λJ = −(µ− r1)J −
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

)
(Σ−1)JI(µI − r1I + λ11I)

+
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

= −(µ− r1)J + ΣJI(ΣII)
−1(µI − r1I + λ11I)

+
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
(Σ−1)JI (Σ−1)JJ

)
γt
Vhµ
hVhh

= −(µ− r1)J + ΣJI(ΣII)
−1(µI − r1I + λ11I)

+
(
− ΣJI(ΣII)

−1 IdJ

)
γt
Vhµ
hVhh

(4.33)

Solving the HJB-equation

The remaining step is to solve the HJB-equation (4.28). Therefore we consider the

multiplicative ansatz V (t, h, µ) = h
α
α−1 ef(t,µ) leading to

Vh
hVhh

= (α− 1) and
Vhµ
hVhh

= (α− 1)fµ

and update the recently derived optimal λ:

λ̄ = −gI1>I (ΣII)
−1(µ− r1)I − gI(α− 1) + gI

(
1
>
I (ΣII)

−1 0>J
)
γt(α− 1)fµ

= (1− α)gI − gI1>I (ΣII)
−1 ((µ− r1)I + (1− α)(γtfµ)I) (4.34)

λJ = −(µ− r1)J − (1− α)(γtfµ)J

+ ΣJI(ΣII)
−1
(
(µ− r1)I + λ̄1I + (1− α)(γtfµ)I

)
The former HJB-equation (4.28) becomes with this ansatz and λ = ϕI(λ̃) =

(
λ̄1I
λJ

)
:

ft = − α

1− α
(r − λ̄)− 1

2

α

(1− α)2
(µ− r1 + λ)>Σ−1(µ− r1 + λ)

− α

1− α
(µ− r1 + λ)>Σ−1γtfµ −

1

2
f>µ γtΣ

−1γtfµ −
1

2
tr(fµµ · γtΣ−1γt) (4.35)

We solve (4.35) with a quadratic ansatz for f , where the matrix A(t) is assumed to be
symmetric.

f(t, µ) =
1

2

1

1− α
(µ− r1)>A(t)(µ− r1) +

1

1− α
b(t)>(µ− r1) +

1

1− α
k(t)

This ansatz needs the boundary conditions A(T ) = 0, b(T ) = 0 and k(T ) = 0 and results
in the following derivatives of f :

ft(t, µ) =
1

2

1

1− α
(µ− r1)>A′(t)(µ− r1) +

1

1− α
b′(t)>(µ− r1) +

1

1− α
k′(t)
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fµ(t, µ) =
1

1− α
A(t)(µ− r1) +

1

1− α
b(t)

fµµ(t, µ) =
1

1− α
A(t)

The optimal λ from (4.34) becomes using this ansatz:

λ̄ = (1− α)gI − gI
(

(ΣII)
−1
1I

0J

)> (
(Id+ γtA(t))(µ− r1) + γtb(t)

)
λJ = −

(
(Id+ γtA(t))(µ− r1) + γtb(t)

)
J

+ ΣJI(ΣII)
−1
(
λ̄1I +

(
(Id+ γtA(t))(µ− r1) + γtb(t)

)
I

)
⇒ λ =

(
λ̄1I
λJ

)
= (JI + Id)λ̄1 + JI

(
(Id+ γtA(t))(µ− r1) + γtb(t)

)
(4.36)

where JI is given in (4.21).
Now the HJB-equation (4.35) becomes:

1

2

1

1− α
(µ− r1)>A′(t)(µ− r1) +

1

1− α
b′(t)>(µ− r1) +

1

1− α
k′(t)

= ft = − α

1− α
(r − λ̄)− 1

2

α

(1− α)2
(µ− r1 + λ)>Σ−1(µ− r1 + λ)

− α

1− α
(µ− r1 + λ)>Σ−1γtfµ −

1

2
f>µ γtΣ

−1γtfµ −
1

2
tr(fµµ · γtΣ−1γt)

= − α

1− α
r + αgI

− α

1− α
gI
(

(ΣII)
−1
1I

0J

)>
(Id+ γtA(t))(µ− r1)

− α

1− α
gI
(

(ΣII)
−1
1I

0J

)>
γtb(t)

− 1

2

α

(1− α)2
(µ− r1)>

(
Id+ JI(Id+ γtA(t))− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
(Id+ γtA(t))

)>

· Σ−1

(
Id+ JI(Id+ γtA(t))− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
(Id+ γtA(t))

)
(µ− r1)

− α

(1− α)2
(µ− r1)>

(
Id+ JI(Id+ γtA(t))− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
(Id+ γtA(t))

)>

· Σ−1

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
γtb(t) + JIγtb(t)

)

− 1

2

α

(1− α)2

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
γtb(t) + JIγtb(t)

)>
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· Σ−1

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
γtb(t) + JIγtb(t)

)

− α

(1− α)2
(µ− r1)>

(
Id− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
(Id+ γtA(t)) + JI(Id+ γtA(t))

)>
· Σ−1γtA(t)(µ− r1)

− α

(1− α)2
(µ− r1)>

(
Id− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
(Id+ γtA(t)) + JI(Id+ γtA(t))

)>
· Σ−1γtb(t)

− α

(1− α)2

(
(1− α)gI(JI + Id)1− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
γtb(t) + JIγtb(t)

)>
· Σ−1γtA(t)(µ− r1)

− α

(1− α)2

(
(1− α)gI(JI + Id)1− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
γtb(t) + JIγtb(t)

)>
· Σ−1γtb(t)

− 1

2

1

(1− α)2
(A(t)(µ− r1) + b(t))>γtΣ

−1γt(A(t)(µ− r1) + b(t))

− 1

2

1

1− α
tr(A(t)γtΣ

−1γt)

We continue solving this HJB-equation as in Case 3 with B(t) := Id+γtA(t), respectively
A(t) = γ−1

t (B(t)− Id) and with corresponding boundary condition B(T ) = Id.
Additionally we define c(t) := γtb(t), respectively b(t) = γ−1

t c(t) with resulting boundary
condition c(T ) = 0.
Since A′(t) = Σ−1(B(t)− Id) + γ−1

t B′(t) and b′(t) = Σ−1c(t) + γ−1
t c′(t) the HJB-equation

becomes:

1

2
(µ− r1)>

(
Σ−1(B(t)−Id) + γ−1

t B′(t)
)

(µ− r1) + (µ− r1)>
(
Σ−1c(t) + γ−1

t c′(t)
)

+ k′(t)

=
1

2
(µ− r1)>A′(t)(µ− r1) + b′(t)>(µ− r1) + k′(t)

= −αr + α(1− α)gI

− αgI
(

(ΣII)
−1
1I

0J

)>
B(t)(µ− r1)

− αgI
(

(ΣII)
−1
1I

0J

)>
c(t)

− 1

2

α

1− α
(µ− r1)>

(
Id+ JIB(t)− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
B(t)

)>

70



4.2 The convex dual problem: a reverse separation approach

· Σ−1

(
Id+ JIB(t)− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
B(t)

)
(µ− r1)

− α

1− α
(µ− r1)>

(
Id+ JIB(t)− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
B(t)

)>

· Σ−1

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)

− 1

2

α

1− α

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)>

· Σ−1

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)

− α

1− α
(µ− r1)>

(
Id− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
B(t) + JIB(t)

)>
· Σ−1(B(t)− Id)(µ− r1)

− α

1− α
(µ− r1)>

(
Id− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
B(t) + JIB(t)

)>
Σ−1c(t)

− α

1− α
(µ− r1)>(B(t)− Id)>

· Σ−1

(
(1− α)gI(JI + Id)1− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)

− α

1− α

(
(1− α)gI(JI + Id)1− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)>
Σ−1c(t)

− 1

2

1

1− α
((B(t)− Id)(µ− r1) + c(t))>Σ−1((B(t)− Id)(µ− r1) + c(t))

− 1

2
tr
(
(B(t)− Id)γtΣ

−1
)

Now there are only terms that are either quadratic, linear or constant in (µ− r1), hence
the HJB-equation can be split up into the ordinary differential equations (4.37), (4.40)
and (4.42), corresponding to its quadratic, linear and constant part.

Solving the ordinary differential equations

First we consider the quadratic terms leading to ODE (4.37):

Σ−1(B(t)− Id) + γ−1
t B′(t)

= − α

1− α

(
Id+ JIB(t)− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
B(t)

)>
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4 Constrained optimization under power utility

· Σ−1

(
Id+ JIB(t)− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
B(t)

)

− 2
α

1− α

(
Id− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
B(t) + JIB(t)

)>
· Σ−1(B(t)− Id)

− 1

1− α
(B(t)− Id)>Σ−1(B(t)− Id)

⇒ γ−1
t B′(t) = − α

1− α
B(t)>

(
Id− gI1

(
(ΣII)

−1
1I

0J

)>)>

· (JI + Id)>Σ−1(JI + Id)

(
Id− gI1

(
(ΣII)

−1
1I

0J

)>)
B(t)

−B(t)>Σ−1(B(t)− Id) (4.37)

Similarly to (4.23) we define (4.38) in Case (4, I):

Σ
(4,I)
J :=

(
Id− gI1

(
(ΣII)

−1
1I

0J

)>)>
(JI+Id)>Σ−1(JI+Id)

(
Id− gI1

(
(ΣII)

−1
1I

0J

)>)

=

(
Σ̄I 0IJ
0JI 0JJ

)
(4.38)

where Σ̄I = (ΣII)
−1
(
IdI − gI1I1>I (ΣII)

−1
)

is symmetric.

Hence (4.37) simplifies to

γ−1
t B′(t) = − α

1− α
B(t)>Σ

(4,I)
J B(t)−B(t)>Σ−1(B(t)− Id)

Now we define C(t) := B(t)γt, hence B(t) = C(t)γ−1
t with corresponding boundary con-

dition C(T ) = γT . With derivative B′(t) = C(t)Σ−1 + C ′(t)γ−1
t we observe

C ′(t) = −C(t)>
(

Σ−1 +
α

1− α
Σ

(4,I)
J

)
C(t) (4.39)

To solve this remaining IDE we consider the ansatz D(t) = C−1(t) with corresponding
boundary condition D(T ) = γ−1

T . Then C ′(t) = −D−1(t)D′(t)D−1(t) and the ODE be-
comes

−D−1(t)D′(t)D−1(t) = C ′(t) = −D−1(t)

(
α

1− α
Σ

(4,I)
J + Σ−1

)
D−1(t)

Hence D′(t) = α
1−αΣ

(4,I)
J + Σ−1 and the boundary condition leads to the resulting

D(t) = γ−1
T − Σ−1(T − t)− α

1− α
(T − t)Σ(4,I)

J
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4.2 The convex dual problem: a reverse separation approach

and C(t) =

(
γ−1
T − (T − t)

(
Σ−1 +

α

1− α
Σ

(4,I)
J

))−1

=

(
γ−1
t −

α

1− α
(T − t)Σ(4,I)

J

)−1

Indeed C(t) is symmetric.

Secondly we consider the terms linear in (µ− r1).

Σ−1c(t) + γ−1
t c′(t)

= −αgIB(t)>
(

(ΣII)
−1
1I

0J

)

− α

1− α

(
Id+ JIB(t)− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
B(t)

)>

· Σ−1

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)

− α

1− α

(
Id− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
B(t) + JIB(t)

)>
Σ−1c(t)

− α

1− α
(B(t)− Id)>

· Σ−1

(
(1− α)gI(JI + Id)1− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)
− 1

1− α
(B(t)− Id)>Σ−1c(t)

This leads to ODE (4.40).

γ−1
t c′(t) = −αgIB(t)>

(
(ΣII)

−1
1I

0J

)
−B(t)>

(
α

1− α
Σ

(4,I)
J + Σ−1

)
c(t) (4.40)

When using C(t) = B(t)γt from above we observe a linear ODE for c(t).

c′(t) = −αgIC(t)

(
(ΣII)

−1
1I

0J

)
− C(t)

(
α

1− α
Σ

(4,I)
J + Σ−1

)
c(t)

Since C ′(t) = −C(t)>
(

Σ−1 + α
1−αΣ

(4,I)
J

)
C(t) by (4.39) we get the solution for c(t) imme-

diately with boundary condition c(T ) = 0.

c(t) = α(T − t)gIC(t)

(
(ΣII)

−1
1I

0J

)
(4.41)
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Finally we consider the terms that are constant in (µ− r1) and lead to ODE (4.42).

k′(t) = −αr + α(1− α)gI − αgI
(

(ΣII)
−1
1I

0J

)>
c(t)

− 1

2

α

1− α

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)>

· Σ−1

(
(1− α)gI(JI + Id)1− gI(JI + Id)1

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)

− α

1− α

(
(1− α)gI(JI + Id)1− (JI + Id)1gI

(
(ΣII)

−1
1I

0J

)>
c(t) + JIc(t)

)>
· Σ−1c(t)

− 1

2

1

1− α
c(t)>Σ−1c(t)

− 1

2
tr
(
(B(t)− Id)γtΣ

−1
)

= −αr +
1

2
α(1− α)gI − αgI

(
(ΣII)

−1
1I

0J

)>
c(t)

− 1

2
c(t)>

(
Σ−1 +

α

1− α
Σ

(4,I)
J

)
c(t)− 1

2
tr
(
(C(t)− γt)Σ−1

)
(4.42)

With the boundary condition k(T ) = 0 we get

k(t) = α(T − t)r − 1

2
α(1− α)(T − t)gI +

∫ T

t

1

2
tr
(
(C(s)− γs)Σ−1

)
ds

+

∫ T

t
αgI

(
(ΣII)

−1
1I

0J

)>
c(s) ds+

∫ T

t

1

2
c(s)>

(
Σ−1 +

α

1− α
Σ

(4,I)
J

)
c(s) ds

Here the last line can be simplified further.∫ T

t
αgI

(
(ΣII)

−1
1I

0J

)>
c(s) ds+

∫ T

t

1

2
c(s)>

(
Σ−1 +

α

1− α
Σ

(4,I)
J

)
c(s) ds

=

∫ T

t
α2(gI)2(T − s)

(
(ΣII)

−1
1I

0J

)>
C(s)

(
(ΣII)

−1
1I

0J

)
ds

+

∫ T

t

1

2
α2(T − s)2(gI)2

(
(ΣII)

−1
1I

0J

)>
C(s)

(
Σ−1 +

α

1− α
Σ

(4,I)
J

)
C(s)

(
(ΣII)

−1
1I

0J

)
ds

= −
∫ T

t
αgI(T − s)

(
(ΣII)

−1
1I

0J

)>
c′(s) ds

+

∫ T

t

1

2
α2(T − s)2(gI)2

(
(ΣII)

−1
1I

0J

)>
C ′(s)

(
(ΣII)

−1
1I

0J

)
ds
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= αgI(T − t)
(

(ΣII)
−1
1I

0J

)>
c(t)−

∫ T

t
αgI

(
(ΣII)

−1
1I

0J

)>
c(s) ds

− 1

2
α2(T − t)2(gI)2

(
(ΣII)

−1
1I

0J

)>
C(t)

(
(ΣII)

−1
1I

0J

)
+

∫ T

t
α2(T − s)(gI)2

(
(ΣII)

−1
1I

0J

)>
C(s)

(
(ΣII)

−1
1I

0J

)
ds

= αgI(T − t)
(

(ΣII)
−1
1I

0J

)>
c(t)

− 1

2
α2(T − t)2(gI)2

(
(ΣII)

−1
1I

0J

)>
C(t)

(
(ΣII)

−1
1I

0J

)
=

1

2
α2(T − t)2(gI)2

(
(ΣII)

−1
1I

0J

)>
C(t)

(
(ΣII)

−1
1I

0J

)
Hence the solution for k(t) is given by (4.43).

k(t) = α(T − t)r − 1

2
α(1− α)(T − t)gI

+
1

2
α2(T − t)2(gI)2

1
>
I (ΣII)

−1C(t)II(ΣII)
−1
1I

+

∫ T

t

1

2
tr
(
(C(s)− γs)Σ−1

)
ds

= α(T − t)r − 1

2
α(1− α)(T − t)gI

+
1

2
α2(T − t)2(gI)2

1
>
I (ΣII)

−1C(t)II(ΣII)
−1
1I

+
1

2

∫ T

t
tr
(
C(s)Σ−1

)
ds− 1

2
log det γ−1

T +
1

2
log det γ−1

t (4.43)

Here the last line follows from the chain rule as applied in the previous Section 4.2.1.
Unfortunately the remaining integral cannot be calculated explicitly, it needs to be ap-
proximated numerically.

The candidate solutions of the stochastic control approach

In order to point out the underlying case we will refer to the optimal dual solution λ in
Case (4, I) as λ(4,I)(t, µ).

λ(4,I)(t, µ) =

(
λ̄I1I
λJ

)
= (JI + Id)1λ̄I + JIC(4,I)(t)γ−1

t (µ− r1) + JIc(t)

where

λ̄I = (1− α)gI − gI1>I (ΣII)
−1(C(4,I)(t)γ−1

t (µ− r1))I − gI1>I (ΣII)
−1c(t)I
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4 Constrained optimization under power utility

C(4,I)(t) =

(
γ−1
t −

α

1− α
(T − t)Σ(4,I)

J

)−1

c(t) = α(T − t)gIC(4,I)(t)

(
(ΣII)

−1
1I

0J

)
JI =

(
0II 0IJ

ΣJI(ΣII)
−1 −IdJ

)
The formula for λ(4,I)(t, µ) can though be simplified further.

λ(4,I)(t, µ) = J(4,I)
(
C(4,I)(t)γ−1

t (µ− r1) + c(t)
)

+ (1− α)gI
(
JI + Id

)
1 (4.44)

where

J(4,I) := JI − (JI + Id)1gI
(

(ΣII)
−1
1I

0J

)>
=

(
−gI1I1>I (ΣII)

−1 0IJ
ΣJI(ΣII)

−1
(
IdI − gI1I1>I (ΣII)

−1
)
−IdJ

)
Note in particular the relation ship between J(4,I) and Σ

(4,I)
J .(

Id+ J(4,I)
)>

Σ−1
(
Id+ J(4,I)

)
= Σ

(4,I)
J (4.45)

Now we only need to verify the stochastic control approach in Case (4, I).

Theorem 4.17 (Verification in Case (4, I))
Define the candidates for value function and optimal control as derived in this section.

V̄ (t, h, µ) := h
α
α−1 ef(t,µ)

λ̄(t, h, µ) := λ(4,I)(t, µ)

Then they solve the stochastic control approach (4.12) in Case (3, I), hence V̄ = V and
λ̄ = ν∗, where

V (t, h, µ) := sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
and ν∗ := arg max

ν∈D
E
[
(Hν

T )
α
α−1

]
Proof. Let (t, h, µ) ∈ [0, T )× R+ × Rd, ν ∈ D and s ∈ [t, T ) be arbitrary and let τ be an
arbitrary stopping time with values in [t, T ].
As V̄ ∈ C1,2,2 we get with Itô’s formula

V̄ (s ∧ τ,Hν
s∧τ , µ̂s∧τ ) = V̄ (t, h, µ) +

∫ s∧τ

t
V̄t(u) + Lν V̄ (u)du (4.46)
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+

∫ s∧τ

t
V̄µ(u)>γu(σ−1)> − V̄h(u)Hν

u(µ̂u − r1 + νu)>(σ−1)>dVu

where Lν V̄ (u) = −V̄h(u)Hν
u (r + δ(νu))

+
1

2
(Hν

u)2(µ̂u − r1 + νu)>Σ−1(µ̂u − r1 + νu)Vhh(u)

+Hν
u(µ̂u − r1 + νu)>Σ−1γuVhµ(u) +

1

2
tr
(
Vµµ(u) · γuΣ−1γu

)
Here we use the notation V̄ (u) := V̄ (u,Hν

u , µ̂u).
While most sub-indices indicate time-dependency of the corresponding variables, sub-
indices of V̄ are the respective derivatives of V̄ (t, h, µ).
Now for each n ∈ N define the stopping time

τn := inf

{
s ≥ t

∣∣∣∣ ∫ s

t

∥∥∥V̄µ(u)>γu(σ−1)>
∥∥∥2

2
du ≥ n

or

∫ s

t

∥∥∥V̄h(u)Hν
u(µ̂u − r1 + νu)>(σ−1)>

∥∥∥2

2
du ≥ n

}
∧ T

Hence τn → T as n→∞ and therefore for any n ∈ N the stopped process∫ s∧τ

t
V̄µ(u)>γu(σ−1)> − V̄h(u)Hν

u(µ̂u − r1 + νu)>(σ−1)>dVu

is a martingale with zero expectation.
Now we use τn in (4.46) and take conditional expectations on both sides.

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

= V̄ (t, h, µ) + E
[∫ s∧τn

t
V̄t(u,H

ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u)du

∣∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
Since V̄ (t, h, µ) satisfies the HJB-equation (4.13) in Case (3, I), we observe for the above
right hand side:

V̄t(u,H
ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u) ≤ 0 for all ν ∈ D
V̄t(u,H

ν
u , µ̂u) + Lν V̄ (u,Hν

u , µ̂u) = 0 if ν = λ̄

This leads for each u ∈ [t, T ] and ν ∈ D(t, h, µ) to the following equations:

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]
≤ V̄ (t, h, µ) for all ν ∈ D(t, h, µ)

E
[
V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

= V̄ (t, h, µ) if ν = λ̄

By Lemma 4.18 we can apply dominated convergence and observe for n→∞

V̄ (t, h, µ) ≥ E
[
V̄ (s,Hν

s , µ̂s)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

for all ν ∈ D(t, h, µ)

V̄ (t, h, µ) = E
[
V̄ (s,Hν

s , µ̂s)
∣∣ (Hν

t , µ̂t) = (h, µ)
]

if ν = λ̄
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4 Constrained optimization under power utility

Since V̄ (s,Hν
s , µ̂s) → V̄ (T,Hν

T , µ̂T ) = (Hν
T )

α
α−1 for s → T we conclude by dominated

convergence

V̄ (t, h, µ) ≥ E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
for all ν ∈ D(t, h, µ)

⇒ V̄ (t, h, µ) ≥ sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
= V (t, h, µ)

Since we get equality for ν = λ̄ we get V (t, h, µ) = V̄ (t, h, µ) with optimizer ν∗ = λ̄.

Lemma 4.18
There is an integrable random variable Y with

∣∣V̄ (s ∧ τn, Hν
s∧τn , µ̂s∧τn)

∣∣ ≤ Y .

Proof. Since α
α−1 ∈ (0, 1) we observe

h
α
α−1 ≤

{
1 if h ≤ 1

h if h > 1
hence 0 < h

α
α−1 ≤ 1 + h

The continuous function f is a second order polynomial in µ, hence there are constants
Ct such that

f(t, µ) ≤ Ct(1 + ‖µ‖22)

The leading constants Ct may depend on time t, however t ∈ [0, T ] is in a closed interval,
hence f(·, µ) is uniformly continuous in t and attains its supremum as a maximum.

f(t, µ) ≤ C(1 + ‖µ‖22)

for some upper bound C ≥ maxt∈[0,T ]Ct <∞.
Hence ∣∣V̄ (t, h, µ)

∣∣ = h
α
α−1 ef(t,µ) ≤ (1 + h)eC(1+‖µ‖22)

⇒
∣∣V̄ (s ∧ τn, Hν

s∧τn , µ̂s∧τn)
∣∣ ≤ (1 +Hν

s∧τn) · eC(1+‖µ̂s∧τn‖
2
2)

≤ (1 +M) · eC(1+‖µ̂s∧τn‖
2
2) =: Y

where M := sup
s∈[t,T ]

Hν
u

Now on the one hand Hν
s > 0 is uniformly continuous in [t, T ], and hence attains its

supremum M = sups∈[t,T ]H
ν
u <∞.

And on the other hand µ̂t is a martingale, hence ‖µ̂s‖22 is a submartingale since ‖·‖22
is a convex function. Hence exp

(
C(1 + ‖µ̂s‖22)

)
is also a submartingale and by Doob’s

maximal inequality we get

E

[
sup
s∈[t,T ]

exp
(
C(1 + ‖µ̂s‖22)

)]
≤
(

C

C − 1

)C
E
[
exp

(
C(1 + ‖µ̂T ‖22)

)]
<∞

Hence E [Y ] <∞.
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4.3 The auxiliary market

4.3 The auxiliary market

The main point of Chapter 4 is to solve our constrained portfolio optimization problem
(2.3) under partial information as introduced in Section 2.2 and under the convex con-
straints (3.7).
According to Section 2.3 we can equivalently solve the unconstrained portfolio optimization
problem in the auxiliary market Mλ (2.16) where the dual process λ is chosen according
to Theorem 2.11:

dBλ
t = Bλ

t

(
r + δ (λt)

)
dt

dSλt = diag
(
Sλt

) (
(µ̂t + λt + δ(λt)1) dt+ σdVt

)
where λ = arg min

ν∈D
E
[
Ũ
(
Yλ(x0)Hν

T

)]
In the previous Section 4.2 we derived the optimal dual process λ. Via a reverse sepa-

ration approach we observed explicit formulas for λ for each possible case.
We still stick to Assumption 4.8 and assume that λ stays in the same case during the
whole investment period. We observed the following cases:

Case 1) λ = 0.
There is nothing left to solve and λ(1,·) = 0.

Case 2) λ ∈ Rd>0.
Then by Proposition 4.12 we get λ(2,·)(t, µ) = −(µ− r1) > 0.

Case 3) λ ∈ Rd≥0 \
(
Rd>0 ∪ {0}

)
with active dimensions I.

Then by Section 4.2.1 and (4.26) we get

λ(3,I)(t, µ) = JIC(3,I)(t)γ−1
t (µ− r1)

Case 4) λ ∈ Rd \ Rd≥0 with active dimensions I.

Then by Section 4.2.2 and (4.44) we get

λ(4,I)(t, µ) = J(4,I)C(4,I)(t)γ−1
t (µ− r1) + (1− α)gI(JI + Id)1

+ α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
In Cases 1 and 2 the auxiliary market can be solved very easily. In Case 1 with λ = 0
and δ(λ) = 0 we need to solve M0 which is equal to the original unconstrained market.
However the optimal unconstrained solution has already been derived in Section 4.1:

π(1,·)(t, µ) =
1

1− α
Σ−1C(t)γ−1

t (µ− r1)

where C(t) =

(
γ−1
T −

1

1− α
(T − t)Σ−1

)−1
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4 Constrained optimization under power utility

In Case 2 with λ = −(µ − r1) > 0 and δ(λ) = 0 the auxiliary market simplifies to all
stocks having the same drift r as the bond. Since there is no risk in the bond, the optimal
strategy results to be trivial:

π(2,·)(t, µ) = 0

4.3.1 The auxiliary market in the Cases 3 and 4

Solving the auxiliary market for the Cases (3, I) and (4, I) with active dimensions I
is slightly more complicated. In the following we solve the auxiliary market Mλ for the
generalized linear λ (4.47) that involves all remaining cases.

λ(t, µ) = Jλ(t) · (µ− r1) + λc(t) (4.47)

δ(λ(t, µ)) = Jδ(t) · (µ− r1) + δc(t)

The unconstrained portfolio optimization problem in the auxiliary marketMλ consists
of maximizing expected utility of terminal wealth, where the wealth process Xπ depends
on the portfolio strategy π.

π∗ = arg max
π∈A

E
[

1

α

(
Xπ
T

)α]
This problem can be solved using a stochastic control approach with value function V̄ .

V̄ (t, x, µ) := sup
π∈A(t,x,µ)

E
[

1

α

(
Xπ
T

)α∣∣∣∣ (Xπ
t , µ̂t) = (x, µ)

]
(4.48)

Here A(t, x, µ) is the set of admissible strategies π ∈ A such that (Xπ
t , µ̂t) = (x, µ).

The stochastic control problem is to determine V̄ (0, 1, µ0) and the optimal portfolio strat-
egy π∗ such that

V̄ (0, 1, µ0) = sup
π∈A(0,1,µ0)

E
[

1

α

(
Xπ
T

)α∣∣∣∣ (Xπ
t , µ̂t) = (x, µ)

]
= E

[
1

α

(
Xπ∗
T

)α]
The controlled process in this stochastic control approach consists of the wealth process
Xπ together with the filter µ̂ such that the controlled process is Markov.

d

(
Xπ
t

µ̂t

)
=

(
Xπ
t

(
r + δ(λt) + π>t (µ̂t − r1 + λt)

)
0

)
dt+

(
Xπ
t π
>
t σ

γt(σ
−1)>

)
dVt

If the Bellmann principle holds for t1 > t we get

V̄ (t, x, µ) = sup
π∈A(t,x,µ)

E
[
V̄ (t1, X

π
t1 , µ̂t1)

∣∣ (Xπ
t , µ̂t) = (x, µ)

]
With Itô’s formula we get

V̄ (t, x, µ) = sup
π∈A(t,x,µ)

E
[
V̄ (t) +

∫ t1

t
V̄t(s) + V̄x(s)Xπ

s

(
r + δ(λs) + π>s (µ̂s − r1 + λs)

)
ds
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4.3 The auxiliary market

+

∫ t1

t
V̄x(s)Xπ

s π
>
s σ + V̄µ(s)>γs(σ

−1)>dVs

+
1

2

∫ t1

t
tr
(
HV̄ (s) · a(s)

)
ds

∣∣∣∣(Xπ
t , µ̂t) = (x, µ)

]
where we use the notation V̄ (s) := V̄ (s,Xπ

s , µ̂s) with derivatives V̄t, V̄x, V̄µ and Hessian
matrix HV̄ of the value function. a(s) is called the diffusion matrix.

a(s) :=

(
Xπ
s π
>
s σ

γs(σ
−1)>

)(
Xπ
s π
>
s σ

γs(σ
−1)>

)>
=

(
Xπ
s π
>
s ΣπsX

π
s Xπ

s π
>
s γs

γsπsX
π
s γsΣ

−1γs

)
⇒ tr

(
HV̄ (s) · a(s)

)
= V̄xxa11 + V̄ >xµa21 + tr

(
V̄µxa12 + V̄µµa22

)
= V̄xxa11 + 2a12V̄µx + tr

(
V̄µµa22

)
= (Xπ

s )2π>s ΣπsV̄xx + 2Xπ
s π
>
s γsV̄µx + tr

(
V̄µµγsΣ

−1γs
)

If
∫ t1
t V̄x(s)Xπ

s π
>
s σ+ V̄µ(s)>γs(σ

−1)>dVs is a martingale and the usual suitable conditions
hold, we observe the heuristic HJB-equation (4.49) for any fixed time t. Of course these
conditions have to be verified in a verification theorem later on.

0 = sup
π∈A(t,x,µ)

E
[∫ t1

t
V̄t(s) + V̄x(s)Xπ

s

(
r + δ(λs) + π>s (µ̂s − r1 + λs)

)
ds

+

∫ t1

t

1

2
(Xπ

s )2π>s ΣπsV̄xx +Xπ
s π
>
s γsV̄µxds

+

∫ t1

t

1

2
tr
(
V̄µµγsΣ

−1γs
)
ds

∣∣∣∣(Xπ
t , µ̂t) = (x, µ)

]
⇒ 0 = sup

π∈Rd

(
V̄t + V̄xx

(
r + δ(λ(t, µ)) + π> (µ− r1 + λ(t, µ))

)
+

1

2
π>Σπx2V̄xx + π>γtxV̄xµ +

1

2
tr
(
V̄µµγtΣ

−1γt
))

(4.49)

The HJB-equation (4.49) has to be solved with respect to the boundary condition

V̄ (T, x, µ) = sup
π∈A(T,x,µ)

E
[

1

α

(
Xπ
T

)α∣∣∣∣ (Xπ
T , µ̂t) = (x, µ)

]
=

1

α
xα

Now we can derive the optimal control π∗ that maximizes the HJB-equation (4.49) via
differentiating the inner part of (4.49) with respect to π.

0
!

= V̄xx (µ− r1 + λ(t, µ)) + V̄xxx
2Σπ + xγtV̄xµ

⇒ π∗ = − V̄x
xV̄xx

Σ−1 (µ− r1 + λ(t, µ))− 1

xV̄xx
Σ−1γtV̄xµ (4.50)

81



4 Constrained optimization under power utility

Solving the HJB-equation

We solve the HJB-equation (4.49) by plugging in π∗:

0 = V̄t + (r + δ(λ(t, µ)))xV̄x

− (µ− r1 + λ(t, µ))>Σ−1 (µ− r1 + λ(t, µ))
V̄ 2
x

V̄xx

− (µ− r1 + λ(t, µ))>Σ−1γt
V̄x
V̄xx

V̄xµ

+
1

2

1

V̄xx

(
V̄x (µ− r1 + λ(t, µ))> + V̄ >xµγt

)
Σ−1

(
(µ− r1 + λ(t, µ)) V̄x + γtV̄xµ

)
− V̄x
V̄xx

(µ− r1 + λ(t, µ))>Σ−1γtV̄xµ

− 1

V̄xx
V̄ >xµγtΣ

−1γtV̄xµ +
1

2
tr
(
V̄µµγtΣ

−1γt
)

= V̄t + (r + δ(λ(t, µ)))xV̄x

− 1

2
(µ− r1 + λ(t, µ))>Σ−1 (µ− r1 + λ(t, µ))

V̄ 2
x

V̄xx

− 1

2

1

V̄xx
V̄ >xµγtΣ

−1γtV̄xµ

− V̄x
V̄xx

(µ− r1 + λ(t, µ))>Σ−1γtV̄xµ

+
1

2
tr
(
V̄µµγtΣ

−1γt
)

Now we use the multiplicative ansatz

V̄ (t, x, µ) = U(x)ef̄(t,µ) =
xα

α
ef̄(t,µ)

with corresponding boundary condition f̄(T, µ) = 0.
This simplifies the HJB-equation (4.49) as follows:

0 = f̄t + α(r + δ(λ(t, µ)))

− 1

2

α

(α− 1)
(µ− r1 + λ(t, µ))>Σ−1 (µ− r1 + λ(t, µ))

− 1

2

1

α− 1
f̄>µ γtΣ

−1γtf̄µ

− α

α− 1
(µ− r1 + λ(t, µ))>Σ−1γtf̄µ

+
1

2
tr
(
f̄µµγtΣ

−1γt
)

We improve the above ansatz further, where the matrix Ā(t) is assumed to be symmetric.

f̄(t, µ) =
1

2
(µ− r1)>Ā(t)(µ− r1) + b̄(t)>(µ− r1) + k̄(t)
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4.3 The auxiliary market

This needs the boundary conditions Ā(T ) = 0, b̄(T ) = 0 and k̄(T ) = 0.
We also observe the following derivatives of f̄ :

f̄t(t, µ) =
1

2
(µ− r1)>Ā′(t)(µ− r1) + b̄′(t)>(µ− r1) + k̄′(t)

f̄µ(t, µ) = Ā(t)(µ− r1) + b(t)

f̄µµ(t, µ) = Ā(t)

Using this ansatz and the formulas for λ from (4.47) the HJB-equation (4.49) becomes:

1

2
(µ− r1)>Ā′(t)(µ− r1) + b̄′(t)>(µ− r1) + k̄′(t)

= f̄t = −αr − αJδ(t) · (µ− r1)− αδc(t)

+
1

2

α

α− 1
((Id+ Jλ(t))(µ− r1) + λc(t))

>Σ−1 ((Id+ Jλ(t))(µ− r1) + λc(t))

+
1

2

1

α− 1

(
Ā(t)(µ− r1) + b̄(t)

)>
γtΣ

−1γt
(
Ā(t)(µ− r1) + b̄(t)

)
+

α

α− 1
((Id+ Jλ(t))(µ− r1) + λc(t))

>Σ−1γt
(
Ā(t)(µ− r1) + b̄(t)

)
− 1

2
tr
(
Ā(t)γtΣ

−1γt
)

= −αr − αJδ(t) · (µ− r1)− αδc(t)

+
1

2

α

α− 1
(µ− r1)>(Id+ Jλ(t))>Σ−1(Id+ Jλ(t))(µ− r1)

+
α

α− 1
(µ− r1)>(Id+ Jλ(t))>Σ−1λc(t)

+
1

2

α

α− 1
λc(t)

>Σ−1λc(t)

+
1

2

1

α− 1
(µ− r1)>Ā(t)γtΣ

−1γtĀ(t)(µ− r1)

+
1

α− 1
(µ− r1)>Ā(t)γtΣ

−1γtb̄(t)

+
1

2

1

α− 1
b̄(t)>γtΣ

−1γtb̄(t)

+
α

α− 1
(µ− r1)>(Id+ Jλ(t))>Σ−1γtĀ(t)(µ− r1)

+
α

α− 1
(µ− r1)>(Id+ Jλ(t))>Σ−1γtb̄(t)

+
α

α− 1
(µ− r1)>Ā(t)γtΣ

−1λc(t)

+
α

α− 1
λc(t)

>Σ−1γtb̄(t)

− 1

2
tr
(
Ā(t)γtΣ

−1γt
)

Now the resulting differential equation only consists of terms that are either quadratic,
linear or constant in (µ − r1), hence it can be split up into the following three separate
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ordinary differential equations:

Ā′(t) =
α

α− 1
(Id+ Jλ(t))>Σ−1(Id+ Jλ(t)) +

1

α− 1
Ā(t)γtΣ

−1γtĀ(t)

+ 2
α

α− 1
(Id+ Jλ(t))>Σ−1γtĀ(t)

= − α

1− α

(
Id+ Jλ(t) + γtĀ(t)

)>
Σ−1

(
Id+ Jλ(t) + γtĀ(t)

)
− Ā(t)γtΣ

−1γtĀ(t)

(4.51)

b̄′(t) = −αJδ(t)> +
α

α− 1
(Id+ Jλ(t))>Σ−1λc(t) +

1

α− 1
Ā(t)γtΣ

−1γtb̄(t)

+
α

α− 1
(Id+ Jλ(t))>Σ−1γtb̄(t) +

α

α− 1
Ā(t)γtΣ

−1λc(t)

= −αJδ(t)> −
α

1− α

(
Id+ Jλ(t) + γtĀ(t)

)>
Σ−1

(
γtb̄(t) + λc(t)

)
− Ā(t)γtΣ

−1γtb̄(t)

(4.52)

k̄′(t) = −αr − αδc(t) +
1

2

α

α− 1
λc(t)

>Σ−1λc(t)

+
1

2

1

α− 1
b̄(t)>γtΣ

−1γtb̄(t) +
α

α− 1
λc(t)

>Σ−1γtb̄(t)−
1

2
tr
(
Ā(t)γtΣ

−1γt
)

= −αr − αδc(t)−
1

2

α

1− α

(
γtb̄(t) + λc(t)

)>
Σ−1

(
γtb̄(t) + λc(t)

)
− 1

2
b̄(t)>γtΣ

−1γtb̄(t)−
1

2
tr
(
Ā(t)γtΣ

−1γt
)

(4.53)

These differential equations need to be solved with the correct values for λ (4.47) in each
case. Then the optimal portfolio strategy as derived in (4.50) becomes:

π∗(t, x, µ) = − V̄x
xV̄xx

Σ−1(µ− r1 + λ(t, µ))− 1

xV̄xx
Σ−1γtV̄xµ

=
1

1− α
Σ−1(µ− r1 + λ(t, µ)) +

1

1− α
Σ−1γtf̄µ

=
1

1− α
Σ−1(Id+ Jλ(t) + γtĀ(t))(µ− r1) +

1

1− α
Σ−1(γtb̄(t) + λc(t)) (4.54)

Theorem 4.19
In Case (3, I) the optimal portfolio strategy is given by

π(3,I)(t, x, µ) =
1

1− α
Σ

(3,I)
J C(3,I)(t)γ−1

t (µ− r1)

where

C(3,I)(t) =

(
γ−1
t −

α

1− α
(T − t)Σ(3,I)

J

)−1

and Σ
(3,I)
J =

(
(ΣII)

−1 0IJ
0JI 0JJ

)
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Theorem 4.20
In Case (4, I) the optimal portfolio strategy is given by

π(4,I)(t, x, µ) =
1

1− α
Σ

(4,I)
J C(4,I)(t)γ−1

t (µ− r1)

+
α

1− α
(T − t)gIΣ(4,I)

J C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ gI

(
(ΣII)

−1
1I

0J

)
where

C(4,I)(t) =

(
γ−1
t −

α

1− α
(T − t)Σ(4,I)

J

)−1

and Σ
(4,I)
J =

(
(ΣII)

−1
(
IdI − gI1I1>I (ΣII)

−1
)

0IJ
0JI 0JJ

)
Proof. (of Theorem 4.19)
In Case (3, I) with λ from (4.26) we get in (4.47):

λ(3,I)(t, µ) = JIC(3,I)(t)γ−1
t (µ− r1) hence Jλ(t) = JIC(3,I)(t)γ−1

t and λc = 0

δ(λ(t, µ)) = 0 hence Jδ = 0 and δc = 0

Using these parameters the ODEs (4.51),(4.52) and (4.53) simplify significantly.

Ā′(t) = − α

1− α

(
JIC(3,I)(t)γ−1

t + Id+ γtĀ(t)
)>

Σ−1
(
JIC(3,I)(t)γ−1

t + Id+ γtĀ(t)
)

− Ā(t)γtΣ
−1γtĀ(t)

b̄′(t) = − α

1− α

(
JIC(3,I)(t)γ−1

t + Id+ γtĀ(t)
)>

Σ−1γtb̄(t)− Ā(t)γtΣ
−1γtb̄(t)

k̄′(t) = −αr − 1

2

α

1− α
b̄(t)>γtΣ

−1γtb̄(t)

− 1

2
b̄(t)>γtΣ

−1γtb̄(t)−
1

2
tr
(
Ā(t)γtΣ

−1γt
)

To solve the first ODE for Ā(t), note the solution A(t) of ODE (4.24):

A(t) = γ−1
t (C(3,I)(t)γ−1

t − Id)

⇒ JIC(3,I)(t)γ−1
t = JI(Id+ γtA(t))

For Ā(t) = A(t) we get immediately that ODEs (4.51) and (4.24) are the same, hence
Ā(t) = A(t) is the correct solution for ODE (4.51).
The second ODE above gets solved trivially by b̄(t) = 0 and the third ODE for k̄(t) results
to be the same ODE as (4.25) for k(t).

k̄′(t) = −αr − 1

2
tr
(
A(t)γtΣ

−1γt
)

= k′(t) from (4.25)

⇒ k̄(t) = α(T − t)r +
1

2

∫ T

t
tr
(
(C(s)− γs)Σ−1

)
ds
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= α(T − t)r +
1

2

∫ T

t
tr
(
C(s)Σ−1

)
ds− 1

2
log det γ−1

T +
1

2
log det γ−1

t

In particular we get for the optimal trading strategy (4.54)

π(3,I)(t, x, µ) = − V̄x
xV̄xx

Σ−1
(
µ− r1 + λ(3,I)(t, µ)

)
− 1

xV̄xx
Σ−1γtV̄xµ

=
1

1− α
Σ−1

(
µ− r1 + λ(3,I)(t, µ)

)
+

1

1− α
Σ−1γtf̄µ

=
1

1− α
Σ−1(Id+ Jλ(t) + γtĀ(t))(µ− r1) +

1

1− α
Σ−1(γtb̄(t) + λc(t))

=
1

1− α
Σ−1

(
Id+ JIC(3,I)(t)γ−1

t

)
(µ− r1) +

1

1− α
Σ−1γtĀ(t)(µ− r1)

=
1

1− α
Σ−1(Id+ JI)C(3,I)(t)γ−1

t (µ− r1)

=
1

1− α
Σ

(3,I)
J C(3,I)(t)γ−1

t (µ− r1)

Finally the verification in Case (3, I) follows from the following Theorem 4.21.

Proof. (of Theorem 4.20)
In Case (4, I) with λ from (4.44) we get in (4.47):

λ(4,I)(t, µ) = J(4,I)C(4,I)(t)γ−1
t (µ− r1) + (1− α)gI(JI + Id)1

+ α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
δ
(
λ(4,I)(t, µ)

)
= gI

(
(ΣII)

−1
1I

0J

)>
C(4,I)(t)γ−1

t (µ− r1)

+ α(T − t)(gI)2

(
(ΣII)

−1
1I

0J

)>
C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− (1− α)gI

⇒ Jλ(t) = J(4,I)C(4,I)(t)γ−1
t

λc = α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ (1− α)gI(JI + Id)1

Jδ = gI
(

(ΣII)
−1
1I

0J

)>
C(4,I)(t)γ−1

t

δc = α(T − t)(gI)2

(
(ΣII)

−1
1I

0J

)>
C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− (1− α)gI

Using these parameters the ODEs (4.51),(4.52) and (4.53) simplify significantly.

Ā′(t) = − α

1− α

(
Id+ γtĀ(t) + J(4,I)C(4,I)(t)γ−1

t

)>
Σ−1

(
Id+ γtĀ(t) + J(4,I)C(4,I)(t)γ−1

t

)
− Ā(t)γtΣ

−1γtĀ(t)

86



4.3 The auxiliary market

b̄′(t) = −αgIγ−1
t C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− α

1− α

(
Id+ γtĀ(t) + J(4,I)C(4,I)(t)γ−1

t

)>
Σ−1γtb̄(t)− Ā(t)γtΣ

−1γtb̄(t)

− α

1− α

(
Id+ γtĀ(t) + J(4,I)C(4,I)(t)γ−1

t

)>
Σ−1α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− α

1− α

(
Id+ γtĀ(t) + J(4,I)C(4,I)(t)γ−1

t

)>
Σ−1(1− α)gI(JI + Id)1

k̄′(t) = −αr + α(1− α)gI − αα(T − t)(gI)2

(
(ΣII)

−1
1I

0J

)>
C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− 1

2

α

1− α

(
α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ (1− α)gI(JI + Id)1

)>
· Σ−1

(
α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ (1− α)gI(JI + Id)1

)
− α

1− α

(
α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ (1− α)gI(JI + Id)1

)>
Σ−1γtb̄(t)

− 1

2

α

1− α
b̄(t)>γtΣ

−1γtb̄(t)

− 1

2
b̄(t)>γtΣ

−1γtb̄(t)−
1

2
tr
(
Ā(t)γtΣ

−1γt
)

Fortunately when comparing the first ODE for Ā(t) with the ODEs (4.37, 4.39) for A(t) in
Section 4.2.2, we observe that both equations get solved for the same parameters Ā(t) =
A(t), where A(t) = γ−1

t (B(t)− Id) = γ−1
t (C(4,I)(t)γ−1

t − Id).
Now the second ODE for b̄(t) becomes:

b̄′(t) = −αgIγ−1
t C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− α

1− α
γ−1
t C(4,I)(t)

(
Id+ J(4,I)

)>
Σ−1γtb̄(t)−

(
γ−1
t C(4,I)(t)− Id

)
Σ−1γtb̄(t)

− α

1− α
γ−1
t C(4,I)(t)

(
Id+ J(4,I)

)>
Σ−1α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− α

1− α
γ−1
t C(4,I)(t)

(
Id+ J(4,I)

)>
Σ−1(1− α)gI(JI + Id)1

= −αgIγ−1
t C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
− α

1− α
γ−1
t C(4,I)(t)

(
Id+ J(4,I)

)>
Σ−1

(
Id
)
γtb̄(t)−

(
γ−1
t C(4,I)(t)− Id

)
Σ−1γtb̄(t)

− α

1− α
γ−1
t C(4,I)(t)

(
Id+ J(4,I)

)>
Σ−1

(
J(4,I)

)
α(T − t)gIC(4,I)(t)

(
(ΣII)

−1
1I

0J

)
Again when comparing this ODE to ODE (4.40) for b(t) in Section 4.2.2, we observe that
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4 Constrained optimization under power utility

both equations get solved for the same parameters b̄(t) = b(t) = γ−1
t c(t) with

c(t) = α(T − t)gIC(4,I)(t)

(
(ΣII)

−1
1I

0J

)
Finally the third ODE above remains with:

k̄′(t) = −αr + α(1− α)gI − αgI
(

(ΣII)
−1
1I

0J

)>
c(t)

− 1

2

α

1− α

(
J(4,I)c(t) + (1− α)gI(JI + Id)1

)>
· Σ−1

(
J(4,I)c(t) + (1− α)gI(JI + Id)1

)
− α

1− α

(
J(4,I)c(t) + (1− α)gI(JI + Id)1

)>
Σ−1c(t)

− 1

2

α

1− α
c(t)>Σ−1c(t)

− 1

2
c(t)>Σ−1c(t)− 1

2
tr
(

(C(4,I)(t)− γt)Σ−1
)

= −αr +
1

2
α(1− α)gI − αgI

(
(ΣII)

−1
1I

0J

)>
c(t)

− 1

2
c(t)>

(
Σ−1 +

α

1− α
Σ

(4,I)
J

)
c(t)− 1

2
tr
(

(C(4,I)(t)− γt)Σ−1
)

= k′(t)

Hence this is the same ODE as (4.42), such that we get k̄(t) = k(t) as given in (4.43).
In particular we get for the optimal trading strategy (4.54)

π(4,I)(t, x, µ) = − V̄x
xV̄xx

Σ−1
(
µ− r1 + λ(4,I)(t, µ)

)
− 1

xV̄xx
Σ−1γtV̄xµ

=
1

1− α
Σ−1

(
µ− r1 + λ(4,I)(t, µ)

)
+

1

1− α
Σ−1γtf̄µ

=
1

1− α
Σ−1(Id+ Jλ(t) + γtA(t))(µ− r1) +

1

1− α
Σ−1(γtb(t) + λc(t))

=
1

1− α
Σ−1

(
J(4,I)C(4,I)(t)γ−1

t +B(t)
)

(µ− r1) + Σ−1gI(JI + Id)1

+
1

1− α
Σ−1

(
c(t) + α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

))
=

1

1− α
Σ−1

(
Id+ J(4,I)

)
C(4,I)(t)γ−1

t (µ− r1) + Σ−1gI(JI + Id)1

+
α

1− α
(T − t)gIΣ−1

(
Id+ J(4,I)

)
C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
=

1

1− α
Σ4,I
J C(4,I)(t)γ−1

t (µ− r1)
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+
α

1− α
(T − t)gIΣ4,I

J C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ gI

(
(ΣII)

−1
1I

0J

)
Finally the verification in Case (4, I) follows from Theorem 4.21.

Theorem 4.21 (Verification of the auxiliary market in the Cases 3 and 4)
Define the candidates V̄ and π̄ for value function and optimal control as derived in the
previous theorems.

V̄ (t, x, µ) :=
xα

α
ef̄(t,µ)

π̄(t, x, µ) := π(3,I)(t, µ) resp. π(4,I)(t, µ)

where f̄ is the quadratic function given in the respective ansatz above. Then they solve
the stochastic control approach (4.48) of our constrained portfolio optimization problem
in the Cases 3 and 4, hence V̄ = V and π̄ = π∗ where

V (t, x, µ) := sup
π∈A(t,x,µ)

E
[

1

α
(Xπ

T )α
∣∣∣∣ (Xπ

t , µ̂t) = (x, µ)

]
and π∗ := arg max

π∈A
E
[

1

α
(Xπ

T )α
]

Proof. Let (t, x, µ) ∈ [0, T )× R+ × Rd, π ∈ A and s ∈ [t, T ) be arbitrary and let τ be an
arbitrary stopping time with values in [t, T ].
As V̄ ∈ C1,2,2 we get with the Itô formula

V̄ (s ∧ τ,Xπ
s∧τ , µ̂s∧τ ) = V̄ (t, x, µ) +

∫ s∧τ

t
V̄t(u) + LπV̄ (u)du

+

∫ s∧τ

t
V̄x(u)Xπ

uπ
>
u σ + V̄µ(u)>γu(σ−1)>dVu (4.55)

where LπV̄ (u) = V̄x(u)Xπ
u

(
r + δ(λu) + π>u (µ̂u − r1 + λu)

)
+

1

2
V̄xx(u)(Xπ

u )2π>u Σπu + V̄ >xµ(u)γuπuX
π
u +

1

2
tr
(
V̄µµ(u)γuΣ−1γu

)
where we use the notation V̄ (u) := V̄ (u,Xπ

u , µ̂u). While most sub-indices indicate time-
dependency of the corresponding variables, sub-indices of V̄ are the respective derivatives
of V̄ (t, x, µ).
Now for each n ∈ N define the stopping time

τn := inf

{
s ≥ t

∣∣∣∣ ∫ s

t

∥∥σ−1γuV̄µ(u)
∥∥2

2
du ≥ n or

∫ s

t

∥∥∥V̄x(u)Xπ
uσ
>πu

∥∥∥2

2
du ≥ n

}
∧ T

Hence τn → T as n→∞ and therefore for any n ∈ N the stopped process∫ s∧τn

t
V̄x(u)Xπ

uπ
>
u σ + V̄µ(u)>γu(σ−1)> dVu
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4 Constrained optimization under power utility

is a martingale with zero expectation.
Now we use τn in (4.55) and take conditional expectations on both sides.

E
[
V̄ (s ∧ τn, Xπ

s∧τn , µ̂s∧τn)
∣∣ (Xπ

t , µ̂t) = (x, µ)
]

= V̄ (t, x, µ) + E
[∫ s∧τn

t
V̄t(u,X

π
u , µ̂u) + LπV̄ (u,Xπ

u , µ̂u)du

∣∣∣∣ (Xπ
t , µ̂t) = (x, µ)

]
Since V̄ (t, x, µ) satisfies the HJB-equation (4.49), we observe for the right hand side:

V̄t(u,X
π
u , µ̂u) + LπV̄ (u,Xπ

u , µ̂u) ≤ 0 for all π ∈ A
V̄t(u,X

π
u , µ̂u) + LπV̄ (u,Xπ

u , µ̂u) = 0 if π = π∗

This leads for each u ∈ [t, T ] and π ∈ A(t, x, µ) to the following equations:

E
[
V̄ (s ∧ τn, Xπ

s∧τn , µ̂s∧τn)
∣∣ (Xπ

t , µ̂t) = (x, µ)
]
≤ V̄ (t, x, µ) for all π ∈ A(t, x, µ)

E
[
V̄ (s ∧ τn, Xπ

s∧τn , µ̂s∧τn)
∣∣ (Xπ

t , µ̂t) = (x, µ)
]

= V̄ (t, x, µ) if π = π∗

By Lemma 4.22 we can apply dominated convergence and observe for n→∞

V̄ (t, x, µ) ≥ E
[
V̄ (s,Xπ

s , µ̂s)
∣∣ (Xπ

t , µ̂t) = (x, µ)
]

for all π ∈ A(t, x, µ)

V̄ (t, x, µ) = E
[
V̄ (s,Xπ

s , µ̂s)
∣∣ (Xπ

t , µ̂t) = (x, µ)
]

if π = π∗

Since V̄ (s,Xπ
s , µ̂s)→ V̄ (T,Xπ

T , µ̂T ) = 1
α(Xπ

T )α for s→ T we get by dominated convergence

V̄ (t, x, µ) ≥ E
[

1

α
(Xπ

T )α
∣∣∣∣ (Xπ

t , µ̂t) = (x, µ)

]
for all π ∈ A(t, x, µ)

⇒ V̄ (t, x, µ) ≥ sup
π∈A(t,x,µ)

E
[

1

α
(Xπ

T )α
∣∣∣∣ (Xπ

t , µ̂t) = (x, µ)

]
= V (t, x, µ)

Since we get equality for π = π̄ we get V (t, x, µ) = V̄ (t, x, µ) with optimizer π∗ = π̄.

Lemma 4.22
There is an integrable random variable Y with

∣∣V̄ (s ∧ τn, Xπ
s∧τn , µ̂s∧τn)

∣∣ ≤ Y .

Proof. The continuous function f is a second order polynomial in µ, hence

f(t, µ) ≤ Ct(1 + ‖µ‖22)

where the leading constant Ct may depend on time t. However t ∈ [0, T ] is in a closed
interval, hence f(·, µ) is uniformly continuous in t and attains its supremum as a maximum.

f(t, µ) ≤ C(1 + ‖µ‖22)

for some upper bound C ≥ maxt∈[0,T ]Ct <∞.
Therefore∣∣V̄ (t, x, µ)

∣∣ = − 1

α
xαef(t,µ) ≤ − 1

α
xαeC(1+‖µ‖22)
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⇒
∣∣V̄ (s ∧ τn, Xπ

s∧τn , µ̂s∧τn)
∣∣ ≤ − 1

α
(Xπ

s∧τn)α exp
(
C(1 + ‖µ̂s∧τn‖

2
2)
)

≤ − 1

α
sup
s∈[t,T ]

(Xπ
s )α exp

(
C(1 + ‖µ̂s‖22)

)
≤ − 1

α
sup
s∈[t,T ]

(Xπ
s )α · sup

s∈[t,T ]
exp

(
C(1 + ‖µ̂s‖22)

)
=: Y

Now on the one handXπ
s > 0 is uniformly continuous in [t, T ], henceM := infs∈[t,T ]X

π
s > 0

and therefore sups∈[t,T ](X
π)αs ≤Mα <∞.

And on the other hand µ̂t is a martingale, hence ‖µ̂s‖22 is a submartingale since ‖·‖22
is a convex function. Hence exp

(
C(1 + ‖µ̂s‖22)

)
is also a submartingale and by Doob’s

maximal inequality we get

E

[
sup
s∈[t,T ]

exp
(
C(1 + ‖µ̂s‖22)

)]
≤
(

C

C − 1

)C
E
[
exp

(
C(1 + ‖µ̂T ‖22)

)]
<∞

Hence E [Y ] <∞.
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4 Constrained optimization under power utility

4.4 Determining the correct case and active dimensions

Following the reverse separation approach of Section 4.2, we have observed four different
cases with several subcases that the optimal dual process λ and the corresponding optimal
portfolio strategy πλ could be in. This section is devoted to deciding which case is the
correct choice for some given set of market parameters. Additionally we will provide an
algorithm that leads to the correct optimal case.

First we note that the dual processes ν were created depending on (t, h, µ) = (t,Hν
t , µ̂t)

and the portfolio strategies π were created depending on (t, x, µ) = (t,Xπ
t , µ̂t). However

both, the optimal dual solution λ and the optimal portfolio strategy πλ only depend on
the time and the current filter value (t, µ) = (t, µ̂t). Note that during this whole section
we will continue using (t, µ) for (t, µ̂t).

We have already seen in Remark 4.11 and Proposition 4.12 that Cases 1 and 2 are
previsible given the current market parameters. Case 1 happens if and only if the optimal
unconstrained solution πunc is admissible and Case 2 happens if and only if µ − r1 < 0.
In these cases we get the following optimal solutions at time t:

λt = λ(1,·)(t, µ) = 0 ⇒ πλt = π(1,·)(t, µ) =
1

1− α
Σ−1C(t)γ−1

t (µ− r1)

λt = λ(2,·)(t, µ) = −(µ− r1) ⇒ πλt = π(2,·)(t, µ) = 0

Unfortunately we have also seen in the previous sections that if neither of the trivial cases
holds true, we cannot directly observe whether Case 3 or Case 4 is the right choice and
in particular which dimensions have to be active. This can be seen similarly to Remark
3.16. In Case 3 with active dimensions I, we get the following optimal solution at time t:

λt = λ(3,I)(t, µ) = JIC(3,I)(t)γ−1
t (µ− r1)

⇒ πλt = π(3,I)(t, µ) =
1

1− α
Σ

(3,I)
J C(3,I)(t)γ−1

t (µ− r1)

And in Case 4 with active dimensions I the optimal solution becomes:

λt = λ(4,I)(t, µ) = J(4,I)C(4,I)(t)γ−1
t (µ− r1)

+ α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ (1− α)gI(JI + Id)1

⇒ πλt = π(4,I)(t, µ) =
1

1− α
Σ

(4,I)
J C(4,I)(t)γ−1

t (µ− r1)

+
α

1− α
(T − t)gIΣ(4,I)

J C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ gI

(
(ΣII)

−1
1I

0J

)
In the following we will collect some properties of these optimal solutions.
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Example 4.23
In Lemma 3.5 we have seen that under logarithmic utility we can eliminate passive di-
mensions from the market model without changing the optimal solution. In case of power
utility the elimination of passive dimensions does not preserve the correct optimal solution
in general.

We consider the following easy counterexample in two dimensions:

α = −1 , t = 1 , T = 10

µ− r1 =

(
0.04
−0.04

)
, Σ =

(
0.01 0.005
0.005 0.04

)
, Σ0 =

(
0.01 0.002
0.002 0.01

)
⇒ πunc ≈

(
0.74
−0.37

)
/∈ K

Later on we will see that the optimal solution in this setting is in Case (3, {1}). Hence

π(3,I) =
1

2

(
100 0
0 0

)
C(3,I)(1)γ−1

1 (µ− r1) ≈
(

0.6194
0

)
where C(3,I)(1) =

(
γ−1

1 +
9

2

(
100 0
0 0

))−1

≈
(

0.0015 0.0004
0.0004 0.0077

)
On the other hand, we consider the setting without passive dimension 2:

µ′ − r = 0.04 , Σ′ = 0.01 , Σ′0 = 0.01

⇒ π′unc = 0.6154 ∈ K

However we observe that due to missing correlation effects π′unc 6= (πunc){1}.

Remark 4.24
The above example points out some very important characteristics of optimal strategies
in general.

On first sight it seems unnatural that the optimal constrained strategy should also
depend on those stocks that we don’t even invest in. However just because some stock has
a very poor performance and does not make it into the optimal strategy, it does not loose
its correlation to the other stocks. Deleting this stock from the market model changes the
covariance-matrices Σ and Σ0 and therefore the resulting optimal strategies.

Also note that this has extensive consequences to any practical application since it
means that in order to get perfectly fitting results the investor would have to include any
existing stock in the world into her model. Theoretically this also expands to having to
include any investment opportunity that correlates to her model.

For logarithmic utility we showed in Lemma 3.5 that we can eliminate some of those
stocks without changing the resulting strategy. While this is a computational advantage,
this is also a major drawback of logarithmic utility and its low risk-aversion.

Remark 4.25 (notation)
In the following we will frequently use the matrix D(t):

D(t) :=
(
Σ−1C(t)γ−1

t

)−1

93
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= γt

(
γ−1
t −

α

1− α
(T − t)Σ−1

)
Σ

= Σ− α

1− α
(T − t)γt

Note πunc = 1
1−αD(t)−1(µ− r1).

Proposition 4.26 (The optimal solutions in Case 3)
Let I and J be the (correct) choices for active and passive dimensions.
Then for λ = λ(3,I)(t, µ) and π = π(3,I)(t, µ) we get:

πJ = 0 and 0I ≤ πI =
1

1− α
(D(t)II)

−1 (µ− r1)I

λI = 0 and 0J ≤ λJ = −(µ− r1)J +D(t)JI(1− α)πI

Proof. By construction the optimal solutions satisfy π ≥ 0 and λ ≥ 0. Define

B(t) := C(3,I)(t)γ−1
t =

(
Id− α

1− α
(T − t)γtΣ(3,I)

J

)−1

b(t) := B(t)−1 =

(
IdI − α

1−α(T − t)(γt)II(ΣII)
−1 0IJ

− α
1−α(T − t)(γt)JI(ΣII)

−1 IdJJ

)
By the matrix inversion formula (3.8) we get (omitting the (t))

BII = (b−1)II =
(
bII − bIJ(bJJ)−1bJI

)−1

= (bII)
−1

BJJ = (b−1)JJ = (bJJ)−1 + (bJJ)−1bJI(b
−1)IIbIJ(bJJ)−1

= IdJ

BJI = (b−1)JI = −(bJJ)−1bJI(b
−1)II

= −bJI(bII)−1

BIJ = (b−1)IJ = −(b−1)IIbIJ(bJJ)−1

= 0IJ

Hence

π =
1

1− α
Σ

(3,I)
J C(3,I)(t)γ−1

t (µ− r1)

=
1

1− α

(
(ΣII)

−1 0IJ
0JI 0JJ

)
B(t)(µ− r1)

⇒ πJ = 0J

πI =
1

1− α
(ΣII)

−1B(t)II(µ− r1)I

=
1

1− α
(b(t)IIΣII)

−1(µ− r1)I
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=
1

1− α
(D(t)II)

−1 (µ− r1)I

and

λ = JIC(3,I)(t)γ−1
t (µ− r1) =

(
0II 0IJ

ΣJI(ΣII)
−1 −IdJ

)
B(t)(µ− r1)

⇒ λI = 0I

λJ = ΣJI(ΣII)
−1B(t)II(µ− r1)I −B(t)JI(µ− r1)I −B(t)JJ(µ− r1)J

= −(µ− r1)J + ΣJI(ΣII)
−1(b(t)II)

−1(µ− r1)I + b(t)JI(b(t)II)
−1(µ− r1)I

= −(µ− r1)J +

(
ΣJI −

α

1− α
(T − t)(γt)JI

)
(ΣII)

−1(b(t)II)
−1(µ− r1)I

= −(µ− r1)J +D(t)JI(1− α)πI

Now we show in Lemmas 4.27 and 4.31 that several intuitively false choices of active
and passive dimensions in fact lead to non-admissible solutions, revealing that the choice
was wrong:

Lemma 4.27 (Choice of I in Case 3)
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 3 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.

If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < 0.
2) Let j ∈ J with λj > 0 be a passive dimension (by Proposition 4.26).

If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.

Proof. The proof is given in Appendix A.4.4

Remark 4.28
So far we know πI ≥ 0, πJ = 0 and λI = 0, λJ ≥ 0.
However similarly to Remark 3.13 under logarithmic utility there can be situations with
πk = 0 and λk = 0 for some dimension k. We call these dimensions ’boundary dimensions’
since they are on the boundary between being active and being passive. The corresponding
stocks are almost invested in, meaning that if the market parameters change slightly into
the right direction, then πk > 0.
These dimensions can be considered both, active and passive as Corollary 4.29 shows.

Corollary 4.29 (Dimensions on the boundary in Case 3)
If j ∈ J is a passive dimensions that is almost invested in, than j can also be considered
an active dimension.

In particular:
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 3 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
Let j ∈ J with πj = 0 and λj = 0 be a passive dimension, that is almost invested in.
Then: If we choose I ′ = I ∪ {j} and J ′ = J \ {j} we still get λ′ = λ and π′ = π.
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4 Constrained optimization under power utility

Proof. The proof is given in Appendix A.4.5

In Case 4 the formulas look significantly more complicated:

Proposition 4.30 (The optimal solutions in Case 4)
Let I and J be the (correct) choices for active and passive dimensions. To simplify notation
we use following abbreviations:

IdI := IdI − gI(ΣII)
−1
1I1

>
I

DI(t) := ΣII −
α

1− α
(T − t)(γt)IIIdI

(µ− r1)+I
I := (µ− r1)I + α(T − t)gI(γt)II(ΣII)

−1
1I

Then for λ = λ(4,I)(t, µ) and π = π(4,I)(t, µ) we get:

πI =
1

1− α
IdI DI(t)−1(µ− r1)+I

I + gI(ΣII)
−1
1I

πJ = 0

with 1
>
I πI = 1 and

λ̄ = −gI 1>I DI(t)−1(µ− r1)+I
I + gI(1− α)

λ̄1I = (1− α)ΣIIπI − ΣII DI(t)−1(µ− r1)+I
I

λJ = −(µ− r1)J +D(t)JI(1− α)πI

Proof. The proof is given in A.4.6.

We get the analogue result to Lemma 4.27 for Case 4, showing that several intuitively
false choices of active and passive dimensions in fact lead to non-admissible solutions,
revealing that the choice was wrong:

Lemma 4.31 (Choice of I in Case 4)
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 4 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.
If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < λ̄′.
2) Let j ∈ J with λj > λ̄ be a passive dimension (by Proposition 4.30).
If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.

Hence several false choices of active and passive dimensions lead to a non-admissible
solutions, revealing that the choice was wrong.

Proof. Proving this directly is way too circumstantial and lengthy, hence we conclude this
from Lemma 4.39 and Theorem 4.36.
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Corollary 4.32 (Dimensions on the boundary in Case 4)
If j ∈ J is a passive dimensions that is almost invested in, than j can also be considered
an active dimension.

In particular:
Let I and J be the active and passive dimensions such that (λ, π) is the optimal solution
in Case 4 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
Let j ∈ J with πj = 0 and λj = λ̄ be a passive dimension that is almost invested in.
Then: If we choose I ′ = I ∪ {j} and J ′ = J \ {j} we still get λ′ = λ and π′ = π.

Proof. Proving this directly is way too circumstantial and lengthy, hence we conclude this
from Lemma 4.39 and Theorem 4.36.

Remark 4.33
Note that each of the Results 4.27, 4.29, 4.31 and 4.32 follow immediately from Lemma 4.39
and Theorem 4.36. The proofs given above only show the underlying technical connections.

Now we are able to formulate an algorithm to determine the correct case:

Algorithm 4.34 (Solving the portfolio optimization problem explicitly)
The constrained portfolio optimization problem under power utility gets solved via going
through the following four cases until hitting an admissible solution. When hitting an
admissible solution this provides the optimal dual process and the optimal constrained
portfolio strategy at the current time t with the current filter value µ̂t.

1. Compute the optimal unconstrained strategy πunc = 1
1−αΣ−1C(t)γ−1

t (µ− r1).

If πunc ∈ K then λ = 0 and πλ = πunc.

2. If µ− r1 < 0 then λ = −(µ− r1) and πλ = 0.

3. For each ∅ 6= I ⊂ {1, ..., d} compute λ(3,I) and π(3,I).

If π(3,I) ∈ K and λ(3,I) ≥ 0 , then λ = λ(3,I) and πλ = π(3,I).

4. For each ∅ 6= I ⊆ {1, ..., d} compute λ(4,I) and π(4,I).

If π(4,I) ∈ K and λ(4,I) ≥ λ̄I1 < 0 , then λ = λ(4,I) and πλ = π(4,I).

Remark 4.35
There are several additional conditions that can be introduced to Algorithm 4.34 to ac-
celerate his speed.
One example would be to check whether πunc > 0. In that case the no short-selling con-
straint is not harmed and it is not necessary to consider Case 3 at all. Also sorting the
possible choices for the active dimensions can increase the algorithm’s speed as described
in Remark 3.23.
Several more possibilities can be concluded from the derivations in Section 4.4.1.

Theorem 4.36
The above algorithm always results in the unique solution.
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4 Constrained optimization under power utility

Proof. Case 1:
If the optimal unconstrained strategy is admissible, there is nothing left to solve. Otherwise
Theorem 2.11 ensures that there is an optimal λ whose corresponding auxiliary market
leads to the optimal constrained portfolio strategy. Depending on the sign of λ̄ = mini λi
we need to find λ in Case 2 (λ̄ > 0), Case 3 (λ̄ = 0) or Case 4 (λ̄ < 0).

Case 2:
Proposition 4.12 shows that Case 2 is equivalent to checking the condition µ− r1 < 0 and
leads to λ = −(µ− r1) and πλ = 0.

Cases 3 and 4:
By Theorem 2.9 we know that if λ ∈ K̃, πλ ∈ K and λ>πλ + δ(λ) = 0 then (λ, πλ) is
already the optimal solution. Obviously λ ∈ K̃ = Rd is always true.
By the structure of the optimal solution in Case 3 we observe if πλ ∈ K:

λ =

(
0I
λJ

)
and πλ =

(
πλI
0J

)
⇒ λ>πλ = 0

Hence if λ ≥ 0 then δ(λ) = 0 and hence λ>πλ + δ(λ) = 0.

On the other hand in Case 4 we observe if πλ ∈ K:

λ =

(
λ̄1I
λJ

)
and πλ =

(
πλI
0J

)
with 1

>
I π

λ
I = 1 ⇒ λ>πλ = λ̄

Hence if λ ≥ λ̄1 < 0 then δ(λ) = −λ̄ and hence λ>πλ + δ(λ) = λ̄− λ̄ = 0.
In both cases we can follow that (λ, πλ) is already the optimal solution.

Remark 4.37
Of course in the case of Algorithm 4.34 under power utility the same remarks hold true
than with Algorithm 3.20 under logarithmic utility:
Every choice of I that does not harm the structural assumptions made in Algorithm 4.34,
satisfies the assumptions of Theorem 2.9 and hence the resulting admissible strategy is the
optimal solution. As the optimal portfolio strategy in our market setting is unique, two
different but admissible choices of I can only lead to the same resulting optimal strategy.

Contrary to Algorithm 3.20, Algorithm 4.34 solves the constrained portfolio optimiza-
tion problem not only faster than a standard non-linear optimization approach. There is
no numerical approach at all that could solve the HJB-equation (4.13) since it depends
significantly on the structure of its optimizer (4.14) that depends on the solution of the
HJB-equation itself.

4.4.1 The domain of the value function

In this section we will analyse the domains of the dual and primal value functions. In
particular we will analyse the effect made by the input parameters (t, µ) = (t, µ̂t) on the
choice of the correct case and active dimensions.
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4.4 Determining the correct case and active dimensions

The correct case is chosen in the reverse separation approach during stochastic control.
Hence we need to consider the parameters (t, ξ, µ) ∈ [0, T ]× R+ × Rd, where ξ = x = Xt

for the primal problem and ξ = h = Ht for the dual problem. However we have already
seen that the parameters x = Xt, respectively h = Ht influence neither the choice of
case nor the optimal solutions. Therefore it is enough to only consider the parameters
(t, µ) ∈ D+ := [0, T ] × Rd and to consider D+ as the interesting part of the domain of
either of the value functions.
Note the following disjoint partitioning of the domain D+ = [0, T ] × Rd with respect to
the four cases:

D1
+ :=

{
(t, µ) ∈ D+

∣∣λ(t, µ) = 0
}

D2
+ :=

{
(t, µ) ∈ D+

∣∣λ(t, µ) > 0
}

D3
+ :=

{
(t, µ) ∈ D+

∣∣λ(t, µ) ≥ 0 and 0 6= λ(t, µ) ≯ 0
}

D4
+ :=

{
(t, µ) ∈ D+

∣∣λ(t, µ) � 0
}

Obviously it is enough to only consider either the optimal dual process λ(t, µ) or the op-
timal portfolio strategy π(t, µ) to define these sub-domains.

Now at any time t the investor (respectively the algorithm) needs to decide which case
is the correct choice. The only information that is not given to the investor ahead of time
t will be the information from observing the market, hence the filter value µ̂t. Therefore
it could be of great importance to the investor to be able to compute regions of possible
filter values µ̂t ∈ D := Rd that belong to the different Case (i, I). This way whenever a
new filter value is generated, he could immediately decide which region and case it belongs
to and hence he would immediately know the correct optimal strategy.
These regions are defined for any fixed time t and form a disjoint partitioning of D = Rd:

D(1,·) := D(1,·)
t :=

{
µ ∈ D

∣∣λ(t, µ) = 0
}

D(2,·) := D(2,·)
t :=

{
µ ∈ D

∣∣λ(t, µ) > 0
}

D(3,·) := D(3,·)
t :=

{
µ ∈ D

∣∣λ(t, µ) ≥ 0 and 0 6= λ ≯ 0
}

D(4,·) := D(4,·)
t :=

{
µ ∈ D

∣∣λ(t, µ) � 0
}

Note that while the optimal solutions λ and π depend affine linear on µ = µ̂t their de-
pendence on t is highly non-linear, hence one cannot expect to derive nice regions when
trying to describe these subregions also with respect to time t.

We have already seen that Cases 1 and 2 are previsible but Cases 3 and 4 have to be
split up further to account for the various choices of active dimensions.
Define I(t, µ) to be the set of all possible correct choices of active dimensions I for the given
parameters (t, µ). Note by Corollaries 4.29 and 4.32 that the choice of active dimensions
does not have to be unique if the active dimensions are on the boundary between two
subcases. For each ∅ 6= I ⊆ {1, ..., d} and fixed time t define:

D(3,I) :=
{
µ ∈ D(3,·)

∣∣∣ I ∈ I(t, µ)
}
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4 Constrained optimization under power utility

=
{
µ ∈ D(3,·)

∣∣∣ π(3,I) ∈ K, λ(3,I) ∈ K̃ and λ(3,I)>π(3,I) + δ
(
λ(3,I)

)
= 0
}

D(4,I) :=
{
µ ∈ D(4,·)

∣∣∣ I ∈ I(t, µ)
}

=
{
µ ∈ D(4,·)

∣∣∣ π(4,I) ∈ K, λ(4,I) ∈ K̃ and λ(4,I)>π(4,I) + δ
(
λ(4,I)

)
= 0
}

Obviously the union of all D(3,I) becomes D(3,·) and the union of the D(4,I) becomes D(4,·)

but the subregions D(·,I) are not disjoint any more.
Technically we have only derived the optimal solutions in the relative interiors of the
subregions D(·,I). However in Section 4.5 we will show that these solutions also hold true
on the boundaries of the respective regions. Also we have already seen that the limits
of the respective solutions in adjacent cases coincide when converging to their common
boundary. This follows in particular from Lemma 4.39.

Lemma 4.38
The sets D(1,·),D(2,·),D(3,I) and D(4,I) are multi-dimensional convex polyhedrons.

Proof. We use the notation M · (K − c) :=
{
m = M(k − c)

∣∣k ∈ K} ⊂ Rd for some matrix
M ∈ Rd×d and some set K ⊂ Rd. Hence

D(1,·) =
{
µ ∈ D

∣∣λ(t, µ) = 0
}

=
{
µ ∈ D

∣∣πunc ∈ K
}

=

{
µ ∈ D

∣∣∣ 1

1− α
D(t)−1(µ− r1) ∈ K

}
=
{
µ ∈ D

∣∣∣µ ∈ r1 + (1− α)D(t) ·K
}

D(2,·) =
{
µ ∈ D

∣∣λ(t, µ) > 0
}

=
{
µ ∈ D

∣∣∣µ < r1
}

Hence D(1,·) is an affine linear shift of the convex polyhedron K and D(2,·) is the solution to
a multi-dimensional linear inequality. Hence both are convex polyhedrons that can easily
be observed. For D(3,I) and D(4,I) note that the condition λ>πλ + δ(λ) = 0 is redundant
by the proof of Theorem 4.36 if the condition λ ∈ K̃ is replaced by the structure of λ in
the respective case. In the following we use the notation KI :=

{
k ∈ RI

∣∣1>I k ≤ 1
}

for the
admissibility set in the dimensions I. Hence

D(3,I) =
{
µ ∈ D(3,·)

∣∣∣π(3,I) ∈ K , λ(3,I) ≥ 0
}

=
{
µ ∈ D(3,·)

∣∣∣ 1

1− α
Σ

(3,I)
J C(t)(3,I)γ−1

t (µ− r1) ∈ K

and JIC(3,I)(t)γ−1
t (µ− r1) ≥ 0

}
(4.26)

=
{
µ ∈ D(3,·)

∣∣∣ 1

1− α
(D(t)II)

−1 (µ− r1)I ∈ KI

and − (µ− r1)J +D(t)JI (D(t)II)
−1 (µ− r1)I ≥ 0J

}
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=
{
µ ∈ D(3,·)

∣∣∣(µ− r1)I ∈ (1− α)D(t)II ·KI

and (µ− r1)J ≤ D(t)JI (D(t)II)
−1 (µ− r1)I

}
and

D(4,I) =
{
µ ∈ D(4,·)

∣∣∣π(4,I) ∈ K , λ(4,I) ≥ λ̄I1 < 0
}

(4.30)
=
{
µ ∈ D(4,·)

∣∣∣πI =
1

1− α
IdI DI(t)−1(µ− r1)+I

I + gI(ΣII)
−1
1I ∈ K

and λ̄ = −gI 1>I DI(t)−1(µ− r1)+I
I + gI(1− α) < 0

and λJ = −(µ− r1)J +D(t)JI(1− α)πI ≥ λ̄1J
}

=
{
µ ∈ D(4,·)

∣∣∣(µ− r1)+I
I ∈ (1− α)DI(t)(IdI)−1 ·

(
K − gI(ΣII)

−1
1I

)
and 1

>
I DI(t)−1(µ− r1)+I

I > (1− α)

and (µ− r1)J ≤ λ̄1J +D(t)JI(1− α)πI

}
where (µ− r1)+I

I := (µ− r1)I + α(T − t)gI(γt)II(ΣII)
−1
1I

Hence all sets D(3,I) and D(4,I) are solutions to linear inequalities in µ and hence they are
multi-dimensional convex polyhedrons.

The following lemma shows in particular that all solutions can be extended continuously
to the boundaries of all subregions D(·,·) and coincide on each point on their boundaries.

Lemma 4.39 (shifted unconstrained solution)
The optimal constrained solution πλ in all cases is equal to the optimal unconstrained
solution with µ+ λ plugged in instead of µ, i.e.

πλ = π+λ
unc :=

1

1− α
D(t)−1(µ− r1 + λ)

=
1

1− α
Σ−1C(t)γ−1

t (µ− r1 + λ)

In particular all solutions in the domains D(·,·) can be extended continuously to the bound-
ary of their respective domain and coincide at the boundary points, such that πλ is con-
tinuous in µ.

Proof. This is a special case of Proposition 5.2.
However it can also be proved directly as shown in Appendix A.4.7.

Remark 4.40
Lemma 4.39 shows that the optimal dual λ is always chosen such that µ+λ ∈ D(1,·). Hence
any incoming non-admissible filter value µ /∈ D(1,·) respectively πunc /∈ K basically just
gets shifted by λ such that the ’updated expected growth rate’ µ+ λ becomes admissible,
hence µ+ λ ∈ D(1,·).
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More precisely we will see in Proposition 4.41 that µ + λ ∈ ∂D(1,·), hence the observed
filter value gets shifted to the boundary of D(1,·). This can be motivated as in Example
2.13, where a further shift into the interior of D(1,·) is not necessary to become admissible,
but it would decrease the terminal wealth.
Proposition 4.41 answers the question, which input parameters µ /∈ D(1,·) lead to a given
µ′ ∈ ∂D(1,·).

Proposition 4.41 (Exact shifting in Case 3)
Let ρ ∈ ∂K be arbitrary with 1

>
I ρI < 1 and

ρI > 0I where ∅ 6= I ⊂ {1, ..., d}
ρJ = 0J where ∅ 6= J = {1, ..., d} \ I

and consider the parameter µ′ on the boundary of D(1,·)

µ′ := r1 + (1− α)D(t) · ρ ∈ ∂D(1,·)

Let µ := µ′ +

(
0I
cJ

)
be an arbitrary input parameter for any cJ ≤ 0.

Then the optimal dual solution for the constrained portfolio optimization problem with

input parameter µ is in Case (3, I) with λ = −
(

0I
cJ

)
and hence µ+ λ = µ′ ∈ ∂D(1,·).

Proof. We get the optimal dual solution with Algorithm 4.34:
If cJ = 0 then µ = µ′ ∈ ∂D(1,·) ⊂ D(1,·) hence λ = 0 and we are done. Else cJ 6= 0.
Then Case 1 does not fit:

(1− α)πunc = D(t)−1(µ− r1)

= D(t)−1

(
µ′ − r1 +

(
0I
cJ

))
= (1− α)ρ+D(t)−1

(
0I
cJ

)
⇒ (πunc)J =

1

1− α
(D(t)−1)JJcJ

Since D(t) and D(t)−1 are positive definite and cJ 6= 0, we get

(cJ)>(πunc)J =
1

1− α
c>J (D(t)−1)JJcJ > 0

But with cJ ≤ 0J and (πunc)J ≥ 0J this cannot work, hence πunc � 0 and Case 1 does not
fit. Also Case 2 does not fit:

µ− r1 = µ′ − r1 +

(
0I
cJ

)
= (1− α)D(t) · ρ+

(
0I
cJ

)
⇒ (µ− r1)I = (1− α)D(t)IIρI
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Again D(t)II is positive definite and ρI 6= 0, hence

ρ>I (µ− r1)I = ρ>I D(t)IIρI > 0

But with ρI > 0I and (µ− r1)I < 0I this cannot work, hence (µ− r1)I ≮ 0I and Case 2
does not fit.
Now we consider Case (3, I) and get by Proposition 4.26:

λI = 0I

λJ = −(µ− r1)J +D(t)JI(D(t)II)
−1(µ− r1)I

= −(µ′ − r1)J − cJ +D(t)JI(D(t)II)
−1(µ′ − r1)I

= −(1− α)D(t)JIρI − cJ + (1− α)D(t)JI(D(t)II)
−1D(t)IIρI

= −cJ ≥ 0J

πλJ = 0J

πλI =
1

1− α
(D(t)II)

−1(µ− r1)I

=
1

1− α
(D(t)II)

−1(µ′ − r1)I

= ρI > 0I

1
>πλ = 1

>
I π

λ
I = 1

>
I ρI < 1

Since this solution is admissible it is already the optimal solution by the proof of Theorem
4.36.

Proposition 4.42 (exact shifting in Case 4)
Let ρ ∈ ∂K be arbitrary with 1

>
I ρI = 1 and

ρI > 0I where ∅ 6= I ⊂ {1, ..., d}
ρJ = 0J where J = {1, ..., d} \ I

and consider the parameter µ′ on the boundary of D(1,·)

µ′ := r1 + (1− α)D(t) · ρ ∈ ∂D(1,·)

Let µ := µ′ +

(
c1I
cJ

)
be an arbitrary input parameter for any cJ ≤ c1J and c > 0.

Then the optimal dual solution for the constrained portfolio optimization problem with

input parameter µ is in Case (4, I) with λ = −
(
c1I
cJ

)
and hence µ+ λ = µ′ ∈ ∂D(1,·).

Proof. The proof is given in Appendix A.4.8.

Corollary 4.43
The Propositions 4.41 and 4.42 describe exactly those µ leading to Cases (3, I) and (4, I).
In particular we observe that all solutions in the domains D(·,·) can be extended continu-
ously to their boundaries where they coincide with any adjacent case such that λ and πλ

are continuous in µ.
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4 Constrained optimization under power utility

Proof. Proposition 4.41 and 4.42 describe disjoint subsets of Rd \
(
D(1,·) ∪ D(2,·)), hence

we get equivalence in both lemmas.
Continuity of the optimal solution has already been observed in Lemma 4.39.

Example 4.44
We consider the following easy example in two dimensions:

α = −1 , t = 0.5 , T = 1 , r = 0.03

Σ =

(
0.2 −0.05
−0.05 0.15

)
, Σ0 =

(
0.2 0
0 0.2

)
Then we can easily visualize the three edges η(i) and hence by Propositions 4.41 and
4.42 the complete partitioning of D = R2 into the respective subregions indicating the
respective cases. This is shown on the left hand side in Figure 4.1. On its right hand side
we can see how any incoming filter value µ = µ̂t can easily be classified to its correct case
and how it gets shifted by some λ on the boundary ∂D1.

Figure 4.1: (lhs) The partitioning of D = R2 into the cases
(rhs) The exact shifting of µ into the admissibility region D1

Remark 4.45 (Dependence of the optimal solutions on the time)
Obviously the filter µ̂t depends significantly on time t. However this is not important for
determining the correct case.

First the domain D(2,·) does not depend on t anyway. Secondly the Propositions 4.41
and 4.42 show that the partitioning of D(3,·) and D(4,·) and the positions of their subregions
D(i,I) only depend on the position of the boundary ∂D(1,·) and not on time t. This can
also be seen in Figure 4.1.
Finally the region D(1,·) and hence its boundary is described by its edges η(0) := r1 and
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η(i)(t) := r1 + (1− α)D(t) · ei ∈ ∂D(1,·). Therefore D(1,·) actually depends on time t.
However the changes of the edges η(i) are previsible, hence any resulting shift of the
subregions D(3,I) or D(4,I) is also previsible.
In particular the optimal solution (λ, πλ) is continuous in t, hence continuous in (t, µ).

Now we can consider the following alternative algorithm to determine the optimal solution.

Algorithm 4.46 (Alternative approach)
A priori calculation before observing the next filter value:

• Compute the edges η(0) := r1 and η(i)(t) := r1 + (1− α)D(t) · ei.

• Determine the regions D(i,I) according to Propositions 4.41 and 4.42 and Example
4.44.

A posteriori calculation after observing the next filter value µ.

• Find the Case (i, I) with µ ∈ D(i,I).

• Calculate the optimal solutions λ(i,I) and π(i,I).

Theorem 4.47
The above algorithm yields the optimal solution.

Proof. This is a trivial consequence from the proof of the original Algorithm 4.34.

Remark 4.48
Although Algorithm 4.46 seems explicit and straight forward, its computational effort will
usually be much larger than with the original Algorithm 4.34. The main problem is to
determine the correct case (i, I) with µ ∈ D(i,I). This can be arbitrarily complicated if the
number of dimensions is larger than two.
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4 Constrained optimization under power utility

4.5 The complete portfolio optimization problem

In the previous sections we solved our constrained portfolio optimization problem 2.3
under partial information using a localization argument that we called a reverse separation
approach. We separated the region D of admissible values for the dual process λ into
several regions according to the different cases. In these regions we successfully applied a
stochastic control argument and solved it for the locally optimal dual processes.

In this section we sketch how to derive the globally optimal solution. Therefore note
that if the globally optimal solution is in the interior of some specific region then it should
locally behave like the locally optimal solution of this specific region since both maximize
the same objective.

Additionally we need to specify what happens if we are not in the interior of some
region but on the boundary between some of them. However since there are only finitely
many regions that are all polyhedrons, their boundaries form a null set in the admissibility
region. But our objective is to optimize an expectation value hence null sets do not matter.

Fortunately the locally optimal solutions of the different regions coincide in their limits
when approaching any point on the boundaries of their admissibility regions. Therefore
we may combine the respective locally optimal solution to get a continuous version of the
globally optimal solution.

Remark 4.49 (the global value function)
Of course the value functions corresponding to the localized problems do not contain much
information for the global problem since they only give the expected utility of terminal
wealth if the optimal strategy would never leave the current case until terminal time, or if
one continues sub-optimally with the strategy of the current case after leaving the region,
cf. Remarks 4.9 and 4.10.

Also one cannot expect to be able to somehow combine these value functions to get the
global value function. From an intuitive point of view the global value function has to be
some weighted mean of the local value functions, weighted by the possible paths that the
optimal solution can follow through the different cases.

In fact we expect it to be very hard to derive any analytical form of this value function.
Anyway we expect the value function to be continuously differentiable since the underlying
processes don’t have any irregularities and we have continuity of the strategies at the
boundaries.

To simplify notation we first consider the following definition.

Definition 4.50
Define the set of all possible cases C of the optimal solution:

C :=
{

(1, ·), (2, ·)
}
∪
{

(3, I)
∣∣∅ 6= I ⊂ {1, ..., d}

}
∪
{

(4, I)
∣∣∅ 6= I ⊆ {1, ..., d}

}
And define C(t, µ) ∈ C to be the current case given the current parameters (t, µ). Then
we observe

(t, µ) ∈ DC(t,µ)
+ ⊂

⋃
C∈C

DC+ = [0, T ]× Rd
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4.5 The complete portfolio optimization problem

and µ ∈ DC(t,µ)
t ⊂

⋃
C∈C

DCt = Rd.

where the sets DC+ and DCt are defined in Section 4.4.1.

Steps to verifying the global solution

Consider the composition πloc of the locally optimal portfolio strategies πC :

πloc(t, µ) =
∑
C∈C

1C(t,µ)=C · πC(t, µ)

Then the globally optimal portfolio strategy π∗ is given by a continuous modification of
πloc. However the complete rigorous proof to verify the optimality of the global strategy
will be very circumstantial and challenging since several details are very hard to prove
accurately. Therefore we will only give the framework and provide the relevant steps.

Step 1: the dual problem.
By Lemma 4.39 the locally optimal portfolio strategy is linear in the locally optimal dual
process. By its generalization, Proposition 5.2, this also holds true for the globally optimal
solutions.
Therefore we only need to show that the composition λloc of the locally optimal dual
processes as given below is equal to the globally optimal dual process λ. The locally
optimal solutions λC are derived point-wisely in Section 4.2 and the globally optimal
process is defined by the duality Theorem 2.11:

λloc(t, µ) =
∑
C∈C

1C(t,µ)=C · λC(t, µ)

λ = arg max
ν∈D

E
[
(Hν

T )
α
α−1

]
.

Step 2: the stochastic control approach.
The stochastic control approach on the dual optimization problem uses the value function
V to determine the optimal dual process λ for some given parameters (t, h, µ).

V (t, h, µ) = sup
ν∈D(t,h,µ)

E
[

(Hν
T )

α
α−1

∣∣∣ (Hν
t , µ̂t) = (h, µ)

]
We have already seen in Chapter 4 that the value of h is irrelevant to any further opti-
mization and in Section 4.4.1 that the set of possible values for (t, µ) can be partitioned
into subregions corresponding to the respective cases C ∈ C. This can also be shown for
the HJB-equation resulting from this global value function.

Step 3: the Bellman principle.
Note that the current parameters (t, µ) = (t, µ̂t) are almost surely in the interior of the
region of some case (DC(t,µ))◦ since all of the finitely many regions DC for C ∈ C are
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4 Constrained optimization under power utility

polyhedrons and hence the union of their boundaries form a null set in the admissibility
region.

Now consider the stopping time τ :

τ := inf
{
s > t

∣∣∣(s, µ̂s) /∈ (DC(t,µ))◦
}
∧ T

The stopping time τ stops whenever the parameters (t, µ) get on the boundary between
some cases.

According to the Bellman principle we get to solve the optimization problem by acting
optimally until the stopping time τ and continuing optimally afterwards. Since we are in a
Markovian setting there are no dependencies or correlations of the market parameters over
time. Only the filter itself gets updated using past information, but the current dynamics
(and hence the optimal control) are not affected by the history of the filter, but just by
its dynamics. Hence we get for the value function

V (t, h, µ) = sup
ν∈D(t,h,µ)

E
[
V
(
τ,Hν

τ , µ̂τ
)∣∣ (Hν

t , µ̂t) = (h, µ)
]

where the optimal control ν∗ in [t, τ) is given by solving the corresponding HJB-equation
before leaving the region of the current case DC(t,µ).

Step 4: deriving the optimal solution.
But now this is just one of the separated problems dealt with in Section 4.2. Since the
parameters (t, µ) = (t, µ̂t) do not leave the current case in [t, τ) we can use the optimal
control already derived in the respective case in Section 4.2.

Therefore this local optimizer is also the global optimizer.

Step 5: a continuous modification.
So far we derived the optimal control for all current parameters that are in the interior of
the region of some case (t, µ) ∈ (DC(t,µ))◦. However since all of the finitely many regions
DC for C ∈ C are polyhedrons the union of their boundaries form a null set in the admis-
sibility region. Therefore the current parameters are almost surely not on some boundary
and the exact choice of the optimal control inside this null set is irrelevant for optimizing
an expectation value. Also note that the filter µ̂t essentially behaves like a Brownian
motion and it is well known that if some Brownian motion hits some null set, then it will
hit this null set uncountably often but the set of hitting times is still a Lebesgue-null set
and hence irrelevant for maximizing an expectation value.

Since we derived in the previous sections that the optimal local solutions coincide with
each other on the boundaries of their admissibility regions we can choose to use the
continuous modification of the composition of the local solutions as the global solution.

Nevertheless, to make the above arguments rigorous a lot of technical details need to
be proved.
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5 Extensions

In this chapter we show some additional interesting results and we consider in particular
several further types of constraints on the optimal portfolio strategy.

Remark 5.1
The optimal constrained portfolio strategy in our setting is given by the optimal uncon-
strained strategy in the auxiliary market Mλ, given the optimal dual process λ. For
logarithmic utility we have seen that the optimal strategy in this auxiliary market is the
Merton plug-in strategy Σ−1(µ̂t + λt − r1). For power utility Lemma 4.39 shows that the
optimal solution in the auxiliary market is equal to the optimal unconstrained solution in
the original market with µ̂ + λ plugged in instead of µ̂. Now we want to generalize this
result to arbitrary utility functions.

Similarly to Section 4.1.2 we consider the maximization of expected utility of terminal
wealth in the original unconstrained market M0 where the value function of the corre-
sponding stochastic control problem is

V (t, x, µ) = sup
π∈A(t,x,µ)

E [U(XT )| (Xt, µ̂t) = (x, µ)]

Under suitable conditions we derived the following HJB-equation:

0 = sup
π

(
Vt + Vxx

(
r + π>(µ− r1)

)
+

1

2
x2π>ΣπVxx + xπ>γtVxµ +

1

2
tr
(
VµµγtΣ

−1γt
))

with boundary condition V (T, x, µ) = U(x) and with optimal control πunc

πunc(t, µ, r, x) = − Vx
xVxx

Σ−1(µ− r1)− 1

xVxx
Σ−1γtVxµ (5.1)

After plugging in πunc into the above HJB-equation we get:

0 = Vt + rxVx −
1

2
(µ− r1)>Σ−1(µ− r1)

V 2
x

Vxx
(5.2)

− 1

2

1

Vxx
V >xµγtΣ

−1γtVxµ −
Vx
Vxx

(µ− r1)>Σ−1γtVxµ +
1

2
tr
(
VµµγtΣ

−1γt
)

This is a deterministic partial differential equation for the value function V , depending in
particular on the parameters t, µ, r and x. After solving this PDE for V we derive an
explicit solution for πunc.
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Proposition 5.2 (shifted unconstrained solution)
Consider the constrained portfolio optimization problem (2.3) under convex constraints
K with a utility function U(x) such that the optimal unconstrained solution (5.1) can be
derived and verified via solving the HJB-equation (5.2). Let the corresponding optimal
dual process λ of Theorem 2.11 exist and be well-defined as λt = λ(t, µ̂t).
Then the optimal K-constrained solution πλ is equal to the optimal unconstrained solution
augmented by λ, i.e.

πλ(t, µ̂t, r) = π+λ
unc(t, µ̂t, r) := πunc

(
t, µ̂t + λt + δ(λt)1, r + δ(λt)

)
If µ̂t and r only appear together in the form µ̂t − r1, the above formula reduces to

πλ(t, µ̂t) = π+λ
unc(t, µ̂t) = πunc

(
t, µ̂t + λt

)
Proof. πλ is the optimal constrained strategy of the original market M0 or by dual opti-
mality of [CK92] the optimal unconstrained strategy in the auxiliary market Mλ, given
by:

dBλ
t = Bλ

t

(
r + δ (λ(t, µ̂t))

)
dt

dSλt = diag
(
Sλt

) (
(µ̂t + λ(t, µ̂t) + δ(λ(t, µ̂t))1) dt+ σdVt

)
⇒ dXλ

t = Xλ
t

((
r + δ (λ(t, µ̂t)) + π>t (µ̂t + λ(t, µ̂t)− r1)

)
dt+ π>t σdVt

)
⇒ πλ = arg max

π∈A
E
[
U(Xλ

T )
]

In the corresponding stochastic control problem we need to determine the value function

V̄ (t, x, µ) = sup
π∈A(t,x,µ)

E
[
U(Xλ

T )
∣∣∣ (Xt, µ̂t) = (x, µ)

]
Under suitable conditions we derive the following HJB-equation:

0 = sup
π

(
V̄t + V̄xx

(
r + δ(λ(t, µ)) + π> (µ− r1 + λ(t, µ))

)
+

1

2
π>Σπx2V̄xx + π>γtxV̄xµ +

1

2
tr
(
V̄µµγtΣ

−1γt
))

with boundary condition V̄ (T, x, µ) = U(x) and with optimal control πλ

πλ(t, µ, r) = − V̄x
xV̄xx

Σ−1 (µ− r1 + λ(t, µ))− 1

xV̄xx
Σ−1γtV̄xµ (5.3)

After plugging in πλ into the above HJB-equation we get to solve:

0 = V̄t + (r + δ(λ(t, µ)))xV̄x −
1

2
(µ− r1 + λ(t, µ))>Σ−1 (µ− r1 + λ(t, µ))

V̄ 2
x

V̄xx
(5.4)

110



− 1

2

1

V̄xx
V̄ >xµγtΣ

−1γtV̄xµ −
V̄x
V̄xx

(µ− r1 + λ(t, µ))>Σ−1γtV̄xµ +
1

2
tr
(
V̄µµγtΣ

−1γt
)

The HJB-equation (5.4) is just the same as equation (5.2) if we update their parameters
r by r + δ(λ(t, µ)) and µ by µ+ λ(t, µ) + δ(λ(t, µ)). (This is obviously possible as at the
fixed time t of the HJB-equation these are deterministic.) Hence V̄ is just the solution V
of (5.2) with updated parameters.
Additionally then (5.3) is the same formula as (5.1) with updated parameters, such that
πλ(t, µ, r) = πunc(t, µ+ λ(t, µ) + δ(λ(t, µ)), r + δ(λ(t, µ))).
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5.1 Further Constraints

In the previous Chapters 3 and 4 we used the no short-selling and the no borrowing
constraints together. Note that using only one of these constraints would just result in a
special case of our derived results.

When only using the no short-selling constraint, the optimal constrained solution is
determined by just using the cases 1-3. The former domains D(4,I) of the value function
resulting from Case 4 become part of the domain D(1,·). This can be seen in Section 4.2.1
and in particular in the interpretations in Section 4.4.

In case of only using the no borrowing constraint, our setting even reduces further to
only using Cases 1 and (4, I) with full I = {1, ..., d}. This follows in particular from the
linear form of the dual process λ = −c1 as derived below. Hence this is a particularly
simple case that can be generalized further:

We consider the constraint where investment is allowed up to a fraction k ≥ 0 of the
wealth. Hence K := {π|1>π ≤ k} and the no borrowing constraint follows for k = 1. The
support function is then given by

δ(ν) = sup
π∈K

(−π>ν)

=

{
ck if ν = −c1 for c ≥ 0

∞ else

<∞ for ν ∈ K̃ = {−c1|c ≥ 0}

Under logarithmic utility we have to solve (if πM /∈ K)

λt = arg min
ν∈K̃

(
δ(ν) +

1

2
(µ̂t + ν − r)>Σ−1(µ̂t + ν − r)

)
⇒ λt = −ct1

where ct = arg min
c≥0

(
ck +

1

2
(µ̂t − c1− r1)>Σ−1(µ̂t − c1− r1)

)
= g1>Σ−1(µ̂t − r1)− gk

(
> 0 ⇔ 1

>πM > k
)

⇒ λt = gk1− g1>Σ−1(µ̂t − r1)1 , g := (1>Σ−1
1)−1

Under power utility we get from the previous chapter in Case 4 with full I

λt = −ct1
where ct = −(1− α)gk + g1>Σ−1C ′(t)γ−1

t (µ− r1) + αk(T − t)g2
1
>Σ−1C ′(t)Σ−1

1

with C ′(t) =

(
γ−1
t −

α

1− α
(T − t)Σ−1

(
Id− g11>Σ−1

))−1

Note that for α = 0 we get the logarithmic solution.
In both cases we observe an explicit optimal dual process λ and hence an explicit optimal

strategy πλ.
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5.1.1 Lp-constraints

Proposition 5.3
Under general Lp-constraints with K := {π | ‖π‖p ≤ k} for p ∈ [1,∞] we get

δ(ν) = k ‖ν‖q

for ν ∈ K̃ = Rd where 1
p + 1

q = 1.

Proof. Let p = 1. Then K :=
{
π
∣∣∑ |πi| ≤ k}. Hence

δ(ν) = sup
π∈K

(−π>ν) = sup
π∈K

(π>ν) since K is symmetric

≤ sup
π∈K

(π>1 ‖ν‖∞)

≤ k ‖ν‖∞ <∞ for ν ∈ K̃ = Rd

On the other hand choose π∗ = sgn(νi)kei where i = arg maxj |νj |. Then

δ(ν) = sup
π∈K

(π>ν) ≥ (π∗)>ν = k |νi| = k ‖ν‖∞

Hence δ(ν) = k ‖ν‖∞.

Now let p =∞. Then K :=
{
π
∣∣maxi |πi| ≤ k

}
. Hence

δ(ν) = sup
π∈K

(−π>ν) = sup
π∈K

(π>ν) since K is symmetric

≤ sup
π∈K

(∑
i

|πiνi|

)

≤ sup
π∈K

(
‖π‖∞

∑
i

|νi|

)
= k ‖ν‖1 <∞ for ν ∈ K̃ = Rd

On the other hand choose π∗ with π∗i = sgn(νi)k. Then

δ(ν) = sup
π∈K

(π>ν) ≥ (π∗)>ν =
∑
i

k |νi| = k ‖ν‖1

Hence δ(ν) = k ‖ν‖1.

Now let p ∈ (1,∞).

δ(ν) = sup
π∈K

(−π>ν) = sup
π∈K

(π>ν) by symmetry of K

= sup
π∈K

(∑
i

πiνi

)
≤ sup

π∈K

(∑
i

|πiνi|

)
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≤ sup
π∈K

(
‖π‖p ‖ν‖q

)
by Hölder with

1

p
+

1

q
= 1

= k ‖ν‖q <∞ for ν ∈ Rd = K̃

On the other hand choose π∗ with π∗i = sgn(νi)k
∣∣∣ νi
‖ν‖q

∣∣∣q/p such that

‖π∗‖pp =
∑
i

|π∗i |
p =

∑
i

∣∣∣∣∣∣k
∣∣∣∣∣ νi
‖ν‖q

∣∣∣∣∣
q/p
∣∣∣∣∣∣
p

=
∑
i

kp
|νi|q

‖ν‖qq
= kp

Hence π ∈ K and

δ(ν) = sup
π∈K

(∑
i

πiνi

)
≥
∑
i

π∗i νi

=
∑
i

sgn(νi)k

∣∣∣∣∣ νi
‖ν‖q

∣∣∣∣∣
q/p

νi

= k
∑
i

∣∣∣∣∣ νi
‖ν‖q

∣∣∣∣∣
q/p

|νi|

= k
∑
i

|νi|q

‖ν‖q−1
q

by
q

p
= q − 1

= k ‖ν‖q

Hence δ(ν) = k ‖ν‖q.

Remark 5.4
The δ-function is differentiable for p ∈ (1,∞) with partial derivative:

∂xi ‖x‖p =
1

p

∑
j

|xj |p
(1−p)/p

p |xi|p−1 sgn(xi)

=

(
|xi|
‖x‖p

)p−1

sgn(xi) · 1{x 6=0}

where sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

.

Hence by Theorem 2.9 we get the optimal constrained solution of the original problem
as the optimal unconstrained solution in the auxiliary marketMλ with (the yet unknown)
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optimal λ 6= 0:

πλ = −δ′(λ)

⇒ πλi = −k∂i ‖λ‖q = −k

(
|λi|
‖λ‖q

)q−1

sgn(λi)

⇒ πλ = −k 1

‖λ‖q−1
q

· L where Li := |λi|q−1 sgn(λi)

hence πλ ∝ L.

Proposition 5.5
For p = 2 we can solve the constrained portfolio optimization problem explicitly up to one
trivial numerical step.

Proof. Since λ = 0 if and only if πunc ∈ K, we only need to consider λ 6= 0 with πunc /∈ K.
From Proposition 5.3 we get K := {π| ‖π‖2 ≤ k}, K̃ = Rd and δ(ν) = k ‖ν‖2.
In particular we get δ′(ν) = kν

‖ν‖2
· 1ν 6=0.

By Remark 5.4 we get the optimal constrained solution as the optimal unconstrained
solution in the auxiliary market Mλ:

πλ = −δ′(λ) = − k

‖λ‖2
λ ⇒ πλ ∝ λ.

1. Under logarithmic utility we know:

πλ = Σ−1(µ− r1 + λ)

⇒ − k

‖λ‖2
λ = Σ−1(µ− r1 + λ)

⇒ −
(

k

‖λ‖2
Id+ Σ−1

)
λ = Σ−1(µ− r1)

⇒ λ = −
(

k

‖λ‖2
Id+ Σ−1

)−1

Σ−1(µ− r1)

= −
(

k

‖λ‖2
Σ + Id

)−1

(µ− r1)

If we can determine x := ‖λ‖2 > 0 then

λ = −
(
k

x
Σ + Id

)−1

(µ− r1) (5.5)

⇒ πλ = −k
x
λ =

(
Σ +

x

k
Id
)−1

(µ− r1) (5.6)

Now we observe

x = ‖λ‖2 =

∥∥∥∥∥
(
k

x
Σ + Id

)−1

(µ− r1)

∥∥∥∥∥
2
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⇔ k =

∥∥∥∥(Σ +
x

k
Id
)−1

(µ− r1)

∥∥∥∥
2

=
∥∥∥πλ∥∥∥

2
=: ϕ(x)

This cannot be solved explicitly, even for d = 2.
However this is trivially solved numerically as ϕ : R≥0 → R≥0 is one-dimensional, contin-
uous and monotone decreasing with limx→∞ ϕ(x) = 0 < k and ϕ(0) =

∥∥πM∥∥
2
> k since

πM /∈ K. The optimal x∗ with ϕ(x∗) = k is unique.

2. Under power utility we observe similarly, using Proposition 5.2:

− k

‖λ‖2
λ = πλ =

1

1− α
Σ−1C(t)γ−1

t (µ+ λ− r1)

⇒ λ = −
(

(1− α)
k

‖λ‖2
Id+ Σ−1C(t)γ−1

t

)−1

Σ−1C(t)γ−1
t (µ− r1)

= −
(

k

‖λ‖2

(
(1− α)Σ− α(T − t)γt

)
+ Id

)−1

(µ− r1)

If we can determine x := ‖λ‖2 > 0 then

λ = −
(
k

x

(
(1− α)Σ− α(T − t)γt

)
+ Id

)−1

(µ− r1) (5.7)

⇒ πλ = −k
x
λ =

((
(1− α)Σ− α(T − t)γt

)
+
x

k
Id
)−1

(µ− r1) (5.8)

Now we observe

x = ‖λ‖2 =

∥∥∥∥∥
(
k

x

(
(1− α)Σ− α(T − t)γt

)
+ Id

)−1

(µ− r1)

∥∥∥∥∥
2

⇔ k =

∥∥∥∥(((1− α)Σ− α(T − t)γt
)

+
x

k
Id
)−1

(µ− r1)

∥∥∥∥
2

=
∥∥∥πλ∥∥∥

2
=: ϕ(x)

Again, this can only be solved numerically. ϕ : R≥0 → R≥0 is one-dimensional, continuous
and monotone decreasing with limx→∞ ϕ(x) = 0 < k and ϕ(0) = ‖πunc‖2 > k since
πunc /∈ K. The optimal x∗ with ϕ(x∗) = k is unique.

Having numerically determined the optimal x∗ = ‖λ‖2 we get the optimal dual pro-
cess via the formulas (5.5) and (5.7), respectively the optimal portfolio strategies via the
formulas (5.6) and (5.8).

Remark 5.6
For p = 1 we get an L1-constrained portfolio strategy that generalizes the no-borrowing
case. [DV15] also consider L1-constraints in their setting and refer to several more papers
dealing with these constraints.

We want to consider the case of L1-constraints as a generalization of Case 4 in our
setting. Therefore we repeat the stochastic control approach as in Section 4.2 until we

116



5.1 Further Constraints

observe the HJB-equation (4.13). Under the L1-constraints there are only two cases to
consider:

Case 1) δ(λ) = 0 if and only if λ = 0 if and only if πunc ∈ K
Case 2) δ(λ) > 0 if and only if λ̄ := maxk |λk| > 0

Let’s abbreviate the calculations of the second case with λ ∈ Rd \ {0}. There is

• I ⊆ {1, ..., d} such that |λi| = λ̄ for all i ∈ I where

– I+ ⊆ I such that λi = −λ̄ < 0 for all i ∈ I+

– I− ⊆ I such that λi = λ̄ > 0 for all i ∈ I−

• J = {1, ..., d} \ I such that |λj | < λ̄ for all j ∈ J .

We will call I and J the active and passive dimensions and I+ and I− the positive and
negative active dimensions. In our finite dimensional setting the distance between λ̄ and
the λj , j ∈ J is larger than zero, hence there is some ε-ball around (t, h, µ) such that the
active dimensions don’t switch in λ = λ(t, h, µ). We observe that this case has to be di-
vided further into several sub-cases, depending on which dimensions are active or passive.
(By definition the active dimensions I cannot be empty.)

We solve the HJB-equation (4.13) for some fixed choice of active dimensions just like
in Section 4.2.2, hence we consider an auxiliary problem on a subspace of Rd, such that
δ(λ) = kλ̄ is differentiable in λ. Without loss of generality we simplify notation by
assuming 1 ∈ I−. (If I− was empty, we’d be in the well known case of only having a
no-borrowing constraint.)

First define G :=
{
x ∈ R× R|J |

∣∣∣x1 > 0, |xj | < x1 for all j ∈ J
}

and the linear bijection ϕ

via:

ϕ : G→ H :

(
x1

xJ

)
7→
(
x11

±
I

xJ

)
where 1±I :=

(
1I−

−1I+

)
where H := Im(ϕ) ⊂ Rd. Obviously ϕ is bijective and linear, where ’linear’ means that
both ϕ and (ϕ)−1 can be written using matrices:

ϕ(x) = Φx where Φ :=

(
1
±
I 0IJ

0J IdJ

)
∈ Rd×1+|J |

and (ϕ)−1(x) = Ψx where Ψ :=

(
e>1 0>J
0JI IdJ

)
∈ R1+|J |×d

Since λ ∈ Im(ϕ) we may define λ̃ := (ϕ)−1(λ) =

(
λ1

λJ

)
∈ G. Also λ(t, h, µ) ∈ Im(ϕ) for

any (t, h, µ) in the ε-ball given above, hence we may reduce our problem from finding the
optimal λ ∈ H to finding the optimal λ̃ ∈ G.
Additionally we get the following nice property in G: Although δ is not differentiable with
respect to λ we observe that δ ◦ ϕ is differentiable with respect to λ̃ on G with

(δ ◦ ϕ)(λ̃) = δ

((
λ11

±
I

λJ

))
= k |λ1| = kλ1
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⇒ (δ ◦ ϕ)′(λ̃) = ke1

Hence we can rewrite equation (4.13) as follows:

0 = sup
ν̃∈G

(
Vt − Vhh(r + (δ ◦ ϕ)(ν̃)) +

1

2
h2 (µ− r1 + ϕ(ν̃))>Σ−1 (µ− r1 + ϕ(ν̃))Vhh

− h (µ− r1 + ϕ(ν̃))>Σ−1γtVhµ +
1

2
tr(Vµµ · γtΣ−1γt)

)
with boundary condition V (T, h, µ) = h

α
α−1 and optimal λ̃ chosen by (4.14):

λ̃ = arg max
ν̃∈G

(
− hδ(ϕ(ν̃))Vh +

1

2
h2 (µ− r1 + ϕ(ν̃))>Σ−1 (µ− r1 + ϕ(ν̃))Vhh

− h (µ− r1 + ϕ(ν̃))>Σ−1γtVhµ

)
= arg max

ν̃∈G

(
− h(δ ◦ ϕ)(ν̃)Vh +

1

2
h2(µ− r1 + Φν̃)>Σ−1(µ− r1 + Φν̃)Vhh

− h(µ− r1 + Φν̃)>Σ−1γtVhµ

)
We get the optimal λ̃ by differentiating:

0
!

= −hVhke1 + h2Φ>Σ−1(µ− r1 + Φλ̃)Vhh − hΦ>Σ−1γtVhµ

⇒ Φ>Σ−1(µ− r1 + Φλ̃) =
Vh
hVhh

ke1 + Φ>Σ−1γt
Vhµ
hVhh

(5.9)

In (5.9) there are 1 + |J | equations for 1 + |J | unknown variables. In the first line we get:

k
Vh
hVhh

+
(
1
±>
I 0>J

)
Σ−1γt

Vhµ
hVhh

=
(
1
±>
I 0J

)
Σ−1(µ− r1 + Φλ̃)

=
(
1
±>
I (Σ−1)II 1

±>
I (Σ−1)IJ

)
(µ− r1 + Φλ̃) (5.10)

= 1
±>
I (Σ−1)II(µI − r1I + λ11

±
I ) + 1

±>
I (Σ−1)IJ(µJ − r1J + λJ)

and in the other |J | lines of (5.9) we get:(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

=
(
0JI IdJ

)
Σ−1(µ− r1 + Φλ̃)

=
(

(Σ−1)JI (Σ−1)JJ

)
(µ− r1 + Φλ̃)

= (Σ−1)JI(µI − r1I + λ11
±
I ) + (Σ−1)JJ(µJ − r1J + λJ)

Here the matrix inversion formula (3.8) on Σ leads to

(Σ−1)JJ(µJ − r1J + λJ) = −(Σ−1)JI(µI − r1I + λ11
±
I ) +

(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh
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5.1 Further Constraints

⇒ (µJ − r1J + λJ) = −
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

)
(Σ−1)JI(µI − r1I + λ11

±
I )

+
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

(5.11)

When plugging this into equation (5.10) we result in:

1
±>
I (Σ−1)II(µI − r1I + λ11

±
I )

= −1±>I (Σ−1)IJ(µJ − r1J + λJ) + k
Vh
hVhh

+
(
1
±>
I 0>J

)
Σ−1γt

Vhµ
hVhh

= 1
±>
I (Σ−1)IJ

(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

)
(Σ−1)JI(µI − r1I + λ11

±
I )

− 1±>I (Σ−1)IJ
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

+ k
Vh
hVhh

+
(
1
±>
I 0>J

)
Σ−1γt

Vhµ
hVhh

= −1±>I (ΣII)
−1ΣIJ(Σ−1)JI(µI − r1I + λ11

±
I )

+ 1
±>
I (ΣII)

−1ΣIJ

(
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

+ k
Vh
hVhh

+
(
1
±>
I 0>J

)
Σ−1γt

Vhµ
hVhh

⇒ 1
±>
I (ΣII)

−1(µI − r1I + λ11
±
I )

= k
Vh
hVhh

+
(
1
±>
I 1

±>
I (ΣII)

−1ΣIJ

)
Σ−1γt

Vhµ
hVhh

= k
Vh
hVhh

+
(
1
±>
I (ΣII)

−1 0>J
)
γt
Vhµ
hVhh

again due to the matrix inversion formula (3.8). In particular we get

λ̄ = λ1 = −g1±>I (ΣII)
−1(µ− r1)I + gk

Vh
hVhh

+ g
(
1
±>
I (ΣII)

−1 0>J
)
γt
Vhµ
hVhh

(5.12)

where g :=
(
1
±>
I (ΣII)

−1
1
±
I

)−1

and from (5.11) we get λJ :

λJ = −(µ− r1)J −
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

)
(Σ−1)JI(µI − r1I + λ11

±
I )

+
(
ΣJJ − ΣJI(ΣII)

−1ΣIJ

) (
0JI IdJ

)
Σ−1γt

Vhµ
hVhh

= −(µ− r1)J + ΣJI(ΣII)
−1(µI − r1I + λ11

±
I )

+
(
− ΣJI(ΣII)

−1 IdJ

)
γt
Vhµ
hVhh

(5.13)

where λ and V together solve the problems (4.13) and (4.14).

Therefore we make the multiplicative ansatz V (t, h, µ) = h
α
α−1 ef(t,µ). Then

Vh
hVhh

= (α− 1) and
Vhµ
hVhh

= (α− 1)fµ
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⇒ λ̄ = −g1±>I (ΣII)
−1(µ− r1)I + gk(α− 1) + g

(
1
±>
I (ΣII)

−1 0>J
)
γt(α− 1)fµ

= −(1− α)gk − g1±>I (ΣII)
−1 ((µ− r1)I + (1− α)(γtfµ)I) (5.14)

λJ = −(µ− r1)J − (1− α)(γtfµ)J

+ ΣJI(ΣII)
−1
(
(µ− r1)I + λ̄1±I + (1− α)(γtfµ)I

)
(5.15)

where f = f(t, µ) solves the former HJB-equation (4.13) with λ = ϕ(λ̃) =

(
λ̄1±I
λJ

)
:

ft = − α

1− α
(r + λ̄)− 1

2

α

(1− α)2
(µ− r1 + λ)>Σ−1(µ− r1 + λ)

− α

1− α
(µ− r1 + λ)>Σ−1γtfµ −

1

2
f>µ γtΣ

−1γtfµ −
1

2
tr(fµµ · γtΣ−1γt) (5.16)

This partial differential equation is solved with a quadratic ansatz for f as it is done with
equation (4.35) in Section 4.2.2. This extensive calculation is left to the interested reader.
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6 Simulations

In the previous chapters we considered a portfolio optimization problem under convex
constraints and partial information. We derived explicit analytical formulas for the optimal
portfolio strategies in various cases and an algorithm to determine the respective correct
case for the optimal solutions. In this chapter we will apply these theoretical results
in different practical simulations. We examine the performance of the optimal portfolio
strategies under conditions as realistic as possible.

In the first two sections we consider a historical simulation on the DAX.
In Section 6.1 we describe the historical market and how it fits into our market model.
We introduce several types of analysts who provide the important estimates for the filter
of the growth rate and we examine our implementation of the algorithm that derives the
optimal strategy. Then we derive the resulting wealth processes in Section 6.2 under
various risk-aversions, with different analysts opinions and under non-zero transaction
costs. In most cases we observe that our derived optimal strategies strongly out-perform
their benchmark, the DAX.

In Section 6.3 we essentially repeat the same simulation but with simulated paths of
a generated market. We observe the stochastic behaviour of the wealth processes and
examine in particular the distribution of the terminal wealth in various settings. When
compared to the benchmark 1/d-strategy we come to the conclusion that our derived
optimal strategies are worth its additional effort.
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6 Simulations

6.1 The historical market

In our first simulation we use historical data from the DAX-30-Performance-Index such
that we can challenge our derived portfolio strategies in a very realistic scenario. We use
data from the past 16 years as given in Figure 6.1. This period includes twice dropping
and rising markets with a drop of two-thirds from 2000 to 2002, a rise of more than 200%
from 2003 to 2007, another drop of 50% in 2008 and another rise of almost 200% from
2009 to 2015.

Figure 6.1: the DAX-30-Performance-Index

Since the components of the DAX may change each year, we choose those 30 stocks
that have been part of the DAX mostly during the given period: Adidas, Allianz, BASF,
Bayer, Beiersdorf, BMW, Commerzbank, Continental, Daimler, Deutsche Bank, Deutsche
Telekom, E.ON, Fresenius, Fresenius Medical Care, HeidelbergCement, Henkel, Infineon,
K+S, Linde, Lufthansa, MAN, Merck, Metro, MünchnerRück, RWE, Salzgitter, SAP,
Siemens, ThyssenKrupp and Volkswagen. The historical prices of these stocks have been
corrected for splits and dividend payments where the latter got reinvested in order to
observe the actual performance of the respective stocks. The data is provided by ’yahoo
finance’.

The investor is forced to only change her portfolio strategy once a month to avoid im-
mediate bankruptcies by transaction costs, respectively to account for real life behaviour.
She starts trading in January 2001 and stops in December 2014. During this investment
period of 168 months, the DAX rose on average 3% per annum.

We also fix the risk-free interest rate at r = 0 to simplify notational efforts. The investor
is able to observe the stock prices St, respectively their returns Rt and she estimates the
covariance-matrix Σ = σσ> from the stock prices as follows.
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6.1 The historical market

Σ̂ij :=
1

∆t

1

N − 1

N∑
k=1

(
R̂

(i)
ti
− R̄(i)

)(
R̂

(j)
ti
− R̄(j)

)
where R̂

(i)
tk

:= log
S

(i)
tk

S
(i)
tk−∆t

and R̄(i) :=
1

N

N∑
k=1

R̂
(i)
tk

Derivation (in one dimension). On the one hand we get from Rt = µt+ σWt that

(Rt −Rt−∆t) = µ∆t+ σ(Wt −Wt−∆t). (6.1)

Therefore we get Var (Rt −Rt−∆t) = σ2∆t and hence

Σ := σ2 =
1

∆t
Var (Rt −Rt−∆t) .

On the other hand we get from St = exp
(
µt− 1

2σ
2t+ σWt

)
and (6.1) that

log
St

St−∆t
= µ∆t− 1

2
σ2∆t+ σ(Wt −Wt−∆t)

= (Rt −Rt−∆t)−
1

2
σ2∆t (6.2)

and therefore we observe Var (Rt −Rt−∆t) = Var
(

log St
St−∆t

)
and hence

Σ =
1

∆t
Var

(
log

St
St−∆t

)

6.1.1 Analysts and Filtering

The only external source of information other than the stock prices are the so-called
analysts or experts who provide estimates µ0 for the future growth rate µ ∼ N (µ0,Σ0).
We assume these estimates to be uncorrelated with variance Σ0 = diag(0.2, ..., 0.2).

Obviously it is very hard to simulate results whose main ingredient should be non-
observable expertise. Therefore we consider four different types of analysts whose estimates
cover a wide range of possible opinions. Any real-life analyst should be somewhere in
between these theoretical analysts:

• The optimal analyst: ’opt’
This analysts looks one year into the future to determine his estimate µ0 and hence
simulates an analyst with perfect expertise. The resulting strategies should provide
reasonable upper bounds to any real-life analyst.
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• The bad analyst: ’bad’
This analysts just reverses the estimate of the optimal analyst and hence simulates
an analyst whose estimates are always wrong. The resulting strategies might even
lead to bankruptcy.

• The random analyst: ’rand’
This analysts uses the average growth rate of the whole market to any stock in his
portfolio and hence simulates an analyst without any knowledge or opinion. He is
used as a benchmark-analyst that is better fitting to our market model than the usual
1/d-strategies. The resulting strategies should provide reasonable lower bounds to
any real-life analyst.

• The historical analyst: ’hist’
This analysts looks one year into the past to determine his estimate µ0 and hence
simulates an analyst who doesn’t have a personal opinion and can’t detect market
changes before they happen. Since the real-life analysts have at least these (his-
torical) information, the resulting strategies should again provide reasonable lower
bounds to any real-life analyst.

Additionally to these deterministic analysts we consider several stochastic analysts in
each of the above cases, where ’stochastic’ means that the analyst estimates his µ0 not
deterministically, but N (µ0, 0.2)-distributed around his original deterministic value. This
way we may increase the sample size significantly and reduce the influence of some acci-
dental irregularities in the data. This is important in particular for the evaluation of the
running time of the algorithm.

Our portfolio optimization model is set up with analysts that provide at t = 0 their
estimate µ0 of the future growth rate µ of the stocks. The filter µ̂t for this growth rate is
initialized with µ0 and gets continuously updated using the observations from the stock
prices.

We want in particular to be able to observe the effect that originates from these esti-
mates. Therefore we allow the analysts in our simulation study to provide their estimates
more often than just at the beginning. Whenever a new estimates arises we will just reset
the time to t = 0 and restart the whole investment procedure.

We consider the following three cases:

• New estimates every year: ’12 months’
This shall be the standard case, where new estimates are provided once every year
and in between we use filtering to determine the current µ̂t.

• New estimates every month: ’1 months’
In this setting the analysts provide new estimates every time we may trade, such
that we won’t use filtering at all.

• New estimates only once in the beginning: ’192 months’
This is the original setting of our model. The analysts’ estimate is only given once
in the beginning and afterwards we need to rely entirely on filtering.
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6.1 The historical market

Note that the terminal time T of the portfolio optimization has to be at least as long as
the period between two points of estimation. We use T = 1 [year] for the first two cases
and T = 16 [years] for the last case.

In the following sections we will simulate and evaluate the optimal strategies and per-
formances of these analysts. For most graphical results we will use the ’hist12-analyst’
(i.e. the historical analyst, that estimates every 12 months), because this is the most
reasonable analyst providing exactly the lower bound that every real-life analyst should
aim to beat.

Now the filter for the growth rate gets calculated using the result from (2.6):

µ̂tk = γ̂t

(
Σ−1

0 µ0 + Σ̂−1Rtk

)
where γ̂t =

(
Σ−1

0 + tkΣ̂
−1
)−1

Here the time tk is set to zero whenever the analysts provide new estimates. The only yet
unspecified parameter Rtk are the (observable log-)returns of the stock prices since the
last estimate, i.e. the sum of the previous monthly returns as given in (6.2):

Rtk = Rtk −Rt0 =

k∑
j=1

(
Rtj −Rtj−1

)
where

(
R

(i)
tj
−R(i)

tj−1

)
= log

S
(i)
tj

S
(i)
tj−1

+
1

2
∆t · σ2

i

6.1.2 Deriving the optimal portfolio strategies

After initializing the market we can calculate the optimal portfolio strategies.
Therefore we need to fix the investor’s utility function via the risk-aversion level α, where
α = 0 corresponds to logarithmic utility and α < 0 to negative power utility. Note that
any result under logarithmic utility appearing in this work is the continuous limit of the
same results under power utility for α↘ 0.

As convex constraints we consider throughout this simulation no-short-selling and no-
borrowing.

The formulas for the Merton Plug-In strategy and the optimal unconstrained strategy
(using stochastic filtering) are straightforward given by:

πM
t =

1

1− α
Σ̂−1µ̂t

πunc
t =

1

1− α
Σ̂−1

(
γ̂−1
T −

1

1− α
(T − t)Σ̂−1

)−1

γ̂−1
t µ̂t

However, Algorithm 4.34 to determine the optimal constrained strategy usually requires
computations for every subset I of the set of dimensions {1, ..., d} until it hits the correct
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subset of active dimensions I. Unfortunately there are 2d possibilities for the correct
active dimensions. If each attempt under d=30 stocks only needs 1ms (which is a realistic
value, given there are several high-dimensional computations to conduct) we still need on
average 150 hours to find the correct choice. This is far to much computation time for any
application. Fortunately we can avoid having to check all 2d possibilities by taking good
guesses. For instance, there is a high chance that a dimension (a stock) i with a large

expected growth rate µ̂
(i)
t will enter the optimal portfolio strategy, while a small (or even

negative) growth rate indicates a high chance that this stock won’t be invested in.
Following this approach we can reorder the set of subsets of {1, ..., d} such that we first

check those combinations most likely to succeed. Of course, finding the optimal reordering
would be too time-consuming, too. It is hence important to find a good balance between
adding computational effort and gaining speed improvements by the chosen reordering
procedure.

In our simulation we just reorder the set of dimensions with respect to their expected

growth rates µ̂
(i)
t and then start by checking combinations of those stocks with highest

expected growth rates. Our results show that this approach reduces the average compu-
tation time for lots of cases to less than 1 second, which corresponds to only 210 attempts.
Note that there still occur rare combinations of growth rates and covariances leading to
computation times of more than 1000 seconds (corresponding to 220 attempts out of 230).
Also note that the computation time obviously rises with an increasing diversification
within the optimal strategy.

The figures on the following pages show results for the historical 12-months analyst.
The other types of analysts presented above show similar behaviour.

The table in Figure 6.2 shows the average computation time for the historical 12-months
analyst for various combinations of risk-aversions α and the number of stocks d in our mar-
ket. It is very obvious that the computation time increases approximately exponentially
in the number of stocks if the reordering corresponding to the respective setting stays
unchanged.

d α = 0 α = −2 α = −4 α = −6 α = −8 α = −10

5 0.0006 0.0013 0.0015 0.0016 0.0016 0.0015
10 0.0005 0.0015 0.0039 0.0058 0.0063 0.0063
15 0.0007 0.0044 0.0148 0.0422 0.0533 0.0545
20 0.0005 0.0072 0.0542 0.1752 0.3817 0.4721
24 0.0006 0.0161 0.0627 0.5227 1.5472 2.1064
26 0.0007 0.0155 0.0720 0.8738 3.0975 3.9837
28 0.0008 0.0154 0.1172 1.0687 10.9296 12.8380
30 0.0010 0.0177 0.1420 2.0968 20.7158 27.3027

Figure 6.2: average computation times for the hist12-analyst

On the other hand the computation time with respect to the risk-aversion does not
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increase arbitrarily. It stabilizes for a high risk-aversion −α as shown on the left hand side
in Figure 6.3.

This effect happens because the choice of active dimensions entering the optimal strategy
becomes constant for increasing −α. On the right hand side in Figure 6.3 this is shown
for the mean value of active stocks in the optimal strategies.

Figure 6.3: lhs: computation times for different risk aversions
rhs: mean value of active stocks in the optimal portfolio strategies

In the histogram in Figure 6.4, showing the distribution of active dimensions for various
risk-aversions, the same effect is shown in more detail. For low risk-aversions (−α ∈ [0, 3])
most optimal strategies just invest in up to 3 different stocks, for medium risk-aversions
(−α ∈ [4, 8]) the optimal strategies mainly invest in 3 to 6 different stocks, while for high
risk-aversion (−α ≥ 9) most optimal strategies invest in at least 6 different stocks.

Figure 6.4: histograms of active stocks

Note that no strategy invests in more than 11 stocks. This is quite reasonable since we
are in a setting with 30 stocks of whom some may have negative expected future growth
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rates while most are rather positively correlated.
Of course we cannot prove any effect for 1 − α → ∞ since the optimal unconstrained

strategy then tends towards 0 and eventually enters the admissibility set anyway.
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6.2 Evaluation of the optimal portfolio strategies

6.2 Evaluation of the optimal portfolio strategies

In the next step we want to evaluate the performance of an investor who would have in-
vested according to the optimal constrained strategies in our market with 30 stocks from
January 2001 until December 2014. First we compare the performance of constrained
versus unconstrained strategies and then we examine the effect of transaction costs. Af-
terwards we will compare the several types of analysts.

In Figure 6.5 we see the standard case of a historical analyst for several risk-aversions
between α = 0 (logarithmic, very risky) and α = −15 (very risk averse).

Figure 6.5: Wealth performance of the hist-12 -analyst

We observe that the unconstrained strategies eventually lead to bankruptcy or at least
to an immense loss of wealth no matter how risk-averse the investor may be. Note that in
a theoretical continuous market bankruptcy is impossible by definition of the admissible
strategies. However in our setting of trading only once a month bankruptcy is possible
whenever the unconstrained strategy uses short-selling or money lending while the analyst
provides a bad estimate. Although it is not shown in the above figure, the Merton-Plug-
In-Strategies perform even worse then the unconstrained strategies.

The optimal constrained strategies on the other hand outperform both, the market and
the unconstrained strategies by a lot. This holds true for any choice of risk-aversion.
Figure 6.5 also demonstrates two effects arising from the various risk-aversions. For risky
investors like α ∈ {0,−1,−2} we observe a rather volatile behaviour of the wealth process
that doesn’t necessarily lead to a higher utility of wealth in the end. The wealth process
resulting from the logarithmic investor (α = 0) for instance outperforms the other strate-
gies until 2008, but then drops by more than 70%. This might be a highly undesirable

129



6 Simulations

behaviour that one can avoid by choosing a less risky utility function. On the other hand
we observe that a rising risk-aversion of α ∈ {−5,−6, ...} doesn’t really change the general
behaviour of the wealth performance at all. The wealth process basically gets shrunk
without a significant gain in terms of volatility.

However although the investor’s choice of risk-aversion is essential for his resulting
wealth performance, it is not too crucial since most of the optimal constrained strate-
gies remain within some corridor that does not stretch too much.

Our theoretical market model does not yet account for transaction costs because this
would complicate the calculations way further. Unfortunately many optimal strategy that
get developed in a continuous-time setting without transactions costs get bankrupt really
fast when applied in a setting with transaction costs, in particular when applied in discrete
time as in our simulation.

Figure 6.6 shows with the blue line the optimal constrained and unconstrained wealth
processes resulting from the same historical analyst as above under a risk-aversion of
α = −10. Note that the other risk-aversions don’t change the statement of the figure
significantly. The other colours illustrate the a posteriori effect of proportional transaction
costs of 0.2%, 1% and 2% on the wealth performance of the optimal constrained and
unconstrained strategies.

Figure 6.6: Wealth performance of the optimal strategies for α = −10

Obviously we observe that higher transaction costs lead to higher losses of utility. How-
ever while the loss due to transaction costs in case of the constrained strategies is ac-
ceptable, the situation is very different for the optimal unconstrained strategies. Here
transaction costs of 0.2% already lead to a loss of more than 60% of terminal wealth while
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higher transaction costs lead to bankruptcies before reaching the terminal time in 2015.
We observe that transaction costs of 0.2% lead to a loss of 6.1% (p.a.) of wealth for the
optimal unconstrained strategy while the respective constrained strategy looses only 0.5%
(p.a.) of its wealth. This difference gets even more impressive when considering transac-
tion costs of 1%. While the optimal constrained strategy looses 2.6% (p.a.) of its wealth,
the respective unconstrained strategy looses 27.1% (p.a.) of its wealth.

These numbers point out that the optimal unconstrained strategies are far from being
applicable in the real world. Their high amount of transaction fees comes from their
possibly extreme positions that any unconstrained strategy may invest in.
As we see in Figure 6.7 for the historical analyst with α = −10 as given above, the
unconstrained strategy needs to shift approximately 260% of its wealth on average each
month. This means the investor needs to sell and rebuy around 130% of her wealth each
month. The constrained strategy on the other hand only shifts around 22% each months,
hence sells and buys around 11% each month. It is very obvious that the latter is a far
more realistic behaviour. Note in particular the different scaling of the plots in Figure 6.7.

Figure 6.7: Amount of wealth to be shifted

In Figure 6.7 we also observe another interesting effect that arises from using an analyst
that provides his new estimate every 12 months. During the months where the analyst
is inactive, the investor updates her filter µ̂t just by filtering (hence by observing the
market). These updates do not change her filter significantly, so the average amount of
wealth to be shifted stays rather low. However in the particular months, where the analyst
provides a new estimate, the filter might change a lot, possibly leading to a significant
different optimal strategy. This results in a considerably elevated amount of wealth to be
shifted, that is visible via the peaks on most Januarys in Figure 6.7. The average amount
of wealth to be shifted in January for the optimal constrained strategy is 91% (versus
22% on average for the whole period) and the average amount of wealth to be shifted in
January for the optimal unconstrained strategy is even 543% (versus 260% for the whole
period).

Last but not least we want to consider the different results that the various analysts
might produce.

In Figure 6.8 we compare the wealth performances of the optimal constrained strategies
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using those analysts that provide their estimates every 12 months. It is very obvious that
the optimal analyst outperforms any other strategy by achieving immense gains while the
bad analyst looses most his wealth. These analysts have been introduced as sort of an
upper and lower bound to what might happen with any analyst’s estimates, since no real
analyst will be always right or always wrong. The historical analyst that is examined in
detail above should be the realistic lower benchmark to any wealth performance, since any
real-life analyst has at least the historical information.

An interesting observation is the poor performance of the random analyst. The random
analyst should be the analogue in our setting to the usual 1/d-strategy as explained above
in Section 6.1.1. However while the 1/d-strategy achieves approximately 7.5% (p.a.) dur-
ing our investment period, the optimal strategy using the random analyst doesn’t even
outperform the market that achieves around 2.6% (p.a., the black line).

Figure 6.8: Wealth performance of various 12-months-analysts

Figure 6.9: Wealth performance of various historical analysts

In Figure 6.9 we compare the wealth performances of the optimal constrained strategies
using the different historical analysts.

The 12-months historical analyst that is examined in detail above seems to produce the
best wealth performance. This is no surprise since he combines the analyst’s expertise
with filtering the market observations. This way he is able to identify market changes
faster than without the filtering. The 1-month historical analyst that provides new esti-
mates every month cannot use any filtering and hence the resulting strategy is way more
prone to market changes. The resulting wealth process is way more volatile, in particular
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in a falling market. The 192-months historical analyst that only provides one estimate in
the beginning leads to a rather poor performance of the resulting optimal strategy when
compared to the other two analysts. This is due to the fact that long-term filtering can
only lead to useful results if its assumptions are satisfied. However one of the most crucial
assumptions - for the drift µt ≡ µ to be constant - is barely realistic for a long horizon.
Therefore the filter µ̂t does not converge to a constant µ but to the long term average
µ̄T = 1

T

∫ T
0 µtdt.

Summing up the results for the various types of analysts it seems still reasonable to
consider the historical 12-months analyst to be a very applicable benchmark to compare
with any real-life analyst.

133



6 Simulations

6.3 Path-wise simulation

Regarding the outstanding results of the historical simulation described in the previous
sections the natural question arising is whether this might be coincidental due to luckily
suitable data. Therefore in this section we repeat the whole simulation using random data
to observe that the previous outstanding results on average still hold true.

In order to be able to conduct lots of simulations, we construct a market with only 10
stocks. This way the algorithm to figure out the correct case and active dimensions needs
at most 210 = 1024 attempts and hence at most one second per step. In fact this speeds
up the simulation a lot, such that each step needs less than 0.1 second on average.

We use the following values for the market’s drift and volatility (each given in %) such
that the simulated market is close to some possible real world market:

µ> =
(

15 12 10 8 6 4 2 0 −3 −8
)

Σ =



5.44 3.36 3.37 0.78 2.61 2.27 1.23 2.38 −0.41 0.32
3.36 8.77 1.83 5.50 2.02 1.28 2.50 3.06 −0.12 −0.58
3.37 1.83 5.20 3.39 2.84 2.31 0.93 2.28 1.74 2.91
0.78 5.50 3.39 8.11 2.18 1.30 3.09 2.32 2.92 2.52
2.61 2.02 2.84 2.18 2.62 2.05 1.41 1.94 1.90 1.72
2.27 1.28 2.31 1.30 2.05 5.81 2.42 1.42 4.95 2.09
1.23 2.50 0.93 3.09 1.41 2.42 3.23 1.07 2.12 1.00
2.38 3.06 2.28 2.32 1.94 1.42 1.07 4.85 0.90 4.39
−0.41 −0.12 1.74 2.92 1.90 4.95 2.12 0.90 9.05 3.49

0.32 −0.58 2.91 2.52 1.72 2.09 1.00 4.39 3.49 7.11


We want to be able to compare this simulation to the historical simulation described

above, therefore we use the same investment period of 14 years. The investor is allowed
to trade once every month, hence 168 times from January 2001 until December 2014.
In order to be able to observe the distribution of any resulting values, we generate 1000
simulations of this 10-dimensional market consisting of 168 months.

In the historical simulation in Section 6.1.1 we created 4 different analysts to cover vari-
ous real-life cases. Without being able to look into the future we can only use the historical
and the random analyst. However both should provide reasonable lower bounds to any
result from real-life analysts, since they should have at least this information. The analysts
provide new estimates once every year and we set the rolling terminal time to T = 1 [year].

After preparing this market setting we compute as described in Section 6.1.2

• the optimal constrained and unconstrained strategies

• for the historical and the random analyst,

• for various choices of the risk-aversion α from 0 to −20
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• for each of the 1000 simulations.

Additionally we implement the standard 1/d-strategy as a benchmark that just reallocates
1/d of its wealth to each of the d stocks in each of the simulations.

At this point we are able to evaluate the performance of all the optimal strategies in our
simulated markets. Therefore we compute for each optimal strategy the monthly portfolio
allocations and the resulting wealth process. We also allow for proportional transaction
costs that are calculated each month as a fraction of the wealth that has to be shifted
between different stocks. If not stated otherwise we always imply 0.2% proportional trans-
action costs.

A first observation is as clearly as obvious: all of the unconstrained strategies go
bankrupt and most of them within the first few months. Those strategies buy and (short)
sell multiples of their wealth into single stocks, leading to immediate bankruptcies the
moment some of these stocks move slightly too much into the wrong direction. With
transaction costs this process obviously runs even faster. Increasing the risk-aversion of
course leads to more unconstrained strategies not going bankrupt, but this needs really
unrealistically high risk-aversions like α = −50.

In Figure 6.10 we see several realisations of the resulting wealth process of the optimal
constrained strategy resulting from the historical analyst. Additionally we see the monthly
medians and 5% and 95%-quantiles of the wealth processes.

Figure 6.10: Wealth processes of the historical analyst for α = −3

With Figure 6.11 we can compare these results of the historical analyst to the wealth
processes of the random analyst as well as to the wealth processes of the 1/d-strategy.
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We observe that the random analyst performs less volatile but also way worse than the
historical analyst. The benchmark-1/d-strategy on the other hand also performs less
volatile but just slightly worse than the historical analyst. Since both strategies are only
little volatile they reduce the downturn risk significantly, however at the same time they
reduce the chance of high gains as significantly.

Figure 6.11: The random analyst for α = −3 (left) and the 1/d-strategy (right)

Of course the volatility of the wealth process can be controlled via the risk-aversion α
of the investor. In Figure 6.12 we compare the various realisations of the wealth processes
for the historical analyst for the risky logarithmic utility (α = 0) to the more risk-averse
power utility with α = −10. Obviously we will always find risk-aversions that lead to
both, riskier and more risk-averse strategies than any benchmark.

Figure 6.12: The historical analyst for α = 0 (left) and for α = −10 (right)

In all the above figures we observe behaviours of the realisations of the wealth processes
that look very much like the behaviour of paths of a Brownian motion. Additionally
the distributions of the respective wealth processes are quite skew. This can be seen by
comparing their means and medians or the distances of their symmetric quantiles to their
medians. In Figure 6.10 (for α = −3) the mean of the terminal wealth is 2.43 while the
median is only 1.68.

However if we compare the logarithm of the terminal wealth instead, this distance van-
ishes mostly. In Figure 6.10, the mean (of the log terminal wealth) is 0.55 and the median
is 0.52. Also the given quantiles have a similar distance to the median. This is highly
suggesting a log-normal distribution for the terminal wealth. The wealth process hence
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might look like Xt = exp
(∫ t

0 atdt+
∫ t

0 btdWt

)
for some functions at and bt.

In Figure 6.13 we see histograms of the logarithmic terminal wealth for the various
strategies. In order to be able to better interpret these numbers they are scaled down to
one year, hence a value of 0.05 corresponds to a gain of e0.05−1 = 5.13% p.a.. Additionally
we see the curve of the density of a normal distribution with mean and standard deviation
of the corresponding data to see the fit of a log normal distribution.

We compare the distribution of the logarithmic terminal wealth of the benchmark 1/d-
strategy to the distributions of the logarithmic terminal wealth of the historical analyst
for various risk-aversions.

Figure 6.13: Histograms of the logarithmic terminal wealth p.a.

We observe that the distribution of the terminal wealth of the 1/d-strategy is very
close to a log normal distribution, as it is the case for the historical analyst for low risk-
aversion. For higher risk-aversions we observe the distribution getting positively very skew,
essentially reducing the shortfall risk while still allowing for a large gain with a very small
probability.

For the historical analyst with α = −6 we observe a quite similar mean than for the
1/d-strategy while the historical analyst allows for way higher gains although reducing the
risk of larger losses.

This can also be seen in Figure 6.14 showing the medians and quantiles of both, the
1/d-strategy and the historical analyst for various risk-aversions. We observe that the
median for the historical analyst is always quite close (±1%) to the median of the 1/d-
strategy while the quantiles vary a lot. For low risk-aversions we observe a slightly higher
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median for the logarithmic terminal wealth and quantiles of the historical analyst that are
far away from the median spreading its distribution a lot to possibly high gains and losses.

However for medium-high risk-aversions like α ∈ [−4,−7] we observe similar medians
and 5%-quantiles for the benchmark and the historical strategy, while the 95%-quantiles
of the historical strategy is way higher then the 95%-quantile of the 1/d-strategy. This
could be exactly the results wished for in practical applications: reduce the shortfall-risk
while maintaining the chance for large gains.

Figure 6.14: Quantiles and medians of the logarithmic terminal wealth p.a.

Finally we want to compare directly the terminal wealth of the respective strategies
within each simulation. Within each simulated market we calculate the wealth processes of
all three strategies (constrained historical, constrained random, 1/d-strategy) and compare
their terminal wealth.

In Figure 6.15 we see the percentage of simulations with one strategy outperforming
another one, i.e. resulting in a higher terminal wealth than another strategy. For starters
there seems to be no strategy strongly dominating the others. The maximal value in
Figure 6.15 can be found for α = −10 and t-cost = 0.2% and it says that 73% of these
1/d-strategies outperformed the random analyst. However 73% is far from being able to
consider one strategy significantly better. After all we need to notice that these are only
probabilities whether some strategy performs better or worse on average.

Nevertheless we do observe some interesting tendencies. Considering the red line we
observe that no matter the risk-aversion and no matter the transaction costs, the random
analyst can only beat the historical analyst in about 30% to 40% of cases. Only in the case
without transaction costs and with very low risk-aversion the random analyst manages to
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Figure 6.15: Percentage of better running strategies

dominate the benchmark-1/d-strategy in more than 50% of the cases (the green line). This
is not very surprising since the random analyst does not do any analysing work at all.

However although we have seen that the historical analyst outperforms the 1/d-strategy
significantly on average (with respect to the mean) we observe that he only beats the
benchmark in about 40% to 60% of the simulations (the blue line). Also for higher risk-
aversions this advantages vanishes.

Last but not least note the main impact that comes from transaction costs. When
comparing both plots in Figure 6.15 we observe a major shift of most data points towards
those strategies that trade less. Hence the impact of transaction costs on highly active
strategies is still high. Also note that this must of course be the case, since transaction
costs are not part of the model solved in the previous chapters, hence the resulting optimal
strategies need not be optimal in a setting with transaction costs any more.
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7 Outlook on further research

In the previous chapters we defined and solved several portfolio optimization problems
explicitly. First we introduced our notion of partial information and convex constraints
and how to deal with it using standard filtering techniques and the convex dual methods
of [CK92]. Then we considered the unconstrained and constrained portfolio optimization
problems under logarithmic and power utility with a no short-selling and a no borrowing
constraint. In order to solve the constrained problem under power utility we considered
a reverse separation approach leading to several cases for the optimal solution that we
treated separately. The main effort to solving this problem lies in finding the structure of
the optimal dual process. Afterwards we transferred our approach to further convex con-
straints whose corresponding problems can also be solved quite explicitly and we provided
some general results for arbitrary utility functions. Finally we simulated the performance
of our optimal portfolio strategies under realistic conditions.

One can think of several extensions of our results. Therefore in the following we will
present some further ideas and generalizations that can and should be considered in future
research. The most challenging part however might be to keep the explicit solvability of
the resulting solutions.

Remark 7.1 (Transaction costs and non-continuous trading)
The most unrealistic part of our market setting is the absence of transaction costs. Our
resulting portfolio strategies require time-continuous trading. Therefore they are not fea-
sible in practice since they lead to immediate bankruptcy when introducing transaction
costs a posteriori.

In our simulation we have already seen in Figure 6.7 that the amount of transactions
costs gets reduced significantly when applying constrained strategies due to less trading
in general. An interesting investigation could therefore be to figure out lower bounds to
what extent we can reduce transaction costs with different strategies.

There are various approaches in the literature that deal with non-continuous trading
like the ’relaxed h-investor’ as it is described in [Rog01] or in [BUV12] who use the same
setting of partial information than we do. However limiting the investor to only be allowed
to trade at fixed points in time seems undesirable when the investor is able to observe the
market continuously allowing him to trade as needed.

Anyway the problem of continuous trading vanishes automatically when introducing
transaction costs. As soon as they contain a constant part, any optimal portfolio strategy
cannot trade continuously without getting bankrupt. Hence introducing transaction costs
does not only lead to a way more realistic market model, but it also leads to time-discrete
trading.
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The challenging part of transaction costs however remains. Finding analytical expres-
sions for the optimal portfolio strategy might be arbitrarily hard, as results for the uncon-
strained problems under transaction costs already indicate.

Remark 7.2 (Infinite horizon)
When implementing our market model and the corresponding algorithm there occurs an-
other problem. We assume a terminal time T to optimize the utility of terminal wealth.
However most actual funds do not have a terminal time, they continue to exist as long as
they have good performance or their clients remain satisfied.

Therefore it would be interesting to consider also a portfolio optimization problem in
the same market model but with infinite time horizon. This could be done by introducing
a constant consumption process whose discounted future payouts add up to the argument
that gets optimized. Typically this kind of problem leads to the same optimal portfolio
strategy as the maximization of terminal wealth, at least for logarithmic and power utility.

One advantage of this approach might be that the resulting HJB-equation could be
independent of t and therefore the problem would be easier to solve. The only remaining
time-dependency would be the values of the filter and its variance themselves, who only
enter the strategy as given constants. On the other hand this approach might not be real-
istic if the investor’s incentive was to rather optimize her current 1-year-performance than
to include her future performance, since she might have to please her client or employer
in the present time.

Remark 7.3 (recurring estimates of the analysts)
Our portfolio optimization model is set up with analysts that provide their estimate of
the future growth rate of the stocks only at t = 0. Afterwards the filter for this growth
rate gets only updated using the following observations from the stock prices.

However in practice we would like to be able to get entirely new estimates of these
analysts whenever the market might change. In the simulation study in Chapter 6 we
therefore restarted the whole investment procedure whenever we wanted to introduce new
analysts’ estimates.

After all, recurring expert opinions can be a totally different problem, like in [SWW17].

Remark 7.4 (estimates of single stocks at different points of time)
Another problem with recurring analysts’ estimates than in Remark 7.3 could be incoming
estimates of single stocks. We assume in our market setting that all the analysts provide
their estimates of the different stocks simultaneously. This is important to our market
setting since the filter µ̂t of the growth rates starts with this estimate and evolves simul-
taneously in all stocks. In particular the conditional variance γt of the filter depends on
the correlation between these simultaneous estimates and the time that has passed since
the last estimate.

To include the possibility for estimates of different stocks at different points of time one
needs to set up a whole new problem. However we want to present two ad hoc ideas of
how to deal with this problem when given our setting.
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1) In the beginning we start with the parameters (µ0,Σ0). Now assume there occurs
a new estimate µi to stock i at time t1 > 0. Then the idea of this first approach is to
just treat the current filter values µ̂j for j 6= i as if they were new estimates to the other
stocks, too. This way our whole theory stays intact and applicable. However treating the
conditional variance γt of the filter for t > t1 might be challenging. Consider the following
three possibilities to deal with the conditional variance:

• At time t1 γt stays unchanged, hence γt =
(
Σ−1

0 + tΣ−1
)−1

where t is the time that
past since the very beginning.
The problem is that then γt −→

t→∞
0 indicating that the observed filter value is the

real growth rate µ while in reality we do not get closer over time.

• At time t1 γt gets set back to its original value, hence γt =
(
Σ−1

0 + (t− t1)Σ−1
)−1

where t− t1 is the time since the last new estimate.
The problem with this approach would be that we go back to γt1 = Σ0 every time a
new estimate occurs although the other d-1 estimates have a longer history.

• At time t1 γt gets updated using the previous information γt =
(
γ−1
t1− + (t− t1)Σ−1

)−1

where γt1− is the value of the conditional variance just before the new estimate oc-
curred. This approach is the most consistent with the above idea of updating the
filter value.
However the problem with this approach is that it is the same as the first approach:

γt =
(
γ−1
t1− + (t− t1)Σ−1

)−1
=
(
Σ−1

0 + t1Σ−1 + (t− t1)Σ−1
)−1

=
(
Σ−1

0 + tΣ−1
)−1

After all the second approach of resetting the conditional variance every time a new esti-
mate occurs seems to be reasonable. Alternatively one might think of resetting the time

more slowly such that γt =
(
Σ−1

0 + (t− t∗)Σ−1
)−1

where t∗ is some mean of the previous
times when new estimates occurred.

2) Another idea could be to use a direct approach that does not need computing the
whole successive path of the filter values µ̂t. To compute the filter µ̂t = γt

(
Σ−1

0 µ0 + Σ−1Rt
)

we only need the conditional variance γt and the current observable returns Rt.
Therefore at time t assume that the analysts provided their estimate for µi at time t−ti,

hence ti is the age of the estimate for stock i. Then the observable return for stock i given
the age of the last estimate becomes

Ri(ti) = log
Si(t)

Si(t− ti)
+

1

2
Σiiti

Hence we can define the return vector Rτ :=
(
R1(t1), ..., Rd(td)

)
, where τ = diag (t1, ..., td).

Also we need to modify the conditional variance γt =
(
Σ−1

0 + tΣ−1
)−1

to γτ using the
approach

γτ :=
(

Σ−1
0 + σ−>τσ−1

)−1
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This way we observe a symmetric generalization of γt that accounts for the different
estimation times via (σ−>τσ−1)ij =

∑
k tk(σ

−1)ki(σ
−1)kj . Note that neither Στ nor τΣ

would be symmetric or contain a reasonable interpretation.
The disadvantage of using this second approach is obvious. We redefined some param-

eters hence it becomes necessary to reprove every subsequent result like the derivation of
the optimal strategies.
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A Appendix

A.1 Proofs from Chapter 1

There are no proofs in Chapter 1.

A.2 Proofs from Chapter 2

A.2.1 Convex Duality of [CK92]

Cvitanic and Karatzas (1992) proofed dual optimality for utility functions that satisfy
lots of assumptions, in particular

x 7→ xU ′(x) = xα should be nondecreasing [CK92, (5.8)]

Unfortunately negative power utility doesn’t satisfy this assumption, that is used to show
that existence of an optimal constrained strategy implies existence of an optimal dual λ.

However in the case without consumption one can easily rewrite the whole proof by
using negative power utility directly to obtain the exact same results. Additionally we
will rewrite the whole proof below and allow for stochastic parameters and an arbitrary
physical measure.
In the following any undefined notation is taken from [CK92]!

Theorem A.1 (Dual optimality)
The following conditions are equivalent in the sense that optimality of π∗t (A) implies
existence of λt satisfying (B) - (E), while conditions (B) - (E) are equivalent and existence
of their λt implies existence of the optimal π∗t = πλt .

(A) Optimality of π∗t ∈ K:

E [U(X∗T )] ≥ E [U(Xπ
T )] ∀π ∈ K

and E
[
X∗TU

′(X∗T )
]
<∞

(B) Financibility of ξλ (= Xλ,∗
T ):

∃πλt ∈ K, δ(λt) + λ>t π
λ
t = 0 and Xπλ

t = Xλ,∗
t

(C) Minimality of λt:

E
[
U
(
ξλ
)]
≤ E

[
U
(
ξν
)]
∀ν ∈ D

145



A Appendix

(D) Dual optimality of λt:

E
[
Ũ
(
Yλ(x0)Hλ

T

)]
≤ E

[
Ũ
(
Yλ(x0)Hν

T

)]
∀νt ∈ D

(E) Parsimony of λt:

E
[
Hν
T ξ

λ
]
≤ x0 ∀ν ∈ D

Notation:
Xπ
t is the wealth process in the original market when investing πt,

X∗t is the optimal wealth process in the original market,
Xν,π
t is the wealth process in the ν-market when investing πt

Xν,∗
t is the optimal wealth process in the ν-market,

ξν := I
(
Yν(x0)Hν

T

)
is the optimal terminal wealth in the ν-market, Yν(x) = (X ν)−1(x)

and X ν(y) = E
[
Hν
T I
(
yHν

T

)]
.

Proof. (similar to [CK92, Thm.10.1])
(B) ⇒ (A) is trivial.
(A) ⇒ (B)

The wealth process X∗t according to the optimal portfolio process π∗t satisfies

H0
tX
∗
t = x0 +

∫ t

0
H0
sX
∗
s

(
σ>π∗s − θs

)>
dWs

We have P (X∗t > 0,∀t) = 1. (proof: [CK92])
We want to show existence of λ ∈ D such that

Hλ
t X
∗
t = E

[
Hλ
T ξ

λ
∣∣∣Ft]

and δ(λt) + λ>t π
∗
t = 0

(because then π∗t = πλt and X∗t = Xπλ
t = Xλ,∗

t )
Therefore consider the continuous martingale (with martingale representation)

Mt := E
[
X∗TU

′(X∗T )
∣∣Ft] = E [ (X∗T )α| Ft] = m0 +

∫ t

0
ψ>s dWs

then the process λt := −(µ− r1) + Σπ∗t − σ 1
Mt
ψt

satisfies the conditions of Financibility (B).
This is shown in [CK92, Appendix A.1] where we want to stress out that the following
conclusions have to be altered for negative power utility:

Proof. (the original version of [CK92])
Let X̂(t)e−3εn ≤ Xε(t) ≤ X̂(t)e3εn (∗). Then

1

ε

∣∣∣U(Xε(T )
)
− U

(
X̂(T )

)∣∣∣ MV T
≤ 1

ε

∣∣∣Xε(T )− X̂(T )
∣∣∣ · U ′ (X̂(T )e−3εn

)
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(∗)
≤ U ′

(
X̂(T )e−3εn

)
X̂(T )e−3εn e

3εn − 1

ε
e3εn

(5.8)

≤ KnU
′(X̂(T )

)
X̂(T )

where Kn := e3n sup0<ε<1
e3εn−1

ε is finite.

Proof. (the new version for negative power utility)
Let X̂(t)e−3εn ≤ Xε(t) ≤ X̂(t)e3εn (∗). Then

1

ε

∣∣∣U(Xε(T )
)
− U

(
X̂(T )

)∣∣∣ MV T
≤ 1

ε

∣∣∣Xε(T )− X̂(T )
∣∣∣ · U ′ (X̂(T )e−3εn

)
(∗)
≤ U ′

(
X̂(T )e−3εn

)
X̂(T )

e3εn − 1

ε

= X̂(T )αe−3εn(α−1) e
3εn − 1

ε

≤ X̂(T )α ·Kn = KnU
′(X̂(T )

)
X̂(T )

where Kn := sup0<ε<1

(
e−3εn(α−1) e3εn−1

ε

)
is finite as x 7→ e−3εn(α−1) e3εn−1

ε is uniformly

continuous on [0, 1].

Now we can continue the proof of the above theorem:
(B) ⇒ (E)

We know from the dynamics of Hν
t in the ν-market and Xπ

t in the original market:

dHν
t X

π
t = Hν

t X
π
t

((
−δ(νt)− π>t νt

)
dt+

(
π>t σ − θ>t

)
dWt

)
⇒ E [Hν

TX
π
T ] ≤ x0

As Xλ,∗
t = Xπλ

t (B) can be financed by πλt in the original market, we get for ξλ = Xλ,∗
T

E
[
Hν
T ξ

λ
]
≤ x0

(E) ⇒ (D)
By using Ũ (U ′(x)) + x (U ′(x)− y) ≤ Ũ(y) with x = ξλ = I

(
Yλ(x0)Hλ

T

)
and y = Yλ(x0)Hν

T we get

Ũ
(
Yλ(x0)Hν

T

)
≥ Ũ

(
Yλ(x0)Hλ

T

)
+ Yλ(x0)

(
Hλ
T ξ

λ −Hν
T ξ

λ
)

⇒ E
[
Ũ
(
Yλ(x0)Hν

T

)]
≥ E

[
Ũ
(
Yλ(x0)Hλ

T

)]
+ Yλ(x0)

(
x0 − E

[
Hν
T ξ

λ
] )

≥ E
[
Ũ
(
Yλ(x0)Hλ

T

)]
(B) ⇒ (C)

If we invest πλt in a ν-market and in the original market, we get

dXν,πλ

t = Xν,πλ

t

((
r + δ (νt) + πλt

>
νt

)
dt+ πλt

>
σdWQ

t

)
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dXπλ

t = Xπλ

t

(
rdt+ πλt

>
σdWQ

t

)
and observe Xν,πλ

t ≥ Xπλ
t > 0, hence ξν = Xν,∗

T ≥ Xν,πλ

T ≥ Xπλ

T = ξλ, hence (C).
(C) ⇒ (D)

We know from the dynamics of Hν
t in the ν-market and Xπ

t in the original market:

dHν
t X

π
t = Hν

t X
π
t

((
−δ(νt)− π>t νt

)
dt+

(
π>t σ − θ>t

)
dWt

)
⇒ E [Hν

TX
π
T ] ≤ x0

Using Ũ(y) ≥ U(x)− xy ∀x, y we get

U(Xπ
T ) ≤ Ũ(yHν

T ) + yHν
TX

π
T

⇒ E [U(Xπ
T )] ≤ E

[
Ũ(yHν

T )
]

+ yE [Hν
TX

π
T ]

≤ E
[
Ũ(yHν

T )
]

+ yx0

as this holds for any πt admissible for the ν-market, it also holds for the optimum

⇒ E [U(ξν)] ≤ E
[
Ũ(yHν

T )
]

+ yx0 ∀y

⇒ E [U(ξν)] ≤ E
[
Ũ(Yλ(x0)Hν

T )
]

+ x0Yλ(x0)

However on the other hand by (C) and Ũ(y) = U(I(y))− yI(y) we get

E [U(ξν)] ≥ E
[
U(ξλ)

]
= E

[
Ũ(Yλ(x0)Hλ

T )
]

+ Yλ(x0)E
[
Hλ
T ξ

λ
]

= E
[
Ũ(Yλ(x0)Hλ

T )
]

+ x0Yλ(x0)

⇒ E
[
Ũ(Yλ(x0)Hν

T )
]
≥ E

[
Ũ(Yλ(x0)Hλ

T )
]

(D)

(D) ⇒ (B) ([CK92, Thm.10.1 + Thm.9.1]:)
By martingale representation of E

[
Hλ
T ξ

λ
∣∣Ft] there exists a portfolio process πt in the

λ-market such that Xλ,π
t satisfies

Hλ
t X

λ,π
t = x0 +

∫ t

0
Hλ
sX

λ,π
s

(
π>s σ − θλs

>)
dWs = mart.rep. = E

[
Hλ
T ξ

λ
∣∣∣Ft]

where dXλ,π
t = Xλ,π

t

((
r + δ(λt) + π>t λt

)
dt+ π>t σtdW

0
t

)
i.e. π is the optimal strategy in the λ-market.
If now πt ∈ K and δ(λt) + π>t λt = 0 then Xπ

t = Xλ,π
t is also a wealth process in the

original market and we are done.
Step I: Fix some νt, some ε ∈ (0, 1) and the stopping times τn ↗ T below. Then define

λν,εn (t) := λt + ε(νt − λt)1{t≤τn}
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Lνt :=

∫ t

0
δ̃ν(λs)ds , where δ̃ν(λt) :=

{
−δ(λt), if νt = 0

δ(νt − λt), else

Nν
t :=

∫ t

0

(
σ−1(νs − λs)

)>
dW λ

s

τn := T ∧ inf

{
t ∈ [0, T ] : |Lνt | ≥ n or |Nν

t | ≥ n

or

∫ t

0

∥∥σ−1(νs − λs)
∥∥2
ds ≥ n or

∫ t

0

∥∥∥θλs ∥∥∥2
ds ≥ n

or

∫ t

0
(βλsX

λ,π
s )2

∥∥∥σ−1(νs − λs) + (Lνs +Nν
s )σ>πs

∥∥∥2
ds ≥ n

}
Step II: define (for any y > 0, ε ∈ (0, 1))

Y ε
n :=

1

ε

(
Ũ
(
yHλν,εn

T

)
− Ũ

(
yHλ

T

))
then

lim sup
ε↘0

E [Y ε
n ] ≤ yE

[
ξλHλ

T

(
Lντn +Nν

τn

)]
(A.1)

= yE
[∫ τn

0
Hλ
t X

λ,π
t π>t (νt − λt)dt+

∫ τn

0
Hλ
t X

λ,π
t dLνt

]
(A.2)

=

yE
[∫ τn

0 Hλ
t X

λ,π
t

(
−π>t λt − δ(λt)

)
dt
]
, if ν = 0

yE
[∫ τn

0 Hλ
t X

λ,π
t

(
π>t ρt + δ(ρt)

)
dt
]
, if ν 6= 0, ρ := ν − λ

Proof of inequality (A.1):
Note that the random variables Y ε

n are bounded from above:
By the mean value theorem, the increasing Ũ ′(y) = −I(y) and (D) we get

∃y∗ :
Ũ(yHλν,εn

T )− Ũ(yHλ
T )

yHλν,εn
T − yHλ

T

= Ũ ′(y∗)

CASE I : Hλν,εn
T ≥ Hλ

T ⇒ Ũ ′(y∗) ≤ −I
(
yHλν,εn

T

)
CASE II: Hλν,εn

T ≤ Hλ
T ⇒ Ũ ′(y∗) ≥ −I

(
yHλν,εn

T

)
In both cases holds

Y ε
n ≤

1

ε

(
yHλ

T − yH
λν,εn
T

)
I
(
yHλν,εn

T

)
Also we know by definition of τn

Hλν,εn
t

Hλ
t

= exp

(
−
∫ t∧τn

0
δ (λs + ε(νs − λs))− δ(λs)ds− εNt∧τn −

ε2

2

∫ t∧τn

0

∥∥σ−1(νs − λs
∥∥2
ds

)
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≥ exp

(
−ε(Lνt∧τn +Nν

t∧τn)− ε2

2

∫ t∧τn

0

∥∥σ−1(νs − λs
∥∥2
ds

)
=: ∆ε

n

≥ e−3εn

hence

Y ε
n ≤

1

ε

(
yHλ

T − yH
λν,εn
T

)
I
(
yHλν,εn

T

)
=

1

ε

(
1−

Hλν,εn
T

Hλ
T

)
yHλ

T I
(
yHλν,εn

T

)
≤ 1

ε

(
1− e−3εn

)
yHλ

T I
(
ye−3εnHλ

T

)
≤ Yn := KnyH

λ
T I(e−3nyHλ

T )

where Kn := sup
ε∈(0,1)

1− e−3εn

ε

note that [CK92] get a slightly different formula: Kn = sup
ε∈(0,1)

e3εn−1
ε

However, as E [Yn] = KnyX λ(ye−3n) <∞ we can apply Fatou’s Lemma:

lim sup
ε↘0

E [Y ε
n ] ≤ E

[
lim sup
ε↘0

Y ε
n

]
On the other hand the random variables Y ε

n are also bounded from above by:

Y ε
n ≤

1

ε
(1−∆ε

n) yHλ
T I
(
yHλ

T

)
where

1

ε
(1−∆ε

n)
l′H→
ε→0

Lνt∧τn +Nν
t∧τn

Therefore (A.1) follows immediately for y = Yλ(x0), i.e. ξλ = I
(
yHλ

T

)
.

Proof of equality (A.2)
We know in the λ-market

d
(
βλt X

λ,π
t

)
= βλt X

λ,π
t π>t σdW

λ
t

⇒ d
(
βλt X

λ,π
t (Lνt +Nν

t )
)

= βλt X
λ,π
t (dLνt + dNν

t ) + (Lνt +Nν
t )βλt X

λ,π
t π>t σdW

λ
t + βλt X

λ,π
t π>t (νt − λt)dt

= βλt X
λ,π
t

((
σ−1(νt − λt)

)>
dW λ

t + (Lνt +Nν
t )π>t σdW

λ
t + π>t (νt − λt)dt+ dLνt

)

Now, W λ
t∧τn is a Brownian motion under Rn, where dRn

dP = Zλτn . Hence taking the integral
from 0 to τn and then the expectation w.r.t Rn on both sides leads to:

ER
[
βλτnX

λ,π
τn (Lντn +Nν

τn)
]

= ER
[∫ τn

0
βλt X

λ,π
t

(
π>t (νt − λt)dt+ dLνt

)
dt

]
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⇒ E
[
Hλ
τnX

λ,π
τn (Lντn +Nν

τn)
]

= E
[∫ τn

0
Hλ
t X

λ,π
t

(
π>t (νt − λt)dt+ dLνt

)
dt

]
Note that Hλ

τnX
λ,π
τn = E

[
Hλ
T ξ

λ
∣∣Fτn] and hence

E
[
Hλ
τnX

λ,π
τn (Lντn +Nν

τn)
]

= E
[
E
[
Hλ
T ξ

λ
∣∣∣Fτn] (Lντn +Nν

τn)
]

= E
[
Hλ
T ξ

λ(Lντn +Nν
τn)
]

which finishes the proof of equality (A.2)

Step III:
By assumption (D) we get in (A.1) LHS ≥ 0 for y = Yλ(x0), hence (A.2) ≥ 0. Hence

−π>t λt − δ(λt) ≥ 0

π>t ρt + δ(ρt) ≥ 0 ∀ρt 6= −λt

By considering ρt = λt we get π>t λt + δ(λt) = 0 .
For the case ρt = −λt we get

−δ(λ) = −sup
π∈K
− π>λ = inf

π∈K
π>λ ≤ sup

π∈K
π>λ = δ(−λ)

⇒ −π>t ρt = π>t λt = −δ(λt) ≤ δ(−λt) = δ(ρt)

⇒ −π>t ρt ≤ δ(ρt) ∀ρt
⇒ πt ∈ K by [Roc70, Thm.13.1]
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A.3 Proofs from Chapter 3

A.3.1 Choice of I in Case 3

Let I and J be the active and passive dimensions such that (λ, π) are the optimal
solution in Case 3 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.

If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < 0.
2) Let j ∈ J with λj > 0 be a passive dimension (by Lemma 3.7).

If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.
Hence several false choices of active and passive dimensions lead to non-admissible solu-
tions, reveal that the choice was wrong.

Proof. Note the (correct) optimal solution:

λJ = −(µ− r1)J + ΣJI(ΣII)
−1(µ− r1)I = −(µ− r1)J + ΣJIπI

πI = (ΣII)
−1(µ− r1)I

and the (wrong) optimal solution:

λ′J ′ = −(µ− r1)J ′ + ΣJ ′I′(ΣI′I′)
−1(µ− r1+)I′ = −(µ− r1)J ′ + ΣJ ′I′π

′
I′

π′I′ = (ΣI′I′)
−1(µ− r1)I′

First assume I ′ = I \ {i} and J ′ = J ∪ {i}. To show: λ′i < 0.
We know for πi:

0 < πi = ((ΣII)
−1)iI(µ− r1)I

= ((ΣII)
−1)ii(µ− r1)i + ((ΣII)

−1)iI′(µ− r1)I′

= ((ΣII)
−1)ii(µ− r1)i − ((ΣII)

−1)iiΣiI′(ΣI′I′)
−1(µ− r1)I′

⇔ 0 < (µ− r1)i − ΣiI′(ΣI′I′)
−1(µ− r1)I′

Now consider λ′i (where i ∈ J ′)

λ′i = −(µ− r1)i + ΣiI′(ΣI′I′)
−1(µ− r1)I′ < 0

and we have shown the first part.
For the second part assume I ′ = I ∪ {j} and J ′ = J \ {j}. To show: π′j < 0.
We know for λj :

0 < λj = −(µ− r1)j + ΣjI(ΣII)
−1(µ− r1)I

Now consider π′j (where j ∈ I ′).

π′j = ((ΣI′I′)
−1)jI′(µ− r1)I′

= ((ΣI′I′)
−1)jj(µ− r1)j + ((ΣI′I′)

−1)jI(µ− r1)I
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= ((ΣI′I′)
−1)jj(µ− r1)j − ((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

= −((ΣI′I′)
−1)jjλj

< 0

hence we have shown the second part.

A.3.2 Choice of I in Case 4

Let I and J be the active and passive dimensions such that (λ, π) are the optimal
solution in Case 4 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.

If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < λ̄′.
2) Let j ∈ J with λj > λ̄ be a passive dimension (by Theorem 3.11).

If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.
Hence several false choices of active and passive dimensions lead to non-admissible solu-
tions, reveal that the choice was wrong.

Proof. Note the (correct) optimal solution:

λ̄ =
1− 1>I (ΣII)

−1(µ− r1)I

1
>
I (ΣII)−11I

λJ = −(µ− r1)J + ΣJI(ΣII)
−1(µ− r1 + λ̄1)I = −(µ− r1)J + ΣJIπI

πI = (ΣII)
−1(µ− r1 + λ̄1)I

and the (wrong) optimal solution:

λ̄′ =
1− 1>I′(ΣI′I′)

−1(µ− r1)I′

1
>
I′(ΣI′I′)−11I′

λ′J ′ = −(µ− r1)J ′ + ΣJ ′I′(ΣI′I′)
−1(µ− r1 + λ̄′1)I′ = −(µ− r1)J ′ + ΣJ ′I′π

′
I′

π′I′ = (ΣI′I′)
−1(µ− r1 + λ̄′1)I′

First assume I ′ = I \ {i} and J ′ = J ∪ {i}. To show: λ′i < λ̄′.
We know for πi:

0 < πi = ((ΣII)
−1)iI(µ− r1 + λ̄1)I

= ((ΣII)
−1)ii(µ− r1 + λ̄1)i + ((ΣII)

−1)iI′(µ− r1 + λ̄1)I′

= ((ΣII)
−1)ii(µ− r1)i + ((ΣII)

−1)iiλ̄

− ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1(µ− r1)I′ − ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1
1I′ λ̄

⇔ 0 < (µ− r1)i + λ̄

− ΣiI′(ΣI′I′)
−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′ λ̄

⇔ 0 < 1
>
I (ΣII)

−1
1I(µ− r1)i + 1

>
I (ΣII)

−1
1I λ̄
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− 1>I (ΣII)
−1
1IΣiI′(ΣI′I′)

−1(µ− r1)I′

− 1>I (ΣII)
−1
1IΣiI′(ΣI′I′)

−1
1I′ λ̄

= 1 + 1
>
I (ΣII)

−1
1I(µ− r1)i

− 1>I (ΣII)
−1(µ− r1)I

− 1>I (ΣII)
−1
1IΣiI′(ΣI′I′)

−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′

+ ΣiI′(ΣI′I′)
−1
1I′1

>
I (ΣII)

−1(µ− r1)I

⇔ 1 > −1>I (ΣII)
−1
1I(µ− r1)i

+ 1
>
I (ΣII)

−1(µ− r1)I

+ 1
>
I (ΣII)

−1
1IΣiI′(ΣI′I′)

−1(µ− r1)I′

+ ΣiI′(ΣI′I′)
−1
1I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I (ΣII)

−1(µ− r1)I

= ΣiI′(ΣI′I′)
−1
1I′

− ((ΣII)
−1)ii(µ− r1)i

− 1>I′((ΣII)
−1)I′i(µ− r1)i

− ((ΣII)
−1)iI′1I′(µ− r1)i

− 1>I′((ΣII)
−1)I′I′1I′(µ− r1)i

+ ((ΣII)
−1)ii(µ− r1)i

+ 1
>
I′((ΣII)

−1)I′i(µ− r1)i

+ ((ΣII)
−1)iI′(µ− r1)I′

+ 1
>
I′((ΣII)

−1)I′I′(µ− r1)I′

+ ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′((ΣII)

−1)I′iΣiI′(ΣI′I′)
−1(µ− r1)I′

+ ((ΣII)
−1)iI′1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′((ΣII)

−1)I′I′1I′ΣiI′(ΣI′I′)
−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′((ΣII)

−1)ii(µ− r1)i

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′((ΣII)

−1)I′i(µ− r1)i

− ΣiI′(ΣI′I′)
−1
1I′((ΣII)

−1)iI′(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′((ΣII)

−1)I′I′(µ− r1)I′

= ΣiI′(ΣI′I′)
−1
1I′

− ((ΣII)
−1)ii(µ− r1)i

+ 1
>
I′(ΣI′I′)

−1ΣI′i((ΣII)
−1)ii(µ− r1)i

+ ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1
1I′(µ− r1)i
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− 1>I′(ΣI′I′)
−1
1I′(µ− r1)i

− 1>I′(ΣI′I′)
−1ΣI′i((ΣII)

−1)iiΣiI′(ΣI′I′)
−1
1I′(µ− r1)i

+ ((ΣII)
−1)ii(µ− r1)i

− 1>I′(ΣI′I′)
−1ΣI′i((ΣII)

−1)ii(µ− r1)i

− ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1ΣI′i((ΣII)
−1)iiΣiI′(ΣI′I′)

−1(µ− r1)I′

+ ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1(µ− r1)I′

− 1>I′(ΣI′I′)
−1ΣI′i((ΣII)

−1)iiΣiI′(ΣI′I′)
−1(µ− r1)I′

− ((ΣII)
−1)iiΣiI′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1ΣI′i((ΣII)
−1)iiΣiI′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′((ΣII)

−1)ii(µ− r1)i

+ ΣiI′(ΣI′I′)
−1
1I′1

>
I′(ΣI′I′)

−1ΣI′i((ΣII)
−1)ii(µ− r1)i

+ ΣiI′(ΣI′I′)
−1
1I′((ΣII)

−1)iiΣiI′(ΣI′I′)
−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′(ΣI′I′)

−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′(ΣI′I′)

−1ΣI′i((ΣII)
−1)iiΣiI′(ΣI′I′)

−1(µ− r1)I′

= ΣiI′(ΣI′I′)
−1
1I′

− 1>I′(ΣI′I′)
−1
1I′(µ− r1)i

+ 1
>
I′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′(ΣI′I′)

−1(µ− r1)I′

because all other terms cancel out.
Now consider λ′i (where i ∈ J ′)

λ′i = −(µ− r1)i + ΣiI′(ΣI′I′)
−1(µ− r1 + λ̄′1)I′

⇒ 1
>
I′(ΣI′I′)

−1
1I′λ

′
i = −1>I′(ΣI′I′)

−1
1I′(µ− r1)i

+ 1
>
I′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

+ ΣiI′(ΣI′I′)
−1
1I′ − ΣiI′(ΣI′I′)

−1
1I′1

>
I′(ΣI′I′)

−1(µ− r1)I′

hence

λ̄′ > λ′i

⇔ 1− 1>I′(ΣI′I′)
−1(µ− r1)I′ > 1

>
I′(ΣI′I′)

−1
1I′λ

′
i

= −1>I′(ΣI′I′)
−1
1I′(µ− r1)i
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+ 1
>
I′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

+ ΣiI′(ΣI′I′)
−1
1I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′(ΣI′I′)

−1(µ− r1)I′

⇔ 1 > ΣiI′(ΣI′I′)
−1
1I′

− 1>I′(ΣI′I′)
−1
1I′(µ− r1)i

+ 1
>
I′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1
1I′ΣiI′(ΣI′I′)

−1(µ− r1)I′

− ΣiI′(ΣI′I′)
−1
1I′1

>
I′(ΣI′I′)

−1(µ− r1)I′

⇔ πi > 0

hence we have shown the first part.
For the second part assume I ′ = I ∪ {j} and J ′ = J \ {j}. To show: π′j < 0.
We know for λj :

λ̄ < λj = −(µ− r1)j + ΣjI(ΣII)
−1(µ− r1 + λ̄1)I

⇔ 1− 1>I (ΣII)
−1(µ− r1)I < 1

>
I (ΣII)

−1
1Iλj

= −1>I (ΣII)
−1
1I(µ− r1)j

+ 1
>
I (ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

+ ΣjI(ΣII)
−1
1I

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1(µ− r1)I

⇔ 1 < ΣjI(ΣII)
−1
1I

− 1>I (ΣII)
−1
1I(µ− r1)j

+ 1
>
I (ΣII)

−1(µ− r1)I

+ 1
>
I (ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1(µ− r1)I

Now consider π′j (where j ∈ I ′). To show:

0 > π′j = ((ΣI′I′)
−1)jI′(µ− r1 + λ̄′1)I′

= ((ΣI′I′)
−1)jj(µ− r1)j

+ ((ΣI′I′)
−1)jjλ̄

′

+ ((ΣI′I′)
−1)jI(µ− r1)I

+ ((ΣI′I′)
−1)jI1I λ̄

′

= ((ΣI′I′)
−1)jj(µ− r1)j

+ ((ΣI′I′)
−1)jjλ̄

′

− ((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

156



A.3 Proofs from Chapter 3

− ((ΣI′I′)
−1)jjΣjI(ΣII)

−1
1I λ̄

′

⇔ 0 > 1
>
I′(ΣI′I′)

−1
1I′(µ− r1)j

+ 1− 1>I′(ΣI′I′)
−1(µ− r1)I′

− 1>I′(ΣI′I′)
−1
1I′ΣjI(ΣII)

−1(µ− r1)I

− ΣjI(ΣII)
−1
1I

+ ΣjI(ΣII)
−1
1I1

>
I′(ΣI′I′)

−1(µ− r1)I′

⇔ 1 < ΣjI(ΣII)
−1
1I

− 1>I′(ΣI′I′)
−1
1I′(µ− r1)j

+ 1
>
I′(ΣI′I′)

−1(µ− r1)I′

+ 1
>
I′(ΣI′I′)

−1
1I′ΣjI(ΣII)

−1(µ− r1)I

− ΣjI(ΣII)
−1
1I1

>
I′(ΣI′I′)

−1(µ− r1)I′

= ... (as above, using the matrix inversion from below)

= ΣjI(ΣII)
−1
1I

− 1>I (ΣII)
−1
1I(µ− r1)j

+ 1
>
I (ΣII)

−1(µ− r1)I

+ 1
>
I (ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1(µ− r1)I

⇔ λ̄ < λj

hence we have shown the second part.

A.3.3 Dimensions on the boundary

Let I and J be the active and passive dimensions such that (λ, π) are the optimal
solution in Case 4 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.

If j ∈ J is a passive dimension that is almost invested in, hence λj = λ̄ according to
Remark 3.13, then j can also be considered an active dimension.
In particular:

Let j ∈ J with πj = 0 and λj = λ̄ be a passive dimension that is almost invested in.
Then: If we choose I ′ = I ∪ {j} and J ′ = J \ {j} we get λ′ = λ and π′ = π.

Proof. (Only for case 4 as case 3 is a trivial consequence for λ̄00.)
Note the (correct) optimal solution:

λ̄ =
1− 1>I (ΣII)

−1(µ− r1)I

1
>
I (ΣII)−11I

λJ = −(µ− r1)J + ΣJI(ΣII)
−1(µ− r1 + λ̄1)I = −(µ− r1)J + ΣJIπI

πI = (ΣII)
−1(µ− r1 + λ̄1)I
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and the other solution:

λ̄′ =
1− 1>I′(ΣI′I′)

−1(µ− r1)I′

1
>
I′(ΣI′I′)−11I′

λ′J ′ = −(µ− r1)J ′ + ΣJ ′I′(ΣI′I′)
−1(µ− r1 + λ̄′1)I′ = −(µ− r1)J ′ + ΣJ ′I′π

′
I′

π′I′ = (ΣI′I′)
−1(µ− r1 + λ̄′1)I′

Let j ∈ J with λj = λ̄ and I ′ = I ∪ {j} and J ′ = J \ {j}.
From the proof of Lemma 3.18 we get for λj :

λj = λ̄

⇔ 1 = ΣjI(ΣII)
−1
1I

− 1>I (ΣII)
−1
1I(µ− r1)j

+ 1
>
I (ΣII)

−1(µ− r1)I

+ 1
>
I (ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1(µ− r1)I (∗)
⇔ π′j = 0

note for λ̄ =
1−1>I (ΣII)−1(µ−r1)I

1
>
I (ΣII)−11I

:

λ̄ = λj = −(µ− r1)j + ΣjI(ΣII)
−1(µ− r1 + λ̄1)I

= −(µ− r1)j + ΣjI(ΣII)
−1(µ− r1)I + ΣjI(ΣII)

−1
1I λ̄

⇒ λ̄ =
−(µ− r1)j + ΣjI(ΣII)

−1(µ− r1)I
1− ΣjI(ΣII)−11I

also

λ̄′ =
1− 1>I′(ΣI′I′)

−1(µ− r1)I′

1
>
I′(ΣI′I′)−11I′

⇒ λ̄′(1>I′(ΣI′I′)
−1
1I′) = 1− 1>I′(ΣI′I′)

−1(µ− r1)I′

= 1− ((ΣI′I′)
−1)jj(µ− r1)j

− ((ΣI′I′)
−1)jI(µ− r1)I

− 1>I ((ΣI′I′)
−1)Ij(µ− r1)j

− 1>I ((ΣI′I′)
−1)II(µ− r1)I

= 1− ((ΣI′I′)
−1)jj(µ− r1)j

+ ((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

+ 1
>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− 1>I (ΣII)
−1(µ− r1)I

− 1>I (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I
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⇒ λ̄′(1>I′(ΣI′I′)
−1
1I′)(1− ΣjI(ΣII)

−1
1I)

= 1− ΣjI(ΣII)
−1
1I

− (1− ΣjI(ΣII)
−1
1I)((ΣI′I′)

−1)jj(µ− r1)j

+ (1− ΣjI(ΣII)
−1
1I)((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ (1− ΣjI(ΣII)
−1
1I)1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− (1− ΣjI(ΣII)
−1
1I)1

>
I (ΣII)

−1(µ− r1)I

− (1− ΣjI(ΣII)
−1
1I)1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

= 1− ΣjI(ΣII)
−1
1I

− ((ΣI′I′)
−1)jj(µ− r1)j

+ ΣjI(ΣII)
−1
1I((ΣI′I′)

−1)jj(µ− r1)j

+ ((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

− ΣjI(ΣII)
−1
1I((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ 1
>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− 1>I (ΣII)
−1(µ− r1)I

+ ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1(µ− r1)I

− 1>I (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

= 1− ΣjI(ΣII)
−1
1I

− ((ΣI′I′)
−1)jj(µ− r1)j

+ 2ΣjI(ΣII)
−1
1I((ΣI′I′)

−1)jj(µ− r1)j

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− 1>I (ΣII)
−1(µ− r1)I

+ ((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

+ ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1(µ− r1)I

− 2ΣjI(ΣII)
−1
1I((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I
(∗)
= −1>I (ΣII)

−1
1I(µ− r1)j

− ((ΣI′I′)
−1)jj(µ− r1)j

+ 2ΣjI(ΣII)
−1
1I((ΣI′I′)

−1)jj(µ− r1)j

− ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

+ 1
>
I (ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

+ ((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I
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− 2ΣjI(ΣII)
−1
1I((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ ΣjI(ΣII)
−1
1I1

>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

from

1
>
I′(ΣI′I′)

−1
1I′ = ((ΣI′I′)

−1)jj + ((ΣI′I′)
−1)jI1I + 1

>
I ((ΣI′I′)

−1)Ij + 1
>
I ((ΣI′I′)

−1)II1I

= ((ΣI′I′)
−1)jj

− ((ΣI′I′)
−1)jjΣjI(ΣII)

−1
1I

− 1>I (ΣII)
−1ΣIj((ΣI′I′)

−1)jj

+ 1
>
I (ΣII)

−1
1I

+ 1
>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1
1I

we get

λ̄(1>I′(ΣI′I′)
−1
1I′)(1− ΣjI(ΣII)

−1
1I)

= (1>I′(ΣI′I′)
−1
1I′)(−(µ− r1)j + ΣjI(ΣII)

−1(µ− r1)I)

= −((ΣI′I′)
−1)jj(µ− r1)j

+ ((ΣI′I′)
−1)jjΣjI(ΣII)

−1
1I(µ− r1)j

+ 1
>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− 1>I (ΣII)
−1
1I(µ− r1)j

− 1>I (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1
1I(µ− r1)j

+ ((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

− ((ΣI′I′)
−1)jjΣjI(ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

− 1>I (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ 1
>
I (ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

+ 1
>
I (ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1
1IΣjI(ΣII)

−1(µ− r1)I

= λ̄′(1>I′(ΣI′I′)
−1
1I′)(1− ΣjI(ΣII)

−1
1I)

Hence λ̄′ = λ̄
Now consider πI and π′I :

πI = (ΣII)
−1(µ− r1 + λ̄1)I

⇒ πI(1− ΣjI(ΣII)
−1
1I) = (ΣII)

−1(µ− r1)I(1− ΣjI(ΣII)
−1
1I)

+ (ΣII)
−1
1I(−(µ− r1)j + ΣjI(ΣII)

−1(µ− r1)I)

= (ΣII)
−1(µ− r1)I

− ΣjI(ΣII)
−1
1I(ΣII)

−1(µ− r1)I

− (ΣII)
−1
1I(µ− r1)j

+ (ΣII)
−1
1IΣjI(ΣII)

−1(µ− r1)I
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and using λ̄′ = λ̄

π′I = ((ΣI′I′)
−1)II′(µ− r1 + λ̄′1)I′

= ((ΣI′I′)
−1)II(µ− r1)I

+ ((ΣI′I′)
−1)II1I λ̄

+ ((ΣI′I′)
−1)Ij(µ− r1)j

+ ((ΣI′I′)
−1)Ij λ̄

= (ΣII)
−1(µ− r1)I

+ (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

+ (ΣII)
−1
1I λ̄

+ (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1
1I λ̄

− (ΣII)
−1ΣIj((ΣI′I′)

−1)jj(µ− r1)j

− (ΣII)
−1ΣIj((ΣI′I′)

−1)jjλ̄

⇒ π′I(1− ΣjI(ΣII)
−1
1I) = (1− ΣjI(ΣII)

−1
1I)(ΣII)

−1(µ− r1)I

+ (1− ΣjI(ΣII)
−1
1I)(ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

+ (ΣII)
−1
1I(−(µ− r1)j + ΣjI(ΣII)

−1(µ− r1)I)

+ (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1
1I(−(µ− r1)j + ΣjI(ΣII)

−1(µ− r1)I)

− (1− ΣjI(ΣII)
−1
1I)(ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

− (ΣII)
−1ΣIj((ΣI′I′)

−1)jj(−(µ− r1)j + ΣjI(ΣII)
−1(µ− r1)I)

= (ΣII)
−1(µ− r1)I

− ΣjI(ΣII)
−1
1I(ΣII)

−1(µ− r1)I

+ (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

− ΣjI(ΣII)
−1
1I(ΣII)

−1ΣIj((ΣI′I′)
−1)jjΣjI(ΣII)

−1(µ− r1)I

− (ΣII)
−1
1I(µ− r1)j

+ (ΣII)
−1
1IΣjI(ΣII)

−1(µ− r1)I

− (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1
1I(µ− r1)j

+ (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1
1IΣjI(ΣII)

−1(µ− r1)I

− (ΣII)
−1ΣIj((ΣI′I′)

−1)jj(µ− r1)j

+ ΣjI(ΣII)
−1
1I(ΣII)

−1ΣIj((ΣI′I′)
−1)jj(µ− r1)j

+ (ΣII)
−1ΣIj((ΣI′I′)

−1)jj(µ− r1)j

− (ΣII)
−1ΣIj((ΣI′I′)

−1)jjΣjI(ΣII)
−1(µ− r1)I

= (ΣII)
−1(µ− r1)I

− ΣjI(ΣII)
−1
1I(ΣII)

−1(µ− r1)I

− (ΣII)
−1
1I(µ− r1)j
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+ (ΣII)
−1
1IΣjI(ΣII)

−1(µ− r1)I

= πI(1− ΣjI(ΣII)
−1
1I)

Hence π′I = πI . Also

λJ ′ = −(µ− r1)J ′ + ΣJ ′IπI

and λ′J ′ = −(µ− r1)J ′ + ΣJ ′I′π
′
I′

= −(µ− r1)J ′ + ΣJ ′Iπ
′
I = λJ ′

This proofs the assumption.
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A.4 Proofs from Chapter 4

A.4.1 Martingale approach from [BDL10]:

Consider the local martingale Zt (which is a martingale by assumption)

dZt = −Ztθ>t dWt, Z0 = 1

the discount process βt := e−rt such that X̃t := βtXt and the wealth equations

dXt = Xt

((
r + π>t (µt − r)

)
dt+ π>t σtdWt

)
= Xt

(
rdt+ π>t σtdW

Q
t

)
dX̃t = X̃tπ

>
t

(
(µt − r)dt+ σdWt

)
= X̃tπ

>
t σdW

Q
t for dWQ

t := dWt + θdt

By Girsanov WQ
t is a Brownian motion under Q where dQ

dP = ZT , Zt = dQ
dP

∣∣∣
Ft

.

Define the P -martingale Z0 via its dynamics dZ0
t = Z0

t
α

1−αθ
>
t dWt

and the corresponding measure Q0 via dQ0

dP = Z0
t on Ft.

Under power utility U(x) = 1
αx

α,

we get X∗T = I(yβTZT ) = x0H
−1
0 β

1
α−1

T Z
1

α−1

T where H0 := E
[
β

α
α−1

T Z
α
α−1

T

]
.

Note:

Z0
t = exp

∫ t

0

α

1− α
θ>s dWs −

1

2

∫ t

0

(
α

1− α

)2

θ>s θsds

Z
α
α−1

T = exp

∫ T

0

α

1− α
θ>t dWt +

1

2

∫ T

0

α

1− α
θ>t θtdt

= Z0
T exp

1

2

∫ T

0

α

(1− α)2
θ>t θtdt

⇒ H0 = E0
[(
Z0
T

)−1
β

α
α−1

T Z
α
α−1

T

]
= E0

[
exp

α

1− α

∫ T

0
r +

1

2

1

1− α
θ>t θtdt

]
and define: Ht := E0

[
exp

α

1− α

∫ T

t
r +

1

2

1

1− α
θ>s θsds

∣∣∣∣Ft]

Then the optimal wealth process evolves as X∗t = x0
Ht
H0
β

1
α−1

t Z
1

α−1

t .

Proof. This is just calculation and a change of measure via Bayes theorem.

[BDL10] also show that the process Ht has a stochastic differential representation as

dHt = Ht

(
µH(t)dt+ σH(t)dWt

)

163



A Appendix

Then the optimal portfolio process reads as

π∗t =
1

1− α
Σ−1
t (µt − r) + σ−>t σ>H(t)

Proof. X̃∗t = x0
H0
Htβ

α
α−1

t Z
1

α−1

t hence by Itô

dX̃∗t = X̃∗t

(
(...)dt+

(
1

1− α
θt + σH(t)

)
dWt

)
And from the wealth equation we know dX̃∗t = X̃∗t

(
(...)dt+ π∗t

> σdWt

)
Note that in general the determination of σH is barely possible.

Example:
We start with the observable form of our model:

dSt = St(µ̂tdt+ σdVt)

where Vt is an FS-Brownian motion and Rt, µ̂t and Vt are observable. We have

dQ

dP
= ZT , where dZt = −Ztθ̂>t dVt

dQ0

dP
= Z0

T , where dZ0
t = Z0

t

α

1− α
θ̂>t dVt

Hence we get

Ht = E0

[
exp

α

1− α

∫ T

t
r +

1

2

1

1− α
θ̂>s θ̂sds

∣∣∣∣FSt ]
=

1

Z0
t

E
[
Z0
T exp

α

1− α

∫ T

t
r +

1

2

1

1− α
θ̂>s θ̂sds

∣∣∣∣FSt ]
= E

[
exp

α

1− α

∫ T

t
r +

1

2
θ̂>s θ̂sds+

α

1− α

∫ T

t
θ̂>s dVs

∣∣∣∣FSt ]
= ZtEQ

[
Z−1
T exp

α

1− α

∫ T

t
r +

1

2
θ̂>s θ̂sds+

α

1− α

∫ T

t
θ̂>s dVs

∣∣∣∣FSt ]
= EQ

[
exp

α

1− α
(T − t)r +

1

1− α

∫ T

t

1

2
θ̂>s θ̂sds+

1

1− α

∫ T

t
θ̂>s dVs

∣∣∣∣FSt ]
= exp

(
α

1− α
(T − t)r

)
EQ
[

exp
1

α− 1

∫ T

t

1

2
θ̂>s θ̂sds−

1

α− 1

∫ T

t
θ̂>s dW

Q
s

∣∣∣∣FSt ]
Now consider the orthogonal matrix P from the derivation of the filter that diagonalizes the
covariance matrix of the prior of θ and the following definitions: θ̃t := P θ̂t, W̃

Q
t := PWQ

t .
Then the latter is a Brownian motion with respect to Q. Hence

Ht = exp

(
α

1− α
(T − t)r

)
EQ
[

exp
1

α− 1

∫ T

t

1

2
θ̃>s θ̃sds−

1

α− 1

∫ T

t
θ̂>s dW̃

Q
s

∣∣∣∣FSt ]
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and on the other hand we get via the filter representations from Section 2.2

θ̃t = D̄t

(
W̃Q
t +D−1θ̃0

)
with θ̃i(t) = δi(t)W̃

Q
i (t) +

δi(t)

di
θ̃i(0)

where δi(t) =
di

1 + dit
with dδi(t) = −δi(t)2dt

where diag (...di...) = D = Pσ−1Σ0σ
−>P>

i.e. the
(
θ̃i(t), W̃

Q
i (t)

)
are independent of

(
θ̃j(t), W̃

Q
j (t)

)
and we get.

Ht = exp

(
α

1− α
(T − t)r

)
EQ
[

exp
1

α− 1

∫ T

t

1

2
θ̃>s θ̃sds−

1

α− 1

∫ T

t
θ̂>s dW̃

Q
s

∣∣∣∣FSt ]
= exp

(
α

1− α
(T − t)r

)
EQ
[(

ZT
Zt

) 1
α−1

∣∣∣∣∣FSt
]

= exp

(
α

1− α
(T − t)r

) d∏
i=1

EQ
[(

Zi(T )

Zi(t)

) 1
α−1

∣∣∣∣∣FSt
]

where Zi(t) = exp

(∫ t

0

1

2
θ̃2
i (s)ds−

∫ t

0
θ̃i(s)dW̃

Q
i (s)

)
This can be solved like in [CLMZ06, Appendix A.1], resulting in

Ht = exp

(
α

1− α
(T − t)r

) d∏
i=1

√√√√(1 + δi(t)(T − t)
) α
α−1

1 + δi(t)(T − t) α
α−1

exp
1

α−1
α
α−1 θ̃

2
i (t)(T − t)

2
(

1 + δi(t)(T − t) α
α−1

)
=: f(t)

d∏
i=1

Yi(t) =: f(t)
d∏
i=1

fi(t) exp ci(t)
θ̃2
i (t)

2

Via Itô’s product-formula we get

dYi(t) = (...)dt+ Yi(t)ci(t)θ̃i(t)dθ̃i(t)

= (...)dt+ Yi(t)ci(t)θ̃i(t)δi(t)dW̃
Q
i (t)

hence dHt = (...)dt+Ht

d∑
i=1

σYi
Yi
dW̃Q

i (t)

= (...)dt+Ht

d∑
i=1

ci(t)θ̃i(t)δi(t)W̃
Q
i (t)

where

ci(t)δi(t) =
1

α−1
α
α−1(T − t)δi(t)

1 + δi(t)(T − t) α
α−1
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=
1

α− 1

αdi(T − t)
(α− 1)(1 + dit) + αdi(T − t)

=
1

1− α

(
(1− α)(1 + dit)

(1− α)(1 + dit)− αdi(T − t)
− 1

)
=:

1

1− α
(
d′i(t)− 1

)
=: e′i(t)

hence

dHt = (...)dt+Ht

d∑
i=1

e′i(t)θ̃i(t)W̃
Q
i (t)

= (...)dt+Htθ̃
>
t E
′(t)dW̃Q

t

= (...)dt+Htθ̂
>
t P
>E′(t)PdWQ

t

= (...)dt+Htθ̂
>
t P
>E′(t)PdVt

= (...)dt+HtσHdVt

and σH = θ̂>t P
>E′(t)P

= θ̂>t P
> 1

1− α
(
D′(t)− I

)
P

Hence we get for the optimal solution

π∗t =
1

1− α
Σ−1(µ̂t − r) + σ−>σ>H(t)

=
1

1− α
Σ−1(µ̂t − r) + σ−>P>

1

1− α
(
D′(t)− I

)
P θ̂t

= σ−>P>
1

1− α
D′(t)P θ̂t

where D′(t) = diag

(
...,

(1− α)(1 + dit)

(1− α)(1 + dit)− αdi(T − t)
, ...

)
and D = diag (...di...) = Pσ−1Σ0σ

−>P>

A.4.2 Martingale approach from [Lak98]

For dZt = −θ>ZtdWt define the optional projection ζt := E
[
Zt| FSt

]
(if µ is observable

via FSt , then ζt = Zt). As E
[
Zt| FSt

]
= E

[
ZT | FSt

]
, ζt is a

(
P,FS

)
-martinagale.

Then we observe for t ≤ u: (by cond. exp. and the tower property)

let X be FSu -measurable, then EQ [X] = E [ZuX] = E [ζuX]

let X be FSu -measurable, then EQ
[
X| FSt

]
=

1

ζt
E
[
ζuX| FSt

]
let X be Fu-measurable, then EQ

[
X| FSt

]
=

1

ζt
E
[
ZuX| FSt

]
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In particular 1/ζ is a
(
Q,FS

)
-martinagale, i.e. EQ

[
1/ζu| FSt

]
= 1/ζt.

[Lak95, Thm. 6.6] and [Lak98] proofs:

Theorem A.2
Let I(y) be the pseudo-inverse of U ′(x) for the utility function U(x).
Assume EQ [I(xζT )] <∞ ∀ constant x

and y being determined by E
[
ζ̃T I(yζ̃T )

]
= EQ

[
e−rT I(ye−rT ζT )

]
= x0.

Then the optimal terminal wealth is X∗T = I
(
yζ̃T
)

and the wealth process satisfies

x0 +

∫ T

0
X̃t π

∗ > σdWQ
t = X̃∗t = EQ

[
X̃∗T

∣∣∣FSt ] =
1

ζt
E
[
ζT X̃

∗
T

∣∣∣FSt ]
In particular [Lak98] show that ζt is explicitly given via µ̂t

ζt = exp

(
−
∫ t

0
θ̂>u dW

Q
u +

1

2

∫ t

0
θ̂>u θ̂udu

)
where θ̂t := σ−1(µ̂t − r) = E

[
θt| FSt

]
note: d

(
ζ−1
t

)
= ζ−1

t θ̂>t dW
Q
t .

Example: power utility for α < 0

U(x) = 1
αx

α and I(y) = y
1

α−1

x0 = E
[
ζ̃T I(yζ̃T )

]
= y

1
α−1E

[
ζ̃

α
α−1

T

]
, therefore y = xα−1

0 E
[
ζ̃

α
α−1

T

]1−α

hence

X∗T = I
(
yζ̃T
)

= x0E
[
ζ̃

α
α−1

T

]−1

ζ̃
1

α−1

T

Note:

E
[
ζ̃

α
α−1

T

]
= EQ

[
ζ−1
T ζ̃

α
α−1

T

]
= β

α
α−1

T · EQ
[
exp

∫ T

0

1

2

1

α− 1
θ̂>s θ̂sds−

∫ T

0

1

α− 1
θ̂>s dW

Q
s

]
= β

α
α−1

T · EQ
[

exp
1

α− 1

∫ T

0

1

2
θ̂>s θ̂sds−

1

α− 1

∫ T

0
θ̂>s dW

Q
s

∣∣∣∣FS0 ]
and

EQ
[
ζ̃

1
α−1

T

∣∣∣∣FSt ] = β
1

α−1

T EQ
[

exp

∫ T

0

1

2

1

α− 1
θ̂>s θ̂sds−

∫ T

0

1

α− 1
θ̂>s dW

Q
s

∣∣∣∣FSt ]
= β

1
α−1

T exp
1

α− 1

∫ t

0

1

2
θ̂>s θ̂sds−

1

α− 1

∫ t

0
θ̂>s dW

Q
s

· EQ
[

exp
1

α− 1

∫ T

t

1

2
θ̂>s θ̂sds−

1

α− 1

∫ T

t
θ̂>s dW

Q
s

∣∣∣∣FSt ]
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These expectation values get calculated via the same procedure as above from [CLMZ06].
Consider the orthogonal matrix P from the derivation of the filter that diagonalizes the

covariance matrix of the prior of θ and the following definitions: θ̃t := P θ̂t, W̃
Q
t := PWQ

t .
Then the latter is a Brownian motion with respect to Q and

EQ
[

exp
1

α− 1

∫ T

t

1

2
θ̂>s θ̂sds−

1

α− 1

∫ T

t
θ̂>s dW

Q
s

∣∣∣∣FSt ]
=EQ

[
exp

1

α− 1

∫ T

t

1

2
θ̃>s θ̃sds−

1

α− 1

∫ T

t
θ̂>s dW̃

Q
s

∣∣∣∣FSt ]
and on the other hand we get via the filter representations from Remark 2.4:

θ̃t = D̄t

(
W̃Q
t +D−1θ̃0

)
with θ̃i(t) = δi(t)W̃

Q
i (t) +

δi(t)

di
θ̃i(0)

where δi(t) =
di

1 + dit
with dδi(t) = −δi(t)2dt

where diag (...di...) = D = Pσ−1Σ0σ
−>P>

i.e. the
(
θ̃i(t), W̃

Q
i (t)

)
are independent of

(
θ̃j(t), W̃

Q
j (t)

)
and we get.

EQ
[

exp
1

α− 1

∫ T

t

1

2
θ̃>s θ̃sds−

1

α− 1

∫ T

t
θ̂>s dW̃

Q
s

∣∣∣∣FSt ]

=

d∏
i=1

√√√√(1 + δi(t)(T − t)
) α
α−1

1 + δi(t)(T − t) α
α−1

exp
1

α−1
α
α−1 θ̃

2
i (t)(T − t)

2
(

1 + δi(t)(T − t) α
α−1

)
=:

d∏
i=1

Yi(t) =:
d∏
i=1

fi(t) exp ci(t)
θ̃2
i (t)

2

This leads to

X̃∗t = EQ
[
X̃∗T

∣∣∣FSt ]
= x0βTE

[
ζ̃

α
α−1

T

]−1

EQ
[
ζ̃

1
α−1

T

∣∣∣∣FSt ]
= x0βTβ

−α
α−1

T

d∏
i=1

fi(0)−1 exp−ci(0)
θ̃2
i (0)

2

· β
1

α−1

T exp
1

α− 1

∫ t

0

1

2
θ̃>s θ̃sds−

1

α− 1

∫ t

0
θ̃>s dW̃

Q
s ·

d∏
i=1

fi(t) exp ci(t)
θ̃2
i (t)

2

= x0

d∏
i=1

fi(0)−1 exp−ci(0)
θ̃2
i (0)

2
· exp

1

α− 1

∫ t

0

1

2
θ̃>s θ̃sds

168



A.4 Proofs from Chapter 4

· exp− 1

α− 1

∫ t

0
θ̃>s dW̃

Q
s ·

d∏
i=1

fi(t) exp ci(t)
θ̃2
i (t)

2

=: f(t) · Zt · Yt

with dZt = (...)dt− Zt
1

α− 1
θ̃>t dW̃

Q
t

and dYt = (...)dt+ Yt

d∑
i=1

ci(t)θ̃i(t)dθ̃i(t) = (...)dt+ Yt

d∑
i=1

ci(t)δi(t)θ̃i(t)dW̃
Q
i (t)

where (as above)

ci(t)δi(t) =
1

1− α

(
(1− α)(1 + dit)

(1− α)(1 + dit)− αdi(T − t)
− 1

)
=:

1

1− α
(
d′i(t)− 1

)
=: e′i(t)

such that

dZt = (...)dt− Zt
1

α− 1
θ̂>t dW

Q
t

and dYt = (...)dt+ Ytθ̃
>
t E
′
tdW̃

Q
t = (...)dt+ Ytθ̂

>
t P
>E′tPdW

Q
t

hence

dX̃t = (...)dt+ X̃t

(
− 1

α− 1
θ̂>t + θ̂>t P

>E′tP

)
dWQ

t

⇒ X̃∗t π
∗
t
> σdWQ

t = (...)dt+ X̃t
1

1− α
θ̂>t P

>D′tPdW
Q
t

⇒ π∗t =
1

1− α
σ−>P>D′tP θ̂t

A.4.3 Another stochastic control approach

In the stochastic control approach in Section 4.1.2 we need to solve in particular the
following ODE

A′(t) = − α

1− α

(
A(t)>γt + Id

)
Σ−1

(
γtA(t) + Id

)
−A(t)>γtΣ

−1γtA(t)

With the ansatz A(t) = γ−1
t (B(t)− Id) (and boundary condition B(T ) = Id) we get

γ−1
t B′(t) = − α

1− α
B(t)>Σ−1B(t)−B(t)>Σ−1(B(t)− Id)

And with B(t) = σC(t)σ−1 (and boundary condition C(T ) = Id) we get

γ−1
t σC ′(t)σ−1 = − α

1− α
σ−>C(t)>C(t)σ−1 − σ−>C(t)>(C(t)− Id)σ−1
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⇒ γ−1
t σC ′(t) = − α

1− α
σ−>C(t)>C(t)− σ−>C(t)>(C(t)− Id)

If C(t) = P>D(t)P (where P is an orthogonal matrix and D is diagonal) we get

γ−1
t σP>D′(t)P = − α

1− α
σ−>P>D2(t)P − σ−>P>D(t)(D(t)− Id)P

⇒ γ−1
t σP>D′(t) = − α

1− α
σ−>P>D2(t)− σ−>P>D(t)(D(t)− Id)

= − 1

1− α
σ−>P>D2(t) + σ−>P>D(t)

⇒ (Σ−1
0 + tΣ−1)σP>D′(t) = − 1

1− α
σ−>P>D2(t) + σ−>P>D(t)

⇒ Pσ>(Σ−1
0 + tΣ−1)σP>D′(t) = − 1

1− α
D2(t) +D(t)

⇒
(
Pσ>Σ−1

0 σP> + tId
)
D′(t) = − 1

1− α
D2(t) +D(t)

Hence P needs to be chosen such that Pσ>Σ−1
0 σP> is diagonal with entries p−1

i . Then
D(t) = diag (...δi(t)...) where

d′i(t) =
1

p−1
i + t

(
di(t)−

1

1− α
d2
i (t)

)
=

pi
1 + pit

(
di(t)−

1

1− α
d2
i (t)

)
with boundary condition di(T ) = 1 ∀i

Therefore we get the following solution:

D(t) = diag

(
...,

(1− α)(1 + pit)

(1− α)(1 + piT )− pi(T − t)
, ...

)
Proof. consider fi(t) := 1

di(t)
. Then

f ′i(t) = − d
′
i(t)

d2
i (t)

= − pi
1 + pit

fi(t) +
1

1− α
pi

1 + pit
with f ′i(T ) = 1

variation of constants yields the homogeneous solution

fHi (t) = c · exp

∫ t

0
− pi

1 + pis
ds = c · 1

1 + pit

hence with fi(t) = c(t) · 1
1+pit

we get

− pi
1 + pit

fi(t) +
1

1− α
pi

1 + pit
= f ′i(t) = c′(t) · 1

1 + pit
− c(t) · pi

1 + pit

1

1 + pit

⇒ c′(t) =
1

1− α
pi
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with boundary condition 1 = f(T ) = c(T ) 1
1+piT

⇒ c(T ) = 1 + piT . This leads to

c(t) = − 1

1− α
pi(T − t) + 1 + piT

⇒ fi(t) = − 1

1− α
pi

1 + pit
(T − t) +

1 + piT

1 + pit

=
(1− α)(1 + piT )− pi(T − t)

(1− α)(1 + pit)

⇒ di(t) =
(1− α)(1 + pit)

(1− α)(1 + piT )− pi(T − t)

In particular we then get for the optimal trading strategy

π∗(t, x, µ) = − Vx
xVxx

Σ−1(µ− r1)− 1

xVxx
Σ−1γtVxµ

=
1

1− α
Σ−1(µ− r1) +

1

f(1− α)
Σ−1γtfµ

=
1

1− α
Σ−1(µ− r1) +

1

1− α
Σ−1γtA(t)(µ− r)

=
1

1− α
Σ−1B(t)(µ− r)

=
1

1− α
σ−>P>D(t)Pσ−1(µ− r)

Hence π∗t = π∗(t,Xt, µ̂t) = 1
1−ασ

−>P>D(t)Pσ−1(µ̂t − r).

A.4.4 Choice of I in Case 3

Let I and J be the active and passive dimensions such that (λ, π) are the optimal
solution in Case 3 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
1) Let i ∈ I with πi > 0 be an active dimension.

If we choose I ′ = I \ {i} and J ′ = J ∪ {i} then we get λ′i < 0.
2) Let j ∈ J with λj > 0 be a passive dimension (by Proposition 4.26).

If we choose I ′ = I ∪ {j} and J ′ = J \ {j} then we get π′j < 0.
Hence several false choices of active and passive dimensions lead to non-admissible solu-
tions, revealing that the choice was wrong.

Proof. From Proposition 4.26 we know for the optimal solution:

0I ≤ πI =
1

1− α
(D(t)II)

−1(µ− r1)I

0J ≤ λJ = −(µ− r1)J +D(t)JI(D(t)II)
−1(µ− r1)I
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and for the solution with respect to the active dimensions I ′:

π′I′ =
1

1− α
(D(t)I′I′)

−1(µ− r1)I′

λ′J ′ = −(µ− r1)J ′ +D(t)J ′I′(D(t)I′I′)
−1(µ− r1)I′

First consider i ∈ I with πi > 0 and I ′ := I \ {i} and J ′ = J ∪ {i}. Then

0 < (1− α)πi = ((D(t)II)
−1)iI(µ− r1)I

= ((D(t)II)
−1)ii(µ− r1)i − ((D(t)II)

−1)iI′(µ− r1)I′

= ((D(t)II)
−1)ii(µ− r1)i − ((D(t)II)

−1)iiD(t)iI′(D(t)I′I′)
−1(µ− r1)I′

⇔ 0 < (µ− r1)i −D(t)iI′(D(t)I′I′)
−1(µ− r1)I′

⇒ λ′i = (λ′J ′)i = −(µ− r1)i +D(t)iI′(D(t)I′I′)
−1(µ− r1)I′ < 0

hence we have shown the first part.
For the second part consider j ∈ J with λj > 0 and I ′ = I ∪{j} and J ′ = J \ {j}. Then

0 < λj = −(µ− r1)j +D(t)jI(D(t)II)
−1(µ− r1)I

On the other hand

π′j = (π′I′)j =
1

1− α
((D(t)I′I′)

−1)jI′(µ− r1)I′

=
1

1− α
((D(t)I′I′)

−1)jj(µ− r1)j +
1

1− α
((D(t)I′I′)

−1)jI(µ− r1)I

=
1

1− α
((D(t)I′I′)

−1)jj
(
(µ− r1)j −D(t)jI(D(t)II)

−1(µ− r1)I
)

= − 1

1− α
((D(t)I′I′)

−1)jjλj

< 0

hence we have shown the second part.

A.4.5 Dimensions on the boundary in Case 3

If j ∈ J is a passive dimensions that is almost invested in, than j can also be considered
an active dimension.

In particular:
Let I and J be the active and passive dimensions such that (λ, π) are the optimal solution
in Case 3 and let (λ′, π′) be the solution if we chose I ′ and J ′ instead.
Let j ∈ J with πj = 0 and λj = 0 be a passive dimension, that is almost invested in.
Then: If we choose I ′ = I ∪ {j} and J ′ = J \ {j} we still get λ′ = λ and π′ = π.

Proof. Note the matrix inversion formula (3.8) applied to D(t)I′I′ .

((DI′I′)
−1)II = (DII)

−1 + (DII)
−1DIj((DI′I′)

−1)jjDjI(DII)
−1
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((DI′I′)
−1)jI = −((DI′I′)

−1)jjDjI(DII)
−1

((DI′I′)
−1)Ij = −(DII)

−1DIj((DI′I′)
−1)jj

((DI′I′)
−1)jj =

(
Djj −DjI(DII)

−1DIj

)−1

We know from Proposition 4.26

λj = −(µ− r1)j +D(t)jI(D(t)II)
−1(µ− r1)I

⇒ π′j =
1

1− α
((D(t)I′I′)

−1)jI′(µ− r1)I′

=
1

1− α
((D(t)I′I′)

−1)jI(µ− r1)I +
1

1− α
((D(t)I′I′)

−1)jj(µ− r1)j

= − 1

1− α
((D(t)I′I′)

−1)jjD(t)jI(D(t)II)
−1(µ− r1)I +

1

1− α
((D(t)I′I′)

−1)jj(µ− r1)j

= − 1

1− α
((D(t)I′I′)

−1)jjλj

⇒
(

0 = λj ⇔ π′j = 0
)

Now consider (1− α)πI = (D(t)II)
−1(µ− r1)I and

(1− α)π′I = ((D(t)I′I′)
−1)II′(µ− r1)I′

= ((D(t)I′I′)
−1)II(µ− r1)I + ((D(t)I′I′)

−1)Ij(µ− r1)j

= (D(t)II)
−1(µ− r1)I

+ (D(t)II)
−1D(t)Ij((D(t)I′I′)

−1)jjD(t)jI(D(t)II)
−1(µ− r1)I

− (D(t)II)
−1D(t)Ij((D(t)I′I′)

−1)jj(µ− r1)j

= (D(t)II)
−1(µ− r1)I + (D(t)II)

−1D(t)Ij((D(t)I′I′)
−1)jjλj

= (D(t)II)
−1(µ− r1)I = (1− α)πI

Hence π′I = πI and hence π′ = π. Also λ′ = λ since

λJ ′ = −(µ− r1)J ′ +D(t)J ′I(D(t)II)
−1(µ− r1)I

= −(µ− r1)J ′ + (1− α)D(t)J ′IπI

and λ′J ′ = −(µ− r1)J ′ +D(t)J ′I′(D(t)I′I′)
−1(µ− r1)I′

= −(µ− r1)J ′ + (1− α)D(t)J ′I′π
′
I′

= −(µ− r1)J ′ + (1− α)D(t)J ′Iπ
′
I = λJ ′
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A.4.6 The optimal solutions in Case 4

Let I and J be the (correct) choices for active and passive dimensions. To simplify
notation we use following abbreviations:

IdI := IdI − gI(ΣII)
−1
1I1

>
I

DI(t) := ΣII −
α

1− α
(T − t)(γt)IIIdI

(µ− r1)+I
I := (µ− r1)I + α(T − t)gI(γt)II(ΣII)

−1
1I

Then for λ = λ(4,I)(t, µ) and π = π(4,I)(t, µ) we get:

πI =
1

1− α
IdI DI(t)−1(µ− r1)+I

I + gI(ΣII)
−1
1I

πJ = 0

with 1
>
I πI = 1 and

λ̄ = −gI 1>I DI(t)−1(µ− r1)+I
I + gI(1− α)

λ̄1I = (1− α)ΣIIπI − ΣII DI(t)−1(µ− r1)+I
I

λJ = −(µ− r1)J +D(t)JI(1− α)πI

Proof. The optimal strategy in Case 4 is given by

π =
1

1− α
Σ

(4,I)
J

(
C(4,I)(t)γ−1

t (µ− r1) + α(T − t)gIC(4,I)(t)

(
(ΣII)

−1
1I

0J

))
+ gI

(
(ΣII)

−1
1I

0J

)
Hence we get πJ = 0J and

πI =
1

1− α

(
(ΣII)

−1(Id− 1I1>I (ΣII)
−1gI) 0IJ

)
·
(
C(4,I)(t)γ−1

t (µ− r1) + α(T − t)gIC(4,I)(t)

(
(ΣII)

−1
1I

0J

))
+ (ΣII)

−1
1Ig

I

⇒ 1
>
I πI =

1

1− α

(
0>I 0>J

)
C(4,I)(t)

(
γ−1
t (µ− r1) + α(T − t)gI

(
(ΣII)

−1
1I

0J

))
+ 1

>
I (ΣII)

−1
1Ig

I = 1

Now define

B(t) := C(4,I)(t)γ−1
t =

(
Id− α

1− α
(T − t)γtΣ(4,I)

J

)−1

b(t) := B(t)−1 =

(
IdI − α

1−α(T − t)(γt)IIΣ̄I 0IJ
− α

1−α(T − t)(γt)JIΣ̄I IdJ

)
⇒ B(t)II = (b−1)II =

(
bII − bIJ(bJJ)−1bJI

)−1

= (bII)
−1

B(t)JJ = (b−1)JJ = (bJJ)−1 + (bJJ)−1bJI(b
−1)IIbIJ(bJJ)−1

174



A.4 Proofs from Chapter 4

= IdJ

B(t)JI = (b−1)JI = −(bJJ)−1bJI(b
−1)II

= −bJI(bII)−1

B(t)IJ = (b−1)IJ = −(b−1)IIbIJ(bJJ)−1

= 0IJ

hence we get

πI =
1

1− α

((
IdI − gI(ΣII)

−1
1I1

>
I

)
(ΣII)

−1 0IJ

)
·
(
B(t)(µ− r1) + α(T − t)gIC(4,I)(t)

(
(ΣII)

−1
1I

0J

))
+ (ΣII)

−1
1Ig

I

=
1

1− α
IdI(ΣII)

−1
(
B(t)II(µ− r1)I + α(T − t)gIB(t)II(γt)II(ΣII)

−1
1I

)
+ gI(ΣII)

−1
1I

=
1

1− α
IdI(ΣII)

−1

(
IdI −

α

1− α
(T − t)(γt)IIIdI(ΣII)

−1

)−1

·
(

(µ− r1)I + α(T − t)gI(γt)II(ΣII)
−1
1I

)
+ gI(ΣII)

−1
1I

=
1

1− α
IdI DI(t)−1(µ− r1)+I

I + gI(ΣII)
−1
1I

For the optimal dual process λ we get

λ =

(
λ̄1I
λJ

)
= J(4,I)B(t)(µ− r1) + (1− α)gI(JI + Id)1

+ α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
where J(4,I) =

(
−gI1I1>I (ΣII)

−1 0IJ
ΣJIIdI(ΣII)

−1 −IdJ

)
and

λ̄ = gI(1− α)− gI
(

(ΣII)
−1
1I

0J

)>
B(t)(µ− r1)

− α(T − t)(gI)2

(
(ΣII)

−1
1I

0J

)>
C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
= gI(1− α)− gI1>I (ΣII)

−1B(t)II(µ− r1)I

− α(T − t)(gI)2
1
>
I (ΣII)

−1C(4,I)(t)II(ΣII)
−1
1I

= gI(1− α)− gI1>I (ΣII)
−1B(t)II(µ− r1)I

− α(T − t)(gI)2
1
>
I (ΣII)

−1B(t)II(γt)II(ΣII)
−1
1I

= gI(1− α)− gI1>I (ΣII)
−1B(t)II

(
(µ− r1)I + α(T − t)gI(γt)II(ΣII)

−1
1I

)
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= gI(1− α)− gI1>I
(

ΣII −
α

1− α
(T − t)(γt)II(IdI − gI(ΣII)

−1
1I1

>
I )

)−1

(µ− r1)+I
I

= gI(1− α)− gI1>I DI(t)−1(µ− r1)+I
I

Hence

(ΣII)
−1λ̄1I = (1− α)gI(ΣII)

−1
1I − (ΣII)

−1gI1I1
>
I DI(t)−1(µ− r1)+I

I

= (1− α)gI(ΣII)
−1
1I + IdIDI(t)−1(µ− r1)+I

I − D
I(t)−1(µ− r1)+I

I

= (1− α)πI − DI(t)−1(µ− r1)+I
I

and

λJ = J(4,I)
JI B(t)II(µ− r1)I − IdJB(t)JI(µ− r1)I

− IdJB(t)JJ(µ− r1)J + (1− α)ΣJIg
I(ΣII)

−1
1I

+ α(T − t)ΣJIIdI(ΣII)
−1C(4,I)(t)IIg

I(ΣII)
−1
1I

− α(T − t)IdJC(4,I)(t)JIg
I(ΣII)

−1
1I

= −(µ− r1)J

+ ΣJIIdI(ΣII)
−1(b(t)II)

−1(µ− r1)I

+ b(t)JI(b(t)II)
−1(µ− r1)I + (1− α)ΣJIg

I(ΣII)
−1
1I

+ α(T − t)gIΣJIIdI(ΣII)
−1B(t)II(γt)II(ΣII)

−1
1I

− α(T − t)gIB(t)JI(γt)II(ΣII)
−1
1I − α(T − t)gIB(t)JJ(γt)JI(ΣII)

−1
1I

= −(µ− r1)J

+ ΣJIIdI(ΣII)
−1(b(t)II)

−1(µ− r1)I

+ b(t)JIΣII(ΣII)
−1(b(t)II)

−1(µ− r1)I

+ α(T − t)gIΣJIIdI(ΣII)
−1(b(t)II)

−1(γt)II(ΣII)
−1
1I

+ α(T − t)gIb(t)JIΣII(ΣII)
−1(b(t)II)

−1(γt)II(ΣII)
−1
1I

− α(T − t)(γt)JIgI(ΣII)
−1
1I + (1− α)ΣJIg

I(ΣII)
−1
1I

= −(µ− r1)J − α(T − t)(γt)JIgI(ΣII)
−1
1I + (1− α)ΣJIg

I(ΣII)
−1
1I

+
(

ΣJIIdI + b(t)JIΣII

)
(ΣII)

−1(b(t)II)
−1

·
(

(µ− r1)I + α(T − t)gI(γt)II(ΣII)
−1
1I

)
= −(µ− r1)J + (1− α)

(
ΣJI −

α

1− α
(T − t)(γt)JI

)
gI(ΣII)

−1
1I

+

(
ΣJIIdI −

α

1− α
(T − t)(γt)JIIdI

)(
ΣII −

α

1− α
(T − t)(γt)IIIdI

)−1

(µ− r1)+I
I

= −(µ− r1)J + (1− α)D(t)JIg
I(ΣII)

−1
1I +D(t)JIIdI DI(t)−1(µ− r1)+I

I

= −(µ− r1)J +D(t)JI(1− α)πI
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A.4.7 Shifted unconstrained solution

The optimal constrained solution πλ in all cases is equal to the optimal unconstrained
solution with µ+ λ plugged in instead of µ, i.e.

πλ = π+λ
unc :=

1

1− α
Σ−1C(t)γ−1

t (µ− r1 + λ) =
1

1− α
D(t)−1(µ− r1 + λ)

In particular all solutions in the domains D(·,·) can be extended continuously to the bound-
ary of their respective domain and coincide at the boundary points, such that πλ is con-
tinuous in µ.

Proof. In Case 1 with λ = 0 and in Case 2 with λ = −(µ− r1) this is trivial.
In Case (3, I) we have

πλ =
1

1− α
Σ

(3,I)
J C(3,I)(t)γ−1

t (µ− r1)

λ = JIC(3,I)(t)γ−1
t (µ− r1)

By Proposition 4.26 we get

πI =
1

1− α
(D(t)II)

−1 (µ− r1)I and πJ = 0

λJ = −(µ− r1)J +D(t)JI(1− α)πI and λI = 0

⇒ (µ− r1 + λ)I = (µ− r1)I

(µ− r1 + λ)J = (D(t)JI)(D(t)II)
−1(µ− r1)I

Hence the updated unconstrained solution satisfies:

(π+λ
unc)J =

1

1− α
(D(t)−1)JI(µ− r1 + λ)I +

1

1− α
(D(t)−1)JJ(µ− r1 + λ)J

=
1

1− α
(D(t)−1)JI(µ− r1)I +

1

1− α
(D(t)−1)JJ(D(t)JI)(D(t)II)

−1(µ− r1)I

= 0J

(π+λ
unc)I =

1

1− α
(D(t)−1)II(µ− r1 + λ)I +

1

1− α
(D(t)−1)IJ(µ− r1 + λ)J

=
1

1− α
(D(t)−1)II(µ− r1)I +

1

1− α
(D(t)−1)IJ(D(t)JI)(D(t)II)

−1(µ− r1)I

=
1

1− α
(D(t)II)

−1(µ− r1)I

= πλI

⇒ π+λ
unc = πλ

In Case (4, I) we have

πλ =
1

1− α
Σ

(4,I)
J C(4,I)(t)γ−1

t (µ− r1)
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+
α

1− α
(T − t)gIΣ(4,I)

J C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
+ gI

(
(ΣII)

−1
1I

0J

)
=

1

1− α
Σ

(4,I)
J C(4,I)(t)

(
γ−1
t (µ− r1) + α(T − t)gI

(
(ΣII)

−1
1I

0J

))
+ gI

(
(ΣII)

−1
1I

0J

)
λ = J(4,I)C(4,I)(t)γ−1

t (µ− r1) + (1− α)gI(JI + Id)1

+ α(T − t)gIJ(4,I)C(4,I)(t)

(
(ΣII)

−1
1I

0J

)
where J(4,I) =

(
−1I1>I (ΣII)

−1gI 0IJ
ΣJI(ΣII)

−1(Id− 1I1>I (ΣII)
−1gI) −IdJ

)
By Proposition 4.26 we get

πλJ = 0

πλI =
1

1− α
(IdI − gI(ΣII)

−1
1I1

>
I )

(
ΣII −

α

1− α
(T − t)(γt)II(IdI − gI(ΣII)

−1
1I1

>
I )

)−1

·
(

(µ− r1)I + α(T − t)(γt)IIgI(ΣII)
−1
1I

)
+ gI(ΣII)

−1
1I

λ̄ = gI(1− α)− gI1>I
(

ΣII −
α

1− α
(T − t)(γt)II(IdI − gI(ΣII)

−1
1I1

>
I )

)−1

·
(

(µ− r1)I + α(T − t)(γt)IIgI(ΣII)
−1
1I

)
λ̄1 = (1− α)ΣIIπI − ΣII

(
ΣII −

α

1− α
(T − t)(γt)II(IdI − gI(ΣII)

−1
1I1

>
I )

)−1

·
(

(µ− r1)I + α(T − t)(γt)IIgI(ΣII)
−1
1I

)
λJ = −(µ− r1)J − α(T − t)(γt)JIgI(ΣII)

−1
1I + (1− α)ΣJIg

I(ΣII)
−1
1I

+
(

ΣJI −
α

1− α
(T − t)(γt)JI

)(
Id− gI(ΣII)

−1
1I1

>
I

)
·
(

ΣII −
α

1− α
(T − t)(γt)II(IdI − gI(ΣII)

−1
1I1

>
I )

)−1

·
(

(µ− r1)I + α(T − t)(γt)IIgI(ΣII)
−1
1I

)
= −(µ− r1)J +

(
ΣJI −

α

1− α
(T − t)(γt)JI

)
(1− α)πλI

abbreviations:

IdI := IdI − gI(ΣII)
−1
1I1

>
I

DI(t) := ΣII −
α

1− α
(T − t)(γt)IIIdI

(µ− r1)+I
I := (µ− r1)I + α(T − t)gI(γt)II(ΣII)

−1
1I

Then with 1
>
I π

λ
I = 1

πλI =
1

1− α
IdI DI(t)−1(µ− r1)+I

I + gI(ΣII)
−1
1I
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πλJ = 0

and

λ̄ = −gI 1>I DI(t)−1(µ− r1)+I
I + gI(1− α)

λ̄1I = (1− α)ΣIIπ
λ
I − ΣII DI(t)−1(µ− r1)+I

I

λJ = −(µ− r1)J +D(t)JI(1− α)πλI

Hence we get for µ− r1 + λ:

(µ− r1 + λ)J = D(t)JI(1− α)πλI

(µ− r1 + λ)I = (µ− r1)I + λ̄1I

= (µ− r1)I + (1− α)ΣIIπ
λ
I − ΣII DI(t)−1(µ− r1)+I

I

Hence the updated unconstrained solution satisfies:

(1− α)(π+λ
unc)J = (D(t)−1)JI(µ− r1 + λ)I + (D(t)−1)JJ(µ− r1 + λ)J

= (D(t)−1)JI(µ− r1)I + (D(t)−1)JI λ̄1I + (D(t)−1)JJD(t)JI(1− α)πλI

= (D(t)−1)JI(µ− r1)I + (D(t)−1)JIΣII(1− α)πλI − (D(t)−1)JID(t)II(1− α)πλI

− (D(t)−1)JIΣII DI(t)−1(µ− r1)+I
I

= (D(t)−1)JI(µ− r1)I + (D(t)−1)JI
α

1− α
(T − t)(γt)II(1− α)πλI

− (D(t)−1)JIΣII DI(t)−1(µ− r1)+I
I

= (D(t)−1)JI(µ− r1)I

+ (D(t)−1)JI
α

1− α
(T − t)(γt)IIIdI DI(t)−1(µ− r1)+I

I

+ (D(t)−1)JI
α

1− α
(T − t)(γt)II(1− α)gI(ΣII)

−1
1I

− (D(t)−1)JIΣII DI(t)−1(µ− r1)+I
I

= (D(t)−1)JI(µ− r1)I

+ (D(t)−1)JI
α

1− α
(T − t)(γt)II(1− α)gI(ΣII)

−1
1I

− (D(t)−1)JI

(
ΣII −

α

1− α
(T − t)(γt)IIIdI

)
DI(t)−1(µ− r1)+I

I

= (D(t)−1)JI(µ− r1)I

+ (D(t)−1)JI
α

1− α
(T − t)(γt)II(1− α)gI(ΣII)

−1
1I

− (D(t)−1)JI(µ− r1)+I
I

= 0J

and

(1− α)(π+λ
unc)I = (D(t)−1)II(µ− r1 + λ)I + (D(t)−1)IJ(µ− r1 + λ)J
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= (D(t)−1)II(µ− r1)I + (D(t)−1)IIλ1I + (D(t)−1)IJD(t)JI(1− α)πλI

= (D(t)−1)II(µ− r1)I

+ (D(t)−1)II(1− α)ΣIIπ
λ
I − (D(t)−1)IIΣIIDI(t)−1(µ− r1)+I

I

+ ((D(t)II)
−1 − (D(t)−1)II)D(t)II(1− α)πλI

= (D(t)−1)II(µ− r1)I + (1− α)πλI

− (D(t)−1)IIΣIIDI(t)−1(µ− r1)+I
I

+ (D(t)−1)II
α

1− α
(T − t)(γt)II(1− α)πλI

= (D(t)−1)II(µ− r1)I + (1− α)πλI

− (D(t)−1)IIΣIIDI(t)−1(µ− r1)+I
I

+ (D(t)−1)II
α

1− α
(T − t)(γt)IIIdI DI(t)−1(µ− r1)+I

I

+ (D(t)−1)II
α

1− α
(T − t)(γt)II(1− α)gI(ΣII)

−1
1I

= (D(t)−1)II(µ− r1)I + (1− α)πλI

− (D(t)−1)II(µ− r1)+I
I

+ (D(t)−1)II
α

1− α
(T − t)(γt)II(1− α)gI(ΣII)

−1
1I

= (1− α)πλI

hence π+λ
unc = πλ.

A.4.8 Exact shifting in Case 4

Let ρ ∈ ∂K be arbitrary with 1
>
I ρI = 1 and

ρI > 0I where ∅ 6= I ⊂ {1, ..., d}
ρJ = 0J where J = {1, ..., d} \ I

and consider the parameter µ′ on the boundary of D(1,·)

µ′ := r1 + (1− α)D(t) · ρ ∈ ∂D(1,·)

Let µ := µ′ +

(
c1I
cJ

)
be an arbitrary input parameter for any cJ ≤ c1J and c > 0.

Then the optimal dual solution for the constrained portfolio optimization problem with

input parameter µ is in Case (4, I) with λ = −
(
c1I
cJ

)
and hence µ+ λ = µ′ ∈ ∂D(1,·).

Proof. We get the optimal dual solution with Algorithm 4.34:
Case 1 does not fit:

(1− α)πunc = Σ−1C(t)γ−1
t (µ− r1)
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= D(t)−1

(
µ′ − r1 +

(
c1I
cJ

))
= (1− α)ρ+D(t)−1

(
c1I
cJ

)
⇒

(
c1I
cJ

)>
πunc =

(
c1I
cJ

)>
ρ+

1

1− α

(
c1I
cJ

)>
D(t)−1

(
c1I
cJ

)
= c+

1

1− α

(
c1I
cJ

)>
D(t)−1

(
c1I
cJ

)
> c

⇒ 1 < 1
>
I (πunc)I +

1

c
c>J (πunc)J

For Case 1 to fit, we need πunc ≥ 0 and 1
>πunc ≤ 1. Hence

1
>
I (πunc)I + 1

>
J (πunc)J ≤ 1 < 1

>
I (πunc)I +

1

c
c>J (πunc)J

⇒ 1
>
J (πunc)J <

1

c
c>J (πunc)J

⇒ (c1J − cJ)>(πunc)J < 0

But c1J − cJ ≥ 0 and πunc ≥ 0, hence Case 1 doesn’t fit.
Also Case 2 does not fit:

µ− r1 = µ′ − r1 +

(
c1I
cJ

)
= (1− α)D(t) · ρ+

(
c1I
cJ

)
⇒ (µ− r1)I = (1− α)D(t)IIρI + c1I

Again D(t)II is positive definite and ρI 6= 0, hence

ρ>I (µ− r1)I = ρ>I (1− α)D(t)IIρI + cρ>I 1I > 1

But with ρI > 0I and (µ− r1)I < 0I this cannot work, hence (µ− r1)I ≮ 0I hence Case
2 does not fit.

Also Case 3 does not fit:
Assume Case 3 would work. Then there was some λ ≥ 0 such that the optimal con-
strained solution satisfies πλ ∈ K and λ>πλ = 0. But by Lemma 4.39 πλ is equal to the
unconstrained solution π+λ

unc that starts in µ− r1 + λ, i.e.

(1− α)πλ = (1− α)π+λ
unc

= D(t)−1(µ− r1 + λ)

= D(t)−1(µ′ − r1 +

(
c1I
cJ

)
+ λ)

= (1− α)ρ+D(t)−1

(
c1I
cJ

)
+D(t)−1λ
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⇒
(
c1I
cJ

)>
πλ =

(
c1I + λI
cJ + λJ

)>
πλ

=

(
c1I + λI
cJ + λJ

)>
ρ+

1

1− α

(
c1I + λI
cJ + λJ

)>
D(t)−1

(
c1I + λI
cJ + λJ

)
= c+ λ>I ρI +

1

1− α

(
c1I + λI
cJ + λJ

)>
D(t)−1

(
c1I + λI
cJ + λJ

)
> c+ λ>I ρI ≥ c

⇒ 1 < 1
>
I π

λ
I +

1

c
c>J π

λ
J

For Case 3 to fit, we need πλ ≥ 0 and 1
>πλ ≤ 1. Hence

1
>
I π

λ
I + 1

>
J π

λ
J ≤ 1 < 1

>
I π

λ
I +

1

c
c>J π

λ
J

⇒ 1
>
J π

λ
J <

1

c
c>J π

λ
J

⇒ (c1J − cJ)>πλJ < 0

But c1J − cJ ≥ 0 and πunc ≥ 0, hence Case 3 doesn’t fit.
Now we consider Case (4, I) and get by Proposition 4.26:

πλJ = 0J

πλI =
1

1− α
IdI DI(t)−1(µ− r1)+I

I + gI(ΣII)
−1
1I

= IdI
(
(1− α)ΣII − α(T − t)(γt)IIIdI

)−1

·
(

(µ− r1)I + α(T − t)gI(γt)II(ΣII)
−1
1I

)
+ gI(ΣII)

−1
1I

= IdI
(

(1− α)ΣII − α(T − t)(γt)II(IdI − gI(ΣII)
−1
1I1

>
I )
)−1

·
(

(µ′ − r1)I + c1I + α(T − t)gI(γt)II(ΣII)
−1
1I

)
+ gI(ΣII)

−1
1I

= IdI
(

(1− α)D(t)II + α(T − t)(γt)IIgI(ΣII)
−1
1I1

>
I

)−1

·
(

(1− α)D(t)IIρI + c1I + α(T − t)gI(γt)II(ΣII)
−1
1I1

>
I ρI

)
+ gI(ΣII)

−1
1I

= IdIρI + gI(ΣII)
−1
1I

+ IdI
(
(1− α)ΣII − α(T − t)(γt)IIIdI

)−1
c1I (∗)

= (IdI − gI(ΣII)
−1
1I1

>
I )ρI + gI(ΣII)

−1
1I

= ρI > 0I

Here line (∗) is equal to zero by the matrix inversion lemma (3.8) in the following form:

(A+BC)−1 = A−1 +A−1B(Id− CA−1B)−1CA−1

182



A.4 Proofs from Chapter 4

with A = (1− α)ΣII , B = −α(T − t)(γt)II , C = IdI

⇒ CA−1
1I =

1

1− α
(IdI − gI(ΣII)

−1
1I1

>
I )(ΣII)

−1
1I = 0I

⇒ (∗) = C(A+BC)−1
1Ic

= CA−1
1Ic+ CA−1B(Id− CA−1B)−1CA−1

1Ic

= 0I

In particular 1>πλ = 1
>
I π

λ
I = 1

>
I ρI = 1 and πλ ∈ K.

On the other hand we get for λ by the same arguments:

λJ = −(µ− r1)J +D(t)JI(1− α)πλI

= −cJ − (µ′ − r1)J + (1− α)D(t)JIρI

= −cJ
λ̄ = (1− α)gI − gI 1>I DI(t)−1(µ− r1)+I

I

= (1− α)gI − gI1>I
(

ΣII −
α

1− α
(T − t)(γt)IIIdI

)−1

(
(µ− r1)I + α(T − t)gI(γt)II(ΣII)

−1
1I

)
= (1− α)gI − (1− α)gI1>I

(
(1− α)ΣII − α(T − t)(γt)IIIdI

)−1((
(1− α)ΣII − α(T − t)(γt)II

)
ρI + c1I + α(T − t)gI(γt)II(ΣII)

−1
1I1

>
I ρI

)
= (1− α)gI − (1− α)gI1>I ρI

− (1− α)gI1>I
(
(1− α)ΣII − α(T − t)(γt)IIIdI

)−1
1Ic

= −c

Again the last equality holds due to the above matrix inversion formula:

(1− α)gI1>I (A+BC)−1
1Ic

= (1− α)gI1>I A
−1
1Ic+ (1− α)gI1>I A

−1B(Id− CA−1B)−1CA−1
1Ic

= gI1>I (ΣII)
−1
1Ic

= c

Hence these solutions are admissible and therefore they are already the unique optimal
solutions.
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A.5 Notations

This is a brief overview of most of the used notation:

• Technical Notations:

1 the d-dimensional vector of ones
Id the d× d-dimensional unit matrix
ei a d-dimensional unit-vector
I, J various collections of dimensions
MIJ the part of matrix M with rows collected in I and columns collected in J
1X the one-function if X is true
(x)− the negative part of x
diag (S) a matrix with S on its diagonal
<,≤, >,≥ those are meant component-wisely when applied to vectors

• The market:

(Ω,F , (Ft),P) the usual filtered probability space
(FSt ) the observed filtration, augmented by the stock prices
[0, T ] the investment horizon
d the number of stocks
α the risk-averseness parameter (in case of power utility)
Bt the risk-free bond
St the stocks (risky assets)
Rt the returns of the stocks
Wt the Brownian motion in the market
Vt the Innovations Process (Brownian motion)
r the interest rate of the bond
µ the average growth rate of the stocks
Σ = σσ> the Covariance-matrix of the stocks
θ the market price of risk
µ̂t the filter for µ
γt the variance of the filter µ̂t
Xt various wealth processes
Ht the ’state of the world’-process
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• Constrained optimization:

K various admissibility sets for the optimal strategies
δ the support function of −K (from convex analysis)

K̃ the domain of the support function
Bν , Sν the bond and stocks of the auxiliary market
νt the processes that describe the changes of the auxiliary markets
λt the optimal choice for νt
D the set of admissible ν
πνt the optimal portfolio strategy in the auxiliary market
Xν
t the wealth process in the auxiliary market

Hν
t the ’state of the world’-process in the auxiliary market

• Portfolio strategies:

π∗ the optimal portfolio strategy of the respective current setting
πM the Merton (plug-in) strategy
πunc the optimal unconstrained portfolio strategy
πλ the optimal portfolio strategy in the auxiliary market
π+λ

unc the λ-augmented unconstrained portfolio strategy

π(i,I) the optimal portfolio strategy in Case C = (i, I) in Chapter 4
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[FP00] H. Föllmer and P. Protter. On itô’s formula for multidimensional brownian
motion. Probability Theory ans Related Fields, 116:1–20, 2000.
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tension of itô’s formula. Bernoulli, 1(1):149–169, 1995.

[GKSW14] A. Gabih, H. Kondakji, J. Sass, and R. Wunderlich. Expert opinions and loga-
rithmis utility maximization in a market with gaussian drift. Communications
on Stochastic Analysis, 8(1):27–47, 2014.

[GV13] A. Gandy and L. Veraart. The effect of estimation in high-dimensional port-
folios. Mathematical Finance, 23(3):531–559, 2013.

[HPS07] M. Hahn, W. Putschoegl, and J. Sass. Portfolio optimization with non-
constant volatility and partial information. Brazilian Journal of Probability
and Statistics, 21(1):27–61, 2007.

[IS06] A. Irle and J. Sass. Optimal portfolio policies under fixed and proportional
transaction costs. Advances in Applied Probability 38, pages 916–942, 2006.

[KK01] R. Korn and H. Kraft. A stochastic control approach to portfolio problems
with stochastic interest rates. SIAM Journal on Control and Optimization,
40(12):1250–1269, 2001.

[KLS87] I. Karatzas, J. Lehoczky, and S. Shreve. Optimal portfolio and consump-
tion decisions for a small investor on a finite horizon. SIAM J. Control and
Optimization, 25(6):1557–1586, 1987.

[KLSX91] I. Karatzas, J. Lehoczky, S. Shreve, and G. Xu. Martingale and duality meth-
ods for utility maximization in an imcomplete market. SIAM J. Control and
Optimization, 29(3):702–730, 1991.

[Kru12] S. Krumke. Nonlinear Optimization. Lecture notes, Technical University of
Kaiserslautern, 2012.

[KZ07] R. Kan and G. Zhou. Optimal portfolio choice with parameter uncertainty.
Journal of Financial and Quantative Analysis, 42(3):621–656, 2007.

[Lak95] P. Lakner. Utility maximization with partial information. Stochastic Processes
and their Applications, 56:247–273, 1995.

188



B Bibliography

[Lak98] P. Lakner. Optimal trading strategy for an investor: the case of partial infor-
mation. Stochastic Processes and their Applications, 76:77–97, 1998.

[Low10] G. Lowther. Nondifferentiable functions of one-dimensional semimartingales.
The Annals of Probability, 38(1):76–101, 2010.

[LS01] R. Liptser and A. Shiryayev. Statistics of Random Processes I, General Theory.
Springer, New York, 2001.

[Mar52] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[Mer71] R. Merton. Optimum consumption and portfolio rules in a continuous-time
model. Journal of Economic Theory, 3:373–413, 1971.

[Mer80] R. Merton. On estimating the expected return on the market. Journal of
Financial Economics, 8:323–361, 1980.

[MN00] S. Moret and D. Nualart. Quadratic covariation and itô’s formula for smooth
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