MRc* A System for Computing Grobner Bases in
Monoid and Group Rings

Birgit Reinert’ and Dirk Zeckzer
Fachbereich Informatik
Universitat Kaiserslautern
67663 Kaiserslautern
Germany
{reinert,zeckzer } @informatik.uni-kl.de

Abstract

Grobner bases and Buchberger’s algorithm have been generalized to monoid
and group rings. In this paper we summarize procedures from this field and
present a description of their implementation in the system Mrc V 1.0.

Keywords
Monoid and group rings, Grobner bases, prefix reduction

*MRc¢ stands for Monoid Ring Completion.
"This author was supported by the Deutsche Forschungsgemeinschaft (DFG).






1 Introduction

In 1965 Buchberger introduced the theory of Grobner bases for ideals in commutative
polynomial rings over fields [4], which allows solving many problems related to poly-
nomial ideals in a computational fashion using rewriting methods. The most familiar
problem is the ideal membership problem, i.e. the problem of deciding whether a given
polynomial lies in an ideal specified by a generating set. In case the generating set is
a Grobner basis this problem becomes solvable by checking whether the polynomial
reduces to zero with the computed Grobner basis.

Nowadays implementations of Buchberger’s algorithm for computing Grobner bases
are provided by all major computer algebra systems. The importance of Grobner bases
for the study of ideals has led to generalizations of the Grobner basis theory for non-
commutative structures. For example, originating from special problems in physics,
Lassner in [8] suggests how to extend existing computer algebra systems in order to
handle special classes of non-commutative algebras, e.g. Weyl algebras and later on
Lie algebras [2]. This works because the structures studied allow representations by
commutative polynomials for their elements. Unfortunately this approach is not possible
for general non-commutative algebras. Mora [16, 17] generalized Grobner bases for non-
commutative polynomial rings, i.e. free monoid rings, where multiplication of terms is
just concatenation of words. An implementation of his procedure has for example been
done in the system OPAL by Keller [7].

The next step of generalizing Grobner bases was to study arbitrary monoid and group
rings. The theoretical background on prefix Grobner bases for monoid and group rings
was first presented at ISSAC’93 by Madlener and Reinert in [10]. Different specialized
definitions of reduction relations followed [19, 14, 11, 12]. Applications of these methods
can be found in [15] where connections are presented

e between the word problem for monoids and the ideal membership problem for
free monoid rings;

e between the word problem for groups and the ideal membership problem for free
group rings;

o between the submonoid problem and the subalgebra problem for monoid rings;

e and between the subgroup problem and the one-sided ideal membership problem
for group rings.

Another link to group theory is provided in [20]: the well-known procedure of Todd and
Coxeter for enumerating cosets of a subgroup can be rephrased using prefix Grobner
bases (in fact the implementation used to compute the examples there was done in

Mrc V 1.0).

Here we want to present an implementation of the Grobner basis method using prefiz
reduction in monoid and group rings over the rationals Q. An extension of the system to



cover Grobner basis methods using commutative reduction (for commutative monoids)
and quasi-commutative reduction (for polycyclic groups) is planned.

The paper is organized as follows: Section 2 summarizes the theoretical results and the
procedures implemented. Section 3 introduces the system MRC V 1.0 and provides
examples to illustrate its usage. Section 4 gives some details on the ideas behind the
implementation. Since we are no longer in the commutative setting strings of variable
length have to be used for storing terms instead of arrays of fixed size. Due to the
realization of multiplication in the monoid and the computation of prefix Grobner
bases special data structures such as tries and ternary search trees for supporting the
reduction process are investigated. Section 5 outlines possible enhancements.

In Appendix A the proofs of some new results presented in Section 2 are given. In Ap-
pendix B additional information about the classes is given. It is intended to supplement
the comments of the source code.

Acknowledgement The authors thank Christoph Koégl for valuable discussions on
this paper.



2 Prefix Grobner Bases in Monoid and Group
Rings

In the following sections we summarize results from the theory of prefix Grobner bases
in monoid and group rings: First of all we develop the general case (see Section 2.1)
similar to [19] and [14]. Procedures for prefix saturation and Grébner basis computation
are presented. Then we show how these procedures can be modified to enumerate a
prefix Grobner basis (see Section 2.2) if e.g. the prefix saturating process does not
terminate. In Sections 2.3 to 2.6 special saturation procedures are presented using
special presentations for free monoids and free, plain and context-free groups. For all
these cases finite prefix Grobner bases can be computed for finitely generated right
ideals. Finally we present a procedure which simulates the Todd-Coxeter enumeration
of cosets (see Section 2.7).

2.1 The General Case

For the field of rationals @ and a monoid M let Q[ M] denote the ring of all finite
formal sums (called polynomials) > 7 o; - w; with coefficients o; € Q\{0} and terms
w; € M'. This ring is called the monoid ring over Q and M. Since we want to do
effective computations in Q[M]?, we need an appropriate presentation of M. In our
context we always assume M to be presented by a string rewriting system consisting
of a finite alphabet ¥ and a finite set of rewriting rules T' C ¥* x ¥*, which is confluent
and terminating with respect to some well-founded total admissible® ordering = on
Y*. In particular, this means that the elements of M have unique representations by
words in ¥* and multiplication can be performed using the string rewriting system®.
Additionally, we require T' to be interreduced. The empty word A represents the unit
in M. Then = can be extended to Q[ M] and used to order the monomials occurring in
a non-zero polynomial f € Q[M]. This situation is similar to the ordinary polynomial
ring. The largest monomial then is called the head monomial HM(f) and consists of
the head term HT(f), and the head coefficient HC(f). For sets of polynomials F we
denote HT(F) = {HT(f) | f € F}. Notice that contrary to ordinary commutative
polynomial rings we have the following phenomenon: for f € Q[M] and w € M the
equation HT(f *w) = HT(f) o w need not hold (see e.g. [14]). This requires additional
attention when characterizing Grobner bases and implementing procedures to compute
them as we will see later on.

As stated in the introduction, Grobner bases are strongly related to reduction relations.
For monoid and group rings various definitions of such relations are possible and can
be found in the literature [19, 14, 11, 12]. Due to our presentation of the monoid by

1'We will use three different symbols for denoting multiplications: By * we denote multiplication in
the ring Q[M], by o multiplication in the monoid M and by - multiplication with scalars from Q.

ZAll results given in this paper hold for arbitrary computable fields.

3i.e. compatible with concatenation and the empty word X is the smallest element.

4The result of multiplying u and v is the normal form of the concatenated word uwv.



a convergent string rewriting system, the monoid elements will be identified with the
unique normal form of the strings representing them. Hence it makes sense to speak of
one element being a prefix of the other. For u,v € M u is a prefix of v (as a string) if
there exists + € M such that u concatenated with = equals v. This will be expressed
by writing uz = v where = represents identity of words. We define prefix reduction in
this setting as follows:

Definition 1 Lel p, f be two non-zero polynomials in Q[ M]. We say [ prefix reduces
p to g at @ monomial o -t of p in one step, denoted by p—>? q, if

(a) HT(f)w =1 for some w € M, and
() a=p—a-HC(S) - frw.

We will call a basis G of a (one or two-sided) ideal i € Q[ M] a prefix Grobner basis
of 1if HT(i) = {vw | v € HT(G),w € M, uw in normal form with respect to the set of
rules T defining our monoid M}. Other characterizations will be given later on. G is
called prefix reduced or interreduced if no polynomial in G is prefix reducible by
another polynomial in G and all polynomials in G are monic.

However, before we give a completion procedure for prefix reduction, we have to take
a closer look at what congruence prefix reduction using a set of polynomials F' C
Q[M] describes. Since prefix reducing a polynomial corresponds to subtracting a right
multiple of another polynomial and our monoid ring in general is not commutative,
we can at most expect to describe a right ideal congruence. For a set F© C Q[M]
let ideal (#') denote the right ideal generated by F. It turns out that while <2 C
=ideal, (7) 1N general =igea) (7)€ <L>pF, i.e. prefix reduction is not strong enough to
describe the right ideal congruence. This is due to the above-mentioned fact that in
general we cannot expect HT(f*w) = HT(f)ow to hold for all f € Q[M] and w € M.
This defect can be repaired by introducing the concept of prefix saturation. A set
F C Q[M] is called prefix saturated if for each polynomial f € F' and every element
w € M we have that f * w prefix reduces to zero in one step using a polynomial in
F. Procedure 1 (see page 5) for enumerating a prefix saturating set for a polynomial
which terminates in case a finite such set exists was presented in [10].

This process in general will not terminate. Then additional effort has to be exercised
in order to give an enumeration process for a prefix Grobner basis in the completion
procedures below (see Section 2.2). However, for many structures finite prefix saturating
sets exist and specialized prefix saturation procedures can be implemented (always with
respect to special presentations of the monoids and groups). We will outline the cases
of free monoids and free, plain, and context-free groups in Section 2.3 - Section 2.6.

Now if F'is prefix saturated we have <L>§)7 = =igeal, (F)- Moreover, then a prefix Grobner
basis of the right ideal generated by F' can be characterized similar to Buchberger’s
approach by prefix s-polynomials, based on the fact that prefix Grobner bases of right
ideals can be characterized as follows: A set G C Q[M] is called a prefix Grobner

basis of ideal (), if P = =ideal, (G), and —¢; is confluent. The former condition



prefix.saturate

Given: A polynomial f € Q[M].
Find: A (possibly infinite) prefix saturating set S for f.

S=Ary
H:={f}
while H # ) do
q := remove(H);
% Remove an element using a fair strategy, i.e., no element is left in H for ever
L= HT(g);
for all w € C(t) = {w € ¥ | tw = t1tyw = 111,15 # X for some (I,7) € T} do

% C'(t) contains special overlaps between ¢ and left hand sides of rules in T

q = q*w;

if ¢ —A%0and ¢ #0
then S := SU{q¢};
H:=HU{q};
endif
endfor
endwhile

Procedure 1: Prefix saturation

can be obtained using prefix saturation and the latter can be tested by checking whether
all prefix s-polynomials reduce to zero. Given two non-zero polynomials py, p; € Q[M],
if there is w € M such that HT(p;) = HT(p;)w the prefix s-polynomial is defined

as spol(p1,p2) = HC(p1)™ - p1 — HC(p2) ™" - p2 * w.

Theorem 2 ([10]) For a prefix saturated set F' of polynomials in Q[M], the following
statements are equivalent:

(1) F is a prefix Grobner basis of ideal .(F).
(2) For all polynomials fy, fo € F we have spol(fi, fy) —5.0.

Procedure 2 (see page 6) based on this theorem was presented in [10].

It terminates for finite or free monoids and finite, free, and plain groups and with a
small modification for context-free groups (if appropriate presentations of the monoids
and groups are used).

However, there are more efficient ways to compute prefix Grobner bases. Notice that
computing the prefix s-polynomial for p; and p; where HT(p;) = HT(p2)w for some
w € M is directly related to prefix reducing p; by p, and we get py —P p; —HC(p;) -
HC(p2)™"-pa*xw = HC(py)-spol(p1, p2). Using the concept of weakly prefix saturated
sets, 1.e. for every f € I and every w € M we have f*w L>PF 0, prefix Grobner bases
can also be characterized by interreduction:

Theorem 3 ([19, 14]) A weakly prefiz salurated set F' C Q[M] which is additionally
prefic interreduced is a prefic Grobner basis of ideal (F).

5



prefix.groebner_basis_of right_ideal 1

Given: A finite set of polynomials ¥ C Q[M].
Find: (7, a prefix Grébner basis of ideal (F).

G := ;e prefix.saturate( f);
% G is prefix saturated
B :={(q,0) | ¢, € G a # ¢};
while B # ) do
% Test if statement 2 of theorem 2 is valid
(g1, G2) := remove(B);
% Remove an element using a fair strategy
if spol (g1, ¢q2) exists
% The s-polynomial is not trivial
then h:= normal.form(spol (q1,q2), —¢ );
% Compute a normal form using prefix reduction
if h#0
then G := G U prefix.saturate(h);
% G is prefix saturated
B:= BU{(f,h),(h,f)| f € G, h € prefix.saturate(h)};
endif
endif
endwhile
Procedure 2: Prefix Grobner basis computation for right ideals

prefix.interreduce

Given: A finite set of polynomials ¥ C Q[M].
Find: The finite interreduced set of polynomials GG of F'.
G :=F;
while there is ¢ € G which is prefix reducible by G\{g¢} do

G = G\{g};

q := normal.form(g, —% );

% Compute a monic normal form.

if ¢#0

then G :=GU{q};

endif

endwhile
Procedure 3: Prefix interreduction

This theorem is the basis for a more efficient implementation of the previous procedure
using interreduction instead of computing prefix s-polynomials. We need Procedure 3
for computing the interreduced set of polynomials of a given set of polynomials and we
need Procedure 4 (see page 7) for checking whether an interreduced set of polynomials

is additionally weakly prefix saturated.



weakly.prefix.saturated_check

Given: A finite interreduced set of polynomials G C Q[M].
Find: H = () if and only if (& is weakly prefix saturated.

H =0
for all g € G do
S := prefix.saturate(g);
while S # () do
s := remove(.S);
nf := normal.form(s, —% );
ifnf#0
then H:= HU{nf};
endif
endwhile
endfor

Procedure 4: Checking for weakly prefix saturatedness

prefix.groebner_basis_of _right_ideal 2

Given: A finite set of polynomials ¥ C Q[M].
Find: (7, a reduced prefix Grobner basis of ideal (F).

G := prefix.interreduce( F);
H := weakly.prefix.saturated check(G);
while H # ) do

G := prefix.interreduce(G U H);

H := weakly.prefix.saturated_check(();
endwhile

Procedure 5: Interreduced prefix Grobner basis computation for right ideals

Theorem 4 Let H be the sel generated by procedure weakly.prefix.saturated_check.
Then H = 0 if and only if G is weakly prefix saturated.

Proof: See Appendix A.

If the set H is not empty, then at least the polynomials in H have to be added in order
to fulfill the property of being weakly prefix saturated. This of course can violate the
precondition that the set is prefix reduced. Hence the two processes of prefix interre-
ducing the set G and adding the set H resulting from checking GG for weakly prefix
saturatedness have to be intertwined leading to Procedure 5 .

Theorem 5 Let G be the set generated by procedure pre-
fix.groebner_basis_of right_ideal 2 on a finite input I C K[M]. Then G is a reduced
prefic Grobner basis.

Proof: See Appendix A.



prefix.groebner_basis_of _two_sided_ideal

Given: A finite set F' C Q[M)].
Find: (, the reduced prefix Grobner basis of ideal (F).

H := prefix.groebner_basis_of _right_ideal 2( F);
G:={axg|laeX,ge H}UH;
(i := prefix.groebner_basis_of_right_ideal 2(();
while ¢ # H do

H = G;

G:={axg|la€eX,ge H}UH;

(i := prefix.groebner_basis_of _right_ideal 2(();
endwhile

Procedure 6: Prefix Grobner basis computation for two-sided ideals

Theorem 6 Let F' C K[M] be a finite set of polynomials. In case ideal (F) has a
finite reduced prefiz Grobner basis, the procedure prefix.groebner_basis_of right_ideal 2
terminates.

Proof: See Appendix A.

Thus, procedure prefix.groebner basis_of right_ideal 2 terminates for finite or free
monoids and finite, free, and plain groups and with a small modification for context-free
groups (if appropriate presentations of the monoids and groups are used).

In the Sections 2.3 - 2.6 specialized versions of the prefix Grobner basis procedures are
presented which make use of additional structural information on the monoid or group
to speed up the computation.

We close this section by showing how similar to the case of solvable polynomial rings
in [6], prefix Grobner bases of two-sided ideals can be characterized by prefix Grobner
bases of right ideals which have additional properties.

Theorem 7 ([19, 14]) For a set of polynomials G C Q[M] the following properties
are equivalent:

1. G is a prefix Gréobner basis of ideal .(G) and ideal, (G) = ideal ().

2. G is a prefix Gréobner basis of ideal (G) and for all a € ¥, g € G we have
a* g € ideal (G).

This leads to Procedure 6 which may not terminate.

2.2 An Algorithm for Enumerating a Prefix Grobner Basis

As already mentioned in the previous section, the procedure pre-
fix.groebner_basis_of right_ideal 1 does mnot terminate in general. In the case of

8



prefix.saturate_enum_init

Given: A polynomial f € Q[M].

Find: Initialize S, the saturating set and H, the testing set.
S=1{/};

H = {};

Procedure 7: Initialization of the prefix saturation enumeration

prefix.saturate_enum _step

Given: S and H
Find: A set R representing the next polynomials of the saturating set for f
generated by overlapping the first element of H with the rules.

q := remove(H);

% Remove an element using a fair strategy, i.e., no element is left in H for ever
t:=HT(q);

for all w € C(t) = {w € ¥* | tw = l1taw = 111,13 # X for some (I,r) € T} do

% C(t) contains special overlaps between ¢ and left hand sides of rules in T’

q = q*w;

if ¢ —A%0and ¢ #0
then S :=SU{q¢};
H:=HUA{q};
R:=RU{q};
endif

endfor

Procedure 8: Making one step of the prefix saturation enumeration

non termination it is nevertheless interesting to give a semi-decision procedure for the
ideal membership problem: does a given polynomial lie in the ideal generated by a set
of polynomials. In order to decide this, a Grobner basis of the set generating the ideal
is enumerated and it is tested whether the given polynomial can be reduced to zero
which is equivalent to its belonging to the ideal. In case polynomial is reduced to zero
with respect to the Grobner basis enumerated so far, the procedure terminates with a
positive answer. If the polynomial does not belong to the ideal, the answer is no if the
enumeration process stops, else no answer is given.

The algorithms prefix.saturate and prefix.groebner_basis_of right_ideal_1 have to be mod-
ified accordingly. First the algorithm for prefix saturation is split into two parts: ini-
tialization and performing one saturation step leading to the two Procedures 7 and 8.
The while-loop is integrated in the enumeration procedure. The same is true for the
Grobner basis computation itself. It is split into two parts: initialization and handling
of one s-polynomial. The while-loop is integrated in the enumeration procedure.

These procedures together with the sets H and S form a so called saturator. Instead
of computing the saturating set a saturator is initialized for each of the polynomials of
the input set. Then one step of all saturators is taken and the resulting polynomials
as well as the new s-polynomials are added to the Grobner basis and the set of s-



enumerate_prefix_groebner_basis_of right_ideal

Given: A finite set of polynomials ¥ C Q[M].
Find:  Enumerate a prefix Grobner basis of ideal .(F).

SAT := ;e prefix.saturate_enum_init(f);
% initialize the saturators
G :=F;
B:={(q1,%0) | ¢1,9: € G,q # ¢};
S := U,uresa7 Prefix.saturate enum step(sat);
% compute the polynomials of the first step of all saturators
G=GUS;
B:= BU{(9,s),(s,9) | g € G,s € S};
while B # ) do
% Test if statement 2 of theorem 2 is valid
(g1, q2) := remove(B);
% Remove an element using a fair strategy
if spol (g1, q2) exists
% The s-polynomial is not trivial
then h:= normal.form(spol (q1,42), —¢ );
% Compute a normal form using prefix reduction
if h#0
then G := GU {h};
SAT := SAT U prefix.saturate_enum_init(h);

% initialize a new saturator

endif
endif
S 1= U, atesar Prefix.saturate_enum step(sat);
G=GUS;
B:=BU{(9,5),(s,9) | g € G,s € S};
endwhile

Procedure 9: Enumeration of a prefix Grobner basis of a right ideal

polynomials, respectively. A saturator terminates if the set H becomes empty. It will
then be removed from the set of saturators SAT. This leads to Procedure 9.

2.3 The Special Case of Free Monoid Rings

Free monoids allow simple presentations, namely of the form (X,0) where ¥ is the
generating set and the set of rules is empty. Using such a presentation the pro-
cedures of Section 2.1 can be simplified. As the set of rules is empty the poly-
nomial itself is a prefix saturating set. Using this information the procedures pre-
fix.groebner_basis_of right_ideal_1 and weakly.prefix.saturated_check can be specialized by
substituting {p} for prefix.saturate(p). On the other hand, as prefix s-polynomials are
strongly related to prefix reduction at head terms, prefix Grébner bases can be com-

10



prefix.saturate fg

Given: A polynomial f € Q[F].
Find: {A} or {can(f), acan(f)}, a prefix saturating set for f.

if f contains only one monomial
then return {\};

endif

ht := HT(f);

acan(f) = J:

while ht = HT (acan(f)) do
can(f) := acan(f);
o = last(ht)™! % last returns the last letter of a string
ht := ht * o;
acan(f) := acan(f) * o;

endwhile

return {can(f),acan(f)};
Procedure 10: Prefix saturation in free group rings

puted using Mora’s procedure for computing prefix Grobner bases of right ideals in
(free) non-commutative polynomial rings as presented in [16]. This procedure is equiv-
alent to the procedure prefix.interreduce presented in Section 2.1 with F' as the input
set and (& being the reduced Grébner Basis of ideal .(F).

Further, prefix.groebner_basis_of_two_sided_ideal can be specialized to procedure pre-
fix.groebner_basis_of two_sided_ideal fm by using prefix.interreduce for computing the re-
duced prefix Grobner bases of the right ideals. However, this procedure may not ter-
minate.

2.4 The Special Case of Free Group Rings

In the case of free group rings the procedures of Section 2.1 can be replaced by proce-
dures especially adapted to a special presentation of free groups leading to Procedure
10. For a free group F generated by ¥, the alphabet of the presenting string rewriting
system is YU X! where Y71 is the set of the formal inverses of ¥ and the set of rules is
T ={(aa"',X),(a" a,\) | a € ¥,a™" € 71}, Given such a presentation the saturating
set of the polynomial p is either of the form {A} (if p consists of one monomial only)
or consists of two special polynomials {can(p), acan(p)} (due to the fact that only two
different terms in p can be brought to head position). See [19, 14] for more details.

Further the procedure for computing the reduced prefix Grobner basis can be replaced
by an adapted procedure which takes into account that mates {can(p),acan(p)} can
be replaced instead of individual polynomials p (compare [21, 19]). This reduces the
amount of necessary reduction steps as normal forms of acan(p) are not computed if
can(p) already can be reduced. Moreover, on input F the Grobner basis will not contain
more than 2 - |F| polynomials, where |F'| denotes the number of polynomials of F. In
Procedure 11 (see page 12) |p| denotes the number of monomials of a polynomial p.

11



prefix.groebner_basis_of_right_ideal fg

Given: A finite set F' C Q[F].
Find: (7, the reduced prefix Grobner basis of ideal . (F).

H := ;¢ prefix.saturate fg( f);

G = ;

while H # ) do

H = H\fcan(p), acan(p)};
if | can(p) |=1 OR | acan(p) |=1

then % the ideal is trivial
G = {\};
H = {;
else nf := normal.form(can(p), —¢, g );
if |nf|=1
then % the ideal is trivial
G = {\};
H = ;
elseif nf < can(p)
then G := G U prefix.saturate fg(n f);
else nf := normal.form(acan(p), —%_ 5 );
if | nfl=1
then % the ideal is trivial
G = {\}
H = ;
elseif nf < acan(p)
then G := G U prefix.saturate fg(n f);
else G := G U {can(p),acan(p)}
endif
endif
endif
if H = () AND a reduction occurred
then H := G}
G = 0;
endif
endwhile

Procedure 11: Prefix Grobner basis computation for right ideals in free group rings

The computation of prefix Grobner bases for two-sided ideals can be simplified further.
The original procedure computes a prefix Grobner basis, adds for each polynomial of
this basis all left-multiples with the generators and then computes a prefix Grobner
basis of the new basis and so on. Since the new computation of the prefix Grobner
basis “forgets” that part of the input which has already been considered, many unnec-
essary steps are performed. To avoid this we implemented some sort of preprocessing
when computing the left extensions of our bases: the new elements obtained by left-
multiplication with the generators are first reduced to normal form and then prefix

12



extend.left fg

Given: A finite set H C Q[F].
Find: (, a preprocessed version of {a x g |a € ¥,g € H} U H.

G = H,;
for all « € ¥ do
for all h € H do
r= ax*h;
nf := normal.form(r, —7, );
ifnf#0
then GG := (G U prefix.saturate_fg(n f);
endif
endfor
endfor

Procedure 12: Preprocessing the set of polynomials

prefix.groebner_basis_of two_sided_ideal fg

Given: A finite set F' C Q[F].
Find: (, the reduced prefix Grobner basis of ideal (F).

H := {J;cp prefix.saturate fg( f);
H := prefix.modified_groebner_basis_of _right_ideal fg( H );
G := extend.left fg(H);
(i := prefix.modified_groebner_basis_of_right_ideal fg(();
while G # H do

H = G,

(i := extend.left fg(H);

(i := prefix.modified_groebner_basis_of _right_ideal fg((7);
endwhile

Procedure 13: Prefix Grobner basis computation for two-sided ideals in free group rings

saturated. We present an adaption of this idea for the case of free group rings in Pro-
cedure 12.

Procedure 13 for prefix Grobner bases of two-sided ideals in free group rings
uses prefix.modified_groebner_basis_of right_ideal fg which is essentially procedure pre-
fix.groebner_basis_of _right_ideal fg omitting the line marked with (*). However, this pro-
cedure may not terminate.

2.5 The Special Case of Plain Group Rings

Plain groups are finite free products of free and finite groups. They can be pre-
sented by convergent string rewriting systems such that each generator has an in-
verse of length 1 and all rules are 2-monadic, i.e. for £ — r we have |{| < 2 and
|r| < 1. Then the saturation Procedure 14 (see page 14) can be used to replace the

13



prefix.saturate_plain_group

Given: A polynomial f € Q[P],
R the set of rules of the presentation.
Find: S, a prefix saturating set for f.

H := prefix.saturate fg( f);
S = H;
for all h € H do
for all (ab,c) € R or (ab,A) € R do
if last(HT'(h)) = a
then S := SU{h*b};
endif
endfor
endfor
Procedure 14: Prefix saturation in plain group rings

general one in the procedure prefix.groebner basis of right_ideal 1 or in the procedure
weakly.prefix.saturated check used by the procedure prefix.groebner_basis_of right_ideal 2
in Section 2.1.

Using this presentation of plain groups and the above saturation procedure, the proce-
dures prefix.groebner_basis_of right_ideal 1 and prefix.groebner_basis_of right_ideal 2 ter-
minate. Two sided-ideals can be computed the same way in combining the algorithms
of Section 2.1 with the specialized saturation procedure. However, this procedure may
not terminate.

2.6 The Special Case of Context-Free Group Rings

A finitely generated context-free group G is a group with a free normal subgroup of
finite index. Hence the following presentations of context-free groups are used: Let the
group G be given by X a finite set of generators for the free subgroup F and & the finite
group such that (E\{A\}) N X =0 and G/F =€ ForallecElet ¢, : XUX' — F
be a function such that ¢, is the inclusion and for all z € XUX ™', ¢.(z) = e togzoge.
For all ey, e, € € let 2z, ., € F such that z., » = 21, = A and for all e1,e3,e3 € £ with
€1 0g €3 =¢ €3, €1 0g €2 = €326, Let ¥ = (E\{A}) U X U X! and let T contain the
following rules:

zzmt — A and

R for all zx € X,

€162  — €3%¢,.¢, for all ey, ey € E\{A}, €3 € € such that e; og €3 =¢ €3,
ze — ede() and

z'e — ed(z7) forall e e E\{N},z € X.

(X,T) then is convergent and is called a virtually free presentation of G (compare
[5]). The elements of the group have representations of the form eu where e € £ and

14



prefix.saturate_context free_group

Given: A polynomial [ € Q[C],
Find: S, a prefix saturating set for f.

i)/ |= 1
then S :={\};
else At := HT(f);
acan(f) = J:
while ht = HT(acan(f)) and HT (acan(f)) ¢ € do
can(f) := acan(f);
o := last(ht)™;
ht := ht * o;
acan(f) := acan(f) * o;
endwhile

S = {can(f),acan(f)};
endif

Procedure 15: Prefix saturation in context-free group rings

u € F. We can specify a total well-founded ordering on the group by combining a total
well-founded ordering >¢ on £ and a length-lexicographical ordering > on F: Let
wi,wy € G such that w; = e;u; where ¢; € &£, u; € F. Then we define w; = wq if
and only if |w;| > |ws| or (Jwi| = |ws| and ey =g €3) or (|wy| = |ws|, €1 =¢ €2 and
U1 >1ex U2). This ordering is compatible with right concatenation using elements in F
in the following sense: Given w;, ws € G presented as described above, wy > wq implies
wiu = wou for all u € F in case wyu, wau € G.

Using this presentation the saturation Procedure 15 can be used to replace the
general one in the procedure prefix.groebner basis of right_ideal 1 or in the procedure
weakly.prefix.saturated check used by the procedure prefix.groebner_basis_of right_ideal 2
in Section 2.1. Additionally the procedures have to be extended by a preprocessing
step on the input, namely each polynomial of the generating set has to be multiplied
from the right with each character of the alphabet of the finite group presentation (see
[19, 14].

Two sided-ideals can be computed the same way in combining the algorithms of Sec-
tion 2.1 with the specialized saturation procedure. However, this procedure may not
terminate.

2.7 Todd-Coxeter Simulation

One very popular procedure in combinatorial group theory is due to Todd and Coxeter
and systematically enumerates all cosets of a finitely generated subgroup in a given
finitely presented group [23]. Nielsen reduced sets allow the computation of Schreier
coset representatives hence enabling syntactical solutions to the subgroup problem in
finitely generated free groups [18]. In [20] Procedure 16 (see page 16) for simulating a
combination of both procedures using prefix Grobner bases is developed. It makes use

15



extended_todd_coxeter_simulation

Given: Fr={r—1]r € R}, a set of binomials representing the relators.
Fy ={u—1|u € U}, aset of binomials representing the subgroup generators.
Find: If Fr = () a Nielsen reduced generating set for the subgroup is generated.
Else the cosets of the subgroup in the group are enumerated and on
termination a multiplication table is represented by the prefix Grobner basis.

N = 0;
if Fr=10
then G := prefix.groebner_basis_of _right_ideal fg( Fy/);
else N :={)};
B:={ala€eXUX '}
(i := prefix.groebner_basis_of _right_ideal fg( Fr U Fy/);
while B # () do
7 := min(B);
B:= B\{r};
if 7 is not prefix reducible by G
then N := NU{7r};
B:=BU{ra|aec (ZUXTH\{({(1))"}};
H:={r+(r—1)|r—1¢€ Fgr};
(i := prefix.groebner _basis_of _right_ideal _fg(G'U H);
S:={w € N | w is prefix reducible by G'};
N := N\S;
endif
endwhile
endif

Procedure 16: Extended Todd-Coxeter simulation

of the fact that group presentations as well as subgroup generators can be represented
by binomial polynomial sets in the free group ring over the generators of the group.
If the set of group relators is empty, the procedure always terminates and produces
a Nielsen reduced set for the subgroup represented by G. If the set of relators is not
empty, the procedure on termination provides the coset representatives of the subgroup
in N and the non-trivial part of the multiplication table with group generators in G.
Hence in this case it terminates if the submonoid has finite index.

16



3 Mrc V 1.0

This section describes MRC V 1.0, the Monoid Ring Completion program. First, we
give an overview of the procedures implemented in Section 3.1. Then we will present
the commandline syntax and the file formats in Section 3.2. Finally, we will three small
examples of the use and the output of MRC V 1.0 in Section 3.3.

3.1 Provided procedures
3.1.1 Prefix Grobner Bases of Right Ideals

MRrc V 1.0 provides the following procedures for the computation of prefix Grobner
bases of right ideals:

GB prefix.groebner_basis_of _right_ideal_1 as mentioned in Section 2.1

GBIR  prefix.groebner_basis_of_right_ideal_1 as mentioned in Section 2.1 followed
by interreduction of the resulting Grobner Base

IRGB  prefix.groebner_basis_of right_ideal_2 as mentioned in Section 2.1

ENUM  prefix.groebner_basis_of right_ideal_enumerate as mentioned in Section 2.2

FM prefix.groebner_basis_of _right_ideal_fm as mentioned in Section 2.3
FG prefix.groebner_basis_of _right_ideal_fg as described in Section 2.4
PG prefix.groebner_basis_of _right_ideal_pg as described in Section 2.5

CFG prefix.groebner_basis_of _right_ideal_cfg as described in Section 2.6

The input required for these procedures consists of a monoid presentation and a set of
polynomials. The monoid presentation is given by a set of generators, an ordering, and
a set of rules forming a convergent interreduced string rewriting system. The specialized
algorithms for free monoids and free, plain and context-free groups require the special
presentations as described in the respective sections. In general, a convergent string
rewriting system can in many cases be obtained using the Knuth-Bendix completion
procedure (e.g. the system COSY developed at Kaiserslautern or the system KBMAG
developed at Warwick). Its output can then be transformed into an input for MRc
V 1.0. The result produced by MRCc V 1.0 is a set of polynomials representing the
respective prefix Grobner basis.

3.1.2 Prefix Grobner Bases of Two-Sided Ideals

MRc V 1.0 provides the following procedures for the computation of prefix Grobner
bases of two-sided ideals:
71 prefix.groebner_basis_of_two_sided_ideal as described in Section 2.1
ZIFM  prefix.groebner_basis_of two_sided_ideal_fm as mentioned in Section 2.3
ZIFG  prefix.groebner_basis_of two_sided_ideal fg as described in Section 2.4
ZIPG  prefix.groebner_basis_of two_sided_ideal_pg as mentioned in Section 2.5
ZICFG  prefix.groebner_basis_of_two_sided_ideal_cfg as described in Section 2.6

The procedures for computing prefix Grobner bases of two-sided ideals, too, take a

17



monoid presentation and a set of polynomials as input. The specialized procedures for
free monoids and free, plain and context-free groups require the special presentations as
described in the respective sections. They produce as output a sequence of polynomial
sets, each representing the prefix Grobner basis of the right ideal computed after having
left extended the last one. On termination the prefix Grobner basis of the two-sided
ideal generated from the original set of polynomials is displayed. The procedure can be
run interactively, that is the user can decide to continue or to interrupt the computation
after each newly computed prefix Grobner basis, or without user interaction in batch
mode.

3.1.3 Other Methods

In addition MRC V 1.0 provides the following procedures:

NF normal.form computation of normal forms for each polynomial of a set
of polynomials with respect to a given set of generators of an ideal

MEMBER a semi-decision procedure to decide whether a given set of polynomials
lies in an ideal, the ideal is enumerated and after each step it is checked
whether the polynomials can be reduced to zero by the part of the
Grobner basis so far enumerated or not

IR prefix.interreduce to prefix interreduce a set of polynomials as described
in Section 2.1
TC extended_todd_coxeter_simulation as described in Section 2.7

The normal form procedure expects as input a monoid presentation, a set of polyno-
mials generating an ideal (generators), and a set of polynomials of which the normal
form shall be computed. The output consists of the polynomials and their respective
normal form with respect to the generating set.

The member procedure, too, expects as input a monoid presentation, a set of polyno-
mials generating an ideal (generators), and a set of polynomials of which the normal-
form shall be computed. The output consists of the part of the Grobner basis so far
enumerated and those polynomials which can be reduced to zero by this part. If the
enumeration process terminates then the resulting Grobner basis is printed and the
polynomials not lying in the Grobner basis are identified as such.

The interreduction procedure expects as input a monoid presentation and a set of
polynomials. The output is the interreduced set of polynomials. For polynomials from
the free monoid ring as presented in Section 2.3 this is equivalent to computing the
reduced prefix Grobner basis.

The Todd-Coxeter simulation procedure expects as input a free group presentation, a
set of polynomials generating a group, and a set of polynomials generating a subgroup
of the group. The output consists either of the Nielsen reduced set or of the coset rep-
resentatives and a Grobner basis representing the non-trivial part of the multiplication
table.

18



3.1.4 Other information provided

Statistical information concerning memory consumption and run time are provided,
too. They allow assessments on the efficiency of the procedures implemented.

3.2 Unix Commandline Syntax and File Formats

The call to MRC V 1.0 has one of the following forms:

mrc NF monoid-presentation set-of-generators set-of-polynomials
mrc MEMBER monoid-presentation set-of-generators set-of-polynomials
mrc IR monoid-presentation set-of-generators

mrc GB monoid-presentation set-of-generators

mrc GBIR monoid-presentation set-of-generators

mrc IRGB monoid-presentation set-of-generators

mrc ENUM monoid-presentation set-of-generators

mrc FM fm-presentation set-of-generators

mrc FG fg-presentation set-of-generators

mrc PG pg-presentation set-of-generators

mrc CFG cfg-presentation set-of-generators

mrc  [-batch] ZI monoid-presentation set-of-generators

mrc  [-batch] ZIFM fm-presentation set-of-generators

mrc  [-batch] ZIFG fg-presentation set-of-generators

mrc  [-batch] ZIPG pg-presentation set-of-generators

mrc  [-batch] ZICFG cfg-presentation set-of-generators

mrc TC fg-presentation set-of-relators-group set-of-relators-subgroup

The program name is followed by the name of the method, the name of the file con-
taining the monoid presentation, and one or more names of files containing a set of
polynomials each. Optionally the flag “-batch” can be provided. The output produced
depends on the parameters chosen, in each case the input and output values of the
methods described in the previous section are written to the terminal.

The file format of the respective monoid presentation is given by the following grammar:

CHARACTER = 7(” letter 7 ” weight ”)”
ALPHABET = {CHARACTER}*
ORDERING = ’length-lexicographic”
TERM = {letter}* | ”$\1lambda$”
RULE — 2 (77 TERM ” " TERM 77)77
RULESET = {RULE}*

19



MONOID = ALPHABET ”;” ORDERING ”;” RULESET ”;”

FM = ALPHABET ”;” ORDERING "}’

FG = ALPHABET ”;” ALPHABET ”;” ORDERING ”;”

PG = ALPHABET ”;” ALPHABET ”;” ORDERING ”;”
RULESET ”;”

CFG = ALPHABET ”;” ALPHABET ”;” ALPHABET ;"

ORDERING ”;” RULESET 73"

where “letter” is an ASCII-value and “weight” is a positive integer value. The weight
component is used for realizing the ordering on the monoid. MONOID, FM, FG, PG,
CFG are the file formats for the respective presentations.

The ruleset for the free monoid (FM) is empty. The second alphabet of the free and
plain group (FG, PG) gives the inverse characters, that is, it consists of the same
characters but ordered such that at each position stands the inverse character to the
one at the same position of the first alphabet. The set of rules of the free group is empty.
The rules are generated from the two alphabets. The first alphabet of the context-free
group (CFG) denotes the finite group part, the second and the third alphabet the free
group part.

No syntactical or semantical check is provided. It is supposed that the presentations
are conform to the requirements for the respective monoids and groups.

For example the free group with one generator can be presented as a monoid as follows
where a is the generator, A its formal inverse and $\1lambda$ decodes the trivial element

of G:

(A4) (a3);
length-lexicographic ;
( aA $\lambda$ )

( Aa $\lambda$ );

The same free group will be presented as a free group as follows.

(A4) (a3d);
(a3) (A4);
length-lexicographic ;

The file format of a set of polynomials is given by the following grammar:

DIGIT = 0717727 |78 |74 [ 75|76 | T | 8 | 7YY
INTEGER = {DIGIT}+

COEFF — []INTEGER ”/” INTEGER

TERM = {letter}* | "$\1lambda$”

MONOM = COEFF 7*” TERM

POLYNOM = 7(” MONOM {"4+” MONOM }* )"

POLYSET = {POLYNOM}* ”;”

For example the set of polynomials aaaaaa — 1 and aaa — 1 is presented as follows:

1/ 1 % aaaaaa + -1 / 1 * $\lambda$ )
1/ 1% aaa+ -1/ 1 * $\lambda$ ) ;

20



Set-of-generators, set-of-relators-group and set-of-relators-subgroup are sets of polyno-
mials where set-of-generators means the set of polynomials generating an ideal.

In order to get an input which will be accepted by MRC V 1.0 there exists a program
named "filter” which transforms a file following one of the above grammars into an
input file for MRC V 1.0. The call to this program is: "mrc-filter <input >output”.

3.3 Examples
3.3.1 Ideal Membership Problem

Let the plain group P be presented by (a, B,b,C,¢,d;aa = Bb =bB = Ce = ¢C =
dd = 1,ab = ¢,ac = b,Ba = C,Bc = d,bC = a,bd = ¢,Ca = B,Cb = d,cB =
a,ed =b,dB = C,dC = B). Now we want to decide whether the polynomials a + b+ ¢,
ad+ a+1 and be+ ¢ + b lie in the ideal generated by the polynomial a + b + c.

You have chosen the following parameters.

Monoid:
Alphabet:
(a6) (B5) (b4) (C3) (c2)(d1);
Ordering:
length-lexicographic ;
Rules:

(aa $\lambda$)
(ab ¢)

(ac b)

(Ba C)

(Bb $\lambda$)
(Bc d)

(bB $\lambda$)
(bC a)

(bd ¢)

(Ca B)

(Cb d)

(Cc $\lambda$)
(cB a)

(cC $\lambda$)
(cd b)

(dB C)

(dC B)

(dd $\lambda$)

Generating set of polynomials:
(1/1 * a + 1/1 * b + 1/1 * ¢)

Set of polynomials to test:

(1/1 * ad + 1/1 * a + 1/1 * $\lambda$)
(1/1 * a + 1/1 *# b + 1/1 * ¢)

(1/1 * bc + 1/1 * cc + 1/1 * b)

21



Method: (MEMBER) test ideal membership while enumerating a prefix Groebner
basis of a right ideal in a monoid ring

Number of polynomials still to saturate: 1
So far enumerated polynomials
(1/1 * a + 1/1 * b + 1/1 * ¢)

(1/1 * ba + 1/1 * ca + 1/1 * $\lambda$)
(1/1 * bb + 1/1 * cb + 1/1 * ¢)
(1/1 * bc + 1/1 * cc + 1/1 * b)

1/1 * a + 1/1 *# b + 1/1 * ¢ is member of the right ideal
1/1 * bc + 1/1 * cc + 1/1 * b is member of the right ideal

Number of polynomials still to saturate: 1
So far enumerated polynomials

(1/1 * a + 1/1 * b + 1/1 * ¢)

(1/1 * ba + 1/1 * ca + 1/1 * $\lambda$)
(1/1 * bb + 1/1 * ¢cb + 1/1 * ¢)

(1/1 * bec + 1/1 * cc + 1/1 * b)

Number of polynomials still to saturate: 1
So far enumerated polynomials

(1/1 * a + 1/1 * b + 1/1 * ¢)

(1/1 * ba + 1/1 * ca + 1/1 * $\lambda$)
(1/1 % bb + 1/1 * ¢cb + 1/1 * ¢)

(1/1 # bec + 1/1 * cc + 1/1 * b)

saturator deleted!

Number of polynomials still to saturate: 0O
So far enumerated polynomials

(1/1 # a + 1/1 * b + 1/1 * ¢)

(1/1 * ba + 1/1 * ca + 1/1 * $\lambda$)
(1/1 # bb + 1/1 * ¢cb + 1/1 * ¢)

(1/1 * bec + 1/1 * cc + 1/1 * b)

1/1 * ad + 1/1 * a + 1/1 * $\lambda$ is not member of the right ideal

Memory Usage: 2441216

The result is that a + b+ ¢ and be+ ¢? + b obviously lie in the ideal, whereas ad +a + 1

does not.

3.3.2 Todd Coxeter 1

There is a family of presentations of trivial groups due to B. H. Neumann, who sug-
gested that the members of the family provide a challenge for coset enumeration pro-
grams (see [22]). While Sims used the completion procedure for string rewriting systems
due to Knuth and Bendix to study the first member of the family, we show that this
can also be done using the algorithm presented in Section 2.7.

22



The first presentation of the trivial group is RsrSS = StsTT = TriRR = 1, where
r,s,t are the generators and R, S, T denote the respective inverses. The generating set
of the subgroup is empty. MRC V 1.0 produces the following output.

Group:

Alphabet:

(r 1) (R2) (s 3) (s 4) (¢t 5) (T 6) ;
(R2) (r1) (s4) (s3)(T6)(t5);

Ordering:

length-lexicographic ;
Ruleset:
(rR $\lambda$)
$\lambda$)
$\lambda$)
$\lambda$)
$\lambda$)
$\lambda$)

(Rr
(sS
(Ss
(tT
(Tt

Generating set
(1/1 * RsrSS +
(1/1 * StsTT +
(1/1 * TrtRR +
Generating set

Method:

of

polynomials (Relators):

-1/1 * $\lambda$)
-1/1 * $\lambda$)
-1/1 * $\lambda$)

of

polynomials (Subgroup):

(TC) Todd-Coxeter enumeration of cosets

Coset representatives:
{ $\lambda$ }

Interreduced prefix Groebner basis:

(1/1
(1/1
(1/1
(1/1
(1/1
(1/1

Memory

*

* ¥ ¥ ¥ ¥
H o W o

r

+

+
+
+
+
+

-1/1
-1/1
-1/1
-1/1
-1/1
-1/1

*

* ¥ X ¥ ¥

$\lambda$)
$\lambda$)
$\lambda$)
$\lambda$)
$\lambda$)
$\lambda$)

Usage: 3883008

MRcC V 1.0 needed 816 seconds and 4 MB memory to compute this result on a Sparc
Ultra 177 running Solaris 2.5.

The second member of the family is far more difficult to compute using this method.
It was not possible within using the resources (time and memory) available. Using a
different strategy improves the run-time needed but still the memory requirements are

too high (> 200 MB memory).

3.3.3 Todd Coxeter 2

The second example for the computation of cosets using the procedure of Section 2.7
is the Dyck group D(2,3,2) presented by ¥ = {a,b} and R = {aaa, bbb, abab} and U
the subgroup of G generated by {a}.

23



Group:

Alphabet:

(4 4) (a3) (B2) (b1);
(a3) (A4) (b1) (B2) ;
Ordering:
length-lexicographic ;
Ruleset:

(A2 $\lambda$)

(ad $\lambda$)

(Bb $\lambda$)

(bB $\lambda$)

Generating set of polynomials (Relators):

(1/1 * aaa + -1/1 * $\lambda$)

(1/1 * abab + -1/1 * $\lambda$)

(1/1 * bbb + -1/1 * $\lambda$)

Generating set of polynomials (Subgroup):

(1/1 * a + -1/1 * $\lambda$)

Method: (TC) Todd-Coxeter enumeration of cosets

Coset representatives:

{ $\lambda$, b, B, bA }
Interreduced prefix Groebner basis:
(1/1 * A + -1/1 * $\lambda$)

(1/1 * a + -1/1 * $\lambda$)
(1/1 * BA + -1/1 * b)

(1/1 * Ba + -1/1 * DbA)

(1/1 * BB + -1/1 * b)

(1/1 * bAA + -1/1 * B)

(1/1 * bAB + -1/1 * bA)

(1/1 * bAb + -1/1 * bA)

(1/1 * ba + -1/1 * B)

(1/1 * bb + -1/1 * B)

Memory Usage: 2424832

MRc V 1.0 gives the coset representatives {A, b, B,bA} and the non-trivial part of the
multiplication table {A — X\;a — A\, BA — b, Ba — bA, BB — b,bAA — B,bAB —
bA,bAb — bA,ba — B,bb — B} using 2.5 MB memory and less than 1 second cpu

time on a Sparc Ultra 177 running Solaris 2.5.

24



4 Implementation

This section explains the rationales behind the implementation. In Section 4.1 goals
and the general structure of the system are described. The differences to commutative
polynomial rings described in Section 4.2 motivate the necessity of data structures
adjusted to prefix reduction which are explained in Section 4.3.

4.1 Goals and General Structure

MRcC was designed for two main purposes: to compute prefix Grébner bases in monoid
and group rings as well as to determine the feasibility of the procedures.

One goal was to get a simple, extendable, and fast implementation. C4++ was chosen as
implementation language because it is widely available, provides concepts from object-
orientation like inheritance, facilitates reuse of code (for example through template
classes), and leads to reasonably fast code if certain coding principles are followed.
Further there exist some implementations of well known data structures like the LEDA-
Library (see [1]). Thus MRC V 1.0 is implemented in C++ using the LEDA-Library
on SUN SparcWorkstations under Solaris 2.5.

Based on the procedures in [14] the following approach was taken: undertake an object
oriented analysis and design, write the procedures top down, and test the modules
bottom up. The object oriented design led to an architecture whose general structure
is depicted in Figure 1 (see page 26). Only the module names and the data sections
are shown, the methods have been omitted.

This diagram shows that based on the mathematical foundation of the theory, classes
were built to represent the mathematical entities COEFFicient, TERM, and POLY-
NOMial where the coefficients and terms are joined to form polynomials. The terms
are formed with respect to the MONOID. The other concepts depicted in the top
level class diagram arise from the algorithms and represent sets of other objects or pro-
cedures which can be separated out. There exist additional diagrams not reproduced
here for the concepts 'monoid’, 'polyset’ and ’ideal’.

The abstract procedures of [14] were implemented using well known data structures
provided by the LEDA-Library. Notable exceptions are the data structures facilitat-
ing efficient reduction, or more precisely pattern matching on strings needed for the
reduction process. In Section 4.2 we explain why special data structures are needed
in comparison to Grobner bases for commutative structures, before we describe these
data structures in Section 4.3.

4.2 Differences to Commutative Polynomial Rings
Readers not familiar with string rewriting techniques might wonder what differences

there are between this approach to Grobner bases for non-commutative structures and
the approaches known for Grobner bases in commutative structures.

25



COEFF MONOID TERM
coeff:rational alphabet: ALPHABET monoid:MONOID
order:ORDER term[]:int
o rules:RULES ~ length:int
®
POLYNOM <
polynom:sortseq<TERM,COEFF> TERMSET

monoid:MONOID

’

termset:list<TERM>

Q

CP

spolynom:POLYNOM

:

CPSET

cp_set:queue<CP>

Figure 1: System structure

26

<> is used by
POLYSET
polynom_set:POLYSET_Trie
polynom_list:list<POLYNOM>
monoid:MONOID
is used by
uses
POLYSAT
is used by
uses uses
is used by IDEAL
uses




Polynomials are usually represented as ordered lists of monomials and the main op-
erations involved in the reduction process and the computation of s-polynomials are
multiplication, comparison, matching, and unification of terms. In the commutative
case terms can be represented by the exponents of the generators and stored in arrays
of a fixed length, namely the number of generators. The main operations then trans-
late to operations on these arrays and can be done efficiently. In the non-commutative
setting representations of terms have to include the sequence of the letters, hence
strings of variable length have to be stored. All operations now have to be performed
on strings and especially multiplication, which is performed by concatenating the two
terms and computing their normal form, can be costly depending on the presentation
of the monoid. Matching and unification in the case of prefix reduction involve find-
ing prefixes of strings, but will become more complicated when implementing other
reduction relations.

Another difference stems from the fact that the ordering on the monoid in general is
no longer compatible with multiplication. In the commutative case multiplication of
a polynomial with a term can be done by multiplying one monomial after the other
without changing the ordering of the monomials in the new polynomial. In the non-
commutative case this becomes more complicated: after multiplying each monomial
we have to combine those monomials which now have the same term and reorder all
occurring monomials in the new polynomial. This of course has influence on the imple-
mentation of the polynomial operations such as multiplication or reduction. Moreover,
as HT(f * w) # HT(f) o w is possible, polynomials have to be saturated (see Section
2.1) which adds additional complexity.

Since prefix matching of strings turned out to be the crucial operation when computing
prefix Grobner bases in monoid and group rings, special attention was paid to speeding
up this process. Some observations are given in the next section.

4.3 Data Structures for Prefix Reduction

The elements of the monoid are called strings, words or terms and can be seen as
sequences of characters. In order to reduce one term with another term it is necessary to
find matches. In other words: the normalization procedure for terms tries to determine
whether a left hand side of a rule of the monoid is a substring of the term to be
normalized. This is equivalent to the question whether a left hand side of a rule is a
prefix of any suffix of the term to be normalized. E.g. ba is prefix of a suffix of abab,
namely bab. Thus a rule with ba as its left hand side can be applied to reduce abab at
the starting position of its suffix bab. Reduction of polynomials as defined in Section
2 is based on prefix reduction of terms. So one important operation is to find all the
terms in a set of terms (e.g. the head terms of a set of polynomials) which are prefixes
of a given term (which can in fact be a suffix of another term). This is supported by
prefix trees. Prefix trees are trees in which common prefixes of the terms stored in the
tree are shared.

A prefix tree represents a set of keys (in this case terms) which are used to find the

27



contents associated to each key. The (key, content)-pairs can be, for example, (left hand
side of a rule r, rule r) or (head term of a polynomial p, polynomial p). Note, that the
head terms of two or more polynomials might be equal and thus there might be more
than one polynomial associated with the same key.

Two kinds of prefix trees are implemented: tries, a fairly standard data structure,
and ternary search trees, a recently rediscovered variation of tries (see [3]). Both are
described in the next subsections followed by a comparison between the two data
structures.

4.3.1 Trie

The following definition is based on the description in [9], see there for more details
and examples. Note that there are several slightly different definitions of tries in the
literature.

Let & be the number of characters of the underlying alphabet. A trie is a k-ary tree.
Each node of the tree consists of k& pointers to the subtrees at the next level, one for
each character, and one pointer to the content (which is empty if no key corresponding
to the current node exists). The content associated with a key is retrieved as follows:

e The first character of the key becomes the current character. The root node the
current node.

e The current character is used as index into the array of the current node and
the pointer to the subtree is followed. Note that it is usually assumed that this
index operation takes constant time. That node becomes the current node, the
next character becomes the current character.

e If no subtree exists, then the key is not stored in the tree.

e This is repeated until all characters of the key were found unless the key does
not exist.

e The content of the last node obtained is the content associated with the key. If
it is empty, then no such key is stored in the tree.

If a key has m characters the search path ends at level m of the tree. The keys are not
stored explicitly. The presence or absence of contents implies that a key ends or does
not end at this node, respectively.

An example is given in Figure 2 where the following set of polynomials S is stored:

Y ={a,b,cl,a>b>c,T ={bc— I}, S={a—c,aa—bb,ac—ba,b—c,cb—b,cc—a}.

4.3.2 Ternary Search Tree

Ternary search trees as implemented in MRC V 1.0 were presented in [3], see there
for more details and examples. In contrast to tries as described in the previous section
alphabets of variable length pose no problems.

28



alole] [} alole] [} lalolc] [} [alolc] ]

Figure 2: Example of a trie

The characters are ordered by a total ordering which has the properties as defined in
Section 2. A node of the ternary search tree consists of six elements: the character
represented by the node, a pointer to the subtree of characters which are smaller with
respect to the ordering, a pointer to the subtree of characters which are larger with
respect to the ordering, a pointer to the subtree for the next level, and a pointer to the
content. The character and the pointers to the subtrees of smaller and larger characters
form a binary search tree which replaces the array of the trie. In order to explain the
structure of a ternary search tree (tst) more clearly the insertion procedure is described:

e [f a term is to be inserted, its first character is taken as the current character and
the root node of the tst as the current node.

o If the current character is smaller than the character at the current node the
pointer to the subtree of the smaller characters is followed and that node becomes
the current node.

o If the current character is larger than the character at the current node the
pointer to the subtree of the larger characters is followed and that node becomes
the current node.

o If the respective node does not exist, it is created storing the current character
in the new node, and the new node becomes the current node.

e If the current character is equal to the character at the current node the pointer
to the subtree of the next level is followed. That node becomes the current node,
and the next character of the term becomes the current character.

29



o If no subtree node exists, it is created, storing the next character of the term in
the new node. The new node becomes the current node, the next character of the
term becomes the current character.

e This is repeated until all characters of the term were found or nodes for them

created.

e The last node is assigned the content (rule or polynomial) associated with the
term inserted.

Deletion and lookup of keys follow the same scheme.

An example is given in Figure 3 where the following set of polynomials S is stored (the
same as in Section 4.3.1): ¥ = {a,b,c},a > b > ¢,T = {bc = A}, S = {a — ¢,aa —
bb,ac — ba,b — ¢,cb — b, cc — a}. Note, that the actual structure of the ternary search
tree depends on the order in which its elements were inserted.

X X @K

/

o~

0]

EIelE

S

[a]

XX

X LI X KX

XX [

X X X [

aa- bb

o]

.

o~

X X X 4

Figure 3: Example of a ternary search tree

4.3.3 Comparison of Tries and Ternary Search Trees

Tries and ternary search trees are both suited as data structures for prefix trees.

The major advantage of tries is that insertion, lookup, and deletion of a term have
complexity O(m) where m is the length of the term while ternary search trees have

30



an average complexity for these operations of O(log(k) - m) where k is the number of
characters of the alphabet and m the length of the term.

The major disadvantage of tries is that for each node of the tree (except for the leaves)
memory for k& + 1 pointers has to be allocated where k is the size of the alphabet.
The latter also slows down the creation of nodes because each of the pointers has to
be initialized. Ternary search trees need to store only 4 pointers and the character in
each node. Both data structures need the same number of nodes storing the same set
of keys. Another disadvantage of tries is that changing the alphabet requires a total
reorganization of the trie structure.

Practical tests showed the following phenomenon. There is an example where no differ-
ence of the runtime was observed for the computation of the Grobner basis, but 16 %
less space was used using the ternary search tree compared to using the trie. Only for
cases of small alphabets or almost complete trees, where each sequence of characters
up to a certain length is stored tries might perform better than ternary search trees.

Besides these advantages both data structures do not allow storing the order in which
elements were inserted. For implementing a fair strategy for the computation of Grobner
bases additional data structures are used.

Enumerating all elements of the trie will in general be slower than enumerating all
elements of the ternary search tree (if the same keys are stored). This is due to the fact
that in general less pointers have to be considered for the ternary search tree compared
with the trie.

31



5 Enhancements

Having implemented procedures for treating right ideals of monoid rings using the
concept of prefix reduction several enhancements are possible now. On the one hand
monoid rings over reduction rings especially the integers can be implemented (see
[13]). On the other hand, procedures for other specialized reduction concepts like com-
mutative reduction (for commutative monoids) and quasi-commutative reduction (for
polycyclic groups) can be added to the system.

Further there is a potential for making enhancements concerning the time and space
consumption of the existing procedures. Therefore statistical information gained from
comparison runs is evaluated. The ternary search tree is one such enhancement already
realized. Other possibilities are the use of finite state automata for representing the set
of rules to speed up the pattern matching process needed for the computation of normal
forms. It is planned to integrate MRC into the system XSSR currently developed at the
Gesamthochschule Kassel and the University of Kaiserslautern in order to use the string
rewriting facilities to perform all operations involving the monoid (i.e. completion of the
presentation, computation of the multiplication, matching and unification of terms for
performing reduction and saturation). Moreover, as XSSR is intended to assist people
working in monoid and group theory, the specialized Grobner basis procedures are of
interest in this setting as well.

Another important task at hand is to determine the time and space complexity of
the procedures presented and their influence on enhancements of the implementation.
Right now this is done for the case of free monoid and free group rings.

32



References

[1]
[2]

[3]

[12]

[13]

[15]

LEDA: http://www.mpi-sb.mpg.de/leda/leda.html.

J. Apel and W. Lassner. An extension of Buchberger’s algorithm and calculations in
enveloping fields of Lie algebras. Journal of Symbolic Computation, 6:361-370, 1988.

J. Bently and R. Sedgewick. Fast algorithms for sorting and searching strings. In 8th
Annual ACM-STAM Symposium on Discrete Algorithms, 1997.

B. Buchberger. Fin Algorithmus zum Auffinden der Basiselemente des Restklassenrings
nach einem nulldimensionalen Polynomideal. PhD thesis, Universitit Innsbruck, 1965.

R. Cremanns and F. Otto. Constructing canonical presentations for subgroups of
context-free groups in polynomial time. In J. von zur Gathen and M. Giesbrecht, editors,

Proc. ISSAC’9), pages 147-153. ACM, 1994.

A. Kandri-Rody and V. Weispfenning. Non-commutative Grobner bases in algebras of
solvable type. Journal of Symbolic Computation, 9:1-26, 1990.

B. J. Keller. Alternatives in implementing noncommutative Grébner basis systems. In
Proceedings of the Workshop on Symbolic Rewriting Techniques, Monte Verita, 1995,
pages 127-180. Birkh&user, 1998.

W. Lassner. Symbol representations of noncommutative algebras. In FUROCAL’85,
LNCS 204, pages 99-115. Springer, 1985.

H. Lewis and L.. Denenberg. Data Structures & Their Algorithms. Harper Collins, 1991.

K. Madlener and B. Reinert. Computing Grébner bases in monoid and group rings. In
M. Bronstein, editor, Proc. ISSAC"93, pages 254-263. ACM, 1993.

K. Madlener and B. Reinert. A generalization of Grébner bases algorithms to nilpo-
tent group rings. Applicable Algebra in Engineering, Communication and Computing,

8(2):103-123, 1997.

K. Madlener and B. Reinert. A generalization of Grébner basis algorithms to polycyclic
group rings. Journal of Symbolic Computation, 25(1):23-45, 1998.

K. Madlener and B. Reinert. Grébner bases in non-commutative reduction rings. In
B. Buchberger and F. Winkler, editors, Grébner Bases and Applications (Proc. of the
Conference 33 Years of Grobner Bases), volume 251 of London Mathematical Society
Lecture Notes Series, pages 408-420. Cambridge University Press, 1998.

K. Madlener and B. Reinert. String rewriting and Grébner bases — a general approach
to monoid and group rings. In M. Bronstein, J. Grabmeier, and V. Weispfenning, ed-
itors, Proceedings of the Workshop on Symbolic Rewriting Techniques, Monte Verita,
1995, volume 15 of Progress in Computer Science and Applied Logic, pages 127-180.
Birkhiuser, 1998.

K. Madlener and B. Reinert. Relating rewriting techniques on monoids and rings: Con-
gruences on monoids and ideals in monoid rings. Theoretical Computer Science, to
appear.

33



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

F. Mora. Grobner bases for non-commutative polynomial rings. In Proc. AAECC-3,
LNCS 229, pages 353-362. Springer, 1985.

T. Mora. An introduction to commutative and non-commutative Grobner bases. Theo-
retical Computer Science, 134:131-173, 1994.

J. Nielsen. Om Regning med ikke kommutative Faktoren og dens Anvendelse i Gruppe-
teorien. Mat. Tidsskr. B., pages 77-94, 1921.

B. Reinert. On Grébner Bases in Monoid and Group Rings. PhD thesis, Universitit
Kaiserslautern, 1995.

B. Reinert, T. Mora, and K. Madlener. A note on Nielsen reduction and coset enumer-
ation. In Proc. ISSAC"98, 1998.

A. Rosenmann. An algorithm for constructing Grébner and free Schreier bases in free
group algebras. Journal of Symbolic Computation, 16:523-549, 1993.

C. Sims. The Knuth-Bendix procedure for strings as a substitute for coset enumertation.
Journal of Symbolic Computation, 12:439-442, 1991.

J. Todd and H. Coxeter. A practical method for enumerating cosets of a finite abstract
group. In Proc. Edinburgh Math. Soc., volume 5, pages 26-34, 1936.

34



A Proofs

The proofs are based on the results of Section 4.4 in [19]. They use the equivalence of
prefix Grobner bases and prefix standard bases.

Definition 8 Let F' be a sel of polynomials and p a non-zero polynomial in KIM]. A
representalion

p:Zai-fi*wi, with o; € K, fi € F,w; € M
=1

is called a prefix standard representation with respect to the set of polynomials
F, in case for all 1 < i < n we have HT(p) = HT(fi)w;. A set F C K[M)] is called
a prefix standard basis if every non-zero polynomial g € ideal (F) has a prefiz
standard representation with respect to F.

Note, that HT(p) = HT(f;)w; occurs for at least one polynomial in this representation.

Theorem 9 For a set F C K[M]|, the following statements are equivalent:
1. F is a prefix Grobner basis.

2. For all polynomials g € ideal (F) we have g —=.0.

3. F is a prefix standard basis.

Theorem 10 For a set F' of polynomials in K|IM|, equivalent are:

1. Every polynomials g € ideal (F') has a prefix standard representation.

2. (a) For all polynomials f € F and all elements w € M, the polynomial f * w
has a prefix standard representation.

(b) For all polynomials fy, fi € F the non-trivial prefix s-polynomials have prefix
standard representations.

Remark 11 For a set of polynomials G in K[M], if G’ = prefix.interreduce(G), then

1. The procedure prefix.interreduce always terminales.
2. ideal (G) = ideal .(G").

3. If a polynomial g has a prefix standard representation with respect to G it also
has one with respect to G'.

Remark 12 For GG C K[M], weakly.prefix.saturated_check(G) C ideal (&).

35



These results can be combined to prove Theorem 4 from Section 2:

Theorem 4: Let H be the sel generaled by procedure weakly.prefix.saturated_check. Then
H =0 if and only if G is weakly prefix saturated.

Proof: If H = () then we can use Theorem 10 to show that each g € G has a prefix
standard representation and thus (G is in fact a prefix Grobner basis by Theorem 9 and
hence weakly prefix saturated. As (G is a reduced set there are no prefix s-polynomials.
It remains to show that for each ¢ € G and w € M the multiple g * w has a prefix
standard representation. Notice that the test set S for G contains a polynomial A such
that g+ w—70, i.e. HT(g* w) = HT(h % u) = HT(h)u for some u € M. Moreover, as
H = () the polynomial A must have a prefix standard representation. But then so must
h * u, namely the one of A~ multiplied by u.

On the other hand, let G be weakly prefix saturated. Since G is also reduced every
normal form with respect to G is unique (no s-polynomials!). Hence every polynomial
in the test set must reduce to zero and H must be empty. q.e.d.

Let G; = prefix.interreduce((;_1 U H;_1) and H,; = weakly.prefix.saturated_check(;) be
the respective sets generated by procedure prefix.groebner_basis_of right_ideal 2 in the
i-th iteration step. Then the following Lemmata hold (compare [19] Lemmata 4.4.45

and 4.4.46):

Lemma 13 If f € G} for some k € N, then there exists a polynomial g € G such that
HT(g) is a prefix of HT(f).

Proof: In case our procedure terminates or f € G we are done at once. Hence, let us
assume there exists a polynomial f such that f € G} for some k& € N but no g € G
exists such that HT(g) is a prefix of HT(f). Further let f be a counter-example with
minimal head term. As f ¢ G there exists an index j > k such that f € G;_; but
I ¢ Gj.

f can only be eliminated during the step i; = prefix.interreduce(G;_; U H;_;). That
implies the existence of a polynomial ¢ € G such that HT(f) = HT(¢)w for some
w € M. w # X would imply the existence of a smaller counter-example, as then
HT(q) < HT(f) and each prefix of HT(q) is also a prefix of HT(f). That is why
HT(f) = HT(g) must hold. Without loss of generality ¢ is the only polynomial with
HT(f) = HT(q) which lies in the interreduced set and g = normal.form(f, G;\{q}). All

other polynomials must have head terms different from HT(g) as they would otherwise

be reducible.

As prefix reduction is Noetherian we can conclude that there must exist some n € N
such that f P g —=P ga... —P ., ¢; € Gi_144, HT(f) = HT(g;) for 1 <i < n and g,
is irreducible in all following steps. Thus, ¢, € G, HT(g,) = HT(f) is a contradiction
to our assumption. Notice that HT(f) > HT(g,) would give rise to a smaller counter-
example and hence is not possible. q.e.d.

Corollary 14 [f f € G;, f & Gy, then there is no g € Gy, k > i+ 1 such that HT(f)
is a prefir of HT(g).

36



Lemma 15 Let G be the set generated by procedure pre-
fix.groebner_basis_of right_ideal 2. Then if f € H, U Gy for some k € N, f has a

prefix standard representation.

Proof: This follows from the fact that every f € H; U (G} has a prefix standard
representation with respect to GGr4; and Lemma 13. q.e.d.

We can now proof the Theorems 5 and 6 from Section 2:

Theorem 5 Lel (G be the sel generated by procedure prefix.groebner basis_of right_ideal 2
on a finite input F C K[M]. Then G is a reduced prefix Grobner basis.

Proof: In case procedure prefix.groebner_basis_of right_ideal_2 terminates we have GG =
Gy for some k € N. Otherwise, we have G = Uizo mJZi Gj.

By construction no prefix s-polynomials exist for the polynomials in G. Hence, in order
to show that G is a Grobner basis, by Theorem 10 it remains to show that ¢ € G
implies that for all w € M the multiple g * w has a prefix standard representation with
respect to . This follows immediately as in the proof of Theorem 4. q.e.d.

Let G; = prefix.interreduce(G;_; U H,_;) and H,; = weakly.prefix.saturated_check((;).

Theorem 6 Let ' C K[M] be a finite set of polynomials. In case ideal .(F) has a
finite reduced prefix Grobner basis, the procedure prefix.groebner_basis_of right_ideal 2
terminates.

Proof: Because of Corollary 14 no cycles occur during the computation of . Further
the number of polynomials which have a prefix standard representation with respect
to (i1 1s greater than with respect to (; for all 7. Since reduced prefix Grobner
bases are unique up to multiplication with coefficients the existence of a finite one
implies that all are finite. As this applies to the one computed by procedure pre-
fix.groebner_basis_of right_ideal 2 the computation then must terminate. q.e.d.

37



B Classes

In this section the classes which form MRC V 1.0 are listed. The class name is given in
uppercase except for template classes where only the first character is uppercase and
the rest lowercase. The data are given in typewriter style, the methods in typewriter
slanted. This section together with the class diagrams 'mrc’, 'monoid’, 'polyset’, and
‘ideal’ (which are not reproduced here) is meant as additional documentation for the
source code and is incomprehensible otherwise.

First of all the prefix tree classes are described. The other classes are grouped in the
same way as the source code.

B.1 Prefix trees

Prefix trees and their implementation as tries or ternary search trees were already
described on an abstract level in Section 4.3. In these sections implementational details
and the required methods of classes used for the instantiation of these template classes
are described. Prefix trees will be abbreviated as PTREE. This name can be substituted
by either TRIE or TTREE as described below.

B.1.1 Trie

A node of the trie consists of four elements:

e The width (n) of the TRIE. It contains the number of indices (internal represen-

tation of a CHARACTER) used.
e An array of pointers to the successor elements. The length of this list is width.

e The content (C). This is a pointer to a structure which contains the elements
belonging to a key.

e The number of contents (number_of_contents) stored in the subtree rooted at this
node.

In Figure 4 the general structure of a trie is depicted. An example (with n and num-
ber_of_contents omitted) is depicted in Figure 2 (see Section 4.3.1).

B.1.2 Ternary Search Tree

A node of the ternary search tree consists of six elements:

o The key. This is the letter stored in this node.

e A pointer to the left.

38



n number_of_contents

1 2 3 4 5 n C
n number_of_contents n number_of_contents
1 21 3 4 5 n C 1 2| 3 4| 5 n C

Figure 4: General structure of a trie

e A pointer to the middle.

A pointer to the right.

The content (C). This is a pointer to a structure which contains the elements
belonging to a key.

The number of contents (number_of_contents) stored in the subtree rooted at this
node.

In Figure 5 the general structure of a ternary search tree is depicted. An example (with
number_of_contents omitted) is depicted in Figure 3 (see Section 4.3.2).

B.1.3 Prefix trees with unique keys

The template class PTREE_UNIQUE is used whenever only contents with unique keys
are to be stored. In this case two parameters have to be instantiated: the KEY, and
the CONTENT.

The class KEY has to provide the following methods:

e get_length(): return the length of the key

e [] — int: a function taking a position within the key as an argument and returning
an index

The class CONTENT is used as a container for the content associated with a key.

39



—

o]

number_of_contents

left

middle

right

An example for the use of this class is the class RULES_TRIE described in Section

B.2.8.

™~

key number_of_contents
left middle right C
key number_of_contents key number_of_contents
left ‘ ‘middle ‘ right‘ ‘ C left ‘ ‘middle ‘ right‘ ‘ C
Y
key number_of _contents
left middle right C

]

number_of_contents

left

middle right C

Figure 5: General structure of a ternary search tree

B.1.4 Prefix Trees with multiple keys

The template class PTREE is used whenever different contents with the same key are
to be stored. In this case three parameters have to be instantiated: the KEY, the

CONTENT_SET and the CONTENT_ELEMENT.

40




The class KEY is the same as for prefix trees with unique keys and the class CON-
TENT_ELEMENT is the same as the class CONTENT.

The class CONTENT_SET contains the different contents belonging to the same key. This
class is necessary to allow multiple contents belonging to one key. It has to provide the
following methods:

¢ add(CONTENT_ELEMENT ): adding one content

e remove() - CONTENT_ELEMENT: delete and return a content
e get() — CONTENT_ELEMENT: return a content

e a constructor which takes a content as parameter

e is_empty(): returns whether the content set is empty or not

An example for the use of this class is the class POLYSET_TRIE described in Section
B.9.5.

B.2 Monoid

These classes represent the monoid. They are depicted in the class diagram 'monoid’.
The two classes MONOID and TERM which form the link to the other classes of
MRcC V 1.0 are also depicted in the class diagram 'mrc’.

B.2.1 MONOID

This class is nothing else than a container for three other classes which form the
presentation of a monoid. The data can be accessed directly thus avoiding a duplication
of the methods and eliminating one indirection step. The only methods provided are a
constructor and a destructor, as well as methods to read a monoid presentation from
a file and to write it to a file.

The monoid consists of an ALPHABET, an ORDERing on the TERMs constructed
from the ALPHABET and a set of RULES. Each of these concepts is encapsulated

within a class.

B.2.2 CHARACTER

A character is given by its external representation and a weight required for the
completion orderings, e.g. KBO, or representing a precedence on the characters. For
performance reasons the weights are not used, but are stored with the orderings (see

B.2.5).

41



B.2.3 ALPHABET

The alphabet is given by a list of characters. It is used for transforming representations
from internal to external and vice versa. The position within this list is taken as the
internal representation of a character. Thus the internal representation is an integer
which can be matched to an external representation via an array-operation on the
list. The match of an external to an internal representation is done by searching the
list sequentially. This operation is not so important, because this transformation is
normally only done at the beginning, when the input files are read and the data they
contain is transformed into the internal data structures.

B.2.4 ORDER

The class ORDER is an abstract class which defines the common interface of all its sub-
classes. The task of an ordering is the comparison of two terms. The method compare
has a special form which is required by LEDA, as it is used in connection with LEDA
classes.

B.2.5 ORDER_LL

Up to now only one ordering is implemented namely the length-lexicographical order-
ing. For performance reasons, the weights of the characters are stored in this class which
makes the lookup more efficient than function calls fetching the values from the class
CHARACTER. It is obvious that this is not recommended in general. One advan-
tage in this setting is, that the presentation of a monoid is fixed during one application.
That is why the weights cannot change and therefore have not to be recomputed during
runtime.

B.2.6 RULESET

This class represents a set of rules. A hybrid data structure is used to speed up opera-
tions. Here, too it is advantageous that the structure does not change after being ini-
tialized. The data structure consists of the two structures list of elements (rule_list)
and prefix tree of elements (rule_set). The list of elements makes it possible to quickly
enumerate the whole set of rules. The prefix tree on the other hand speeds up normal-
ization (reduction of terms). The concept of prefix trees is explained in Section 4.3.

B.2.7 RULE

A RULE consists of two terms, the 1left hand side and the right hand side of the
rule.

42



B.2.8 RULESET Trie

This is an instantiation of the template class PTREE_UNIQUE with the parameters KEY
— TERM (left hand side of a rule) and CONTENT — RULE (the rule itself). It is
expected, that each key is unique for the set of rules. That is why an interreduced
string rewrite system is requested.

B.2.9 RULESET_ITERATOR

This class is used to iterate over all elements of the associated ruleset.

B.3 TERM

A term (or word) is represented internally by an array of int. Each element of the array
is an index which can be mapped to a CHARACTERS external representation using
the alphabet of the monoid. Further the length of the term is stored.

The multiplication of two terms is realized as the concatenation of the two terms
followed by computing the normal form with respect to the monoid presentation. Terms
are not normalized during other operations especially not while reading the input.

B.4 TERMSET

This class is used to hold a set of terms (termset). These are the terms which arise
from overlapping head terms of polynomials and left sides of rules. The data structure
used to store the set is a list.

B.5 TERMSET ITERATOR

This class is used to iterate over all terms of the associated set of terms.

B.6 COEFF

This class represents the coefficients of the polynomials taken from Q[M]. It is used
as an interface to the LEDA implementation of Q. Thus it would be easy to replace the
LEDA implementation by some other implementation of Q or any other field.

B.7 POLYNOM

Polynomials are represented as an ordered set of monomials with the TERM as key
and the COEFFicient as the information. The head monomial is the maximal element
of the set.

43



B.8 POLYNOM.ITERATOR

This class is used to iterate over all monomials of the associated polynomial. In addition,
the current monomial can be deleted.

B.9 Polyset

These classes are used to represent a set of polynomials. They are depicted in the class
diagram ’polyset’.

B.9.1 POLYSET

This class describes a set of polynomials. A hybrid data structure is used consisting
of a list of polynomials (polynom 1ist) and a prefix tree with the head terms as keys
and the polynomial itself as information (polynom_trie). The prefix tree is used for
efficient reduction whereas the list is necessary to allow a fair strategy when selecting
polynomials from the set. Both data structures are consistent (representing the same
set of polynomials) before and after any invocation of a public method.

In order to avoid duplicates a test is performed whether the polynomial which is in-
serted next can be reduced in one step to zero using a polynomial from the set. Those
polynomials which can be reduced are not inserted. Besides duplicates also special mul-
tiples of polynomials already in the set are not inserted which is consistent with the
theory.

B.9.2 POLYSET_CONTENT_SET

This class represents the set of all polynomials having the same head term. They are
stored in a list in the same order as in the list polynom 1ist in POLYSET.

B.9.3 POLYSET_CONTENT_SET_ITERATOR

This class is used to iterate over all polynomials of the associated
polyset_content_set.

B.9.4 POLYSET CONTENT_ELEMENT

This class represents one polynomial. In addition to a pointer to the polynomial, a
reference to the according element of the list polynom 1ist in the class POLYSET is
stored.

44



B.9.5 POLYSET _Trie

This is an instantiation of the template class TRIE or TTREE with the parame-
ters KEY — TERM, CONTENT_SET — POLYSET_CONTENT_SET and CoON-
TENT_ELEMENT — POLYSET_CONTENT_ELEMENT.

B.10 CP

This class is representing a critical situation leading to an spolynomial which is com-
puted and stored.

B.11 CP_SET

This class contains a list of critical pairs (see also B.10). Critical pairs are used in the
procedure prefix.groebner_basis_of_right_ideal_1 described in Section 2 (see also B.12.3).

B.12 Ideal

These classes provide the procedures for prefix saturation and the Grobner basis pro-
cedures as described in Section 2.1 and 2.2.

B.12.1 IDEAL

This class is the parent class of all other “IDEAL_" classes. It provides a procedure
used by the other classes for normal form computation.

B.12.2 POLYSAT

This class contains no data and only two methods for the saturation of a poly-
nomial and a set of polynomials. It is the parent class of all saturation classes
which can be used together with the generic classes IDEAL_GENERIC and
IDEAL_TWOSIDED_GENERIC described in Section B.12.3 and B.12.4 respec-

tively.

B.12.3 IDEAL_GENERIC

This class implements the procedures prefix.groebner basis of right_ideal 1 and pre-
fix.groebner_basis_of _right_ideal 2 presented in Section 2.1. The saturation procedure
associated can be the general one presented in Section 2.1 or one of the specialized
procedures for plain or context-free group presentations as described in Section 2.5
and Section 2.6 respectively. There are two variants of the first procedure available:
compute the Grobner basis only and compute the Grobner basis and interreduce it.

45



B.12.4 IDEAL_TWOSIDED _GENERIC

This class implements the procedure prefix.groebner basis of two sided_ideal pre-
sented in Section 2.1. The same saturation procedures can be associated as with

IDEAL_GENERIC in Section B.12.3 whose methods are used to compute the
Grobner bases of right ideals.

B.12.5 POLYSAT_ENUMERATE

This class implements the saturation procedures described in Section 2.2. It is initialized
with one polynomial of which the saturation set should be computed and stores the
already computed subset of the prefix-saturated set and the set of polynomials still to
be considered.

B.12.6 IDEAL_ENUMERATE

This class implements the Grobner basis enumeration procedure described in Section
2.2. Tt stores the information representing the Grobner basis which consists of the
subset of the Grobner basis of the ideal so far computed, the set of critical pairs (B)
still pending, and a list of saturators (polysat_1ist) which are not yet finished.

It provides two methods: one to enumerate the Grobner basis of a given set of poly-
nomials generating an ideal, and one to decide whether the polynomials of a given set
of polynomials lie in the ideal generated by a second set of polynomials. The latter is
only a semi-decision procedure in the following sense. All polynomials which lie in the
ideal will be identified as such as long as a fair strategy is used. Those not lying in the
ideal will only be identified as such if the procedure terminates, else it will run forever,
i.e. there will be no answer.

B.13 Group

These classes are used for monoids which in fact are groups. They are depicted in the
class diagram 'monoid’.

B.13.1 GROUP

This class is derived from the class MONOID. It redefines several methods in order
to allow additional operations on the alphabet and on the terms with respect to the
additional information a group provides, namely the existence and representation of
inverses.

46



B.13.2 ALPHABET_GROUP

This class is derived from the class ALPHABET. It has additional data, namely
for each character of the alphabet it stores the index of the inverse character. It is
supposed that each character of the alphabet has an inverse of length one that is an
inverse character. Additional methods provided allow the access to these data.

B.13.3 TERM_GROUP
This class is derived from the class TERM. It provides additional methods for handling

terms whose underlying monoid is a group, especially generation of the inverse term.

B.14 Fm

These classes provide the methods to compute prefix Grobner bases in the free monoid
ring as described in Section 2.3. No saturation is needed. The structure of the classes
is depicted in the class diagram ’ideal’.

B.14.1 IDEAL_FM

This class is derived from the class IDEAL and provides an implementation of the
procedure prefix.groebner_basis_of right_ideal fm.

B.14.2 IDEAL_TWOSIDED_FM

This class is derived from the class IDEAL_FM and provides an implementation of
the procedure prefix.groebner_ basis_of two_sided_ideal fm.

B.15 Fg

These classes provide the methods to compute prefix Grobner bases in the free group
ring as described in the Sections 2.4 and 2.7. The structure of the classes is depicted
in the class diagrams 'monoid’ and ’ideal’.

B.15.1 FG

This class is derived from the class GROUP and provides methods adapted to the free
group presentation. Especially the rules are generated and not read from input.

47



B.15.2 POLYSAT_FG

This class provides the simplified saturation procedure available for the case of free
group rings.

B.15.3 IDEAL_FG

This class is derived from the class IDEAL and provides an implementation of the
procedure prefix.groebner basis_of right_ideal fg.

B.15.4 IDEAL_TWOSIDED FG

This class is derived from the class IDEAL_FG and provides an implementation of
the procedure prefix.groebner basis_of two_sided_ideal fg.

B.15.5 TODD_COXETER

This class is derived from the class IDEAL_TWOSIDED_FG and provides an imple-
mentation of the procedure extended todd_coxeter simulation described in Section 2.7.

B.15.6 TERMSET _SORTED

This class provides a set of terms (termset) which is sorted and has no duplicates.

B.16 Plain group

These classes provide the methods to compute prefix Grobner bases in the plain group
ring as described in Section 2.5. The structure of the classes is depicted in the class dia-
grams ‘'monoid’ and ’ideal’. The class POLYSAT_PG is used as saturator for the pro-
cedures of the classes IDEAL_GENERIC and IDEAL_TWOSIDED_GENERIC
as described in the Sections B.12.3 and B.12.4 respectively.

B.16.1 PLAIN_GROUP

This class is derived from the class GROUP and provides the methods adapted to the
plain group presentation.

B.16.2 POLYSAT_PG

This class is derived from the class POLYSAT and provides specialized procedures
for the saturation of polynomials and sets of polynomials as described in Section 2.5.

48



B.17 Cf group

These classes provide the methods to compute prefix Grobner bases in the context-
free group ring as described in Section 2.6. The structure of the classes is de-
picted in the class diagrams ’monoid’ and ’ideal’. The class POLYSAT_CFG
is used as saturator for the procedures of the classes IDEAL_GENERIC and
IDEAL_TWOSIDED_GENERIC as described in the Sections B.12.3 and B.12.4

respectively.

B.17.1 CF_GROUP

This class is derived from the class MONOID and provides the methods adapted
to the context-free group presentation. The order of the characters is: characters of
the finite part of the presentation and then characters of the free group part of the
presentation. Thus it is sufficient to store the free group part in fg and the number
of finite elements in no_finite_elements. The alphabet contains no_finite elements
characters belonging to the finite group, the rest belongs to the free group. The free
group part is used for all computations concerning subterms belonging to the free group
part only.

B.17.2 POLYSAT_CFG

This class is derived from the class POLYSAT and provides specialized procedures
for the saturation of polynomials and sets of polynomials as described in Section 2.6.

49



List of Procedures

O 0 ~I O Ot =W N

I S e S = S S Sy SO Y
S Ot R W NN = O

Prefix saturation . . . . .. ... o o
Prefix Grobner basis computation for right ideals . . . . .. ... ...
Prefix interreduction . . . . . .. .. Lo oo
Checking for weakly prefix saturatedness . . . . . . .. ... ... ...
Interreduced prefix Grobner basis computation for right ideals . . . . .
Prefix Grobner basis computation for two-sided ideals . . . . . . .. ..
Initialization of the prefix saturation enumeration . . .. .. ... ...
Making one step of the prefix saturation enumeration . . . . . . .. ..
Enumeration of a prefix Grobner basis of a right ideal . . . . . . .. ..
Prefix saturation in free group rings . . . . . . . ... ... L.
Prefix Grobner basis computation for right ideals in free group rings . .
Preprocessing the set of polynomials . . . . . ... ... .. ... ...
Prefix Grobner basis computation for two-sided ideals in free group rings
Prefix saturation in plain group rings . . . . . . ... .. ... ...
Prefix saturation in context-free group rings . . . . . .. .. ... ...

Extended Todd-Coxeter simulation . . . . .. .. . .. ... .. ....

List of Figures

1
2
3
4
5

System structure . . . . . ...
Exampleof atrie . . . .. . . .. .. ... .. ..
Example of a ternary search tree . . . . . . ... .. ... ... ...
General structureof atrie . . . . . . .. ..o

General structure of a ternary search tree . . . . . . . .. .. ... ...

50

O O 0 =~ =1 O Oy Lt

e S S
W W NN = O



