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1 Introduction 

The ultimate goal of chemical physics is to unravel events that bring about chemistry, 

that is to answer the fundamental question of how a molecular system proceeds on its 

way from reactants to products. The corresponding underlying processes, e.g. 

vibrational motions, responsible for the formation and breaking of chemical bonds, 

charge and energy transfer happen very often incomprehensibly fast, down to the 

femtosecond (fs) timescale. These processes are of utmost importance for the mode of 

operation in both natural and artificial molecular assemblies. For example, the 

isomerization of the retinal chromophore in rhodopsin, a fundamental step in vision, 

proceeds within tens to hundreds femtoseconds,[1-5] whereas energy and charge transfer 

in artificial light harvesting assemblies used for efficient conversion of solar energy into 

storable forms, take place on a pico- to femtosecond timescale.[6-10] 

To monitor these events, a technique with ultrafast time-resolution has to be employed. 

Hence, the investigation of rapid processes are the domain of ultrafast, time-resolved 

spectroscopy, often based on a pump-probe scheme, pioneered by Zewail et al. in 

1985,[11-12] which lead to the development of numerous experimental methods, such as 

fs up-conversion for ultrafast fluorescence lifetimes,[13-14] time-resolved 

photoelectron[15] or transient absorption (TA) spectroscopy.[16] The general scheme in 

pump-probe experiments is using an ultrashort laser pulse to optically excite a 

molecular ensemble to a particular vibrational or electronic state and subsequently 

interrogate the evolution of the created excited state population in time with a second 

laser pulse. For electronically excited states, often, excited state absorption (or 

stimulated emission) to a higher (or lower) lying electronic state is measured to monitor 

the excited state population. Due to the spectral broadness of Fourier-transform limited, 

ultrashort laser pulses, wave-packet formation by coherent excitation of several 

vibronic/rovibronic states may also be observed, providing additional information on 

structure and coupling of excited states.[17-18] 

Condensed phase investigations, although often much closer to the native environment 

of a reacting molecular system, have a severe drawback, owing to the abundance of 

species possibly present in solution. The influence of the surrounding solvent, counter-

ions, protonation equilibria, and contaminants may obscure mechanistic steps or affect 
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properties of the target molecule dramatically. Additionally, experimental results are 

difficult to benchmark with quantum chemical calculations. Besides the often higher 

computational costs involved, the solute environment affects energies and intensities of 

electronic transitions in absorption spectra and the possible presence of other 

unidentifiable absorbing species may alter experimental results. These obstacles can be 

circumvented combining optical spectroscopy with mass spectrometric detection in the 

gas phase, allowing mass selective preparation of a target ion ensemble, whose intrinsic 

properties are then decoupled from its surrounding. At the same time the burden on 

quantum chemical calculations is alleviated. 

Condensed phase spectroscopic methods for population analysis are based on the 

absorption of light by molecules of interest according to the Beer-Lambert Law. This 

applies equally to ultrafast fs spectroscopy on ensembles in the condensed phase, which 

is usually analyzed by monitoring changes in optical density (ΔOD in TA spectroscopy). 

In most cases the same is not applicable to gas phase studies, as the optical density in 

vacuo is usually not high enough to detect attenuation of an incident light beam by 

absorption. Thus, an action spectroscopy scheme is employed, recording the yield of 

product molecules (fragments, isomers) as a result to photoexcitation. Time-resolution 

is introduced to UV/Vis photofragmentation by monitoring the time delay dependent 

fragmentation enhancement, resulting from additional probe pulse absorption by a 

pump-selected ensemble. In this thesis, a detection scheme was employed first realized 

by Jouvet et al., combining a fs laser system with electrospray ionization (ESI)[19-22] for 

target ion ensemble preparation and time-of-flight (TOF)[23-24] mass spectrometric 

detection.[25-26] Weinkauf et al. extended this approach to commercially available 

quadrupole ion trap mass spectrometers, however, never used the technique to its full 

potential, restricting themselves to only a few studies.[27-28] 

The following work aims to fathom the capabilities of an improved experimental setup 

for time-resolved pump-probe photofragmentation action spectroscopy, combining a 

tunable ultrafast laser source with quadrupole ion trap mass spectrometry. The method 

is applied to cationic and anionic molecular systems, with regard to detection of 

electronically excited state dynamics as well as vibrational and rotational wave-packet 

dynamics. 
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One focus of this thesis is placed on the electronic excited state dynamics fluorescein 

dyes. Fluorescein represents one of the most popular categories of dyes in biochemistry. 

Owing to its high molar absorptivity and fluorescence quantum yield,[29] fluorescein 

based markers are often used in fluorescence labeling[30-31] or as probes for e.g. redox 

cycles in living cells[32] and sensors of various metal ions or other small molecules.[33] 

Applicability in biochemistry as a fluorescence marker requires functionalization to 

allow for conjugation to biomolecules, which may have detrimental effects on its 

luminescence properties.[34] Additionally, depending on the pH-value and the functional 

groups, fluorescein dyes can appear in several charge states and prototropic forms[29] in 

a relatively narrow pH-range, encumbering spectroscopic studies on the excited state 

properties of a specific charge state in solution. The employed spectroscopic gas phase 

method shall shed some light on the charge state and substituent dependent excited 

state properties of fluorescein and some selected derivatives. 

Secondly, the excited state dynamics of a model carbocyanine dye are presented. 

Cyanines are a class of synthetic organic dyes, consisting of two terminal, 

tertiary/quaternary amine groups (or heteroaromatic moieties) linked by a chain of 

odd-numbered, conjugated carbon atoms. Owing to their remarkable absorption and 

luminescence properties, cyanines are used in various industrial applications[35-36] and 

in biomedical imaging as e.g. staining agents[37-40] or fluorescence markers.[41-46] Their 

absorption/emission properties can be easily modified by increasing the chain length in 

the polymethine backbone, enabling absorption/emission of light from the high 

frequency visible, up to the near infrared region.[46-47] Additionally, cyanines are popular 

model systems for studying photoinduced isomerization, which can be photoinduced via 

the excited state.[48-58] Cyanines are intrinsically charged, thus they qualify for mass 

spectrometric detection schemes without altering their inherent electronic properties. 

Lastly, a major focus of this thesis was assessing the capabilities of the utilized 

experimental setup and method for the study of charge transfer dynamics in 

supramolecular catalysts for photocatalytic hydrogen generation. In cooperation with 

the research group of Prof. S. Rau (Universität Ulm), three heterodinuclear complexes 

were investigated, two of which have already been extensively studied in solution by 

TA[59-62] and thus used as a benchmark for the experimental setup. The third complex is 

based on a novel bridging ligand, which binds to the catalytic metal center via an N-
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heterocyclic carbene, promising higher structural integrity. The ever increasing demand 

in sustainable energy resources calls for the optimization of catalytic methods for solar 

energy conversion into storable forms, such as hydrogen.[9, 63-67] From these 

investigations, structure-property correlations shall be drawn, which may aid in the 

optimization of future photocatalysts based on theory derived rational design.[68-74] 

1.1 References 
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2 Experimental setup and methods 

2.1 Experimental setup 

Figure 1 depicts a scheme of the experimental setup used in this thesis to perform 

transient pump-probe photofragmentation (tPF) experiments on isolated molecular ions 

in the gas phase. For this purpose a modified electrospray ionization (ESI) quadruple ion 

trap (QIT) mass spectrometer (amaZon Speed, Bruker Daltonics) was combined with a 

commercial femtosecond (fs) Ti3+:sapphire oscillator/amplifier laser system (Wyvern 

1000™, KMLabs). Two optical parametric amplifiers (OPA) of white light continuum 

(TOPAS-C, LightConversion) were used as a source for pump and probe laser pulses of 

tunable wavelength (240-2500 nm). A more detailed description of the individual 

components will be given in the following sections. 

 

Figure 1 Schematic experimental setup used for tPF experiments. 
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2.2 Electrospray ionization quadrupole ion trap mass spectrometer 

2.2.1 Transferring ions into the gas phase: electrospray ionization 

Electrospray ionization (ESI)[1-2] allows for the transfer of dissolved ions into the gas 

phase and is, like the matrix assisted laser desorption ionization (MALDI),[3] considered 

to be a soft ionization technique, i.e. excessive fragmentation of the molecules is 

prevented. This characteristic made it popular among biologists for the mass 

spectrometric study and characterization of thermally labile macromolecules.[4-6] The 

principle of the ESI method was proposed by Dole et al. in the late 1960s[7] and 

improved upon by Fenn et al., who was awarded the noble prize in 2002 for the 

development of the first applications in 1984.[1-2, 8-10] The extensive review of the ESI 

process over the last decades is a testament to its importance not only for biological 

applications, but for the mass spectrometric and spectroscopic community in 

general.[11-15] 

 

Figure 2 Schematic depiction of the ESI process. Adapted from Ref. [16]. 
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ESI can be roughly subdivided into two processes: firstly, the nebulization of the sample 

solution and secondly the desolvation of the analyte ions prior to transfer into the 

vacuum system of the mass spectrometer (Figure 2). The sample solution is infused into 

the spray chamber through a grounded spray needle mounted inside a tube from which 

a continuous flow of heated nebulizer gas (e.g. nitrogen) streams. A combination of 

strong shear forces generated by the stream of nebulizing gas at the tip of the spray 

needle and the field gradient between the capillary (held at typically 2-6 kV) and the 

needle draws out the sample (in a so-called Taylor cone) and disperses the solution into 

droplets. Depending on the electrostatic field, ions of preferentially either positive or 

negative polarity are attracted to the droplet surface, resulting in a fine spray of charged 

droplets inside the spray chamber – hence the name electrospray. Prior to entering the 

vacuum chamber of the mass spectrometer through the capillary (typically a glass 

capillary with metal coated ends) the remaining solvent has to be removed to lay bare 

the ions. Therefore, the droplets are met by a counterflow of neutral, heated drying gas 

(e.g. nitrogen) evaporating the remaining solvent shell, further reducing the droplet size, 

and consequently forcing the surface charges in close proximity. The charge density 

increases at the surface until the repulsive Coulomb force overcomes surface tension, at 

which point the droplets disperse into smaller ones; commonly referred to as “Coulomb 

Explosion”.[17] This mechanism repeats itself, until only bare ions are left (Charge 

Residue Mechanism).[7, 18-19] An alternative theory postulates that ions are directly 

emitted into the gas phase from the droplets, as soon as the electric field generated by 

the surface charge density is high enough to overcome surface tension (Ion Evaporation 

Model).[19-21] The ease with which emission from the surface takes place is dictated by 

the solvation enthalpy of the ions. Both methods are generally accepted for describing 

the ion formation process, however, the exact mechanism is a topic of debate.[19, 22] For 

effective desolvation and ionization, the right choice of a solvent is of utmost 

importance. Solvents that have a lower surface tension, lower heat capacity and 

dielectric constant like methanol and acetonitrile benefit the ESI process. 
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2.2.2 Storing and analyzing ions in the gas phase: quadrupole ion trap 

The quadrupole ion trap (QIT) is based on the work of Paul and Steinwedel,[23] hence it 

is commonly referred to as “Paul trap”. Ions can be accumulated over a variable time, 

isolated and fragmented via collision induced dissociation (CID). The basic layout of the 

trap consists of two end cap electrodes (entrance and exit cap) enclosing a ring 

electrode (Figure 3) 

 

Figure 3 Schematic layout of a quadrupole ion trap. 

Ions enter the trap through a hole in the entrance cap and are decelerated by collision 

with a damping gas (typically helium) present at a constant partial pressure 

(~3∙10-7 mbar). The interplay between an alternating potential (RF) applied to the ring 

electrode and a direct potential (DC) applied to the end caps creates a three-dimensional 

field, trapping the decelerated ions on oscillating trajectories. The movement of an ion in 

such a field can be mathematically described by the Mathieu equations.[24] Depending on 

the amplitudes of the applied potentials only ions of a certain mass to charge ratio (m/z) 

range are trapped on stable orbits (shaded area of the diagram in Figure 4), whereas 

ions outside the stable region of the Mathieu diagram are lost due to collision with the 

walls of the trap. 
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Figure 4 Mathieu stability diagram for a quadrupole ion trap.[25] 

In the amaZon series of QIT mass spectrometers, mass analysis is performed by a 

stepwise increase of the RF amplitude, driving ions (of increasing m/z ratio) to the 

stability limit, at which point they are ejected from the trap through a hole in the exit 

cap, hitting a detector. The ion signal intensity is recorded in dependence of the RF 

voltage, which is then converted into a mass spectrum. 
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2.2.3 Bruker amaZon Speed mass spectrometer 

In this thesis, a modified Bruker Daltonics amaZon Speed mass spectrometer was used 

(Figure 5). 

 

Figure 5 Scheme of an amaZon series mass spectrometer (Bruker 
Daltonics).[25] 

The ions are formed in the ESI source (Apollo II) at atmospheric pressure, transferred 

and expand from the end of the transfer capillary into the first vacuum stage (~1 mbar), 

at which point the desolvated ions are accelerated towards a dual funnel transfer line, 

installed off axis with respect to the ion beam (stage 1 and 2). This particular setup 

serves two purposes: firstly, the dual funnel focuses the divergent ion beam, which 

enters the vacuum stage at a wide solid angle, due to gas expansion of the carrier gas 

into the vacuum chamber. Secondly, the off-axis alignment of the funnel prevents neutral 

molecules (mainly solute molecules) from entering the next vacuum stage by collision 

with the ring electrodes, reducing gas load in the subsequent stages. The ions are guided 

through the third vacuum stage by a high-precision multipole and are afterwards 

focused into the ion trap (stage 4), in which they are accumulated, stored and mass 

analyzed. 
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The amaZon Speed mass spectrometer was modified for gas phase laser spectroscopy in 

cooperation with Bruker Daltonics. For this purpose, the top of the vacuum chamber 

cover was fitted with two openings for the laser beam and additionally with a 

breadboard for mounting of optical elements to guide the laser beam into the high 

vacuum stage housing the ion trap. The openings were capped with fused silica 

windows, tightened by viton seals. Furthermore, two holes (ø=2 mm) were drilled on 

opposite ends of the ring electrode, perpendicular to the ion beam axis, creating an 

optical path through the ion trap center. Additionally, two mirrors were mounted 

beneath the trap at a 45° angle to guide the beams (Figure 6) out of the mass 

spectrometer. 

 

Figure 6 Schematic beam path through the modified 
ring electrode (RE) of the ion trap. Pump and probe 
beams enter and leave the vacuum chamber through 
two fused silica windows (W1 and W2). The mirrors 
M1 and M2 act as a retroreflector and guide the beam 
out of the mass spectrometer. Adapted from Ref. [26]. 
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The outgoing laser pulses are directed onto an ultrafast photodiode to visualize the 

passing probe pulse train on an oscilloscope. This is used in order to monitor and 

control the phase shift of the optical chopper for a manual synchronization of the laser 

amplifier triggered optical chopper and the duty cycle of the mass spectrometer. 

An optical shutter was installed to prevent laser pulses from passing the trap outside the 

designated fragmentation time window specified in the mass spectrometer control 

software (BrukerTrapControl 7.0). The trigger signal for the shutter was fed to the 

shutter controller from the mass spectrometer’s auxiliary interface. 

Apart from ion trap modifications, an inlet line for neutral gases was added to the mass 

spectrometer (Figure 7 and Figure 8). It was mainly used to leak a definite amount of 

neutral furan vapor in a semi-controllable manner into the high vacuum chamber. This 

allowed for estimating the temporal resolution at a given pump-probe wavelength 

combination by recording the ultrafast multiple-photon ionization of furan, which is 

equivalent to the cross correlation function (ccf) of the laser pulses.[27-28] 

 

Figure 7 Scheme of the neutral gas inlet line added to the amaZon Speed 
mass spectrometer. Adapted from Ref. [29]. 
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A union tee was mounted to the high vacuum chamber (stage 4) of the mass 

spectrometer, which allowed admixture of furan to the helium buffer gas, introduced via 

the helium controller to the trap. The furan vapor pressure was reduced by means of an 

ultrahigh vacuum leak valve in combination with a PEEK (polyether ether ketone) 

capillary. 

 

Figure 8 Gas inlet line for neutral gases.[29] 

Furan was introduced using the following procedure:[29] With the leak valve closed, a 

small amount of furan is placed inside the sample holder. After freezing the sample with 

liquid nitrogen, plug valves (b) and (c) are opened and the volume evacuated by a water 

jet pump. Closing valve (c) and melting the furan inside the holder loads the volume 

before the leak valve with the neutral gas at its vapor pressure (~700 mbar at 21 °C). 

The leak valve is then opened to introduce a definite amount of furan into the vacuum 

chamber, which is monitored within the operating software of the mass spectrometer. A 

partial pressure of 2-3·10-7 mbar of furan is sufficient to produce a satisfactory cross-

correlation signal over a wide spectral range of the pump pulse. 
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2.3 Chirped pulse amplification femtosecond LASER system: the 

Wyvern 1000™ 

2.3.1 A source for femtosecond laser pulses: mode-locked Ti3+:sapphire laser 

With the advent of reliable and stable titanium-doped solid-state lasers in 1986,[30] dye 

lasers have been largely replaced as a source for ultrashort laser pulses. The gain 

medium in such a solid-state laser consists of sapphire (monocrystalline Al2O3) doped 

with Ti3+ ions. Sapphire serves as an excellent crystal lattice, due to its thermal 

conductivity properties, reducing thermal lensing effects. Ti3+ as a dopant has a very 

large gain bandwidth, i.e. the frequency range for which optical amplification in a gain 

medium can occur, resulting in a large number of optical frequency modes oscillating 

within the resonator (Figure 9); a prerequisite for generation of ultrashort laser pulses 

by frequency mode-locking. 

 

Figure 9 Schematic resonator setup of a passively mode-locked fs solid-state 
laser. 

The gain medium is a Ti3+:sapphire crystal, which is often pumped by a diode pumped 

solid state (DPSS) Nd3+:YAG laser (YAG: yttrium-aluminium garnet). The resonator 

consists of the gain medium placed between an output coupler mirror (a partially 

reflective mirror) and a rear mirror. Typically a prism pair is placed in the optical path 

to counteract chromatic dispersion, causing i.e. pulse broadening, introduced by the gain 

medium and other optical components. The mode of operation of such a resonator is 

then as follows: a large bandwidth of optical frequencies is emitted by the pumped gain 
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medium, which oscillate within the resonator. If these (longitudinal) modes exhibit a 

fixed phase relationship, the electric fields of all frequency components add up 

constructively to a maximum of the total field strength in regular time-intervals, and 

destructively in between these temporal positions (Figure 10). 

 

Figure 10 Constructive interference of several longitudinal modes with 
different frequencies and fixed phases leads to the formation of periodic 
pulses in the time-domain. 

Each time the pulse “circulating” in the resonator hits the output coupler, a pulse is 

emitted from the oscillator. The length of the resonator not only dictates the number of 

oscillating longitudinal modes, but also the repetition rate (typically 80-100 MHz) at 

which the oscillator emits. For good pulse stability, it is crucial that only modes with a 

fixed phase relationship are allowed to oscillate within the resonator, whereas modes 

with random phases are suppressed. In passively mode-locked oscillators, mode 

suppression is achieved by means of e.g. a saturable absorber, which may also serve as 

the rear mirror of the resonator (SESAM: semiconductor saturable absorber mirror). 

The mode of operation involves absorption saturation of the SESAM by the leading edge 

of the pulse, thus temporarily reducing the losses experienced by the pulse. From 

Figure 10, it is clear that only modes with a fixed phase add up constructively to high 
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total electric field strengths, saturating the absorber, whereas modes with a random 

phase experience high losses at the SESAM. 

A different technique for passive mode-locking, which is used in the Wyvern 1000™, 

involves self-focusing in the gain medium. Self-focusing is based on the Kerr effect and 

occurs due to nonlinear response of a medium traversed by intense light. Simply put, the 

refractive index n of a non-linear medium (with the non-linear refractive index ��) is 

dependent on the intensity I of the propagating light according to � = �� + �� ∙ �, with 

�� being the ordinary refractive index. Thus high optical intensities lead to tighter 

focusing and a better overlap of high intensity modes (i.e. mode-locked modes) with the 

pump laser inside the gain medium, increasing the rate of stimulated emission of these 

modes (soft aperture operation). Additionally, a physical aperture can be placed inside 

the resonator to “peel off” off-phase modes, which are thus not, or only weakly focused, 

resulting in higher losses (hard aperture operation).[31-32] 

2.3.2 Chirped pulse amplification 

Ultrashort pulses can exhibit very high optical peak intensities when amplified, even at 

moderate pulse energy. This may lead to non-linear effects in the amplifying gain 

medium, causing various pulse distortions, such as optical and temporal broadening or, 

in the worst case, dealing damage to optical elements, including the gain medium itself. 

This is avoided by temporally stretching the pulses (introducing a “chirp”), thus 

reducing peak power, prior to amplification. The pulses are chirped at a strongly 

dispersive medium (a grating pair), i.e. the spectral components of the pulse are 

retarded with respect to each other, meaning that the instantaneous frequency of pulse 

is time-dependent. In an up-chirped pulse, for example, the instantaneous frequency 

rises, i.e. the low frequency components of a pulse are at the leading edge, whereas the 

higher frequency modes arrive later (Figure 11). 
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Figure 11 Example for a linearly up-chirped pulse, i.e. the instantaneous 
frequency increases in time. 

The temporally stretched pulse is seeded into an optical resonator, containing the 

amplifier gain medium (Ti3+:sapphire). By use of an electro-optical switch (usually a 

combination of a Pockels Cell (PC), a quarter-wave plate (λ/4) and a thin film polarizer 

(TFP)), a single pulse is trapped in the resonator for a designated amount of time, 

undergoing several round trips in the resonator, while being strongly amplified within 

the gain medium, which is pumped separately by a high-power frequency doubled 

Nd3+:YAG laser. Afterwards, the optical switch releases the amplified pulse, which is 

subsequently temporally compressed in a dispersive compressor (again a grating pair), 

counteracting the chirp introduced in the stretcher. The chirped pulse amplification 

(CPA) scheme is illustrated in Figure 12. 

 

Figure 12 CPA scheme for the amplification of ultrashort laser pulses. 
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In this thesis, an fs oscillator and single stage regenerative amplifier laser system 

(Wyvern 1000™ series, KMLabs) was used for pulse generation and amplification. In this 

particular setup, the amplification crystal is cryogenically cooled (to -230 °C), reducing 

pulse distortion effects and the risk of damaging the amplifier gain medium. This allows 

for the generation of ~50 fs pulses with energies of up to 4.0 mJ at a central wavelength 

of ~780 nm and a set repetition rate of approximately 1 kHz. In the following, a rough 

amplifier scheme (Figure 13) and description of the mode of operation is presented. 

The seed pulses are generated in the oscillator by passive mode-locking of the resonator 

modes emitted from the laser gain medium (Ti3+:sapphire), which is pumped by a 

frequency doubled, diode pumped Nd3+:YAG laser (Opus 532). At every round trip a part 

of the mode-locked pulse, oscillating between the rear-mirror (O-RM) and the output 

coupler (OC), is emitted and directed (passing over M1) into the stretcher. The 

combination of several broadband mirrors and a grating (S-G) introduces a chirp, 

stretching the seed pulse in time and concomitantly lowering the beam plane. The pulse 

leaves the stretcher in the opposite direction to the incoming pulse at lowered altitude. 

It is picked up by M1 and directed into the amplifier stage via M2. High voltage is applied 

to the PC, which then serves as a quarter-wave plate and, in combination with another 

quarter wave plate (λ/4), rotates the plane of polarization of a single incoming seed 

pulse from vertical to horizontal. The change in polarization prevents the pulse from 

passing the thin film polarizer (TFP1), trapping the pulse inside the amplifier resonator 

cavity consisting of A-RM1 and A-RM2. The trapped seed pulse oscillates in the 

resonator, passing the amplifier crystal (Ti3+:Sapphire, AC), contained in an evacuated 

cryo-cell and pumped by a second diode pumped (DP) frequency doubled Nd3+:YAG 

laser (LDP-200 MQG). After several round trips, the plane of polarization is rotated (by 

switching off the PC), allowing the amplified pulse to pass TFP1 and leave the amplifier 

resonator via M2. The pulse passes the Faraday rotator and is reflected at a second thin 

film polarizer (TFP2) towards the compressor, passing over M3. In the compressor, a 

grating pair (C-G1 and C-G2) counteracts the chirp initially introduced in the stretcher. 

The roof mirror (M4) lowers the altitude of the beam plane, allowing M3 to pick up the 

amplified pulse and guide it out of the amplifier. 
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Figure 13 Scheme of the Wyvern 1000™ fs-laser system consisting of a Ti3+:sapphire oscillator and cryogenic 
Ti3+:sapphire regenerative ultrafast amplifier. 
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The output from the amplifier was split at two beam splitters in effectively three arms, 

according to the scheme in Figure 14. 

 

Figure 14 Scheme depicting the splitting of the amplifier output beam into 
three arms using two sequenced beam splitters. 

One of the arms (1.3 mJ) was used for whit light continuum (WLC) generation in liquid 

phase transient absorption (TA) spectroscopy, which is of no relevance for this thesis. 

The other arms (1.2 mJ and 1.5 mJ) were directed to the OPA systems (TOPAS-C T6 and 

T7) for pump and probe pulse generation in tPF experiments. Schematic layout and 

mode of operation of the TOPAS-C systems will be briefly described in the following 

(Figure 15). 
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Figure 15 Schematic layout of the TOPAS-C system for optical parametric 
amplification of white-light continuum. Widening and collimating optical 
elements were omitted for clarity. 

The pump beam from the amplifier (1) is steered into the TOPAS-C and split at the first 

beam splitter (BS1) into a low energy (2) and high energy (3) beam. The transmitted 

beam (2), ~30-70 µJ of energy, hits a second beam splitter (BS2) producing a low energy 

beam (4), which is focused on a sapphire plate (WLG) to generate white-light continuum 

(5), and a beam (6) of higher energy (80% of the 30-70 µJ) used for pre-amplification of 

the white-light. (5) is temporally stretched and intersected with (6) non-collinearly in 

the non-linear crystal (NC1), generating a signal and an idler beam. The idler and 

residual (6) are dumped (D1), whereas the pre-amplified signal (7) is collimated and 

overlapped with the bulk of the initial pump beam (3) in a second non-linear crystal 

(NC2). The residual pump (3) is either reflected at a dichroic mirror and dumped (D2) or 

used together with the generated signal and idler beams (8) in subsequent frequency 

mixing stages. 

The wavelength of the signal beam (7) generated in the pre-amplifier corresponds to the 

WLC (5) wavelength overlapped with the pre-amplifier pump (6) in NC1 and is 

controlled by changing the delay of the WLC with respect to the pump via a delay stage 
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(DS1). Additionally, NC1 is rotated for best phase matching of the intersected white-light 

and the pump. The delay between the pre-amplified idler (7) and the pump of the 

amplifier stage (3) is controlled by a second delay stage (DS2) consisting of two 

Brewster angled plates, affecting the intensity of the signal and idler beams generated in 

NC2. Rotation of NC2 dictates parametric amplification in NC2. By changing the 

positions of NC1 and NC2 in combination with the two delay stages (DS1 and DS2), the 

effectively generated signal and idler beams (in NC2) cover a wavelength range of 

1140-1620 nm and 1520-2500 nm, respectively. The tuning range is extended by two 

external frequency mixers (converters) located at the output of the TOPAS-C systems. 

Beta-barium borate (BBO) crystals of type I phase matching are used for second 

harmonic (SH) or fourth harmonic (FH) generation of the signal and idler waves and the 

SH of the sum frequencies (SF) generated from the pump in combination with either the 

idler (I) or the signal (S) beam. Sum frequencies are obtained by mixing the pump with 

the idler (SFI) in a BBO crystal of type I phase matching or mixing the signal with the 

pump in a BBO crystal of type II phase matching. The accessible wavelength ranges by 

various combinations of the output waves are summarized in Table 1. 

Table 1 Accessible wavelength ranges by sum 
frequency (SF) and higher harmonic (second harmonic 
SH, fourth harmonic FH) generation of the signal (S) 
and idler (I) waves in combination with the residual 
pump beam from the amplifier. 

wave wavelength range / nm 

S 1520-2500 

I 1140-1620 

SHI 795-1160 

SHS 570-810 

SFI 525-580 

SFS 472-527 

FHI 400-485 

FHS 285-400 

SHSFI 262.5-287.5 

SHSFS 236-263.5 
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A pair of wavelength separators we attached in sequence to the last mixer stage to filter 

residual radiation passing the mixers from the desired pulse wavelength. These 

separators only operate in a limited wavelength range and have to be exchanged to 

match the desired output wavelength (Table 2 and Figure 16). 

 

Figure 16 Wavelength dependent pulse energies (measured after 
separators) of the waves generated in TOPAS T6 (a) and T7 (b). Colored 
areas denote the wavelength range of the utilized wavelength separators. 
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2.4 Experimental methods 

2.4.1 UV/Vis photofragmentation 

Laser induced fragmentation in combination with mass spectrometry is a versatile tool 

to perform structural investigations on ionic systems under isolation. The major appeal 

of a gas phase approach is the ability to mass select the desired species and additionally 

the lack of a solvent environment, making theoretical modeling less costly. The 

fragmentation of ions by laser irradiation at fixed frequencies (either using infrared (IR) 

or ultraviolet (UV) light sources) is an attractive alternative to the commonly applied 

collision induced dissociation (CID), especially in setups where collisional gas cannot be 

used[33] or fails to produce a comprehensive fragmentation pattern, due to kinetic 

limitation of the fragmentation process, such as in sequencing of larger oligopeptides.[34] 

In addition, the tunability of laser systems allows for recording of photodissociation 

action spectra, analogous to absorption spectra in solution, by monitoring the 

fragmentation as a function of photon energy, i.e. photon wavelength. 

Gas phase fragmentation pathways may differ depending on the excitation method. In 

CID, excitation occurs via collision of the electrostatically-accelerated ionic system with 

a quasi-stationary neutral buffer gas. Upon collision, energy is transferred to the internal 

heat bath of the target molecule until energy buildup exceeds the dissociation threshold 

and the molecule undergoes fragmentation. Usually, the energy is introduced into the 

molecule by low energy collisions (with small neutral molecules as background gas, such 

as helium), resulting in a slow energy buildup, so that molecules have time to rearrange 

and explore the lowest fragmentation pathways (slow heating).[35] A similar process 

takes place by infrared-multiple photon dissociation (IRMPD), for which consecutive 

(non-coherent) absorption of typically several IR photons is necessary to result in 

fragmentation of molecules.[36-37] UV/Vis photoexcitation, on the other hand, 

instantaneously transfers a large amount of energy to the molecule by absorption of a 

single photon (“fast heating”) (Figure 17).[38] 
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Figure 17 Scheme depicting fragment ion formation by UV/Vis PF (blue, “fast 
heating”) and CID or IRMPD (red, slow heating). Boldness of arrows denotes 
relative fragment ion intensities formed upon the respective dissociation 
process. For a slow heating process, usually only lowest energy fragment 
products (e.g. F1 and F2) are formed, whereas in a fast heating process 
additional fragment channels above the dissociation threshold may be 
accessed (e.g. F3 and F4). Adapted from Ref. [38]. 

In contrast to CID and IRMPD, UV/Vis PF may occur either barrierlessly from an excited 

state or indirectly from the ground state. In the former case the molecule is excited to a 

repulsive excited state potential from which it dissociates rapidly (Figure 18a).[39] Thus 

fragment products may be observed, exclusive to a dissociative coordinate of the 

respective excited state. Indirect dissociation, on the other hand, occurs if the ions are 

excited to a bound electronic excited state (Figure 18b). Depending on the potential 

barrier, the ions may still fragment from the excited state directly; although less likely, if 

coupling to the ground state is efficient. Otherwise, the ions undergo internal conversion 

(IC) to a highly vibrationally excited (hot) ground state from which dissociation takes 

place. Coupling of the excited state to the ground state dictates the internal energy 

stored in specific internal degrees of freedom, and thus the rate of fragmentation for the 

respective channel, influencing the intensities of occurring fragment ion signals. If the 

internal energy after photoexcitation and subsequent IC does not exceed the 

dissociation barrier, a second photon may be absorbed,[40] although possibly with 
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reduced probability, as the Franck-Condon factors are typically smaller for non-resonant 

transition from a hot ground state to the excited state. A possible multiple-photon 

process for UV/Vis dissociation can be identified by measuring the dependence of 

fragmentation on the laser pulse energy. Although fragmentation by non-coherent 

multiple-UV/Vis-photon absorption is conceivable, it should generally result in a lower 

fragmentation yield than for one-photon PF (as discussed above). 

From extensive comparison of UV/Vis PF to CID fragmentation patterns in this thesis, 

the dominating process is believed to be indirect fragmentation from a hot ground state. 

This can be an issue for recording of one-color PF spectra, as fragmentation from the 

ground state proceeds with a rate on the same order at which collisions with the helium 

buffer gas take place (µs-ms), resulting in thermalization of hot ions, and thus signal 

suppression in PF spectra. Fragmentation upon longer wavelength excitation is 

especially prone to collisional quenching, due to an inherently lower internal energy 

imparted to the ions. 

 

Figure 18 Scheme depicting fragment ion formation by UV/Vis PF from a 
repulsive excited state (a) and a bound excited state (b). From a bound state, 
the target ion either dissociates directly or after IC to the hot ground state. 
Depending on the dissociation barrier in the excited state, the former or the 
latter process may prevail, resulting in different fragment ions observed. 
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2.4.2 Time-resolved UV/Vis photofragmentation 

Monitoring the evolution of fragment ion formation in time is an extension to photo-

induced dissociation, which is realized by a pump-probe scheme. The advent of ultrafast 

lasers paved the way for time-resolved spectroscopy on the timescale of chemical 

reactions (femtochemistry) pioneered by A. H. Zewail (Nobel prize in chemistry in 

1999).[41] In these early experiments a pump-probe scheme was employed to study 

photodynamics of small, neutral molecules in the gas phase by multiple-photon-

ionization on the pico- and femtosecond timescale.[42-43] The molecules were excited to a 

higher electronic state by a pump laser and subsequently ionized from the excited state 

by probe photon absorption. Although the photoionization scheme is common in pump-

probe spectroscopy, it is generally not applicable to cationic species, as the higher 

ionization potentials of cations are difficult to overcome. Hence a different detection 

scheme is employed, monitoring the fragmentation efficiency as a function of pump-

probe delay. This particular scheme was first realized by Jouvet et al. in their studies on 

protonated tryptamine[44] and tryptophan[45] with time-of-flight (TOF) detection of 

fragment ions, and later expanded to commercially available ion trap mass 

spectrometers by Weinkauf et al.[27-28] 

The transient pump-probe PF (tPF) method is based on interrogating the population of a 

resonantly excited (pump step) molecular ensemble, e.g. excited into the first electronic 

excited state S1, by probe photon absorption, inducing a subsequent transition to higher 

lying electronic states (Sn←S1), which is accompanied by an increase in fragmentation 

yield. As discussed for the steady-state case, the molecules do not necessarily fragment 

directly from the respective Sn state, but later-on after IC from a highly vibrationally 

excited ground state. In ion trap setups, fragmentation from the ground state takes place 

in competition to collisional quenching with the helium buffer gas on a µs-ms time scale, 

depending on the partial pressure.[46] The increase in fragmentation rate and yield stems 

from the increase in internal energy of molecules after pump+probe excitation with 

respect to pump-only excitation. Noteworthy, the probe process is not necessarily 

controlled to be resonant and assumed to be of multi-photonic character, thus its 

underlying transitions to higher-lying electronic states are in general unknown. 

However, when the molecular system undergoes electronic relaxation processes (e.g. IC 

or intersystem crossing, ISC) the cross section of the probe pulse is altered between the 
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different states, usually resulting in a decreased absorption cross section upon 

formation of lower lying electronic states. This is attributed to three effects: 1) a dilution 

of population, due to population of several vibronic states, 2) a loss of propensity, i.e. 

Franck-Condon overlap, for these vibronic states towards higher-lying electronic states, 

and 3) the multiple-photon character of the probe absorption process, which makes 

transitions from lower electronic states less likely. Figure 19 depicts a simplified tPF 

scheme for an arbitrary system, in which IC is the only relaxation channel after 

photoexcitation. 

 

Figure 19 tPF detection scheme. Arrow colors denote different 
radiative/non-radiative processes, whereas boldness represents the process 
rates (bolder arrows indicate higher rates or higher probabilities). Dots 
represent ion population in the respective electronic/vibrational state. For 
the sake of clarity, vibrational states of the excited states are not illustrated. 
Ion population is depicted for three cases: (a) negative pump-probe delay, i.e. 
probe arrives prior to resonant pump-excitation, (b) coherent pump-probe 
excitation at zero time delay and (c) positive pump-probe delay, i.e. probe 
arrives after pump-excitation. 
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In case a), the ion population is excited resonantly to the S1 electronic state and decays 

via IC to the hot ground state S0 by coupling to vibronic states from which the excited 

ions fragment, forming two different fragment products (F1 and F2). The relative 

fragmentation yields depend on the internal energy, with F2 exhibiting a higher barrier 

for fragmentation. Fragmentation proceeds on a longer timescale (µs-ms) than the 

electronic decay (ps) and is in competition with thermalization of the hot ions by 

collisional quenching. No excitation to higher electronic states (Sn) by probe photon 

absorption takes place. In case b) a majority of the pump-excited ion population is 

elevated to a higher lying electronic state Sn, by (multiple-)probe-photon absorption. IC 

takes place from either the S1 or the Sn state, resulting in two populations in S0 with 

distinctly different internal energies. The “hotter” population is less susceptible to 

collisional deactivation, thus higher total fragmentation yields are observed with respect 

to pump-only excitation (at the same pump energy). Case c) depicts a scenario, in which 

the probe pulses arrive sometime after excitation with pump-photons, so that the 

system had time to partially relax; in this case to the S0 state. Only the ions in the S1 state 

have a relatively high cross section for multiple-photon absorption of the probe photons, 

whereas ions in the hot S0 state are less likely to absorb probe photons (ion population 

is “diluted” over several vibrational states, exhibiting smaller Franck-Condon overlap). 

Compared to b) the ion population in the “hotter” S0 state is smaller. Hence the total 

fragmentation yield is also lower. With increasing pump-probe delay, the effective ion 

population in the Sn state diminishes, further reducing the fragmentation yield. The 

delay dependent fragment ion intensities thus map the lifetime of the S1 state. The 

fragment signal evolution sketched for a simple, arbitrary case in Figure 19 can be 

applied to any system, which may exhibit various relaxation channels of the excited state 

population. 

Although the detection scheme is akin to the one employed by Jouvet et al. and Weinkauf 

et al., the experimental setup utilized in this thesis has a major advantage over the 

referenced setups, as the OPA systems allow for tuning of the pump and probe pulses in 

a broad spectral range individually, not relying on the fundamental (~800 nm) of a 

Ti3+:sapphire laser and its higher harmonics for generation of suitable laser pulses. Thus 

a wider assortment of molecules can be investigated, such as organic dyes with 

extensive π-systems or charge transfer processes in transition metal complexes, which 

require pump wavelengths in the visible region. 
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2.4.3 Standard measurement procedures and data processing 

Mass spectra and CID mass spectra were recorded in enhanced resolution mode 

(8100 m/z /s at a mass resolution of 0.2 fwhm / m/z). The mass range was adjusted to 

the respective compound under study; however, the lower boundary was typically left at 

m/z 50. Sample solutions were prepared at a concentration of 5·10-7 to 5·10-6 mol/L and 

continuously infused into the spraying chamber by a Hamilton® syringe and a syringe 

pump at a set flow rate of 120 µL/h. The temperature of the nitrogen drying gas was set 

to 180 °C at a flow rate of 4-5 L/min. Nebulizer pressure and needle potential were 

adjusted to yield the highest and most stable precursor ion signal. Typical values were 5 

psi (345 mbar) and 4.4 kV for the pressure and needle potential, respectively. The 

“target mass” option within the instrument software was used to tune the transfer 

parameters. The “target mass” was in general set to the m/z ratio of the compound 

under investigation. Accumulation time of the ions was adjusted so as not to exceed a 

total ion count of ~1-1.5·105. The helium buffer gas partial pressure inside the trap was 

approximately 3·10-3 mbar. The mass spectrometer was controlled by the 

BrukerTrapControl 7.0 software and data analysis was performed using 

BrukerDataAnalysis 4.0. 

PF and tPF measurements were performed using the modified Bruker Daltonics amaZon 

Speed ion trap mass spectrometer in ultrascan mode (32.500 m/z /s at a mass 

resolution of 0.4 fwhm / m/z). Two non-collinear parametric amplifiers of white-light 

continuum (TOPAS-C, Light Conversion) pumped by a CPA ultrafast regenerative 

amplifier (Wyvern 1000™, KMLabs, 4 µJ, 780 nm, Δt=50 fs, controlled by Dragon Master 

V3.00 software) provided a source of tunable radiation in the UV/Vis and NIR region in 

order to record static (multiple-photon) PF and tPF spectra. The output from the T7 was 

used for generation of pump pulses (UV/Vis) in both static and transient experiments, 

whereas the T6 provided exclusively probe pulses in the near infrared (NIR) region 

(1200 nm). 

Steady-state (multiple-photon) PF spectra were obtained by recording the PF mass 

spectra at an individual set wavelength one at a time. The output wavelength of the T7 

was set by the WinTOPAS v3.2.35 software, checked using an AvaSpec USB high 

resolution fiber optics spectrometer (ULS3648, Avantes) and, if necessary, corrected by 

adjusting the Delay2 in the WinTOPAS software. Pulse energies (1-2µJ) were kept 
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constant across the whole recorded spectral range. For this purpose, the energies at a 

given wavelength were monitored on an energy meter (Vega, Ophir) equipped with a 

pyroelectric sensor, and attenuated using a neutral density filter to the desired pulse 

energy, prior to recording the fragment spectrum. The mass spectrometer was operated 

with the BrukerIonTrap 7.0 software in ultrascan mode, averaging ten cycles for a single 

mass spectrum. Accumulation time was set appropriately so that the ion count did not 

exceed a value of 1-1.5·105. If not stated otherwise, the fragmentation time was set to 

150 ms, which, in combination with the 981 Hz repetition rate of the amplifier, 

amounted to ~150 laser pulses per ion cloud. The fragment mass spectra were recorded 

for at least 2 minutes for a set wavelength. The procedure was repeated for each set 

wavelength in the recorded spectral region, spacing the data points equidistantly with a 

step size of 3-5 nm. Parent ion and fragment ion intensities were extracted as ion 

chromatograms from the mass spectra by using a home-made VisualBasic script.[26] The 

total fragment ion yield Y(λ) at a given wavelength λ was calculated according to 

Y(λ)=∑Fi/[(∑Fi+∑Pj)·λ], where Fi and Pj are the fragment and parent ion intensities, 

respectively. Division by the numerical value of λ was performed to account for different 

photon energies at constant laser pulse fluence. 

Measurements of the fragment ion yield dependence on the pump pulse energy were 

performed analogously. For a set wavelength, consecutive PF mass spectra were 

recorded at increasingly higher pulse energies. Fragment ion chromatograms were 

extracted and processed according to the procedure described above. Energy E 

dependence of the fragmentation yield Y was evaluated applying a polynomial fit 

function (	 = 
 ∙ ��), where n is an estimate for the number of photons needed to 

induce fragmentation.[47] 

tPF spectra were recorded by resonant (one-photon) excitation of the isolated ions 

using the output from TOPAS-C T7 (usually in the visible region) and subsequent time-

delayed probing by non-resonant (multiple-)photon (1200 nm) absorption of the 

photoselected ion ensemble. Pump intensities were, if applicable, usually kept as low as 

possible to avoid multiple-photon excitation. If not stated otherwise, the initial 

repetition rate (981 Hz) of the pump and probe pulse trains was reduced to 327 Hz by 

an optical chopper, resulting in irradiation of a single ion cloud with ~50 pump-probe 

pairs. The mutual polarization plane orientation of the linearly polarized pump and 
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probe beams was adjusted by rotating the polarization plane of the pump with respect 

to the (vertically polarized) probe pulses using a Berek polarization compensator. The 

retardation for a selected pump pulse wavelength was adjusted accordingly by tilting 

the compensator plate, so that the compensator functioned as a λ/2-waveplate, allowing 

for easy control of the polarization plane orientation by rotation of the Berek 

compensator. The probe pulses were continuously delayed in time with respect to pump 

pulses by means of a silver retroreflector mounted on a single axis delay stage (M-

531.DD, PI). The DC motor controller (C-863.11 Mercury, PI) operating the delay stage 

was controlled using the PIMikroMove Software. The pump and probe pulses were 

spatially overlapped and focused onto the ion cloud inside the trap with a f=50 cm lens. 

Pointing of the beams was adjusted for maximum PF yield at zero time delay (t0). The 

time-delay was continuously scanned (from negative to positive pump-probe delay) at 

constant scan speed, which was adjusted for equidistant steps between each data point 

of typically 4 ps (for a total time delay of 1.6 ns), 2 ps (total delay of 800 ps), 100 fs (total 

delay of 40 ps) and 20 fs step size for total delays shorter than 40 ps. Each scan took 

10 min to complete and was repeated 12-15 times, depending on signal quality. 

Fragment ion chromatograms were extracted from the raw data using a VisualBasic 

script,[26] which was run in the BrukerDataAnalysis 4.0 software. The yields Yi of the 

individual fragment ion channels were evaluated according to Yi=Fi/[(∑Fi+∑Pj)] 

(Fi: intensity fragment i and Pj: intensity parent j) and additionally converted from the 

internal time-scale of the mass spectrometer to a pump-probe delay dependency with a 

template file developed in LibreOffice Calc. The so obtained kinetic traces were averaged 

over all repeated scans for every single fragment ion channel and either summed up 

(total fragment yield) or subjected to a fitting routine individually. 

To evaluate the system response at any given pump-probe wavelength combination, the 

cross correlation function (ccf) was determined by measuring the pump-probe 

dependent multiple-photon ionization of neutral furan inside the ion trap with the same 

step size and at the same scan speed used in the respective experiment.[27-28] For that 

purpose, furan at a partial pressure of ~1-3·10-7 mbar was introduced into the trap 

according to the procedure described above. The overlap of the pump and probe pulse 

electric fields give a rise to a quasi-instantaneous, short-lived ion signal resulting from 

laser induced electron detachment from neutral furan molecules, which are then 

detected mass spectrometrically. Time-zero and the temporal resolution were estimated 
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from the center and the fwhm of the Gaussian ion signal (Figure 20), respectively and 

used in fitting of the kinetic traces. 

 

Figure 20 Temporal resolution estimated from a Gaussian approximation of 
the cross correlation measured by coherent (multiple-)pump+probe 
photoionization of neutral furan; shown examplatorily for a wavelength 
combination of: λpump=400 nm + λprobe=1200 nm. 

Transient fragment spectra were usually fitted by a convolution of a sum of exponentials 

augmented with the system response obtained from the laser pulse cross correlation 

according to S(t)=∑iAi(exp(-t/τi)*g(t,t0,tp)) (τi decay time constants, t0: time zero, tp: 

fwhm of ccf), using Origin 9.0G or a fitting software[48] based on the MINUIT 

optimization package.[49] Sinusoidally modulated transients were evaluated with 

Origin 9.0G or an open source software (DecayFit)[50] running within the MATLAB 

(R2013a) environment. 

2.5 Computational methods 

2.5.1 Density functional theory 

Density function theory (DFT) is a quantum chemical method for modeling the 

electronic ground state properties of many-body systems from the spatially dependent 

electron density. Since 1970s it was mainly used for calculations to determine solid state 
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physics, and deemed not accurate enough for calculations in quantum chemistry. 

However, with better refinement of the approximations used to model exchange and 

correlations interactions it became more popular among theoretical chemists, due to its 

relatively low computational costs. 

The foundation of DFT is the Hohenberg-Kohn-Theorem,[51] claiming that for a given 

electron-density �(�), the potential �(�), which produced said density, is uniquely 

defined, i.e. if �(�) is known,	�(�) and also the Hamiltonian �� is known. Thus, any 

observable of a system can be derived from the density alone. The beauty of this 

approach lies within the Kohn-Sham formalism, stating that the density of a system of N 

interacting fermions can be calculated as the density of an auxiliary system of non-

interacting fermions. In first approximation, the electrons are treated separately. Hence, 

instead of solving the Schrödinger equation of an N particle system as a whole, a set of N 

orthonormal one-electron-Schrödinger equations are solved, also known as Kohn-Sham 

equations: 

 �− 12 ∇� + ����(�)���(�) = ����(�) (1) 

With ��being the energy eigenvalue of the corresponding Kohn-Sham orbital ��(�). 

The density of the system is then obtained by 

 �(�) = � ��(�) �
!

�"#
 (2) 

and the effective single-electron potential ����(�) is written as 

 ����(�) = ��$%(�) + & �(�′)|� − �′| )*+, + �-.(�) (3) 

The first term is the external potential ��$%(�) exerted by the atom core(s), the second 

term (the so-called Hartree term) describes the electron-electron Coulomb repulsion 

and �-.(�) is the exchange-correlation potential, which treats the many-particle 

interactions. From the definition of the effective potential ����(�), two main conclusions 

can be drawn. Firstly, since the effective potential depends on the density �(�) and is 
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also necessary to calculate the density in the first place (from the Kohn-Sham functions), 

the eigenvalue problem has to be solved iteratively. 

Secondly, although the N electron system was initially conceived as a system of N non-

interacting particles, the many particle interactions cannot be disregarded. Thus the 

Kohn-Sham-formalism only shifted the problem of treating many-body systems to the 

exchange-correlation (XC) term. The major concern is now that the exact functionals for 

exchange and correlation are not known and must be approximated. One way to do so is 

the local density approximation (LDA), in which the density at a local point is assumed 

to be uniform (electron gas). An improvement to this formalism is the generalized 

gradient approximation (GGA), which, in addition, incorporates the local change in 

density, i.e. the density gradient. Today, hybrid functionals, such as B3LYP,[52-53] have 

become very popular, which include a varying degree of exact exchange calculated 

according to the Hartree-Fock-formalism. 

2.5.2 Time-dependent density functional theory 

Time-dependent density functional theory (TD-DFT) extends the idea behind DFT. The 

foundation of TD-DFT is the Runge-Gross-Theorem,[54] which proved (analogous to the 

Hohenberg-Kohn-Theorem for a static system) that all observables of a interacting 

many-body system, evolving from an initial (true) state /�, can be extracted from the 

density �(�, 1) of a non-interacting (Kohn-Sham) system of fermions starting in an initial 

state Φ�. The proof of the Runge-Gross-Theorem is more involved than the Hohenberg-

Kohn-Theorem, since the time-dependent effective potential at a given time is 

dependent on the densities at all previous times. Detailed explanation of the theory can 

be found in e.g. Ref. [55]. 
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Suffice to say is that, analogous to DFT, the time-dependent density can be obtained 

according to 

 �(�, 1) = � ��(�, 1) �
!

�"#
 (4) 

with a set of N orthonormal ��(�, 1) orbitals obeying the time-dependent Kohn-Sham 

equation 

 3− 12 ∇� + ����(�, 1)4 ��(�, 1) = 5 661 ��(�, 1) (5) 

Analogous to the potential of a Kohn-Sham system in the ground state, ����(�, 1) is split 

into three terms: 

 ����[�; Φ�](�, 1) = ��$%[�; Ψ�](�, 1) + & �(�,, 1)|� − �,| )*+, + �-.[�; Ψ�, Φ�](�, 1) (6) 

With the first term, ��$%[�; Ψ�](�, 1), being the external time-dependent field, the second 

the time-dependent Hartree potential and the third the XC potential. Again, the XC 

potential has to be approximated as s functional of the density and, in contrast to DFT, 

also as a functional of the true initial state Ψ� and the Kohn-Sham initial state Φ�. 

Within this work, geometry optimizations and vibrational frequency calculations were 

performed on the DFT level of theory, whereas for calculations of vertical transition 

energies TD-DFT was employed. Calculations were managed and monitored using 

mainly the Extensible Computational Chemistry Environment (ECCE)[56] interface 

running the Gaussian 09 program package.[57] Individual use of basis sets and 

functionals will be specified within each chapter. Calculations were gratefully performed 

on the computing clusters of the TU Kaiserslautern, which are under supervision of the 

theoretical research group of Prof. Dr. C. van Wüllen. 
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Full Reference to the publication: 

"Rotational and vibrational dynamics of deprotonated and protonated fluorescein studied 
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3.2 Abstract 

Excited state dynamics of deprotonated and protonated fluorescein were investigated 

by polarization dependent femtosecond time-resolved pump-probe photofragmentation 

in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wave-packet 

dynamics with weak polarization dependence. Transients of protonated fluorescein 

show only effects of molecular alignment and rotational dephasing. The time resolved 

rotational anisotropy of protonated fluorescein is simulated by dynamics of the 

calculated orientational correlation function. The observed differences between 

deprotonated and protonated fluorescein are ascribed to their different higher lying 

electronically excited-states and corresponding structures. This is partially supported by 

time-dependent density functional theory calculations of the excited state structures. 

3.3 Introduction 

Fluorescein [FL] and its derivatives represent one of the most popular categories of dyes 

in biochemistry. Due to their high molar absorptivity and fluorescence yield,[1] 

fluorescein based markers are often used in fluorescence labeling[2-3] or as probes for 

e.g. redox cycles in living cells[4] and sensing of various metals ions or other small 

molecules.[5] In solution, [FL] appears pH-dependent in up to four charge 

states/prototropic forms (dianion [FL-2H]2-, monoanion [FL-H]- as a phenolate or 

carboxylate, neutral [FL] and cation [FL+H]+) exhibiting specific absorption and 

emission characteristics.[1] FL is easily chemically linked to biopolymers and therefore 

used in (steady-state) fluorescence anisotropy measurements,[6-8] with the goal to 

improve microscopic fluorescence imaging[7-10] and study the dynamics of protein-

folding[11] or conformational rearrangements by time-resolved fluorescence anisotropy 

(TR-FA).[12-14] The importance of the latter applications, their perspective for Förster 

resonance energy transfer (FRET) studies[15-17] and furthermore the search for insight 

into the influence of solvation on the different charge states has sparked interest in gas 

phase studies coupled with mass spectrometric or fluorescence detection.[18-21] In 

addition, recently, it was convincingly demonstrated that a gas phase analogue to TR-FA 

is possible by implementation of a femtosecond (fs) time-resolved photodetachment 

anisotropy (TR-PA) scheme.[22] In that report rotational and vibrational wave-packet 
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dynamics were observed for [FL-H]- by velocity-map imaging detection of 

photoelectrons. 

In the present study we extend these experiments by employing the complementary 

method of linearly polarized fs transient photofragmentation (tPF) in an ion trap, which 

allows us to investigate the dynamics of the monoanionic phenolate [FL-H]- and the 

cationic fluorescein species [FL+H]+ (Scheme 1). We present first results obtained by 

this technique and discuss differences with respect to the molecular structures of the 

involved electronically excited states of [FL-H]- and [FL+H]+, as well as the utilized 

detection schemes (TR-PA vs. tPF) in studies of [FL-H]-. 

 

Scheme 1 Schematic structure of phenolate [FL-H]- (left) and [FL+H]+ 
(right). TM and φ denote the transition dipole moment for the S1←S0 
transition of [FL-H]- and the dihedral angle of the torsional coordinate of the 
benzoic acid ring vs. the xanthene unit, respectively. 

3.4 Experimental setup and calculations 

The disodium salt of FL and methanol of LC-MS grade were purchased from Sigma-

Aldrich and used without further purification. Time-resolved and polarization-

dependent photofragmentation (PF) experiments were conducted using a modified 

Paul-type quadrupole ion trap mass spectrometer (amaZon speed, Bruker Daltonics) in 

combination with a Ti:sapphire oscillator and amplifier system (Wyvern 1000™, 

KMLabs).[23] Briefly, [FL-H]- and [FL+H]+ were generated by electrospray ionization 

(ESI) of a methanolic solution of the FL salt (c=5∙10-6 M) in negative and positive ion 

mode, respectively. For the study of [FL+H]+ a small amount of formic acid (1 vol-%) 

was added to the sample solution in order to increase the cation signal. The sample 
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solution was continuously infused by a syringe pump at a flow rate of 120 µL/h. 

Nitrogen as drying gas was set to a flow rate of 4 L/min at 180°C. The nebulizer pressure 

was set to 5 psi (345 mbar). 

The fs laser pulses were generated in a cryogenic ultrafast regenerative laser amplifier 

system delivering 50 fs pulses at ~1 kHz repetition rate (central wavelength of 

∼785 nm). The pulse train was split to pump two optical parametric amplifiers of white 

light continuum (TOPAS-C, Light Conversion) for generating pump and probe pulses of 

tunable wavelength (240-2500 nm). Temporal delay between pump (520 nm, 0.3 µJ; 

425 nm, 0.8 µJ) and probe pulses (1200 nm, 150 µJ) was controlled via an optical delay 

line. Pump and probe pulses were spatially overlapped quasi-collinearly by focusing into 

the center of the Paul ion trap with a lens (f=50 cm). The beam diameter in the ion trap 

was estimated to be ∼1 mm using the knife-edge technique. The relative polarization of 

pump and probe pulses was controlled by a Berek compensator in the pump path. The 

initial ~1 kHz repetition rate was reduced to ∼330 Hz by an optical chopper. Each 

isolated portion of ions was irradiated by 50 pump/probe pulse pairs. 

The tPF signals were recorded as extracted ion chromatograms while continuously 

varying the delay between the pump and probe pulses. Evaluation of the transient 

signals was performed as Fi/(Fi+Pj), where Fi and Pj are the sums of the intensities of 

fragment and parent ion signals, respectively. To evaluate the temporal resolution at a 

given pump/probe wavelength combination, we recorded the multi-photon ionization 

signal of neutral furan in the ion trap as a function of time delay between the pump and 

probe pulses.[24] The obtained signal represents an intensity cross correlation function 

(ccf) of the pump and probe laser pulses. The instrumental system response was then 

estimated from the fwhm of the resulting Gaussian-shaped photoionization signal. A 

typical value for the fwhm of the ccf at 520 nm (pump)/1200 nm (probe) 

[425 nm/1200 nm] is ∼110 fs [∼135 fs]. 

Time-resolved experiments with polarization-sensitive detection reveal reorientation of 

transition dipole moments and relaxation of the optically induced anisotropy in real 

time, both in liquid phase[25] and in the gas phase.[26] The signals obtained from our 

polarization dependent tPF experiments arise from the same phenomena, as observed in 

TR-PA measurements. We therefore used the same method of analysis to disentangle 
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rotational from population dynamics, as described and applied successfully in Ref. [22]. 

Briefly, this analysis originates from TR-FA and is implemented by measuring transient 

signals at parallel and perpendicular relative linear laser polarization. This method 

allows us to calculate an isotropic signal S(t) unfettered by rotational dynamics, as well 

as an anisotropic function r(t), dealing with the directionality of the probe process with 

respect to pump photon absorption. S(t) and r(t) are defined as 

 ( ))(2)(
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with �∥(t) and �<(t) being the signal intensities recorded at time delay t for parallel and 

perpendicular pump/probe polarization, respectively. 

For a one photon pump+one photon probe (1+1’) process, the anisotropy is determined 

by the standard formula (3): 
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(see, e.g. the monograph by J. R. Lakowicz (3rd Ed., Springer 2006), Ch. 10, equation 

(10.22)). Here cos(β(t))=µ1(0)µ2(t), µ1 and µ2 are the unit vectors along the transition 

dipole moments (TMs) responsible for the transitions initiated by the pump and probe 

pulses, 〈… 〉 stands for rotational averaging, and P(x)=(3x2-1)/2 is the second order 

Legendre polynomial. The time dependence of µ2(t) results from molecular rotation. 

Values for r(t) vary from initially r0=r(t=0)=+0.4 for parallel TM orientations or r0=-0.2 

for perpendicular TM orientations to the final stationary distribution r(tdephas), where a 

characteristic time constant tdephas is determined by the rotational constants of the 

molecular system.  
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For a (1+2’) process, the anisotropy is given by a similar equation (4), which can be 

retrieved from Refs. [27-28]: 

 
)()0((

7

4
)( 212 tPtr µµ=  (4) 

Here we assumed that the anisotropic part of the two-photon absorption tensor is 

proportional to µ1⊗µ2, where µ2 is a unit vector in the molecular frame. Hence, one 

obtains slightly different starting values of r0=+4/7≈+0.57 and r0=-2/7≈-0.29 for parallel 

and perpendicular TM orientations, respectively. 

Single point density functional theory (DFT) and time-dependent (TD-)DFT calculations 

were performed at the 6-31++G(d,p) level using the ωB97XD functional[29] within the 

Gaussian 09 package.[30] Investigation of the ground (S0) and first excited state (S1) 

potential energy surface with respect to the dihedral angle between the xanthene and 

benzoic acid unit of fluorescein was performed without complete geometry 

optimization, as optimization of even a single excited state geometry at this level of 

theory is very time consuming. 
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3.5 Results and discussion 

3.5.1 Dynamics of [FL-H]- 

The isolated fluorescein monoanions, [FL-H]- (m/z 331, most abundant isotope), were 

excited at their longest wavelength gas phase absorption maximum (520 nm, 0.3 µJ) 

determined in former gas phase PF studies[18-19] and subsequently probed with high 

intensity pulses of longer wavelength (1200 nm, 150 µJ). 

The major product fragment (for both pump-only and pump-probe photoexcitation) is 

located at m/z 287 or 286, corresponding to a loss of CO2 (-44 Da) or HCO2 (-45 Da) 

originating most likely from the benzoic acid moiety (Figure 1, for a difference mass 

spectrum cf. Figure S1a). 

 

Figure 1 Mass spectrum depicting the formation of fragment ions after 
pump-probe photoexcitation of isolated [FL-H]- (m/z 331, most abundant 
isotope). 

As the fragmentation behavior is dominated by only one product ion, which is formed 

after loss of CO2 or HCO2, one can assume an efficient energy transfer from the initially 

excited xanthene unit to the adjacent benzoic acid moiety. Irradiation with both pump 
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and probe laser pulses (at sub-picosecond or picosecond delay) does not lead to other 

additional fragmentation products but enhances the fragmentation efficiency by a factor 

of ∼30 (Figure S2) compared to fragmentation observed at negative delay (probe-pump) 

or by pump-only photoexcitation (Figure 2). This signal enhancement is a prerequisite 

for recording tPF spectra as reported previously[23-24, 31-33] and contains information on 

the dynamics of the involved electronically excited states. 

We performed measurements on the laser power dependence of the [FL-H]- 

fragmentation yield for the related pump-only fragmentation and confirmed that this 

process is based on a multiple-photon absorption (Figure S3a).[19] Since the bond 

dissociation enthalpy for C-COOH of benzoic acid is ∼430 kJ/mol,[34] it is conceivable that 

at least two photons at 520 nm (∼230 kJ/mol) are necessary for generating the observed 

fragment ions. However, we assume that the contribution of multiple-photon-

pump+probe PF to the time-resolved signal is negligible in our experiments, as the laser 

intensity used (0.3 µJ) is very low and pump-only excitation under these conditions 

leads to barely noticeable fragmentation (compared to pump-probe excitation; 

Figure S2). In accordance with the documented fragmentation behavior of [FL-H]- in the 

literature,[19] we did not observe a large contribution of a possible photodetachment 

(PD) loss channel. Since PD leads to neutral species, their contribution to the total 

fragment yield is difficult to assess by ion trap methods. We note that from the 

difference mass spectrum (Figure S1a) one would obtain ∼25 % of the parent ion loss 

that cannot be accounted for by the accompanying fragment ion signal increase. This 

could be attributed to a PD channel. However, the absolute ion signal intensities are 

subject to significant fluctuations of ∼10 % for the parent ion and ∼5 % for the main 

fragment ion, so that a quantitative analysis of the PD yield from our data is not 

meaningful. Nevertheless, recently the time-resolved PD of [FL-H]- was studied 

employing 495 nm (∼242 kJ/mol) pump / 400 nm (∼300 kJ/mol) probe laser pulses.[22] 

The photoelectron yield under those excitation conditions was not given, but it is known 

(from studies on e.g. the chromophore of the green fluorescent protein)[35] that at higher 

photon energies PD may prevail over possible nuclear fragmentation processes. Taking 

these observations into account, we assume that in our case the pump (520 nm) + probe 

(1200 nm) signal stems from (1+2’) excitation, resulting in a total excitation energy of 

∼430 kJ/mol, which enables fragmentation but does not lead to a large PD yield. 
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Figure 2 depicts the fragment ion yield as a function of time delay for parallel and 

perpendicular relative polarization of the pump and probe laser pulses. 

 

Figure 2 Normalized total fragmentation efficiency of [FL-H]- as a function of 
pump-probe delay depending on the relative polarization between pump and 
probe pulses; λpump=520 nm (0.3 µJ) and λprobe=1200 nm (150 µJ). 

Signal intensities were background corrected and normalized to unity at long time delay 

for better comparison of the initial signal rise at time-zero and shortly afterwards. Both 

transients exhibit an initial rise, much slower (∼700 fs from zero to signal maximum) 

than the estimated system response of ∼110 fs (cf. section 3.4) However, at short time 

delay (0.5–4 ps), the signal recorded for perpendicular laser polarization has higher 

intensity than the signal recorded for parallel polarization. At longer time delay, both 

signals are buried in noise and virtually coincide (note: this is also true for the raw data, 

which is not shown and discussed here). Furthermore, both traces are sinusoidally 

modulated with a period of ∼1 ps. This modulation disappears within ∼6 ps. A similar 

dependence of a transient signal on the relative polarization orientation between pump 

(495 nm) and probe (400 nm) pulses, as well as a strong modulation was observed for 

[FL-H]- in the gas-phase applying TR-PA.[22] In TR-PA experiments, however, the total 

photoelectron signal intensity exhibited 1) a stronger dependence on the relative laser 
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polarization, 2) the trace for parallel pump-probe polarization featured a higher 

intensity (compared to the signal at perpendicular polarization) and 3) the oscillatory 

component (of similar frequency) disappeared on a shorter timescale (within ∼3 ps). 

The isotropic signal function S(t) and the anisotropy function r(t) calculated from our 

tPF data (Figure 2) according to equations (1) and (2) are shown in Figure 3. 

 

Figure 3 (a) Time-resolved isotropic signal function S(t) exhibiting the 
formation of a long lived S1 state superpositioned with vibrational wave-
packet dynamics and (b) time-resolved anisotropy function r(t) for analysis 
of rotational dephasing of [FL-H]-; S(t) and r(t) were calculated from 
equation (1) and (2), respectively. 

Based on this decomposition analysis, as described in section 3.4, the trace in Figure 3a 

depicts only the population dynamics of excited [FL-H]-, i.e. the preparation of a long 

lived (no decay was observed for a delay time of up to 800 ps) electronically excited (S1) 

state and the concurrent formation of a vibrational wave-packet, modulating the step-

like transient signal. By fitting this transient to a convolution of a Gaussian with an 

exponentially decaying sinusoidal modulation (1+b∙sin(ω∙t+φ)∙exp(-t/τ)), the oscillation 

period is found to be 2π/ω=T=1.2 ps, corresponding to a vibrational frequency of 
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28 cm-1, which compares nicely to the reported frequency of 32 cm-1 from TR-PA 

experiments.[22] 

The anisotropy function r(t) of a freely rotating ensemble of molecules should exhibit 

the dephasing of a rotational wave-packet formed upon photoselection by coherent 

excitation of ions (S1←S0) that are aligned parallel with their TMs to the pump laser 

polarization. Specifically, the TM for [FL-H]- is oriented along the long axis of the 

xanthene moiety (here: the x-axis, Scheme 1). The linearly polarized probe laser then 

samples these excited molecules by further excitation (Sn←S1) to higher electronically 

excited states from which fragmentation occurs directly or after subsequent internal 

conversion (IC) and energy redistribution to other states. The dephasing dynamics that 

determines the decay of the anisotropy function r(t) from its initial value r0 to the final 

stationary value is determined by the temperature T of the ensemble (width of the 

rotational energy distribution or a number of states forming the rotational wave-packet) 

and the frequencies of rotational motions of molecules perpendicular to the alignment 

axis, which are specified by the rotational constants or the corresponding moments of 

inertia. The time for reaching the minimum anisotropy value can be approximated by 

tdephas=(IB/kBT)1/2,[36] which yields tdephas≈3 ps for fluorescein at 300 K, as recently 

determined in Ref. [22]. 

However, the experimentally determined anisotropy function for [FL-H]- (Figure 3b) by 

tPF does not point to a successful detection of a strong molecular alignment. Firstly, the 

initial anisotropy r0 is not unambiguously obtained from our experimental data. 

Secondly, the difference in the signal for perpendicular and parallel pump-probe 

polarization is small. The former difficulty stems from the nearly identical and fast rise 

of both signals close to time zero. One should also note that the two traces for 

perpendicular and parallel pump-probe polarization have been measured consecutively 

so that we cannot exclude a slight temporal shift (∼40 fs) between the transients. This 

uncertainty in absolute position and thus delay time could lead to strong variations for 

the anisotropy function in the rising part of the signal. We therefore neglect the values 

for r(t) calculated in this early part of the transient (shaded area in Figure 3b) and 

analyze only the data with tdelay≥300 fs. Nonetheless, a dependence on the relative laser 

polarization is clearly present in the data at hand, with the trace for perpendicular 

orientation being larger than the trace for parallel orientation (Figure 2). Moreover, the 
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trace recorded at magic angle relative polarization lies in its intensity between the two 

former scans (cf. Figure S4). Furthermore, the difference between the two traces 

vanishes with increasing time delay (at ∼4-6 ps). The function r(t) starts with small 

negative values (-0.05 to -0.1), which indicates perpendicularly polarized pump-probe 

transitions. However, theoretical (initial) values for pure transitions of that type 

(r0(perpendicular, 1+2’)=-0.29) are not matched. Based on the data presented it is also 

difficult to estimate reliably an approximate dephasing time, as the initial anisotropy r0 

could not be determined and the S/N for this data is not sufficient for a more detailed 

analysis. These results are different compared with the rotational dynamics for [FL-H]- 

as obtained by TR-PA recently, which clearly point to a strong molecular alignment.[22] 

3.5.2 Dynamics of [FL+H]+ 

As our mass spectrometric setup allows for studies on both negatively and positively 

charged ions, we were also able to investigate and directly compare the dynamics of the 

related protonated fluorescein cations [FL+H]+ to the already discussed monoanions. 

This exemplifies an advantage of our ion trap gas phase approach since the separate 

photophysical study of [FL+H]+ in solution is strongly hampered by the influence of 

protonation equilibria.[1] 

[FL+H]+ ions were excited by pump laser pulses at the absorption maximum of their 

S1←S0 transition (425 nm, 0.8 µJ) as documented in the literature[18-19] and subsequently 

probed with high intensity pulses of longer wavelength (1200 nm, 150 µJ). The pump-

probe PF mass spectrum (Figure 4, for a difference mass spectrum cf. Figure S1b) of 

isolated [FL+H]+ (m/z 333, most abundant isotope) provides evidence for a more 

complex fragmentation behavior than observed for [FL-H]-. 
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Figure 4 Mass spectrum depicting the formation of fragment ions after 
pump-probe photoexcitation of isolated [FL+H]+ (m/z 333, most abundant 
isotope). 

Prominent identified fragment ions are: m/z 315 (neutral loss of H2O); m/z 305 (neutral 

loss of CO); m/z 271 (neutral loss of H2O and HCOOH (formic acid)) apart from the main 

(∼60% of the total fragmentation signal) product ion at m/z 287, corresponding to a loss 

of HCOOH, most likely from the benzoic acid moiety. This fragmentation pattern was 

noted before in Ref. [18-19] and also observed in IR multiple-photon dissociation 

(IRMPD) experiments.[20] Furthermore, [FL+H]+ exhibits a much lower fragmentation 

yield than [FL-H]-, even when applying higher pump photon energy and intensity for 

photoexcitation (425 nm vs. 520 nm excitation wavelength and an intensity of 0.8 µJ vs. 

0.3 µJ, respectively). Measurement of the intensity dependence of the one-color (pump-

only) PF yield clearly suggests a two-photon absorption process prior to fragmentation 

of [FL+H]+ (Figure S3b). This is understandable upon consideration of the C-COOH bond 

dissociation enthalpy (∼430 kJ/mol for benzoic acid)[34] vs. the pump photon energy 

(425 nm; ∼280 kJ/mol). Based on the much lower fragmentation yield (compared to 

[FL-H]-), we infer that this bond enthalpy is either higher for [FL+H]+ or energy transfer 

from the excited xanthene unit to the benzoic acid ring is less efficient than for [FL-H]-. 
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Thus, we assume that additional dissociation channels are accessible producing a 

complex fragment pattern. 

Interestingly, very similar fragmentation pattern were reported for both [FL+H]+ and 

[FL-H]- in IRMPD experiments.[20] This points, for both excitation schemes (nanosecond 

IRMPD and fs UV/Vis), toward dissociation starting from highly vibrationally excited 

electronic ground states. However, the photonic excitation mechanisms in both cases are 

evidently different. Whereas the generally accepted mechanism of IRMPD is based on 

consecutive absorption and fast vibrational redistribution steps (usually within ps to 

ns),[37] we have to assume for fs two-photon UV PF a fast resonant absorption of two 

photons within one femtosecond laser pulse of ∼100 fs width. This is based on the 

assumption that collisional cooling in the ion trap takes place in between the laser 

pulses (millisecond time scale). Consequently there is not enough time for energy 

redistribution between absorption of these photons, unless it proceeds on a sub-100 fs 

timescale. Subsequent internal conversion leads to highly vibrationally excited states 

from which eventually fragmentation takes place. 
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Figure 5 depicts the total fragment ion yield of [FL+H]+ as a function of time delay for 

parallel and perpendicular pump-probe polarization. 

 

Figure 5 Normalized total fragmentation efficiency of [FL+H]+ as a function 
of pump-probe delay depending on the relative polarization between pump 
and probe pulses; λpump=425 nm (0.8 µJ) and λprobe=1200 nm (150 µJ). 

The data were background corrected and the signal was normalized to unity at long time 

delay, as already described for measurements on [FL-H]-. Comparing the results 

obtained for [FL-H]- and [FL+H]+, the difference is striking. First and foremost, the 

transients of [FL+H]+ show a strong dependence on the relative laser polarization, with 

the transient for parallel polarized pump and probe pulses exhibiting a much stronger 

signal at short time delay compared to the trace for perpendicular polarization. Both 

polarization traces approach a constant signal value (equivalent to the magic angle 

signal level) after a time delay of ∼3 ps. Secondly, the initial rise time of the transient 

signal for both traces is much shorter (∼250 fs) than obtained for [FL-H]-. Lastly, no 

periodic modulation of the signal can be observed. 

For further analysis, the isotropic signal S(t) (Figure 6a) and anisotropy signal r(t) 

(Figure 6b) were calculated from the data shown in Figure 5. 
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Figure 6 (a) Time-resolved isotropic signal function S(t) exhibiting the 
formation of a long lived S1 state and (b) time-resolved anisotropy function 
r(t) for the analysis of rotational dephasing of [FL+H]+; S(t) and r(t) were 
calculated from equation (1) and (2), respectively. 

By removing the contribution of rotational dephasing from the transient, it is revealed 

that the transient signal of [FL+H]+ shows no ultrafast dynamics besides rapid 

formation of a long lived state (similar to [FL-H]-, no notable decay was observed for a 

time delay of up to 800 ps). Furthermore, no oscillatory component and thus vibrational 

coherence can be discerned from the calculated isotropic signal. 

From the calculated anisotropy function r(t) one can distinguish two notable features: 

firstly, the anisotropy is lost after ∼3 ps, as the function reaches its minimum value. 

Secondly, the anisotropy has an initial value of r0≈+0.5. A value for r0 exceeding +0.4 in 

fluorescence anisotropy investigations is usually indicative of a multiple-photon 

excitation process, reaching a maximum of 0.57 and 0.67 for a two photon absorption 

and three photon absorption process, respectively (assuming a parallel orientation of 

the transition dipole moments for excitation and probing).[38-40] According to equation 

(4), for example, the value of r0≈+0.5 can be recovered assuming r0=(4/7)P2(µ1µ2)=0.5, 

which yields an angle of ≈17° between µ1 and µ2. Given that the calculated rotational 
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constants for the electronic ground states of [FL+H]+ and [FL-H]- differ only by 1-4 % 

(cf. Figure S5 and Table S1), one can estimate that the characteristic rotational decay 

times are very similar. Moreover, we estimate that the changes of the rotational 

constants by electronic excitation will be on the same order of magnitude, so that in the 

following we use only the ground state constants for analysis. For [FL+H]+ the calculated 

ground state rotational constants are: A=0.2285 GHz, B=0.2229 GHz and C=0.1384 GHz, 

resulting in the following moments of inertia: IA=Ix=3.673·10-44 kg m2, 

IB=Iy=3.765·10-44 kg m2 and IC=Iz=6.064·10-44 kg m2. Thus, tdephas at 300 K is estimated to 

∼3 ps, as discussed for [FL-H]- (see 3.5.1). 

In order to model the dynamics of the rotational anisotropy, i.e. rotational dephasing 

time, in more detail we have simulated the time-resolved orientational correlation 

function for different TM orientations, assuming parallel polarization for both pump and 

probe steps (µ1=µ2). After scaling for the maximum value, our simulation reproduces the 

experimental r(t) trace nicely (Figure 7), assuming that the TMs are parallel to the axis 

of the smallest moment of inertia. The theoretical basis for the simulations and their 

input parameters, i.e. orientation of TM, moments of inertia and temperature, are given 

as supplementary material (cf. 3.8.4; see also Ref. [41]). 
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Figure 7 Time-resolved anisotropy r(t) exhibiting rotational dephasing of 
[FL+H]+. Black dots, red triangles, and green squares represent r(t) 
simulated for TMs µ1=µ2 directed along the axis of the smallest (x), 
intermediate (y) and largest (z) moment of inertia, respectively. Blue circles 
show experimental r(t) from Figure 6a. 

3.5.3 Comparison and discussion 

Comparing the presented experimental results for the ultrafast dynamics of the ion-

trapped and isolated deprotonated fluorescein [FL-H]- and protonated fluorescein 

[FL+H]+ the following points are remarkable: 1) [FL-H]- exhibits upon electronic 

excitation strong vibrational coherences in its tPF trace whereas [FL+H]+ does not 

display this behavior, 2) [FL-H]- exhibits only a weak anisotropy pointing towards 

perpendicularly oriented pump-probe transitions, whereas [FL+H]+ shows a clear and 

strong alignment based on parallel oriented pump-probe transitions with a 

characteristic rotational dephasing time. Dephasing for [FL+H]+ can be successfully 

modeled employing the ion ensemble temperature and the relevant molecular rotational 

constants (moments of inertia). Furthermore, 3) in comparison of our results for [FL-H]- 

to the recently reported data by TR-PA[22] one can state a good agreement with respect 

to the observation and frequencies of the vibrational coherence (28 cm-1 vs. 32 cm-1). 

However, the results for the time-resolved anisotropy function are completely different. 
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Only weak anisotropy for our employed PF scheme was found, but strong anisotropy 

and rotational dephasing was obtained for photoelectron detection.[22] How can we 

rationalize this drastic difference in ultrafast dynamics and anisotropy of these two 

isoelectronic molecular systems? 

The occurrence of vibrational coherences upon electronic excitation, i.e. preparation of 

vibrational wave-packets in the excited state is usually connected to an inherent 

vibrational excitation of the electronically excited state with respect to one or several 

specific modes. If the ground and excited state exhibit significantly different geometries 

along a vibrational coordinate, coherent excitation of several similar vibrational modes 

in the excited state potential energy surface is possible. A vibrational wave-packet, 

comprised of several superimposed vibrational states with a favorable phase relation, is 

then launched, which oscillates with a period close to the relevant vibrational mode and 

finally decays by coupling to other vibrational modes. Since the vibrational timescale is 

usually much shorter than the rotational one, a superposition of vibrational and 

rotational wave-packets may be observed, as reported e.g. for polarized four-wave 

mixing spectroscopy on gaseous iodine.[42] In the case of [FL-H]-, Horke et al. assigned a 

low-frequency torsional motion of the benzoic moiety vs. the xanthene unit to the 

experimentally observed vibration of 32 cm-1. The dihedral angle between both units 

changes from 90° in the ground state to 53° in the electronically excited state.[22] This 

assignment was supported by TD-DFT calculations and geometry optimization of the 

first electronically excited state of [FL-H]-. We have observed a similar frequency 

(28 cm-1) for [FL-H]- by tPF, so that its rationalization can be given on the same grounds. 

However, for [FL+H]+ this relaxation coordinate seems not to play a significant role. In 

order to support this hypothesis, we have performed single-point energy calculations 

(method see section 3.4) for the transition energies of distorted ground state geometries 

with dihedral angles between 90° and 40° (Figure 8) which clearly show that a 

relaxation for [FL-H]- is energetically possible whereas for [FL+H]+ only an increase of 

energy for φ<90° was found. These theoretical results are consistent with our 

experimental observations. 
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Figure 8 Calculated singlet point energies of the S0 (black squares) and S1 
(red circles) depending on the dihedral angle φ (cf. Scheme 1). Calculations 
for [FL-H]- (a) suggest an excited state geometry with lower energy for 
φ<90° in contrast to the energetically lowest ground state geometry (φ≈90°). 
For [FL+H]+ (b) the energetically lowest S0 and S1 geometries are obtained at 
a dihedral angle of φ≈90°. 
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The differences in the time-resolved anisotropy function r(t) obtained by tPF and TR-PA 

for [FL-H]- and also the differences towards the results for [FL+H]+ can only be 

qualitatively rationalized by variations in the respective higher lying electronic states. 

Since the excitation (pump) wavelength for [FL-H]- was nearly the same in tPF and 

TR-PA experiments, the discrepancies can only originate from different probe 

wavelengths (2x1200 nm vs. 400 nm) and detection schemes. Most crucial for 

interrogating molecular alignment and thus gaining information on rotational dynamics 

by this pump-probe method is that the probe laser absorption is connected to a 

transition with a well-defined orientation of the related transition dipole moment, most 

desirably parallel (or perpendicular) to the pump transition. Since the number and 

density of electronically excited states of xanthene dyes is strongly increasing in this 

energy region (∼4-6 eV), we assume that this condition is not generally fulfilled. 

However, in Ref. [22] a polarization-sensitive probe was established by detecting energy 

resolved electrons after time-resolved PD from anions. Similar experimental schemes 

for the detection of rotational wave-packets have been reported before for time-

resolved photoelectron imaging of neutral molecules.[43-44] In the detection scheme that 

we use in our experiments, we cannot impose polarization-sensitivity due to the long 

timescales (µs regime) involved in the generation of photofragments and their storage 

in the 3D ion trap. Thus, we rely on utilization of appropriate electronic transitions for 

the probe laser in the molecules under study. Based on these considerations we infer 

that for [FL-H]- the probe laser leads to excitation of several higher lying electronically 

excited states with mostly perpendicular orientation of TMs, whereas for the [FL+H]+ 

only one or a few states with parallel oriented TMs are singled out. 

This discussion points towards weaknesses of the tPF method that one should be aware 

of: the lack of knowledge about the assignment of the probe laser excitation process and 

its (often) multi-photonic character. We assume that the cross section for absorption of 

the probe laser pulse is altered for different vibronic states, which is the basis for 

studying ultrafast electronic dynamics by this scheme. This could make the comparison 

of the dynamics of different species difficult since one cannot completely exclude 

“unfortunate” probe transitions with either very small cross sections or very similar 

cross sections for initial and final states of a process. This means that in the case of small 

cross sections the corresponding electronically excited states may be missed and for 
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similar cross sections it may not be possible to map electronic dynamics at all. We 

believe that both possibilities do not apply to the investigated [FL-H]- and [FL+H]+ 

species since in both cases we observed the formation of a long-lived electronically 

excited state and detected some ultrafast dynamics on top of that. However, at the 

present status of our knowledge about the higher electronically excited states of the 

fluorescein molecular system and the tPF method we cannot completely rule out an 

explanation for the non-observation of wave-packet dynamics in [FL+H]+, which is 

based on the assumption that in this case the probe laser cross section is not dependent 

on the torsional wave packet dynamics. 

Taking into account these considerations, we can only qualitatively characterize the 

molecular electronic level structure of the molecular ionic species of interest. These 

qualitative rationalizations have to be supported in the future by accurate electronic 

structure and geometry calculations for the higher lying electronic states of [FL-H]- and 

[FL+H]+. 

Finally we note, that preliminary experiments for other fluorescein derivatives in our 

laboratory (e.g., 2’,7’-Dichlorofluorescein, 2’,7’-Difluorofluorescein, 5-Aminofluorescein 

and 5-Nitrofluorescein), gave very similar results for the deprotonated and protonated 

fluorescein species, respectively. 

3.6 Summary and conclusions 

In summary we have obtained by tPF the excited state vibrational and rotational 

dynamics of [FL-H]- and [FL+H]+ in an ion trap at room temperature. Pronounced 

vibrational wave-packet motion was observed for [FL-H]-, which is connected to the 

relaxation of the dihedral angle between the benzoic acid and xanthene units in the 

electronically excited state, as assigned before in Ref. [22]. For [FL+H]+ no vibrational 

wave-packets were observed by tPF. Since the final state of the probe transition is not 

known, it cannot be completely excluded that the probe laser cross section for [FL+H]+ 

might be insensitive to possible wave-packet dynamics in the primary excited state. 

However, TD-DFT calculations suggest for [FL+H]+ an excited state structure similar to 

the ground state with a dihedral angle of 90°, so that a wave-packet could not be 

launched for this torsional angle. 
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The polarization dependence of the tPF transients for [FL-H]- was weak and could be 

related to a superposition of probe transitions with perpendicularly aligned TM with 

respect to the xanthene unit. For [FL+H]+ a strong polarization dependence was 

observed and the time-resolved anisotropy function was determined. The observed 

rotational dephasing was interpreted by the loss of anisotropy of an [FL+H]+ ion 

ensemble at room temperature. The dephasing of the corresponding rotational wave-

packet was successfully simulated by the time-resolved orientational correlation 

function. From this analysis we conclude that the probe process of [FL+H]+ consists 

probably of a two-photon transition with a TM aligned parallel to the xanthene unit. 

In conclusion, the applied technique of fs tPF in an ion trap proves to be very valuable 

for the analysis of ultrafast molecular vibrational and rotational dynamics and 

electronically excited states of ionic dye molecules under isolated conditions. It is 

complementary to TR-PA since it is based on the detection of fragment ions instead of 

the corresponding photoelectrons (for anions) and extends this methodology towards 

cationic systems. The drawback of the tPF method lies in the multiphotonic character of 

its probe process and lack of knowledge about the related absorption cross sections and 

the involved higher lying electronically excited states. However, the latter deficit can 

also be turned into a tool for gaining information on the character of these states, as 

demonstrated in this work. 
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3.8.1 Mass spectrometric data 

 

 

Figure S1 (a) Difference mass spectrum of [FL-H]- and (b) [FL+H]+ 
calculated by subtracting the mass spectrum recorded at negative time delay 
(probe-pump) from the mass spectrum at positive time delay (pump-probe); 
positive signals imply an increase in ion signal intensity, whereas negative 
signals represent a decrease in ion signal intensity. For an assignment of the 
mass peaks cf. section 3.5.1 and 3.5.2.  
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3.8.2 Photofragmentation 

 

Figure S2 Fragment signal intensity (loss of CO2, HCO2) after pump only 
(red), probe only (blue) and coherent pump-probe photoexcitation (black) of 
isolated [FL-H]-; λpump=520 nm (0.3 µJ) and λprobe=1200 nm (150 µJ).  
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Figure S3 (a) Pulse energy E dependent total fragmentation yield Y of 
[FL-H]- and (b) [FL+H]+ obtained by one-color photoexcitation at 520 nm 
and 425 nm, respectively; polynomial fits 	 = 
 ∙ �� suggests in average a 
two-photon (�) absorption process for both [FL-H]- and [FL+H]+.[1]  
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Figure S4 Transient photofragmentation traces of [FL-H]- as a function of 
pump-probe delay (here shown for Δt=0.3–3 ps) recorded at parallel (dark 
blue triangles) and perpendicular (cyan circles) relative linear polarization 
orientation, as well as at the magic angle (black squares); λpump=520 nm 
(0.3 µJ) and λprobe=1200 nm (150 µJ).  
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3.8.3 DFT calculations 

 

Figure S5 Ab initio calculated ground state geometries of [FL-H]- (left) and 
[FL+H]+ (right). Level of theory: DFT/ωB97XD/6-31++G(d,p). 

Table S1 Ab initio calculated ground state rotational constants and moments of inertia 
of [FL-H]- and [FL+H]+ along the respective Cartesian axes. Level of theory: 
DFT/ωB97XD/6-31++G(d,p). 

 [FL-H]-  [FL+H]+ 

Axis i x y z  x y z 

Bi/GHz 0.2376 0.2212 0.1401  0.2285 0.2229 0.1384 

Ii/10-44 kg·m2 3.532 3.794 5.990  3.673 3.765 6.064 
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3.8.4 Calculation of the orientational correlation functions of the second rank for 

freely rotating asymmetric top molecules 

The orientational correlation functions of equations (3) and (4) can explicitly be defined 

as follows: 
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Here 
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are the symmetrized Wigner’s D-functions, and )0,,( µµµ iii
θψΩ  denote the angles 

specifying orientations of the TMs µ1 and µ2 in the molecular frame. 

Equation (S1) reveals that the time evolution of the orientational correlation function is 

governed by the six basis functions 
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A convenient method of the evaluation of the basis functions (S2) has been developed in 

Refs. [2,3]. The method employs the action-angle representation of the rotational dynamics and 

yields the following explicit formulas for the quantities (S3): 
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are the stationary (long-time) asymptotic values of the basis functions (S3), 
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The parameters 

 
zxy IIIf 2

0 1 δ−= , )(/)(2
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are uniquely determined by the main moments of inertia, 

 
zxzxzy IIIIIIb /))(( 2 −ε+= , }/exp{ KKq ′π−= , (S17) 

)(λ= KK  is the complete elliptic integral of the first kind, 

 
)(λ ′=′ KK , 21 λλ −=′ , (S18) 

),( λ′uF  is the elliptic integral of the second kind, )(λ= EE  is the corresponding 

complete integral, 
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λ′π

=σ , )/(arctg λδ=u , (S19) 

and )(/)( σϑσϑ′= iiy nnn  where )( σϑ in  are the Jacobi theta functions of the complex 

argument. 

In the above formulas, time is expressed in units of the mean rotational period 

)/(kTI y , where k  is the Boltzmann constant and T  is a temperature. 
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4.1 Preamble 

The following chapter is formatted as to become a manuscript for publication and has 

not been submitted, yet. Data acquisition, data processing and the theoretical 

calculations were performed by me. I received experimental support from J. Hewer and 

S. Dillinger for recording IRMPD spectra. The initial draft of the manuscript was written 

by me. 
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4.2 Abstract 

The intrinsic photophysics of protonated and deprotonated 5-Nitro- ([5-NF]) and 

5-Aminofluorescein ([5-AF]) were investigated by steady-state and transient 

photofragmentation spectroscopy in a 3D ion trap. Infrared multiple-photon 

dissociation spectroscopy revealed only for the monoanions of [5-NF] a strong 

contribution of tautomeric (phenolate, carboxylate) forms to the ion population inside 

the trap. The recorded gas phase absorption spectra were compared to calculations by 

time-dependent density functional theory (TD-DFT). Time-resolved fragment mass 

spectra reveal distinct differences in the excited S1 excited state life-times on a 

picosecond timescale, depending sensitively on the substituent (amino-, nitro-), as well 

as the charge state (cationic and monoanionic). The difference in excited state dynamics 

was ascribed to excited state quenching by photoinduced intramolecular electron 

transfer (PeT). Our assumption is corroborated by the sequences of frontier orbitals 

obtained from DFT calculations. Additionally, the monoanionic forms of both [5-NF] and 

[5-AF] exhibit wave-packet dynamics. Peculiarly, the observed wave-packet dynamics 

are much more complicated compared to our previously reported results on 

unsubstituted fluorescein, requiring at least two vibrational modes for modeling the 

periodic modulation. 

4.3 Introduction 

Owing to its high absorption coefficient, bright fluorescence and high emission quantum 

yields,[1] fluorescein and its derivatives are used in various biochemical applications as 

sensors[2-5] or labels[6-9]. Often, functional groups are incorporated into the benzoic acid 

moiety (B) of the dye, allowing for fine-tuning of its properties such as the pKa value and 

the solubility.[10] Most importantly, functionalization enables conjugation to 

biomolecules, necessary for spectroscopic techniques such as fluorescence imaging and 

fluorescence anisotropy.[11-14] These modifications, however, may drastically impact the 

emission properties of the dye, although the chromophore/fluorophore (xanthene 

moiety, X) remains chemically unaltered and almost no interaction between the phenyl 

ring and the fluorophore is expected. This is due to a perpendicular orientation of the 

sub-units, resulting in lack of π-conjugation. Nagano et al. demonstrated that fluorescein 

can be understood as a covalently linked donor-acceptor (D-A) dyad and that 
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fluorescence quenching may occur by intramolecular photoinduced electron transfer 

(PeT).[15-19] Depending on the reduction/oxidation potential, and thus the relative 

energies of the frontier molecular orbitals (MO) located on the donor or acceptor site 

(Figure 1), PeT may occur either from the photoexcited fluorophore X* (X* acting as an 

electron donor, d-PeT) to B or from B to X* (X* acting as an electron acceptor, a-PeT). 

 

Figure 1 Schematic MO diagram depicting fluorescence quenching by 
photoinduced electron transfer (PeT). HOMO: highest occupied MO, LUMO: 
lowest unoccupied MO. 
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Based on this principle, Nagano et al. synthesized a variety of fluorescein derivatives, 

modulating the fluorescence properties by fine-tuning the redox potentials of the donor 

and acceptor moieties.[15-19] Following a similar approach for our studies, we turned our 

attention to two commercially available fluorescein derivatives, namely 

5-Aminofluorescein [5-AF] and 5-Nitrofluorescein [5-NF], with B bearing either an 

electron-donating (amino-) or electron-withdrawing (nitro-) group in meso-position to 

X. [5-AF] and [5-NF], apart from their neutral quinoidal and lactonic forms, can appear 

in four charge state dependent forms (monocationic, monoanionic, as phenolate or 

carboxylate, and dianionic; Figure 2). 

 

Figure 2 Schematic representation of the four charge state dependent forms 
of fluorescein dyes; R=NH2, NO2. 

The absorption and emission properties of the dianions ([5-RF]2-, R=A(mino), N(itro)) 

were previously investigated in aqueous solution and compared to the unsubstituted 
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fluorescein dianion [F]2-.[20-21] It was found that the respective absorption and emission 

spectra were qualitatively very similar to [F]2-, exhibiting only a small shift of the 

absorption and emission band maxima positions.[20-21] Substitution, however, had a 

profound impact on the fluorescence characteristics, dramatically decreasing the 

fluorescence quantum efficiency (from ~0.9 for [F]2- to almost zero for [5-AF]2- and 

[5-NF]2-) and furthermore turning the mono-exponential fluorescence decay to a bi-

exponential one, attributed to an additional relaxation process of the S1 excited state by 

PeT.[20-21] The involvement of PeT was furthermore supported by transient experiments 

on [5-NF]2- employing nanosecond laser flash photolysis. The occurring transient 

absorption signals could be unambiguously assigned to the concurrent formation of a 

m-nitrobenzoate radical anion and the cation of the X fluorophore, which was in accord 

with considerations based on a smaller reduction potential of m-nitrobenzoate (-0.92 V 

compared to -2.24 V for benzoate), thus resulting in an increased thermodynamic 

driving force for an intramolecular PeT from the X donor moiety to the 

m-nitrobenzoate.[20] 

In the following, we apply pump-probe transient photofragmentation spectroscopy 

(tPF) in the gas phase on these two substituted fluorescein derivatives to gain 

unprecedented insight into the early excited state dynamics of the PeT process, 

influenced by the charge state of the respective species. Our assignment is corroborated 

by TD-DFT calculations, revealing a shift in frontier orbital energies, thus enabling PeT 

only in some cases. Prior to our study on electronic dynamics, we perform infrared 

multiple-dissociation (IRMPD) experiments to identify the ion population of the trapped 

molecular systems under study. 

4.4 Experimental setup and calculations 

Methanol of LC-MS grade was purchased from Sigma-Aldrich. Neutrals of [5-NF] and 

[5-AF] were purchased from TCI and electrosprayed from methanolic solutions without 

further purification. Steady-state PF and tPF experiments were conducted using a 

modified Paul-type electrospray ionization (ESI) quadrupole ion trap mass spectrometer 

(amaZon Speed, Bruker Daltonics) in combination with a Ti:sapphire oscillator and 

amplifier system (Wyvern 1000™, KMLabs). Two optical parametric amplifiers of white 

light continuum provided a source for tunable, ultrashort laser pulses (~100 fs) in either 

the UV/Vis region (pump, 240-580 nm) or the near infrared (NIR) region (probe, 
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1200 nm). IRMPD experiments were conducted using an amaZon SL mass spectrometer. 

An optical parametric oscillator/amplifier (OPO/OPA, LaserVision) pumped by a 

Q-switched Nd3+:YAG laser (PL8000, Continuum) was used to generate tunable IR 

radiation in a spectra range from 2800 cm-1 up to 3760 cm-1 (δν=0.9 cm-1, δt=7 ns). More 

details on the experimental setup and procedures are given in the supplement 

(section 4.9.1).  

Density functional theory (DFT) and time-dependent (TD-)DFT calculations were 

performed at the 6-31+G(d) level using the ωB97XD[22] functional within the 

Gaussian 09 program package.[23] This functional incorporates long-range dispersion 

and nonlocal Hartree-Fock exchange corrections, better suited for the theoretical 

modeling of molecular anions and excitations with significant contributions from 

transitions of charge transfer character.[24-25] 

4.5 Results 

4.5.1 Infrared multiple-photon dissociation 

Fluorescein and its derivatives bear several functional groups, which may serve as sites 

for protonation. Furthermore, the carboxyl-group of the benzoic acid moiety is not rigid, 

resulting in a large number of possible rotamers for both the cationic and anionic 

species. Jockusch et al. performed IRMPD measurements on isolated fluorescein [F] and 

2’,7’-dichlorofluorescein ions in an ion trap. Surprisingly, they found the favored 

monoanionic isomer in the gas phase to be the phenolate instead of the benzoate 

form.[26] Introducing functional groups into the phenyl ring may change this behavior, 

especially in the case of [5-NF]-, as benzoic acid functionalized with electron 

withdrawing groups has typically a lower pKa value.[27] For a first qualitative insight into 

the conformers that are present in the ion trap, we recorded IRMPD spectra in a 

frequency region of 2800-3760 cm-1, which is sensitive to O-H-stretching vibrations and 

should allow for discrimination between tautomeric forms by comparison with 

theoretical IR spectra. 

The geometries and respective relative Gibbs free energies of the five lowest energy 

conformers of [5-AF]- and [5-NF]- are shown in Figure 3. Note that for the sake of 

conciseness, we omitted rotamers resulting from rotation of the O-H-group at X (in 

Anion X and Anion X’; lactone), as the energy differences are negligible and, more 
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importantly, their excited state properties are expected to be indistinguishable from 

those of the conformers we took into account. 

 

Figure 3 DFT (ωB97XD/6-31+G(d)) optimized ground state geometries and 
relative Gibbs free energies of the five lowest energy conformers of [5-AF]- 
(left) and [5-NF]- (right). 

Anion B1 and Anion B2 are calculated to be the two most stable conformers at the 

B3LYP/6-31+G(d) level of theory for both [5-AF]- and [5-NF]-. In Anion B1, the 

hydrogen of the carboxylic acid group points towards the center of one of the terminal 

phenyl rings in X, whereas in Anion B2 the carboxylic O-H group points away from X. 

Anion B3 is slightly less stable for both derivatives. Another conformer would result 

from rotating the O-H group of Anion B3 (hydrogen pointing “downward”). However, it 

was not found as the structure obtained from geometry search is identical to Anion B1, 

which implies that a long range hydrogen-bond like interaction between the carboxylic 
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hydrogen and the X provides significant stabilization to this conformer. This is also 

suggested by the unusual orientation of the carboxylic O-H found in the geometry of 

Anion B1. The benzoates are predicted to be less stable, by +29.4 kJ/mol for [5-AF]- and 

(noteworthy) only +11.1 kJ/mol for [5-NF]-, than the respective lowest energy 

conformer. The electron withdrawing property of the nitro-group apparently stabilizes 

the excess charge after deprotonation at the carboxylate site, whereas the amino 

substituent has the opposite effect, resulting in a less stable conformer Anion X. The 

lactone forms of [5-AF]- and [5-NF]- (Anion X’) both exhibit relative energies (24.4 and 

11.9 kJ/mol, respectively) comparable to the non-lactone form. The lactone form has a 

slightly skewed geometry, as the central C-atom in the xanthene ring is forced from a 

planar to a tetrahedral configuration, which impairs conjugation within the π-system. 

IRMPD of [5-AF]- (m/z 346) yields only two major fragment ions at m/z 302 and 301, 

attributed to the loss of CO2 and CO2H (Figure S2), whereas for [5-NF]- (apart from the 

loss of CO2 and CO2H at m/z 332 and 331, respectively) additional fragmentation 

channels (m/z 315, 302 and 285) were observed (Figure S3). In general, it is quite 

difficult to unravel the fragmentation behavior of purely organic compounds and usually 

a thorough mechanistic study is required. At this point, we refrain from providing a 

definite identification of the occurring fragment ion signals. However, we would like to 

point out that the additional signals observed for [5-NF]- probably involves the nitro-

substituent as a formal leaving group (resulting in e.g. the signal at m/z 302 and 285) 

whereas for [5-AF]-, no fragment signal originates from a cleaving of the C-NH2 bond in 

the substituted benzoic acid sub-unit. This results probably from a stronger C-N bond 

between the benzoic acid carbon atom and the amino nitrogen atom with respect to the 

C-NO2 bond strength. In a recent study on the bond lengths and dissociation enthalpies 

in substituted benzene compounds it was found that the C-NO2 bond in nitrobenzene is 

indeed weaker than the C-NH2 bond in aniline. This was explained by a weaker 

hyperconjugation in nitrobenzene, due to unfavorable π-π* electrostatic repulsion[28] 

thus opening up additional fragmentation routes resulting in a more complex 

fragmentation behavior of the nitro-compound. Recording the fragment ion intensity as 

a function of photon energy enables us to record gas phase IR spectra. The experimental 

IRMPD and calculated IR spectra of [5-AF]- are shown in Figure 4. 
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Figure 4 Experimental IRMPD (top, red) and IR spectra (below, black) 
calculated for the five considered conformers of [5-AF]-. Calculated IR 
intensities are shown as sticks and broadened with 7 cm-1 fwhm Lorentzian 
functions (black lines). A scaling factor of 0.95 was employed. 



4 Charge state dependent excited state quenching in 5-Amino- and 5-Nitrofluorescein 

 

90 

 

Two broad absorption bands (~3040 cm-1 and 3420 cm-1) and a more narrow, low 

intensity band (~3650 cm-1) can be identified in the experimental IRMPD spectrum of 

[5-AF]-. By comparison with the calculated spectra of the respective conformers, the 

absorption centered at 3040 cm-1 (green) can be assigned to aromatic C-H stretching 

vibrations. The position of the intense band at ~3420 cm-1 matches better the predicted 

weakened COO-H stretching vibration of Anion B1, whereas the same stretching 

vibration (in Anion B2 and B3) exhibits reduced calculated absorption intensity and 

additionally is shifted to higher energies (to ~3590 cm-1). The expected N-H stretching 

(symmetric and asymmetric) vibrations were not observed in the experimental 

spectrum. This is either due to them being low in intensity or the bands coincide with 

the absorption band at ~3420 cm-1, as suggested by the calculated spectrum of 

Anion B1. Lastly, the weak absorption band at ~3650 cm-1 can probably be attributed to 

a free O-H stretching vibration, located at the X moiety, which is exclusive to Anion X and 

X’. Clearly, the experimental spectrum agrees best with the calculated spectrum of 

Anion B1. From the relative intensities of the observed absorption bands in the IRMPD 

spectrum, one may deduce that the population of trapped anions consists mainly of 

Anion B1 and probably, to a far lesser degree, of Anion X and X’. Anion B2 and B3 cannot 

be completely excluded, due to their low relative energies (4.7 kJ/mol and 15.3 kJ/mol, 

respectively). However, the frequencies of the calculated O-H stretching vibrations 

(~3590 cm-1) do neither fit the broad, intense band (3420 cm-1) nor the low intensity 

band (3650 cm-1) observed in the experiment. A summary of the calculated vibrational 

frequencies and intensities is given in Table S6. 
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Figure 5 Experimental IRMPD (top, red) and IR spectra (below, black) 
calculated for the five considered conformers of [5-NF]-. Calculated IR 
intensities are shown as sticks and broadened with 7 cm-1 fwhm Lorentzian 
functions (black lines). A scaling factor of 0.95 was employed. 
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Similar to [5-AF]-, the experimental IRMPD spectrum of [5-NF]- (Figure 5) exhibits two 

broad IR bands (~3040 cm-1 and ~3400 cm-1) and a narrow band at ~3650 cm-1, which 

has a drastically increased intensity compared to the absorption band of similar energy 

in the spectrum of [5-AF]-. Additionally, a low-intensity band in the O-H stretching 

region is observed at ~3570 cm-1. By comparison of the experimental spectrum with the 

calculated spectra, it is obvious that the broad absorption at ~3400 cm-1 is best 

described by the hydrogen bonded COO-H stretching vibration, present in Anion B1. The 

narrow absorption band at ~3650 cm-1 agrees well with the calculated free phenolic 

O-H stretching vibration of Anion X and X’. Lastly, the free COO-H stretching vibrations 

calculated for Anion B2 and B3 coincide with the low intensity band observed at 

~3570 cm-1 in the experimental spectrum. The spectral comparison implies that no 

conformer can definitely be excluded for a complete theoretical description of the 

experimental spectrum. Anion B2 and B3 should, however, not be significantly 

populated, whereas the intense absorption bands at ~3400 cm-1 and ~3650 cm-1 

provide strong evidence for a high contribution of Anion B1 and Anion X/X’ like 

conformers to the ion population present under the given experimental conditions. A 

summary of the calculated vibrational frequencies and intensities is given in Table S7. 

It is not clear as to why there is no impactful spectral evidence for Anion B2 and B3 in 

the experiments, although these conformers are predicted to be the two most stable 

structures next to the lowest energy conformer. Anion X and X’, on the other hand, have 

calculated relative energies similar to that of Anion B3, however, the high intensity of 

the free O-H stretching vibration in the IRMPD spectrum implies that this tautomer 

contributes significantly to the ion population. It is conceivable that due to the lose 

nature of the carboxylic acid group, the O-H may rotate more or less freely at room 

temperature, allowing for interconversion between the geometries of the phenolate and 

thus in average a higher population of the lowest energy conformer, within the 

timeframe of the experiment. A change between the two tautomeric forms, on the other 

hand, is not possible in the gas phase, which implies that already a considerable amount 

of the benzoate must be present in solution and is kinetically trapped in this form during 

the transfer from solution to the gas phase.  
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In summary, the IRMPD spectra in the O-H stretching vibration region strongly point to 

a population of anions mainly consisting of Anion B1 like geometries in the case of 

[5-AF]-, whereas for [5-NF]- both conceivable tautomers contribute equally to the ion 

population and thus lead to the observed spectral features in the experiment. 

For the cations, only four distinct isomers were identified. Stable lactonic structures 

were not obtained from geometry search. Again, for the sake of convenience, we omitted 

rotamers resulting from rotation of the two O-H-groups at X, as their spectroscopic 

behavior is not expected to be drastically different. The geometries and respective 

relative Gibbs free energies of the four lowest energy conformers of [5-AF]+ and [5-NF]+ 

are presented in Figure 6. 

 

Figure 6 DFT (ωB97XD/6-31+G(d)) optimized geometries and relative Gibbs 
free energies of the four lowest energy conformers of [5-AF]+ and [5-NF]+. 
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The four lowest energy cationic conformers of [5-AF]+ and [5-NF]+ solely differ in the 

orientation of the carboxylic O-H group. In Cation 1, the hydrogen is bound to the oxygen 

atom farthest away from X, whereas in Cation 2 the hydrogen is in closer proximity to X. 

However, it points in the opposite direction, probably to minimize interaction with the 

increased positive charge density in the protonated fluorophore X. The geometry of 

Cation 3 results from rotation of the carboxylic O-H bond starting from the geometry of 

conformer Cation 1. The hydrogen atom, however, is not pointing straight downward, 

but rather out of the phenyl-ring plane to avoid the adjacent phenyl-hydrogen atom. 

Such a conformer was not found for the anionic species, as structure optimization 

starting form a similar geometry resulted in Anion B1. Surprisingly, the geometry 

denoted as Cation 4, which is reminiscent of the lowest energy conformer found for the 

anions (Anion B1), is the energetically highest conformation. The deviation from the 

mutual orientation of 90° between X and B (~27° and ~19° for [5-AF]+ and [5-NF]+) is 

highest for this geometry and additionally the carboxyl group is twisted out of the 

phenyl-plane by >50°, avoiding a geometry in which the hydrogen atom points directly 

towards the xanthene unit. A summary of the changes in geometry upon structure 

optimization of the respective conformers is given in the supporting information section 

(section 4.9.2; Table S1 and Figure S1). 

The fragmentation of the cations induced by IR irradiation is quite complex compared to 

the respective monoanions. A similar behavior was observed by Jockusch et al. in their 

IRMPD and UV/Vis photodissociation studies on [F]+ and its two halogenated 

derivatives.[26, 29-30] The main fragmentation channels for [5-AF]+ and [5-NF]+ are the 

loss of the carboxylic acid group (m/z 302 and 332, respectively) and additionally the 

concomitant loss of the respective functional group (m/z 286; -HCOOH,-NH2 for [5-AF]+; 

-HCOOH,-NO2 for [5-NF]+). The relative signal intensity of the fragment at m/z 286 is 

higher for [5-NF]+, indicative of a weaker bond strength between the carboxylic acid 

ring and the formal leaving group. The experimental IRMPD and calculated IR spectra of 

[5-AF]+ and [5-NF]+ are shown in Figure 7 and 8. 
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Figure 7 Experimental IRMPD (top, red) and IR spectra (below, black) 
calculated for the four considered conformers of [5-AF]+. Calculated IR 
intensities are shown as sticks and convoluted with 7 cm-1 fwhm Lorentzian 
functions (black lines). A scaling factor of 0.95 was employed.  
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Figure 8 Experimental IRMPD (top, red) and IR spectra (below, black) 
calculated for the five considered conformers of [5-NF]+. Calculated IR 
intensities are shown as sticks and convoluted with 7 cm-1 fwhm Lorentzian 
functions (black lines). A scaling factor of 0.95 was employed.  
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The experimental spectra of the cations exhibit less spectroscopic features than those of 

the monoanions, although more IR active chromophores are present. In the IRMPD 

spectrum of [5-AF]+ only a single narrow band at ~3610 cm-1 is distinguishable, 

whereas in the spectrum of [5-NF]+ a low intensity band at ~3560 cm-1 and an intense 

band at ~3610 cm-1 can be identified. No spectral features, which can be associated with 

aromatic C-H stretching vibrations, are observed for both cationic species. These, 

however, have a smaller calculated IR intensity for all considered conformers compared 

to calculated IR intensities for the anionic species (nearly an order of magnitude smaller 

than for [5-AF]-). Furthermore, the expected N-H stretching (symmetric and 

asymmetric) vibrations are not observed in the experimental spectrum of [5-AF]+. 

Either the absorption intensity is severely overestimated by the level of theory applied, 

or the bands are spectroscopically dark, due to e.g. a poor vibrational energy 

redistribution (IVR) process. The calculated IR spectra of Cation 1 and 2 are nearly 

indistinguishable regarding band composition and energetic spacing between the 

calculated vibrational modes. Although theory predicts (for Cation 1 and 2 like 

geometries) two separate absorption bands for the free phenolic O-H and the carboxylic 

O-H stretching vibration, presumably only one of those can be assigned to the single 

band observed in the experimental spectrum of [5-AF]+, unless the energy of the COO-H 

vibration is underestimated by theory. Hence it would lie closer to the free O-H 

vibration, merging into one absorption feature, as predicted, e.g. by the calculated IR 

spectra for Cation 3 and 4 like geometries. This, however, is questionable, as the 

experimental IRMPD spectrum of [5-NF]+ exhibits two distinct absorption bands 

(~3560 cm-1 and ~3610 cm-1), which can be assigned either to the free xanthene O-H or 

the COO-H vibration, agreeing reasonably well with the calculated IR spectra for 

Cation 1 and Cation 2. It is thus conceivable that two separate bands (associated with 

either the O-H or COO-H stretching vibration) are more likely to appear in the 

experimental spectrum of [5-NF]+, as the electron withdrawing property of the nitro-

substituent should weaken the O-H bond in the carboxylic acid group, shifting it to lower 

energies, with respect to the phenolic O-H vibration. In [5-AF]+, the amino-substituent 

possesses electron donating properties. Hence, the opposite effect is expected, i.e. a shift 

of the COO-H vibration towards higher energies and closer to the free xanthene O-H 

vibration. If this is indeed the case, then the level of theory applied may not be sufficient 

to account for such an effect. The weakening of the COO-H bond, due to hydrogen like 
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bonding is predicted by theory for Cation 3 and 4 like structures so that the frequency of 

the COO-H stretching vibration virtually coincides with the free xanthene O-H vibration. 

However, these two geometries have calculated relative energies of 35.7 (35.4) kJ/mol 

and 44.6 (52.7) kJ/mol for [5-AF]+ ([5-NF]+) and are hence not expected to contribute 

significantly. An overview over the calculated vibrational frequencies and intensities for 

[5-AF]+ and [5-NF]+ is given in Table S8 and S9, respectively. 

In summary, the IRMPD spectra of the anionic compounds imply that the ion population 

of [5-AF]- consists mainly of the lowest energy isomer Anion B1, whereas for [5-NF]- no 

isomer can be definitely excluded. The relative intensities of the appearing gas phase IR 

bands, however, point to the coexistence of mainly Anion B1 like geometries and its 

tautomeric form (either Anion X or the lactonic Anion X’). The rotamers (Anion B2 and 

B3), although not lying significantly higher in energy, seem not to contribute 

significantly, unless their spectral features remain dark for a yet unknown reason. 

The experimental spectra of the cations exhibit less spectral features than the spectra of 

the anions. The main absorption band in the calculated spectra of the isomers fits the 

experiment in either case, making identification of the ion population questionable. 

However, due to the high relative energies of Cation 3 and 4 isomers, mainly Cation 1 

and 2 are expected to contribute to the ion ensemble in the trap. 

4.5.2 UV/Vis photofragmentation and absorption action spectra 

Upon irradiation of the isolated cationic and monoanionic forms of 5-NF and 5-AF with 

fs-laser pulses in a wavelength range from 240 nm up to 580 nm photoproducts are 

formed. The UV/Vis mass spectra of [5-AF]- and [5-NF]- closely resemble those from 

IRMPD studies, with the main fragmentation channels of [5-AF]- being the loss of CO2 

(44 Da)/HCO2 (45 Da) (Figure S2, Tab. S2) and for [5-NF]- additionally encompasses 

dehydration and probably loss of the functional nitro-group. [5-AF]+ (Figure S3, 

Table S3) and [5-NF]+ (Figure S4, Table S4), exhibit a more complex fragmentation 

behavior, including dehydration, decarboxylation and loss of the respective functional 

group. Curiously, the fragmentation mass spectra observed by IRMPD and UV/Vis 

photoexcitation are nearly identical for the anions with regard to the number and 

relative intensity of the occurring product signals, whereas in the IRMPD mass spectra of 

the cations, numerous additional fragment products appear at lower m/z compared to 
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UV/Vis PF. From the similarity of the fragmentation mass spectra recorded for the 

anions by IRMPD and PF, we deduce that fragmentation probably occurs in both 

excitation schemes from the electronic ground state. For IRMPD, this is given, as the 

generally accepted mechanism relies on a rapid relaxation process, i.e. IVR, by coupling 

the excited vibrational mode to the internal heat bath, thus allowing for a consecutive 

re-excitation of the same vibrational coordinate in the electronic ground state until 

internal energy buildup exceeds the dissociation threshold. For Vis-photoexcitation a 

similar mechanism must be invoked,[31] i.e. the photoexcited ions return to a highly 

vibrationally excited ground state by internal conversion (IC) and the retained excess 

energy is redistributed throughout the many vibrational modes in the molecule. If the 

excess energy is sufficiently large, the molecule dissociates, otherwise the cycle repeats 

and another photon may be absorbed, albeit at a lower probability, due to an inherent 

change in geometry of the hot molecule and hence less favorable Franck-Condon factors 

for absorption of a second photon. From one-color PF studies on the monoanions one 

can assume efficient IC and a subsequent IVR process to vibrational modes which are 

also primarily populated during relaxation in IRMPD. For the cations, the respective 

excited state probably couples inefficiently to the electronic ground state, spreading the 

excitation energy over a multitude of vibrational modes, thus we observe numerous 

fragment channels. Furthermore, bond dissociation energies must be higher for the 

cations, requiring the absorption of at least a second photon in the UV/Vis region, as 

suggested by the fragmentation yield dependence on the photon pulse energy 

(Figure S6). A similar behavior was observed for the monocationic and monoanionic 

forms of [F] and its halogenated derivatives, where the cationic form exhibited a 

complex fragmentation behavior and typically required higher laser pulse energies to 

induce fragmentation.[29-30] 

Recording the fragment ion intensity as a function of photoexcitation wavelength yields 

the PF spectra, which we compare to theoretical absorption spectra calculated for all 

conformers we considered in the discussion of the IRMPD spectra (Figure 3 and 6). 
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Figure 9 Experimental PF spectrum (top, red) of [5-AF]- and linear UV/Vis 
spectra (below, black) calculated for the five considered conformers. 
Calculated UV/Vis absorption intensities are shown as sticks and convoluted 
with 3000 cm-1 fwhm Gaussian functions (black lines). To account for errors 
in TD-DFT calculated transition energies, the convoluted spectra were shifted 
bathochromically by 3000 cm-1 (blue, dashed line). Vertical dashed line 
denotes pump-wavelength (510 nm) used in transient experiments. 
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On first glance, the PF spectrum of [5-AF]- (Figure 9) compares poorly to the calculated 

linear absorption spectra, with the most striking difference being the missing long 

wavelength absorption band predicted at ~420 nm for conformers of Anion B (1-3) like 

geometries. The experimental spectrum features a broad, band like structure at longer 

wavelengths (made clearer by magnification of the particular absorption region; 

Figure 9, inset), however, it is low in intensity and red-shifted by ~60 nm compared to 

theory. From our experience, low intensity bands in absorption action spectra are 

common when employing ion trap techniques, especially in the Vis region. Since the 

excess energy stored within the molecular system (after photoexcitation and 

subsequent IC) dictates the rate of fragmentation, and obviously, absorption of longer 

wavelength photons results in less internal energy, the rate of fragmentation for ions 

excited at longer wavelengths is more prone to collisional quenching with the helium 

buffer gas in the trap. Collisional quenching, coupled with non-linearity of the 

fragmentation process (Figure S6) typically results in less pronounced or even missing 

bands in the absorption action spectra at longer wavelengths. 

After shifting the calculated absorption bands by 3000 cm-1 to lower energies (in order 

to account for overestimation of transition energies by TD-DFT) the theoretical spectra 

for Anion B1-3 like geometries agrees qualitatively well with the experimental 

spectrum, whereas the spectra calculated for Anion X and X’ have less pronounced 

features, are located at higher energies and thus show no similarity to the experiment. 

From our calculations, the low intensity band at ~300 nm is of charge transfer character 

(CT) from the benzoic acid to the xanthene unit (CT(B→X)), whereas the spectral region 

below 250 nm consists of a multitude of localized π-π*-transitions centered on either X 

or B, or transitions of partial CT character (for assignment cf. section 4.9.6; Table S10-14 

and Figure S8-12). The broad, low intensity, absorption band at 480 nm is calculated to 

be a purely X localized π-π*-transition (LE(X)) for Anion B1. Interestingly, the 

orientation of the carboxylic OH-group has a strong influence on the character of the 

long wavelength absorption band, turning it from a purely LE(X) excitation to a mixed 

LE(X) and CT transition, partially moving electron density from X to B (CT(X→B)) for 

geometries in which the carboxylic OH-group is pointing away from X. Apparently, the 

sequence of frontier orbitals depends delicately on whether the hydrogen bond-like 

interaction is present or absent in a particular geometry, as the LUMO for Anion B1 is 

localized on X whereas for B2 and B3 the LUMO is localized on B, thus affecting the 
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nature of the most intense, lowest energy transition. The absorption spectra calculated 

for the tautomer (Anion X) and lactone structure (Anion X’) exhibit a profoundly 

different band structure with the longest wavelength absorption bands shifted to higher 

energies. For Anion X the S1 state is of LE(X) character, whereas the first excited state of 

Anion X’ with significant oscillator strength (S2, f=0.13) is a mixed LE(X) and CT(X→B) 

transition. Similar to results obtained from IRMPD experiments, we cannot completely 

exclude (at least) a minor ion population of Anion X/X’–like structures. A summary of 

the TD-DFT calculated lowest lying excited states calculated for the conformers of 

[5-AF]- is given in Table 1. 

Table 1 Longest wavelength vertical singlet transitions calculated for various 
conformers of [5-AF]- at the ground state geometry (TDDFT/ωB97XD /6-31+G(d)). 
Calculated central wavelengths λ are given together with corresponding values λS 
obtained after bathochromically shifting the transition energies by 3000 cm-1. Only 
transitions with an oscillator strength of f>0.1 are displayed. Contributions to electronic 
transitions with a weight of <10 % were omitted. See Figure S8-12 for respective 
frontier orbital isosurfaces. 

conformer state transition (weight / %) character λ / nm λS / nm f 

Anion 1 S1 HOMO→LUMO (96) LE(X) 419 479 0.76 

Anion 2 
S1 

HOMO→LUMO (64) 
HOMO→LUMO+1 (33) 

CT(X→B) 
LE(X) 

426 488 0.52 

S2 
HOMO→LUMO (34) 
HOMO→LUMO+1 (63) 

CT(X→B) 
LE(X) 

402 457 0.25 

Anion 3 
S1 

HOMO→LUMO (83) 
HOMO→LUMO+1 (13) 

CT(X→B) 
LE(X) 

433 498 0.41 

S2 
HOMO→LUMO (14) 
HOMO→LUMO+1 (82) 

CT(X→B) 
LE(X) 

408 465 0.41 

Anion X 
S1 HOMO→LUMO (91) LE(X) 373 420 0.42 

S2 
HOMO-2→LUMO (47) 
HOMO-1→LUMO (42) 

CT(B→X) 
CT(B→X) 

341 380 0.18 

Anion X’ S2 
HOMO→LUMO+3 (56) 
HOMO→LUMO+4 (20) 

LE(B)/ 
CT(B→X) 

313 345 0.13 
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Figure 10 Experimental PF spectrum (top, red) of [5-NF]- and linear UV/Vis 
spectra (below, black) calculated for the five considered conformers. 
Calculated UV/Vis absorption intensities are shown as sticks and convoluted 
with 3000 cm-1 fwhm Gaussian functions (black lines). To account for errors 
in TD-DFT calculated transition energies, the convoluted spectra were shifted 
bathochromically by 3000 cm-1 (blue, dashed line). Vertical dashed line 
denotes pump-wavelength (510 nm) used in transient experiments.  
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The calculated absorption spectra for the conformers of [5-NF]- compare worse to the 

experimental PF spectrum than in the case of [5-AF]-, even after shifting the transitions 

by 3000 cm-1 to lower energies (Figure 10). The main difference is the increased 

fragmentation yield in the spectral range between 350-420 nm. In this region we 

observe nearly no fragmentation for [5-AF]-, thus the experimental spectrum bears 

closer resemblance to the theoretical spectra (Anion B1-3). We believe that [5-NF]- also 

should exhibit a weak and broad long wavelength absorption band (at ~480 nm) similar 

to [5-AF]-, however, it is obscured by the increased fragmentation baseline. 

Measurements on the laser pulse energy of the fragmentation yield of [5-NF]- 

(at 510 nm photon energy) hints at a lower order excitation process compared to 

[5-AF]- (polynomial fit in Figure S6 implies an excitation process of n=1.24 and n=1.67 

order, respectively). If this holds true for fragmentation across the recorded spectral 

region (240-580 nm), then it is conceivable that absorption of a single photon in a 

wavelength region of 350-400 nm may result in higher fragmentation than expected, 

even if absorption probability is low. The increased excess energy in a wavelength 

region of 350-400 nm (with respect to excess energy provided by absorption of a photon 

at e.g. 480 nm) results in a higher unquenched population and thus increased 

fragmentation. Another explanation for the broadened absorption band in the spectrum 

of [5-NF]- is the coexistence of conformers with different absorption behavior. From the 

IRMPD spectrum of [5-NF]- we already deduced that the trapped ion population must 

consist of both tautomeric forms (benzoate and phenolate). The calculated lowest 

energy transition (S1) for the benzoates (Anion X/X’) of [5-NF]- is shifted to higher 

energies with respect to the more intense transitions calculated for Anion B1-3 

conformers and strikingly coincides with the wavelength region of increased 

fragmentation (350-400 nm) in the experiment. A convolution of the calculated 

absorption spectra of Anion B1, Anion X and X’ fits the experiment qualitatively well 

(Figure S7). As the absorption spectrum results from excitation of tautomers, we refrain 

from a definite assignment of the band “progression” to specific transition. However, if 

we compare the experimental spectrum to the calculated spectra, we may tentatively 

assign the longest wavelength flank (>450 nm) to a purely LE(X) excitation of the 

Anion B1-3 ion population and the signal in the range of 350-400 nm to excitation of the 

benzoate population (Anion X), which is of mixed CT(X→B), LE(B) and LE(X) character 

(for assignment cf. section 4.9.6; Table S15-19 and Figure S13-17). A summary of the 
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TD-DFT calculated lowest lying excited states calculated for the considered conformers 

of [5 NF]- is given in Table 2. 

Table 2 Longest wavelength, vertical singlet transitions calculated for various 
conformers of [5-NF]- at the ground state geometry (TDDFT/ωB97XD /6-31+G(d)). 
Calculated central wavelengths λ are given together with corresponding values λS 
obtained after bathochromically shifting the transition energies by 3000 cm-1. Only 
transitions with an oscillator strength of f>0.1 are displayed. Contributions to electronic 
transitions with a weight of <10 % were omitted. See Figure S13-17 for respective 
frontier orbital isosurfaces. 

conformer state transition (weight / %) character λ / nm λS / nm f 

Anion 1 S2 HOMO→LUMO+1 (92) LE(X) 421 482 0.76 

Anion 2 
S2 HOMO→LUMO+1 (83) CT(X→B) 420 481 0.12 
S3 HOMO→LUMO+2 (88) LE(X) 419 479 0.64 

Anion 3 S3 HOMO→LUMO+2 (94) LE(X) 433 498 0.73 

Anion X S1 
HOMO→LUMO (34) 
HOMO→LUMO+1 (54) 

CT(X→B) 
LE(X) 

376 424 0.39 

Anion X’ S5 HOMO→LUMO+3 (78) LE(X) 315 348 0.19 
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Figure 11 Experimental PF spectrum (top, red) of [5-AF]+ and linear UV/Vis 
spectra (below, black) calculated for the five considered conformers. 
Calculated UV/Vis absorption intensities are shown as sticks and convoluted 
with 3000 cm-1 fwhm Gaussian functions (black lines). To account for errors 
in TD-DFT calculated transition energies, the convoluted spectra were shifted 
bathochromically by 3000 cm-1 (blue, dashed line). Vertical dashed line 
denotes pump-wavelength (410 nm) used in transient experiments. 
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Figure 12 Experimental PF spectrum (top, red) of [5-NF]+ and linear UV/Vis 
spectra (below, black) calculated for 1the five considered conformers. 
Calculated UV/Vis absorption intensities are shown as sticks and convoluted 
with 3000 cm-1 fwhm Gaussian functions (black lines). To account for errors 
in TD-DFT calculated transition energies, the convoluted spectra were shifted 
bathochromically by 3000 cm-1 (blue, dashed line). Vertical dashed line 
denotes pump-wavelength (410 nm) used in transient experiments. 
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Lastly we compare the experimental PF spectra of the cations to the TD-DFT calculated 

linear absorption spectra (Figure 11 and 12) we obtained for the considered conformers 

(Figure 5). The PF spectra of [5-NF]+ and [5-AF]+ are quite similar in shape and 

composition, consisting mainly of two absorption bands at ~400 nm and ~290 nm, and 

a broad, structureless absorption region below 250 nm. The general shape and 

composition of the recorded PF spectra compares surprisingly well to the calculated gas 

phase absorption action spectra, although fragmentation efficiency is drastically 

reduced compared to the anions. Similar to our calculations for the anions, TD-DFT 

overestimates the transitions by ~3000 cm-1. Hence for a better comparison the 

convoluted spectra were bathochromically shifted by said value (Figure 11 and 12, 

dashed blue line). By comparing our experimental to the respective calculated spectra, 

we assign the absorption bands at ~290 nm for both [5-NF]+ and [5-AF]+ to CT(B→X) 

transitions and the region below 250 nm to a multitude of localized π-π*-transitions on 

either X or B moiety, or to transitions of partial CT character (for assignment cf. section 

4.9.6; Table S20-23/Figure S18-21 and Table S24-27/Figure S22-25 for [5-AF]+ and 

[5-NF]+, respectively). The broad absorption bands at 400 nm in the spectra of both 

[5-AF]+ and [5-NF]+ can be assigned to LE(X) transitions. Note that this transition is 

calculated to be to the S1 state for [5-NF]+ and the S2 state for [5-AF]+ for all considered 

geometries. The calculated S1 state transition for [5-AF]+ is of CT(B→X) character. 

However, the intensity strongly depends on the orientation of the carboxylic OH-group, 

i.e. the oscillator strength is negligible for Cation 1 and 3, whereas for Cation 2 and 4 the 

oscillator strength is on the same order of magnitude as the intense S2←S0 transition 

(e.g. f=0.15 vs. 0.56 for the S1←S0 and S2←S0 transition of Cation 2, respectively). The 

corresponding band was not observed in the experimental spectrum of [5-AF]+. Either 

the fragmentation in this region is collisionally quenched, or the rotamers featuring a 

more intense S1←S0 transitions do not contribute significantly to the trapped ion 

population, which is feasible to assume (at least for Cation 4), as these exhibit quite high 

relative Gibbs energies of formation with respect to the lowest energy conformer 

(13.4 and 44.6 kJ/mol for Cation 2 and 4). A summary of the TD-DFT calculated lowest 

lying excited states calculated for the four conformers of [5-AF]+ and [5-NF]- is given in 

Table 3 and Table 4, respectively. 
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Table 3 Longest wavelength, vertical singlet transitions calculated for various 
conformers of [5-AF]+ at the ground state geometry (TDDFT/ωB97XD /6-31+G(d)). 
Calculated central wavelengths λ are given together with corresponding values λS 
obtained after bathochromically shifting the transition energies by 3000 cm-1. Only 
transitions with an oscillator strength of f>0.1 are displayed. Contributions to electronic 
transitions with a weight of <10 % were omitted. See Figure S18-21 for respective 
frontier orbital isosurfaces. 

conformer state transition (weight / %) character λ / nm λS / nm f 

Cation 1 S2 HOMO-1→LUMO (94) LE(X) 348 389 0.58 

Cation 2 
S1 HOMO→LUMO (94) CT(B→X) 430 494 0.15 
S2 HOMO-1→LUMO (94) LE(X) 350 391 0.56 

Cation 3 S2 HOMO-1→LUMO (94) LE(X) 351 392 0.57 

Cation 4 
S1 HOMO→LUMO (94) CT(B→X) 430 494 0.19 

S2 
HOMO-2→LUMO (16) 
HOMO-1→LUMO (79) 

LE(X) 356 399 0.44 

Table 4 Longest wavelength, vertical singlet transitions calculated for various 
conformers of [5-NF]+ at the ground state geometry (TDDFT/ωB97XD /6-31+G(d)). 
Calculated central wavelengths λ are given together with corresponding values λS 
obtained after bathochromically shifting the transition energies by 3000 cm-1. Only 
transitions with an oscillator strength of f>0.1 are displayed. Contributions to electronic 
transitions with a weight of <10 % were omitted. See Figure S22-25 for respective 
frontier orbital isosurfaces. 

conformer state transition (weight / %) character λ / nm λS / nm f 

Cation 1 S1 HOMO→LUMO (95) LE(X) 354 396 0.59 
Cation 2 S1 HOMO→LUMO (95) LE(X) 357 400 0.59 
Cation 3 S1 HOMO→LUMO (94) LE(X) 356 399 0.58 

Cation 4 
S1 

HOMO-1→LUMO (19) 
HOMO→LUMO (76) 

LE(X) 364 409 0.45 

S2 
HOMO-1→LUMO (78) 
HOMO→LUMO (18) 

LE(X) 357 400 0.15 

In the following, the recorded time-resolved pump-probe PF spectra for the anionic and 

cationic species of [5-AF] and [5-NF] are presented. The trapped ions were thereby 

excited at their respective longest wavelength absorption band, which, according to our 

calculations, corresponds in each case to mainly a LE(X) transition. 
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4.5.3 Ultrafast electronic dynamics of [5-AF]- 

The [5-AF]- ions were excited by pump laser pulses at the longest wavelength 

absorption maximum (510 nm, 0.3µJ, cf. Figure 9) and subsequently probed with high 

energy pulses in the near NIR region (1200 nm, 120 µJ). Figure 13 depicts the fragment 

ion yield as a function of pump-probe delay up to a total delay of 800 ps recorded at the 

magic angle (54.7°). 

 

Figure 13 Background corrected total fragmentation yield (open circles) of 
[5-AF]- as a function of pump-probe delay recorded for a total delay of 800 ps 
at the magic angle (54.7°). λpump=510 nm (0.3 µJ) and λprobe=1200 nm (120 µJ). 
Dashed line denotes signal level subtracted to generate a residual for fitting. 
Inset: Fit of the residual signal (a, black) is given along the fit decomposition 
(b, blue and cyan). 

The transient rises on a sub-picosecond timescale, reaching signal maximum at a time 

delay of ~700 fs and stays for up to 800 ps (total pump-probe delay accessible) at this 

level. At shorter positive delay (0-7 ps) we furthermore observe a strong periodic 

modulation of the step like tPF signal, which is maintained for several oscillations within 

the observed timeframe. This behavior is indicative of the formation of a vibrational 
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wave-packet in the excited state potential well, i.e. the coherent excitation of several 

vibrational excited states of one or several vibrational modes. If these states show a 

favorable phase relation, a wave-packet is launched and oscillates with a period close to 

the frequency of the respective mode until energy redistribution by coupling to other 

degrees of freedom results in a decay of the modulation, i.e. dephasing of the wave-

packet. Wave-packet dynamics has also been observed by us for the anionic form of 

unsubstituted fluorescein [F]-.[32] The oscillation period was found to be 2π/ω=T=1.2 ps, 

corresponding to a vibrational frequency of 28 cm-1, which we assigned to a low 

frequency torsional motion of B vs. X, based on TD-DFT calculations and similar results 

reported for time-resolved photodetachment anisotropy (TR-PA) measurements by 

Horke et al.[33] In contrast to [F]-, [5-AF]- exhibits a more complex signal modulation, 

which cannot be simulated by a single damped sine function. For a more convenient 

theoretical modeling of the periodic modulation the residual signal was used after 

subtracting the signal level at long time delay (dashed line, 800 ps). The resulting 

dataset is shown in the inset of Figure 13 together with the fit based on two damped sine 

functions (
# sin(D# ∙ 1 + �#) ∙ EF%/HI + 
� sin(D� ∙ 1 + ��) ∙ EF%/HJ). The oscillation 

periods T of the two components are found to be ~1.3 ps and ~1.0 ps, which correspond 

to a vibrational frequency of ~26 cm-1 and ~33 cm-1, respectively. 
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4.5.4 Ultrafast electronic dynamics of [5-NF]- 

The [5-NF]- ions were excited by pump laser pulses at the longest wavelength 

absorption maximum (510 nm, 0.3µJ, cf. Figure 10) and subsequently probed with high 

intensity pulses in the NIR region (1200 nm, 120 µJ). Figure 14 depicts the fragment ion 

yield as a function of time delay up to a total delay of ~600 ps recorded at the magic 

angle (54.7°). 

 

Figure 14 Background corrected total fragmentation yield (open circles) of 
[5-NF]- as a function of pump-probe delay recorded for a total delay of 600 ps 
at the magic angle (54.7°). λpump=510 nm (0.3 µJ) and λprobe=1200 nm (120 µJ). 
Fit of the signal (black) is given along the fit decomposition (red and green) 
and residual (bottom). Inset: Modulated tPF signal for a shorter total time 
delay (a, open circles). Dashed line denotes the background level subtracted 
from the signal to generate a residual for fitting. Fit of the residual signal 
(b, black) is given along the fit decomposition (c, blue and cyan). 
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Similar to the transient recorded for [5-AF]-, the signal rises on a sub-picosecond 

timescale. In contrast to [5-AF]-, however, it decays to the signal level at negative pump-

probe delay within ~300 ps. This implies that the whole excited state population 

decayed to the ground state or to a spectroscopically dark state, i.e. a state with either a 

low absorption cross section for the probe photons or lying too low in energy so that a 

higher lying state (Sn) cannot be accessed by multiple-photon probe absorption. The 

signal decay can be satisfactorily fitted with a bi-exponential model, yielding two time 

constants of 13.1±0.5 ps and 76.2±5.5 ps. Furthermore, analogous to [5-AF]-, the 

transient signal is sinusoidally modulated, indicative of wave-packet formation, which 

dephases within approximately 7 ps. For further analysis, the exponentially decaying 

background signal was subtracted from the transient signal (Figure 14, dashed line in 

inset), yielding a simpler residual used for theoretical modeling. The signal was fitted 

applying a sum of two damped sine functions. Analogous to [5-AF]-, the oscillation 

periods T of the two components are found to be ~1.4 ps and ~1.0 ps corresponding to a 

vibrational frequency of ~24 cm-1 and ~33 cm-1, respectively. 
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4.5.5 Ultrafast electronic dynamics of [5-AF]+ 

The [5-AF]+ ions were excited by pump laser pulses at the red edge of the longest 

wavelength absorption maximum (410 nm, 0.5µJ, cf. Figure 11) and subsequently 

probed with high intensity pulses in the NIR region (1200 nm, 120 µJ). Figure 15 depicts 

the fragment ion yield as a function of time delay up to a total delay of 800 ps recorded 

at the magic angle (54.7°). 

 

Figure 15 Background corrected total fragmentation yield (open circles) of 
[5-AF]+ as a function of pump probe-delay recorded for a total delay of 
800 ps at the magic angle (54.7°). λpump=410 nm (0.8 µJ) and λprobe=1200 nm 
(120 µJ). Fit of the signal (black) is given along the fit decomposition (red and 
green) and residual (bottom). 

The transient rises ultrafast on the order of the estimated system response (~120 fs). 

The signal then exhibits a mono-exponential decay and a concomitant signal increase 

within 230 fs and 540 fs, respectively. The resulting fragment ion signal intensity is 

maintained for up to a total delay of 800 ps, indicating the formation of a relatively long 

lived excited state. In contrast to the transient signal recorded for the monoanions, no 

signal modulation was observed at shorter pump-probe time delays. 
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4.5.6 Ultrafast electronic dynamics of [5-NF]+ 

The [5-NF]+ ions were excited by pump laser pulses at the longest wavelength 

absorption maximum (410 nm, 0.5µJ, cf. Figure 12) and subsequently probed with high 

intensity pulses in the NIR region (1200 nm, 120 µJ). Figure 16 depicts the fragment ion 

yield as a function of time delay up to a total delay of 800 ps recorded at the magic angle 

(54.7°). 

 

Figure 16 Background corrected total fragmentation yield (open circles) of 
[5-NF]+ as a function of pump probe-delay recorded for a total delay of 
800 ps at the magic angle (54.7°). λpump=410 nm (0.8 µJ) and λprobe=1200 nm 
(120 µJ). Fit of the signal (black) is given along the fit residual (bottom). 

The transient rises ultrafast on the order of the estimated system response (~120 fs). In 

contrast to the transient recorded for [5-AF]+, the signal does not show any trace of 

ultrafast electronic dynamics or dynamics on a longer timescale apart from the 

formation of a long lived state, which is similar to the behavior observed for the cation of 

the unsubstituted fluorescein [F]+.[32] Furthermore, no signal modulation was observed 

at shorter pump-probe delays. 
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4.6 Discussion 

The differences in excited state dynamics of the these fluorescein derivatives are 

remarkable: first and foremost, only the anions exhibit wave-packet dynamics, resulting 

in sinusoidal modulation of the transient signals, whereas for the cations such behavior 

was not observed (although, at least for [5-NF]+, the S/N should be sufficient). Secondly, 

whether the transients exhibit ultrafast electronic dynamics depends heavily on the 

nature of the substituent (amino/nitro), as well as on the charge state. First we 

qualitatively discuss the origin of the ultrafast dynamics, keeping in mind that for 

fluorescein derivatives PeT is considered a viable deactivation channel. 

 

Figure 17 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the lowest energy conformers of 
[5-AF]-, [5-NF]-, [5-AF]+ and [5-NF]+. Orbital energies are given in Hartree. 
Blue arrow denotes the character of the respective calculated lowest energy 
transition most probably excited using λpump=510 nm for the anions and 
λpump=410 nm for the cations (cf. Table 1-4). 
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For this purpose we take a closer look on the sequence of frontier orbitals we obtained 

from our DFT calculations, which are presented, for the sake of brevity, only for the 

respective lowest energy conformers (Cation 1 and Anion B1, respectively) in Figure 17 

(cf. section 4.9.7; Figure S26-29 for orbital sequences determined for the other 

conformers). Any differences in the sequence of orbitals obtained for the other 

conformers will be addressed explicitly, if needed. For [5-AF]-, the LUMO localized on X 

lies lower in energy than the first B centered LUMO. The first three HOMOs are located 

on X, followed by an orbital with significant contribution from B (HOMO-4). In the case 

of [5-NF]-, the order of orbitals is changed. Here the first LUMO is located on B, whereas 

the X-centered orbital (LUMO+1) is shifted to higher energies. The relative sequence of 

HOMOs, however, resembles the one found for [5-AF]-. The behavior of the LUMOs can 

be readily rationalized by the nature of the functional group: the amino-substituent in 

meso-position to X exerts a +M-effect (and +I-effect), increasing electron density in B, 

whereas the nitro-substituent has the opposite effect. Hence, for [5-AF]- the B-centered 

LUMO is higher in energy with respect to the X-localized LUMO, whereas for [5-NF]- the 

B-centered LUMO lies lower in energy. The same applies for the HOMOs. Here the 

electron donating property of the amino-group destabilizes the B-centered HOMO 

(HOMO-4), whereas the nitro-substituent has a stabilizing effect, increasing the gap 

between B- and X-centered HOMOs for [5-NF]-. The cations exhibit a somewhat different 

behavior. For [5-AF]+, the relative array of LUMOs is akin to [5-AF]-, whereas the 

B-centered HOMO lies higher in energy than the X-localized HOMO. The relative orbital 

sequence in [5-NF]+ on the other hand is changed in such a way that it resembles the 

one calculated for [5-AF]-. This change in orbital sequences upon double protonation 

probably stems from a higher shift of the X-centered orbitals to lower energies, 

compared to the B-centered orbitals, which is not unexpected, as the site of protonation 

is located at the X-chromophore. According to the scheme presented in Figure 1, the 

orbital array in [5-AF]+ should theoretically enable an a-PeT, whereas a d-PeT may take 

place for [5-NF]-. For the remaining systems ([5-AF]- and [5-NF]+), none of the above 

mentioned processes should be possible and thus no electronic dynamics associated 

with a PeT should be observable. Before we finally draw our conclusion, we would like 

to address the order of orbitals we obtained analogously for the other conformers. For 

the majority of conformers, our calculations yield qualitatively the same results, i.e. the 

orbital sequences obtained for the other conformers [5-NF]-, [5-AF]+ and [5-NF]+ 
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(cf. section 4.9.7; Figure S26-29) closely resemble those of their respective lowest energy 

conformers (Figure 17). Only the orbital sequence of [5-AF]- (Figure S26)depends on the 

geometry. The relative array of orbitals in the benzoate (Anion X) is the same as the one 

presented in Figure 17, whereas for Anion B2/3 and Anion X’ geometries, the order 

resembles the one calculated for [5-NF]-. From this point on, we neglect both tautomeric 

forms (Anion X and X’) of [5-AF]- for the discussion, as firstly, IRMPD studies do not 

point to a high contribution of these geometries to the trapped ion population and, more 

importantly, even if the tautomers were present, we do not expect a significant 

contribution to the excited state population, as our chosen pump wavelength of 510 nm 

is allegedly not suited for sampling these conformers (cf. Figure 9). As regards the 

rotamers of Anion B1, although their orbital sequences should enable a d-PeT process, 

the excited states lowest in energy are calculated to be of significant CT(X→B) character 

(cf. Table 1), i.e. PeT is prevented from the start. Hence, if we consider PeT, then it is only 

feasible for the Anion B1 geometry of [5-AF]-. 

Note that we also performed calculations using two other functionals in addition to the 

ωB97XD functional, which was in the focus of this study. However, B3LYP[34-35] and its 

long-range corrected extension cam-B3LYP[36] yielded similar results (cf. section 4.9.7; 

Figure S30-33 and Table S28-30). A potential basis-set dependence of the orbital 

sequences will be addressed in a future study. 

Having presented and discussed the results of our DFT calculations, we may now draw a 

comparison to our experiments. As already stated, theory implies that PeT is only 

feasible for [5-AF]+ and [5-NF]-, hence one should expect spectroscopic signature of 

such a process. Indeed, our experimental results fit this picture qualitatively well, as 

only [5-NF]- and [5-AF]+ exhibit ultrafast electronic dynamics (cf. Figure 14 and 15, 

respectively). The involvement of PeT in the excited state “quenching” observed for 

functionalized fluorescein derivatives is furthermore corroborated by results from our 

previous study on [F]+ and [F]-, for which no sign of ultrafast dynamics was observed[32] 

and for which our calculations do not predict an orbital sequence rendering a PeT 

process possible (cf. section 4.9.7; Figure S34 and Table S32). 

At this point, the timescale and character of the observed dynamics shall be addressed: 

for [5-NF]-, the transient signal decays bi-exponentially to the base level on a picosecond 

timescale, whereas for [5-AF]+, the initially excited state decays within 230 fs to a 
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relative long-lived state, which apparently still has a significant absorption cross section 

for the probe photons; thus a relatively high fragment yield for up to 800 ps delay is 

retained. Additionally, the transient of [5-AF]+ bears signature of a second, slightly 

slower process (540 fs) allegedly contributing to the formation of the long lived signal. 

This second component may very well be simply an artifact, resulting from a slight 

misalignment of the Berek compensator used for polarization control, thus some 

polarization dependence of the signal leaks through. We reported on strong polarization 

dependence of the transient signals of [F]+ previously, stemming from molecular 

alignment and dephasing of a rotational wave-packet.[32] Another explanation would be 

a different electronic process, which occurs in parallel to the a-PeT. Curiously, [5-AF]+ is 

the only system for which calculations predict the S1 state to be of CT(X→B) character 

and in addition places the B-centered LUMO higher in energy than the X-localized LUMO. 

Such combination would also theoretically enable a-PeT; in this case, however, the 

LUMO of X would act as an acceptor and the LUMO localized on B as the donor (as the 

electron is initially transferred to this orbital), possibly resulting in the observation of 

additional kinetics. 

Still a couple of questions remain: firstly, why does the transient signal of [5-NF]- exhibit 

bi-exponential decay? Secondly, why does the assumed PeT proceed for [5-NF]- much 

slower than for [5-AF]+ and lastly, why does the signal, in contrast to [5-AF]+, decays 

completely, although in both cases the excited state is “quenched” via PeT? As regards 

the latter question, a complete decay of the transient signal in our detection scheme 

does not necessarily imply IC to the ground state, but may also be indicative of 

relaxation to a spectroscopically dark state, i.e. a state which has a negligible absorption 

cross section for probe photons. The exact character of the state to which the population 

of [5 NF]- decays is as of yet unknown to us, but based on our calculations, we may 

speculate that a charge separated state (formed after PeT) in which the negative charge 

is located on B, lies either too low in energy or has an insignificant absorption cross 

section for our employed probe photons so that in neither scenario a higher lying Sn 

state can be accessed. Hence fragmentation enhancement, which is a prerequisite for our 

detection scheme, is prohibited and the transient decays. Indeed, from the orbital 

sequence presented in Figure 17 (and Figure S26-29), it is evident that only for [5-NF]- a 

charge separated state with increased electron density on B is possibly formed after 

photoexcitation and subsequent d-PeT, whereas the a-PeT process assumed for [5-AF]+ 
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transfers the electron to X and for the remaining two systems ([5-AF]- and [5-NF]+) 

charge separation does not take place at all. The second question addresses the 

difference in timescale of the PeT processes in [5-NF]- and [5-AF]+. Generally, PeT 

occurs faster the better the coupling between excited and charge separated state, i.e. the 

smaller the difference in geometry is. The faster dynamics observed for [5-AF]+ thus 

implies that the change in geometry is rather small, resulting in a quasi-instantaneous 

electron transfer, whereas the geometry of [5-NF]- has to be distorted appropriately 

prior to switching to a charge separated state. An approach to estimate electron transfer 

rates is by Marcus Theory. However, application of the Marcus equation requires 

knowledge about both the excited state geometry and the geometry of the charge 

separated state, which we were not yet able to obtain. 

The origin of the bi-exponential decay observed in the dynamics of [5-NF]- is another 

unclear aspect. Although our IRMPD spectra point strongly to coexistence of both 

benzoate and phenolate tautomers in the gas phase, we refrain from assigning one of the 

time constants to electronic decay of an excited Anion X/X’ population, as we already 

established that the chosen pump wavelength in our time-resolved experiments is not 

suitable to sample these ions. Another explanation for the additional time constant could 

be the concurrent decay of an excited state population composed of rotamers of 

Anion B1. At least Anion B2 is calculated to be nearly isoenergetic to Anion B1 and may 

possibly exhibit different coupling between the locally excited and the charge separated 

state. Again, to prove this assumption, a more dedicated theoretical approach is 

required. Lastly, we cannot rule out charge recombination following charge separation 

as the origin for the second, slightly longer decay constant. 

The final point to be addressed in our discussion is the signal modulation, which only 

appears in the transients of the anions. In our previous study on [F]-, we observed a 

sinusoidal modulation with a period of T=1.2 ps, corresponding to a vibrational 

frequency of ~28 cm-1,[32] which compared remarkably well to the reported frequency 

(~32 cm-1) obtained by Horke et al. from TR-PA experiments on [F]-.[33] For [F]-, Horke 

et al. assigned a low-frequency torsional motion of B vs. the X chromophore, supported 

by TD-DFT geometry optimization of the first electronically excited state of [F]-. 

Calculations revealed that the mutual dihedral angle between the sub-units decreases 

from 90° in the S0 state to 53° in the S1 state.[33] In our study on [F]- and [F]+, we 
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performed single-point energy calculations of distorted ground state geometries 

depending on the dihedral angle, which revealed that relaxation is energetically possible 

only for [F]-, agreeing with our observation of wave-packet dynamics only for this 

charge state.[32] We believe that the same reasoning applies for the functionalized 

fluorescein derivatives, thus wave-packet dynamics are only observed for the anions. 

However, as already mentioned above, the signal modulation is much more complex 

than in the case of [F]-, requiring at least two damped sine functions for modeling the 

modulation of the transient signals. The corresponding vibrational frequencies 

estimated from the period of the sines are nearly identical for [5-AF]- and [5-NF]- 

(ṽ1=26 cm-1, ṽ2=35 cm-1 and ṽ1=25 cm-1, ṽ2=33 cm-1, respectively), implying that similar 

vibrational modes are responsible for the signal modulation. As we lack the respective 

excited state geometries required for a more precise assignment of the frequencies to 

vibrational modes, we can for now only consult the frequencies obtained from ground 

state calculations and surmise that the frequencies in the excited state are not 

drastically altered. Ground state vibrational calculations reveal for both anions several 

low frequency (<100 cm-1) vibrational modes, (cf. section 4.9.8; Figure S35/36 and Table 

S33/34 for [5-AF]-/[5-NF]-), which encompass the torsional motion of B vs. X (ṽ1), a 

rocking motion of B within (ṽ2) or out of (ṽ3) the X plane, and torsional motions of the 

functional groups of B in combination with various skeletal modes (ṽ4-ṽ6 and ṽ4-ṽ7 for 

[5-AF]- and [5-NF]-, respectively). Most interesting are the two lowest frequency modes, 

for which we, depending on the conformer, obtained values of ṽ1=15-24 cm-1/ 

ṽ2=39-41 cm-1 and ṽ1=17-24 cm-1/ṽ2=30-32 cm-1 from calculations on [5-AF]- and 

[5-NF]-, respectively. These mode are expected to modulate the π-interaction of B and X 

and compare surprisingly well to the experimental values, implying a concurrent 

formation of two similar wave-packets in the excited state potentials of [5-AF]- and 

[5 NF]-. However, it is not yet clear as to why the vibrational dynamics are so distinctly 

different to the one observed for [F]-, in which allegedly only one vibrational coordinate 

is coherently excited upon electronic excitation.[32] Presumably functionalization of B 

has a profound impact on the low-lying excited state properties of the molecular ions, 

although owing to a mutual perpendicular orientation of the two sub-units characteristic 

for fluorescein dyes, the interaction between the π-systems is expected to be minor. 

Note that we also observed remarkably different wave-packet dynamics for halogenated 

fluorescein derivatives, bearing chloro- or fluoro-substituents at the X chromophore, 
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implying that electronic modifications have an extraordinary impact on the coupling of 

vibrational modes. These findings will be addressed in a future study. 

Another explanation for periodic modulation of transient signals in fs-spectroscopy is 

electronic coherence, i.e. the coherent excitation of two (or more) quasi-degenerate, 

strongly coupled excited states. The ensuing signal modulation is, however, generally 

higher in frequency and the wave-packet dephases on a much shorter fs time-scale. 

Additionally, our calculations do not point to the existence of excited states in the 

immediate vicinity of the respective excited state we sampled with our chosen pump 

wavelengths. Consequently, this reasoning should not apply to our experimental results, 

rendering vibrational wave-packet dynamics the only feasible explanation. 

4.7 Conclusion 

In conclusion, we presented an extensive spectroscopic gas phase study on the 

monoanionic and cationic forms of two fluorescein derivatives, functionalized with 

either an electron withdrawing nitro- or an electron donating amino-group at the 

benzoic acid ring. IRMPD spectra recorded for the anions point to a coexistence of 

tautomers in the case of the nitro-derivative, whereas the gas phase population of the 

amino-derivative consists most probably solely of the phenolate form, in which the 

acidic proton is located at the carboxylic acid group of B. The cationic ion populations 

consist of several rotamers, differing in the orientation of the carboxylic OH-group. 

However, only geometries in which the proton at the carboxylic acid group point 

towards X are significantly stabilized by long-range interaction with the π-system of X 

and thus expected to contribute to the ion population. The experimental UV/Vis PF 

spectra of the cations are in good agreement with TD-DFT calculated linear absorption 

spectra, whereas theory fails to satisfactorily reproduce the absorption properties of the 

anions. The most notable difference to the theoretical spectra is the high intensity, 

lowest energy transition absorption band, which is missing in the experimental spectra, 

probably due to collisional quenching of the fragmentation. The excited state dynamics 

following a localized excitation of the X chromophore exhibit remarkable dependence on 

the nature of the substituent (amino/nitro), as well as on the charge state. Excited state 

dynamics on a fs- and ps-timescale are only observed for [5-AF]+ and [5-NF]-, 

respectively, and are attributed to excited state quenching by PeT. The sequence of 

frontier orbitals are in good accordance to our assumption, only enabling d-PeT for 
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[5-NF]- and a-PeT for [5-AF]+. Additionally, the transient fragment mass signals of the 

anions are periodically modulated, which is indicative of vibrational wave-packet 

dynamics. From the period of the modulation, we determined two frequencies, which we 

assigned to two separate low frequency vibrational modes obtained from DFT 

calculations, showing good agreement with the experiment. 
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4.9.1 Experimental procedures 

[5-NF]-/[5-AF]- and [5-NF]+/[5-AF]+ were generated in both experimental setups 

(PF/tPF and IRMPD) by ESI from methanolic solutions of the respective neutrals 

(c=5·10-6 M) in negative and positive ion mode. For the study of the protonated forms, a 

small amount of formic acid (1 vol-%) was added to the sample solutions in order to 

increase the cation signal. The sample solutions were continuously infused by a syringe 

pump at a flow rate of 120 µL/h. Nitrogen as drying gas was set to a flow rate of 4 L/min 

at 180°C. The nebulizer pressure was set to 5 psi (345 mbar). 

The femtosecond laser pulses were generated in a cryogenic ultrafast regenerative laser 

amplifier system delivering 50 fs pulses at ~1 kHz repetition rate (central wavelength of 

ca. 785 nm). The pulse train was split to pump two optical parametric oscillators of 

white light continuum (TOPAS-C, Light Conversion) for generating pump and probe 

pulses of tunable wavelength (240–2500 nm). For PF spectra only the output from one 

of the TOPAS-C units was utilized in a spectral range of 240 nm up to 580 nm. The PF 

spectra were obtained by setting the laser pulses to the according wavelengths and 

measuring the intensity of the parent ion and the sum of fragment ions. The fragment 

yield was calculated according to Fi/(Fi+Pi), where Fi and Pi are the sums of the 

intensities of the fragment and parent ion signals, respectively, and normalized 

additionally by its numeric wavelength value to account for different photon energies at 

constant laser pulse fluence, with a typical pulse energy of ~1 µJ. For [5-NF]-/[5-AF]- 

each isolated portion of ions was irradiated by 50 laser pulses, whereas for 

[5-NF]+/[5-AF]+ 150 pulses were utilized to account for a drastically reduced 

fragmentation yield. 

For transient experiments the temporal delay between pump (510 nm, 0.3 µJ; 410 nm, 

0.8 µJ) and probe pulses (1200 nm, 150 µJ) was introduced via an optical delay line. 

Pump and probe pulses were spatially overlapped quasi-collinearly by focusing into the 

center of the Paul ion trap with a lens (f=50 cm). The beam diameter in the ion trap was 

estimated to be ~1 mm using the knife-edge technique. The relative polarization of 

pump and probe pulses was controlled by a Berek polarization compensator in the 

pump path and set to the magic angle (54.7°). The initial ~1 kHz repetition rate of the 

laser pulses was reduced to ~330 Hz by an optical chopper. Each isolated portion of ions 

was irradiated by 50 pump/probe pulse pairs. 
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The tPF signals were recorded as extracted ion chromatograms while continuously 

varying the delay between the pump and probe pulses. Evaluation of the transient 

signals was performed as Fi/(Fi+Pi), where Fi and Pi are the sums of the intensities of 

fragment and parent ion signals, respectively. 

To evaluate the temporal resolution at a given pump/probe wavelength combination, 

we recorded the multiple-photon ionization signal of neutral furan in the ion trap as a 

function of time delay between the pump and probe pulses. The obtained signal 

represents an intensity cross correlation function (ccf) of the pump and probe laser 

pulses. The instrumental system response was then estimated from the fwhm of the 

resulting Gaussian-shaped photoionization signal. A typical value for the fwhm of the ccf 

at 510 nm (pump)/1200 nm (probe) [410 nm/1200 nm] was estimated to be ∼120 fs 

[∼130 fs] 

In IRMPD experiments, the wavelength in a spectral range of 2800-3760 cm-1 was 

continuously scanned irradiating each trapped ion cloud by 2-4 laser pulses. Ion 

chromatograms were extracted from the mass spectra with the Bruker chromatogram 

software and used to calculate the IR spectra according to Fi/(Fi+Pi), where Fi and Pi are 

the sums of the intensities of fragment and parent ion signals, respectively. For 

smoothing the spectra, five points averaging between adjacent data points was 

performed within the Origin Plot Software. A wave meter (821N-NIR, Bristol 

instruments) was used for IR frequency calibration. 
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4.9.2 Structural parameters from DFT optimized geometries 

 

Figure S1 Schematic structure of functionalized fluorescein derivatives 
[5-RF] (R=NH2, NO2). The dihedral angle φ denotes the mutual orientation 
between the two planes that contain either the xanthene or the phenyl 
moieties, whereas θ denotes the orientation of the carboxylic acid group 
within the plane of the phenyl ring. 

Table S1 Relative changes in dihedral angles Δφ and Δθ upon geometry optimization of 
anions (a) and cations (b) at the DFT (ωB97XD/6-31+G(d)) level of theory, starting 
from θ=90° and φ=0°. Positive values of Δφ and Δθ denote clockwise rotation around the 
respective C-C bond (cf. Figure S1), whereas negative values denote counter-clockwise 
rotation. Lactonic structures (Anion X’) were disregarded, as the dihedral angle φ is not 
comparable to the angle in the non-lactone structures. 

a)  Anion B1 Anion B2 Anion B3 Anion X 

[5-AF]- 
Δφ / ° -2.4 14.2 17.0 30.1 
Δθ / ° 19.6 19.2 29.7 4.8 

      

[5-NF]- 
Δφ / ° 3.2 -10.1 -14.4 17.7 
Δθ / ° -21.3 -19.8 -32.6 2.3 

      
      

b)  Cation 1 Cation 2 Cation 3 Cation 4 

[5-AF]+ 
Δφ / ° 3.9 -20.8 -14.0 -27.4 
Δθ / ° 1.3 -25.2 -30.8 -54.2 

      

[5-NF]+ 
Δφ / ° 3.0 -1.3 10.6 -19.1 
Δθ / ° 0.5 -5.2 21.7 -59.4 
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4.9.3 Mass spectrometric data 

 

Figure S2 Mass spectrum depicting the formation of fragment ions by IRMPD 
(a), by one-color (510 nm, 1µJ, black) and pump-probe (λpump=510 nm, 0.3 µJ; 
λprobe=1200 nm, 120 µJ; blue) PF (b) of [5-AF]-. Asterisk denotes parent ion 
signal. 

Table S2 Overview over identified ion signals from CID/PF 
fragment mass spectra of [5-AF]- shown in Figure S2. 
Numeric values denote the most abundant signal of the 
respective isotope pattern. Satellite signals were neglected, 
unless they contribute significantly to the observed isotope 
pattern. 

m/z mass loss / Da assigned neutral loss 

346* - - 
302 44 -CO2 
301 45 -HCO2 

*parent ion: [5-AF]-  
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Figure S3 Mass spectrum depicting the formation of fragment ions by IRMPD 
(a) and by one-color (510 nm, 1µJ, black) and pump-probe (λpump=510 nm, 
0.3 µJ; λprobe=1200 nm, 120 µJ; blue) PF (b) of [5-NF]-. Asterisk denotes 
parent ion signal. 

Table S3 Overview over identified ion signals from CID/PF 
fragment mass spectra of [5-NF]- shown in Figure S3. 
Numeric values denote the most abundant signal of the 
respective isotope pattern. Satellite signals were neglected, 
unless they contribute significantly to the observed isotope 
pattern. 

m/z mass loss / Da assigned neutral loss 

376* - - 
332 44 -CO2 
331 45 -HCO2 
315 61 -CO2,-OH 
302 74 -CO,-NO2/-C2H2,-H2CO2 
285 91 -HCO2,-NO2 

*parent ion: [5-NF]-  
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Figure S4 Mass spectrum depicting the formation of fragment ions by IRMPD 
(a) and by one-color (410 nm, 1µJ, black) and pump-probe (λpump=410 nm, 
0.8 µJ; λprobe=1200 nm, 120 µJ; blue) PF (b) of [5-AF]+. Asterisk denotes 
parent ion signal. 

Table S4 Overview over identified ion signals from CID/PF 
fragment mass spectra of [5-AF]+ shown in Figure S4. 
Numeric values denote the most abundant signal of the 
respective isotope pattern. Satellite signals were neglected, 
unless they contribute significantly to the observed isotope 
pattern. 

m/z mass loss / Da assigned neutral loss 

348* - - 
330 18 -H2O 
320 28 -CO 
314 34 -H2O,-NH2 
304 44 -CO2 
302 46 -H2CO2 
289 59 -HCO, 
286 62 -H2CO2,-NH2 
276 74 -CO,-CO2 
274 76 -CO,-H2CO2 
256 92 -CO,-CO2,-H2O 

*parent ion: [5-AF]+  
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Figure S5 Mass spectrum depicting the formation of fragment ions by IRMPD 
(a) and by one-color (410 nm, 1µJ, black) and pump-probe (λpump=410 nm, 
0.8 µJ; λprobe=1200 nm, 120 µJ; blue) PF (b) of [5-NF]+. Asterisk denotes 
parent ion signal. 

Table S5 Overview over identified ion signals from CID/PF 
fragment mass spectra of [5-NF]+ shown in Figure S5. Numeric 
values denote the most abundant signal of the respective 
isotope pattern. Satellite signals were neglected, unless they 
contribute significantly to the observed isotope pattern. 

ion mass / m/z mass loss / Da assigned neutral loss 

378* - - 
364 14 not assigned 
348 -30 -NO 
332 46 -H2CO2/-NO2 
331 47 -NO,-OH 
320 58 -H2CO,-CO 
314 64 -H2CO2,-H2O 
303 75 -HCO,-CO,-H2O 
286 92 -H2CO2,-NO2 
275 103 -HCO2,-NO2,-H2O 
274 104 -H2CO2,-NO2-H2O 
271 107 not assigned 
259 119 not assigned 
258 120 not assigned 

*parent ion: [5-NF]+  
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4.9.4 DFT calculated IR frequencies 

Table S6 Frequencies and intensities of IR vibrational modes calculated 
(DFT/ωB97XD/6-31+G(d)) for the five considered conformers of [5-AF]-. A scaling 
factor of 0.95 was employed. 

conformer 
unscaled energy / 
cm-1 

scaled energy / 
cm-1 

IR intensity / 
km∙mol-1 

mode 

Anion B1 
3696 3511 13 N-H2 asym. 
3648 3466 506 COO-H 
3596 3416 15 N-H2 sym. 

Anion B2 
3784 3595 82 COO-H 
3697 3512 13 N-H2 sym. 
3596 3416 14 N-H2 asym. 

Anion B3 
3777 3588 80 COO-H 
3695 3510 12 N-H2 asym. 
3594 3414 13 N-H2 sym. 

Anion X 
3842 3650 81 O-H 
3687 3503 9 N-H2 asym. 
3588 3409 6 N-H2 sym. 

Anion X’ 
3846 3654 56 O-H 
3687 3503 11 N-H2 asym. 
3589 3410 9 N-H2 sym. 

Table S7 Frequencies and intensities of IR vibrational modes calculated 
(DFT/ωB97XD/6-31+G(d)) for the five considered conformers of [5-NF]-. A scaling 
factor of 0.95 was employed. 

conformer 
unscaled energy / 
cm-1 

scaled energy / 
cm-1 

IR intensity / 
km∙mol-1 

mode 

Anion B1 3636 3454 518 COO-H 
Anion B2 3786 3597 92 COO-H 
Anion B3 3777 3588 94 COO-H 
Anion X 3841 3649 89 O-H 
Anion X’ 3844 3652 62 O-H 
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Table S8 Frequencies and intensities of IR vibrational modes calculated 
(DFT/ωB97XD/6-31+G(d)) for the four considered conformers of [5-AF]+. A scaling 
factor of 0.95 was employed. 

conformer 
unscaled energy / 
cm-1 

scaled energy / 
cm-1 

IR intensity / 
km∙mol-1 

mode 

Cation 1 

3819 3628 28 2xO-H sym. 
3818 3627 430 2xO-H asym. 
3765 3577 144 COO-H 
3747 3560 38 N-H2 asym. 
3637 3455 103 N-H2 sym. 

Cation 2 

3817 3626 87 2xO-H sym. 
3815 3624 380 2xO-H asym. 
3763 3575 43 N-H2 asym. 
3762 3574 144 COO-H 
3648 3466 162 N-H2 sym. 

Cation 3 

3818 3627 163 2xO-H sym. 
3816 3625 300 2xO-H asym. 
3813 3622 56 COO-H 
3748 3561 40 N-H2 asym. 
3638 3456 120 N-H2 sym. 

Cation 4 

3814 3623 163 2xO-H sym. 
3812 3621 328 2xO-H asym. 
3809 3619 29 COO-H 
3763 3575 48 N-H2 asym. 
3648 3466 189 N-H2 sym. 

Table S9 Frequencies and intensities of IR vibrational modes calculated 
(DFT/ωB97XD/6-31+G(d)) for the four considered conformers of [5-NF]+. A scaling 
factor of 0.95 was employed. 

conformer 
unscaled energy / 
cm-1 

scaled energy / 
cm-1 

IR intensity / 
km∙mol-1 

mode 

Cation 1 
3816 3625 1 2xO-H sym 
3815 3624 500 2xO-H asym 
3761 3573 164 COO-H 

Cation 2 
3814 3623 40 2xO-H sym 
3813 3622 483 2xO-H asym 
3764 3576 133 COO-H 

Cation 3 
3822 3631 68 COO-H 
3816 3625 82 2xO-H sym 
3815 3625 423 2xO-H asym 

Cation 4 
3810 3620 212 2xO-H sym 
3810 3620 18 COO-H 
3807 3617 353 2xO-H asym 
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4.9.5 Photofragmentation 

 

Figure S6 Pulse energy E dependent total fragmentation yield Y of [5-AF]- 
(top, left), [5-NF]- (top, right), [5-AF]+ (bottom, left) and [5-NF]+ (bottom, 
right) by one-color photoexcitation. Dependencies were evaluated according 
to 	 = 
 ∙ ��,[1] where n is a mean value for the number of photons absorbed 
to induce fragmentation and A a dimensionless fit-parameter. 
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Figure S7 Comparison of the experimental PF spectrum of [5-NF]- (a) and a 
theoretical absorption spectrum (b, black) obtained by convoluting the 
TD-DFT calculated linear absorption spectra of three conformers of [5-NF]-. 
Note that the weights of individual contributions (in color) to the convoluted 
spectrum were obtained manually so that the sum amounts to 100%. The 
weights do not represent the actual contributions to the ion population and 
are given merely for the sake of completeness. 
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4.9.6 TD-DFT calculated electronic transitions 

Table S10 Vertical singlet transitions of [5-AF]- (Anion B1) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 HOMO→LUMO 96 419 479 0.76 
S13 HOMO-4→LUMO 71 242 261 0.12 
S16 HOMO-5→LUMO 74 238 256 0.35 
S29 HOMO-1→LUMO+3 27 209 223 0.28 
S30 HOMO-1→LUMO+3 11 209 223 0.37 
S32 HOMO-1→LUMO+3 43 204 217 0.26 

S33 

HOMO-8→LUMO+1 10 

202 215 0.60 
HOMO-7→LUMO+1 26 
HOMO-6→LUMO+1 14 
HOMO-4→LUMO+3 21 

 

Figure S8 Molecular orbital isosurfaces of [5-AF]- (Anion B1) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S10. 
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Table S11 Vertical singlet transitions of [5-AF]- (Anion B2) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 
HOMO→LUMO 64 

426 488 0.52 
HOMO→LUMO+1 33 

S2 
HOMO→LUMO 34 

402 457 0.25 
HOMO→LUMO+1 63 

S14 
HOMO-5→LUMO 13 

248 268 0.17 
HOMO-4→LUMO 50 

S17 
HOMO-5→LUMO 14 

240 259 0.20 HOMO-4→LUMO 13 
HOMO-4→LUMO+1 45 

S30 
HOMO-1→LUMO+3 61 

215 230 0.15 
HOMO-1→LUMO+1 17 

S35 HOMO-1→LUMO+10 17 206 220 0.36 
S36 HOMO-1→LUMO+10 21 205 218 0.42 

S38 
HOMO-7→LUMO 19 

204 217 0.15 
HOMO-4→LUMO+3 33 

S42 
HOMO-5→LUMO+3 28 

200 213 0.20 
HOMO-4→LUMO+3 22 

 

Figure S9 Molecular orbital isosurfaces of [5-AF]- (Anion B2) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S11.  
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Table S12 Vertical singlet transitions of [5-AF]- (Anion B3) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 
HOMO→LUMO 83 

433 498 0.35 
HOMO→LUMO+1 13 

S2 
HOMO→LUMO 14 

408 465 0.41 
HOMO→LUMO+1 63 

S15 
HOMO-6→LUMO 11 

246 266 0.11 HOMO-6→LUMO+1 35 
HOMO-4→LUMO+1 15 

S16 
HOMO-4→LUMO+1 40 

244 263 0.28 HOMO-4→LUMO 13 
HOMO-4→LUMO+1 45 

S36 HOMO-1→LUMO+3 26 207 221 0.57 
S38 HOMO-4→LUMO+3 42 205 218 0.11 
S39 HOMO-1→LUMO+3 15 205 218 0.14 
S43 HOMO-5→LUMO+3 10 201 214 0.13 

S44 
HOMO-7→LUMO 13 

200 213 0.15 
HOMO-5→LUMO+3 14 

 

Figure S10 Molecular orbital isosurfaces of [5-AF]- (Anion B3) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S12.  
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Table S13 Vertical singlet transitions of [5-AF]- (Anion X) calculated at the ground state 
geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are given 
together with corresponding values λS obtained after bathochromically shifting the 
transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are 
displayed. Contributions to electronic transitions with a weight of <10 % were omitted. 

state transition weight / % λ / nm λS / nm f 

S1 HOMO→LUMO 91 426 488 0.42 

S2 
HOMO-2→LUMO 47 

341 380 0.18 
HOMO-1→LUMO 42 

S17 
HOMO-2→LUMO+3 13 

232 249 0.10 
HOMO-2→LUMO+6 12 

S20 
HOMO-8→LUMO 27 

225 241 0.15 HOMO-4→LUMO+6 10 
HOMO-3→LUMO+6 10 

S21 
HOMO-9→LUMO 17 

223 239 0.12 
HOMO-→LUMO+12 16 

S30 HOMO-3→LUMO+3 13 210 224 0.11 

S38 
HOMO-6→LUMO+3 32 

200 213 0.51 
HOMO-6→LUMO+4 13 

 

Figure S11 Molecular orbital isosurfaces of [5-AF]- (Anion X) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S13.  
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Table S14 Vertical singlet transitions of [5-AF]- (Anion X’) calculated at the ground state 
geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are given 
together with corresponding values λS obtained after bathochromically shifting the 
transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are 
displayed. Contributions to electronic transitions with a weight of <10 % were omitted. 

state transition weight / % λ / nm λS / nm f 

S2 
HOMO→LUMO+3 56 

313 345 0.13 
HOMO→LUMO+4 20 

S17 HOMO→LUMO+3 13 238 256 0.17 

S21 
HOMO-2→LUMO+4 21 

230 247 0.23 
HOMO-2→LUMO+7 33 

S29 HOMO-4→LUMO 30 
216 231 0.21  HOMO-2→LUMO+4 12 

 HOMO-2→LUMO+7 20 

S32 
HOMO-4→LUMO 25 

212 226 0.31 
HOMO-2→LUMO+7 12 

S37 HOMO→LUMO+7 10 205 218 0.11 
S39 HOMO-1→LUMO+4 11 204 217 0.17 

S44 
HOMO-7→LUMO 10 

201 214 0.16 
HOMO-5→LUMO 21 

 

Figure S12 Molecular orbital isosurfaces of [5-AF]- (Anion X’) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S14.  
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Table S15 Vertical singlet transitions of [5-NF]- (Anion B1) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S2 HOMO→LUMO+1 92 421 482 0.76 

S18 
HOMO-7→LUMO 45 

249 269 0.36 
HOMO-6→LUMO+2 15 

S21 

HOMO-8→LUMO 11 

246 266 0.24 
HOMO-8→LUMO+2 17 
HOMO-7→LUMO 16 
HOMO-6→LUMO+2 21 

S34 HOMO-1→LUMO+7 21 209 223 0.23 
S35 HOMO→LUMO+7 16 208 222 0.17 
S37 HOMO-1→LUMO+7 26 207 221 0.51 

S38 
HOMO-8→LUMO+2 34 

203 216 0.33 HOMO-6→LUMO+2 19 
HOMO-5→LUMO+2 27 

 

Figure S13 Molecular orbital isosurfaces of [5-NF]- (Anion B1) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S15.  
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Table S16 Vertical singlet transitions of [5-NF]- (Anion B2) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S2 HOMO→LUMO+1 83 420 481 0.12 
S3 HOMO→LUMO+2 88 419 479 0.64 

S20 
HOMO-7→LUMO 32 

250 270 0.40 
HOMO-6→LUMO 26 

S39 
HOMO-1→LUMO+3 35 

209 223 0.19 
HOMO→LUMO+14 11 

S41 
HOMO-10→LUMO+3 29 

206 220 0.12 HOMO-7→LUMO+1 24 
HOMO-6→LUMO+1 11 

S42 
HOMO-1→LUMO+3 18 

205 218 0.58 
HOMO-1→LUMO+14 37 

S45 
HOMO-10→LUMO 22 

202 215 0.11 
HOMO-10→LUMO+1 18 

 

Figure S14 Molecular orbital isosurfaces of [5-NF]- (Anion B2) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S16.  
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Table S17 Vertical singlet transitions of [5-NF]- (Anion B3) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S3 HOMO→LUMO+2 94 418 478 0.73 

S20 
HOMO-6→LUMO 27 

253 274 0.18 HOMO-5→LUMO 12 
HOMO-4→LUMO+1 12 

S22 
HOMO-6→LUMO 28 

249 269 0.18 
HOMO-4→LUMO+1 29 

S28 
HOMO-4→LUMO+2 46 

235 253 0.12 
HOMO-3→LUMO+1 10 

S34 HOMO-5→LUMO+1 72 216 231 0.10 
S41 HOMO→LUMO+9 16 207 221 0.14 

S42 
HOMO-9→LUMO 12 

206 220 0.12 
HOMO-1→LUMO+9 35 

S43 
HOMO-9→LUMO 25 

206 220 0.24 
HOMO-1→LUMO+9 14 

S45 
HOMO-10→LUMO+1 11 

201 214 0.19 HOMO-7→LUMO+1 22 
HOMO-4→LUMO+3 18 

 

Figure S15 Molecular orbital isosurfaces of [5-NF]- (Anion B3) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S17.  
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Table S18 Vertical singlet transitions of [5-NF]- (Anion X) calculated at the ground state 
geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are given 
together with corresponding values λS obtained after bathochromically shifting the 
transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are 
displayed. Contributions to electronic transitions with a weight of <10 % were omitted. 

state transition weight / % λ / nm λS / nm f 

S1 
HOMO→LUMO 34 

376 424 0.39 
HOMO→LUMO+1 54 

S16 
HOMO-9→LUMO 35 

258 280 0.45 HOMO-7→LUMO 36 
HOMO-6→LUMO 13 

S25 HOMO-5→LUMO 15 222 238 0.13 

S35 
HOMO-9→LUMO+2 10 

206 220 0.10 
HOMO-6→LUMO+2 24 

S41 
HOMO-5→LUMO+2 12 

200 213 0.12 HOMO-5→LUMO+4 17 
HOMO-2→LUMO+6 12 

 

Figure S16 Molecular orbital isosurfaces of [5-NF]- (Anion X) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S18.  
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Table S19 Vertical singlet transitions of [5-NF]- (Anion X’) calculated at the ground state 
geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are given 
together with corresponding values λS obtained after bathochromically shifting the 
transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are 
displayed. Contributions to electronic transitions with a weight of <10 % were omitted. 

state transition weight / % λ / nm λS / nm f 

S5 HOMO→LUMO+3 78 315 348 0.19 

S13 
HOMO-8→LUMO 31 

262 284 0.14 
HOMO-3→LUMO 36 

S17 
HOMO-3→LUMO+3 11 

255 276 0.15 
HOMO-2→LUMO+3 44 

S23 
HOMO→LUMO+14 12 

238 256 0.15 
HOMO→LUMO+16 17 

S34 
HOMO-3→LUMO+3 10 

216 231 0.22 
HOMO-3→LUMO+14 21 

S36 
HOMO-4→LUMO+1 10 

213 228 0.31 HOMO-3→LUMO+3 14 
HOMO-2→LUMO+4 12 

S43 
HOMO-7→LUMO+1 20 

205 218 0.11 HOMO-4→LUMO+1 18 
HOMO-4→LUMO+3 13 

S46 
HOMO-8→LUMO+1 15 

203 216 0.22 
HOMO-7→LUMO+1 14 

S52 HOMO-8→LUMO+1 50 200 213 0.16 

 

Figure S17 Molecular orbital isosurfaces of [5-NF]- (Anion X’) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S19.  
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Table S20 Vertical singlet transitions of [5-AF]+ (Cation 1) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S2 HOMO-1→LUMO 94 348 389 0.58 

S6 
HOMO-4→LUMO 90 

270 294 0.16 
HOMO-1→LUMO 80 

S9 
HOMO-6→LUMO 11 

238 256 0.14 HOMO-3→LUMO+1 18 
HOMO→LUMO+5 45 

S10 
HOMO-6→LUMO 33 

229 246 0.10 
HOMO-1→LUMO+2 34 

S11 
HOMO-6→LUMO 38 

217 232 0.28 HOMO-1→LUMO+1 11 
HOMO-1→LUMO+2 28 

S12 
HOMO-2→LUMO+2 37 

216 231 0.31 
HOMO-1→LUMO+4 37 

S16 
HOMO-3→LUMO+1 32 

205 218 0.33 
HOMO→LUMO+5 14 

S20 
HOMO-2→LUMO+2 39 

200 213 0.82 
HOMO-1→LUMO+4 27 

 

Figure S18 Molecular orbital isosurfaces of [5-AF]+ (Cation 1) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S20.  
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Table S21 Vertical singlet transitions of [5-AF]+ (Cation 2) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 HOMO→LUMO 94 430 494 0.15 
S2 HOMO-1→LUMO 94 350 391 0.56 
S8 HOMO-5→LUMO 59 242 261 0.18 

S10 
HOMO-4→LUMO 26 

232 249 0.13 
HOMO-4→LUMO+1 25 

S11 
HOMO-5→LUMO 14 

222 238 0.19 HOMO-1→LUMO+1 29 
HOMO-1→LUMO+2 23 

S12 
HOMO-2→LUMO+2 21 

218 233 0.19 HOMO-1→LUMO+2 18 
HOMO-1→LUMO+3 10 

S16 
HOMO-3→LUMO+1 23 

206 220 0.18 
HOMO-1→LUMO+2 17 

S17 
HOMO-1→LUMO+3 24 

203 216 0.12 
HOMO-3→LUMO+1 11 

S19 
HOMO-2→LUMO+2 19 

201 214 0.44 
HOMO-1→LUMO+1 13 

S20 HOMO→LUMO+4 22 200 213 0.11 

 

Figure S19 Molecular orbital isosurfaces of [5-AF]+ (Cation 2) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S21.  



4 Charge state dependent excited state quenching in 5-Amino- and 5-Nitrofluorescein 

 

154 

 

Table S22 Vertical singlet transitions of [5-AF]+ (Cation 3) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S2 HOMO-1→LUMO 94 351 392 0.57 

S9 
HOMO-6→LUMO 24 

236 254 0.17 
HOMO→LUMO+3 27 

S11 
HOMO-6→LUMO 25 

221 237 0.22 HOMO-1→LUMO+1 27 
HOMO-1→LUMO+2 21 

S12 
HOMO-2→LUMO+2 24 

218 233 0.24 HOMO-1→LUMO+2 17 
HOMO-1→LUMO+5 16 

S14 
HOMO-2→LUMO+2 17 

208 222 0.20 HOMO-1→LUMO+1 42 
HOMO-1→LUMO+2 25 

S16 
HOMO-7→LUMO 13 

205 218 0.12 
HOMO→LUMO+2 52 

S19 
HOMO-4→LUMO+1 24 

200 213 0.24 
HOMO-3→LUMO+1 30 

 

Figure S20 Molecular orbital isosurfaces of [5-AF]+ (Cation 3) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S22.  
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Table S23 Vertical singlet transitions of [5-AF]+ (Cation 4) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 HOMO→LUMO 94 430 494 0.19 

S2 
HOMO-2→LUMO 16 

356 399 0.16 
HOMO-1→LUMO 79 

S3 
HOMO-2→LUMO 81 

349 390 0.12 
HOMO-1→LUMO 16 

S8 
HOMO-6→LUMO 52 

242 261 0.17 
HOMO-5→LUMO 16 

S10 
HOMO-4→LUMO+2 10 

232 249 0.20 
HOMO→LUMO+2 11 

S11 HOMO-1→LUMO+1 50 222 238 0.12 

S12 
HOMO-2→LUMO+1 27 

219 234 0.21 
HOMO-1→LUMO+2 19 

S18 
HOMO-8→LUMO 47 

201 214 0.10 
HOMO-1→LUMO+3 17 

S19 
HOMO-2→LUMO+1 25 

200 213 0.56 
HOMO-1→LUMO+2 17 

 

Figure S21 Molecular orbital isosurfaces of [5-AF]+ (Cation 4) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S23.  
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Table S24 Vertical singlet transitions of [5-NF]+ (Cation 1) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 HOMO→LUMO 95 354 396 0.59 
S6 HOMO-2→LUMO 88 268 291 0.16 

S13 
HOMO-4→LUMO 43 

227 244 0.33 
HOMO→LUMO+3 27 

S14 
HOMO-9→LUMO 28 

217 232 0.13 
HOMO→LUMO+3 25 

S15 
HOMO-1→LUMO+3 39 

217 232 0.33 
HOMO→LUMO+5 37 

S20 
HOMO-5→LUMO 15 

201 214 0.15 HOMO-3→LUMO+2 21 
HOMO→LUMO+4 20 

S21 
HOMO-7→LUMO+1 16 

200 213 0.35 HOMO-3→LUMO+2 28 
HOMO→LUMO+2 21 

S22 
HOMO-1→LUMO+2 13 

200 213 0.71 HOMO-1→LUMO+3 31 
HOMO→LUMO+5 28 

 

Figure S22 Molecular orbital isosurfaces of [5-NF]+ (Cation 1) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S24.  
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Table S25 Vertical singlet transitions of [5-NF]+ (Cation 2) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λ / nm f 

S1 HOMO→LUMO 95 357 400 0.59 

S10 
HOMO-9→LUMO 51 

244 263 0.11 
HOMO-5→LUMO 11 

S12 
HOMO-4→LUMO+1 54 

226 242 0.40 
HOMO→LUMO+3 16 

S14 
HOMO→LUMO+1 19 

220 236 0.13 HOMO→LUMO+2 10 
HOMO→LUMO+3 32 

S15 
HOMO-1→LUMO+3 34 

217 232 0.33 
HOMO→LUMO+5 34 

S22 
HOMO-4→LUMO+2 10 

202 215 0.37 HOMO-2→LUMO+1 42 
HOMO→LUMO+4 12 

S23 
HOMO-1→LUMO+2 11 

200 213 0.86 HOMO-1→LUMO+3 34 
HOMO→LUMO+5 37 

 

Figure S23 Molecular orbital isosurfaces of [5-NF]+ (Cation 2) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S25.  
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Table S26 Vertical singlet transitions of [5-NF]+ (Cation 3) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 HOMO→LUMO 94 356 3.48 0.58 

S13 
HOMO-4→LUMO+1 10 

228 5.44 0.36 HOMO-3→LUMO+1 37 
HOMO→LUMO+3 21 

S15 
HOMO-1→LUMO+3 40 

217 5.71 0.34 HOMO→LUMO+5 27 
HOMO→LUMO+3 25 

S22 HOMO-10→LUMO 54 201 6.17 0.33 

S23 

HOMO-10→LUMO 29 

200 6.20 0.50 
HOMO-3→LUMO+2 11 
HOMO-1→LUMO+2 11 
HOMO-1→LUMO+3 11 

S24 
HOMO-3→LUMO+2 27 

200 6.20 0.56 HOMO-1→LUMO+3 13 
HOMO→LUMO+5 10 

 

Figure S24 Molecular orbital isosurfaces of [5-NF]+ (Cation 3) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S26.  
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Table S27 Vertical singlet transitions of [5-NF]+ (Cation 4) calculated at the ground 
state geometry (TD-DFT/ωB97XD/6-31+G(d)). Calculated central wavelengths λ are 
given together with corresponding values λS obtained after bathochromically shifting 
the transition energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 
are displayed. Contributions to electronic transitions with a weight of <10 % were 
omitted. 

state transition weight / % λ / nm λS / nm f 

S1 
HOMO-1→LUMO 19 

364 409 0.45 
HOMO→LUMO 76 

S2 
HOMO-1→LUMO 78 

357 400 0.15 
HOMO→LUMO 18 

S12 
HOMO-3→LUMO+1 13 

226 242 0.48 
HOMO→LUMO+2 45 

S13 

HOMO-1→LUMO+2 17 

222 238 0.17 
HOMO→LUMO+1 32 
HOMO→LUMO+4 15 
HOMO→LUMO+5 11 

S17 
HOMO-1→LUMO+2 19 

213 228 0.35 HOMO-1→LUMO+3 10 
HOMO→LUMO+1 48 

S23 HOMO-1→LUMO+1 68 200 213 0.18 

S24 
HOMO-1→LUMO+2 29 

200 213 0.60 
HOMO→LUMO+5 29 

 

Figure S25 Molecular orbital isosurfaces of [5-NF]+ (Cation 4) with 
contributions to the electronic configurations, characterizing the electronic 
transitions listed in Table S27.  



4 Charge state dependent excited state quenching in 5-Amino- and 5-Nitrofluorescein 

 

160 

 

4.9.7 DFT calculated frontier orbital sequences 

 

Figure S26 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the higher energy conformers of 
[5-AF]-. Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=510 nm (cf. Table 1).  
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Figure S27 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the higher energy conformers of 
[5-NF]-. Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=510 nm (cf. Table 2).  
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Figure S28 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the higher energy conformers of 
[5-AF]+. Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=410 nm (cf. Table 3).  
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Figure S29 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the higher energy conformers of 
[5-NF]+. Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=410 nm (cf. Table 4).  
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Figure S30 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the lowest energy conformers of 
[5-AF]- employing different hybrid functionals (ωB97XD, B3LYP and 
cam-B3LYP). Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=510 nm (cf. Table S28). 

Table S28 Comparison of highest intensity, lowest energy transitions most probably 
excited using λpump=510 nm calculated for [5-AF]- (Anion B1) employing different 
functionals (TD-DFT/6-31+G(d)). Calculated central wavelengths λ are given together 
with corresponding values λS obtained after bathochromically shifting the transition 
energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are displayed. 
Contributions to electronic transitions with a weight of <10% were omitted. 

functional state transition (weight / %) character λ / nm λS / nm f 

ωB97XD S1 HOMO→LUMO (96) LE(X) 419 479 0.76 

B3LYP S2 
HOMO→LUMO (64) LE(X) 

445 514 0.62 
HOMO→LUMO (33) CT(X→B) 

cam-B3LYP S1 HOMO→LUMO (96) LE(X) 419 479 0.76 
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Figure S31 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the lowest energy conformers of 
[5-NF]- employing different hybrid functionals (ωB97XD, B3LYP and 
cam-B3LYP). Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=510 nm (cf. Table S29). 

Table S29 Comparison of highest intensity, lowest energy transitions most probably 
excited using λpump=510 nm calculated for [5-NF]- (Anion B1) employing different 
functionals (TD-DFT/6-31+G(d)). Calculated central wavelengths λ are given together 
with corresponding values λS obtained after bathochromically shifting the transition 
energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are displayed. 
Contributions to electronic transitions with a weight of <10% were omitted. 

functional state transition (weight / %) character λ / nm λS / nm f 

ωB97XD S2 HOMO→LUMO+1 (92) LE(X) 421 482 0.76 
B3LYP S6 HOMO→LUMO+2 (92) LE(X) 445 514 0.62 

cam-B3LYP S1 HOMO→LUMO+1 (87) LE(X) 422 483 0.76 
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Figure S32 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the lowest energy conformers of 
[5-AF]+ employing different hybrid functionals (ωB97XD, B3LYP and 
cam-B3LYP). Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=410 nm (cf. Table S30). 

Table S30 Comparison of highest intensity, lowest energy transitions most probably 
excited using λpump=410 nm calculated for [5-AF]+ (Cation 1) employing different 
functionals (TD-DFT/6-31+G(d)). Calculated central wavelengths λ are given together 
with corresponding values λS obtained after bathochromically shifting the transition 
energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are displayed. 
Contributions to electronic transitions with a weight of <10% were omitted. 

functional state transition (weight / %) character λ / nm λS / nm f 

ωB97XD S2 HOMO-1→LUMO (94) LE(X) 348 389 0.58 
B3LYP S3 HOMO-1→LUMO (89) LE(X) 380 429 0.41 

cam-B3LYP S1 HOMO-1→LUMO (95) LE(X) 350 391 0.59 
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Figure S33 Sequence of highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO) centered at the xanthene (X) 
and benzoic acid (B) moieties calculated for the lowest energy conformers of 
[5-NF]+ employing different hybrid functionals (ωB97XD, B3LYP and 
cam-B3LYP). Orbital energies are given in Hartree. Blue arrow denotes the 
character of the respective calculated lowest energy transition most probably 
excited using λpump=410 nm (cf. Table S31). 

Table S31 Comparison of highest intensity, lowest energy transitions most probably 
excited using λpump=410 nm calculated for [5-NF]+ (Cation 1) employing different 
functionals (TDDFT/6-31+G(d)). Calculated central wavelengths λ are given together 
with corresponding values λS obtained after bathochromically shifting the transition 
energies by 3000 cm-1. Only transitions with an oscillator strength of f>0.1 are displayed. 
Contributions to electronic transitions with a weight of <10% were omitted. 

functional state transition (weight / %) character λ / nm λS / nm f 

ωB97XD S1 HOMO→LUMO (95) LE(X) 354 396 0.59 
B3LYP S2 HOMO→LUMO (94) LE(X) 385 435 0.47 

cam-B3LYP S1 HOMO→LUMO (95) LE(X) 357 400 0.59 
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Figure S34 Lowest energy conformers of [F]- and [F]+ calculated at the 
ωB97XD/6-31+G(d) DFT level of theory. Sequence of highest occupied 
molecular orbitals (HOMO) and lowest unoccupied molecular orbitals 
(LUMO) centered at the xanthene (X) and benzoic acid (B) moieties is only 
displayed examplatorily for the lowest energy conformer of [F]- (top) and 
[F]+ (bottom). Orbital energies are given in Hartree. Blue arrow denotes the 
character of respective calculated lowest energy transition highest in 
intensity (cf. Table S32). 

Table S32 Lowest energy vertical singlet transition calculated for the Anion B1 and 
Cation 1 conformer of [F]- and [F]+, respectively. TD-DFT (ωB97XD/6-31+G(d)) 
calculated central wavelengths λ are given together with corresponding values λS 
obtained after bathochromically shifting the transition energies by 3000 cm-1. 
λpump=520 nm/λpump=425 nm were used in Ref. [2] for transient experiments on 
[F]-/[F]+. 

 state transition (weight / %) character λ / nm λS / nm f 

Anion B1 S1 HOMO→LUMO (95%) LE(X) 419 479 0.76 

Cation 1 S1 HOMO→LUMO (94%) LE(X) 351 392 0.58 
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4.9.8 Calculated low frequency vibrational modes 

 

Figure S35 Schematic depiction of low frequency vibrational modes 
(<100 cm-1) in non-lactone forms of [5-AF]-, obtained from ground state 
frequency calculations (cf. Table S33). 

Table S33 Energies of low frequency vibrational modes (<100 cm-1) 
calculated for ground state optimized geometries of the four non-lactone 
conformers of [5-AF]- (DFT/ωB97XD/6-31+G(d)). Unscaled values are listed. 

conf. ṽ1 / cm-1 ṽ2 / cm-1 ṽ3 / cm-1 ṽ4 / cm-1 ṽ5 / cm-1 ṽ6 / cm-1 

B1 18 39 45 57 67 86 

B2 15 39 45 57 64 88 

B3 15 38 47 55 63 89 

X 24 41 51 57 78 98 
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Figure S36 Schematic depiction of low frequency vibrational modes 
(<100 cm-1) in non-lactone forms of [5-NF]-, obtained from ground state 
frequency calculations (cf. Table S34). 

Table S34 Frequencies of low frequency vibrational modes (<100 cm-1) calculated 
for ground state optimized geometries of the four non-lactone conformers of [5-NF]- 
(DFT/ωB97XD/6-31+G(d)). Unscaled values are listed. 

conf. ṽ1 / cm-1 ṽ2 / cm-1 ṽ3 / cm-1 ṽ4 / cm-1 ṽ5 / cm-1 ṽ6 / cm-1 ṽ7 / cm-1 

B1 20 30 41 44 59 71 88 

B2 18 31 41 46 55 61 86 

B3 17 32 41 47 55 63 86 

X 24 30 41 48 56 74 96 
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5.1 Preamble 

The following work has been formatted as to become a manuscript for publication. It has 

not been submitted, yet. Experiments, data processing and evaluation, as well as 

structural and energetic calculations were performed by me. The initial draft of the 

manuscript was written by me.  
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5.2 Abstract 

We report on the intrinsic excited state dynamics of a cationic carbocyanine dye 

(3,3’-diethyloxacarbocyanine) in the gas phase. The isolated ions were investigated by 

femtosecond transient Vis-pump NIR-probe photofragmentation in an ion trap. The 

population of the S1 excited state decays bi-exponentially, yielding two time constants 

on a picosecond timescale. Both time constants decrease upon excitation with pump 

photons of higher energy, i.e. upon imparting higher excess internal energies to the ions. 

From an Arrhenius plot of the rate constants, we estimated two energy barriers, 

corresponding to isomerization pathways by torsion around different C-C bonds within 

the polymethine backbone. Furthermore, the transient photofragmentation signal is 

periodically modulated, indicative of vibrational wave-packet dynamics in the S1 excited 

state. The period of the wave-packet motion can be attributed to one of three low 

frequency vibrational modes, one of which is found to be the torsion of the C-C bridge, 

promoting excited state isomerization of the molecular dye. 

5.3 Introduction 

Energy redistribution and dissipation is a fundamental driving force in nature. Upon 

electronic excitation by absorption of a photon, a molecular system typically strives to 

release the absorbed excess energy by interaction with its environment, subduing 

phototoxic reactions. Fast internal conversion (IC) to the electronic ground state (S0) is a 

favored relaxation process, as it leaves the molecular system in a vibrationally hot S0 

state, allowing for quick release of the stored energy to the surrounding medium. One 

way for efficient IC to the S0 state involves conformational rearrangement, if the 

corresponding reaction coordinate couples the excited state with the S0 state via a 

conical intersection. A prime example for conformational change is intramolecular 

torsion, such as in e.g. the isomerization of 11-cis-retinal induced by photoexcitation, 

which is a fundamental event in vision.[1] Understanding the underlying mechanisms 

behind photoisomerization is also attractive for technical applications, allowing for 

design of photoswitches and light-driven machines on a molecular level.[2-3] For the 

study on molecular photoisomerization, cyanines turned out to be an appealing system, 

as their photophysical properties can be easily tuned by exchange of its terminal groups 

or by modifying the length of the polymethine chain, bridging the end groups.[4] A chain 
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lengths increase, however, decreases the rigidity of the system, hence increasing the 

number of possible isomerization pathways by torsion around different C-C bonds 

within the polymethine backbone. The identification of favored isomerization pathways 

and the resulting isomers in solution is an ongoing endeavor, even for cyanines with 

short chain lengths. A drawback of condensed phase studies is thereby the impact of 

solvent molecules, subduing photoisomerization dynamics and additionally 

complicating theoretical treatment. This can be circumvented by applying gas phase 

techniques. 

Our current study focuses on the excited state dynamics associated with the 

photoisomerization of the 3,3’-diethyloxacarbocyanine cation (DOC+). This system is a 

symmetric carbocyanine dye, consisting of two heterocyclic terminal groups linked by a 

chain of three conjugated carbon atoms. From 1H-NMR measurements it is known that 

the trans-DOC+ isomer is the favored conformation in solution and upon electronic 

excitation isomerizes about the C8-C9-bond to form the 8,9-cis isomer via the S1 excited 

state (dihedral angle θ, Scheme 1).[5-6] 

 

Scheme 1 Schematic structures of trans-, 2,8-cis- and 8,9-cis-DOC+. Relative 
Gibbs energies were determined from B3LYP/6-31G(d) DFT geometry 
optimized structures. 

Based on these reports, and a mainly mono-exponential excited state population decay 

observed in solution,[7-10] the formation of more than one isomer is typically 
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disregarded. However, a recent gas phase study by Adamson et al. on a structurally and 

electronically very similar cationic cyanine dye (3,3’-diethylthiacarbocyanine, DTC+) 

applying ion mobility spectrometry challenges the unequivocal identification of a single 

photoproduct.[11] In light of this recent report, we applied a gas phase method combining 

ion trap mass spectrometry with femtosecond (fs) laser spectroscopy to probe the 

excited state population dynamics of isolated DOC+ ions by transient Vis-pump and NIR-

probe photofragmentation (tPF) action spectroscopy. This study shall shed some light 

on the intrinsic early isomerization dynamics of DOC+ and short-chain cyanine dyes in 

general. 

5.4 Experimental setup and calculations 

The iodine salt of DOC+ was purchased from TCI Europe. Acetonitrile of LC-MS grade 

was purchased from Sigma-Aldrich and used without further purification. Steady-state 

PF and tPF experiments were conducted using a modified Paul-type quadrupole ion trap 

mass spectrometer (amaZon speed, Bruker Daltonics) in combination with a Ti:sapphire 

oscillator and amplifier system (Wyvern 1000™, KMLabs).[12] Briefly, DOC+ was 

generated by electrospray ionization the iodine salt solution in acetonitrile (c=1x10-6 M) 

in positive ion mode. The sample solution was continuously infused by a syringe pump 

at a flow rate of 120 µL/h. Nitrogen as drying gas was set to a flow rate of 4 L/min at 

180°C. Nebulizer pressure was set to 5 psi (345 mbar). 

The fs laser pulses were generated in a cryogenic ultrafast regenerative laser amplifier 

system delivering 50 fs pulses at ~1 kHz repetition rate (central wavelength of 

~785 nm). The pulse train was split to pump two optical parametric oscillators of white 

light continuum (TOPAS-C, Light Conversion) for generating pump and probe pulses of 

tunable wavelength (240-2500 nm). For steady state PF spectra the output from one of 

the TOPAS-C units was utilized in a spectral range of 350 nm up to 490 nm. The spectra 

were obtained by setting the laser pulses to the according wavelengths and measuring 

the intensity of the parent ion and the sum of fragment ions. The fragment yield was 

calculated according to Fi/(Fi+Pi), where Fi and Pi are the sums of the intensities of 

fragment and parent ion signals, respectively, and normalized additionally by its 

numeric wavelength value to account for the different photon energies at constant laser 

pulse fluence, with a typical pulse intensity of ~1.5 µJ. Each isolated portion of ions was 

irradiated by 50 laser pulses. 



5 A new twist to cyanine photoisomerization by ultrafast ion trap action spectroscopy 

 

175 

 

For transient experiments the temporal delay between pump (405 nm, 415 nm, 430 nm, 

455 nm, 465 nm, 0.5-0.7 µJ) and probe pulses (1200 nm, 120 µJ) was controlled via an 

optical delay line. Pump and probe pulses were spatially overlapped quasi-collinearly by 

focusing into the center of the Paul ion trap with a lens (f=50 cm). The beam diameter in 

the ion trap was estimated to be ~1 mm using the knife-edge technique. The relative 

polarization of pump and probe pulses was controlled by a Berek polarization 

compensator in the pump path and set to the magic angle (54.7°). Each isolated portion 

of ions was irradiated by 50 pump/probe pulse pairs. 

The tPF signals were recorded as extracted ion chromatograms while continuously 

varying the delay between the pump and probe pulses. Evaluation of the transient 

signals was performed as Fi/(Fi+Pj), where Fi and Pj are the sums of the intensities of 

fragment and parent ion signals, respectively. Fitting of the longer timescale kinetic 

traces was performed with Origin 2017G. 

To evaluate the temporal resolution at a given pump/probe wavelength combination, 

we recorded the multiple-photon ionization signal of neutral furan in the ion trap as a 

function of time delay between the pump and probe pulses.[13] The obtained signal 

represents an intensity cross correlation function (ccf) of the pump and probe laser 

pulses. The instrumental system response was then estimated from the fwhm of the 

resulting Gaussian-shaped photoionization signal. For a pump+probe wavelength 

combination of 455 nm+1200 nm the ccf was estimated to be ~130 fs and applied in 

fitting of transients recorded for a shorter total pump-probe delay with an open source 

fitting software[14] running within the MATLAB environment. 

Geometry optimization and single point energy calculations were performed using 

density functional theory (DFT) and time-dependent (TD-)DFT at the 

6-31G(d)/B3LYP[15-16] level of theory within the Gaussian 09 program package.[17] 

Steady state linear absorption spectra in acetonitrile solution (c=1∙10-5 M) at room 

temperature were recorded using a Lambda 950 photospectrometer (PerkinElmer). 
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5.5 Results and discussion 

5.5.1 Mass spectrometry and fragmentation behavior 

Upon irradiation of the isolated DOC+ ions with laser pulses in a wavelength range of 

350-490 nm fragment products are formed (Figure 1). 

 
Figure 1 Mass spectrum depicting the formation of fragment ions upon 
photoexcitation of DOC+ at λex=455 nm. Black and blue spectra were 
recorded at 1.5 µJ and 3 µJ pulse energies, respectively. Asterisk denotes 
precursor ion signal. 

The observed fragmentation behavior is quite complex, hence definite assignment to 

fragmentation channels remains for the most part speculative (Table S1). Nonetheless, 

several photoproducts could be identified, such as m/z 304 formed after the loss of an 

ethyl-side chain and the low-intensity product signal located at m/z 166.5 originating 

from electron detachment. Note that, with exception of the electron detachment channel, 

PF and collision induced dissociation (CID) yield similar fragment products (Figure S1), 

albeit at different intensity distributions of the occurring signals, with PF slightly 

favoring products at lower m/z ratios. The formation of lower m/z fragments thus 

allegedly requires higher internal activation energies, which only Vis-photoexcitation 

can provide. 
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5.5.2 Steady-state gas phase action and solution phase absorption spectra 

Recording the fragmentation yield as a function of photoexcitation wavelength yields the 

photofragmentation (PF) action spectrum of DOC+, which is akin to the linear absorption 

spectrum in solution. 

 

Figure 2 Linear absorption spectrum in acetonitrile (blue line), gas phase PF 
action spectrum (red, open circles) and calculated (vibrationally resolved) 
linear gas phase absorption spectrum (black, dashed line). Intensities of 
vibronic transitions (stick spectrum) were calculated at the 
(TD-)DFT/B3LYP/6-31(d) level and broadened by Gaussian functions of 
400 cm-1 fwhm to produce the (dashed) envelope. Vertical dashed lines 
denote pump-wavelengths in tPF experiments. 

In terms of general band composition, the gas phase action spectrum (Figure 2, red open 

circles) compares remarkably well to the recorded linear absorption spectrum in 

acetonitrile solution (Figure 2, blue line), albeit being shifted hypsochromically by 

~1500 cm-1, attributable to the lack of a stabilizing solvent environment. Both spectra 

feature absorption band progression at the respective high energy tail of the S1←S0 (0,0) 

transition located at ~450 nm (or ~480 nm in acetonitrile), typical for symmetric 

polymethine dyes. In literature the sub-band (~430 nm in PF spectrum) adjacent to the 

longest wavelength transition of cyanine dyes was assigned to vibronic fine structure 
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arising from C-C valence vibration of the polymethine chain.[18-19] The excitation of this 

vibronic state (0,v’) in the S1 excited state lies typically 1200-1300 cm-1 higher in energy 

with respect to a purely (0,0) electronic transition.[18-19] From our gas phase absorption 

spectrum we determined a spacing of ~1250 cm-1 between the 0-0 and the adjacent 0-v’ 

absorption band, which is in line with literature. Hence we assume vibrational fine 

structure being responsible for the band progression of the gas phase spectrum. 

Additionally, we calculated the vibrationally resolved absorption spectrum of trans-

DOC+ by means of a DFT method implemented in the Gaussian 09 program package,[17] 

which determines the Franck-Condon factors for transitions between the vibronic states 

in the S0 and S1 states given the respective optimized geometries as input.[20] The 

theoretical spectrum reproduces the band structure quite well, further corroborating 

our assignment of the band structure to vibronic progression. Only the relative 

intensities of the (0,0) transition and the transitions to higher vibrationally excited 

states (0,v’) in the gas phase spectrum do not match the experiment. In the gas phase 

spectrum the absorption band associated with the (0,0) transition has a much lower 

intensity then theoretically predicted, exhibiting only slightly higher signal intensity 

than the vibronic progression at ~430 nm, which probably stems from an inherently 

lower fragmentation yield at higher wavelengths applying ion trap techniques.[12] This is 

due to fragmentation proceeding on a much longer timescale (µs-ms), most likely from a 

hot S0 state after initial photoexcitation and subsequent IC, as implied by the similarity 

of fragmentation products by PF and CID (Figure S1). The fragmentation rate and hence 

the fragmentation efficiency is dictated by the amount of internal energy imparted to the 

molecular system upon photoexcitation. At longer wavelengths the excess energy after 

IC is smaller and fragmentation competes with collisional cooling with the helium buffer 

gas present inside the ion trap, resulting in generally lower fragmentation yields. 

Furthermore, one color PF requires probably the (subsequent) absorption of at least 

two photons (as suggested by the dependence of fragmentation yields on the pump-

pulse energy; Figure S2), resulting in an overall lower excess energy at longer 

wavelengths and lower fragmentation due to collisional cooling. 

A higher relative intensity of the vibronic sub-bands in the PF spectrum can alternatively 

be rationalized by a more pronounced geometry change upon excitation of the isolated 

ions in vacuo. The higher the shift of the potential well minimum of the S1 state with 

respect to the S0 minimum, the higher the intensity of the vibrational progression 
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associated with the respective molecular coordinate.[21] It is conceivable that the 

geometrical relaxation along the C-C-backbone of the polymethine bridge is unhindered 

in the gas phase, whereas in solution the solvent cage surrounding the molecules 

restricts elongation of the C-C-bonds, resulting in a smaller change in geometry and thus 

in a lower intensity of the vibronic progression. However, the TD-DFT optimized S1 

excited state geometries of the isolated and solvated molecules (employing the 

polarizable continuum conductor model, CPCM; Figure S4),[22-23] do not differ much, 

probably necessitating a more dedicated theoretical approach to verify our assumption. 

5.5.3 Transient photofragmentation 

As the absorption band of DOC+ in the Vis region originates solely from excitation of 

different levels of vibrational modes in the S1 excited state, it is possible to easily study 

the impact of excess energy on the excited state dynamics, without interference from 

higher lying excited states. Hence, for tPF measurements the isolated DOC+ ions were 

pumped at various wavelengths ranging from 405 nm to 465 nm (marked in the PF 

action spectrum, Figure 3) and subsequently probed with higher intensity NIR pulses 

(1200 nm, 120 µJ). Note that a pump pulse wavelength below 405 nm or above 465 nm 

did not yield a two-color signal of sufficient quality, which restricted our study to this 

spectral range. The resulting tPF signals (for the sum of all fragments) are shown in 

Figure 3. All transient signals exhibit a rise on an ultrafast timescale (~200 fs) and decay 

back to the respective signal level at negative pump-probe delay. Signal decay could be 

satisfactorily modeled in all cases by a sum of two exponentials. We refrained from 

convoluting the exponential decay function with the ccf, as the transients do not exhibit 

characteristics of ultrafast decay on a sub-ps timescale. The resulting fitted lifetimes are 

presented in Table 1 together with the respective central pump pulse wavelengths used. 

Note that the transients recorded for λpump=405 nm and 415 nm (Figure 3 a and b) were 

recorded for a shorter total pump-probe delay (400 ps and 800 ps, respectively), but 

with a smaller step size between adjacent data points (1ps and 2 ps) to account for 

accelerated decay rates and in order to obtain more precise short timescale decay 

constants from fitting. 
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Figure 3 Total relative fragment ion yield as a function of pump-probe delay 
using different pump wavelengths: (a) 405 nm, (b) 415 nm, (c) 430 nm, (d) 
455 nm and (e) 465 nm. Probe wavelength was kept the same (1200 nm). 
Data is shown in gray, whereas fits and fit decompositions are shown in black 
and color, respectively. Summary of fit parameters is given in Table 1. For the 
sake of clarity, fit residuals are presented separately in Figure S3. 
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Table 1 Fit parameters (lifetimes τi and decay amplitudes Ai) obtained from bi-
exponential modeling of the tPF mass spectra measured using different pump 
wavelengths λpump (see Figure 3). 

 λpump / nm τ1 / ps A1 τ2 / ps A2 

a) 405 6(.4)±0(.7) 0.015±0.001 47(.5)±1(.7) 0.014±0.002 

b) 415 11(.8)±1(.0) 0.027±0.001 63(.9)±2(.9) 0.020±0.001 

c) 430 23(.0)±2* 0.032±0.002 94(.2)±3(.6) 0.038±0.002 

d) 455 44(.1)±2* 0.068±0.001 209(.7)±7(.5) 0.035±0.002 

e) 465 42(.8)±2* 0.032±0.001 305(.2)±11(.4) 0.012±0.001 
*) an uncertainty of ±2 is given as an upper boundary estimate, as step size is 4 ps between adjacent data 
points for c, d, and e. 

Surprisingly, both time constants decrease with increasing photon energy, with the 

exception being the short decay constants τ1 obtained for λpump=455 nm and 465 nm, 

which appear to be virtually of the same value. Additionally the relative amplitude ratio 

of the decay components (A1 and A2 corresponding to τ1 and τ2) seems to shift in favor of 

A2 upon excitation with shorter pump pulse wavelengths. From these results we deduce 

that two competing relaxation pathways are probably responsible for the S1 excited 

state population decay of DOC+, which proceed after overcoming an activation barrier. 

Furthermore, we assume that the second decay process has a slightly higher activation 

barrier and thus becomes more prominent using photons of higher energy. 

A bi-exponential excited state decay is, however, at first glance not easily rationalized, as 

described in the following: 

In literature, DOC+ was previously studied both theoretically[24-25] and experimentally in 

solution.[7-10, 26] The general model for radiationless relaxation of the S1 excited state is 

believed to result from a torsional motion along the C8-C9 bond (or the equivalent 

C8’-C9 bond) in the conjugated backbone. This torsion promotes relaxation of the S1 to 

S0 state via a conical intersection, which is reached after overcoming an activation 

barrier of ~20-40 kJ/mol, estimated from liquid phase fluorescence studies in 

dependence on temperature and solvent.[7, 24] After IC to the S0 state, the torsional 

pathway branches resulting in either the trans- or cis-isomer. The latter re-isomerizes to 

form the energetically favored trans-isomer on a millisecond timescale.[8] The model is 

illustrated in Figure 4 (right-side). 
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Figure 4 Schematic potential energy curves for the photoisomerization of 
DOC+. Left-side curves correspond to torsion along the 2,8 (2’,8’) C-C bond 
(θ’), whereas the right-side curves correspond to a 8,9 (8’,9) C-C bond torsion 
(θ) to form the respective photoisomers. Heats of formation (in kJ/mol) for 
stationary points on the potential energy curves were obtained from 
B3LYP/6-31G(d) DFT calculations. Barrier heights (Ea1=21 kJ/mol and 
Ea2=32 kJ/mol) in the S1 excited state were estimated from single point 
TD-DFT (B3LYP/6-31G(d)) calculations. 

Generally, the existence of more than one photoisomer (8,9-cis) for DOC+ (or cyanine 

dyes of similar chain length) in solution is dismissed, as excited state decay is mainly 

reported to proceed mono-exponentially[7-10] and 1H-NMR studies point to only one 

photoproduct being formed, namely the 8,9-cis isomer.[5] From literature only one 

account is known to us in which bi-exponential fluorescence decay was observed and 
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tentatively assigned to the concurrent formation of two different photoisomerization 

products of DOC+ (8,9-cis and 2,8-cis).[26] In an earlier CS INDO theoretical study on 

DOC+, the S1 excited state potential energy curve was calculated in dependence of the 

dihedral angles θ and θ’, associated with the isomerization coordinate to form either the 

8,9-cis or the 2,8-cis isomer, respectively.[25] The barrier for 8,9-cis isomerization (Ea1) 

was thereby determined to be at least 20 kJ/mol lower in energy, depending on the 

polarity of the solvent, in strong agreement with a favored solvent-driven relaxation 

along the twisting coordinate θ in solution. However, this argumentation is generally not 

applicable for our gas phase approach, as the excited ions are not prone to rapid 

thermalized under isolation. Hence relaxation may proceed via both the θ and θ’ 

torsional coordinates, even if the latter requires slightly higher activation energies. 

Furthermore, recent photoisomerization studies by Adamson et al. on the structurally 

and electronically very similar cyanine dye DTC+ by ion mobility spectrometry gave 

evidence for the initial formation of both photoproducts, although the 2,8-cis population 

(which is deemed to be the favored isomer for DTC+ from liquid phase studies)[5] is 

quenched rapidly by collisions within the drift tube and hence not observed in longer 

timescale experiments.[11] A concurrent S1 population decay via either isomerization 

coordinate thus appears to be feasible in the gas phase. 

One more thing we would like to point out is the tunability of the pump wavelengths in 

our setup, which allowed us to impart higher internal energies upon photoexcitation to 

the S1 state, trivializing the difference in barrier heights substantially. Different 

excitation wavelengths had obviously no influence on the order of the kinetics, always 

necessitating at least a bi-exponential decay model. To gain further insight into the S1 

excited state properties of DOC+, we estimated the isomerization barriers Ea1 and Ea2 

from TD-DFT single point energy calculations by stepwise scanning the dihedral angle θ 

and θ’, respectively (Figure S5). We obtained barrier heights of Ea1=21 kJ/mol and 

Ea2=32 kJ/mol, which are obviously to be understood as upper boundary values. 

Nevertheless, our theoretical calculations point to a relatively minor difference in 

barrier heights, making our assignment of the observed kinetics to competing 8,9-cis or 

the 2,8-cis isomerization processes plausible. 

To further rationalize our assignment, we undertook a first attempt at estimating the 

activation barriers associated with either decay rate by means of a simple Arrhenius 
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model for a unimolecular reaction. This analysis required correlation of the excess 

vibrational energy in the S1 excited state upon photon absorption and the resulting 

temperature of the photoexcited ions. The procedure is explained in more detail in the 

following section. 

5.5.4 Estimation of activation barriers for trans-cis photoisomerization 

To apply the Arrhenius equation, we needed to know the ion temperatures resulting 

from excitation at different pump photon energies, i.e. a correlation between the surplus 

of excess photon energy imparted and the corresponding rise in temperature had to be 

established. For this procedure, following boundary conditions had to be set: 

i) Excitation at 485 nm (longest wavelength edge of the gas phase absorption 

spectrum, Figure 2) results in purely electronic excitation, providing no 

vibrational excess energy. 

ii) The relative energy by excitation at shorter wavelengths than 485 nm results 

in complete conversion of the excess photon energy to vibrational 

(i.e. thermal energy) of the ions in the S1 excited state. For example excitation 

at 455 nm≈263 kJ/mol (vs. 485 nm≈247 kJ/mol, zero excess energy) results 

in 16 kJ/mol excess thermal energy. 

iii) The excited ions are fully thermalized upon excitation, i.e. the vibrational 

excess energy is distributed over a Boltzmann population of vibrational 

states. 

iv) The initial temperature of the thermalized ground state ion population is 

estimated to be 300 K. 

Based on these assumptions, we performed single point harmonic vibrational 

calculations at different ion temperatures (300–500 K) starting from a TD-DFT 

geometry optimized S1 excited state structure of the trans-isomer. The thermal energy 

acquired from the calculation at 300 K ion temperature was set to 0 kJ/mol, i.e. thermal 

energies from calculations at higher ion temperatures are relative values and provide a 

correlation between the excess vibrational energy (by photoexcitation) and the resulting 

ion temperature (Figure 5 and Table 2).  
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Figure 5 Relative thermal energies calculated for ion temperatures T in a 
range of 300-500 K, starting from a TD-DFT (B3LYP/6-31G(d)) geometry 
optimized S1 excited structure of the trans-isomer. Data points were 
determined from single point harmonic vibrational calculations, whereas the 
red line is a Boltzmann fit. 

Table 2 Central pump photon wavelengths λpump, photon energies E, relative thermal 
energies and the resulting ion temperatures T. 

λpump / nm photon energy E / kJ∙mol-1 rel. thermal energy / kJ∙mol-1 T / K 

485 247 0 300 

465 257 10 330 

455 263 16 346 

430 278 31 384 

415 288 41 408 

405 295 48 423 
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The resulting ion temperatures T (Table 2) and the experimental lifetimes τi were then 

used to determine the activation barriers Eai according to the Arrhenius equation: 

 ln �1LM� = ln(
M) − 1N �OMP  (1) 

 

Figure 6 Arrhenius plots of the time constants from transient experiments at 
different pump wavelengths (Table 1) vs. the respective inverse ion 
temperatures (Table 2). 

From the semi-logarithmic plot of the inverse lifetimes (i.e. rate constants) in Figure 6, it 

is obvious that the slower relaxation process τ2 adheres to the Arrhenius relation 

remarkably well, whereas the faster process τ1 is not in a good correlation. The slopes 

from linear regression are nearly identical ((-2786±540) kJ/mol and 

((-2764±40) kJ/mol for τ1 and τ2), hence similar activation barriers for the fast and slow 

process are obtained, namely Ea1=23±5 kJ/mol and Ea2=23(±0.3) kJ/mol. If 

isomerization proceeded in a similar way along the respective twisting coordinate 

(θ and θ’), then we would expect a smaller value for Ea1, as the kinetics are much 

quicker. To obtain a smaller barrier, the linear fit in the Arrhenius plot should exhibit a 

more mellow descend, requiring the time constants τ1 determined upon shorter 
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wavelength (Figure 3, a-c) pumping either to be longer or the time constants from 

longer wavelength pumping (Figure 3d and e) to be shorter. Although the fits given in 

Figure 3 are of good quality (Figure S4), we cannot exclude erroneously determined 

lifetimes to be the cause for a poor Arrhenius relation, as the values for τ1 are relatively 

short and thus difficult to pin down precisely. It is also conceivable that isomerization to 

form the 8,9-trans isomer proceeds via a more complicated relaxation coordinate 

involving additional geometrical rearrangement rather than solely the rotation along the 

C8-C9 bond, on which our analysis was based on. Additionally, the redistribution of 

excess vibrational energy in the excited state may proceed on a timescale similar to the 

decay rates of the fast isomerization process, thus assuming a Boltzmann energy 

distribution over the vibrational states is more likely to produce faulty results for the 

faster kinetics and thus a poor Arrhenius relation, whereas slower dynamics may be less 

affected. 

Nevertheless, the rate constants for the slower process τ2 seem to abide the Arrhenius 

law and the estimated activation barrier Ea2=23 kJ/mol appears to be in good qualitative 

agreement with the theoretical value Ea2=32 kJ/mol we determined from single point 

calculations. Admittedly, our analysis was based on some drastic boundary conditions. 

One of these (i) required us to define a photon energy, which would result in a pure 

electronic excitation without additional “heating” of the excited ions. We set the energy 

at a photon wavelength of 485 nm (≈247 kJ/mol) as a point of reference. If this zero-

point is shifted, then accordingly the determined activation barriers would be different 

as well. However, only a shift to higher photon energies, i.e. lower photon wavelengths, 

is feasible for the analysis, as the zero-point was already set to the longest wavelength 

edge of the gas phase action spectrum (Figure 2). If the zero-point was set to a higher 

photon energy value, then the resulting activation barrier would be lower. Setting the 

zero-point to e.g. λ=465 nm (≈257 kJ/mol≙0 kJ/mol relative thermal energy), would 

yield a barrier of ~18 kJ/mol. Thus the value we first determined (Ea2=23 kJ/mol) can be 

at least regarded as an upper boundary estimate for the gas phase relaxation of DOC+ by 

isomerization.  
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5.5.5 Vibrational wave-packet dynamics in DOC+ 

Apart from ultrafast dynamics on a picosecond timescale, the tPF signal of DOC+ was 

found to be periodically modulated, which was only recorded in good quality using a 

pump wavelength of 455 nm (Figure 5). 

 

Figure 5 Modulated transient signal of DOC+ obtained for λpump=455 nm and 
λprobe=1200 nm. Data points are shown as open circles, whereas black line 
denotes the fitted signal based on a damped cosine function on top of an 
exponential decay, convoluted with the system response (ccf~130 fs) 

Oscillations on top of transient signals are indicative of vibrational wave-packet motion, 

which is formed upon coherent excitation of several vibrational modes in the respective 

excited state.[27] The period of the resulting signal modulation is then dictated by energy 

spacing between the vibrationally excited states, i.e. the frequency of the vibrational 

mode in question.[27] The experimental tPF signal was modeled using an exponential 

decay modulated by a damped cosine oscillation and convoluted with the ccf function 

(130 fs). The period of the oscillation was determined to be ~T=1.2±0.1 ps, 

corresponding to a vibrational frequency of ~28±2 cm-1, which is remarkably slow, 

given the size of the molecular system. Furthermore, the wave-packet exhibits a 

strikingly long lifetime, with a fitted dephasing time of ~13±3 ps. To the best of our 
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knowledge, only a few reports on excited state vibrational coherence associated with an 

isomerization coordinate in solution studies on cyanine dyes can be found in literature, 

but none in the gas phase. Recently, Beck et al. observed vibrational wave-packet 

dynamics for the cyanine dye Cy5 in water by transient absorption spectroscopy and 

assigned the excited state vibrational coherence to a mode of mixed C-C bond length 

alternation and twisting character.[28] Other research groups also observed wave-packet 

dynamics, which were attributed to a torsional or stretching vibration within the 

polymethine bridge.[29-33] The vibrational frequencies of these modes were, however, 

reported to be much higher (200-300 cm-1) and additionally damped on a 

sub-picosecond timescale. To gain a qualitative insight into the conceivable dynamics 

and involved vibrational modes, we turn to the results from our harmonic vibrational 

calculations we performed for the S1 excited state geometry of DOC+, which reveal 

several low frequency (<100 cm-1) vibrational modes (Figure S6). The three lowest 

energy vibrational modes have calculated vibrational frequencies of ṽ1=20.0 cm-1, 

ṽ2=27.4 cm-1 and ṽ3=28.4 cm-1 corresponding to a torsional motion along the 

polymethine backbone and the in-plane and out-of-plane bending motion of the 

benzoxazole units, respectively. The remaining low frequency modes mainly involve 

torsion and bending motions of the ethane side-chains (ṽ3-ṽ8). The torsional and bending 

motions of the side-chains in our signal are presumably not the cause of signal 

modulation as these modes do not induce a change in molecular geometry, which could 

have a profound effect on electronic character of the system. Thus an impact on the 

probe pulse absorption cross section is not expected. The three modes lowest in 

frequency, however, should impair conjugation within the polymethine backbone and 

consequently affect the electronic structure of DOC+ significantly. Hence we conclude 

that the signal modulation we observe in our experiments can be traced back to either 

the torsion within the conjugated C-C chain, bending motion of the benzoxazole units 

with respect to each other or a combination of these modes. At this point of our study, 

the observation of a torsional mode should come as no surprise, with regard to the 

accepted mechanism for the excited state deactivation of cyanine dyes. However, it is 

puzzling that ours is the first reported case of wave-packet dynamics of long coherence 

time, which can be associated with the torsional isomerization coordinate in view of the 

staggering amount of experimental studies on cyanine dyes. Note that the majority of 

experimental studies on cyanines of various lengths were conducted in solution, in 



5 A new twist to cyanine photoisomerization by ultrafast ion trap action spectroscopy 

 

190 

 

which wave-packet dynamics may be damped rapidly, due to interaction with the 

solvent. Additionally, longer chain cyanines may exhibit lower activation barriers in the 

S1 state,[24] promoting faster IC and thus shorter decoherence times. 

5.6 Conclusion 

We carried out tPF experiments on isolated DOC+ ions in an ion trap to probe its 

intrinsic excited state dynamics. The S1 excited state population of DOC+ decays 

bi-exponentially, in contrast to solution phase studies found in literature, which mostly 

reported mono-exponential kinetics. Both relaxation rates decrease upon excitation 

with higher energy pump-photons, which is indicative of two activated processes in the 

S1 excited state. In a first attempt to estimate activation barriers by means of a simple 

Arrhenius relation, we determined an upper boundary value of Ea2=23 kJ/mol 

associated with the slower relaxation process, which is reasonable agreement with the 

barrier height for the 2,8-cis photoisomerization of DOC+ determined from single point 

energy calculations. We furthermore observed vibrational wave-packet dynamics, 

manifesting themselves in a periodic modulation of the transient signal with a period of 

~T=1.2 ps. The corresponding vibrational frequency of ~28 cm-1 correlates well with 

one of the three lowest frequency vibrational modes calculated for the S1 excited state of 

DOC+. These modes encompass twisting of the C-C polymethine backbone and the in- 

and out-of-plane bending of the benzoxazole terminal groups with respect to each other. 

The torsional motion is of particular interest, as twisting of the polymethine backbone is 

generally believed to promote excited state relaxation in cyanine dyes. 
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DOC+ 
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5.8.1 Mass spectrometric data 

 
Figure S1 Fragment channel intensity distribution observed by PF 
(a; λex=455 nm, 3 µJ) and CID (b). Assigned fragment signals are listed in 
Table S1. 

Table S1 Overview over observed and identified ion signals from 
mass spectra shown in Figure 1 and Figure S2. Numeric values 
denote the most abundant signal of the respective isotope pattern. 

m/z mass loss / Da assigned neutral loss 

333*) - - 
303/304/305 30/29/28 C2H6/C2H5/C2H4 
287/289 46/44 C2H6+CH4/C2H5+CH3 
275/276/277 58/57/56 2xC2H5/C2H5+C2H4/2xC2H4 
257 76 C6H4 
247 86 not assigned 
196/197 137/136 C8H10NO/ C8H11NO 
184 149 C9H11NO 
172 161 not assigned 
169/170 164/163 not assigned 
166.5 -**) e- 
157/158/159 176/175/174 not assigned 
144/146 189/187 not assigned 
133 200 not assigned 
121 212 not assigned 

*)precursor ion signal: DOC+, **)electron detachment channel 
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5.8.2 Photofragmentation 

 

 

Figure S2 Pulse energy dependent E total fragmentation yield Y of DOC+ by 
one-color photoexcitation at λex=455 nm (a) and 430 nm (b). Dependencies 
were evaluated according to 	 = 
 ∙ ��,[1] where n is a mean value for the 
number of photons absorbed to induce fragmentation and A a dimensionless 
fit-parameter.  
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Figure S3 Fit residuals obtained from bi-exponential modeling of the 
transients pump-probe signals (Figure 3) measured using different pump 
wavelengths: (a) 405 nm, (b) 415 nm, (c) 430 nm, (d) 455 nm and 
(e) 465 nm.  
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5.8.3 (TD-)DFT calculations 

 

Figure S4 Bond lengths (in Å) in the conjugated bridge of DOC+, determined 
from (TD)-DFT geometry optimized (B3LYP/6-31G(d)) structures of the S0 
and S1 state. Calculations were performed either for the isolated (a) or the 
solvated system (b) employing the polarizable continuum conductor model 
(CPCM, acetonitrile). The total chain length within the polymethine backbone 
decreases by 0.032 Å (a) and 0.026 Å (b), respectively in the S1 state. 
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Figure S5 S1 potential energy curve for the isomerization about the C8-C9 
(right, θ) and C2-C8 (left, θ’) bonds of DOC+, obtained from TD-DFT single 
point calculations. “TS” denotes estimated transition state geometries, 
whereas “meso” denotes geometries probably found at the conical 
intersection between the S1 and S0 states.  
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Figure S6 Eight lowest frequency vibrational modes (<100 cm-1) obtained 
from a harmonic vibration calculation performed for trans-DOC+ 
(TD-DFT/B3LPY/6-31G(d)) in its S1 excited state geometry. Highlighted 
modes are probably responsible for the observed wave-packet dynamics. 
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6.1 Preamble 

The chapter has been published in a shortened form in the journal Angewandte Chemie 

Int. Ed. Experimental work, data processing and evaluation, as well as structural and 

energetic calculations were performed by me. Samples of the complexes were provided 

by Sven Rau et al. (Universität Ulm). Simulations of the transient anisotropy data and 

theoretical considerations thereof were provided by Maxim F. Gelin (TU München). The 

initial draft of the manuscript was written by me and revised by Christoph Riehn. The 

shortened version, prepared as a communication, was a collaborative effort between the 

research groups of the TU Kaiserslautern and the Universität Ulm. 

Full Reference to the publication: 

"PUMP-PROBE FRAGMENTATION ACTION SPECTROSCOPY: A POWERFUL TOOL TO UNRAVEL LIGHT-INDUCED 

PROCESSES IN MOLECULAR PHOTOCATALYSTS” 

D. Imanbaew, J. Lang, M. F. Gelin, S. Kaufhold, M. G. Pfeffer, S. Rau, C. Riehn, Angew. Chem. 

Int. Ed. 2017, 56, 5471-5474; http://dx.doi.org/10.1002/anie.201612302 
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6.2 Abstract 

We present a gas phase study on the ultrafast dynamics of [(tbbpy)2Ru(tpphz)Pt(Cl)2]2+, 

Ru-Pt, (tbbpy=4,4’-di-tert.-butyl-2,2’-bipyridin, tpphz=tetrapyrido[3,2-a:2’3’-c:3’’,2’’-

h:2’’’,3’’’-j]phenazine) and [(tbbpy)2Ru(tpphz)Pd(Cl)2]2+, Ru-Pd, by electrospray 

ionization mass spectrometry combined with femtosecond laser spectroscopy in an ion 

trap. The major fragmentation of these ions proceeds by the loss of the active metal 

center, i.e. loss of PtCl2 or PdCl2. Photofragmentation indicates an intrinsically higher 

photostability of Ru-Pt compared to Ru-Pd. The UV/Vis photofragmentation spectra for 

both species are found to be very similar but distinct from their absorption spectra in 

solution. Transient data is obtained from pump-probe time-resolved 

photofragmentation. The electronic states of both supramolecular catalysts decay multi-

exponentially and exhibit time constants comparable to previously reported dynamics in 

liquid phase, supporting their assignment to intramolecular processes. The excited state 

life-times, however, depend on the excitation wavelength, exhibiting shorter numerical 

values upon longer wavelength excitation, hinting at accelerated electronic dynamics. 

Additionally, molecular rotational dephasing on a ∼15 ps timescale is revealed for both 

systems from polarization dependent measurements. The obtained transient anisotropy 

function is simulated by the molecular orientational correlation function in dependence 

on the angle between pump and probe transition dipole moments. The latter is found to 

be aligned parallel to the long tpphz-axis of the molecules and the orientation of the 

former strongly dependent on the excitation wavelength. These findings strongly 

support the previously assumed fast electron transfer onto the tpphz bridging ligand - a 

key process for their photocatalytic activity towards hydrogen generation. 

6.3 Introduction 

The development and optimization of molecular photocatalysts for the generation of 

hydrogen from water is a very active area of research due to its importance for the 

exploration and allocation of new, non-fossil, carbon-neutral energy resources.[1] In 

particular, the intramolecular approach, i.e. the usage of supramolecular assemblies as 

photocatalysts, is considered to be superior to intermolecular strategies since it is not 

diffusion-limited with respect to initial electron transfer. Furthermore, it allows for 

direct structure-function optimization by means of chemical synthesis of the different 
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molecular subunits within one structural framework.[2-8] In principal, the layout of such 

an intramolecular photocatalyst consists of an antenna unit (usually a RuII-based 

polypyridyl photosensitizer), which absorbs strongly in the visible or near UV spectral 

region, and a catalytic reduction center comprised of another transition metal. The 

photo-center and the catalytic center are linked by means of a bridging ligand (often 

phenazine (phz) based). Well-known examples for this class of photocatalysts are Ru-Pt 

[(tbbpy)2Ru(tpphz)Pt(Cl)2]2+, and Ru-Pd ([(tbbpy)2Ru(tpphz)Pd(Cl)2]2+(tbbpy=4,4’-di-

tert.-butyl-2,2’-bipyridin, and tpphz=tetrapyrido[3,2-a:2’3’-c:3’’,2’-h:2’’’,3’’’-j]phenazine), 

which are in the focus of this study (Figure 1). 

 

Scheme 1 Schematic structure of Ru-M (M=Pt, Pd) and time constants 
(Ru-Pt/Ru-Pd) of excited state dynamics from previous time-resolved 
studies in acetonitrile solution.[9-10] 

The mode of operation of these catalysts is initiated by an electronic excitation of the 

RuII-photosensitizer via a 1MLCT transition, which quickly transforms (<<1 ps) into a 

long-lived 3MLCT state with primary electron localization on the polypyridyl ligands. 

Subsequently, an electron is transferred towards the phz bridging ligand and finally 

reaches the catalytic metal center at which protons are reduced to hydrogen. 

Additionally a sacrificial agent (triethylamine, TEA) is used to close the catalytic cycle 
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and recharge the photocatalyst in solution. The formation of H2 for Ru-M (M=Pt, Pd) 

under catalytic conditions (acetonitrile/water/TEA) was proven and used to quantify its 

catalytic performances.[10-11] Still, many open questions remain in the details of these 

processes, like: how stable are the photocatalysts in solution and what are the active 

species? How are two protons reduced on the metal center and in which way does the 

recharging of the catalyst proceed? How does directed electron transfer take place and 

what is the influence of the solvent on this reaction? 

In order to answer some of these mechanistic questions, a detailed spectroscopic 

investigation on the ultrafast dynamics of the excitation and charge transfer (CT) 

processes in solution (CH3CN, CH2Cl2) was performed by femtosecond (fs) transient 

absorption (TA) spectroscopy.[9-10] It turned out (for Ru-Pd) that the observed 

photoexcited state decay (after excitation at 470 nm) in liquid phase can be fitted 

tri-exponentially to lifetimes of 0.8 ps, 5 ps and 310 ps.[9] These time constants have 

been assigned to the charge localization on the phenanthroline (phen) sphere of the 

tpphz ligand (0.8 ps), intra-ligand charge transfer (ILCT) to form a phz-centered state 

(5 ps) and finally electron transfer to the Pd active center (310 ps), forming a long lived 

excited state. Nearly identical dynamics have been reported for Ru-Pt in acetonitrile 

(0.5/4.2/320 ps),[10] however the bare Ru unit ([(tbbpy)2Ru(tpphz)]2+), without the 

catalytic metal center, exhibits clearly different dynamics (1.2/240 ps) and excited state 

spectra.[9] Additionally, coherent wave-packet motion with a vibrational frequency of 

~430 cm-1 was observed for Ru-Pd and assigned, on the basis of TD-DFT calculations, to 

low-frequency modes of the tpphz bridging ligand corroborating the initial, fast CT onto 

this moiety.[12] With regard to ultrafast dynamics, i.e. electron transfer dynamics, in 

solution the differences between Ru-Pd and Ru-Pt are minor. However their overall 

photocatalytic performance is quite distinct. Whereas Ru-Pd gives a TON (turnover 

number) of ~234 (over 9 h, 470 nm LED),[11] for Ru-Pt only a TON of ~10 was 

obtained.[10] Furthermore, studies on the excitation wavelength dependence of the 

catalytic activity of Ru-Pd revealed higher quantum yields for hydrogen generation 

upon excitation at longer wavelengths,[13] and a concomitant acceleration of the 

electronic dynamics.[12] On the other hand, it became apparent recently that the low 

photostability of Ru-Pd leads to formation of Pd colloids, which themselves might act as 
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catalytically active species in solution, whereas for Ru-Pt no decomposition was found 

for a prolonged period under catalytic conditions.[10] 

These results motivated us to study the intrinsic ultrafast dynamics of these 

supramolecular photocatalysts under strict control of charge, composition and 

environment, which is feasible by molecular ion trap spectroscopy in vacuo.[14] Despite 

the respectable amount of experimental and theoretical studies in solution, there are no 

reports on gas phase investigations for Ru-Pd/-Pt or related species. In this report we 

like to close this gap of knowledge by providing results obtained with electrospray 

ionization (ESI) ion trap mass spectrometry in combination with UV laser-induced 

fragmentation (PF), which additionally enables us to study ultrafast electronic dynamics 

by transient pump-probe photofragmentation (tPF). We report on the gas phase UV/Vis 

spectra and fragmentation yields by photoexcitation and collision induced dissociation 

(CID) of the two species. Furthermore, we discuss the observed electronic dynamics in 

the ion trap together with rotational dephasing obtained from TA measurements of 

Ru-Pd and Ru-Pt and provide implications for the direction of the ultrafast CT process. 

6.4 Experimental setup and calculations 

6.4.1 Materials 

The doubly charged cationic complexes Ru-Pt and Ru-Pd were generated by 

electrospray ionization (ESI) from solutions of the corresponding salts [Ru-Pt](PF6)2 and 

[Ru-Pd](PF6)2 in acetonitrile. Synthesis and characterization of the complexes 

[Ru-Pt](PF6)2 and [Ru-Pd](PF6)2 were reported elsewhere.[10-11] Acetonitrile of HPLC 

gradient grade was purchased from LGC Standards GmbH. 

6.4.2 ESI-MS and CID 

ESI mass spectrometry was performed using a modified Paul-type quadrupole ion trap 

ESI mass spectrometer (amaZon Speed, Bruker Daltonics) in positive ion mode. 

Modifications to the ion trap allows for laser irradiation of the trapped ions. The scan 

range was m/z 50-1000 with a scan speed of 32.500 m/z per s (0.3 fwhm). Continuous 

infusion of the sample solutions (c=5·10-7 M) into the ESI chamber was carried out by a 

syringe pump at a flow rate of 120 μL/h. Nitrogen as drying gas was set to a flow rate of 

3.5 L/min at 180°C. The nebulizer pressure was set to 4 psi (280 mbar) and the 
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electrospray needle was typically held at 4.5 kV. The pressure of helium in the ion trap is 

estimated to be ca. 10-3 mbar, resulting in ca. 10-100 collisions/ms. 

6.4.3 Static and transient UV/Vis photofragmentation and anisotropy 

measurements 

For the PF experiments the mass spectrometer was coupled with a fs laser. The fs laser 

pulses were generated in a Wyvern 1000TM cryogenic ultrafast regenerative laser 

amplifier system (KMLabs). The oscillator stage was pumped by an Opus 532 DPPS 

laser, whereas for the amplifier stage a frequency doubled Nd3+:YAG laser 

(LDP-200MQG, Lee Laser) was utilized. The amplifier crystal was cryogenically cooled 

by a PT90 cryostat equipped with a CP950 helium compressor (Cryomech). The 

generated pulse train (~4 W, 981 Hz, Δτ∼50 fs) was split in order to pump two separate 

optical parametric amplifiers (OPA) of white light continuum. These TOPAS-C (Light 

Conversion) systems were used as source of tunable radiation (240 to 2500 nm). The 

probe pulses (λprobe=1200 nm, energy ~60 µJ/pulse) from one of the OPAs were 

temporally delayed with respect to the pump pulses (λpump=440/480 nm, energy 

~1/1.5 µJ/pulse) from the other OPA using a retroreflector mounted on a single axis 

delay stage. Scan speed was adjusted for equidistant steps of typically 100 fs or 2 ps for a 

total temporal delay of 40 ps and 800 ps, respectively. The angle between the linear 

polarization of the pump and probe pulses was adjusted by a Berek polarization 

compensator, located in the OPA output beam path of the pump pulses. The pump and 

probe pulses were spatially overlapped and focused into the center of the Paul ion trap 

by a f=50 cm lens, yielding pump and probe beams of ~1 mm in diameter. Each isolated 

portion of ions was irradiated by 50 pump/probe pulse pairs for transient experiments 

and 150 pulses for recording of one-color PF spectra. The tPF signals were recorded as 

extracted ion chromatograms while continuously varying the delay between the pump 

and probe pulses. Evaluation of the transient signals was performed by calculation of the 

fragment yields Yi as Yi=Fi/(Fi+Pj), where Fi and Pj are the sums of the intensities of the 

fragment and parent ion signals, respectively. 

The transient fragment spectra were fitted by a convolution of a sum of exponentials 

augmented with the system response function obtained from the laser pulse cross-

correlation using a fitting software[15] based on the MINUIT optimization package[16]: 
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S(t)=ΣiAi(exp(-t/τi)*g(t,t0,tp)) (τi decay time constants, t0: time zero, tp: fwhm of cross 

correlation, ccf). 

PF spectra were obtained by setting the laser pulses to the according wavelengths and 

measuring the intensity of the parent ion and the sum of the fragment ions. The 

fragment yield was calculated according to Yi=Fi/(Fi+Pj), where Fi and Pj are the sums of 

the intensities of fragment and parent ion signals, respectively, and normalized 

additionally at each individually set wavelength through division by its numeric 

wavelength value to account for the different photon energies at constant laser pulse 

fluence (typical pulse energy ~1 µJ). 

The ccf, as a measure of the system response function, was obtained by monitoring the 

multiple-photon ionization signal of furan (C4H2O) in the ion trap.[17] A typical value for 

the fwhm of the ccf at 440/480 nm (pump)/1200 nm (probe) is ~130 fs. 

Polarization dependence of transient signals in the gas phase forms the basis of 

rotational coherence spectroscopy (RCS)[18-20] and allows for analysis of the recurrences 

of molecular alignment and rotational dephasing. When the probe laser pulse is applied 

with a varied time delay, it will map out the rotational dephasing of the original 

anisotropic distribution, which is based on the breadth of the populated rotational states 

and scales with (B*·T)-1/2, where B* represents a characteristic rotational constant and T 

the absolute temperature. 

For transient anisotropy measurements the time-dependent signals were recorded at 

parallel (�∥(t)) and perpendicular (�<(t)) pump-probe polarization. The resulting 

transients were background corrected and normalized to unity (at ~40 ps positive time 

delay) and used to calculate the respective anisotropy function r(t): 
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This method of analysis was adapted from time-resolved fluorescence anisotropy 

(TR-FA) in solution[21-22] and has been successfully applied in previous gas phase 

experiments.[23-24] The anisotropy function reflects the dynamics of rotational 

dephasing, which contains information on the molecular structure, orientation of the 

transition dipole moment (TM) and temperature of the sample. 
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Static UV/Vis absorption spectra in acetonitrile solution (c=1·10-5 M) at room 

temperature were recorded using a Lambda 950 photospectrometer (PerkinElmer). 

6.4.4 Computations 

Geometry optimizations and vibrational frequency calculations for the singlet ground 

states of the investigated molecular species employing analytical gradient techniques 

were performed by density functional theory (DFT) with the Gaussian09[25] program 

package. The B3LYP[26-27] gradient-corrected exchange-correlation functional was used 

in combination with the 6-311G(d,p) basis set for C, H, N, O, Cl and the LanL2DZ[28-29] 

effective core potential (ECP) together with its basis set for Ru, Pt and Pd. 

6.5 Results and discussion 

6.5.1 ESI-MS and CID studies 

The main peaks of the ESI mass spectra obtained from acetonitrile solution are located 

at m/z 600.0 and m/z 644.0 (most abundant mass), which corresponds to the molecular 

peak of the doubly charged Ru-Pd and Ru-Pt complex, respectively. The elemental 

composition is unequivocally assigned by the isotopic intensity patterns (Figure S1) and 

the charge 2+ by a 0.5 amu spacing of the mass peaks. Upon CID, which is comparable to 

thermal excitation, we have found the formal loss of neutral PdCl2 and PtCl2 to be the 

major fragmentation channels (80% and 60% relative yield of MCl2 loss for Ru-Pd and 

Ru-Pt, respectively) followed by the subsequent loss of CH4, C2H6 and C2H6+CH4, and 

other additional loss channels of low intensity (Figure S2 and Table S1). CH4, C2H6 and 

C2H6+CH4 are probably formed by elimination from the tbbpy-ligands of the Ru 

chromophore. In general, no charge separation upon fragmentation of the doubly 

charged species was observed. 

6.5.2 Photofragmentation: fragment channels, yields and spectra 

In order to study the intrinsic response of both photocatalysts under light irradiation we 

performed gas phase laser-induced PF experiments in a wavelength range of 

240-480 nm for the mass-selected cations of Ru-Pd and Ru-Pt in the ion trap. The types 

and relative yields of the occurring fragments are akin to the ones observed from CID 

measurements (Table S1). However, upon photoexcitation Ru-Pd exhibits a much 
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higher absolute fragmentation yield with respect to Ru-Pt (with all other experimental 

conditions constant) over the whole spectral range (up to 2-4 times larger; Figure S3). 

This is in agreement with the lower photostability of Ru-Pd, which has been reported 

previously for studies under catalytic conditions in solution.[10-11] DFT calculations on 

the energetics of the most prominent fragmentation channel (Ru-M-Cl2→Ru+MCl2, M=Pt, 

Pd) yielded a Gibbs free energy at room temperature of 216 kJ/mol for Ru-Pt (PtCl2 

calculated in singlet configuration; triplet configuration results in an energy of 

250 kJ/mol) and an energy of 181 kJ/mol for Ru-Pd. 

 

Figure 2 Normalized gas phase UV/Vis PF spectra (red) and liquid phase 
absorption spectra in acetonitrile (c=1·10-5 M) (black) of Ru-Pt (a) and 
Ru-Pd (b). Pump wavelengths (440 nm and 480 nm) used in time-resolved 
experiments are marked by vertical dashed lines. 

The recorded PF spectra for Ru-Pd and Ru-Pt compare relatively well with respect to 

their overall shape and structure to the corresponding UV/Vis absorption spectra in 

solution (Figure 2a and b). However, three differences are obvious: firstly at ~310 nm a 

strong absorption band is visible in the PF spectra for both compounds, while only a 

weak shoulder is present in the solution spectra at 320–330 nm. The band at ~310 nm 

can probably be assigned to a phen/tpphz centered π-π* transition, as the shoulder at 
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328 nm in the acetonitrile spectrum was attributed to an overlap of three transitions of 

πtpphz,dPd,nCl→π*tpphz, dPd/Pt,nCl→π*tpphz and dPd/Pt,nCl,πtpphz→π*tpphz character.[10] Excitation 

of the bridging tpphz ligand may lead to a high PF yield in the gas phase, as it is 

positioned closer and is thus probably better coupled to the PdCl2/PtCl2 formal leaving 

group. 

Secondly, we notice a weak and structureless CT band region (>400 nm) for both 

complexes in gas phase. Weak CT bands were also observed by us for other 

RuII-complexes and explained in terms of collisional quenching of long-lived 

photoexcited or highly vibrationally excited ions by the helium buffer gas in the ion 

trap.[14] Since the excess energy in the long wavelength range is small, the dissociation 

proceeds on a time scale comparable to the collision rate of the background helium 

(~1/(100 µs)-1/(10 µs)). Hence the quantum yield for fragmentation is reduced. 

Furthermore, the photon energy at 440 nm corresponds to ~272 kJ/mol, which 

complies with the calculated dissociation thresholds (RuMCl2→Ru+MCl2). Consequently, 

at longer wavelength excitation either only ions from the high-energy tail of the 

Boltzmann distribution contain enough energy for dissociation or two photons have to 

be absorbed prior to dissociation.[30] This is supported by the laser power dependence of 

the one-color PF signal (Figure S4). In the short wavelength range, i.e. at high photon 

energies, dissociation outcompetes quenching and thus the spectral shape follows more 

closely the UV/Vis solution spectra. 

Lastly, we do not observe the narrow additional features in the PF spectrum of Ru-Pd, 

which are present in the liquid phase spectrum (350-400 nm). Based on TD-DFT 

calculations, this absorption band in the Ru-Pd spectrum was attributed to a transition 

of mixed πtpphz→π*tpphz/dPd→π*tpphz/nCl→π*tpphz character.[10] A similar transition was 

calculated for Ru-Pt, however, with a bathochromic shift to 407 nm (from Ru-Pd to 

Ru-Pt) and a concurrent decrease in intensity, explaining the less structured solution 

absorption spectrum for Ru-Pt.[10] Due to the relatively low intensity of this band in 

solution, the broad spectral bandwidth of our fs pulses (∼8-10 nm fwhm in a range of 

350-400 nm) and the non-linear nature of the performed action spectroscopy, we do not 

consider the slight differences in the gas phase CT bands of Ru-Pd and Ru-Pt significant 

for a further interpretation. 
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6.5.3 Pump-probe anisotropy and excited state dynamics of Ru-Pt 

The low intensity of the CT bands for Ru-Pd and Ru-Pt in the PF spectrum compared to 

the UV/Vis solution spectra allows for setting up a laser scheme in order to generate a 

two-color PF signal. The latter signal is in turn a prerequisite for recording pump-probe 

time-resolved PF transients. In analogy to previously published investigations on the 

wavelength dependent excited state dynamics of Ru-Pd in solution by TA 

spectroscopy,[12] we performed tPF measurements on both systems (Ru-Pt and Ru-Pd) 

by excitation at 440 nm and 480 nm, corresponding to the CT absorption band 

maximum (440 nm) and the long wavelength edge of the CT band (480 nm), 

respectively. For these measurements a low energy pump pulse (~1 µJ at 440 nm and 

~1.5µJ at 480 nm) is overlapped in time and space with a probe pulse of higher intensity 

and longer wavelength (~60 µJ, 1200 nm) which induces a further (probably multiple-

photon) excitation of the primary excited state and leads to an increase of the 

corresponding fragment ion signal (by a factor of ~4 for Ru-Pt and Ru-Pd). In extension 

of the discussion above, we like to emphasize that this increase of ion signal stems 

nearly exclusively from molecules primarily excited by one pump photon and that the 

contribution of molecules excited by two pump photons to this signal is expected to be 

negligible. However, it should be noted that at higher pulse energy (>60 µJ) the probe 

pulse alone induces fragmentation (resulting in a constant background signal level, 

which amounts up to ~30% of the peak fragmentation observed at zero time delay), in 

contrast to results of previous tPF investigations for metal-ligand complexes undertaken 

with our setup.[14, 31-32] This power dependence of the fragmentation signal for both 

complexes required a careful adjustment of the pump and probe laser intensities for the 

time-resolved investigations. The time delay dependence of the fragment ion yield then 

reflects the lifetime and dynamics of the primary excited state assuming that the 

subsequent electronic state, coupled to the primary one, exhibits a different, usually 

smaller absorption cross sections with respect to the probe laser pulse.[17, 33-35] 

The transient signal of Ru-Pt (Figure 3; λpump=440 nm (1 µJ) and λprobe=1200 nm (60 µJ)) 

measured at the magic angle (54.7°) exhibits an ultrafast rise at zero time delay, on the 

order of the estimated signal response (~130 fs), which decays within approximately 

15 ps to a nearly constant level. This signal level is maintained up to a total delay of 

800 ps (maximum delay of our current setup), decaying by ~7 % of the total signal 
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intensity. The transient could be fitted to a tri-exponential decay of τ1=0.6±0.1 ps, 

τ2=6.5±1.3 ps and τ3>>800 ps. 

 
Figure 3 Normalized transient fragment ion yield of Ru-Pt recorded for the 
sum of all fragments at the magic angle; λpump=440 nm (1 µJ) and 
λprobe=1200 nm (60 µJ). Decomposition of fit plotted. 

The two shorter time constants compare relatively well to the ones obtained from TA 

spectroscopy (in acetonitrile: 0.5 ps, 4.2 ps and 320 ps)[10], albeit exhibiting slightly 

larger values. A definite value for the third component could not be determined from our 

data, due to its low decay amplitude and the limited delay range of our setup. From the 

slow decay, however, it is apparent that the lifetime in vacuo exceeds the lifetime of the 

third component from TA experiments (320 ps) by far. This time constant was 

attributed to a ligand-to-metal CT (LMCT) from the tpphz centered state to the Pt metal 

center.[10] For studies on Ru-Pd in solution an increase of the third decay component 

was observed when performing measurements in a less polar solvent (from 310 ps to 

740 ps in acetonitrile and dichloromethane, respectively).[9] A deceleration of the LMCT 

process in dichloromethane was justified by less favorable solvation of the strongly 

charge separated state in the less polar solvent, reducing the driving force for LMCT. As 

the isolated ions are lacking a polar environment in our gas phase investigations, it is 

conceivable that the rate for LMCT is even slower. 
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For anisotropy studies the transients of Ru-Pt were recorded at either parallel (�∥(t)) or 

perpendicular (�<(t)) relative polarization between pump and probe laser pulses. �∥(t) 

(Figure 4a; cyan) exhibits a much stronger increase at shorter delay times (<15 ps) than 

�<(t) (Figure 4a; dark blue), which (after an initial decay within ~1-2 ps) rises to a 

nearly constant signal level. For delay times >15 ps the transient traces coincide. This 

polarization dependent behavior unambiguously points towards molecular alignment by 

photoexcitation and subsequent rotational dephasing.[23-24] From the experimental 

transients we have calculated the anisotropy function r(t) for Ru-Pt (Fig. 4b) according 

to equation (1), which is related to the time-dependent correlation function of the 

molecular TMs for the pump and probe step, respectively. 

 
Figure 4 (a) a) Normalized transient fragment ion yield of Ru-Pt recorded at 
parallel (cyan) and perpendicular (dark blue) relative polarization of pump 
and probe pulses; λpump=440 nm (1 µJ) and λprobe=1200 nm (60 µJ). (b) 
Anisotropy function r(t) calculated from transient data shown in Figure 4a. 
Simulations: T=310 K, TM parallel to x-, y- or z-axis; rotational constants were 
obtained from DFT calculations (Table S2). 

In TR-FA, the initial anisotropy, defined as r(t=0)=r0 at time zero, gives the orientation 
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absorption and emission TMs for one-photon transitions, whereas for r0=-0.2 the TMs 

are oriented perpendicularly with respect to each other.[21-22] From Figure 4b, we obtain 

r0=0.31±0.04, which is a value smaller than expected for a parallel orientation of the 

TMs for the pump (S1←S0, µpump) and probe (Sn←S1, µprobe) electronic transitions. 

Additionally, for a (1+2’) excitation process we would expect r0=+4/7≈+0.57 and 

r0=2/7≈-0.29 for parallel and perpendicular mutual TM orientations, respectively. 

TD-DFT calculations for Ru-Pd and Ru have shown that the broad absorption band in 

the wavelength region of 420–550 nm is comprised of several CT electronic transitions 

either from the ruthenium metal center to the bridging ligand (>500 nm) or mixed 

transitions involving CT to both the bridging ligand and the remaining tbbpy ligands 

(400–450 nm).[10, 12-13, 36] Additionally, in pioneering studies it was inferred for the 

[RuII(bpy)3]2+ (bpy=2,2’-bipyridine) chromophore that a rapid charge localization on 

one ligand within 60–170 fs (depending on the solvent) follows the initially delocalized 

photoexcitation over three ligands. This was based on TA anisotropy measurements in 

solution which gave values of r0=0.55 relaxing to 0.4.[37] This interpretation, however, 

was later on challenged and a more complex anisotropy decay was revealed than 

previously thought.[38] Recently, for heteroleptic RuII-bpy/phen complexes in 

acetonitrile, an ultrafast anisotropy depolarization, i.e. randomization of electronic 

excitation, was found.[39] This does not contradict the otherwise observed dynamics in 

the tens of ps regime for magic angle experiments considering vibrational cooling in 

solution. The latter slows down inter ligand electron transfer (ILET), turning it into an 

activated process and leads to a Boltzmann distribution for the localization of the charge 

on the ligands.[39-40] 

Based on the results of our gas phase experiments on Ru-Pt and the considerations 

proposed in Ref. [37-39] we infer that, even if we assume an initial excitation and charge 

distribution over both tbbpy ligands, the charge ends up eventually on the bridging 

ligand (tpphz). Experimentally, we observe from the recorded anisotropy that on the 

time resolution of our setup (~130 fs) the pump laser induced CT is localized and 

oriented along the long axis (x-axis, cf. Figure S5) of the molecular system. As the 

experimental initial anisotropy has a value of 0.31, the TM of the probe absorption 

should also be oriented closely to this axis. In detail, we obtain an angle of 

22.8° (=arccos((5·r0+1)/3)1/2) and 33.5° (=arccos((3.5·r0+1)/3)1/2) between the pump 
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and probe TMs for a (1+1’) and (1+2’) photon process, respectively. If the latter process 

would apply to our tPF scheme, its value of 33.5° could be interpreted as the angle 

between the TM for the primary 1MLCT excitation (dRu→π*tbbpy) and the TM for the 

excited state absorption of the quickly formed 3MLCTtpphz state. From the calculated 

ground state structure of Ru-Pt we obtain an angle of 43.6° between the Ru-Pt and the 

Ru-tbbpy axes projected onto the tpphz plane. A theoretical analysis of the short-time 

anisotropy behavior followed by simultaneous excitation of both tbbpy moieties by a 

pump pulse supports the above scenario (cf. 6.8.5). It reveals that the coherent excitation 

of both tbbpy-ligands may affect the anisotropy on a time scale of several hundreds of fs, 

which cannot be resolved in the present experiment. On a longer time scale, the effect 

disappears due to a fast electronic dephasing, and both tbbpy ligands contribute to the 

signal additively. 

Additionally, from the constructed experimental r(t) function (Fig. 4b) we could extract 

the dephasing time of the rotational coherence, as the rotational dynamics are now 

decoupled from the underlying population dynamics. Figure 4b implies that after ~15 ps 

the alignment of excited molecules is lost. As the molecular rotational motion and 

therefore the dephasing time depends on the rotational constants, i.e. moments of 

inertia, and the temperature T of the system, one can calculate the time for reaching the 

minimum anisotropy value by τdephas=(Iy/kBT)1/2 (with the principal moments of inertia 

being Ix≥Iy≥Iz).[41] By using Iy=9.692·10-43 kg·m2	(cf. Table S2) and T=310 K, we estimate 

a rotational dephasing time of τdephas=15.1 ps, which agrees well with the experimental 

value. Analogous calculations assuming a rotation around the z-axis 

(Iz=1.012·10-42 kg·m2,≈Iy) and x-axis (Ix=2.253·10-43 kg·m2) of the molecular frame yield 

rotational dephasing times of τdephas=15.4 ps and τdephas=7.3 ps, respectively. 

A more detailed approach for modeling rotational dephasing dynamics is based on 

calculating the time-dependent rotational correlation function of the second order 

Legendre polynomial P2 of the TM.[42] The molecules are treated as free rigid classical 

asymmetric tops at a specific temperature (here T=310 K). Given the moments of inertia 

and by assumption of the TM orientation along one of the molecular axes, the calculated 

results provide an accurate classical description of the rotational dephasing process. 

Some theoretical aspects of these simulations are elaborated on in 6.8.4. The resulting 

correlation functions (for x, y, z oriented TMs) are shown in Figure 4b. It is obvious that 
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the simulations assuming an orientation of the TM along the x-axis (axis of smallest 

moment of inertia) are in good agreement with the experimental data. Since Ru-Pt (and 

Ru-Pd) represents a near prolate top with Ix<Iy≈Iz the rotational dephasing of the x-axis 

aligned TM is determined by the rotational motions along the y- and z-axis. Thus, the 

assigned x-axis (tpphz-axis) orientation of the TM strongly supports the estimation of 

τdephas above. 

In analogy to recent reports on the wavelength dependent excited state dynamics of 

Ru-Pd in solution by TA spectroscopy, we performed tPF measurements on Ru-Pt by 

excitation at 480 nm. Note that one-color photoexcitation at 480 nm (cf. Figure S3) 

produces only a small fragmentation yield, consequently the pump-probe signal is also 

smaller, compared to excitation at 440 nm. Therefore, higher pump pulse energies 

(1.5 µJ) were used to achieve fragmentation efficiency comparable to excitation at 

440 nm (1.0 µJ). Since technically the wavelength of 480 nm is close to the edge of the 

non-linear mixing scheme of optical parametric generator employed in this study, a 

lower pulse-to-pulse stability and thus smaller signal/noise is obtained for the recorded 

transient data. Nevertheless, we were able to obtain transients of sufficient quality for a 

first qualitative analysis. 

Figure 5 depicts the transient signal for Ru-Pt recorded for a total time delay of 800 ps 

at the magic angle, following excitation at 480 nm, i.e. the red edge of the broad CT band 

(Figure 2). In general, the recorded transient is similar to the signal obtained by 

excitation at 440 nm. The tPF signal was fitted to a tri-exponential decay of 

τ1=0.4±0.2 ps, τ2=4.3±2.7 ps and τ3>>800 ps, which, within experimental uncertainty, 

are close in value to the decay constants we obtained upon excitation at 440 nm 

(τ1=0.6±0.1 ps, τ2=6.5±1.3 ps and τ3>>800 ps). However, the two fast time constants 

(τ1 and τ2) exhibit slightly smaller numeric values at longer pump pulse wavelengths. An 

acceleration of the initial ultrafast processes was reported by Wächtler et al. in a 

wavelength dependent study on the sub-picosecond excited state dynamics of Ru-Pd 

applying high resolution TA spectroscopy (sub-20 fs).[12] In that report, two ultrafast 

processes were found to describe the temporal evolution of the transient signal within 

the first picoseconds. Firstly, a sub-100 fs process (here denoted as τW1) ascribed to hot 

triplet state formation following initial population of the excited singlet state. 
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Figure 5 Normalized transient total fragment ion yield of Ru-Pt recorded at 
the magic angle; λpump=480 nm (1.5 µJ) and λprobe=1200 nm (60 µJ). 
Decomposition of fit plotted. 

Secondly, a sub-1 ps (∼0.5 ps) process (here denoted as τW2) attributed to an ILCT 

resulting in a formation of a triplet state mainly localized on the phen moiety of the 

tpphz-bridging ligand. Both processes appear to speed up by excitation at longer 

wavelengths, dropping from τW1=85 fs to 44 fs and τW2=553 fs to 407 fs using 500 nm 

instead of 450 nm for pumping, and interrogating excited state evolution at 590 nm.[12] 

As our experimental setup lacks the required temporal resolution, we can neither detect 

this initial step (τW1), nor comment on any wavelength dependence of this process. The 

slower process (τW2) reported by Wächtler et al., most likely corresponds to the shortest 

time constant that we have obtained from our measurements (τ1) and for which we 

report a decrease in value upon longer wavelength excitation (0.4 ps vs. 0.6 ps at 

480 nm vs. 440 nm). Wächtler et al. proposed that longer wavelength excitation in the 

broad CT region of Ru-Pd (and Ru-Pt) should result in population of a mainly 

phen-centered state, whereas for excitation at shorter wavelengths (e.g. 450 nm used in 

their experiments) a larger contribution of transitions to the tbbpy ligands is expected. 

Thus the ultrafast process associated with the relaxation into mainly phen-localized 
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3MLCT states (involving ILET from dRu→π*tbbpy 3MLCT states) proceeds faster the smaller 

the contribution from dRu→π*tbbpy 3MLCT states, i.e. the longer the excitation wavelength. 

Hence, we tentatively apply the same reasoning for the decrease of the first time 

constant obtained from our measurements. The observed decrease of the second time 

constant (4.3 ps vs. 6.5 ps at 480 nm vs. 440 nm), on the other hand, requires further 

considerations. This process was assigned to ILCT resulting in a relaxation of the 

phen-centered 3MLCT state to a phz-localized state and is observed for both excitation 

wavelengths (480 nm and 440 nm). Excitation at 440 nm (with respect to 480 nm), 

however, provides a significant amount of excess energy to the molecular system stored 

in vibrational modes. This would lead to the formation of a higher vibrationally excited 

phen-localized 3MLCT state prior to relaxation by ILCT to the phz-centered state. One 

may deduce from this observation that coupling between the phen-centered and the 

phz-centered state is worse the higher the degree of vibrational excitation of the former 

state. However, to prove this assumption, further theoretical studies and wavelength 

dependent experiments in solution are necessary to obtain values for the intermediate 

time constants. 

For further analysis, we recorded the polarization dependent transient mass spectra. 

The results for Ru-Pt using an excitation wavelength of 480 nm are shown in Figure 6. In 

general the transients (Figure 6a) recorded at either parallel or perpendicular mutual 

polarization orientation between the pump and probe pulses show a similar behavior 

when exciting at 480 nm instead of 440 nm. The relative intensities, however, are 

slightly altered, with �∥(t) exhibiting higher and �<(t) lower signal intensities with 

respect to excitation at 440 nm. This results in a larger initial anisotropy value of 

r(t=0)=0.40±0.04 (Figure 6b), which is in line with a parallel orientation of the TMs for 

the pump and probe electronic transitions assuming a (1+1’) absorption process. 

A (1+2’) process, on the other hand, would result in an angle of 26.6° between the TMs 

in analogy to the analysis we performed for the first data set. A value of 

r(t=0)=0.40,however, would be in agreement with theoretical considerations that upon 

longer wavelength excitation an excited state is quickly populated, mainly centered on 

the bridging ligand. Hence the corresponding pump TM is also peaking along the long 

molecular axis (x-axis). 
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Figure 6 (a) Normalized transient total fragment ion yield of Ru-Pt at 
parallel (cyan) and perpendicular (dark blue) relative polarization of pump 
and probe pulses; λpump=480 nm (1.5 µJ) and λprobe=1200 nm (60 µJ). 
(b) Anisotropy function r(t) calculated from data of Figure 6a. Simulations: 
T=310 K, TM parallel to x-, y- or z-axis; rotational constants were obtained 
from DFT calculations (Table S2). 

In summary, from our experimental data, we extracted the intrinsic excited state 

dynamics of Ru-Pt in the gas phase upon electronic excitation in the CT band at 440 nm 

and probing at 1200 nm. We have found spectroscopic evidence for bi-exponential 

picosecond kinetics (τ1∼0.6 τ2∼6.5 ps) and the ensuing formation of a long-lived state 

(τ3>>800 ps). The Ru-Pt molecular system exhibits pronounced rotational dephasing 

with a time constant of τdephas∼15 ps in agreement with a simulation for an angle of 22.8° 

(33.5°) between pump and probe TM for a 1+1’ (1+2’) process with a long-axis, i.e. 

tpphz-axis, polarized probe transition. Excitation at 480 nm yielded qualitatively the 

same results, however, the short timescale kinetics appear to accelerate (τ1∼0.4, 

τ2∼4.3 ps). Furthermore, the initial anisotropy determined from polarization dependent 

measurements amounts to r(t=0)=r0=0.40±0.04, implying a more parallel orientation of 
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the pump and probe TMs, and correspondingly a more directed CT onto the bridging 

ligand. 

6.5.4 Pump-probe anisotropy and excited state dynamics of Ru-Pd 

As the absorption spectra for Ru-Pt and Ru-Pd are very similar, the same wavelengths 

(440 nm and 480 nm) for the pump pulses were utilized for excitation of Ru-Pd in our 

time-resolved gas phase study. Firstly, experimental results upon excitation at 440 nm 

are presented and discussed. Figure 7 depicts the transient signal for Ru-Pd recorded 

for a total time delay of 800 ps at the magic angle. Similar to the transient recorded for 

Ru-Pt, the signal exhibits an ultrafast rise on a timescale comparable to the estimated 

system response. The signal decays significantly within the first 20 ps, followed by a 

more pronounced decay of the long lived component by ~45 % within 800 ps 

(compared to ~7 % observed for Ru-Pt). The transient could be fitted to a 

tri-exponential decay of τ1=0.9±0.4 ps, τ2=6.9±2.1 ps and τ3>>800 ps. 

 

Figure 7 Normalized transient fragment ion yield of Ru-Pt recorded for the 
sum of all fragments at the magic angle; λpump=440 nm (1 µJ) and 
λprobe=1200 nm (60 µJ). Decomposition of fit plotted. 
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The two shorter time constants compare relatively well to the values found for Ru-Pd by 

TA spectroscopy in acetonitrile solution (τ1=0.8 ps and τ1=5 ps),[9] whereas a precise 

value for the long time constant could not be determined from our experiments due to 

technical constraints in the maximum time delay. Compared to the value for τ3 obtained 

from TA studies (310 ps)[9] the lifetime in vacuo is apparently much longer, which again 

may probably be attributed to the lack of solvent stabilization and thus a reduced 

driving force for the formation of the charge separated LMCT state, as discussed for 

Ru-Pt (cf. section 6.5.3). 

Comparing the transients recorded for parallel and perpendicular pump-probe 

polarization (Figure S8a) a strong similarity in shape is apparent, as both show a quasi-

instantaneous rise and pronounced signal decay within ~15-20 ps. 

 

Figure 8 (a) Normalized transient fragment ion intensity of Ru-Pd recorded 
at parallel (cyan) and perpendicular (dark blue) relative polarization of 
pump and probe pulses; λpump=440 nm (1 µJ) and λprobe=1200 nm (60 µJ). 
(b) Anisotropy function r(t) calculated from transient data shown in Figure 
8a. Simulations: T=310 K, TM parallel to x-, y- or z-axis; rotational constants 
were obtained from DFT calculations (Table S2). 
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Similar to Ru-Pt, the calculated anisotropy function r(t) (Fig. 8b) has an initial value of 

r0=0.32±0.01, however, it decays within ~15-20 ps, although the calculated dephasing 

time (Iy=8.341·10-43 kg·m2, T=310 K) is predicted to be slightly shorter (∼14 ps) for 

Ru-Pd than for Ru-Pt. Additionally, we have calculated the time-dependent rotational 

correlation functions for Ru-Pd for TM orientations along the x-, y- and z-axis 

(Figure 8b). In contrast to Ru-Pt, the simulation for Ru-Pd assuming that the transition 

dipole moments are directed along the x-axis (Figure 8b, black curve; tpphz-axis) does 

not match the experimental data as perfectly, instead predicting faster anisotropy decay 

within ~15 ps. 

In the following we attempt to rationalize this discrepancy. We rule out collisional 

depolarization as it, firstly, universally decelerates anisotropy decay [43] and secondly, 

collisions of Ru-Pd with the helium buffer can anyhow be neglected on a ∼10 ps 

timescale, given the experimental conditions. On the other hand, we observed that the 

shape and decay time of r(t) for Ru-Pd depends strongly on the intensity and focusing of 

the probe laser pulse, whereas that for Ru-Pt was not significantly affected. This is 

probably attributable to a non-linear laser intensity dependence of the probe process, 

which contains signal contributions from both the primary electronically excited 

(3MLCTtbbpy/3MLCTphen) and the ensuingly formed electronically excited state 

(3MLCTtpphz), as discussed in the preceding section on the dynamics of Ru-Pt. 

Specifically, not only a reduction in the absorption cross section for the probe laser 

pulse, but also a change in polarization dependence of the transition (e.g., a switch from 

a parallel to a vertical transition) has to be considered. Stronger deviations at longer 

time delay could hence be ascribed to the formation of an electronically excited state 

exhibiting a different polarization dependence of the probe process. Since this change in 

probing depends sensitively on the level structure of higher lying electronically states, it 

might be specifically encountered for one photocatalyst (Ru-Pd) but not for the other 

(Ru-Pt). The simulation of anisotropy beyond the weak-probe limit, however, 

necessitates a proper generalization of the approach presented in Ref. [44]. 
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Analogously, we performed tPF measurements on Ru-Pd upon excitation at 480 nm. The 

resulting transient signal is shown in Figure 9. 

 

Figure 9 Normalized transient total fragment ion yield of Ru-Pd recorded at 
the magic angle; λpump=480 nm (1.5 µJ) and λprobe=1200 nm (60 µJ). 
Decomposition of fit plotted. 

The transient of Ru-Pd upon excitation at 480 nm resembles the signal obtained for 

pumping at 440 nm and furthermore could be satisfactorily fitted to a tri-exponential 

decay yielding three time constants: τ1=0.6±0.4 ps, τ2=5.8±3.5 ps and τ3>>800 ps. In 

accordance to our measurements on Ru-Pt, the fast time constants slightly diminish 

upon longer wavelength pumping. Thus we believe that the same considerations 

(cf.  section 6.5.3) apply here, as well. In the following, results of our polarization 

dependent experiments for Ru-Pd using an excitation wavelength of 480 nm are 

presented (Figure 10). 
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Figure 10 (a) Normalized transient total fragment ion yield of Ru-Pd at 
parallel (cyan) and perpendicular (dark blue) relative polarization of pump 
and probe pulses; λpump=480 nm (1.5 µJ) and λprobe=1200 nm (60 µJ). 
(b) Anisotropy function r(t) calculated from data of Figure 10a. Simulations: 
T=310 K, TM parallel to x-, y- or z-axis; rotational constants were obtained 
from DFT calculations (Table S2). 

Compared to the measurements performed using λpump=440 nm, signal intensity of �∥(t) 

recorded upon excitation at 480 nm is slightly higher, whereas �<(t) exhibits lower 

values (Figure 10a). Consequently the initial anisotropy is calculated to be higher: 

r0=0.40±0.04 (Figure 10b). Strikingly, we observed the same behavior of the 

polarization dependent transients for Ru-Pt using at λpump=480 nm. Thus, the 
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CT band is dominated by a CT from the RuII metal center to the phen-part of the tpphz-

bridging ligand.[10, 36] Based on our transient anisotropy simulations (Figure 10b), we 

infer that the probe TM is peaking along the long axis of the molecule. Thus, r0=0.4 

would imply a similar TM orientation of the pump process, in strong agreement with our 
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experimental and simulated r(t) curves show deviations, thus a precise evaluation of the 

rotational dephasing time is not possible. 

6.5.5 Summary of excited state dynamics of Ru-Pt and Ru-Pd 

The time constants for the excited state electronic dynamics obtained from pump-probe 

tPF in an ion trap for the photocatalysts Ru-Pt and Ru-Pd are summarized in Figure 11 

and listed together with previously reported values from solution experiments in 

Table 1. 

 

Figure 11 Scheme summarizing ultrafast electronic dynamics of Ru-Pt (a) 

and Ru-Pd (b) (M=Pt, Pd) observed in gas phase tPF experiments upon 
excitation at λpump=440/480 nm. τdephas denotes an approximated anisotropy 
decay time. Orientation of the TMs for the pump and probe absorption 
process are illustrated as blue and red arrows, respectively. For clarity, only 
the most abundant neutral loss (MCl2) after upon PF and CID is depicted. 
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Table 1 Summary of time constants obtained for Ru-Pt (a) and Ru-Pd (b) from tPF 
spectroscopy in the gas phase and TA spectroscopy in acetonitrile solution. Values in 
brackets denote decay amplitudes Ai from fitting of the respective tPF data sets. 

a) λpump/nm τ0/fs τ1/ps τ2/ps τ3/ps 

tPF 
440 - 0.6±0.1 (0.17) 6.5±1.3 (0.32) >>800 (1.02) 

480 - 0.4±0.2 (0.13) 4.3±2.7 (0.25) >>800 (1.09) 

TA 470a) - 0.5 4.2 320 

      

b) λpump/nm τ0/fs τ1/ps τ2/ps τ3/ps 

tPF 
440 - 0.9±0.4 (0.45) 6.9±2.1 (1.81) >>800 (1.08) 

480 - 0.6±0.4 (0.53) 5.8±3.5 (1.96) >>800 (1.03) 

TA 

470b) - 0.8 5 310 

450c) 85 0.55 - - 

500c) 44 0.41 - - 
a)Taken from Ref. [10]; b) taken from Ref. [9]; c)taken from Ref. [12] 

In general, one can see from Table 1 that the dynamics of the isolated photocatalysts in 

gas phase are quite similar to their photophysical behavior in solution, which points to a 

minor influence of the solvent on the initial ultrafast dynamics (τ1 and τ2) and a 

significant impact on the slowest process (τ3). For both systems, we have observed the 

relatively fast buildup of an intermediate state with a few ps lifetime, which eventually 

converts to a long-lived (>>800 ps) excited state. The resulting photofragments imply 

that energy transfer from the primary excited Ru-chromophore unit to the PdCl2 or PtCl2 

catalytic center is eventually taking place. Thus, one could adopt the assignments put 

forward for the solution dynamics also to the gas phase results, namely that τ1 is related 

to population transfer from the initially excited RuII-tbbpy state to the phen-sphere of 

the bridging tpphz-ligand. Consequently, τ2 characterizes the subsequent ILCT from the 

phen- to the tpphz-sphere, which is ensued by CT (τ3) to the respective catalytic metal 

center (Ru or Pt). 

Some differences between ion trap and solution results have to be addressed. Firstly, the 

time constants τ3 obtained from the ion trap measurements are relatively large 

compared with the solution results. However, the maximum adjustable time delay is 

~1 ns in our setup for these measurements and the τ3 values can only be given with a 
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limited precision. Thus τ3 is to be understood as a lower boundary estimate. Moreover, 

from studies in solution it is obvious that changes in TA within a time window of 

0.1-1 ns are relatively small.[9] Based on these observation one can assume that the 

differences in cross section for the probe laser in our ion trap PF experiment for the 

different long-lived electronic states are also minor, compromising again the accuracy of 

the values determined for τ3  

Secondly, the transients for Ru-Pt vs. Ru-Pd are somewhat different whereas in solution 

not only the absorption spectra but also the transient dynamics are nearly identical. We 

would ascribe the differences mainly to effects of higher lying electronic states, which 

are involved in the probe laser absorption process. Possibly these levels and their 

dynamics are more strongly influenced than the lower/first electronically excited states. 

The analysis of rotational dephasing dynamics is consistent with that picture. 

6.6 Conclusion 

We have presented for the first-time studies on the intrinsic photodynamics and 

fragmentation of two hydrogen evolving supramolecular photocatalysts in gas phase. 

The properties of both molecular systems correspond astonishingly well to their 

behavior in acetonitrile solution, indicating that their photoinduced key process, i.e. the 

CT towards the catalytic metal center, is taking place in isolated molecular systems as 

well. 

Our mass spectrometric investigation revealed that the catalytically active metal centers 

provide the most weakly bound units in both complexes and fragment with high yield as 

neutral losses of PtCl2 and PdCl2. PF studies clearly indicate an intrinsically higher 

photostability of Ru-Pt compared to Ru-Pd and allowed us to record first gas phase 

UV/Vis spectra, which may serve as useful references for future ab initio calculations. 

Time-resolved PF experiments on Ru-Pd and Ru-Pt yields three time constants, 

respectively. For both molecular systems, the two fast constants (τ1 and τ2) are 

remarkably close to the ones observed in liquid phase studies, whereas the third time 

constant τ3 exhibits a larger value. The large uncertainty of the latter originates from a 

technical limitation of the utilized gas phase set up, as discussed. However, its value 

could be also a hint that CT from the bridging ligand to the metal center is impeded and 
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thus delayed in vacuo. Electron transfer to the catalytic center (Pd or Pt) results in a 

strongly charge separated state, which lacks a polar, stabilizing environment in the gas 

phase and might result in larger time-constants for the slowest CT process. The 

observed acceleration of the initial electronic processes (τ1 and τ2) upon longer 

wavelength excitation is in remarkable agreement with experimental studies performed 

in solution and complementing theoretical considerations based on TD-DFT calculations. 

Furthermore, we have observed a strong dependence of the tPF signal on the mutual 

polarization orientation between pump and probe pulses. Polarization dependent 

measurements enabled us to extract a value for the initial anisotropy (r0) and the time-

dependent anisotropy function r(t). The former yielded a value of 0.31 and 0.32 using an 

excitation wavelength of 440 nm for Ru-Pt and Ru-Pd, respectively, in agreement with 

excitation of a mainly tbbpy centered state and probing of tpphz localized states. Upon 

longer wavelength excitation (480 nm) our polarization dependent studies yield r0=0.4, 

strongly supporting a more directed electron transfer toward the bridging ligand and 

consequently to the catalytic metal center. The respective anisotropy functions r(t) were 

modeled by calculating the rotational correlation functions of TMs. These simulations 

are in good agreement with the experiments so that we infer an orientation of the probe 

transition dipole moments along the long axis (smallest moment of inertia) of the 

molecular systems, which indicates a fast charge transfer onto the tpphz-bridging ligand. 

Hence, from these gas phase results of molecular alignment and rotational dephasing, 

the concept of an intrinsic ultrafast and directed CT in the supramolecular 

photocatalysts Ru-Pd and Ru-Pt is strongly supported. We finally conclude that ion trap 

PF experiments allow for an unprecedented insight into the stability, intrinsic 

spectroscopic and dynamic properties of RuII-based photocatalysts. Our studies provide 

a technical access to information on a molecular level with unparalleled detail. This 

method might contribute to the optimization of supramolecular photocatalyst 

performance in connection with theory-derived rational design.  
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6.8.1 Mass spectrometric data 

 

Figure S1 Isotopic distribution in the mass signals of Ru-Pt (a) and 
Ru-Pd (b); respective simulated isotope pattern are shown below. 
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Figure S2 Mass spectrum of fragment ions formed by collision induced 
dissociation of Ru-Pt (a) and Ru-Pd (b). Precursor ion signals are colored in 
blue. Identified fragment ion signals are listed in Table S1 and S2. 
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Table S1 Relative yields of fragmentation channels (by CID and PF) of Ru-Pt (a) and 
Ru-Pd (b). 

a) m/z assigned formula loss CIDa)/% PFb)/% 

Ru-Pt 

644.0c) [(C60N10H60)RuPtCl2]2+ -   
636.0 [(C59N10H56)RuPtCl2]2+ CH4d) - 0.7 
628.5 no exact assignment C2H6 or 2xCH4d) 1.0 0.2 
511.0 [(C60N10H60)Ru]2+ PtCl2 62.3 23.3 
503.1 [(C59N10H60)Ru]2+ PtCl2/CH4d) 19.7 3.9 
496.1 [(C58N10H54)Ru]2+ PtCl2/C2H6d) 10.2 2.3 
488.1 [(C57N10H50)Ru]2+ PtCl2/C2H6/CH4d) 2.9 0.7 
481.1 [(C56N10H50)Ru]2+ PtCl2/2xC2H6d) 2.3 0.4 

      

b) m/z assigned formula loss CIDa)/% PFb)/% 

Ru-Pd 

600.0c) [(C60N10H60)RuPdCl2]2+ - - - 
582.0 no exact assignment probably Cl* 1.0 0.4 
564.5 [(C60N10H60)RuPd]2+ Cl2 - 1.7 
528.0 No exact assignment PdCl 2.8 1.3 
511.0 [(C60N10H60)Ru]2+ PdCl2 78.3 50.8 
503.1 [(C59N10H56)Ru]2+ PdCl2 CH4d) 10.1 4.2 
496.1 [(C58N10H54)Ru]2+ PdCl2/C2H6d) 5.2 2.1 
488.1 [(C57N10H50)Ru]2+ PdCl2/C2H6/CH4d) 1.1 0.6 

a) at 1.5 V (internal energy scale of the mass spectrometer), b) at λex=290 nm (1 µJ), c) precursor ion signal 
(cf. Figure S1), d)CH4 are C2H6 probably formed by elimination from the tbbpy-ligands of the 
RuII-chromophore 
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6.8.2 Photofragmentation 

 

Figure S3 UV/Vis PF spectra of Ru-Pt (blue triangles) and Ru-Pd (red 
circles). Data points were connected using a Spline interpolation. Spectra 
were recorded using a laser pulse energy of 1.0 µJ and irradiating each ion 
cloud with 150 pulses. 
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Figure S4 Pulse energy E dependent total PF yields Y of Ru-Pt (a) and 
Ru-Pd (b) by one-color photoexcitation at λex=440 nm. Dependencies were 
evaluated according to 	 = 
 ∙ ��,[1] where n is a mean value for the number 
of photons absorbed to induce fragmentation and A a dimensionless fit-
parameter. 

As discussed (cf. section 6.5.2), Ru-Pd exhibits a larger PF efficiency as Ru-Pt. At least 

two photons (λex=440 nm) have to be absorbed to induce fragmentation in both cases. 

One-color (pump only) PF at the pump intensity used for transient experiments (1 µJ) is 

negligible (>>1 %) compared to the two color (pump-probe) signal, which amount up to 

8 % and 11 % of the total ion signals of Ru-Pt and Ru-Pd, respectively. Based on this 

result and the value of the anisotropy function at time zero (r0) it is reasonable to 

assume that the major fraction of ions contributing to the two-color (pump-probe) 

signal in transient experiments have absorbed only one photon by pump-pulse 

excitation. One-color PF at λex=480 nm is even lower, thus pulse energy dependencies 

could not be evaluated. 
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6.8.3 DFT calculations 

 

Figure S5 Geometry optimized S0 structure of Ru-Pt and molecular axis 
system (x, y ,z; equivalent to a, b, c axes, respectively) obtained from DFT 
calculations (B3LYP/LanL2DZ/6-311G(d,p)). A calculation for Ru-Pd yielded 
a nearly identical geometry/molecular axis system and is therefore not 
shown. 

Table S2 Rotational constants and moments of inertia of Ru-Pt (a) and Ru-Pd (b) from 
geometry optimized structures calculated at the (B3LYP/LanL2DZ/6-311G(d,p)) DFT 
level of theory. 

 A/GHz Ix/(10-43 kgm2) B/GHz Iy/(10-43 kgm2) C/GHz Iz/(10-43 kgm2) 

a) 0.0373 2.253 0.0087 9.692 0.0083 10.120 

b) 0.0368 2.278 0.0101 8.341 0.0093 9.077 
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6.8.4 Calculation of the orientational correlation functions of the second rank for 

freely rotating asymmetric top molecules 

For a one photon pump+one photon probe (1+1’) process, the anisotropy function r(t) is 

determined by the standard formula (S1): 
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For a (1+2’) process, the anisotropy is given by a similar formula: 
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Here cos(β(t))=µ1(0)µ2(t), µ1 and µ2 are the unit vectors along the TMs responsible for 

the transitions initiated by the pump and probe pulses, 〈… 〉 stands for rotational 

averaging, and P(x)=(3x2-1)/2 is the second order Legendre polynomial. The time 

dependence of µ2(t) results from molecular rotation. For a (1+1’) process (equation 

(S1)), values for r(t) vary from initially r0=r(t=0)=+0.4 for parallel TM orientations or 

r0=-0.2 for perpendicular TM orientations to the final stationary distribution r(tdephas), 

where a characteristic time constant tdephas is determined by the rotational constants of 

the molecular system. The orientational correlation functions of equations (S1) and (S2) 

can explicitly be defined as follows: 
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Here 
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are the symmetrized Wigner’s D-functions, and )0,,( µµµ iii
θψΩ  denote the angles 

specifying orientations of the TMs µ1 and µ2 in the molecular frame.  
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Equation (S3) reveals that the time evolution of the orientational correlation function is 

governed by the six basis functions 
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A convenient method of the evaluation of the basis functions (S5) has been developed in 

Refs. [2,3]. The method employs the action-angle representation of the rotational 

dynamics and yields the following explicit formulas for the quantities (S5): 
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are the stationary (long-time) asymptotic values of the basis functions (S5), 

 
)(

})2exp{1(

}2exp{

2
)(

1

1/
23

423

2

3
0

,
2

tP
nqK

nqb
d

f
tQ NnN

N

nN ∫
σ+

σε
ε

δ

π
=

+δδ

−
± , (S15) 

 
  

 
}2/exp{)1()( 2222 tttP NnNnNn β−β−= , (S16) 

 
  

 
]

1

)2/)((
[

1

2

4

δ+

π−−ε
+=β

z

xzy
y

x

Nn

I

KNyIII
In

bI
 (S17) 

The parameters 
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are uniquely determined by the main moments of inertia, 
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)(λ= KK  is the complete elliptic integral of the first kind, 
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),( λ′uF  is the elliptic integral of the second kind, )(λ= EE  is the corresponding 

complete integral, 
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and )(/)( σϑσϑ′= iiy nnn  where )( σϑ in  are the Jacobi theta functions of the complex 

argument. 

In the above formulas, time is expressed in units of the mean rotational period 

)/(kTI y , where k  is the Boltzmann constant and T  is a temperature. 

6.8.5 Analysis of the anisotropy of the pump-probe signal 

As was demonstrated by Hochstrasser et al.,[4] the presence of degenerate 

simultaneously-excited electronic levels profoundly affects anisotropy of spectroscopic 

signals. Below we study the influence of two bipyridine (tbbpy) moieties on the 

anisotropy of the pump-probe signal of the present work. 

Let µ1 and µ2 be the unit vectors along the transition dipole moments responsible for the 

excitation of two tbbpy moieties by the pump pulse, and µ3 be the transition dipole 

moment of the phenazine (phen) unit interrogated by the probe pulse. Denote the 

polarizations of the pump and probe pulses as (unit vectors) e1 and e2. Then the (short-

time) intensity of the pump-probe signal can be written as follows: 

 { } 2
322111

2
11

2
11 )())(()()( µeµeµeµeµe CBAI ++=  (S22) 

Here the first (second) term in the parenthesis describes the pathway corresponding to 

a sole excitation of the first (second) tbbpy moiety, while the third term describes the 

coherent contribution of the two moieties. The quantities A, B and C are orientationally 

isotropic. They depend on the carrier frequencies, durations, and the time delay 

between the pulses, as well as on the molecular properties. The orientational averaging 

in Equation (S22) can be performed as explained, e.g., in Refs. [5,6] to yield 
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(from symmetry considerations, we set A=B and µ1µ3=µ2µ3). 

Equation (S23) reveals two important consequences: 

(i) A maximally possible coherent contribution corresponds to C=2A. In this case, the 

anisotropy is uniquely determined by the mutual geometry of the transition dipole 

moments: 
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If µ1, µ2 and µ3 lie all in the molecular plane (the assumption is reasonable for the 

present case) we can write µ1µ3=cos(φ) and µ1µ2=cos(2φ). Then, the initial anisotropy 

r0=0.4, irrespective of the value of φ. Hence the anisotropy for the pump-probe signal of 

equation (S23) cannot exceed the standard value of 0.4. 

(ii) After a short electronic dephasing time of the order of several hundreds of 

femtoseconds (which cannot be resolved in the present experiment) the coherent 

contribution in equation (S23) can be set to zero (C=0). Then equation (S24) reduces to 

 )(4.0 3120 µµPr =  (S25) 

,where the Legendre polynomial P2 is defined per equation (S2). 
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7.1 Preamble 

The following chapter is formatted as to become a manuscript for publication and has 

not been submitted, yet. Experimental work, data processing and evaluation, as well as 

structural and energetic calculations were performed by me. Samples of the complex 

were provided by Sven Rau et al. (Universität Ulm). The initial draft of the manuscript 

was written by me. 
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7.2 Abstract 

The absorption properties of a new type of heterodinuclear complex for photocatalytic 

hydrogen generation incorporating an N-heterocyclic carbene/phenanthroline bridging 

ligand have been investigated in solution and in the gas phase. Steady state absorption 

(action) spectra were recorded and compared to TD-DFT calculations showing good 

agreement with a structure in which the DMSO ligand bind to the catalytic center via the 

S-atom in cis-orientation to the bridge. First time-resolved investigations by transient 

photofragmentation action spectroscopy point to a multi-exponential decay of the 

excited state dynamics. The corresponding processes were assigned to a multi-step 

charge transfer across the electron-relaying bridge in analogy to similar photocatalytic 

assemblies reported in literature. 

7.3 Introduction 

The search for clean and sustainable energy sources is a key challenge in the ongoing 

endeavor to combat mankind’s ever increasing need for energy and to mitigate 

pollution, i.e. emission of greenhouse gases resulting from the use of fossil fuels.[1] 

Hydrogen appears to be an ideal non-fossil fuel due to its storability, high energy density 

and the fact that combustion of hydrogen only forms water as “waste”.[2-7] Elemental 

hydrogen is, however, not available in great quantities on earth. Thus an efficient and 

environmentally friendly way to produce hydrogen from renewable sources has to be 

developed as an alternative to today’s most prominent source for hydrogen, the steam 

reforming of natural gas.[8] A promising approach is photolytic hydrogen generation, 

mimicking the light driven water cleaving in the photosynthetic process of green 

plants.[9] In this context, the exploration of photocatalytic concepts has gained much 

interest in recent past. Especially the development and evaluation of photocatalytic 

assemblies by linking a photosensitizer and a catalytically active site by means of 

bridging ligands is an active field of research.[10-13] This approach allows for optimization 

of each single sub-unit by structure-property-correlation derived rational design.[14] 

Often the molecular structure of such catalysts is based on a template first realized in 

2006,[15] incorporating a RuII-polypyridyl-chromophore and a transition metal halide 

(such as e.g. PdCl2 or PtCl2) linked by a symmetric bi-dentate N,N-chelating ligand. In 

some cases, however, this binding motif yielded a less than desired stability of the 
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catalysts, resulting in the formation of colloidal Pt or Pd, acting as the catalytically active 

species.[16-18] More recently, NHC bridging ligands have gained much interest in the 

ongoing development of photocatalytic assemblies, exhibiting exceptional stabilizing 

properties.[19-23] Following this concept, a set of novel supramolecular photocatalysts for 

hydrogen evolution has been developed incorporating a NHC-NN-bridging ligand based 

on 1,3-dibenzyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-ylidene (bbip),[21, 23-24] one of 

which is RubbipPt, i.e. [(tbbpy)2Ru(µ-bbip)Pt(DMSO)Cl2]2+ (tbbpy=4,4’-di-tert-butyl-

2,2’-bipyridine; DMSO=dimethyl sulfoxide) (Figure 1).[25] 

 

Figure 1 Schematic structure of RubbipPt. 

The catalytic activity of RubbipPt has been demonstrated recently,[25] however, its 

photophysical properties, a vital point for any photocatalyst, remain to be fathomed by 

spectroscopic means. Especially time-resolved techniques are an indispensable tool for 

unraveling the key processes in energy/electron transfer processes. Hence, spurred by 

our recent experience in the investigation of analogous supramolecular catalysts[26], we 

applied static photofragmentation (PF) and time-resolved pump-probe photo-

fragmentation (tPF) spectroscopy to probe the intrinsic (ultrafast) response of 

RubbipPt to photoexcitation in the gas phase. The gas phase PF results were compared 

to absorption in solution and to time-dependent (TD-)DFT calculations. 
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7.4 Experimental 

The doubly charged cationic complex RubbipPt was generated by electrospray 

ionization from a solution of the corresponding salt [RubbipPt](PF6)2 in acetonitrile. 

Synthesis and characterization of the complex was reported elsewhere.[25] Acetonitrile 

of biotechnology grade (≥99.93 %) was purchased from Sigma Aldrich. 

The experimental setup and procedure was reported elsewhere. [27-29] Briefly, static and 

time-resolved PF experiments were conducted using a modified Paul-type quadrupole 

ion trap mass spectrometer (amaZon speed, Bruker Daltonics) in combination with a 

femtosecond (fs) Ti:sapphire oscillator and amplifier system (Wyvern 1000™, KMLabs). 

The sample solution (1·10-7 M) was continuously infused by a syringe pump at a flow 

rate of 120 µL/h. Nitrogen as drying gas was set to a flow rate of 4 L/min at 180°C. The 

nebulizer pressure was set to 5 psi (345 mbar). Transient PF spectra were recorded 

using pump pulses of λpump=430/470 nm (energy ∼1.5 µJ/pulse) and probe pulses of 

λprobe=1200 nm (energy ∼120 µJ/pulse) at ~1 kHz repetition rate resulting in 

150 pump/probe pulse pairs per ion cloud. Temporal resolution was estimated from the 

cross-correlation function (ccf) obtained by monitoring the pump+probe multiple-

photon ionization of neutral furan at a given pump-probe wavelength combination, 

resulting in a ccf of ~120 fs and ~130 fs for 430 nm+1200 nm and 470 nm+1200 nm, 

respectively.[30-31] The relative polarization of pump and probe pulses was controlled by 

a Berek polarization compensator in the pump path and set to the magic angle (54.7°). 

The tPF signals were recorded as extracted ion chromatograms while continuously 

varying the delay between the pump and probe pulses. Evaluation of the transient 

signals was performed by calculating the fragment yields Yi as Yi=Fi/(Fi+Pj), where Fi and 

Pj are the sums of the intensities of fragment and parent ion signals, respectively. 

Global fitting of transient kinetics was performed with Origin 9.0G applying a sum of 

exponentials. 

Static UV/Vis absorption spectra in acetonitrile solution (c=5·10-6 M) at room 

temperature were recorded using a Lambda 950 photospectrometer (PerkinElmer). 
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Geometry optimizations and vibrational frequencies for the singlet ground states of the 

investigated molecular species employing analytical gradient techniques were 

performed by density functional theory (DFT) calculations with Gaussian 09[32] using the 

B3LYP[33-34] gradient-corrected exchange-correlation functional combined with the 

6-31G(d) double-ζ basis set for C, H, N, O, S, Cl. For ruthenium (platinum) the 28-electron 

(60-electron) relativistic effective core potential (ECP) MWB was used with its basis set. 

Vertical excitation energies (250 and 300 states for calculations with and without 

solvent, respectively) were obtained from time-dependent DFT (TD-DFT) calculations 

within the adiabatic approximation employing the same functional, pseudopotential and 

basis set. Solvent interaction (acetonitrile, ε=35.688, n=1.344) and thus impact on the 

molecular geometry and excitation energies was taken into account by employing the 

polarizable continuum model (PCM) using the integral equation formalism variant 

(IEFPCM).[35] 

7.5 Results and discussion 

7.5.1 ESI-MS and CID 

The peak at m/z 691 (Figure 2, most abundant mass) of the ESI mass spectrum obtained 

from acetonitrile solution corresponds to the molecular peak of the doubly charged 

RubbipPt complex. Performing collision induced dissociation (CID) in the trap, 

fragment ions are formed. The CID mass spectrum (Figure 2, Table 1) is dominated by 

two fragmentation products corresponding to the formal loss of HCl and DMSO 

(m/z 634) or PtCl2, DMSO and the concomitant loss of one of the benzyl moieties 

(m/z 473) found in the bridging-ligand. In contrast to previous studies on two similar 

supramolecular catalysts, subsequent elimination of, e.g. CH4 and C2H6, from the tbbpy-

ligands was not observed.[28] Apart from the two main fragmentation channels, three 

fragment products of low abundance were identified, which probably result from 1) a 

twofold loss of HCl and the DMSO-ligand (m/z 615.5), 2) the loss of HCl, DMSO and one 

benzyl-moiety (m/z 588) or 3) a twofold loss of HCl, the DMSO-ligand and one benzyl-

group (m/z 569.5). To form the fragment at m/z 473 higher internal energies are 

required, as implied by the CID amplitude dependent relative fragment ion intensities 

(Figure S1). 
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Figure 2 Fragment ion mass spectrum of RubbipPt applying CID. Insets 
show magnified experimental (bottom) and simulated isotope distributions 
(top) of the parent ion signal (blue, m/z 691) and the two main fragment ion 
signals (green, m/z 634 and red, m/z 473). Low abundance fragment signals 
showed no clear isotope distributions and thus were not simulated. 

Table 1 Overview over identified ion signals observed in the CID fragmentation mass 
spectrum of RubbipPt (cf. Figure 2). 

m/z assigned formula neutral loss 

691* [(C63H68N8)RuPtCl2(C2H6SO)]2+ - 
634 [(C63H67N8)RuPtCl]2+ HCl/C2H6SO 
615.5 [(C63H66N8)RuPt]2+ 2xHCl/C2H6SO 
588 [(C56H59N8)RuPtCl]2+ HCl/C2H6SO/C7H8 
569.5 [(C56H58N8)RuPt]2+ 2xHCl/C2H6SO/C7H8 
473 [(C56H60N8)Ru]2+ PtCl2/C2H6SO/C7H8 

*)precursor ion signal 

7.5.2 Solution phase absorption and gas phase photofragmentation spectra 

Upon laser irradiation the isolated photocatalyst ions dissociate to form product ions. In 

general, the types of occurring fragments are identical to the ones observed by CID 

(Table 1, Figure S2). However, the relative yield depends on the excitation wavelength, 

with excitation at shorter wavelengths resulting in the preferential formation of 

fragment ions at lower m/z, equivalent to our observation when applying higher 
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excitation amplitudes in CID experiments. In the following, the PF spectrum obtained by 

monitoring the fragmentation yield over a spectral range of 240-480 nm, is presented 

and compared to the linear absorption spectrum recorded in acetonitrile solution 

(Figure 3). 

 

Figure 3 Gas phase UV/Vis PF spectrum (black open circles) and linear 
absorption spectrum of RubbipPt in acetonitrile solution (blue, c=5·10-6 M). 
Charge transfer region (400-480 nm, separated by dashed vertical line) in the 
PF spectrum was recorded at higher laser pulse energies (3µJ vs. 1.5 µJ for 
the remaining spectral range). 

RubbipPt exhibits exceptionally high fragmentation in the UV region (up to 300 nm), 

hence the spectral shape of the gas phase action spectrum follows closely the UV/Vis 

solution spectrum (Figure 3), even at relatively moderate applied pulse energies 

(∼1.5 µJ). Starting at ∼290 nm, the fragmentation drops steeply to almost zero (at 325 

nm) for the remaining recorded spectra range (325-480 nm). Thus we applied higher 

pump pulse energies (∼3 µJ) to record the longest wavelength absorption band 

(≥400 nm). Apparently, the non-linearity of the Vis PF process (Figure S3), combined 

with the inherently lower absorption probability and collisional cooling with the helium 

buffer gas inside the trap results in low intensity absorption bands in the gas phase 
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action spectrum at longer wavelengths. We have previously reported on this behavior in 

our studies on other transition metal complexes using the same experimental setup.[28-

29] 

The gas phase action spectrum (Figure 3) compares remarkably well to the liquid phase 

absorption spectrum in acetonitrile. However, some differences have to be addressed: 

firstly, the intense absorption band in the higher energy UV region (at ∼250 nm) is 

shifted hypsochromically (by ∼1500 cm-1) with respect to the band in solution (at 

∼260 nm), whereas the most intense band (at ∼280 nm), present in both spectra, is 

mostly unaffected by the solvent. This finding probably points to some contribution of a 

charge transfer (CT) transition to the absorption band at ∼250 nm, as a charge separated 

state should be stabilized in polar environments and hence shifted to lower energies 

with respect to a less polar environment, i.e. the gas phase. 

Secondly, the longest wavelength absorption band (≥400 nm) in the gas phase spectrum 

is relatively featureless compared to the band in solution, which clearly exhibits the 

contribution of at least two dominating transitions centered at ∼440 nm and ∼480 nm 

(Figure S4). Lastly, this particular absorption band is much narrower in the gas phase 

spectrum, implying no absorption for λex≥480 nm. Gas phase absorption bands should in 

general be narrower than in solution, being unaffected by e.g. collisional broadening and 

dipole-dipole interaction between the chromophore and the solvent. Especially CT 

excitations are affected by solvent interaction, as a sudden change in charge distribution 

in the chromophore upon electronic excitation is ensued by reorganization of the 

solvent shell, broadening the transition. Even without consulting our quantum chemical 

calculations, we can safely state that this particular absorption region (≥400 nm) is of 

CT(dRu→π*ligand) character, as the shape and location of the band has an uncanny 

resemblance to the absorption characteristics of [RuII(bpy)3]2+ (bpy=bipyridine) and 

various compounds using [RuII(bpy)3]2+-like chromophores as light harvesting antennae 

(see e.g. [36-37] and references therein). Hence the absorption band should be shifted to 

higher energies under isolation. However, this reasoning would only apply to ideal 

experimental conditions, excluding signal suppression by collisional quenching and non-

linear signal generation, as described above. This does not apply to our experimental 

conditions and detection scheme. Therefore we refrain from further commenting on the 

shape and location of the CT absorption band we obtained with our current setup. For 
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high resolution gas phase UV/Vis spectra of larger transition metal complexes a 

dedicated experimental facility is required, ideally utilizing molecular tagging at cryo-

temperatures, which enables single-photon induced dissociation action spectroscopy, as 

exerted by e.g. Weber et al. in their study on [RuII(bpy)3]2+.[38] 

7.5.3 Geometry optimization and theoretical absorption spectra 

Lacking crystallographic data, we have to rely on theoretical means to obtain reasonable 

molecular geometries, which will be used in concurrent excited state calculations. The 

tetragonal-planar coordination sphere of the catalytic PtII metal center allows for 

binding of up to four (mono-dentate) ligands. In the case of RubbipPt, two coordination 

sites are occupied by chlorido-ligands, leaving two sites open for binding to the 

NHC-bridging-ligand and one DMSO ligand (a remnant from synthesis), resulting in the 

coexistence of two possible stereoisomers (cis and trans). Furthermore, as an ambi-

dentate ligand, DMSO can bind to PtII either via the O- or S-atom (structural isomerism). 

Keeping this in mind, we considered four rough structures of RubbipPt as starting 

geometries for the optimization process. The geometry optimized structures and Gibbs 

free energies with or without employing a solvation model (acetonitrile) are given in 

Figure S5. 

Surprisingly, in both cases (acetonitrile and vacuo) the energetically lowest geometry is 

found to be the trans-O isomer, i.e. the DMSO ligand is bound to the PtII-center via the 

oxygen atom in trans-orientation to the bridging ligand. Typically, due to the high 

affinity of PtII towards sulfur, the DMSO ligand should bind to the metal by the sulfur 

atom.[39] Additionally, structural isomerism is deemed to be responsible for the signal 

pattern in the 1H-NMR spectrum of RubbipPt, rather than stereoisomerism.[25] 

Furthermore, we only found reports in literature, which propose a cis-orientation 

between DMSO and NHC-ligands in platinum complexes with a coordination sphere 

reminiscent of RubbipPt.[40-45] However, without crystallographic data, at this point the 

binding motif of the DMSO ligand remains elusive. To further investigate the 

spectroscopic properties of RubbipPt, we calculated the liquid and gas phase vertical 

transition energies for all four isomers resulting from our geometry search (Figure S5). 
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Figure 4 Linear absorption spectrum of RubbipPt in acetonitrile solution 
(black line, 5·10-6 M). Vertical electronic transitions (colored sticks) were 
calculated for the four lowest lying structural isomers/stereoisomers 
employing a continuum model. The vertical transitions were shifted 
bathochromically by 1000 cm-1 and broadened with Gaussian functions of 
2000 cm-1 fwhm. 
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Figure 5 Gas phase UV/Vis PF spectrum of RubbipPt (black, open circles). 
Vertical electronic transitions (colored sticks) were calculated for the four 
lowest lying structural isomers/stereoisomers. The vertical transitions were 
shifted bathochromically by 1000 cm-1 and broadened with Gaussian 
function of 2000 cm-1 fwhm. 
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First we discuss the liquid phase absorption spectra. Comparing the convoluted 

theoretical absorption spectra calculated for the four isomers of RubbipPt (Figure 4), it 

is obvious that they are very similar in shape above 300 nm. The main difference lies 

within the absorption region below 300 nm, in which the experimental spectrum 

features two strong absorption bands centered at approximately 260 nm and 280 nm. 

The calculated spectrum for the trans-O isomer outright fails to account for the 

absorption band at ~250 nm, whereas the trans-S and cis-O spectrum show absorption 

bands at 250 nm of comparably low intensity, which may be attributed to the higher 

energy absorption in the experiment. The best match to the experiment is obtained for 

the cis-S geometry for which a single high intensity transition is predicted at ∼263 nm, 

nearly coinciding with the absorption band at ~250 nm. Furthermore, the asymmetric 

shape (broadened shorter wavelength flank) of the band is satisfactorily reproduced. 

For the calculated gas phase absorption spectra (Figure 5) a very similar behavior is 

observed. Neither the calculated spectra of the S- nor the O-bonded trans-isomer feature 

an additional higher frequency UV absorption band separate from the main absorption 

band centered at ~280 nm. From the stick spectra one can identify an intense transition 

at ~260 nm, however it is too close to the aggregation of transitions around ∼280 nm, 

resulting in a shoulder in each of the convoluted spectra, instead of a separate band. The 

cis-O spectrum features a relatively low intensity absorption band close to the position 

of the higher energy UV absorption band in the experiment. However, in contrast to the 

trans-O and trans-S spectrum, this band does not originate from a singular, dominant 

transition, but rather from an aggregation of low intensity transitions centered at 

~250 nm. Lastly, in accordance with the theoretical solution spectra, the calculated cis-S 

isomer spectrum fits the experiment best, matching the location and relative intensity of 

the absorption band in the PF spectrum astoundingly well. 

Based on our calculations, the main absorption band at ∼280 nm in both the liquid phase 

(cf. Figure S6/7 and Table S1) and gas phase spectrum (cf. Figure S8/9 and Table 2) of 

RubbipPt consists mainly of transitions of either ligand centered π→π* or inter-ligand 

charge transfer (ILCT) character, whereas the intense UV absorption at ~250/260 nm 

has a significant contribution from CT(dPt→π*Ligand) transitions, agreeing with the small 

solvatochromic shift we observed by comparison of the liquid phase and gas phase 

spectra (Figure 3). Although our assignment is mainly based on the calculations of the 
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cis-S isomer, as it fits the experiment the best, we should mention that the calculations 

for all isomers identify the band at ~280 nm to be of π→π* or ILCT character. The 

contributions, intensities and positions of the CT(dPt→π*Ligand) transitions, on the other 

hand, depend delicately on the binding motif of the DMSO ligand, which comes as no 

surprise, as the respective HOMO orbitals are centered on the platinum atom and the 

surrounding ligand sphere. Depending on the binding motif, these transitions are shifted 

either closer to the π→π*/ILCT transitions thus shaping a shoulder in the calculated 

spectra (e.g. in the calculated gas phase spectrum of trans-O and trans-S) or are shifted 

towards higher energies and additionally exhibit lower absorption intensities, which 

results in weaker, albeit separate absorption features. However, the involvement of 

CT(dPt→π*Ligand) transitions is difficult to assess, as the respective contributions were 

found to be minor. Nevertheless, from these results, we infer that the most likely 

structure of RubbipPt appears to be the cis-S geometry, although it is not calculated to 

be energetically most favored isomer. 

The broad absorption band ≥400 nm will be discussed in more detail in the following 

(Figure 6), as the CT transitions are of utmost importance for the mode of operation of 

an intramolecular photocatalyst. Note that we rescaled the intensities of the calculated 

spectra to match the experimental band maxima in this illustration. 

Again we discuss the results for the liquid phase first. On closer examination of the 

transitions involved, the position and relative intensities do not seem to depend on the 

binding motif of the DMSO ligand. The absorption band structure calculated for all 

isomers is dominated by two intense transitions (S5 and S9), which are centered at 

~470 nm and ~430 nm, respectively, matching the central wavelengths of the peaks 

from the signal decomposition analysis we performed strikingly well (Figure S4). All 

contributing excited states are of metal-to-ligand CT (MLCT) character involving 

transitions from d orbitals of the ruthenium atom to the π* orbitals of the tbbpy- and 

bbip-ligands. Examplatorily, the singly-excited state configurations for the first eleven 

excited states (comprising the CT region) and the respective frontier orbitals are given 

for the cis-S isomer in Table 2 and Figure 8 (cf. Table S3-5 and Figure S10-12 for results 

obtained for the other conformers). 
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Figure 6 Magnified CT region (400-600 nm) in the solution phase absorption 
spectrum (black line, 5·10-6 M) of RubbipPt. Computed vertical electronic 
transitions (colored sticks) were shifted bathochromically by 1000 cm-1 and 
scaled in intensity so that the respective absorption maxima coincide. The 
stick spectra were broadened by a Gaussian function of 2000 cm-1 fwhm. 
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Figure 7 Magnified CT region (400-600 nm) in the gas phase PF spectrum of 
RubbipPt. Computed vertical electronic transitions (colored sticks) were 
shifted bathochromically by 1000 cm-1 and scaled in intensity so that the 
respective absorption maxima coincide. The stick spectra were broadened by 
a Gaussian function of 2000 cm-1 fwhm. 
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Table 2 Calculated liquid phase (PCM, acetonitrile) vertical excitation energies Ev, 
oscillator strengths f and configurations of singlet excited states Sn in the CT region of 
RubbipPt (cis-S isomer). Transitions were shifted bathochromically by 1000 cm-1. 
Frontier orbital contributions to the transitions with a weight w of <10% were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S1 dRu(HOMO)→π*bbip(LUMO) 94 534 2.32 0.001 

S2 
dRu(HOMO-2)→π*bbip(LUMO) 41 

495 2.50 0.002 
dRu(HOMO-1)→π*bbip(LUMO) 52 

S3 
dRu(HOMO)→π*tbbpy(LUMO+1) 80 

487 2.55 0.001 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 10 

S4 
dRu(HOMO)→π*tbbpy(LUMO+1) 13 

479 2.59 0.005 dRu(HOMO)→π*bbip,π*tbbpy(LUMO+2) 33 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 45 

S5 
dRu(HOMO-2)→π*bbip(LUMO) 41 

469 2.64 0.140 dRu(HOMO-1)→π*bbip(LUMO) 33 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 17 

S6 dRu(HOMO-1)→π*tbbpy(LUMO+1) 70 453 2.74 0.010 

S7 
dRu(HOMO-2)→π*tbbpy(LUMO+1) 24 

447 2.77 0.059 dRu(HOMO)→π*bbip,π*tbbpy(LUMO+2) 39 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 19 

S8 

dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+1) 15 

442 2.81 0.055 
dRu(HOMO-2)→π*bbip,π*tbbpy(LUMO+2) 27 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+3) 26 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+2) 13 

S9 

dRu(HOMO-2)→π*tbbpy(LUMO+1) 33 

434 2.86 0.170 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+3) 14 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+1) 12 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+2) 15 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+3) 21 

S10 

dRu(HOMO-2)→π*bbip,π*tbbpy(LUMO+2) 19 

422 2.94 0.077 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+3) 19 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+2) 27 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+3) 31 

S11 

dRu(HOMO-2)→π*bbip,π*tbbpy(LUMO+2) 38 

415 2.99 0.023 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+3) 19 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+2) 26 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+3) 12 
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Figure 8 Isosurfaces of frontier orbitals contributing to the calculated liquid 
phase electronic transitions in the CT region of RubbipPt (cis-S isomer; 
Table 2). 

Here, the lower energy transitions mainly involve CT to the phenanthroline (phen) part 

of the bbip ligand (e.g. LUMO orbital of S5), whereas the MLCT states found at shorter 

wavelengths also encompass transitions to π*-orbitals centered on the tbbpy ligands 

(e.g. LUMO+1 and LUMO+2 orbitals of S9). Our assignment is corroborated by a previous 

study combining UV/Vis and resonance Raman spectroscopy on a series of modified 

Rubbip-chromophores, differing by the amount of bbip-ligands. It was found that the 

absorption intensity ratio of the two main transitions contributing to the CT absorption 

band (equivalent to the signals we identified from Figure S4) depended on the number 

of tbbpy replaced by bbip. This resulted in an increased absorption at the longest 

wavelength flank and a concomitant decrease of the absorption at shorter wavelengths 

in the CT band with more bbip-ligands present. Additionally, excitation at longer 

wavelengths (476 nm vs. 456 nm) ensued in higher signal intensities of the Raman 

bands associated with vibrations localized on the bbip-ligand.[46] It is also worth 

mentioning that similar TD-DFT calculated excited states and intensity distributions in 

the CT region were reported for two analogous photocatalytic systems employing an 

identical level of theory.[16, 47-49] As the excited states of the CT absorption band 

apparently only involve orbitals centered on the ruthenium metal and its surrounding 

ligand sphere, it comes as no surprise that the binding motif of the DMSO-ligand has no 
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impact on the spectroscopic behavior in this spectral region, resulting in nearly identical 

calculated absorption spectra for all considered isomers. 

The gas phase calculations, on the other hand, yield drastically different electronic 

transitions in the CT region. Although the LUMO frontier orbitals involved in the CT 

transitions are akin to the ones obtained employing a solvent model, the HOMO frontier 

orbitals are not centered solely on the ruthenium atom but also in part on either the 

platinum, chlorine atoms or on the phenyl moieties of the bridging ligand. Figure Table 3 

and Figure 9 summarize the results obtained for the cis-S isomer (cf. Table S13-15 and 

Figure S6-8 for the other isomers). 

Table 3 Calculated gas phase vertical excitation energies Ev, oscillator strengths f and 
configurations of singlet excited states Sn in the CT region of RubbipPt (cis-S isomer). 
Transitions were shifted bathochromically by 1000 cm-1.For the sake of clarity, only 
transitions with high contribution (f≥0.02) are displayed. Frontier orbital contributions 
to the transitions with a weight w of <10% were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S19 

dRu,πbbip,πPh(HOMO-9)→π*bbip(LUMO) 36 

460 2.70 0.088 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+1) 13 
dRu,dPt,πPh(HOMO-8)→π*bbip(LUMO) 11 
dPt,πPh(HOMO-5)→π*bbip(LUMO) 13 

S22 

dRu,πPh(HOMO-10)→π*tbbpy(LUMO+1) 10 

455 2.72 0.047 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+1) 18 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+2) 12 
dPt,πPh(HOMO-5)→π*bbip(LUMO) 12 

S25 

dRu,πPh(HOMO-11)→π*tbbpy(LUMO+2) 22 

444 2.79 0.032 
dRu,πPh(HOMO-10)→π*tbbpy(LUMO+2) 13 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+1) 16 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+2) 11 

S27 

dRu,πPh(HOMO-11)→π*tbbpy(LUMO+1) 24 

435 2.85 0.116 
dRu,πPh(HOMO-10)→π*tbbpy(LUMO+1) 19 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+2) 21 
dPt,πPh(HOMO-4)→π*tbbpy(LUMO+1) 16 

S31 
dRu,πPh(HOMO-11)→π*tbbpy(LUMO+2) 10 

424 2.92 0.056 dRu,πPh(HOMO-10)→π*tbbpy(LUMO+2) 11 
dRu(HOMO-7)→π*bbip(LUMO+3) 39 
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Figure 9 Isosurfaces of frontier orbitals contributing to the gas phase 
electronic transitions in the CT region of RubbipPt (cis-S isomer; Table 3). 

Our calculations predict a strong involvement of the dPt orbitals to the lowest energy 

transitions in the CT region, whereas the dRu→π*Ligand transitions are shifted to higher 

energies and have in general a relatively small contribution to this absorption region, 

which appears to be counterintuitive, as the spectroscopic behavior of 

RuII-photosensitizers is well understood. This result, however, is in agreement with 

theoretical investigations on various transition metal-polypyridyl-complexes found in 

literature, pointing unanimously to the fact that TD-DFT delivers an erroneous 

description of the lowest energy CT transitions, if calculations were performed in 

vacuum, and which could only be remedied by employing a solvation model.[47, 50-54] 

Thus in the following discussion of our time-resolved data we will only consider results 

from calculations performed in liquid phase for a qualitative interpretation of our 

experiments. 
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7.5.4 Time-resolved photofragmentation 

The excited state dynamics of isolated RubbipPt was recorded by monitoring the pump-

probe delay-dependent fragment ion formation as described in e. g. Ref. [27-31, 55-56]. 

Based on previous experience with gas phase investigations on similar supramolecular 

catalytic assemblies[28], we decided to consult our liquid phase theoretical data for 

choosing appropriate excitation wavelengths rather than the gas phase TD-DFT 

calculations, as the latter yielded presumably erroneous results (see previous section). 

Hence we used pump wavelengths of either λpump=430 nm (1.5 µJ) or λpump=470 nm 

(1.5 µJ), which correspond to CT transitions of either mainly dRu→π*tbbpy or dRu→π*bbip 

character, respectively. We are very well aware that the TD-DFT calculations we 

performed for acetonitrile solution can be regarded as (at best) only a crude 

approximation for the absorption behavior expected for the isolated system. In general, 

the CT absorption region should be hypsochromically shifted with respect to solution. 

However, as already addressed, the quality of the non-linear PF signal we obtained for 

the CT band does not allow for estimating the extent of the hypsochromic shift. 

Regardless, the excited state population was created using either λpump=430 nm or 

470 nm and its evolution ensuingly probed by irradiation with high intensity probe 

pulses in the NIR region (λprobe=1200 nm, 120 µJ) resulting in a delay dependent 

fragmentation enhancement. As the PF mass spectrum of RubbipPt is dominated by two 

fragments (m/z 634 and 473, Figure 2), the decay of the kinetic traces monitored for the 

fragment channels were subjected to a global fitting routine, rather than modeling the 

integrated transient mass spectra. Note that the remaining fragments (m/z 615.5, 588 

and 569.5, Figure 2) do not contribute significantly to the integrated transient signal and 

have in general a S/N too poor for fitting. Thus they have been omitted from theoretical 

modeling. The fragment channel dependent transients recorded for a pump pulse 

wavelength of λpump=430 nm and λpump=470 nm are presented in Figure 10 and 11, 

respectively. 
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Figure 10 Transient fragment ion traces of RubbipPt displayed for the two 
most intense fragments m/z=634 (gray) and 473 (blue). The transient signals 
(gray) were recorded at the magic angle (54.7°) using λpump=430 nm and 
λprobe=1200 nm. Global tri-exponential fit (red) was performed assuming 
shared decay kinetics (time constants τ1-3) between the traces. Color coded 
residual signals are given below. Cf. Figure S17 for fit decomposition. 

The transients exhibit an ultrafast rise (~200 fs) and decay multi-exponentially. Within 

the observed experimental limits of the total pump-probe delay (~1.6 ns) the signal 

decay of the two individual kinetic traces could be fitted quite satisfactorily employing a 

global tri-exponential decay model, yielding three shared time constants τ1=4 ps, 

τ2=185 ps and τ3≈2.5 ns. A fit based on a bi-exponential global model is given in 

Figure S16. As the transient signals do not abate to the signal level at negative pump-

probe delay and the numeric value of τ3 obtained from fitting exceeds the temporal 

window accessible in our experiments, it should be pointed out that the value is to be 

understood as a lower-boundary estimate. Moreover, we cannot exclude additional 

steps in the electronic dynamics of RubbipPt, necessitating the inclusion of further 

decay components for a more accurate description of the transient traces. 
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Figure 11 Transient fragment ion traces of RubbipPt displayed for the two 
most intense fragments m/z=634 (black) and 473 (blue). The transient 
signals (gray) were recorded at the magic angle (54.7°) using λpump=470 nm 
and λprobe=1200 nm. Global tri-exponential fit (red) was performed assuming 
shared decay kinetics (time constants τ1-3) between the traces. Color coded 
residual signals are given below. Cf. Figure S19 for fit decomposition. 

At first glance, the transient signals obtained upon excitation at λpump=470 nm exhibit 

quite similar behavior to the ones recorded using λpump=430 nm, i.e. rising on a 

sub-picosecond timescale and decaying multi-exponentially. Indeed, a global 

tri-exponential fit yields three shared time constants. A fit based on a bi-exponential 

global model is given in Figure S18. However, their numeric values are smaller (τ1=3 ps, 

τ2=172 ps and τ3≈1.4 ns) than the ones obtained at λpump=430 nm (τ1=4 ps, τ2=185 ps 

and τ3≈2.5 ns), indicating slightly accelerated decay kinetics upon longer wavelength 

excitation. We are quite confident in the decrease of τ1 and τ2 in value, as the transients 

recorded (at λpump=430 and 470 nm, respectively) are of similar quality and the fits were 

performed applying the same convergence criteria and boundary conditions. The 

massive decrease of the third constant (from τ3≈2.5 to 1.4 ns), however, is questionable, 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 m/z 634

 m/z 473

 global fit (tri-exp.)

τ1=3(.0) ± 0(.3) ps

τ2=172(.2) ±6 (.7) ps

τ3=1405(.8) ± 56(.7) ps

 b
a

ck
g

ro
u

n
d

 c
o

rr
. 

fr
a

g
. 

yi
e

ld
 /

 a
rb

. 
u

.

 

 

-0.005

0.000

0.005

 

0 5 10 15 20 25 30 35 100 1000

-0.005

0.000

0.005

 

 r
e

si
d

u
a

l /
 a

rb
. 

 u
.

delay / ps



7 UV/Vis absorption and excited state dynamics of a hydrogen-evolving photocatalyst 

based on an N-heterocyclic carbene/phenanthroline bridging ligand 

 

267 

 

as signal decay is incomplete and small differences in the signal level at maximum delay 

may result in an unreasonable deviation in the fitted lifetimes. Although accurate values 

for τ3 from experiments cannot be determined and compared, we cannot rule out a 

slight decrease of τ3 as, qualitatively, the transients for λpump=430 nm appear to exhibit a 

more mellow decay at longer pump-probe delay. 

Assignment of the observed kinetics to individual steps in the electronic dynamics of 

RubbipPt is, at the moment, a challenging endeavor, as further complementary 

spectroscopic characterization is required. Hence we have to rely on results from 

literature on similar supramolecular assemblies for a qualitative interpretation. Recent 

investigations on the Rubbip-chromophore and its corresponding heterodinuclear 

complexes bearing a silver, rhodium or palladium metal-center by fs transient 

absorption spectroscopy (TA) in acetonitrile or dichloromethane hinted at ultrafast 

intersystem crossing (ISC, <<150 fs for Rubbip) to a 3MLCT state from the initially 

populated 1MLCT state after excitation in the CT region (at 480 nm)[21, 46], exhibiting 

spectral and temporal characteristics akin to those of the well-known reference system 

[Ru(bpy)3]2+.[57] The ultrafast formation of a 3MLCT state is furthermore corroborated by 

long excited state lifetimes (µs) and the susceptibility to excited state quenching by 

triplet oxygen. Other research groups reported similar behavior for RuII-chromophores 

bearing imidazophenanthrolin(ium)-ligands and their corresponding heterodinuclear 

metal complexes.[40, 58] If ISC does indeed proceed on such a short time scale, then we 

cannot detect this process, due to lack of temporal resolution. 

Besides ultrafast formation of the 3MLCT, no further dynamics on the sub-ns timescale 

were detailed, although e.g. Rau et al.[21] and Hoberg et al.[40] in their studies used TA 

setups more than capable of resolving rapid dynamics. It is tempting to ascribe the 

discrepancy to our present study to a difference in metal centers coordinated to the 

NHC-bridge (or the lack thereof). Although the complexation of a metal center to the 

bare photosensitizer may strongly affect the early excited-state chemistry across the 

electron-relaying bridge of the supramolecular complex (as showcased by e.g. by Rau et 

al. previously[59]), a sole exchange of the metal should not have an effect on the same 

order of magnitude.[16, 28] At this point it remains to be seen how this class of catalysts 

behaves in future solution phase investigations focusing on their early excited state 

dynamics. 
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One point of reference for assignment of the time constants we observed is our earlier 

study on a similar kind of photocatalysts (RutpphzM, M=Pt, Pd), in which we 

successfully demonstrated[28] that our gas phase approach can credibly reproduce 

results from solution.[16, 59] In this study we reported on two photocatalysts consisting of 

a ruthenium-polypyridyl sensitizer and a transition metal-chloride (PdCl2 and PtCl2) 

linked by a symmetric tetrapyrido-phenazine (tpphz) bridging ligand. In this framework, 

the bridge could be understood as a central phenazine (phz) unit bearing 

phenanthroline (phen) moieties at its ends. In agreement with the early excited state 

dynamics in solution phase from literature,[16] the tPF transients recorded upon 

excitation of the Pt-bearing compound (RutpphzPt) at the center of the CT absorption 

band (440 nm) could be satisfactorily modeled with a tri-exponential decay yielding 

time constants of τ1=0.6 ps, τ2=6.5 ps and additionally a time constant τ3, which 

exceeded our former accessible total pump-probe delay of 800 ps. These were assigned, 

in accordance to processes taking place in solution, to an inter-ligand electron transfer 

(ILET, τ1) within the ruthenium ligand sphere, resulting in the formation of a 3MLCT 

state mainly centered on the phen-part of the bridge, followed by an intra-ligand CT 

(ILCT, τ2) forming a phz-localized state. The ensuing reduction of the Pt-metal center by 

ligand-to-metal CT (LMCT) proceeds with a characteristic kinetic component of at least 

800 ps. A time constant for the ultrafast ISC to a 3MLCT state (<100 fs)[49] from the 

initially excited 1MLCT state was not detected, due to insufficient temporal resolution of 

our experimental setup. In addition, we observed an acceleration of the first kinetic 

steps (τ1 and τ2) upon longer wavelength excitation (480 nm instead of 440 nm), in 

agreement with high-resolution TA spectroscopy performed for the RutpphzPd 

complex.[49] This effect was ascribed 1) to a lesser contribution of the ILET process to 

the kinetics (τ1) related to the formation of the 3MLCTphen state and 2) to a better 

coupling between a vibrationally less excited 3MLCTphen and the ensuingly formed 

3MLCTphz state (τ2). 

Having recounted our previous results we laid out a foundation for discussing the 

dynamics of RubbipPt in our current study. The value of τ1 we determined for 

RubbipPt (3 ps at λpump=470 nm, Figure 10b) can probably be compared to τ1 of 

RutpphzPt (0.4 ps at λpump=480 nm). Keeping in mind that this process was assigned to 

the charge localization on the phen-moiety adjacent to the ruthenium metal-center by 
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ILET, the difference in values (if we assign τ1 to the same process) can be tentatively 

explained by a worse coupling of the partially populated tbbpy-centered excited states 

and the final bbip-localized state in the case of RubbipPt. As a matter of fact, Rau et al. 

reported higher potentials necessary for the reduction of the phen-ligand compared to 

the bbip-bridge in the respective complexes, whereas the potentials associated with the 

reduction of the peripheral tbbpy-ligands were found to be nearly identical.[21] 

According to the energy gap law for radiationless transitions,[60-66] a higher energetic 

gap would result in worse vibronic coupling and correspondingly a slower ILCT process. 

Moreover, in a recent study by Reichardt et al. on the ultrafast electronic dynamics of a 

RuII-dyad bearing a pyrene (py)-functionalized imidazophenanthroline (ip) ligand 

(RuII-ip-py), a short time constant of 3.1 ps (in water, λpump=467 nm) was identified and 

assigned to the formation of an 3MLCT state centered on ip.[60] Granted, the molecular 

system as a whole is distinctly different than RubbipPt, as it bears a pyrene moiety in 

place of a second metal center. However, in this context the immediate coordination 

spheres of both photosensitizers are identical and the time constants (τ1) in remarkable 

mutual agreement. Additionally, upon longer wavelength excitation τ1 becomes shorter, 

similar to the accelerated dynamics of in RutpphzM complexes, which was ascribed to a 

lesser involvement of the ancillary tbbpy ligands and thus a more directed and faster 

transfer to the bridge.[28, 49]. From this discussion we infer that the assignment of τ1 to a 

similar process found for RutpphzM, i.e. the formation of the 3MLCTphen state is justified. 

Identification of the ensuing processes associated with τ2 and τ3, respectively, is more 

challenging and, admittedly, quite speculative as the similarities to our previous 

investigation on RutpphzM come to an end. For RutpphzM complexes, the second time 

constant observed both in gas phase and solution studies was much shorter 

(τ2=6.5/4.3 ps vs. τ2~185/172 ps for RubbipPt)[26] and assigned to the formation of a 

3MLCTphz state, i.e. located on the central phz unit of the bridge. τ3, on the other hand, 

characterized the subsequent reduction of the catalytic metal center and proceeded with 

a time constant of τ3=320 ps (310 ps) for M=Pt (Pd) in MeCN.[16, 59] In the gas phase, this 

process was found to be much slower (>800 ps for both M=Pt, and Pd), lacking a polar 

environment to stabilize the charge separated state.[26] It is conceivable that for 

RubbipPt analogous steps take place, i.e. first a charge localization more centered on the 

imidazolium part of the bridge (τ2) succeeded by the transfer to the Pt atom (τ3). The 
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much slower ILCT in the bbip bridge (τ2=185/172 ps) compared to tpphz (τ2=6.5 ps)[26] 

may be rationalized by a smaller π-system and hence a higher reduction potential. In the 

same vein we may justify the acceleration of τ2 upon longer wavelength excitation by a 

worse coupling between a vibrationally higher excited phen centered and the 

imidazolium centered state. Hence, τ3 can be tentatively assigned to an ensuing LMCT, in 

accordance to the timescale of τ3 found for RutpphzM. In hindsight, this assignment is 

quite speculative and can be challenged easily, considering that Reichardt et al. in their 

study on the RuII-ip-py dyad did not present spectroscopic evidence for charge 

localization on the imidazolium unit, but rather a direct transfer onto the pyrene from 

the 3MLCT state delocalized on the ip-bridge within ~30 ps, strongly influenced by 

solvent viscosity. However, in case of the dyad, the pyrene moiety can be regarded as an 

extension to the π-system of the ip-bridge, whereas in RubbipPt, the metal interacts with 

the bridge via σ-bonding with the carbene. Hence, direct comparison of the observed 

dynamics is not feasible. Lastly, we want to point out, that the slow electronic dynamics 

compared to similar catalysts is in line with its lower photocatalytic activity, although 

other factors, such as the high steric demand of the benzyl groups in close vicinity to the 

catalytic metal center may be much more dominant in this regard. 

7.6 Conclusion 

We presented for the first time a study on the UV/Vis absorption properties of a novel 

heterodinuclear complex for photocatalytic hydrogen generation in both gas phase and 

solution, corroborated by TD-DFT calculations. The recorded gas phase UV/Vis action 

spectrum compares remarkably well to the linear liquid phase absorption spectrum 

from acetonitrile solution, exhibiting two distinct absorption bands in the UV and a 

broad CT band in the Vis region. By comparison of TD-DFT calculated linear absorption 

spectra to the experimental band progression in the liquid phase and gas phase spectra, 

the most likely structure of RubbipPt was found to be the cis-S isomer, in which the 

DMSO ligand binds to the platinum atom via the S atom in cis-orientation to the bridging 

ligand. Although this geometry appears to be the most prominent in structurally similar 

complexes found in literature, it was not calculated to be the energetically most favored 

geometry for RubbipPt. TD-DFT calculations employing a solvent model identified the 

CT band to be dominated by two transitions, with the lower energy transition involving 

mainly CT from the ruthenium metal center to the π-system of the bridging ligand, 
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whereas the higher energy transition encompasses CT spread over the ligand sphere of 

the ruthenium photosensitizer. The liquid phase calculations are in accordance to 

previous calculations performed for a similar type of supramolecular catalyst. 

Calculations on the isolated molecule, on the other hand, although in excellent 

agreement with the experimental PF spectrum in the UV region, fail to produce 

reasonable results for the lowest energy transitions in the CT region, further stressing 

the need for a more sophisticated theoretical approach to model the properties of low 

lying excited state of larger systems under isolation, which apparently TD-DFT cannot 

provide. The recorded transient mass spectra decayed tri-exponentially, yielding a time 

constant on a ns-timescale and two on a ps-timescale. Based on our calculations and by 

comparison of the recorded dynamics to reports found in literature, we assigned the 

shortest time constant to a CT transition onto the bridge. Our assignment was further 

corroborated by acceleration of the kinetics upon longer wavelength excitation, in 

agreement with a more directed electron transfer towards the catalytic metal center. 

The origin of the remaining two processes remains elusive at this point and begs for 

further complementary time-resolved investigations in solution. Nonetheless, the 

kinetics we reported here should set a clear framework for future studies. 

Further investigations in our laboratory are on the way, exploring the impact of halide 

ligand exchange at the catalytic metal center on the excited state dynamics of RubbipPt. 

In a preliminary mass spectrometric and catalytic study, we found a high affinity of the 

Pt metal center to iodide ligands, resulting in in situ ligand exchange and, more 

excitingly, a dramatic increase in the catalytic performance of RubbipPt.[25] As the 

iodide-species could not be accessed via synthetic means, yet, our experimental setup is 

the only way to selectively probe its altered photodynamics. 
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dynamics of a hydrogen-evolving photocatalyst based on an N-

heterocyclic carbene/phenanthroline bridging ligand” 

Content 

7.8.1 Collision induced dissociation and mass spectrometric data 

Figure S1 CID appearance and breakdown curves of RubbipPt 

Figure S2 Fragment ion mass signals observed by CID and PF of RubbipPt 

7.8.2 Photofragmentation 

Figure S3 Pulse energy dependent fragmentation yields of RubbipPt by 
one-color PF using λex=430 nm and 470 nm 

7.8.3 Liquid phase UV/Vis absorption 

Figure S4 Signal decomposition of the longest wavelength absorption region in 
the linear absorption spectrum of RubbipPt in acetonitrile 

7.8.4 (TD-)DFT calculations 

Figure S5 Geometry optimized S0 structure of various isomers of RubbipPt in 
the gas phase and acetonitrile solution 

Figure S6 Magnified experimental (cis-S isomer) and theoretical liquid phase 
(acetonitrile) absorption spectrum of RubbipPt in a spectral region of 
240-400 nm. 

Table S1 List of selected high intensity transitions (240-400 nm) calculated for 
the cis-S isomer of RubbipPt in acetonitrile. 

Figure S7 Frontier orbitals characterizing the calculated transitions listed in 
Table S1. 

Figure S8 Magnified experimental (cis-S isomer) and theoretical gas phase 
absorption spectrum of RubbipPt in a spectral region of 240-400 nm. 

Table S2 List of selected high intensity transitions (240-400 nm) calculated for 
the cis-S isomer of RubbipPt in the gas phase. 

Figure S9 Frontier orbitals characterizing the calculated transitions listed in 
Table S2. 

Table S3 List of lowest energy electronic transitions (>400 nm) calculated for the 
trans-O isomer of RubbipPt in acetonitrile. 
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Figure S10 Frontier orbitals characterizing the calculated transitions listed in 
Table S3. 

Table S4 List of lowest energy electronic transitions (>400 nm) calculated for the 
trans-S isomer of RubbipPt in acetonitrile. 

Figure S11 Frontier orbitals characterizing the calculated transitions listed in 
Table S4. 

Table S5 List of lowest energy electronic transitions (>400 nm) calculated for the 
cis-O isomer of RubbipPt in acetonitrile. 

Figure S12 Frontier orbitals characterizing the calculated transitions listed in 
Table S5. 

Table S6 List of lowest energy electronic transitions (240-400 nm) calculated for 
the trans-O isomer of RubbipPt in the gas phase. 

Figure S13 Frontier orbitals characterizing the calculated transitions listed in 
Table S6. 

Table S7 List of lowest energy electronic transitions (240-400 nm) calculated for 
the trans-S isomer of RubbipPt in the gas phase. 

Figure S14 Frontier orbitals characterizing the calculated transitions listed in 
Table S7. 

Table S8 List of lowest energy electronic transitions (240-400 nm) calculated for 
the cis-O isomer of RubbipPt in the gas phase. 

Figure S15 Frontier orbitals characterizing the calculated transitions listed in 
Table S8. 

7.8.5 Fitting 

Figure S16 Bi-exponential fit of the transient signal recorded at λpump=430 nm 
and λprobe=1200 nm 

Table S17 Decomposition of tri-exponential fit used to model the transient signal 
recorded at λpump=430 nm and λprobe=1200 nm 

Figure S18 Bi-exponential fit of the transient signal recorded at λpump=470 nm 
and λprobe=1200 nm 

Table S19 Decomposition of tri-exponential fit used to model the transient signal 
recorded at λpump=470 nm and λprobe=1200 nm 

7.8.6 References 
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7.8.1 Collision induced dissociation 

In order to initiate collision-induced dissociation (CID) a resonance excitation signal was 

applied to the end caps of the quadrupole ion trap (QIT) accelerating the trapped 

precursor ions which then undergo multiple collisions with the helium buffer gas and 

eventually form fragments. The helium pressure was estimated to be ∼10-3 mbar inside 

the QIT. The excitation magnitude was tuned typically in the range of 0.0-1.0 arb. u., 

which corresponds to an internal scale of the mass spectrometer. These collisional 

energies (�QOR) in the laboratory frame were center-of-mass (COM) transformed 

according to equation (S1), where 	ST� and SUV�WXVYZV are the nominal masses of helium 

and the precursor species, respectively. 

 �.[\ =	3 ST�ST� 	+ 	SUV�WXVYZV4 ∙ �QOR (S1) 

Relative abundances of the fragments ]M  and the breakdown curve of the precursor ion 

signal ^ were calculated according to equation (S2) and (S3), respectively: 

 ]M =	_ 	�M�∑ 	�M�M 	+ 	 �Ua (S2) 

 

 ^ = 	_ �U
∑ 	�M�M 	+ 	 �Ua (S3) 

where 	�M� and �U denote the recorded fragment and precursor ion intensities, 

respectively. 

The relative abundance of the RubbipPt precursor ion and its two main fragment 

products in dependence of the center of mass transformed excitation amplitude applied 

in CID is presented in Figure S1. 
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Figure S1 Relative abundance of the RubbipPt (blue) precursor ion and its 
main CID fragment products (m/z 634, green and m/z 473, red) depending 
on the center of mass transformed CID amplitude (ECOM). For clarity, 
contributions of minor fragment channels (m/z 615.5/588/569.5) are not 
shown individually. 

From the recorded CID appearance curves, it is evident that for the formation of the 

m/z 634 fragment a lower internal energy is required. The fragment at m/z 473 first 

appears at slightly higher applied CID amplitudes, signifying a stronger bond between 

the platinum and the C atom of the NHC with respect to the platinum DMSO bond 

strength. For amplitudes at lower values than indicated by 1) (ECOM∼0.0047) both 

fragment intensities rise in parallel, pointing to a competition between the fragment ion 

channels. At ECOM∼0.0047, however, the behavior of the CID appearance curves changes. 

The fragment ion intensity of m/z 634 starts to decline, whereas the rise of m/z 473 

exhibits a less steep slope. At amplitudes higher than indicated by 2), the imparted 

internal energy is sufficiently high that fragmentation to form m/z 473 outcompetes the 

lower fragmentation pathway. 
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Figure S2 Mass spectra depicting fragment ion formation of RubbipPt by 
CID (a) and PF (b). PF spectrum was recorded using λex=270 nm (1.5 µJ) 
Asterisk denotes precursor ion signal. For an assignment of the occurring 
signals cf. Table 1.  
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7.8.2 Photofragmentation 

 

Figure S3 Pulse energy E dependent PF yield Y of RubbipPt by one-color 
photoexcitation (at λex=430 nm and λex=470 nm) analyzed and displayed for 
the two most prominent fragmentation channels (m/z 634 and m/z 473). 
Dependencies were evaluated according to 	 = 
 ∙ ��,[1] where n denotes a 
mean value for the number of photons absorbed to induce fragmentation. 
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7.8.3 Liquid phase UV/Vis absorption 

 

Figure S4 Signal decomposition of the longest wavelength absorption region 
in the linear absorption spectrum of RubbipPt in acetonitrile. Data points of 
the experimental spectrum are shown as open gray circles, whereas the 
individual contributing signals (red and green) and the cumulative fit (black) 
are shown as straight lines. 

Employing a theoretical model assuming a Gaussian envelope for the individual 

contributions, the fitted signal matches the experimental spectrum perfectly (R2=1.000). 

The individual peaks are centered at ∼442 nm (red) and ∼481 nm (green), respectively. 
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7.8.4 (TD-)DFT calculations 

 

Figure S5 DFT geometry optimized structures of the four considered isomers 
of RubbipPt in acetonitrile (left) and in vacuo (right). Hydrogen atoms are 
not displayed for clarity. The relative Gibbs free energies are given along the 
respective structure. 
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Figure S6 Magnified UV absorption region (240-400 nm) in the absorption 
spectrum of RubbipPt in acetonitrile. Computed vertical electronic 
transitions (blue sticks) were shifted bathochromically by 1000 cm-1 and 
scaled in intensity so that the respective absorption maxima coincide. The 
stick spectra were broadened by a Gaussian function of 2000 cm-1 fwhm. 
Selected highest intensity transitions Sn are listed and characterized in 
Table S1. 
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Table 1 Vertical excitation energies Ev, oscillator strengths f and configurations of some 
selected singlet excited states Sn in a spectral region of 240-400 nm calculated for the 
cis-S isomer of RubbipPt in acetonitrile solution (PCM). Transitions were 
bathochromically shifted by 1000 cm-1. Frontier orbital contributions to the transitions 
with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S39 
dRu(HOMO-2)→π*tbbpy(LUMO+7) 30 

317 3.91 0.091 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+6) 45 

S75 
πtbbpy(HOMO-11)→π*tbbpy,π*bbip(LUMO+3) 39 

278 4.46 0.228 
dPt,πPh(HOMO-9)→π*tbbpy(LUMO+1) 25 

S77 
dPt,nCl,πPh(HOMO-12)→π*tbbpy,π*bbip(LUMO+2) 47 

284 4.37 0.282 
πtbbpy(HOMO-10)→π*bbip,π*tbbpy(LUMO+3) 15 

S81 
πbbip(HOMO-15)→π*bbip(LUMO) 21 

282 4.40 0.350 
dPt,nCl,(HOMO-13)→π*tbbpy,π*bbip(LUMO+2) 27 

S86 
dPt,nCl(HOMO-15)→π*bbip(LUMO) 20 

277 4.48 0.189 
dPt,nCl(HOMO-13)→π*tbbpy,π*bbip(LUMO+2) 51 

S95 
dPt,nCl(HOMO-14)→π*tbbpy,π*bbip(LUMO+2) 30 

270 4.59 0.093 
dPt,nCl(HOMO-13)→π*tbbpy(LUMO+1) 40 

S100 
dPt,nCl(HOMO-15)→π*tbbpy,π*bbip(LUMO+2) 13 

264 4.70 0.573 
dPt,nCl,πbbip(HOMO-4)→π*bbip,π*tbbpy(LUMO+5) 48 

S110 
dPt,nCl,πbbip(HOMO-4)→π*tbbpy,π*bbip(LUMO+6) 33 

253 4.90 0.205 dRu(HOMO)→πPh(LUMO+10) 17 
dRu(HOMO)→πPh(LUMO+11) 21 

S111 
dPt,nCl,πbbip(HOMO-4)→π*tbbpy,π*bbip(LUMO+6) 23 

253 4.90 0.164 dRu(HOMO)→πPh(LUMO+10) 20 
dRu(HOMO)→πPh(LUMO+11) 34 

S137 dPt,nCl(HOMO-16)→π*tbbpy,π*bbip(LUMO+4) 66 242 5.12 0.102 
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Figure 7 Frontier orbitals characterizing acetonitrile solution electronic 
transitions of RubbipPt (cis-S) in a spectral region of 240-400 nm 
(cf. Figure S6 and Table S1). 

  



7 UV/Vis absorption and excited state dynamics of a hydrogen-evolving photocatalyst 

based on an N-heterocyclic carbene/phenanthroline bridging ligand 

 

288 

 

 

Figure S8 Magnified UV absorption region (240-400 nm) in the gas phase PF 
spectrum of RubbipPt. Computed vertical electronic transitions (blue sticks) 
were shifted bathochromically by 1000 cm-1 and scaled in intensity so that 
the respective absorption maxima coincide. The stick spectra were 
broadened by a Gaussian function of 2000 cm-1 fwhm. Selected highest 
intensity transitions Sn are listed and characterized in Table S2. 
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Table 2 Gas phase vertical excitation energies Ev, oscillator strengths f and 
configurations of some selected singlet excited states Sn in a spectral region of 
240-400 nm calculated for the cis-S isomer of RubbipPt. Transitions were 
bathochromically shifted by 1000 cm-1. Frontier orbital contributions to the transitions 
with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S91 
dRu,πbbip,πPh(HOMO-9)→π*tbbpy(LUMO+5) 39 

321 3.86 0.057 
dRu(HOMO-7)→π*tbbpy,π*bbip(LUMO+6) 12 

S144 πtbbpy,πbbip(HOMO-19)→π*tbbpy(LUMO+2) 28 282 4.40 0.157 

S146 
πtbbpy(HOMO-17)→π*bbip(LUMO+2) 13 

282 4.40 0.168 
dRu,dPt,nCl,nDMSO(HOMO-12)→π*tbbpy(LUMO+5) 23 

S151 
πtbbpy(HOMO-17)→π*bbip(LUMO+2) 10 

278 4.46 0.152 πtbbpy(HOMO-17)→π*bbip(LUMO+3) 50 
dRu,dPt,nCl,nDMSO(HOMO-12)→π*tbbpy(LUMO+5) 12 

S153 
πtbbpy(HOMO-17)→π*bbip(LUMO+2) 11 

277 4.48 0.273 πtbbpy(HOMO-17)→π*bbip(LUMO+3) 36 
dRu,dPt,nCl,nDMSO(HOMO-12)→π*tbbpy(LUMO+5) 17 

S168 
dRu,dPt,nCl(HOMO-13)→π*tbbpy(LUMO+4) 16 

268 4.63 0.164 
dRu,dPt,nCl(HOMO-12)→π*bbip(LUMO+8) 39 

S184 
πtbbpy,πbbip,πPh(HOMO-23)→π*bbip(LUMO) 17 

254 4.88 0.144 
dRu,dPt,nCl(HOMO-13)→π*tbbpy,π*bbip(LUMO+6) 24 

S185 
dRu,dPt,nCl(HOMO-13)→π*tbbpy,π*bbip(LUMO+6) 22 

254 4.88 0.138 
dPt,nCl(HOMO-1)→π*tbbpy(LUMO+15) 24 

S194 
dRu,dPt,nCl(HOMO-13)→π*tbbpy(LUMO+7) 16 

251 4.94 0.102 
dRu,dPt,nCl(HOMO-13)→π*bbip(LUMO+8) 33 

S248 
dPt,nCl,nDMSO(HOMO-21)→π*bbip(LUMO+2) 38 

248 5.00 0.098 
dPt,nCl,nDMSO(HOMO-21)→π*bbip(LUMO+3) 48 
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Figure 9 Frontier orbitals characterizing the gas phase electronic transitions 
of RubbipPt (cis-S) in a spectral region of 240-400 nm (cf. Figure S8 and 
Table S2). 
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Table S3 Calculated liquid phase (PCM, acetonitrile) vertical excitation energies Ev, 
oscillator strengths f and singlet excited state Sn configurations in the CT region of 
RubbipPt (trans-O isomer). Transitions were bathochromically shifted by 1000 cm-1. 
Frontier orbital contributions to the transitions with a weight w of <10 % were omitted. 

state transition w/% λ/nm Ev/eV f 

S1 dRu(HOMO)→π*bbip(LUMO) 93 532 2.33 0.001 
S2 dRu(HOMO-2)→π*bbip(LUMO) 91 492 2.52 0.003 

S3 
dRu(HOMO)→π*tbbpy(LUMO+1) 91 

489 2.54 0.001 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+2) 16 

S4 
dRu(HOMO)→π*tbbpy(LUMO+1) 19 

481 2.58 0.002 dRu(HOMO)→π*tbbpy,π*bbip(LUMO+2) 64 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+3) 10 

S5 
dRu(HOMO-1)→π*bbip(LUMO) 80 

469 2.64 0.153 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+3) 15 

S6 
dRu(HOMO-2)→π*tbbpy(LUMO+1) 37 

454 2.73 0.009 dRu(HOMO-1)→π*tbbpy(LUMO+1) 30 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 19 

S7 
dRu(HOMO-1)→π*tbbpy(LUMO+1) 29 

445 2.79 0.019 dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 15 
dRu,(HOMO)→π*bbip,π*tbbpy(LUMO+3) 32 

S8 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+2) 35 

443 2.80 0.089 dRu(HOMO)→π*tbbpy,π*bbip(LUMO+2) 11 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+3) 27 

S9 
dRu(HOMO-2)→π*tbbpy(LUMO+1) 44 

434 2.86 0.178 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 31 

S10 dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 91 419 2.96 0.068 

S11 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 

18 413 3.00 0.023 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+3) 
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Figure S10 Frontier orbitals involved in the liquid phase (PCM, acetonitrile) 
electronic transitions in the charge transfer region of RubbipPt calculated 
for the trans-O isomer (cf. Table S3). 
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Table 4 Calculated liquid phase (PCM, acetonitrile) vertical excitation energies Ev, 
oscillator strengths f and singlet excited state Sn configurations in the CT region of 
RubbipPt (trans-S isomer). Transitions were bathochromically shifted by 1000 cm-1. 
Frontier orbital contributions to the transitions with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S1 dRu(HOMO)→π*bbip(LUMO) 93 535 2.31 0.001 
S2 dRu(HOMO-1)→π*bbip(LUMO) 86 495 2.50 0.002 

S3 
dRu(HOMO)→π*tbbpy(LUMO+1) 78 

488 2.54 0.001 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 11 

S4 
dRu(HOMO)→π*tbbpy(LUMO+1) 15 

480 2.58 0.004 dRu,(HOMO)→π*bbip,π*tbbpy(LUMO+2) 37 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 41 

S5 
dRu(HOMO-2)→π*bbip(LUMO) 70 

469 2.64 0.141 
dRu,(HOMO)→π*tbbpy,π*bbip(LUMO+3) 17 

S6 
dRu(HOMO-2)→π*tbbpy(LUMO+1) 45 

453 2.73 0.011 dRu(HOMO-2)→π*tbbpy(LUMO+3) 16 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+1) 24 

S7 

dRu(HOMO-2)→π*tbbpy(LUMO+1) 11 

447 2.77 0.059 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+1) 17 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+2) 34 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+3) 21 

S8 

dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+1) 21 

442 2.81 0.059 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+2) 31 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+3) 19 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+2) 14 

S9 
dRu(HOMO-2)→π*tbbpy(LUMO+2) 20 

433 2.86 0.168 dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+3) 32 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+1) 43 

S10 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+2) 38 

422 2.94 0.076 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+3) 50 

S11 
dRu(HOMO-2)→π*bbip,π*tbbpy(LUMO+2) 54 

415 2.99 0.024 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+3) 33 
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Figure S11 Frontier orbitals involved in the liquid phase (PCM, acetonitrile) 
electronic transitions in the charge transfer region of RubbipPt calculated 
for the trans-S isomer (cf. Table S4). 
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Table 5 Calculated liquid phase (PCM, acetonitrile) vertical excitation energies Ev, 
oscillator strengths f and singlet excited state Sn configurations in the CT region of 
RubbipPt (cis-O isomer). Transitions were bathochromically shifted by 1000 cm-1. 
Frontier orbital contributions to the transitions with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S1 dRu(HOMO)→π*bbip(LUMO) 93 533 2.33 0.001 
S2 dRu(HOMO-2)→π*bbip(LUMO) 90 493 2.51 0.003 
S3 dRu(HOMO)→π*tbbpy(LUMO+1) 77 490 2.53 0.001 

S4 
dRu(HOMO)→π*tbbpy(LUMO+1) 14 

480 2.58 0.003 dRu(HOMO)→π*tbbpy,π*bbip(LUMO+2) 59 
dRu(HOMO)→π*bbip,π*tbbpy(LUMO+3) 19 

S5 
dRu(HOMO-1)→π*bbip(LUMO) 76 

469 2.64 0.149 
dRu,(HOMO)→π*bbip,π*tbbpy(LUMO+3) 17 

S6 
dRu(HOMO-2)→π*tbbpy(LUMO+1) 50 

454 2.73 0.009 dRu(HOMO-1)→π*tbbpy(LUMO+1) 21 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 12 

S7 

dRu(HOMO-1)→π*tbbpy(LUMO+1) 23 

446 2.78 0.045 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 10 
dRu,(HOMO)→π*tbbpy,π*bbip(LUMO+2) 16 
dRu,(HOMO)→π*bbip,π*tbbpy(LUMO+3) 36 

S8 

dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+2) 26 

442 2.81 0.063 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+1) 12 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 22 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+2) 11 
dRu(HOMO)→π*tbbpy,π*bbip(LUMO+2) 11 

S9 
dRu(HOMO-2)→π*tbbpy(LUMO+1) 34 

434 2.86 0.177 dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+2) 14 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+1) 12 

S10 
dRu(HOMO-2)→π*tbbpy,π*bbip(LUMO+2) 15 

420 2.95 0.072 
dRu(HOMO-2)→π*bbip,π*tbbpy(LUMO+3) 81 

S11 
dRu(HOMO-1)→π*tbbpy,π*bbip(LUMO+2) 30 

413 3.00 0.023 
dRu(HOMO-1)→π*bbip,π*tbbpy(LUMO+3) 62 
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Figure S12 Frontier orbitals involved in the liquid phase (PCM, acetonitrile) 
electronic transitions in the charge transfer region of RubbipPt calculated 
for the cis-O isomer (cf. Table S5). 
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Table S6 Calculated gas phase vertical excitation energies Ev, oscillator strengths f and 
singlet excited state Sn configurations in the CT region of RubbipPt (trans-O isomer). 
Transitions were bathochromically shifted by 1000 cm-1.For the sake of clarity, only 
transitions with high contribution (f≥0.02) are listed. Frontier orbital contributions to 
the transitions with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S15 
dRu(HOMO-8)→π*tbbpy(LUMO+2) 12 

486 2.55 0.030 dPt,nCl,nDMSO(HOMO-3)→π*bbip,π*tbbpy(LUMO) 63 
dPt,nCl,nDMSO(HOMO-3)→π*tbbpy,π*bbip(LUMO+1) 12 

S18 
dRu,nCl(HOMO-11)→π*bbip,π*tbbpy(LUMO) 11 

469 2.64 0.045 
πPh,nCl(HOMO-4)→π*bbip,π*tbbpy(LUMO) 49 

S25 
dRu,nCl(HOMO-11)→π*tbbpy,π*bbip(LUMO+1) 14 

442 2.94 0.057 πPh(HOMO-7)→π*bbip,π*tbbpy(LUMO) 24 
dPt,nCl,nDMSO(HOMO-3)→π*tbbpy(LUMO+2) 16 

S26 
πPh(HOMO-7)→π*bbip,π*tbbpy(LUMO) 54 

442 2.94 0.029 
πPh(HOMO-7)→π*tbbpy,π*bbip(LUMO+1) 12 

S27 
dRu(HOMO-8)→π*tbbpy(LUMO+2) 17 

439 2.82 0.072 dRu,nCl(HOMO-10)→π*tbbpy,π*bbip(LUMO+1) 10 
dPt,nCl,nDMSO(HOMO-3)→(LUMO+2) 20 

S28 
dRu,nCl(HOMO-11)→π*tbbpy,π*bbip(LUMO+1) 13 

435 2.85 0.046 
dPt,nCl,nDMSO(HOMO-3)→π*tbbpy(LUMO+2) 40 

S34 
dRu,nCl(HOMO-11)→π*tbbpy(LUMO+2) 16 

421 2.94 0.040 dRu(HOMO-8)→π*bbip(LUMO+3) 31 
πPh,nCl(HOMO-4)→π*tbbpy(LUMO+2) 16 
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Figure 13 Frontier orbitals involved in the gas phase electronic transitions in 
the charge transfer region of RubbipPt calculated for the trans-O isomer 
(cf. Table S6). 
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Table 7 Calculated gas phase vertical excitation energies Ev, oscillator strengths f, and 
singlet excited state Sn configurations in the CT region of RubbipPt (trans-S isomer). 
Transitions were bathochromically shifted by 1000 cm-1.For the sake of clarity, only 
transitions with high contribution (f≥0.02) are listed. Frontier orbital contributions to 
the transitions with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S17 

dRu,πbbip,dPt,nCl(HOMO-9)→π*bbip(LUMO) 15 

464 2.67 0.042 
dPt,πPh,nCl,nO(HOMO-4)→π*bbip(LUMO) 34 
dPt,πPh,nCl,nO(HOMO-3)→π*bbip(LUMO) 14 
dPt,nCl,nO(HOMO-2)→π*bbip,π*tbbpy(LUMO+2) 11 
dPt,nCl,nO(HOMO-2)→(LUMO+3) 11 

S20 

dRu(HOMO-10)→π*tbbpy(LUMO+1) 16 

456 2.72 0.030 
dRu,πbbip,dPt,nCl(HOMO-9)→π*tbbpy(LUMO+1) 11 
dRu,πbbip,dPt,nCl(HOMO-9)→π*bbip,π*tbbpy(LUMO+2) 14 
πPh(HOMO-5)→π*bbip(LUMO) 36 

S21 
dRu,πbbip,dPt,nCl(HOMO-9)→π*bbip(LUMO) 20 

452 2.74 0.021 dRu,πbbip,dPt,nCl(HOMO-9)→π*bbip,π*tbbpy(LUMO+2) 10 
πPh(HOMO-5)→π*bbip(LUMO) 36 

S23 

dRu(HOMO-10)→π*bbip,π*tbbpy(LUMO+2) 17 

445 2.79 0.039 
dRu,πbbip,dPt,nCl(HOMO-9)→π*bbip(LUMO) 14 
dRu,πbbip,dPt,nCl(HOMO-9)→π*tbbpy(LUMO+1) 22 
dPt,dRu,πPh(HOMO-6)→π*bbip(LUMO) 22 

S24 
dRu(HOMO-10)→π*tbbpy(LUMO+1) 46 

435 2.85 0.130 
dRu,πbbip,dPt,nCl(HOMO-9)→π*bbip,π*tbbpy(LUMO+2) 27 

S28 

dRu(HOMO-10)→π*bbip,π*tbbpy(LUMO+2) 16 

424 2.92 0.031 
dRu,πPh(HOMO-8)→π*bbip(LUMO+3) 22 
dPt,πPh,nCl,nO(HOMO-3)→π*bbip,π*tbbpy(LUMO+2) 34 
dPt,πPh,nCl,nO(HOMO-3)→π*bbip(LUMO+3) 10 

S29 

dRu(HOMO-10)→π*bbip,π*tbbpy(LUMO+2) 12 

424 2.92 0.037 
dRu,πPh(HOMO-8)→π*bbip(LUMO+3) 15 
dPt,πPh,nCl,nO(HOMO-4)→π*bbip(LUMO+3) 11 
dPt,πPh,nCl,nO(HOMO-3)→π*bbip,π*tbbpy(LUMO+2) 12 
dPt,πPh,nCl,nO(HOMO-3)→π*bbip(LUMO+3) 35 
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Figure S14 Frontier orbitals involved in the gas phase electronic transitions 
in the charge transfer region of RubbipPt calculated for the trans-S isomer 
(cf. Table S7).  
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Table 8 Calculated gas phase vertical excitation energies Ev, oscillator strengths f and 
singlet excited state Sn configurations in the CT region of RubbipPt (cis-O isomer). 
Transitions were bathochromically shifted by 1000 cm-1.For the sake of clarity, only 
transitions with high contribution (f≥0.02) are listed. Frontier orbital contributions to 
the transitions with a weight w of <10 % were omitted. 

Sn transition w/% λ/nm Ev/eV f 

S26 
dRu,πPh(HOMO-10)→π*bbip,π*tbbpy(LUMO) 11 

467 2.65 0.039 πPh(HOMO-5)→π*bbip,π*tbbpy(LUMO) 55 
πPh(HOMO-5)→π*tbbpy,π*bbip(LUMO+1) 10 

S28 
dRu,πPh(HOMO-10)→π*bbip,π*tbbpy(LUMO) 12 

455 2.72 0.081 dRu,πbbip,πPh,dPt,nCl(HOMO-9)→π*bbip,π*tbbpy(LUMO) 18 
πPh(HOMO-6)→π*bbip,π*tbbpy(LUMO) 22 

S31 
dRu,πPh(HOMO-10)→π*tbbpy(LUMO+2) 24 

444 2.79 0.070 dRu,πbbip,πPh,nCl(HOMO-9)→π*tbbpy,π*bbip(LUMO+1) 15 
dRu,πbbip,πPh,nCl(HOMO-9)→π*tbbpy(LUMO+2) 18 

S32 
dRu,πPh(HOMO-10)→π*tbbpy,π*bbip(LUMO+1) 31 

438 2.83 0.126 
dRu,πbbip,πPh,dPt,nCl(HOMO-9)→π*tbbpy(LUMO+2) 18 

S38 
dRu,πPh(HOMO-10)→π*tbbpy(LUMO+2) 22 

422 2.94 0.059 dRu,πPh(HOMO-8)→π*bbip(LUMO+3) 23 
dRu,πPh(HOMO-7)→π*bbip(LUMO+3) 19 
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Figure S15 Frontier orbitals involved in the gas phase electronic transitions 
in the charge transfer region of RubbipPt calculated for the cis-O isomer 
(cf. Table S8). 
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7.8.5 Fitting 

 

Figure S16 Transient fragment ion traces of RubbipPt displayed for the two 
most intense fragments m/z 634 (black) and 473 (dark cyan). The transient 
signals (gray) were recorded at the magic angle (54.7°) using λpump=430 nm 
and λprobe=1200 nm. Global bi-exponential fit (red) was performed assuming 
shared decay kinetics (time constants τ1&2) between the traces. Color coded 
residual signals are given below. Fit decomposition was not performed, due 
to a poor match of the applied decay model. 
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Figure S17 Transient fragment ion traces of RubbipPt displayed for the two 
most intense fragments m/z 634 (a) and 473 (b). The transient signals (gray) 
were recorded at the magic angle (54.7°) using λpump=430 nm and 
λprobe=1200 nm. Global tri-exponential fit (black) was performed assuming 
shared decay kinetics (τ1=4 ps, τ1=185 ps and τ3≈2.5 ns) between individual 
traces. Fit decomposition is presented as colored traces and given along the 
respective decay amplitudes Ai. 
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Figure S18 Transient fragment ion traces of RubbipPt displayed for the two 
most intense fragments m/z 634 (black) and 473 (dark cyan). The transient 
signals (gray) were recorded at the magic angle (54.7°) using λpump=470 nm 
and λprobe=1200 nm. Global bi-exponential fit (red) was performed assuming 
shared decay kinetics (time constants τ1&2) between the traces. Color coded 
residual signals are given below. Fit decomposition was not performed, due 
to a poor match of the applied decay model. 
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Figure S19 Transient fragment ion traces of RubbipPt displayed for the two 
most intense fragments m/z 634 (a) and 473 (b). The transient signals (gray) 
were recorded at the magic angle (54.7°) using λpump=470 nm and 
λprobe=1200 nm. Global tri-exponential fit (black) was performed assuming 
shared decay kinetics (τ1=3 ps, τ1=172 ps and τ3≈1.4 ns) between individual 
traces. Fit decomposition is presented as colored traces and given along the 
respective decay amplitudes Ai. 

7.8.6 References 

[1] J. D. Bhawalkar, G. S. He, P. N. Prasad, “NONLINEAR MULTIPHOTON PROCESSES IN ORGANIC 

AND POLYMERIC MATERIALS”, Rep. Prog. Phys. 1996, 59, 1041-1070. 
 

0.00

0.02

0.04

0.06

 m/z 473

 tri-exp. fit

 A1=0.004 ± 0.001

 A2=0.015 ± 0.001

 A3=0.004 ± 0.001

 m/z 634

 tri-exp. fit

 A1=0.009 ± 0.001

 A2=0.026 ± 0.001

 A3=0.025 ± 0.001

b)

 

a)

0 5 10 15 20 25 30 35 100 1000

0.00

0.01

0.02

b
a

ck
g

ro
u

n
d

 c
o

rr
. 

fr
a

g
. 

yi
e

ld
 /

 a
rb

. 
u

.

delay / ps



307 

 

8 Rational in situ tuning of a supramolecular photocatalyst 

for hydrogen evolution 
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8.1 Preamble 

The following chapter has been submitted to the journal Energy and Environmental 

Science. The manuscript is currently under review and contains unpublished data. Thus, 

a reprint of the manuscript is not shown. The results therein are part of the PhD thesis of 

Simon Kaufhold (Universität Ulm). Experimental work involving synthesis, 

characterization and catalytic performance evaluation was performed by Simon 

Kaufhold. The manuscript was mainly prepared by Sven Rau and Simon Kaufhold. My 

contribution to the publication encompassed mass spectrometric measurements to 

verify the postulated in situ ligand exchange reaction, as well as theoretical calculations 

and identification of the occurring intermediate ion signals. Additionally, I helped 

revising the manuscript. 
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9 Summary and Outlook 

This thesis encompasses investigations on the gas phase absorption properties and 

ultrafast electronic dynamics of several (functionalized) fluorescein derivatives, a 

carbocyanine dye and heterodinuclear transition complexes for photocatalytic hydrogen 

evolution. Several experimental and theoretical methods were employed: mass 

spectrometry, steady state liquid phase and gas phase absorption action spectroscopy, 

time-resolved pump-probe photofragmentation and infrared multiple-photon 

dissociation spectroscopy. Experimental results were corroborated by identification of 

minimum energy structures and transition states, as well as vertical electronic transition 

calculations by means of (time-dependent) density functional theory. 

Polarization dependent transient photofragmentation experiments on the monoanionic 

([FL-H]-) and cationic ([FL+H]+) forms of unsubstituted fluorescein were performed to 

probe the respective excited state, vibrational and rotational dynamics. For [FL-H]- 

pronounced vibrational wave-packet motion was observed, which is connected to the 

relaxation of the dihedral angle between the benzoic acid and xanthene units in the 

electronically excited state. For [FL+H]+ no signature of vibrational wave-packet 

formation was detected, which was ascribed to the lack of a relaxation coordinate akin 

to the one found for [FL-H]-. This assumption was corroborated by single point DFT 

calculations. The polarization dependence of the transients signals for [FL-H]- was found 

to be weak, whereas for [FL+H]+ a strong polarization dependence of the transient 

traces was observed, from which the time-resolved anisotropy function could be 

determined. The observed rotational dephasing was interpreted by the loss of 

anisotropy of an [FL+H]+ ion ensemble at room temperature. The dephasing of the 

corresponding rotational wave-packet was successfully simulated by the time-resolved 

orientational correlation function, which furthermore allowed the assignment of the 

probe process to a two photon transition with the respective transition dipole moment 

aligned parallel to the xanthene unit. This study was published as a paper in the journal 

Structural Dynamics. 
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An extensive spectroscopic gas phase and theoretical study was conducted on the 

monoanionic and cationic forms of two fluorescein derivatives, functionalized with 

either an electron withdrawing nitro- ([5-NF]-/+) or an electron donating amino-group 

([5-AF]-/+) at the benzoic acid ring. Infrared multiple-photon dissociation spectra were 

recorded in a spectral range characteristic for the O-H stretching vibration, which 

revealed the coexistence of tautomers in the case of the anionic nitro derivative, 

whereas for the amino-derivative only one tautomer (carboxylate) is deemed to 

contribute to the gas phase population. The cationic ion populations, on the other hand, 

consist of several rotamers, differing in the orientation of the carboxylic OH-group. 

However, only geometries in which the proton at the carboxylic acid group point 

towards the xanthene ring are significantly stabilized by long-range interaction with the 

π-system of the xanthene and are thus expected to contribute to the ion population. 

Steady-state UV/Vis absorption action spectra were recorded. The spectra of the cations 

are in good agreement with TD-DFT calculated linear absorption spectra. The spectra 

recorded for the anions on the other hand were not in accordance with theory, in 

particular for the weak long wavelength spectroscopic features, which are probably 

suppressed by collisional quenching - a possible drawback of the experimental setup. 

Excited state dynamics following a localized excitation of the xanthene chromophore 

exhibited remarkable dependence on the nature of the substituent (amino/nitro), as 

well as on the charge state. Experimental evidence for excited state dynamics on a fs- 

and ps-timescale was only obtained for [5-AF]+ and [5-NF]-, and attributed to excited 

state quenching by photoinduced electron transfer (PeT). The sequence of frontier 

orbitals from DFT calculations were in remarkable accordance with this assumption, 

only enabling d(onor)-PeT for [5-NF]- and a(cceptor)-PeT for [5-AF]+. Additionally, the 

transient fragment mass signals of the anions were found to be periodically modulated, 

indicative of vibrational wave-packet dynamics. However, in contrast to the modulation 

observed for the unsubstituted fluorescein monoanion, the modulation is much more 

complex, requiring at least two damped sine functions of different frequencies for 

theoretical modeling. From the period of the modulation, two frequencies could be 

extracted, pointing to the concurrent coherent excitation of at least two vibrational 

modes in the excited states of [5-NF]- and [5-AF]-. Based on vibrational frequency 

calculations for the ground state geometries of [5-NF]- and [5-AF]-, the vibrational 

modes are tentatively assigned to the torsion of the benzoic acid moiety with respect to 
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the xanthene ring and a rocking motion of the former vs. the latter within the plane of 

the xanthene ring. 

Time-resolved photofragmentation experiments on isolated 3,3’-diethyloxacarbo-

cyanine (DOC+) ions were carried out in a quadrupole ion trap to investigate its intrinsic 

excited state and photoisomerization dynamics. The S1 excited state population of DOC+ 

decays bi-exponentially and the corresponding lifetimes were found to be dependent on 

the pump photon energy, decreasing with increasing excess energy, indicative of two 

competing, activated processes in the S1 excited state. An upper boundary value could be 

determined for the activation barrier of the slower process (Ea2=23 kJ/mol) by means of 

a simple Arrhenius relation. The estimated barrier height is in fair agreement with the 

value determined from single point TD-DFT calculations (Ea2=31 kJ/mol). Additionally, 

vibrational wave-packet dynamics were observed by a periodic modulation of the 

transient signal with a period of T=1.2 ps, corresponding to a vibrational frequency of 

~30 cm-1. From vibrational frequency calculations performed for the S1 excited state of 

DOC+, three low frequency modes were identified, which are deemed to be responsible 

for wave-packet formation. These modes involve torsional motions and in- and out-of-

plane bending of the benzoxazole end groups with respect to each other. The 

observation of a torsional motion is of particular interest, as the twisting around the C-C 

bonds within the polymethine backbone promotes excited state deactivation by this 

specific isomerization coordinate. 

The intrinsic photodynamics and fragmentation of two hydrogen generating 

supramolecular photocatalysts Ru-Pt and Ru-Pd ([(tbbpy)2Ru(tpphz)M(Cl)2]2+ M=Pt, 

Pd; tbbpy=4,4’-di-tert.-butyl-2,2’-bipyridin, tpphz=tetrapyrido[3,2-a:2’3’-c:3’’,2’’-

h:2’’’,3’’’-j]phenazine) were investigated in the gas phase. The properties of both 

molecular systems correspond astonishingly well to their behavior in acetonitrile 

solution, indicating that their photoinduced key process, i.e. the charge transfer towards 

the catalytic metal center, is taking place in isolated molecular systems as well. Mass 

spectrometric investigations revealed for both complexes that the catalytically active 

metal centers provide the most weakly bound units in the complexes and fragment with 

high yield as neutral losses of PtCl2 and PdCl2. Photofragmentation studies clearly 

indicate an intrinsically higher photostability of Ru-Pt compared to Ru-Pd and resulted 
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in the first gas phase UV/Vis spectra for both species that serve as highly useful 

references for future ab initio calculations. Time-resolved photofragmentation 

experiments on Ru-Pd and Ru-Pt yielded three time constants, respectively. For both 

molecular systems, two fast constants were found (τ1 and τ2), which are remarkably 

close to the ones observed in liquid phase studies, whereas the third time constant τ3 

exhibits a larger value. The large uncertainty of the latter originates in a technical 

limitation of the utilized delay stage set up. However, its larger value could be also a hint 

that the charge transfer from the bridging ligand to the metal center is hindered and 

thus delayed in vacuo, due to lack of stabilization of the final strongly charge separated 

state. Additionally, the kinetics were found to be dependent on the pump-photon 

wavelength, decreasing at longer wavelength excitation. This is in agreement with the 

assumption that upon long wavelength excitation, an excited state is quickly populated, 

which is centered mainly on the bridging ligand, thus facilitating electron transfer 

towards the catalytic metal center Furthermore, polarization dependent transient 

studies were performed for both catalysts, from which the initial anisotropy and the 

time-dependent anisotropy function were determined and simulated by the time-

resolved orientational correlation function. The former yielded a value of 0.31 and 0.32 

at an excitation wavelength of 440 nm for Ru-Pt and Ru-Pd, respectively, and a value of 

0.4 using a longer pump wavelength (480 nm), strongly supporting a directed electron 

transfer towards the bridge, which is more pronounced upon longer wavelenght 

excitation. These ion trap photofragmentation experiments allowed for valuable insights 

into intrinsic spectroscopic and dynamic properties and stability of RuII-based 

photocatalysts and might contribute to the optimization of supramolecular 

photocatalyst performance in connection with theory-derived rational design. The 

results were published as a paper in the journal Angewandte Chemie International 

Edition. 

The UV/Vis absorption properties of a novel heterodinuclear complex RubbipPt 

(tbbpy)2Ru(µ-bbip)Pt(DMSO)Cl2]2+, tbbpy=4,4’-di-tert-butyl-2,2’-bipyridine, bbip=1,3-

dibenzyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-ylidene, DMSO=dimethyl sulfoxide) 

for photocatalytic hydrogen generation were studied in gas phase and solution. Lacking 

crystallographic data for this complex, the molecular structure was identified by 

comparison of the experimental spectra to the theoretical TD-DFT linear absorption 
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spectra. The spectrum calculated for the cis-S geometry, in which the DMSO ligand binds 

to the platinum atom via the S atom in cis-orientation to the bridging ligand, is in 

remarkable agreement with the experiment. TD-DFT calculations employing a solvent 

model identified the absorption band in the charge transfer region to be dominated by 

two transitions, with the lower energy transition involving mainly charge transfer from 

the ruthenium metal center to the π-system of the bridging ligand, whereas the higher 

energy transition encompasses charge transfer spread over the ligand sphere of the 

ruthenium photosensitizer. The liquid phase calculations are in accordance to previous 

calculations performed for a similar type of supramolecular catalyst. Calculations on the 

isolated molecule, on the other hand, although in excellent agreement with the 

experimental photofragmentation spectrum in the UV region, failed to produce 

reasonable results for the lowest energy transitions in the charge transfer region, 

further stressing the need for a more sophisticated theoretical approach to model the 

properties of low lying excited state of larger systems under isolation, which apparently 

TD-DFT cannot provide. The recorded transient mass spectra decayed tri-exponentially, 

yielding a time constant on a ns-timescale and two on a ps-timescale. The shortest time 

constant was assigned to a charge transfer transition onto the bridge, corroborated by 

acceleration of the kinetics upon longer wavelength excitation, in agreement with a 

more directed electron transfer towards the catalytic metal center. The origin of the 

remaining two processes remains elusive at this point and requires further 

complementary time-resolved investigations in solution. Nonetheless, the kinetics 

should provide a valuable point of reference for future studies. 

A novel supramolecular catalyst RubbipPt ([(tbbpy)2Ru(µ-bbip)Pt(DMSO)Cl2]2+, 

tbbpy=4,4’-di-tert-butyl-2,2’-bipyridine, DMSO=dimethyl sulfoxide, bbip=1,3-dibenzyl-

1H-imidazo[4,5-f][1,10]phenanthrolin-2-ylidene) for hydrogen generation was 

developed and characterized by S. Kaufhold (Universität Ulm). Performance was found 

to be low under standard catalytic conditions. However, the admixture of an iodide salt 

(TBAI, tetrabutylammonium iodide) boosted the performance dramatically, which was 

ascribed to an in-situ ligand exchange (Cl- vs. I-) and thus to a putatively increased 

electron density at the catalytic platinum metal center. Other halide salts (TBAX, X=F, Cl, 

and Br) had a negligible effect. In situ ligand exchange after admixture of TBAI was 

monitored by mass spectrometry. Two product signals evolved in time from the parent 

ion signal [(tbbpy)2Ru(µ-bbip)Pt(Cl)(OMe)]2+ (in methanol), which were identified to 
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originate from single ligand exchange ([(tbbpy)2Ru(µ-bbip)Pt(DMSO)(Cl)I]2+) and 

double ligand exchange ([(tbbpy)2Ru(µ-bbip)Pt(DMSO)I2]2+). The latter signal rose 

dramatically in intensity by adding larger amounts of TBAI. Additionally, natural 

population analysis (NPA) was performed for the parent ion and for several conceivable 

product ions, which may be formed by in situ ligand exchange (Cl vs. X, X=F, Br, I, OMe). 

The highest electron population in the Pt(5dz²) orbital was found for [(tbbpy)2Ru(µ-

bbip)Pt(DMSO)I2]2+, in qualitative agreement with its improved catalytic performance. 

This study provided more insight into the structure-property-correlation of 

supramolecular photocatalytic assemblies and is expected to contribute to the 

optimization of supramolecular photocatalyst performance in connection with theory-

derived rational design. The results were submitted as a paper to the journal Energy & 

Environmental Science. 

In summary, several experimental methods were applied to study the intrinsic excited 

state properties of organic dye molecules and supramolecular catalysts under isolation. 

DFT and TD-DFT calculations allowed the identification of gas phase structures of the 

investigated compounds and helped characterizing the absorption bands observed in 

experimental IRMPD and UV/Vis photofragmentation spectra. In conclusion, the applied 

technique of femtosecond transient photofragmentation in an ion trap proves to be very 

valuable for the analysis of ultrafast molecular vibrational and rotational dynamics, and 

electronically excited states of ionic dye molecules and larger photocatalytic systems 

under isolated conditions. It is complementary to other time-resolved liquid phase and 

gas phase methods and provides valuable insight into the intrinsic, early excited state 

dynamics of metal complexes and organic compounds alike. 
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10 Zusammenfassung und Ausblick 

Diese Arbeit umfasst die Untersuchungen von optischen Eigenschaften und 

elektronischer Ultrakurzzeit-Dynamik in der Gasphase an mehreren (funktionalisierten) 

Fluorescein-Derivaten, an einem Carbocyaninfarbstoff und an heterodinuklearen 

Übergangsmetall-Komplexen zur photokatalytischen Wasserstofferzeugung. Es wurden 

mehrere experimentelle und theoretische Methoden verwendet: Massenspektrometrie, 

stationäre Flüssigphasen-Absorptionsspektroskopie und Gasphasen-Konsequenz-

Spektroskopie, zeitaufgelöste Pump-Probe Photofragmentations- und Infrarot-

Multiphotonen-Dissoziations-Spektroskopie. Die experimentellen Ergebnisse wurden 

unterstützt durch die theoretische Bestimmung von energieminimierten, molekularen 

Strukturen und Übergangszuständen sowie durch Berechnung von vertikalen 

elektronischen Übergängen mittels (zeitabhängiger) Dichtefunktionaltheorie (DFT/TD-

DFT). 

Polarisationsabhängige transiente Photofragmentations-Experimente wurden an 

monoanionischem ([FL-H]-) und kationischem ([FL+H]+), unsubstituiertem Fluorescein 

durchgeführt, um dessen Schwingungs- und Rotationsdynamik im angeregten Zustand 

zu untersuchen. Für [FL-H]- wurde ausgeprägte Schwingungswellenpaketbewegung 

beobachtet, die mit der Relaxation des Diederwinkels zwischen der Benzoesäure- und 

Xanthen-Untereinheiten im elektronisch angeregten Zustand einhergeht. Für [FL+H]+ 

wurde keine Schwingungskohärenz beobachtet und dies dem Fehlen einer 

Relaxationskoordinate, ähnlich der des [FL-H]- zugeordnet. Diese Vermutung wurde 

durch Single-Point-DFT-Berechnungen unterstützt. Die transienten Signale von [FL-H]- 

zeigten nur eine geringe Polarisationsabhängigkeit, wohingegen für [FL+H]+ eine stark 

ausgeprägte Polarisationsabhängigkeit der transienten Signale beobachtet wurde. 

Daraus konnte die zeitabhängige Anisotropie-Funktion ermittelt werden. Die 

beobachtete Rotations-Dephasierung wurde dabei als ein Verlust der Anisotropie eines 

[FL+H]+ Ionenensembles bei Raumtemperatur gedeutet. Die Dephasierung des 

entsprechenden Rotationswellenpakets konnte erfolgreich mittels zeitabhängiger 

Rotationskorrelationsfunktionen simuliert werden, wodurch der Probe-Prozess einem 

Zwei-Photonenübergang zugeschrieben werden konnte, dessen Übergangsdipolmoment 
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parallel zur langen Achse der Xanthen-Einheit ausgerichtet ist. Die Untersuchungen 

wurden als Paper im Journal Structural Dynamics veröffentlicht. 

Es wurde eine umfangreiche spektroskopische und theoretische Gasphasen-Studie an 

monoanionischen und kationischen Formen von zwei Fluorescein-Derivaten 

durchgeführt, die zum einen eine elektronenziehende Nitro- ([5-NF]-/+) oder zum 

anderen eine elektronenschiebende Aminogruppe ([5-AF]-/+) am Benzoesäurering 

tragen. Infrarot-Multiphotonen-Dissoziations-Spektren wurden in einem für die OH-

Streckschwingung charakteristischen Spektralbereich aufgezeichnet, die für das Anion 

des Nitroderivates die Koexistenz von Tautomeren belegten, wohingegen für das Anion 

des Aminoderivates die Ionenpopulation in der Gasphase vermutlich nur aus einem 

Tautomer (Carboxylat) besteht. Die Population der Kationen setzt sich hingegen aus 

mehreren Rotameren zusammen, die sich lediglich in der Stellung der carboxylischen 

OH-Gruppe unterscheiden. Aus der Studie folgt, dass nur diejenigen Strukturen 

energetisch begünstigt sind, in denen das Proton der Carbonsäuregruppe auf den 

Xanthenring gerichtet ist, womöglich bedingt durch eine langreichweitige 

Wechselwirkung mit dem π-System des Xanthens. Nur solche Geometrien tragen daher 

vermutlich zur Ionenpopulation in der Ionen-Falle bei. Es wurden 

wellenlängenabhängige UV/Vis-Konsequenzspektren aufgezeichnet. Die Spektren der 

Kationen sind im guten Einklang mit mittels TD-DFT berechneten linearen 

Absorptionsspektren. Die Spektren der Anionen zeigen keine Ähnlichkeit mit den 

Ergebnissen aus theoretischen Rechnungen, insbesonders für die schwach ausgeprägten 

Banden im langwelligen Absorptionsbereich. Dies liegt vermutlich an einer 

stoßinduzierten Unterdrückung des Fragmentationsprozesses - ein Nachteil der 

verwendeten experimentellen Methode. Die elektronische Dynamik nach lokaler 

elektronischer Anregung des Xanthen-Chromophors zeigte eine bemerkenswerte 

Abhängigkeit von der Art des Substituenten (Amino-/Nitro-) sowie vom 

Ladungszustand. Experimentelle Hinweise auf schnelle elektronische Dynamik auf einer 

fs- und ps-Zeitskala wurden allerdings nur für [5-AF]+ und [5-NF]- beobachtet. Dies 

wurde auf die Desaktivierung des entsprechenden angeregten Zustandes mittels 

photoinduziertem Elektronentransfers (PeT) zurückgeführt Die Abfolge der 

Grenzorbitale aus DFT-Berechnungen stimmt mit dieser Annahme in bemerkenswerter 

Weise überein, wobei nur ein D(onor)-PeT für [5-NF]- und ein A(kzeptor)-PeT für [5-
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AF]+ möglich erscheint. Zudem sind die transienten Fragment-Massensignale der 

Anionen periodisch moduliert, was auf Schwingungswellenpaket-Dynamik im 

angeregten Zustand hinweist. Im Gegensatz zu der für das unsubstituierte Fluorescein-

Monoanion beobachteten Modulation, ist die hier beobachtete Signalmodulation 

deutlich komplexer und erfordert mindestens zwei gedämpfte Sinusfunktionen 

unterschiedlicher Frequenz für eine überzeugende theoretische Beschreibung. Aus den 

Perioden der überlagerten Modulationen konnten zweifellos zwei Frequenzen ermittelt 

werden, was auf die gleichzeitige kohärente Anregung von mindestens zwei 

Schwingungsmoden in den angeregten Zuständen von [5-NF]- und [5-AF]- hinweist. 

Anhand der Schwingungsfrequenzen, berechnet für die Grundzustandgeometrien von 

[5-NF]- und [5-AF]-, wird nun angenommen, dass diese Schwingungsmoden des 

Wellenpakets im angeregten Zustand die Torsion der Benzoesäure gegenüber dem 

Xanthenring und die Knick-Schwingung des Benzoesäurerings innerhalb der Xanthen-

Ebene enhalten. 

Es wurden zeitaufgelöste Photofragmentations Experimente an isolierten 

3,3'-Diethyloxacarbocyanin-Ionen (DOC+) in einer Quadrupol-Ionenfalle durchgeführt, 

um deren intrinsische Dynamik im angeregten Zustand und die Dynamik des 

Photoisomerisierungs-Prozesses zu untersuchen. Die Population im angeregten Zustand 

(S1) von DOC+ zerfällt bi-exponentiell; die entsprechenden Lebensdauern sind dabei 

abhängig von der Pump-Photonenenergie (Wellenlänge) und nehmen mit zunehmender 

Überschussenergie ab, was auf zwei aktivierte Prozesse im angeregten Zustand 

schließen lässt. Eine Obergrenze für die Aktivierungsbarriere (Ea2=23 kJ/mol) des 

langsameren Prozesses konnte mittels einer einfachen Arrhenius-Beziehung 

abgeschätzt werden. Diese ist in guter Übereinstimmung mit dem Wert, der aus Single-

Point-TD-DFT-Rechnungen erhalten wurde (Ea2=31 kJ/mol). Zusätzlich wurde 

Schwingungswellenpaketdynamik beobachtet, die in einer periodischen Modulation des 

transienten Signals mit einer Periode von T=1.2 ps beobachtbar ist, was einer 

Schwingungsfrequenz von ~30 cm-1 entspricht. Mittels Berechnungen der 

Schwingungsfrequenzen für den S1-angeregten Zustand von DOC+, wurden drei 

niederfrequente Schwingungsmoden identifiziert, die für die Ausbildung des 

Wellenpakets in Frage kommen. Diese Schwingungsmoden umfassen 

Torsionsbewegungen und die Biegung der Benzoxazol-Endgruppen in und aus der 
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Cyanin-Ebene heraus. Die Beobachtung einer Torsionsschwingung ist von besonderem 

Interesse, da die Drehung um die C-C-Bindungen innerhalb des Polymethin-Rückgrats 

die Desaktivierung des angeregten Zustandes über diese Koordinate ermöglicht. 

Die intrinsische Photodynamik und das Fragmentationsverhalten von zwei Wasserstoff-

erzeugenden supramolekularen Photokatalysatoren Ru-Pt und Ru-Pd ([(tbbpy)2Ru 

(tpphz)M(Cl)2]2+ M=Pt, Pd; tbbpy=4,4'-di-tert.-butyl-2,2'-bipyridin, tpphz=tetrapyrido 

[3,2-a:2'3'-c:3'',2''-h:2''',3'''-j]phenazin) wurde erstmals in der Gasphase untersucht. Das 

Verhalten beider molekularen Systeme ist in guter Übereinstimmung mit dem in Lösung 

(Acetonitril), was darauf hindeutet, dass die photoinduzierten Schlüsselprozesse, d.h. 

der schrittweise Ladungstransfer in Richtung des katalytischen Metallzentrums, analog 

in den isolierten Systemen stattfindet. Massenspektrometrische Untersuchungen zeigten 

für beide Komplexe, dass die katalytisch aktiven Metallzentren die Schwachstelle im 

Molekül sind, somit Fragment-Ionen größtenteils aus dem Verlust von PtCl2 und PdCl2 

resultieren. Photofragmentations-Untersuchungen an Ru-Pt und Ru-Pd zeigten, dass 

ersterer Komplex eine intrinsisch höhere Photostabilität aufweist. Zudem wurden erste 

Gasphasen-UV/Vis-Spektren für beide Spezies aufgezeichnet, die als nützliche 

Bezugspunkte für zukünftige ab initio Berechnungen dienen können. Zeitaufgelöste 

Photofragmentations-Experimente an Ru-Pd und Ru-Pt lieferten jeweils drei 

Zeitkonstanten. Für beide molekularen Systeme wurden zwei kurze Lebensdauern 

ermittelt (τ1 und τ2), die auf bemerkenswerter Weise den Werten aus Flüssigphasen-

Untersuchungen ähneln. Die dritte Zeitkonstante τ3 ist hingegen weitaus länger. Die 

große Abweichung im letzteren Wert ergibt sich möglicherweise aus einer technischen 

Einschränkung des verwendeten experimentellen Aufbaus. Allerdings könnte der 

größere Wert auch ein Hinweis darauf sein, dass der Ladungstransfer über den 

Brückenliganden zum Metallzentrum im Vakuum verzögert stattfindet, da der 

resultierende stark ladungsgetrennte Zustandes in der Gasphase nicht stabilisiert 

werden kann. Zusätzlich wurde festgestellt, dass die Dynamik von der Pump-

Wellenlänge abhängt, d.h. bei Anregung mit Licht etwas längerer Wellenlänge (480 nm) 

beschleunigt wird. Dies stimmt mit der Annahme überein, dass bei Anregung mit Licht 

längerer Wellenlänge ein angeregter Zustand besetzt wird, der hauptsächlich auf dem 

Brückenliganden zentriert ist und somit der Elektronentransfer in Richtung des 

katalytischen Metallzentrums begünstigt wird. Weiterhin wurden für beide 
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Katalysatoren polarisationsabhängige transiente Untersuchungen durchgeführt. Daraus 

konnten die Anfangsanisotropie und die zeitabhängige Anisotropie-Funktion bestimmt 

werden, die auf Grundlage der zeitabhängigen Rotationskorrelationsfunktion simuliert 

wurde. Bei einer Anregungswellenlänge von 440 nm nahm die Anfangsanisotropie einen 

Wert von ~0.3 (für Ru-Pt und Ru-Pd) an, wohingegen bei Verwendung größerer 

Pumpwellenlängen (480 nm) ein Wert von ~0.4 ermittelt wurde. Dies deutet auf einen 

gerichteten Elektronentransfer in Richtung der Brücke hin, welcher bei größerer 

Wellenlänge verstärkt wird. Mittels Ionenfallen-Photofragmentations-Spektroskopie 

konnten wertvolle Einblicke in die intrinsischen spektroskopischen und dynamischen 

Eigenschaften von RuII-basierten Photokatalysatoren sowie deren Stabilität erhalten 

werden, die dazu beitragen könnten die Leistungsfähigkeit solcher supramolekularer 

Photokatalysatoren in Zukunft weiter zu optimieren. Die Ergebnisse wurden als Paper 

im Journal Angewandte Chemie International Edition veröffentlicht. 

Die UV/Vis-Absorptionseigenschaften eines neuartigen heterodinuklearen Komplexes 

RubbipPt ([(tbbpy)2Ru(μ-bbip)Pt(DMSO)Cl2]2+, tbbpy=4,4'-Di-tert-butyl-2,2'-bipyridin, 

bbip =1,3-dibenzyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yliden, DMSO=Dimethyl-

sulfoxid) für photokatalytische Wasserstofferzeugung wurde in Gasphase und in Lösung 

untersucht. Angesichts fehlender kristallographischer Daten für diesen Komplex konnte 

die molekulare Struktur nur durch Vergleich der experimentellen mit theoretischen 

Absorptionsspektren identifiziert werden. Das für die cis-S-Geometrie berechnete 

Spektrum, bei dem der DMSO-Ligand cis-ständig zum Brückenliganden über das S-Atom 

an das Platinatom bindet, stimmt sehr gut mit den experimentellen Spektren überein. 

TD-DFT-Berechnungen unter Verwendung eines Lösemittelmodells ergaben, dass der 

spektrale Charge-Transfer-Bereich (>400 nm) im Wesentlichen von zwei Übergängen 

dominiert wird. Der niederenergetische Übergang besteht dabei hauptsächlich aus 

einem Ladungstransfer vom Ruthenium-Metallzentrum zum π-System des 

verbrückenden Liganden, wohingegen der höherenergetische Übergang den 

Ladungstransfer über die gesamte Liganden-Sphäre des Ruthenium-Photo-

sensibilisators beinhaltet. Die Berechnungen in Flüssigphase sind im Einklang mit 

früheren theoretischen Studien an ähnlichen supramolekularen Katalysatoren. TD-DFT 

Rechnungen am isolierten Molekül hingegen lieferten keine nachvollziehbaren 

Ergebnisse für die langwelligsten Übergänge im Charge-Transfer-Bereich, wohingegen 
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der berechnete UV-Bereich im exzellenten Einklang mit dem experimentellen 

Photofragmentations Spektrum steht. Dieser Befund offenbart die Notwendigkeit zur 

Verwendung anspruchsvollerer theoretischer Methoden für die Modellierung niedrig 

liegender angeregter Zustände in supramolekularen, isolierten Systemen, da hierfür 

TD-DFT offensichtlich nicht mehr ausreicht. Die aufgezeichneten transienten 

Photofragmentations-Signale zeigten einen tri-exponentiellen Zerfall, woraus eine 

Zeitkonstante auf ns-Zeitskala und zwei auf der ps-Zeitskala bestimmt wurden. Die 

kürzeste Zeitkonstante wurde dem Charge-Transfer-Übergang auf den Brückenliganden 

zugeordnet. Die Zuordnung wurde durch eine Beschleunigung der elektronischen 

Dynamik nach Anregung mit Pulsen längerer Wellenlänge bekräftigt, in Einklang mit 

einem gerichteten Elektronentransfer in Richtung des katalytischen Metallzentrums. 

Der Ursprung der verbleibenden zwei Prozesse ist zum gegenwärtigen Punkt der 

Forschung nicht zuzuordnen und erfordert weitere komplementäre, zeitaufgelöste 

Untersuchungen in Lösung. Dennoch stellt die beobachtete Kinetik einen wertvollen 

Bezugspunkt für zukünftige Studien dar. 

Ein neuartiger supramolekularer Katalysator RubbipPt ([(tbbpy)2Ru (μ-

bbip)Pt(DMSO)Cl2]2+, tbbpy=4,4'-Di-tert-butyl-2,2'-bipyridin, DMSO=Dimethylsulfoxid, 

bbip=1,3-Dibenzyl-1H-imidazo[4,5-f][1,10]phen-anthrolin-2-yliden) zur Wasserstoff-

erzeugung wurde von S. Kaufhold (Universität Ulm) entwickelt und charakterisiert. 

Dessen Wirksamkeit ist jedoch gering unter den üblichen katalytischen Bedingungen. 

Durch Zusatz eines Iodid-Salzes (TBAI, Tetrabutyl-ammoniumiodid) wurde die 

katalytische Leistung jedoch dramatisch erhöht, was auf einen in situ Ligandenaustausch 

(Cl- vs. I-) zurückgeführt wurde. Diese geht vermutlich mit einer höheren 

Elektronendichte am katalytischen Platin-Metallzentrum einher. Der Zusatz anderer 

Halogenidsalze (TBAX, X=F, Cl und Br) hatte nur einen vernachlässigbar kleinen Effekt. 

Der in situ erfolgte Ligandenaustausch nach Zusatz von TBAI wurde 

massenspektrometrisch verfolgt. Es bildeten sich zeitgleich zwei Produktsignale aus 

dem Mutterionensignal [(tbbpy)2Ru(μ-bbip)Pt(Cl)(OMe)]2+ (in Methanol), die anhand 

ihrer Isotopenmuster identifiziert und einem einfachen ([(tbbpy)2Ru(μ-bbip)Pt(Cl)I]2+) 

und doppelten ([(tbbpy)2Ru(μ-bbip) PtI2]2+) Ligandenaustausch zugeordnet wurden. 

Die Signalintensität des letzteren Produkts nahm bei Zusatz größerer Mengen TBAI 

drastisch zu. Zusätzlich wurden mittels DFT, Populationsanalysen (NPA) für das 
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Mutterion und für mehrere denkbare Austauschprodukte durchgeführt, die aus einem 

möglichen in situ Ligandenaustausch (Cl vs. X, X=F, Br, I, OMe) hervorgehen können. Die 

höchste Elektronendichte im Pt(5dz²) Orbital wurde für [(tbbpy)2Ru(μ-bbip)PtI2]2+ 

ermittelt, in qualitativer Übereinstimmung mit dessen verbesserten katalytischer 

Aktivität. Diese Studie liefert einen faszinierenden Einblick in die Struktur-Eigenschaft-

Beziehung supramolekularer, photokatalytischer Systeme und sollte einen wertvollen 

Beitrag leisten zur Optimierung der Wirksamkeit supramolekularer Photokatalysatoren 

auf Grundlage theoretischer Konzepte. Die Ergebnisse sind Teil der Doktorarbeit von S. 

Kaufhold (Universität Ulm) und wurden zusätzlich als Communication im Journal Energy 

& Environmental Science eingereicht. 

Abschließend lässt sich zusammenfassen, dass eine Vielzahl bekannter und ebenfalls 

neuer experimenteller Methoden angewendet wurde, um die intrinsischen 

Eigenschaften elektronisch angeregter Zustände von isolierten organischen 

Farbstoffmolekülen und supramolekularen Katalysatoren zu untersuchen. DFT- und 

TD-DFT-Berechnungen dienten der Identifizierung von Gasphasenstrukturen der 

untersuchten Systeme und der Charakterisierung von Absorptionsbanden, die in 

experimentellen IRMPD- und UV/Vis-Photofragmentations Spektren beobachtet 

wurden. Die hier erstmalig intensiv angewendete transiente Femtosekunden Photofrag-

mentation in einer Ionen-Falle erweist sich als eine äußert wertvolle Methode zur 

Untersuchung ultraschneller molekularer Schwingungs- und Rotationsdynamiken sowie 

der Dynamik elektronisch angeregter Zustände von ionischen Farbstoffmolekülen und 

größeren photokatalytischen Systemen unter isolierten Bedingungen. Sie ist 

komplementär zu anderen zeitaufgelösten Flüssigphasen- und Gasphasen Methoden und 

wird sicherlich auch weiterhin wertvolle Einblicke in die ultraschnelle Dynamik 

elektronisch angeregter Zustände von Metallkomplexen sowie organischer 

Verbindungen liefern. 
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