Singular

A Computer Algebra System for Polynomial Computations

Manual

Version 1.2

Singular is created and its development is directed and coordinated by
G.-M. Greuel, G. Pfister, and H. Schoenemann

with contributions by
O. Bachmann, W. Decker, C. Gorzel, H. Grassmann, A. Heydtmann, K. Krueger, M. Lamm,
B. Martin, M. Messollen, W. Neumann, T. Nuessler, W. Pohl, T. Siebert, R. Stobbe, T. Wichmann

Fachbereich Mathematik
und
Zentrum fuer Computeralgebra

Universitaet Kaiserslautern
D-67653 Kaiserslautern

Chapter 1: Preface 1

1 Preface

SINGULAR version 1.2
University of Kaiserslautern
Department of Mathematics and Centre for Computer Algebra
Authors: G.-M. Greuel, G. Pfister, H. Schoenemann
Copyright © 1986-98; All Rights Reserved

NOTICE

Permission to use, copy, modify, and distribute this software or parts thereof and its documen-
tation or parts thereof for non-commercial purposes and without fee is hereby granted provided the
following four conditions are satisfied:

1. The above copyright notice appears in all copies of the software and both the copyright notice
and this permission notice appear in supporting documentation.

2. The name of the program ("SINGULAR") is retained.
3. Portions of the software which are modified are marked.

4. You have registered yourself as a Singular user by sending email to
singular@mathematik.uni-k1.de with the subject line (or, mail body) register.

Neither the University of Kaiserslautern nor the authors make any representations about the
suitability of this software for any purpose. This software is provided “as is” without express or
implied warranty.

If your intended use of SINGULAR is not covered by the license above, please contact us. Notice
that in the license above we have not granted permission to make copies of Singular to be sold,
distributed on media which are sold, or distributed along with software which is sold.

If you use Singular or parts thereof in a project and/or publish results that were partly ob-
tained using SINGULAR, we request that you cite SINGULAR (see http://www.mathematik.uni-
kl.de/"zca/Singular/how_to_cite.html on information on how to cite Singular) and inform us
about it.

Please send any comments or bug reports to singular@mathematik.uni-k1.de.

The following parts of SINGULAR have their own copyright: the Gnu Multiple Precision Library
(GMP), the Multi Protocol library (MP), the Readline library, the Factory library, and the libfac
library. Their copyrights and licences can be found in the accompanying files which are distributed
along with these libraries.

1.1 Availability

The latest information about SINGULAR is always available from http://www.mathematik.uni-
kl.de/"zca/Singular. The program SINGULAR and the above mentioned parts are available via
anonymous ftp through the following addresses:

Chapter 1: Preface 2

GMP © Free Software Foundation: 1ibgmp-2.0.2.tar.gz
ftp://ftp.gnu.ai.mit.edu or its mirrors

readline (©) Free Software Foundation: libreadline-2.0.tar.gz
ftp://ftp.gnu.ai.mit.edu or its mirrors

MP © Gray/Kajler/Wang, Kent State University: MP-1.1.2.tar.gz,
http://SymbolicNet.mcs.kent.edu/areas/protocols/mp.html

Factory © Greuel/Stobbe, University of Kaiserslautern: factory-1.3b.tar.gz
Contact factory@mathematik.uni-k1.de for details on Factory.

libfac (© Messollen, University of Saarbriicken: 1ibfac-0.3.0.tar.gz
Contact michael@math.uni-sb.de for details on libfac.

SINGULAR binaries
ftp://www.mathematik.uni-k1.de/pub/Math/Singular/ or via a WWW browser
from http://www.mathematik.uni-k1.de/ftp/pub/Math/Singular/

1.2 Acknowledgements

The development of SINGULAR is directed and coordinated by Gert-Martin Greuel, Gerhard
Pfister, and Hans Schénemann.

Contributions to the kernel of SINGULAR have been made by Olaf Bachmann, Hubert Grass-
mann, Kai Kriiger, Wolfgang Neumann, Thomas Niifller, Wilfred Pohl, Jens Schmidt, Thomas
Siebert, Riidiger Stobbe, and Tim Wichmann.

SINGULAR libraries have furthermore been contributed by Wolfram Decker, Christian Gorzel,
Agnes Eileen Heydtmann, Ulrich Klein, Martin Lamm, and Bernd Martin.

We should like to acknowledge the financial support given by the Volkswagen-Stiftung, the
Deutsche Forschungsgemeinschaft and the Stiftung fir Innovation des Landes Rheinland-Pfalz to
the SINGULAR project.

Chapter 2: Introduction 3

2 Introduction

2.1 Background

SINGULAR is a Computer Algebra system for polynomial computations with emphasis on the
special needs of commutative algebra, algebraic geometry, and singularity theory.

SINGULAR’s main computational objects are ideals and modules over a large variety of baser-
ings. The baserings are polynomial rings or localizations thereof over a field (e.g., finite fields, the
rationals, floats, algebraic extensions, transcendental extensions) or quotient rings with respect to
an ideal.

SINGULAR features one of the fastest and most general implementations of various algorithms for
computing Groebner resp. standard bases. The implementation includes Buchberger’s algorithm (if
the ordering is a wellordering) and Mora’s algorithm (if the ordering is a tangent cone ordering) as
special cases. Furthermore, it provides polynomial factorizations, resultant, characteristic set and
gcd computations, syzygy and free-resolution computations, and many more related functionalities.

Based on an easy-to-use interactive shell and a C-like programming language, SINGULAR's inter-
nal functionality is augmented and user-extendible by libraries written in the SINGULAR program-
ming language. A general and efficient implementation of communication links allows SINGULAR
to make its functionality available to other programs.

SINGULAR’s development started in 1984 with an implementation of Mora’s Tangent Cone algo-
rithms in Modula-2 on an Atari computer (K.P. Neuendorf, G. Pfister, H. Schénemann; Humboldt-
Universitat zu Berlin). The need for a new system arose from the investigation of mathematical
problems coming from singularity theory which none of the existing systems was able to compute.

In the early 1990s SINGULAR’s "home-town" moved to Kaiserslautern, a general standard basis
algorithm was implemented in C and SINGULAR was ported to Unix, MS-DOS, Windows NT, and
MacOS.

Continuous extensions (like polynomial factorization, gcd computations, links) and refinements
led in 1997 to the release of SINGULAR version 1.0.

The highlights of the new SINGULAR version 1.2. include: much faster standard and Groebner
bases computations based on Hilbert series and on improved implementations of the algorithms
and the addition of libraries for primary decomposition, ring normalization, etc.

2.2 How to use this manual

For the impatient user

In Section 2.3 [Getting started], page 5, some simple examples are explained in a step-by-step
manner to introduce into SINGULAR.

Chapter 2: Introduction 4

Appendix A [Examples], page 196 should come next for real learning-by-doing or to quickly
solve some given mathematical problems without dwelling to deeply into SINGULAR. This chapter
contains a lot of real-life examples and detailed instructions and explanations on how to solve
mathematical problems using SINGULAR.

For the systematic user

In Chapter 3 [General concepts|, page 16, all basic concepts which are important to use and
understand SINGULAR are developed. But even for users preferring the systematic approach it will
be helpful to have a look at the examples in Section 2.3 [Getting started], page 5, every now and
then. The topics in the chapter are organized more or less in the order the novice user has to deal
with them.

e In Section 3.1 [Interactive use|, page 16, and its subsections there are some words on entering
and exiting SINGULAR, followed by a number of other aspects concerning the interactive user-
interface.

e To do anything more than trivial integer computations, one needs to define a basering in
SINGULAR. This is explained in detail in Section 3.2 [Rings and orderings], page 20.

e An overview of the algorithms implemented in the kernel of SINGULAR is given in Section 3.3
[Implemented algorithms], page 25.

e In Section 3.4 [The SINGULAR language], page 29, language specific concepts are introduced
such as the notions of names and objects, data types and conversion between them, etc.

e In Section 3.5 [Input and output], page 36, SINGULAR’s mechanisms to store and retrieve data
are discussed.

e The more complex concepts of procedures and libraries as well as tools to debug them are
considered in the following sections: Section 3.6 [Procedures|, page 40, Section 3.7 [Libraries],
page 44, and Section 3.8 [Debugging tools|, page 46.

Chapter 4 [Data types], page 49, is a complete treatment for SINGULAR’s data types where each
section corresponds to one data type, alphabetically sorted. For each data type, its purpose is
explained, the syntax of its declaration is given, and related operations and functions are listed.
Examples illustrate its usage.

Chapter 5 [Functions and system variables|, page 102, is an alphabetically ordered reference
list of all of SINGULAR’s functions, control structures, and system variables. Each entry includes a
description of the syntax and semantics of the item being explained as well as one or more examples
on how to use it.

Miscellaneous

Chapter 6 [Tricks and pitfalls], page 190, is a loose collection of limitations and features which
may be unexpected by those who expect to be the SINGULAR language an exact copy of the C
programming language or of some Computer Algebra system languages. But some mathematical
tips are collected there ase well.

Appendix C [Mathematical background], page 246 introduces some of the mathematical notions
and definitions used throughout this manual. For example, if in doubt what exactly SINGULAR
means by a “negative degree reverse lexicographical ordering” one should refer to this chapter.

Chapter 2: Introduction 5

Appendix D [SINGULAR libraries], page 250, and Appendix E [Library function index], page 259
lists the libraries which come with SINGULAR and the functions contained in them, resp.

Typographical conventions
Throughout this manual, the following typographical conventions are adopted:

e text in typewriter denotes SINGULAR input and output as well as reserved names:
The basering can be set using the command setring.
e the arrow — denotes SINGULAR output:
poly p=x+y+z;
P*p;
— x2+2xy+y2+2xz+2yz+z2
e square brackets are used to denote parts of syntax descriptions which are optional:

[optional text] required_text
e keys are denoted using typewriter, for example:
N (press the key N to get to the next node in help mode)
RETURN (press RETURN to finish an input line)
CTRL-P (press control key together with the key P to get the previous input line)

2.3 Getting started

SINGULAR is a special purpose system for polynomial computations. Hence, the most powerful
computations in SINGULAR. require the prior definition of a ring. Most important rings are polyno-
mial rings over a field, localizations hereof, or quotient rings of such rings modulo an ideal. However,
some simple computations with integers (machine integers of limited size) and manipulations of
strings are available without a ring.

2.3.1 First steps

Once SINGULAR is started, it awaits an input after the prompt >. Every statement has to be
terminated by ; .

37+5;
— 42

All objects have a type, e.g., integer variables are defined by the word int. An assignment is
done by the symbol = .

int k = 2;

Test for equality resp. inequality is done using == resp. != (or <>), where 0 represents the boolean
value FALSE, any other value represents TRUE.

Chapter 2: Introduction 6

IR
o~ i
N N

The value of an object is displayed by simply typing its name.

k;
— 2

On the other hand the output is suppressed if an assignment is made.

int j;
j = k+i;

The last displayed (!) result is always available with the special symbol _ .

2%_; // the value from k displayed above
— 4

Text starting with // denotes a comment and is ignored in calculations, as seen in the previous
example. Furthermore SINGULAR maintains a history of the previous lines of input, which may be
accessed by CTRL-P (previous) and CTRL-N (next) or the arrows on the keyboard. Note, that the
history is not available on Macintosh systems.

The whole manual is available online by typing the command help; . Explanation on single
topics, e.g., on intmat, which defines a matrix of integers, are obtained by

help intmat;
This shows the text of Section 4.4 [intmat], page 60, in the printed manual.

Next, we define a 3 X 3 matrix of integers and initialize it with some values, row by row from
left to right:

intmat m[3]([3] = 1,2,3,4,5,6,7,8,9;
A single matrix entry may be selected and changed using square brackets [and].

m[1,2]=0;

1118
N e
© oo
co:cnoo

To calculate the trace of this matrix, we use a for loop. The curly brackets ({ and }) denote
the beginning resp. end of a block. If you define a variable without giving an initial value, as the
variable tr in the example below, SINGULAR assigns a default value for the specific type. In this

Chapter 2: Introduction 7

case, the default value for integers is 0. Note, that the integer variable j has already been defined
above.

int tr;

for (j=1; j <= 3; j++) { tr=tr + m[j,jl; }
tr;

— 15

Variables of type string can also be defined and used without a ring being active. Strings are
delimited by " (double quotes). They may be used to comment the output of a computation or
to give it a nice format. If a string contains valid SINGULAR commands, it can be executed using
the function execute. The result is the same as if the commands would have been written on the
command line. This feature is especially useful to define new rings inside procedures.

"example for strings:";

— example for strings:

string s="The element of m ";

s = s + "at position [2,3] is:"; // concatenation of strings by +
s , m[2,3] , ".";

~ The element of m at position [3,2] is: 6 .
s="m[2,1]=0; m;";

execute(s);

~ 1,0,3,

~ 0,5,6,

= 7,8,9

This example shows that expressions can be separated by , (comma) giving a list of expressions.
SINGULAR. evaluates each expression in this list and prints all results separated by spaces.

2.3.2 Rings and standard bases

To calculate with objects as ideals, matrices, modules, and polynomial vectors, a ring has to be
defined first.

ring r = 0,(x,y,z),dp;

The definition of a ring consists of three parts: the first part determines the ground field, the
second part determines the names of the ring variables, and the third part determines the monomial
ordering to be used. So the example above declares a polynomial ring called r with a ground field
of characteristic 0 (i.e., the rational numbers) and ring variables called x, y, and z. The dp at the
end means that the degree reverse lexicographical ordering should be used.

Other ring declarations:

ring r1=32003, (x,y,2z) ,dp;
characteristic 32003, variables x, y, and z and ordering dp.

ring r2=32003, (a,b,c,d) ,1p;
characteristic 32003, variable names a, b, ¢, d and lexicographical ordering.

Chapter 2: Introduction 8

ring r3=7,(x(1..10)) ,ds;
characteristic 7, variable names x(1),...,x(10), negative degree revers lexicographical
ordering (ds).

ring r4=(0,a), (mu,nu) ,1p;
transcendental extension of () by a, variable names mu and nu.

Typing the name of a ring prints its definition. The example below shows, that the default ring
in SINGULAR is Z/32003[z,y, z] with degree reverse lexicographical ordering:

ring r5;

r5;

— // characteristic : 32003

— // number of vars : 3

= // block 1 : ordering dp
= // : names Xy z
= // block 2 : ordering C

Defining a ring makes this ring the current active basering, so each ring definition above switches
to a new basering. The concept of rings in SINGULAR is discussed in detail in Section 3.2 [Rings
and orderings], page 20.

The basering now is r5. Since we want to calcualate in the ring r, which we defined first, we
have to switch back to it. This can be done using the function setring:

setring r;

Once a ring is active, we can define polynomials. A monomial, say > may be entered in two
ways: either using the power operator ~, saying x"3, or in short-hand notation without operator,
saying x3. Note, that the short-hand notation is forbidden if the name of the ring variable consists
of more than one character. Note, that SINGULAR always expands brackets and automatically sorts
the terms with respect to the monomial ordering of the basering.

poly f = x3+y3+(x-y)*x2y2+z22;
f;
— x3y2-x2y3+x3+y3+z2

The command size determines in general the number of ”single entries“ in an object. In
particular, for polynomials, size determines the number of monomials.

size(f);
— b

A natural question is to ask if a point e.g. (x,y,z)=(1,2,0) lies on the variety defined by the
polynomials £ and g. For this we define an ideal generated by both polynomials, substitute the
coordinates of the point for the ring variables, and check if the result is zero:

poly g = £°2 *(2x-y);
ideal I = f,g;
ideal J= subst(I,var(1),1);

Chapter 2: Introduction 9

J = subst(J,var(2),2);
J = subst(J,var(3),0);
J

Since the result is not zero, the point (1,2,0) does not lye on the variety V(f,g).

Another question is to decide whether some function vanishes on a variety, or in algebraic terms
if a polynomial is contained in a given ideal. For this we calculate a standard basis using the
command groebner and afterwards reduce the polynomial with respect to this standard basis.

ideal sI = groebner(f);
reduce(g,sI);
— 0

As the result is 0 the polynomial g belongs to the ideal defined by f.

The function groebner, like many other functions in SINGULAR, prints a protocol during cal-
culation, if desired. The command option(prot) ; enables protocoling whereas option(noprot) ;
turns it off. Section 5.1.78 [option], page 150, explains the meaning of the different symbols printed
during calculation.

The command kbase calculates a basis of the polynomial ring modulo an ideal, if the quotient
ring is finite dimensional. As an example we calculate the Milnor number of a hypersurface sin-
gularity in the global and local case. This is the vector space dimension of the polynomial ring
modulo the Jacobian ideal in the global case resp. of the power series ring modulo the Jacobian
ideal in the local case. See Section A.3 [Critical points|, page 199, for a detailed explanation.

The Jacobian ideal is obtained with the command jacob.

ideal J = jacob(f);

— // ** redefining J *x
J3

— J[1]=3x2y2-2xy3+3x2
— J[2]=2x3y-3x2y2+3y2
= J[3]=2z

SINGULAR prints the line // ** redefining J **. This indicates that we have previously defined
a variable with name J of type ideal (see above).

To obtain a representing set of the quotient vectorspace we first calculate a standard basis, then
we apply the function kbase to this standard basis.

J = groebner (J);
ideal K = kbase(J);
K;

— K[1]=y4

— K[2]=xy3

— K[3]=y3

Chapter 2: Introduction 10

K[4]=xy2
K[5]=y2
K[6]=x2y
K[7]=xy
K[8]=y
K[9]=x3
K[10]=x2
K[11]=x
K[12]=1

111111111

Then

size(K);
— 12

gives the desired vector space dimension K|z,y, z]/jacob(f). As in SINGULAR the functions may
take the input directly from earlier calculations, the whole sequence of commands may be written
in one single statement.

size (kbase (groebner (jacob(£))));
— 12

When we are not interested in a basis of the quotient vector space, but only in the resulting
dimension we may even use the command vdim and write:

vdim(groebner (jacob(£)));
— 12

2.3.3 Procedures and libraries

SINGULAR offers a comfortable programming language, with a syntax close to C. So it is possible
to define procedures which collect several commands to a new one. Procedures are defined with
the keyword proc followed by a name and an optional parameter list with specified types. Finally,
a procedure may return values using the command return.

Define the following procedure called Milnor:

proc Milnor(poly h)
{

return(vdim(groebner (jacob(h))));
}

Note: if you have entered the first line of the procedure and pressed RETURN, SINGULAR prints
the prompt . (dot) instead of the usual prompt > . This shows, that the input is incomplete and
SINGULAR, expects more lines. After typing the closing curly bracket, SINGULAR prints the usual
prompt indicating that the input is now complete.

Then call the procedure:

Chapter 2: Introduction 11

Milnor (f);
— 12

Note, that the result may depend on the basering as we will see in the next chapter.

The distribution of SINGULAR contains several libraries, each of which is a collection of useful
procedures based on the kernel commands, which extend the functionality of SINGULAR. The
command help "all.lib"; lists all libraries together with a one-line explanation.

One of these libraries is sing.1ib which already contains a procedure called milnor to calcu-
late the Milnor number not only for hypersurfaces but more generally for complete intersection
singularities.

Libraries are loaded with the command LIB. Some additional information during the process of
loading is displayed on the screen, which we omit here.

LIB "sing.1lib";

As all input in SINGULAR is case sensitive, there is no conflict with the previously defined
procedure Milnor, but the result is the same.

milnor (f);
— 12

The procedures in a library have a help part which is displayed by typing
help milnor;
as well as some examples, which are executed by
example milnor;

Likewise, the library itself has a help part, to show a list of all the functions available for the user
which are contained in the library.

help sing.lib;

The output of the help commands is omitted here.

2.3.4 Change of rings

To calculate the local Milnor number we have to do the calculation with the same commands
in a ring with local ordering. Define the localization of the polynomial ring at the origin (see
Appendix B [Polynomial data], page 239 and Appendix C [Mathematical background], page 246).

ring rl = 0,(x,y,2z),ds;

Chapter 2: Introduction 12

This ordering determines the standard basis which will be calculated. Fetch the polynomial
defined in the ring r into this new ring, thus avoiding retyping the input.

poly f = fetch(r,f);
f;
— z2+x3+y3+x3y2-x2y3

Instead of fetch we can use the function imap which is more general but less efficient. The
most general way to fetch data from one ring to another is to use maps, this will be explained in
Section 4.8 [map|, page 78.

In this ring the terms are ordered by increasing exponents. The local Milnor number is now

Milnor (f);
— 4

This shows that f has outside the origin in affine 3-space singularities with local Milnor number
adding up to 12 — 4 = 8. Using global and local orderings as above is a convenient way to check
whether a variety has singularities outside the origin.

The command jacob applied twice gives the Hessian of £, a 3 X 3-matrix.

matrix H = jacob(jacob(f));
H;

— H[1,1]=6x+6xy2-2y3
— H[1,2]=6x2y-6xy2
— H[1,3]=0

— H[2,1]=6x2y-6xy2
— H[2,2]=6y+2x3-6x2y
— H[2,3]=0

— H[3,1]=0

— H[3,2]=0

— H[3,3]=2

The print command displays the matrix in a nicer form.

print (H) ;

— 6x+6xy2-2y3,6x2y-6xy2, O,
— 6x2y-6xy2, 6y+2x3-6x2y,0,
— 0, 0, 2

We may calculate the determinant and minors of different size.

det (H) ;

— 72xy+24x4-72x3y+72xy3-24y4-48x4y2+64x3y3-48x2y4
minor(H,1); // the 1x1 - minors

= _[1]=2

= _[2]=6y+2x3-6x2y

— _[3]=6x2y-6xy2

— _[4]=6x2y-6xy2

Chapter 2: Introduction 13

— _[5]=6x+6xy2-2y3

The variety defined by the 1 x 1-minors is empty. The algorithm of the standard basis computa-
tions may be affected by the command option. For instance, a reduced standard basis is obtained
in the following way

option(redSB) ;
groebner (minor (H,1));
— _[1]=1

This shows that 1 is contained in the ideal of the 1 x 1-minors, hence the variety is empty.

2.3.5 Modules and their annihilator

Now we shall give now three more advanced examples.

SINGULAR is able to handle modules over all the rings, which can be defined as a basering. A
free module of rank n is defined as follows:

ring rr;

int n = 4;
freemodule (4) ;

— _[1]=gen(1)

— _[2]=gen(2)

= _[3]=gen(3)

— _[4]=gen(4)
typeof (L) ;

— module
print (freemodule(4)) ;
1,0,0,0,

,1,0,0,
,0,1,0,
0,0,1

b

1111
o O O

b b

To define a module, we give a list of vectors generating a submodule of a free module. Then
this set of vectors may be identified with the columns of a matrix. For that reason in SINGULAR
matrices and modules may be interchanged. However, the representation is different (modules may
be considered as sparse represented matrices).

ring r =0,(x,y,z),dp;

module MD = [x,0,x],[y,z,-yl;
matrix MM = MD;

print (MM) ;

= X,¥,

— 0,z,

= X,y

Chapter 2: Introduction 14

However the submodule M D may also be considered as the module of relations of the factor
module 7°/M D. In this way, SINGULAR can treat arbitrary finitely generated modules over the
basering (see Section B.1 [Representation of mathematical objects], page 239).

In order to get the module of relations of M D, we use the command syz.

syz (MD) ;
= _[1]=x*gen(2)+y*gen(1)

We want to calculate, as an application, the annihilator of a given module. Let M = r3/U,
where U is our defining module of relations for the module M.

module U = [z3,xy2,x3], [yz2,1,xy5z+z3], [y22,0,x3], [xyz+x2,y2,0], [xyz,x2y,1];

Then, by definition, the annihilator of M is the ideal ann(M) = {a | aM = 0} which is by the
description of M the same as {a | ar® € U}. Hence we have to calculate the quotient {a | a € U:7%}.
The rank of the free module is determined by the choice of U and is the number of rows of the
corresponding matrix. This may be determined by the function nrows. All we have to do now is
the following:

quotient (U,freemodule (nrows(U)));

The result is too big to be shown here.

2.3.6 Resolution

There are several commands in SINGULAR for computing free resolutions. The command
mres(... ,n), for example, calculates a minimal free resolution with the standard basis method
up to the length n, where n = 0 corresponds to the full resolution.

Here we use the possibility to inspect the calculation process using the option prot.

ring rr; // the default ring in char 32003

rr;

— // characteristic : 32003

~ // number of vars : 3

= // block 1 : ordering dp

= // : names Xy z

= // block 2 : ordering C

ideal I = x4+x3y+x2yz,x2y2+xy2z+y2z2,x222+2xz3,2x222+xy22;
option(prot) ;

resolution rs = mres(I,0);
v4(3)s-s.5.85(3)s6-5.5-57(2)s-s-8
product criterion:0 chain criterion:8
(6)(5).(4).(3)..(2)..(1).[1]

(7)Y (6)(5)(4).(3)(2).(1) [2]

// rest of protocol omitted here

111113

Disable this protocol with

Chapter 2: Introduction 15

option(noprot) ;

When we enter the name of the calculated resolution, we get a pictorial description of the
resolution where the exponents denote the rank of the free modules.

rs;
— 1 4 5 2 0
= rr <——1rr <—7T1r <—-7T1r <--IT
—

— 0 1 2 3 4
print (betti(rs),"betti");

— 0 1 2 3

’_> ______________________________

— 0: 1 0 0 0

— 1: 0 0 0 0

— 2: 0 0 0 0

— 3: 0 4 1 0

— 4: 0 0 1 0

— 5: 0 0 3 2

|_> ______________________________

+ total: 1 4 5 2

A single module in this resolution is obtained as usual with the brackets [and].

print (rs[3]1);

— y2z, y3,

= -y2, -y2,

= xty-z,x+y-z,
— -2z, x-yt+4z,
= -z, -y+3z

Chapter 3: General concepts 16

3 General concepts

3.1 Interactive use

In this section, all aspects of interactive use are discussed. This includes how to enter and exit
SINGULAR, how to interpret its prompt, how to get the online help, and so on.

There are a few important notes which one should not forget:
e every command has to be terminated by a ; (semicolon) followed by a RETURN
e the online help is accessible by means of the help function
3.1.1 How to enter and exit

To start SINGULAR, enter Singular at the system prompt. The SINGULAR banner appears
which, among others, reports the version and the compilation date.

To exit SINGULAR type quit;, exit; or $.

SINGULAR may also be started with command line options and with filenames as arguments.
More generally, the synopsis of SINGULAR is

Singular [options] [filel [file2 ...]]

See Section 3.1.6 [Command line options], page 18, Section 3.1.7 [Startup sequence], page 20.

3.1.2 The SINGULAR prompt

The SINGULAR prompt > (larger than) asks the user for input of commands. The “continuation”
prompt . (period) asks the user for input of missing parts of a command (remember the semicolon
at the end of every command).

SINGULAR does not interpret the semicolon as the end of a command if it occurs inside a string.
Also, SINGULAR waits for blocks (sequences of commands enclosed in curly brackets) to be closed
before prompting with > for more commands. Thus, if SINGULAR does not respond with its regular
prompt after typing a semicolon it may wait for a " or a } first.

Additional semicolons will not harm SINGULAR since they are interpreted as empty statements.

3.1.3 The online help system

The online help system is invoked with the help command. ? may be used as a synonym for
help. Simply typing help; displays the “top” of the help system which offers a short table of
content. Typing help topic; shows the available documentation on topic. Here, topic may be

Chapter 3: General concepts 17

either a function name or, more generally, the name of any section of the printed manual. See
Section 5.1.38 [help], page 125, for more information.

On Unix-like operating systems, the online help system is based on the info program from the
Gnu texinfo package. See section “Getting started” in The Info Manual, for more information.
On the other systems the online help system is not interactively as described in the remainder of
this section. Instead, after displaying the information SINGULAR immediately returns to the input
prompt.

The online manual is decomposed into “nodes” of information, closely related to the division of
the printed manual into sections and subsections. A node contains text describing a specific topic
at a specific level of detail. The top line of a node is its “header”. The node’s header tells the name
of the current node (Node:), the name of the next node (Next:), the name of the previous node
(Prev:), and the name of the upper node (Up:).

To move within info, type commands consisting of single characters. Do not type RETURN. Do
not use cursor keys, either. Using some of the cursor keys by accident might pop to some totally
different node. Type 1 to return to the original node. Some of the info commands read input
from the command line at the bottom line. The TAB key may be used to complete partially entered
input.

The most important commands are:

leaves the online help system

goes to the next node

goes to the previous node

goes to the upper node

picks a menu item specified by name
follows a cross reference

goes to the previously visited node

goes to the beginning of the current node

® o H H B g OB B Q

goes to the end of the current node

SPACE scrolls forward a page

DEL scrolls backward a page

h invokes info tutorial (use 1 to return to the manual or CTRL-X 0 to remove extra window)

CTRL-H shows a short overview on the online help system (use 1 to return to the manual or
CTRL-X O to remove extra window)

s searches through the manual for a specified string, and select the node in which the
next occurrence is found

1,...,9 picks i-th subtopic from a menu

3.1.4 Interrupting SINGULAR

On Unix-like operating systems and on Windows NT, typing CTRL-C interrupts SINGULAR.
SINGULAR, prints the current command and the current line and prompts for further action. The
following choices are available:

Chapter 3: General concepts 18

a returns to the top level after finishing the current command
c continues
q quits SINGULAR

3.1.5 Editing input

This section describes only a subset of the key bindings of SINGULAR binaries built with the GNU
Readline library. See section “Command Line Editing” in The GNU Readline Library Manual, for
more information.

The following keys can be used for editing the input and retrieving previous input lines:

TAB provides command line completion for function names and file names
CTRL-B moves cursor left

CTRL-F moves cursor right

CTRL-A moves cursor to beginning of line

CTRL-E moves cursor to end of line

CTRL-D deletes character under cursor

Warning: on an empty line, CTRL-D is interpreted as the EQF character which immedi-
ately terminates SINGULAR.

BACKSPACE

DELETE

CTRL-H deletes character before cursor
CTRL-K kills from cursor to end of line

CTRL-U kills from cursor to beginning of line
CTRL-N saves current line on history and get next line
CTRL-P saves current line on history and get previous line

RETURN saves the current line to the history and sends it to the SINGULAR parser for interpre-
tation

On Unix-like operating systems, SINGULAR maintains a history of the last lines of input. If the
environment variable SINGULARHIST is set and has a name of a file as value, then the input history
is stored across sessions using this file. Otherwise, i.e., if the environment variable SINGULARHIST
is not set, then the history of the last inputs is only available for the commands of the current
session.

3.1.6 Command line options
The synopsis of SINGULAR is
Singular [options] [filel [file2 ...]]

Options can be given in both, their long and short format. The following options control the
general behavior of SINGULAR:

Chapter 3: General concepts 19

-e, ——echo [=VAL]
Set value of variable echo to VAL (integer in the range 0, ..., 9). Without an argument,
echo is set to 1, which echoes all input coming from a file. By default, the value of
echo is 0. See Section 5.3.2 [echo], page 185.

-h, -—help
Print a one-line description of each command line option and exit.

--no-rc Do not execute the .singularrc file on start-up. By default, this file is executed on
start-up. See Section 3.1.7 [Startup sequence], page 20.

--no-stdlib
Do not load the library standard.lib on start-up. By default, this library is loaded
on start-up. See Section 3.1.7 [Startup sequence], page 20.

--no-warn
Do not display warning messages.

--no-out Suppress display of all ouput.

-t, ——no-tty
Do not redefine the terminal characteristics. This option should be used for batch
processes.

-q, ——quiet

Do not print the start-up banner and messages when loading libraries. Furthermore,
redirect stderr (all error messages) to stdout (normal output channel). This option
should be used if SINGULAR’s output is redirected to a file.

-v, ——verbose
Print extended information about the version and configuration of SINGULAR (used
optional parts, compilation date, start of random generator etc.). This information
should be included if a user reports an error to the authors.

The following command line options allow manipulations of the timer and the pseudo random
generator and enables passing of commands and strings to SINGULAR:

-c, ——execute=STRING
Execute STRING as (a sequence of) SINGULAR commands on start-up after the
.singularrc file is executed, but prior to executing the files given on the command line.
E.g., Singular -c "help all.lib; quit;" shows the help for the library all.1ib and
exits.

-u, ——user-option=STRING
Returns STRING on system("--user-option"). This is useful for passing arbitrary
arguments from the command line to the SINGULAR interpreter. E.g., Singular -
u "xxx.dump" -c ’getdump(system("--user-option"))’ reads the file xxx.dump at
startup and allows the user to start working with all the objects defined in a previous
session.

-r, ——random=SEED
Seed (i.e., set the initial value of) the pseudo random generator with integer SEED. If
this option is not given, then the random generated is seeded with a time-based SEED
(e.g., the number of seconds since January, 1, 1970, on Unix-like operating systems).

--min-time=SECS
If the timer (resp. rtimer) variable is set, report only times larger than SECS seconds
(SECS needs to be a floating point number greater than 0). By default, this value is
set to 0.5 (i.e., half a second). E.g., the option —-min-time=0.01 forces SINGULAR to
report all times larger than 1/100 of a second.

Chapter 3: General concepts 20

—-—ticks-per—-sec=TICKS
Set unit of timer to TICKS ticks per second (i.e., the value reported by the timer and
rtimer variable divided by TICKS gives the time in seconds). By default, this value is
1.

The last three options are of interest for the use with MP links:

-b, ——-batch
Run in MP batch mode. Opens a TCP/IP connection with host specified by --MPhost
at the port specified by --MPport. Input is read from and output is written to this
connection in the MP format. See Section 4.6.5.2 [MPtcp links], page 70.

--MPport=PORT
Use PORT as default port number for MP connections (whenever not further specified).
This option is mandatory when the —-batch option is given. See Section 4.6.5.2 [MPtcp
links], page 70.

--MPhost=HOST
Use HOST as default host for MP connections (whenever not further specified). This
option is mandatory when the —-batch option is given. See Section 4.6.5.2 [MPtcp
links], page 70.

The value of options given to SINGULAR. (resp. their default values, if an option was not given),
can be checked with the command system(" long option_name_string "). See Section 5.1.110
[system], page 172.

system("--quiet") ; // if ‘‘quiet’’ 1, otherwise 0
= 1

system("--min-time"); // minimal reported time

— 0.5

3.1.7 Startup sequence
On start-up, SINGULAR
1. loads the library standard.1lib (provided the --no-stdlib option was not given),

2. searches the current directory and then the home directory of the user for a file named
.singularrc and executes it, if found (provided the --no-rc option was not given),

3. executes the string specified with the ——execute command line option,
4. executes the files filel, file2 ... (given on the command line) in that order.

See Section 5.1.55 [LIB], page 136 for the directories on where SINGULAR searches for its library
files.

3.2 Rings and orderings

All non-trivial algorithms in SINGULAR, require the prior definition of a ring. Such a ring can be

Chapter 3: General concepts 21

a polynomial ring over a field,
a localization of a polynomial ring,
a quotient ring by an ideal of one of 1. or 2.,

-~ e

a tensor product of one of 1. or 2.

Except for quotient rings, all of these rings are realized by choosing a coeflicient field, ring vari-
ables, and an appropriate global or local monomial ordering on the ring variables. See Section 3.2.3
[Term orderings], page 24, Appendix C [Mathematical background], page 246.

The coefficient field of the rings may be

the field of rational numbers @,

finite fields Z/p, p a prime < 32003,

finite fields GF(p") with p" elements, p a prime, p" < 25,
transcendental extension of @) or Z/p,

simple algebraic extension of Q) or Z/p,

AT ol e

the field of real numbers represented by simple precision floating point numbers.

Throughout this manual, the current active ring in SINGULAR is called basering. The reserved
name basering in SINGULAR is an alias for the current active ring. The basering can be set by
declaring a new ring as described in the following subsections or with the commands setring and
keepring. See Section 5.2.7 [keepring], page 182; Section 5.1.100 [setring], page 164.

Objects of ring dependent types are local to a ring. To access them after a change of the basering
they have to be mapped using map or by the functions imap or fetch. See Section 3.4.4 [Objects],
page 34; Section 5.1.28 [fetch], page 119; Section 5.1.41 [imap], page 127; Section 4.8 [map]|, page 78.

All changes of the basering in a procedure are local to this procedure unless a keepring command
is used as the last statement of the procedure. See Section 3.6 [Procedures], page 40, Section 5.2.7
[keepring], page 182.

3.2.1 Examples of ring declarations

The exact syntax of a ring declaration is given in the next two subsections; this subsection lists
some examples first.

e the ring Z/32003(z,y, z] with degree reverse lexicographical ordering. The exact ring declara-
tion may be omitted in the first example since this is the default ring:

ring r;
ring r = 32003, (x,y,z) ,dp;
e the ring Qla, b, ¢, d] with lexicographical ordering:
ring r = 0,(a,b,c,d),1p;
e the ring Z/7[x,y, z] with local degree reverse lexicographical ordering. The non-prime 10 is
converted to the next lower prime in the second example:
ring r = 7,(x,y,2) ,ds;
ring r = 10, (x,y,2) ,ds;

Chapter 3: General concepts 22

e the ring Z/7[z,,...,zs] with lexicographical ordering for z,...,z; and degree reverse lexico-
graphical ordering for x4, ..., zs:

ring r = 7,(x(1..6)),(1p(3),dp);

e the localization of (Qla, b, c])[z,y, z] at the maximal ideal (z,y, z):

ring r = 0,(x,y,2z,a,b,c),(ds(3), dp(3));

e the ring Q[z,v, 2] with weighted reverse lexicographical ordering. The variables z, y, and z
have the weights 2, 1, and 3, resp. Vectors are ordered by components first, then by monomials.
Vector components are ordered in descending order. For ascending order, component ordering
C would have been specified:

ring r = 0,(x,y,2),(c,wp(2,1,3));

e the ring K|z,y,z|, where K = Z/7(a,b,c) denotes the transcendental extension of Z/7 by a,
b, and c, with degree lexicographical ordering:

ring r = (7,a,b,c),(x,y,2),Dp;

e the ring K|z,y, 2], where K = Z/7[a] denotes the algebraic extension of degree 2 of Z/7 by a.
In other words, K is the finite field with 49 elements. In the first case, a denotes an algebraic
element over Z/7 with minimal polynomial y, = a®> + a + 3, in the second case, a refers to
some generator of the cyclic group of unities of K:

ring r = (7,a),(x,y,z),dp; minpoly = a"2+a+3;
ring r = (7°2,a), (x,y,2) ,dp;

e the ring R'[z,y, 2], where R’ denotes the field of real numbers represented by simple precision
floating point numbers:

ring r = real, (x,y,2),dp;

e the quotient ring Z/7[x,y, z] modulo the square of the maximal ideal (z,y, z):
ring R;
gring r = std(maxideal(2));

3.2.2 General syntax of a ring declaration

Rings

Syntax: ring name = coefficient_field, (names_of ring variables), (ordering) ;
Default: 32003, (x,y,2), (dp,C);

Purpose: declares a ring and sets it as the actual basering.

The coefficient_field is given by one of the following;:

1. a non-negative int_expression less or equal 32003.
The int_expression should either be 0, specifying the field of rational numbers Q, or a prime
number p, specifying the finite field with p elements. If it is not a prime number, int_expression
is converted to the next lower prime number.

2. an expression_list of an int_expression and one or more names.
The int_expression specifies the characteristic of the coefficient field as described above. The
names are used as parameters in transcendental or algebraic extensions of the coefficient field.
Algebraic extensions are implemented for one parameter only. In this case, a minimal polyno-
mial has to be defined by assignment to minpoly. See Section 5.3.3 [minpoly], page 185.

Chapter 3: General concepts 23

3. an expression_list of an int_expression and a name.
The int_expression has to be a prime number p to the power of a positive integer n. This
defines the Galois field GF(p™) with p™ elements, where p" has to be smaller or equal 2!5. The
given name refers to a primitive element of GF(p”) generating the multiplicative group. Due
to a different internal representation, the arithmetic operations in these coefficient fields are
faster than arithmetic operations in algebraic extensions as described above.

4. the name real.
This specifies the field of real numbers represented as machine floating point numbers. Note
that computations over this field are not exact.

The names_of ring_variables is a list of names or indexed names.
The ordering is a list of block orderings where each block ordering is either

1p, dp, Dp, 1s, ds, or Ds optionally followed by a size parameter in parentheses.
wp, Wp, ws, Ws, or a followed by a weight vector given as an intvec_expression in parentheses.
M followed by an intmat_expression in parentheses.

o~

cor C.

For the definition of the orderings, see Section 3.2.3 [Term orderings|, page 24, Appendix C
[Mathematical background], page 246.

If one of coefficient_field, names_of ring variables, and ordering consists of only one entry, the
parentheses around this entry may be omitted.

Quotient rings

Syntax: gring name = ideal_expression ;
Default: none

Purpose: declares a quotient ring as the basering modulo ideal expression. Sets it as current
basering.

ideal _expression has to be represented by a standard basis.

The most convenient way to map objects from a ring to its quotient ring and vice versa is to
use the fetch function (see Section 5.1.28 [fetch], page 119).

SINGULAR computes in a quotient rings as long as possible with the given representative of
a polynomial, say, £. I.e., it usually does not reduce f w.r.t. the quotient ideal. This is only
done when necessary during standard bases computations or by an explicate reduction using the
command reduce (f, std(0)) (see Section 5.1.94 [reduce], page 161).

Example:
ring r=32003, (x,y),dp;

poly f=x3+yx2+3y+4;
qring g=std(maxideal(2));

Chapter 3: General concepts 24

basering;

~ // characteristic : 32003

~ // number of vars : 2

= // block 1 : ordering dp
— // : names Xy
= // block 2 : ordering C
— // quotient ring from ideal

= _[1]=y2

= _[2]=xy

= _[3]=x2

poly g=fetch(r, f);

g

— x3+x2y+3y+4

reduce(g,std(0));

— 3y+4

3.2.3 Term orderings
In a ring declaration, SINGULAR offers the following orderings:

1. Global orderings

1p lexicographical ordering
dp degree reverse lexicographical ordering
Dp degree lexicographical ordering

wp (intvec_expression)
weighted reverse lexicographical ordering; the weight vector may consist of positive
integers only.

Wp (intvec_expression)
weighted lexicographical ordering; the weight vector may consist of positive inte-
gers only.

Global orderings are well-orderings, i.e., 1<z for each ring variable z. They are denoted by an
p as the second character in their name.

2. Local orderings

1s negative lexicographical ordering
ds negative degree reverse lexicographical ordering
Ds negative degree lexicographical ordering

ws (intvec_expression)
(general) weighted reverse lexicographical ordering; the first element of the weight
vector has to be non-zero.

Ws (intvec_expression)
(general) weighted lexicographical ordering; the first element of the weight vector
has to be non-zero.

Local orderings are not well-orderings. They are denoted by an s as the second character in
their name.

3. Matrix orderings

Chapter 3: General concepts 25

M(intmat_expression)
intmat_expression has to be an invertible square matrix

Using matrix orderings, SINGULAR can compute standard bases w.r.t. any monomial ordering
that is compatible with the natural semi-group structure on the monomials. In practice, the
predefined global and local orderings together with the block orderings should be sufficient
in most cases. These orderings are faster than their corresponding matrix orderings since
evaluation of a matrix ordering is time consuming.

4. Extra weight vector
a(intvec_expression)
an extra weight vector a(intvec_expression) may precede any monomial ordering
5. Product ordering
(ordering [(int_expression) |, ...)

any of the above orderings and the extra weight vector may be combined to yield
product or block orderings

The orderings 1p, dp, Dp, 1s, ds, and Ds may be followed by an int_expression in parentheses
giving the size of the block. For the last block the size is calculated automatically. For the
weighted orderings the size of the block is given by the size of the weight vector. The same
holds analogously for matrix orderings.

6. Module orderings

(ordering, ..., C)

(ordering, ..., ¢)
sort polynomial vectors by the monomial ordering first, then by components

(C, ordering, ...)
(¢, ordering, ...)
sort polynomial vectors by components first, then by the monomial ordering

Here a capital C sorts generators in ascending order, i.e., gen(1) < gen(2) < A small ¢
sorts in descending order, i.e., gen(1) > gen(2) > The module ordering has not to be
specified explicitly since (ordering, ..., C) is the default.

In fact, ¢ or C may be specified anywhere in a product ordering specification, not only at its
beginning or end. All monomial block orderings preceding the component ordering have higher
precedence, all monomial block orderings following after it have lower precedence.

For a mathematical description of these orderings, see Appendix B [Polynomial data], page 239.

3.3 Implemented algorithms

The basic algorithm in SINGULAR is a general standard basis algorithm for any monomial or-
dering which is compatible with the natural semi-group structure of the exponents. This includes
well-orderings (Buchberger algorithm to compute a Groebner basis) and tangent cone orderings
(Mora algorithm) as special cases.

Nonetheless, there are a lot of other important algorithms:
e Algorithms to compute the standard operations on ideals and modules: intersection, ideal

quotient, elimination, etc.
e Different Szyzygy algorithms and algorithms to compute free resolutions of modules.

Chapter 3: General concepts 26

e Combinatorial algorithms to compute dimensions, Hilbert series, multiplicities, etc.

e Algorithms for univariate and multivariate polynomial factorization, resultant and gcd com-
putations.

Commands to compute standard bases

facstd

fglm

groebner

mstd

std

stdfglm

stdhilb

Section 5.1.26 [facstd], page 118

computes a list of Groebner bases via the Factorizing Groebner Basis Algorithm, i.e.
has the same radical as the original ideal. It need not be a Groebner basis of the given
ideal.

The intersection of the zero sets is the zero set of the given ideal.

Section 5.1.29 [fglm], page 121

computes a Groebner basis provided that a reduced Groebner basis w.r.t. another
ordering is given.

Implements the so-called FGLM (Faugere, Gianni, Lazard, Mora) algorithm. The given
ideal must be zero-dimensional.

Section 5.1.37 [groebner], page 124

computes a standard resp. Groebner bases using a heuristically chosen method.

This is the prefered method to compute a standard resp. Groebner bases.

Section 5.1.68 [mstd], page 145
computes a standard basis and a minimal set of generators.

Section 5.1.106 [std], page 169
computes a standard resp. Groebner basis.

Section 5.1.107 [stdfglm|, page 170
computes a Groebner basis in a ring with a “difficult” ordering (e.g. lexicographical)
via std w.r.t. a “simple” ordering and fglm.

The given ideal must be zero-dimensional.
Section 5.1.108 [stdhilb], page 171

computes a Groebner basis in a ring with a “difficult” ordering (e.g. lexicographical)
via std w.r.t. a “simple” ordering and a std computation guided by the Hilbert series.

Further processing of standard bases

The next commands require the input to be a standard basis.

degree

dim

hilb

kbase

Section 5.1.15 [degree], page 112
computes the (Krull) dimension, codimension and the multiplicity.

The result is only displayed on the screen.

Section 5.1.19 [dim], page 114
computes the dimension of the ideal resp. module.

Section 5.1.39 [hilb], page 125
computes the first and resp. or second Hilbert series of an ideal resp. module.

Section 5.1.48 [kbase]|, page 132
computes a vector space basis (consisting of monomials) of the quotient of a ring by
an ideal resp. of a free module by a submodule.

Chapter 3: General concepts 27

mult

reduce

vdim

The ideal resp. module has to be finite dimensional and has to be represented by a
standard basis w.r.t. the ring ordering.

Section 5.1.69 [mult], page 145
computes the degree of the monomial ideal resp. module generated by the leading
monomials of the input.

Section 5.1.94 [reduce], page 161
reduces a polynomial, vector, ideal or module to its normal form with respect to an
ideal or module represented by a standard basis.

Section 5.1.118 [vdim], page 176
computes the vector space dimension of a ring (resp. free module) modulo an ideal
(resp. module).

Commands to compute resolutions

minres

lres

mres

res

sres

syz

Section 5.1.64 [minres]|, page 142
minimizes a free resolution of an ideal or module.

Section 5.1.59 [Ires], page 139
computes a free resolution of an ideal or module with LaScala’s method.
The input needs to be homogeneous.

Section 5.1.67 [mres|, page 144
computes a minimal free resolution of an ideal or module with the Szyzygy method.

Section 5.1.96 [res], page 162

computes a free resolution of an ideal or module using a heuristically chosen method.
This is the prefered method to compute free resolutions of ideals or modules.

Section 5.1.104 [sres], page 167

computes a free resolution of an ideal or module with Schreyer’s method.

The input has to be a standard basis.

Section 5.1.111 [syz], page 173
computes the first Szyzygy (i.e., the module of relations of the given generators).

Further processing of resolutions

betti

minres

Section 5.1.3 [betti], page 104
computes the graded Betti numbers of a module from a free resolution.

Section 5.1.64 [minres]|, page 142
minimizes a free resolution of an ideal or module.

Processing of polynomials

char_series

Section 5.1.5 [char_series], page 106
computes characteristic sets of polynomial ideals.

Chapter 3: General concepts 28

extged

factorize

ged

resultant

Section 5.1.25 [extged], page 117
computes the extended gecd of two polynomials.

Implemented as extended FEuclidean Algorithm. Applicable for univariate polynomials
only.

Section 5.1.27 [factorize], page 119

computes factorization of univariate and multivariate polynomials into irreducible fac-
tors.

The most basic algorithm is univariate factorization in prime characteristic. The
Cantor-Zassenhaus Algorithm is used in this case. For characteristic 0, an univariate
Hensel-lifting is done to lift from prime characteristic to characteristic 0. For multi-
variate factorization in any characteristic, the problem is reduced to the univariate case
first, then a multivariate Hensel-lifting is used to lift the univariate factorization.

Note that there is no factorization of polynomials over algebraic extensions of Q.
Section 5.1.34 [gcd], page 123
computes univariate and multivariate polynomial greatest common divisors.

For prime characteristic, a subresultant gcd is used. In characteristic 0, a modular
algorithm is used for the univariate case. For the multivariate case, the EZGCD is
used.

Note that there is no gcd calculation of polynomials over algebraic extensions of Q.

Section 5.1.98 [resultant], page 163
computes the resultant of two univariate polynomials using the subresultant algorithm.

Multivariate polynomials are considered univariate polynomials in a main variable to
be specified by the user.

Matrix computations

bareiss

det

minor

Section 5.1.2 [bareiss], page 103
implements Gauss-Bareiss method for elimination (matrix triangularization) in arbi-
trary integral domains.

Section 5.1.17 [det], page 113

computes the determinant of a square matrix.

For matrices with integer entries a modular algorithm is used. For other domains,
elementary algorithms are used.

Section 5.1.63 [minor|, page 141
computes all minors (=subdeterminants) of a given size for a matrix.

Controlling computations

option

Section 5.1.78 [option], page 150
allows to set options for manipulating the behaviour of computations (such as reduction
strategies) and to show protocol information indicating the progress of a computation.

Chapter 3: General concepts 29

3.4 The SINGULAR language

SINGULAR interprets commands given interactively on the command line as well as given in the
context of user-defined procedures. In fact, SINGULAR makes no distinction between these both
cases. Thus, SINGULAR offers a powerful programming language as well as an easy-to-use command
line interface without differences in syntax or semantics.

In the following, the basic language concepts such as commands, expressions, names, objects,
etc., are discussed. See Section 3.6 [Procedures|, page 40, and Section 3.7 [Libraries|, page 44, for
the concepts of procedures and libraries.

In many aspects, the SINGULAR language is similar to the C programming language. For a
description of some of the subtle differences, see Section 6.2 [Major differences to the C programming
language], page 190.

Elements of the language

The major building blocks of the SINGULAR language are expressions, commands, and control
structures. The notion of expression in the SINGULAR and the C programming language are iden-
tical, whereas the notion of commands and control structures only roughly corresponds to the C
statements.

e An “expression” is a sequence of operators, functions, and operands that specifies a computa-
tion. An expressions always results in a value of a specific type. See Chapter 4 [Data types],
page 49, and its subsections (e.g., Section 4.12.2 [poly expressions|, page 89), for information
on how to build expressions.

e A “command” is either a declaration, an assignment, a call to a function without return value,
or a print command. For detailed information, see Section 3.4.1 [General command syntax],
page 29.

e “Control structures” determine the execution sequence of commands. SINGULAR provides con-
trol structures for conditional execution (if ... else) and iteration (for and while). Com-
mands may be grouped in pairs of { } (curly brackets) to form blocks. See Section 5.2 [Control
structures|, page 179, for more information.

Other notational conventions
For user-defined functions, the notion of “procedure” and “function” are synonymous.

As already mentioned above, functions without return values are called commands. Furthermore,
whenever convenient, the term “command” is used for a function, even if it does return a value.

3.4.1 General command syntax

In SINGULAR a command is either a declaration, an assignment, a call to a function without
return value, or a print command. The general form of a command is described in the following
subsections.

Chapter 3: General concepts 30

Declaration

1. type name = expression ;
declares a variable with the given name of the given type and assigns the expression as initial
value to it. Expression is an expression of the specified type or one that can be converted to
that type. See Section 3.4.5 [Type conversion and casting], page 34.

2. type name_list = expression_list ;
declares variables with the given names and assigns successively each expression of expres-
sion_list to the corresponding name of name_list. Both lists must be of the same length. Each
expression in expression_list is an expression of the specified type or one that can be converted
to that type. See Section 3.4.5 [Type conversion and casting], page 34.

3. type name ;
declares a variable with the given name of the given type and assigns the default value of the
specific type to it.

See Section 3.4.3 [Names], page 32, for more information on declarations. See Chapter 4 [Data
types], page 49, for a description of all data types known to SINGULAR.

ring r; // the default ring
poly f,g = x"2+y~3,xy+z2; // the polynomials f=x"2+y"3 and g=x*y+z"2
ideal I = f,g; // the ideal generated by f and g
matrix m[3][3]; // a 3 x 3 zero matrix
int i=2; // the integer i=2
Assignment

3. name = expression ;
assigns expression to name.

4. name_list = expression_list ;
assigns successively each expression of expression list to the corresponding name of name_list.
Both lists must be of the same length. This is not a simultaneous assignment. Thus, £, g =
g, £; does not swap the values of £ and g, but rather assigns g to both £ and g.

There must be a type conversion of the type of expression to the type of name. See Section 3.4.5
[Type conversion and casting], page 34.

An assignment itself does not yield a value. Hence, compound assignments like i = j = k; are
not allowed and result in an error.

f=x"2+7y2; // overwrites the old value of f
I = jacob(f);
f,g = I[1],x"2+y"2 ; // overwrites the old values of f and g

Function without return value

5. function name [(argument_list) | ;
calls function function name with arguments argument list.

Chapter 3: General concepts 31

The function may have output (not to be confused with a return value of type string). See
Section 5.1 [Functions|, page 102. Functions without a return value are specified there to have a
return type 'none’.

Some of these functions have to be called without parentheses, e.g., help, LIB.

ring r;

ideal i=x2+y2,x;

i=std(i);

degree(i); // degree has no return value but prints output
+— // codimension = 2

~ // dimension =1

— // degree 2

Print command

6. expression ;
prints the value of an expression, for example, of a variable.

Use the function print (or the procedure show from inout.lib) to get a pretty output of various
data types, e.g., matrix or intmat. See Section 5.1.87 [print], page 156.

int i=2;

i

— 2

intmat m[2] [2]=1,7,10,0;
print (m) ;

— 1 7

— 10 0

3.4.2 Special characters

The following characters and operators have special meaning:

= assignment

G) in expressions, for indexed names and for argument lists

[, 1] access operator for strings, integer vectors, ideals, matrices, polynomials, resolutions,
and lists. Used to build vectors of polynomials. Example: s[3], m[1,3], i[1..3],
[f,g+x,0,0,1].

+ addition operator

- subtraction operator
* multiplication operator

/ division operator. See Section 6.3 [Miscellaneous oddities], page 193, for the difference
between the division operators / and div.

% modulo operator

Chapter 3: General concepts 32

T oor Kk exponentiation operator
== comparison operator equal

!=0or <> comparison operator not equal

>= comparison operator bigger or equal

> comparison operator bigger

<= comparison operator smaller or equal

< comparison operator smaller. Also used for file input. See Section 5.1.30 [filecmd],
page 121.

! boolean operator not
&& boolean operator and
I boolean operator or
" delimiter for string constants
delimiter for name substitution
? synonym for help
// comment delimiter. Comment extends to end of line.
; statement separator
separator for expression lists and function arguments
\ escape character for " and \ within strings
interval specifier returning intvec. E.g., 1..3 which is equivalent to the intvec 1, 2, 3.
value of expression last displayed
breakpoint in procedures
list of parameters in procedures without explicit parameter list

terminates SINGULAR

3.4.3 Names

SINGULAR is a strongly typed language. This means that all names (= identifiers) have to be
declared prior to their use. For the general syntax of a declaration, see the description of declaration
commands (see Section 3.4.1 [General command syntax], page 29).

See Chapter 4 [Data types], page 49, for a description of SINGULAR’s data types. See Sec-
tion 5.1.115 [typeof], page 175, for a short overview of possible types. To get information on a
name and the object named by it, the type command may be used (see Section 5.1.114 [type],
page 174).

It is possible to redefine an already existing name if doing so does not change its type. A
redefinition first sets the variable to the default value and then computes the expression. The
difference between redefining and overwriting a variable is shown in the following example:

int i=3;
i=i+1; // overwriting

Chapter 3: General concepts 33

i;

— 4

int i=i+i1; // redefinition
— // ** redefining i *x

i;

= 1

User defined names should start with a letter and consist of letters and digits only. As an
exception of this rule, the character @ may be used as part of a name, too. Capital and small
letters are distinguished. Indexed names are built as a name followed by an int_expression in
parentheses. A list of indexed names can be built as a name followed by an intvec_expression in
parentheses.

ring R;

int n=3;

ideal j(3);

ideal j(n); // is equivalent to the above
— // ** redefining j(3) #*x*

ideal j(2)=x;

j(2..3);

= j(2)[1]1=x j(3)[1]=0

Names may not coincide with reserved names (keywords). Type reservedName () ; to get a list of
the reserved names. See Section 5.1.97 [reservedName], page 163. Names should not interfere with
names of ring variables or, more generally, with monomials. See Section 6.4 [Identifier resolution],
page 195.

The most recently printed expression is available under the special name _, e.g.,

ring r;

ideal i=x2+y3,y3+z4;
std(i);

- _[1]=y3+x2

= _[2]=z4-x2

ideal k=_;

kxk+x;

= _[1]1=y6+2x2y3+x4
= _[2]=y3z4+x224-x2y3-x4
= _[3]1=28-2x2z4+x4
— _[4]=x
size(_[31);

— 3

A string_expression enclosed in ¢...¢ (back ticks) evaluates to the value of the variable named

by the string_expression. This feature is refered to as name substitution.

int foo(1)=42;
string bar="foo";
tbar+n (1) ne ;

= 42

Chapter 3: General concepts 34

3.4.4 Objects

Every object in SINGULAR has a type and a value. In most cases it has also a name and in some
cases an attribute list. The value of an object may be examined simply by printing it with a print
command: object;. The type of an object may be determined by means of the typeof function,
the attributes by means of the attrib function (Section 5.1.115 [typeof]|, page 175, Section 5.1.1
[attrib], page 102):

ring r=0,x,dp;

typeof (10) ;

— int

typeof (10000000000000000) ;
— number

typeof (r);

— ring

attrib(x);

— no attributes
attrib(std(ideal(x)));
— attr:isSB, type int

Each object of type poly, ideal, vector, module, map, matrix, number, or resolution belongs
to a specific ring. Also list, if at least one of the objects contained in the list belongs to a ring.
These objects are local to the ring. Their names can be used for other objects in other rings.
Objects from one ring can be mapped to another ring using maps or with the commands fetch
or imap. See Section 4.8 [map|, page 78, Section 5.1.28 [fetch], page 119, Section 5.1.41 [imap],
page 127.

All other types do not belong to a ring and can be accessed within every ring and across rings.
They can be declared even if there is no active basering.

3.4.5 Type conversion and casting

Type conversion

Assignments convert the type of the right-hand side to the type of the left-hand side of the
assignment, if possible. Operators and functions which require certain types of operands can also
implicitly convert the type of an expression. It is, for example, possible to multiply a polynomial
by an integer because the integer is automatically converted to a polynomial. Type conversions do
not act transitively. Possible conversions are:

1. int — ideal
2. poly — ideal
3. intvec — intmat
4. int — intvec
5. int — intvec
6. resolution — list

7. ideal — matrix
8. int — matrix
9. intmat — matrix
10. intvec — matrix

Chapter 3: General concepts 35

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

module
number
poly
vector
ideal
matrix
vector
int
int
number
string
list
int
poly

Type casting

type (expression).

Sl

== O 00 ~]
mEe®

— matrix

— matrix

— matrix

— matrix

— module

— module

— module

— number

— poly

— poly

— proc

— resolution

— vector (i — i*gen(1))
— vector (p — p*gen(1))

An expression can be casted to another type by using a type cast expression:

Possible type casts are:

to ideal
to ideal
to int

to intvec
to list
to matrix

to module
to module
to number
to poly

to string

Example:

from expression lists of int, number, poly

from int, matrix, module, number, poly, vector

from number, poly

from expression lists of int, intmat

from expression lists of any type

from module, ideal, vector, matrix.

There are two forms to convert something to a matrix: if matrix(expression)
is used then the size of the matrix is determined by the size of expression.

But matrix(expression , m , n) may also be used - the result is a m x n
matrix.

from expression lists of int, number, poly, vector

from ideal, matrix, vector

from poly

from int, number

from ideal, int, map, map, matrix, module, number, poly, proc, vector

ring r=0,x,(c,dp);

number (3x) ;

— 0

number (poly(3)) ;

— 3

ideal i=1,2,3,4,5,6;
print (matrix(i));

— 1,2,3,4,5,6

print (matrix(i,3,2));

— 1,2,
— 3,4,

Chapter 3: General concepts 36

— 5,6

vector v=[1,2];

print (matrix(v)) ;
-1,

— 2

module (matrix(i,3,2));
— _[1]1=[1,3,5]

= _[2]1=[2,4,6]

3.4.6 Flow control
A block is a sequence of commands surrounded by { and }.

{

command ;

Blocks are used whenever SINGULAR is used as a structured programming language. The if
and else structures allow conditional execution of blocks (See Section 5.2.6 [if], page 181, Sec-
tion 5.2.3 [else], page 180). for and while loops are available for repeated execution of blocks (See
Section 5.2.5 [for]|, page 181, Section 5.2.10 [while], page 183). In procedure definitions the main
part and the example section are blocks as well(See Section 4.13 [proc|, page 92).

3.5 Input and output

SINGULAR'’s input and output (short, I/O) is realized using links. Links are the communication
channels of SINGULAR, i.e., something SINGULAR. can write to and read from. In this section, a
short overview of the usage of links and of the different link types is given.

Even though library loading may be considered an I/O operation, too, this section does not
treat loading of libraries (see Section 5.1.55 [LIB], page 136).

Monitoring

A special form of I/O is monitoring. When monitoring is enabled, SINGULAR makes a typescript
of everything printed on your terminal to a file. It is useful for students who need a hardcopy record
of an interactive session as proof of an assignment. More generally, it is useful to create a protocol
of a SINGULAR session. The monitor command enables and disables this feature (see Section 5.1.66
[monitor|, page 143).

How to use links

Besides the usual I/O functions write and read, there are also the functions dump and getdump
which store resp. retrieve the content of an entire SINGULAR session to resp. from a link. The dump
and getdump commands are not available for DBM links.

Chapter 3: General concepts

37

For more information, see Section 5.1.121 [write], page 178, Section 5.1.93 [read], page 160,

Section 5.1.20 [dump], page 114, Section 5.1.36 [getdump], page 124.

Example:

ring r; poly p = x+y;

dump ("MPfile:w test.mp"); // dump the session to the file test.mp

kill r; // kill the basering
listvar();

~ // LIB [0] string standard.lib
getdump ("MPfile:r test.mp");// read the dump from the file
listvar();

= // r [0] #*ring

= // P [0] poly

— // LIB [0] string standard.lib

Specifying a link can be as easy as specifying a filename as a string. Except for MPtcp links,
links even do not need to be explicitly opened or closed before resp. after they are used. To
explicitly open or close a link, the open resp. close commands may be used (see Section 5.1.77

[open], page 150, Section 5.1.8 [close], page 107).

Links have various properties which can be checked for using the status function (see Sec-

tion 5.1.105 [status|, page 168).
Example:

link 1 = "MPtcp:fork";

1;

— // type : MPtcp

~ // mode : fork

~ // name :

~ // open : no

~ // read : not ready
~ // write: not ready
open(1) ;

status(l, "open");

= yes

close(1l);

status(l, "open");

— no

ASCII links

Data that can be converted to a string can be written into files for storage or communication
with other programs. The data is written in plain ASCII format. Reading from an ASCII link
returns a string — conversion into other data is up to the user. This can be done, for example,

using the command execute (see Section 5.1.23 [execute], page 117).

Chapter 3: General concepts 38

ASCII links should primarily be used for storing small amounts of data, especially if it might
become necessary to manually inspect or manipulate the data.

See Section 4.6.4 [ASCII links|, page 67, for more information.
Example:

// (over)write file test.ascii, link is specified as string
write(":w test.ascii", "int i =", 3, ";");
// reading simply returns the string
read("test.ascii");

— int i =

— 3

=

=

// but now test.ascii is "executed"
execute(read("test.ascii"));

i;

— 3

MPfile links

Data is stored in the binary MP format. Read and write access is very fast compared to ASCII
links. All data (including such data that cannot be converted to a string) can be written to an
MPfile link. Reading from an MPfile link returns the written expressions (i.e., not a string, in
general).

MPfile links should primarily be used for storing large amounts of data (like dumps of the
content of an entire SINGULAR session), and if the data to be stored cannot be easily converted
from or to a string (like rings, or maps).

MPfile links are implemented on Unix-like operating systems only.
See Section 4.6.5.1 [MPfile links], page 69, for more information.
Example:

ring r;

// (over)write MPfile test.mp, link is specified as string
write("MPfile:w test.mp", x+y);

kill r;

def p = read("VMPfile:r test.mp");

typeof(p); p;

— poly

= X+y

Chapter 3: General concepts 39

MPtcp links

Data is communicated with other processes (e.g., SINGULAR processes) which may run on the
same or on different computers. Data exchange is accomplished using TCP/IP links in the binary
MP format. Reading from an MPtcp link returns the written expressions (i.e., not a string, in
general).

MPtcp links should primarily be used for communications with other programs or for parallel
computations (see, for example, Section A.27 [Parallelization with MPtcp links], page 237).

MPtcp links are implemented on Unix-like operating systems only.
See Section 4.6.5.2 [MPtcp links], page 70, for more information.
Example:

ring r;

link 1 = "MPtcp:launch"; // declare a link explicitly

open(l); // needs an open, launches another SINGULAR as a server
write(l, x+y);

kill r;

def p = read(l);

typeof (p); p;

— poly

= Xty

close(1l); // shuts down SINGULAR server

DBM links

Data is stored in and accessed from a data base. Writing is accomplished by a key and a value
and associates the value with the key in the specified data base. Reading is accomplished w.r.t. a
key, whose associated value is returned. Both the key and the value have to be specified as strings.
Hence, DBM links may be used only for data which may be converted to or from strings.

DBM links should primarily be used when data needs to be accessed not in a sequential way
(like with files) but in an associative way (like with data bases).

See Section 4.6.6 [DBM links], page 73, for more information.
Example:

ring r;

// associate "x+y" with "mykey"

write("DBM:w test.dbm", "mykey", string(x+y));

// get from data base what is stored under "mykey"
execute(read("DBM: test.dbm", "mykey"));

= X+y

Chapter 3:

General concepts 40

3.6 Procedures

Procedures contain sequences of SINGULAR. They are used to extend the set of commands with
user defined commands. Procedures are defined by either typing them in on the command line
or by loading them from a so-called library file with the Section 5.1.55 [LIB], page 136 command.

Procedures

are invoked like normal built-in commands, i.e., by typing their name followed by the

list of arguments in parentheses. The invocation then executes the sequence of commands stored in
the specified procedure. All defined procedures can be displayed by the command listvar (proc) ;.

3.6.1 Procedure definition

Syntax:

Purpose:

[static] proc proc_.name [parameter_list]
["help_text"]
{

procedure_body
}
[example
{
sequence_of_commands;

3]

defines a new function, the proc proc_name, with the additional information help_text,
which is copied to the screen by help proc_name; and the example section which is
executed by example proc_name;.

The help_text, the parameter_list, and the example section are optional. The default
for a parameter_ list is (1ist #), see Section 3.6.3 [Parameter list], page 42. The help
and example sections are ignored if the procedure is defined interactively, i.e., if it was
not loaded from a file by a Section 5.1.55 [LIB], page 136 command.

Specifying static in front of the proc-definition (in a library file) makes this procedure
local to the library, i.e., accessible only for the other procedures in the same library, but
not for the users. So there is no reason anymore to define a procedure within another
one (it just makes debugging harder).

Example of an interactive procedure definition

proc

{

milnor_number (poly p)

ideal i= std(jacob(p));
int m_nr=vdim(i);

if
{

}

(m_nr<O0)

"// not an isolated singularity";

return(m_nr) ; // the value of m_nr is returned

X
ring
poly

r1=0,(x,y,2z),ds;
pP=x"2+y~2+z"5;

milnor_number (p) ;

— 4

Chapter 3: General concepts

Example of a procedure definition in a library
First, the library definition:

// Example of a user accessible procedure
proc tab (int n)
"USAGE: tab(n); (n integer)
RETURNS: string of n space tabs
EXAMPLE: example tab; shows an example
{ return(internal_tab(n)); }
example
{
"EXAMPLE:"; echo=2;
for(int n=0; n<=4; n=n+1)
{ tab(4-n)+"*"+tab(n)+"+"+tab(n)+"*"; }
}

// Example of a static procedure
static proc internal_tab(int n)
{ return(" "[1,n]); }

<

Now, we load the library and execute the procedures defined there:

LIB "sample.lib"; // load the library sample.lib
example tab; // show an example

~ // proc tab from 1ib sample.lib

— EXAMPLE:

— for(int n=0; n<=4; n=n+1)

— { tab(4-n)+"*"+tab(n)+"+"+tab(n)+"*"; }

— *+k

— x + %

ok o+

ok + X

ok + *

—

"x"+tab(3)+"*"; // use the procedure tab
= ok %

// the static procedure internal_tab is not accessible
"x"+internal_tab(3)+"x";

— 7 ’sample.lib::internal_tab()’ is a local procedure and cannot be
— accessed by an user.

— ? error occurred in Z line 5: ‘"x"+intermal_tab(3)+"x*";*¢
// show the help section for tab

help tab;

~ // proc tab from 1ib sample.lib

— proc tab (int n)

—

— "USAGE: tab(n); (n integer)

— RETURNS: string of n space tabs

— EXAMPLE: example tab; shows an example

Chapter 3: General concepts 42

Guidelines for the help section of a procedure

The help text of a procedure should contain information about the usage, purpose, return values
and generated objects. Particular assumptions or limitations should be listed. It should also be
mentioned if global objects are generated or manipulated.

The libraries contained in the SINGULAR distribution use the following format for the help text:

USAGE: <proc_name>(<parameters>); <explanation of parameters>
[CREATE: <description of created objects which are not returned>]
RETURN : <description of the purpose and return value>

[NOTE: <particular assumptions or limitations, details>]

EXAMPLE: example <proc_name>; shows an example

3.6.2 Names in procedures

All variables are local to the procedure they are defined in. Locally defined variables cannot
interfere with names in other procedures and are automatically deleted after leaving the procedure.
Names can be made global by export (see Section 5.2.4 [export], page 180). These global names are
not deleted automatically. Ring dependent variables are stored together with the ring and deleted
when the ring is deleted.

Internally, local variables are stored using the nesting level. A variable is said to have nesting
level 1, if it is local to a procedure that was called interactively, nesting level 2, if is local to
a procedure that was called by a procedure of nesting level 1 etc. listvar() also displays the
nesting level, nesting level 0 is used for global objects (see Section 5.1.58 [listvar|, page 138). A ring
may be 'moved up’ by one nesting level with keepring (see Section 5.2.7 [keepring], page 182). All
variables living in that ring are moved together with that ring.

proc xxx
{
int k=4; //defines a local variable k

int result=k+2;
export result; //defines the global variable "result".

}

xxx();

listvar(all);

— // result [0] int 6

— // LIB [0] string standard.lib

Note that the variable result became a global variable after the execution of xxx.

3.6.3 Parameter list

Chapter 3: General concepts 43

Syntax:)
(parameter_definition)

Purpose: defines the number, type and names of the arguments to a proc.
The parameter_list is optional. The default for a parameter_list is (1ist #) which
means the arguments are referenced by #[1], #[2], etc.

Example:

proc x0

{
// can be called with

... // any number of arguments of any type: #[1], #[2],...
// number of arguments: size(i#)

}

proc x1 ()

{

... // can only be called without arguments

}

proc x2 (ideal i, int j)

{

... // can only be called with 2 arguments,
// which can be converted to ideal resp. int

}

proc x3 (i,j)

{

... // can only be called with 2 arguments
// of any type
// (i,j) is the same as (def i,def j)

}

proc x5 (i,list #)

{

... // can only be called with more than 1 argument
// number of arguments: size(#)+1

}

Note:

The parameter_list may stretch across multiple lines.
A parameter may have any type (including the types proc and ring). If a parameter
is of type ring, then it can only be specified by name, but not with a type, e.g.

proc x6 (r)
{

... // this is correct even if the parameter is a ring

}

proc x7 (ring r)

{
... // this is NOT CORRECT

}

Chapter 3: General concepts 44

3.6.4 Procedure commands

See Section 5.2.4 [export], page 180; Section 5.2.7 [keepring], page 182; Section 5.2.9 [return],
page 182.

3.7 Libraries

A library is a collection of SINGULAR procedures in a file.
SINGULAR reads a library with the command LIB, general information about the library is displayed
by the command help 1ib_name. After loading the library, its procedures can be used like the built-
in SINGULAR functions. To have the full functionality of a built-in function (like checking of the
type of parameters, automatic loading of necessary other libraries, help pages etc.), libraries have
to comply with the syntax rules described below.

Libraries can only be loaded with the LIB command:

Syntax: LIB string expression;
Type: none

Purpose: reads a library of procedures from a file. If the given filename does not start with . or
/, the following directories are searched for (in that order): the current directory, the
directories given in the environment variable SINGULARPATH, some default directories
relative to the location of the SINGULAR executable program, and finally some default
absolute directories. You can view the search path which SINGULAR uses to locate
its libraries, by starting up SINGULAR with the option -v, or by issuing the command
system("with") ;".

Only the names of the procedures in the library are loaded, the body of the procedures
is read during the first call of this procedure. This minimizes memory consumption
by unused procedures. When SINGULAR is started with the -q or —--quiet option,
no message about the loading of a library is displayed. More exactly, option -q (and
likewise -—quiet) unsets option loadLib to inhibit monitoring of library loading (see
Section 5.1.78 [option], page 150).

Unless SINGULAR is started with the --no-stdlib option, the library standard.lib
is automatically loaded at start-up time.

All loaded libraries are displayed by the LIB command without arguments:
Syntax: LIB;
Type: string
Purpose: shows all loaded libraries.
Example:

option(loadLib); // show loading of libraries;
// standard.lib is loaded
LIB;
— standard.lib
// the names of the procedures of inout.lib
LIB "inout.lib"; // are now known to Singular

— // ** loaded /home/obachman/Singular-1.2/Singular/LIB/inout.lib (1.6,

— 1998/05/14)
LIB;
— standard.lib,inout.lib

Chapter 3: General concepts 45

See Section 3.1.6 [Command line options], page 18; Section 2.3.3 [Procedures and libraries],
page 10; Appendix D [SINGULAR libraries]|, page 250; Section 4.13 [proc], page 92; Section D.1
[standard_lib], page 250; Section 4.17 [string], page 96; Section 5.1.110 [system], page 172.

3.7.1 Format of a library

A library file can contain comments, an info- and version-string definition, LIB commands, proc
commands and proc commands with example and help sections, i.e. the following keywords are
allowed: info, version, LIB, /* ... */, //, [static] proc. Anything else is not recognized by
the parser of SINGULAR and leads to an error message while loading the library. If an error occurs,
loading is aborted and an error message is displayed, specifying the type of error and the line where
it was detected.

The info- and version-string are defined as follows:

Syntax: info = string_constant ;
Purpose: defines the general help for the library. This text is displayed on help lib_name;.

Example:

info="
This could be the general help of an library.

Quote must be escaped with an \ such as \"

n.
b

Note: In the info-string the characters \ and " must be preceded by a \ (escaped). It is
recommended that the info string is placed on the top of a library file and contains
general information about the library as well as a listing of all procedures available to
the users (with a one line description of each procedure).

Syntax: version = string constant ;

Purpose: defines the version number for the library. It is displayed when the library is loaded.

Example:
version="$Id: sample.lib,v 1.2 1998/05/07 singular Exp $";
version="some version string";
Note: It is common practice to simply define the version string to be "$Id:$" and let a version

control system expand it.

3.7.2 Guidelines for writing a library

Although there are very few enforced rules on how libraries are written (e.g., on whether or
where the info- and version-string are defined), it is recommended that certain guidelines should
be followed so that debugging and understanding are made easier.

1. The info- and version-string should appear at the beginning of the library, before procedure
definitions.

2. The info-string should have the following format:

Chapter 3: General concepts 46

info="
LIBRARY: <library_name> <one line description of the content>
AUTHOR: <name, affiliation, and email address of author>
last modified: < date of last modification>

<procedurel>; <one line description of the purpose>

<procedurelN>; <one line description of the purpose>";
The purpose of the one line procedure descriptions is not to give a short help for the procedure,
but to help the user decide what procedure might be the right one for the job. Details can
then be found in the help section of each procedure. Therefore parameters may be omitted or
abbreviated if necessary.

3. Each procedure which is not declared static should have a help and example section as
explained in Section 3.6.1 [Procedure definition], page 40.

4. Each procedure which should not be accessible by users should be declared static.

5. No procedures should be defined within the body of another procedure.

6. Executing procedures defined in a library should not result in any message displays, by default
(please, shut up, by default). That is, only if special options or variable values are set, should

a procedure display progress, debugging or any other information. A good way to accomplish
this is the usage of the Section 5.1.12 [dbprint], page 110 command.

3.8 Debugging tools

If SINGULAR does not come back to the prompt while calling a user defined procedure, probably
a bracket or a " is missing. The easiest way to leave the procedure is to type some brackets or "
and then RETURN .

3.8.1 Tracing of procedures

Setting the TRACE variable to 1 (resp. 3) results in a listing of the called procedures (resp. to-
gether with line numbers). If TRACE is set to 4, Singular displays each line before its interpretation
and waits for the RETURN key being pressed. See Section 5.3.9 [TRACE var], page 188.

Example:

proc ti1

{
int i=2;
while (i>0)
{ i=i-1; }

entering t1 (level 0)
{13{23{3}{a}{5}3{a}{5{63{7H{4}{c}{6}{7}{4a}{6}{7}{8}
leaving t1 (level 0)

Chapter 3: General concepts 47

3.8.2 Break points

A break point can be put into a proc by inserting the command . If Singular reaches a break
point it asks for lines of commands (line-length must be less than 80 characters) from the user. It
returns to normal execution if given an empty line. See Section 5.2.11 [~], page 184.

Example:
proc t
{
int i=2;
~’
return(i+1);
}
t0;
+— -- break point in t --
— -- 0: called from STDIN --
i; // here local variables of the procedure can be accessed
= 2
— -- break point in t --
= 3

3.8.3 Printing of data

The procedure dbprint is useful for optional output of data: it takes 2 arguments and prints
the second argument, if the first argument is positive; it does nothing otherwise. See Section 5.1.12
[dbprint], page 110; Section 5.3.11 [voice], page 189.

3.8.4 libparse

libparse is a stand-alone program contained in the SINGULAR distribution (at the place where
the SINGULAR executable program resides), which cannot be called inside of SINGULAR. It is
a debugging tool for libraries which performs exactly the same checks as the LIB command in
SINGULAR, but generates more output during parsing. libparse is useful if an error occurs while
loading the library, but the whole block around the line specified seems to be correct. In these
situations the real error might be hundreds of lines earlier in the library.

Usage:
libparse [options] singular-library Options:

-d Debuglevel
increases the amount of output during parsing, where Debuglevel is an integer between
0 and 4. Default is 0.

-s turns on reporting about violations of unenforced syntax rules

The following syntax checks are performed in any case:

Chapter 3: General concepts 48

e counting of pairs of brackets {,} , [,] and (,) (number of { has to match number of }, same for
[] and (;)).

e counting of " (number of " must be even).

e general library syntax (only LIB, static, proc (with parameters, help, body and example) and
comments, i.e // and /* ... */ are allowed).

Its output lists all procedures that have been parsed successfully:

$ libparse sample.lib
Checking library ’sample.lib’

Library function line,start-eod line,body-eob 1line,example-eoe
Version:0.0.0;
g Sample tab line 9, 149-165 13, 271-298 14, 300-402
1 Sample internal_tab line 24, 450-475 25, 476-496 o, 0-496

where the following abbreviations are used:

e g: global procedure (default)
e I: static procedure, i.e. local to the library.

each of the following is the position of the byte in the library.

e start: begin of 'proc’

e eod: end of parameters

e body: start of procedurebody '{’
e eob: end of procedurebody '}’

e example: position of ’example’

e coe: end of example '}’

Hence in the above example, the first procedure of the library sample.lib is user-accessible and
its name is tab. The procedure starts in line 9, at character 149. The head of the procedure ends at
character 165, the body starts in line 13 at character 271 and ends at character 298. The example
section extends from line 14 character 300 to character 402.

The following example shows the result of a missing close-bracket } in line 26 of the library
sample.lib.

LIB "sample.lib";

? Library sample.lib: ERROR occurred: in line 26, 497.

? missing close bracket ’}’ at end of library in line 26.
? Cannot load library,... aborting.

? error occurred in STDIN line 1: ‘LIB "sample.lib";°¢

1111

Chapter 4: Data types 49

4 Data types

This chapter explains all data types of SINGULAR in alphabetical order. For every type, there
is a description of the declaration syntax as well as information about how to build expressions of
certain types.

The term expression list in SINGULAR refers to any comma separated list of expressions.

For the general syntax of a declaration see Section 3.4.1 [General command syntax], page 29.

4.1 def

Objects may be defined without a specific type: they get their type from the first assignment
to them. E.g., ideal i=x,y,z; def j=i~2; defines the ideal i~2 with the name j.

Note: Unlike other assignments a ring as an untyped object is not a copy but another reference
to the same ring. This means that entries in one of these rings appear also in the other ones. The
following defines a ring s which is just another reference (or name) for the basering r.

ring r=32003,(x,y,z),dp;

poly f = x;

def s=basering;

setring s;

nameof (basering) ;

— S

listvar();

= // s [0] #*ring

= // f [0] poly
= // r [0] ring

— // LIB [0] string standard.lib
poly g = y;

kill f;

listvar(r);

= // r [0] ring

= // g [0] poly

This reference to a ring with def is useful if the basering is not local to the procedure (so it
cannot be accessed by its name) but one needs a name for it (e.g., for a use with setring or map).
setring r; does not work in this case, because r may not be local to the procedure.

4.1.1 def declarations

Syntax: def name = expression ;
Purpose: defines an object of the same type as the right-hand side.

Default: none

Chapter 4: Data types 50

Note: This is useful if the right-hand side may be of variable type as a consequence of a
computation (e.g., ideal or module or matrix). It may also be used in procedures to
give the basering a name which is local to the procedure.

Example:
def i=2;
typeof (i) ;
— int

See Section 5.1.115 [typeof], page 175.

4.2 ideal

Ideals are represented as lists of polynomials which generate the ideal. Like polynomials they
can only be defined or accessed with respect to a basering.

Note: size counts only the non zero generators of an ideal whereas ncols counts all generators.

4.2.1 ideal declarations

Syntax: ideal name = list_of_poly_expressions ;
ideal name = ideal expression ;

Purpose: defines an ideal.
Default: 0

Example:
ring r=0, (x,y,2),dp;
poly s1 = x2;
poly s2 = y3;
poly s3 = z;
sl, s2-s1, 0,s2*s3, s8374;

'_l
Q.
®
Y
[}
'_l
]

i[1]=x2
i[2]=y3-x2
i[3]1=0
i[4]=y3z
i[5]=z4
size(i);

— 4
ncols(i);

— b

11111x

4.2.2 ideal expressions
An ideal expression is:

1. an expression list of poly expressions and ideal expressions

Chapter 4: Data types 51

an identifier of type ideal
a function returning ideal
ideal expressions combined by the arithmetic operations + or *

a power of an ideal expression (operator ~ or *x*)
Note that the computation of the product i*i involves all products of generators of i while
i~2 involves only the different ones, and is therefore faster.

6. a type cast to ideal

A i o

-~

Example:

ring r=0, (x,y,2),dp;
ideal m = maxideal(l);
m;

— m[1]=x

— m[2]=y

— m[3]==z

poly f = x2;

poly g = y3;

ideal i = x*y*z , f-g, gx(x-y) + £°4 ,0, 2x-z2y;
ideal M = maxideal(10);
timer =0;

i = MxM;

timer;

— 1

ncols(i);

— 231

timer =0;

i=M2;

ncols(i);

— 231

timer;

— 0

i[ncols(i)];

— x20

vector v = [x,y-z,x2,y-x,x2yz2-y];
ideal j = ideal(v);

4.2.3 ideal operations

+ addition (concatenation of the generators and simplification)

* multiplication (with ideal, poly, vector, module; simplification in case of multiplication
with ideal)

exponentiation (by a non-negative integer)

~

ideal_expression [intvec_expression]
are polynomial generators of the ideal, index 1 gives the first generator.

Note: For simplification of an ideal, see also Section 5.1.101 [simplify], page 165.

Chapter 4: Data types

Example:

ring r=0, (x,y,z) ,dp;
ideal T = 0,x,0,1;

—

I[1]1=0

I[2]=x

I[3]1=0

I[4]=1

I+0; // simplification
= _[1]=1

ideal J = 1,0,x,x-2;;

1111

o

J[1]=0

J[2]=x

J[3]=0

J[4]=1

J[5]=0

J[6]=x

J[7]=x-z

I *J; // multiplication with simplification

1111111

— _[4]=x

vector V = [x,y,2z];
print (V+I);

— 0,x2,0,x,

~ 0,xy,0,y,

= 0,xz,0,z

ideal m = maxideal(l);

m-2;

— _[1]=x2
= _[2]=xy
— _[3]=xz
= _[4]=y2
— _[5]=yz
— _[6]=z2
ideal II = I[2..4];
I1I;

— II[1]=x
— II[2]=0
— II1[3]=1

4.2.4 ideal related functions

52

Chapter 4: Data types 53

char_series

coeffs
contract
diff

degree

dim

eliminate

facstd

factorize

fglm

finduni

groebner

homog
hilb
indepSet
interred

intersect

jacob
jet
kbase

koszul
lead
lift
liftstd

lres
maxideal

minbase

minor

irreducible characteristic series (see Section 5.1.5 [char_series], page 106)
matrix of coefficients (see Section 5.1.10 [coeffs], page 108)

contraction by an ideal (see Section 5.1.11 [contract], page 110)

partial derivative (see Section 5.1.18 [diff], page 113)

multiplicity, dimension and codimension of the ideal of leading terms (see Section 5.1.15
[degree], page 112)

Krull dimension of basering modulo the ideal of leading terms (see Section 5.1.19 [dim],
page 114)

elimination of variables (see Section 5.1.21 [eliminate], page 115)

factorizing Groebner basis algorithm (see Section 5.1.26 [facstd], page 118)

ideal of factors of a polynomial (see Section 5.1.27 [factorize], page 119)

Groebner basis computation from a Groebner basis w.r.t. a different ordering (see
Section 5.1.29 [fglm]|, page 121)

computation of univariate polynomials lying in a zero dimensional ideal (see Sec-
tion 5.1.32 [finduni], page 122)

Groebner basis computation (a wrapper around std,stdhilb,stdfglm,...) (see Sec-
tion 5.1.37 [groebner|, page 124)

homogenization with respect to a variable (see Section 5.1.40 [homog], page 126)
Hilbert series of a standard basis (see Section 5.1.39 [hilb], page 125)
sets of independent variables of an ideal (see Section 5.1.42 [indepSet], page 127)

interreduction of an ideal (see Section 5.1.44 [interred], page 129)

ideal intersection (see Section 5.1.45 [intersect], page 130)
ideal of all partial derivatives resp. jacobian matrix (see Section 5.1.46 [jacob], page 130)
Taylor series up to a given order (see Section 5.1.47 [jet], page 131)

vector space basis of basering modulo ideal of leading terms (see Section 5.1.48 [kbase],
page 132)

Koszul matrix (see Section 5.1.51 [koszul], page 134)
leading terms of a set of generators (see Section 5.1.52 [lead], page 134)
lift-matrix (see Section 5.1.56 [lift], page 137)

standard basis and transformation matrix computation (see Section 5.1.57 [liftstd],
page 137)

minimal resolution for homogeneous ideals (see Section 5.1.59 [lres], page 139)
power of the maximal ideal at 0 (see Section 5.1.60 [maxideal], page 140)

minimal generating set of a homogeneous ideal resp. module or an ideal resp. module
in a local ring (see Section 5.1.62 [minbase], page 141)

set of minors of a matrix (see Section 5.1.63 [minor], page 141)

Chapter 4:

modulo

mres

mstd

mult

ncols
preimage
ghweight
quotient
reduce

res

simplify
size
sortvec
sres

std

stdfglm

stdhilb
subst
8yz

vdim

weight

4.3 int

Data types 54

represents (hl + h2)/h1 = h2/(h1 N h2) (see Section 5.1.65 [modulo], page 143)

minimal free resolution of an ideal resp. module, also minimizing the given ideal resp.
module (see Section 5.1.67 [mres], page 144)

standard basis and minimal generating set of an ideal (see Section 5.1.68 [mstd],
page 145)

multiplicity resp. degree of the ideal of leading terms (see Section 5.1.69 [mult],
page 145)

number of columns (see Section 5.1.72 [ncols|, page 147)

preimage under a ring map (see Section 5.1.85 [preimage], page 155)
quasihomogeneous weights of an ideal (see Section 5.1.89 [ghweight], page 157)
ideal quotient (see Section 5.1.91 [quotient], page 158)

normalform with respect to a standard basis (see Section 5.1.94 [reduce], page 161)

minimal free resolution of an ideal resp. module but not changing the given ideal resp.
module (see Section 5.1.96 [res], page 162)

simplify a set of polynomials (see Section 5.1.101 [simplify], page 165)

number of non-zero generators (see Section 5.1.102 [size], page 166)

permutation for sorting ideals resp. modules (see Section 5.1.103 [sortvec]|, page 167)
free resolution of a standard basis (see Section 5.1.104 [sres|, page 167)

standard basis computation (see Section 5.1.106 [std], page 169)

standard basis computation with fglm technique (see Section 5.1.107 [stdfglm],
page 170)

Hilbert driven standard basis computation (see Section 5.1.108 [stdhilb], page 171
substitute a ring variable (see Section 5.1.109 [subst], page 171)
computation of the first syzygy module (see Section 5.1.111 [syz], page 173)

vector space dimension of basering modulo ideal of leading terms (see Section 5.1.118
[vdim], page 176)

optimal weights (see Section 5.1.120 [weight], page 177)

Variables of type int represent the machine integers and are, therefore, limited in their range
(e.g., the range is between -2147483647 and 2147483647 on 32-bit machines). They are mainly used
to count things (dimension, rank, etc.), in loops (see Section 5.2.5 [for|, page 181), and to represent
boolean values (FALSE is represented by 0, every other value means TRUE, see Section 4.3.5
[boolean expressions|, page 58).

Integers consist of a sequence of digits, possibly preceded by a sign. A space is considered as
a separator, so it is not allowed between digits. A sequence of digits outside the allowed range is
converted to the type number if possible.

Chapter 4: Data types 55

4.3.1 int declarations

Syntax: int name = int_expression ;

Purpose: defines an integer variable.

Default: 0
Example:
int i = 42;
int j =1+ 3; j;
— 45
i=1i=*3-3j; 1i;
— 81
int k; // assigning the default value O to k
k;
— 0

4.3.2 int expressions

ANl ol

An int expression is:

a sequence of digits (if the number represented by this sequence is too large to fit into the
range of integers it is automatically converted to the type number, if a basering is defined)

an identifier of type int

a function returning int

int expressions combined by the arithmetic operations +, -, *, div, /, % (mod), or ~
a boolean expression

a type cast to int

Note: Variables of type int represent the compiler integers and are, therefore, limited in their

range (see Section 6.1 [Limitations], page 190). If this range is too small the expression must be
converted to the type number over a ring with characteristic 0.

Example:

12345678901 ;

— 7 12345678901 greater than 2147483647 (max. integer representatio
— n)

— ? error occurred in Z line 1: 12345678901;°¢
typeof (1) ;

— none

ring r=0,x,dp;

12345678901 ;

— 12345678901

typeof (L) ;

— number

// Note: 11%13*17x100%200%2000%503*1111%222222

// returns a machine integer:

Chapter 4: Data types 56

e

1%13*17*100%200*%2000*503*1111%222222;

// ** int overflow(*), result may be wrong

// ** int overflow(*), result may be wrong

// ** int overflow(*), result may be wrong

// ** int overflow(*), result may be wrong
-1875651584

// using the type cast number for a greater allowed range
number (11) #*13*17x100%200%2000*%503%1111%222222;

— 12075748128684240000000

ring rp=32003,x,dp;

11111

12345678901 ;

— 9603

typeof (1) ;

— number

intmat m[2] [2] = 19293’4;

m;

— 1,2,

= 3,4

m[2,2];

— 4

typeof (1) ;

— int

det (m) ;

= =2

m[1,1] + m[2,1] == trace(m);

= 0

1 0;

= 1

1 and 2;

= 1

intvec v = 1,2,3;

def d =transpose(v)*v; // scalarproduct gives an 1x1 intvec
typeof (d) ;

— intvec

int i = d[1]; // access the first (the only) entry in the intvec
ring rr=31,(x,y,z),dp;

poly £ = 1;

i = int(f); // cast to int

// Integers may be converted to constant polynomials by an assignment,
poly g=37;

// define the constant polynomial g equal to the image of
// the integer j in the actual coefficient field, here it equals 6

g
— 6

See Section 4.11 [number], page 86; Section 3.4.5 [Type conversion and casting], page 34.

4.3.3 int operations

++ changes its operand to its successor, is itself no int expression

Chapter 4: Data types 57

- changes its operand to its predecessor, is itself no int expression
+ addition

- negation or subtraction

* multiplication
div, / integer division (omitting the remainder)
%, mod integer modulo (the remainder of the division)
T, Kk exponentiation (exponent must be non-negative)
<, >, <=, >= == <>
comparison
Note: An assignment j=i++; or j=i--; is not allowed, in particular it does not change the

value of j, see Section 6.1 [Limitations], page 190.

Note: / might no longer be available in the future.

Example:

int i=1;
int j;
it+; i; 0 di--; i

I

1
++ and -- do not return a value as in C, the variable j is unchanged
= i++; j; 1i;

? right side is not a datum

? error occurred in Z line 5: j

it+; §s i5¢

i--5 5 1i;
? right side is not a datum

11111119317
N O

? error occurred in Z line 6: ‘j = i-—; j; 1i;°
0
— 1
i+2, 2-i, 572;
— 3 1 256
5 div 2, 8%3;
— 2 2
1<2, 2<=2;
— 11

4.3.4 int related functions

char characteristic of the coefficient field of a ring (see Section 5.1.4 [char|, page 105)
deg degree of a poly resp. vector (see Section 5.1.14 [deg], page 111)
det determinant (see Section 5.1.17 [det], page 113)

Chapter 4: Data types 58

dim

extgced
find
ged
koszul
memory

mult

ncols
npars

nrows

nvars
ord
par

pardeg

prime

random

regularity

rvar

size
trace
var

vdim

Krull dimension of basering modulo ideal resp. module of leading terms (see Sec-
tion 5.1.19 [dim], page 114)

Bezout representation of ged (see Section 5.1.25 [extged], page 117)
position of a substring in a string (see Section 5.1.31 [find], page 121)
greatest common divisor (see Section 5.1.34 [gcd], page 123)

Koszul matrix (see Section 5.1.51 [koszul], page 134)

memory usage (see Section 5.1.61 [memory], page 141)

multiplicity of an ideal resp. module of leading terms (see Section 5.1.69 [mult],
page 145)

number of columns (see Section 5.1.72 [ncols], page 147)
number of ring parameters (see Section 5.1.73 [npars|, page 148)

number of rows of a matrix resp. the rank of the free module where the vector or
module lives (see Section 5.1.75 [nrows|, page 149)

number of ring variables (see Section 5.1.76 [nvars], page 150)
degree of the leading term of a poly resp. vector (see Section 5.1.79 [ord], page 153)
n-th paramter of the basering (see Section 5.1.81 [par]|, page 154)

degree of a number considered as a polynomial in the ring parameters (see Section 5.1.82
[pardeg], page 154)

the next lower prime (see Section 5.1.86 [prime], page 156)

a pseudo random integer between the given limits (see Section 5.1.92 [random],
page 159)

regularity of a resolution (see Section 5.1.95 [regularity], page 161)

test, if the given expression or string is a ring variable (see Section 5.1.99 [rvar],
page 164)

number of elements in an object (see Section 5.1.102 [size]|, page 166)
trace of an integer matrix (see Section 5.1.112 [trace], page 174)
n-th ring variable of the basering (see Section 5.1.116 [var]|, page 176)

vector space dimension of basering modulo ideal resp. of freemodule modulo module of
leading terms (see Section 5.1.118 [vdim], page 176)

4.3.5 boolean expressions

A boolean expression is really an int expression used in a logical context:

An int expression (<> 0 evaluates to TRUE (represented by 1), 0 represents FALSE)

The following is the list of available comparisons of objects of a same type.

Note: There are no comparisons for ideals and modules, resolution and maps.

Chapter 4: Data types 59

1. an integer comparison:

1==j
i |

i j // or i <> j
ix<=j
i>=]
i>j
i<
2. a number comparison:
==n
!=n // or m<>n
<n
>n
<=n
m>=n

588 BB

For numbers from Z/p or from field extensions not all operations are useful:

- 0 ist always the smallest element,

- in Z/p the representatives in the range -(p-1)/2..(p-1)/2 when p>2 resp. 0 and 1 for p=2 are
used for comparisons,

- in field extensions the last two operations (>=,<=) yield always TRUE (1) and the < and >
are equivalent to !=.

3. a polynomial or vector comparison:

f == g
fl=g // or f<og
f<=g // comparing the leading term w.r.t. the monomial order
f< g
f>=g
£f> g
4. an intmat or matrix comparison:
v ==
vi=w // or v <>w

5. an intvec or string comparison:
f == g
=g // or f<og
g

f

f <= // comparing lexicographically

f>=g // w.r.t. the order specified by ASCII
f> g

f< g

6. boolean expressions combined by boolean operations (and, or, not)

Note: All arguments of a logical expressions are first evaluated and then the value of the logical
expression is determined. For example, the logical expressions (a || b) is evaluated by first
evaluating a and b, even though the value of b has no influence on the value of (a || b), ifa
evaluates to true.

Note that this evaluation is different from the left-to-right, conditional evaluation of logical
expressions (as found in most programming languages). For example, in these other languages,
the value of (1 || b) is determined without ever evaluating b.

See Section 6.2 [Major differences to the C programming language|, page 190.

4.3.6 boolean operations

Chapter 4: Data types 60

and logical and, may also be written as &&
or logical or, may also be written as | |
not logical not, may also be written as !

The precedence of the boolean operations is:

1. parentheses

2. comparisons

3. not

4. and

5. or

Example:
(1>2) and 3;
— 0
1 > 2 and 3;
— 0
' 0 or 1;
— 1
1(0 or 1);
— 0

4.4 intmat

Integer matrices are matrices with integer entries. For the range of integers see Section 6.1
[Limitations|, page 190. Integer matrices do not belong to a ring, they may be defined without a
basering being defined. An intmat can be multiplied by and added to an int; in this case the int
is converted into an intmat of the right size with the integer on the diagonal. The integer 1, for
example, is converted into the unit matrix.

4.4.1 intmat declarations

Syntax: intmat name = intmat_expression ;
intmat name [rows] [cols] = intmat_expression ;
intmat name [rows] [cols] = list_of_int_expressions ;
rows and cols must be int expressions.

Purpose: defines an intmat variable.
Given a list of integers, the matrix is filled up with the first row from the left to
the right, then the second row and so on. If the int_list contains less than rows*cols
elements, the matrix is filled up with zeros; if it contains more elements, only the first
rows*cols elements are used.

Default: 0 (1 x 1 matrix)

Example:

Chapter 4: Data types 61

intmat im[3][5]=1,3,5,7,8,9,10,11,12,13;
im;

- 1,3,5,7,8,

— 9,10,11,12,13,

— 0,0,0,0,0

im[3,2];

— 0

intmat m[2] [3] = im[1..2,3..5]; // defines a submatrix
m;

H 5’7’8’

— 11,12,13

4.4.2 intmat expressions
An intmat expression is:

a list of int expressions, intvec expressions, or intmat expressions
an identifier of type intmat

a function returning intmat

intmat operations with int (+, -, *, div, %)

intmat operations (+, -, *)

S Gk N

a type cast to intmat

Example:

intmat Idm[3][3];
Idm +1; // add the unit intmat

1[31[2] = _,1,-2; // take entries from the last result

— 1,0

intmat m2[2] [3]=1,0,2,4,5,1;
transpose (m2) ;

— 1,4,

intvec vi1=1,2,4;
intvec v2=5,7,8;

mi=vil,v2; // £ill ml1 with v1 and v2

b b

b b

1118
~ e
~ 00 01 N

3
trace (mi*m2) ;

Chapter 4: Data types

See Section 4.11 [number], page 86; Section 3.4.5 [Type conversion and casting], page 34.

— 56

4.4.3 intmat operations

62

+ addition with intmat or int; the int is converted into a diagonal intmat

- negation or subtraction with intmat or int; the int is converted into a diagonal intmat
* multiplication with intmat, intvec, or int; the int is converted into a diagonal intmat
div,/ division of entries in the integers (omitting the remainder)

%, mod entries modulo int (remainder of the division)

<>, == comparison

intmat_expression [intvec_expressions, intvec_expression]

is an intmat entry, where the first index indicates the row and the second the column

Example:

intmat m[2][4] = 1,0,2,4,0,1,-1,0,3,2,1,-2;

m;
— 1,0,2,4,
— 0,1,-1,0

m[2,3]; // entry at row 2, col 3

= -1

size(m); // number of entries
— 8

intvec v = 1,0,-1,2;

m * v;

= 7,1

typeof (_);

— intvec

intmat mi1[4][3] = 0,1,2,3,v,1;

intmat m2 = m * mi;

m2; // 2 x 3 intmat

— -2,5,4,

= 4,-1,-1
m2%*10;

— -20,50,40,
~ 40,-10,-10
-m2;

— 2,-5,-4,
= -4,1,1
m2 % 2;

~ 0,1,0,
— 0,1,1
m2 div 2;
— -1,2,2,

// multiply each entry of m with 10;

Chapter 4: Data types 63

— 2,0,0

m2[2,1]; // entry at row 2, col 1

— 4

mi[2..3,2..3]; // submatrix

— 1021

m2 [nrows (m2) ,ncols(m2)]; // the last entry of intmat m2
— -1

4.4.4 intmat related functions

betti Betti numbers of a free resolution (see Section 5.1.3 [betti], page 104)
det determinant (see Section 5.1.17 [det], page 113)

ncols number of cols (see Section 5.1.72 [ncols], page 147)

nrows number of rows (see Section 5.1.75 [nrows]|, page 149)

random create a pseudo random intmat (see Section 5.1.92 [random]|, page 159)
size total number of entries (see Section 5.1.102 [size], page 166)
transpose

transpose of an intmat (see Section 5.1.113 [transpose], page 174)

trace trace of an intmat (see Section 5.1.112 [trace]|, page 174)

4.5 intvec

Variables of type intvec are lists of integers. For the range of integers see Section 6.1 [Limita-
tions|, page 190. They may be used for simulating integers sets (and other sets if the intvec is used
as an index set for other objects). Addition and subtraction of an intvec with in int is done element
wise.

4.5.1 intvec declarations

Syntax: intvec name = intvec_expression ;

Purpose: defines an intvec variable.
An intvec consists of an ordered list of integers.

Default: 0
Example:
intvec iv=1,3,5,7,8;
iv;
- 1,3,5,7,8
iv[4];
=7

iv[3..size (iv)];
— 57 8

Chapter 4: Data types

4.5.2 intvec expressions
An intvec expression is:

a list of int expressions and of intvec expressions
a range: int expression .. int expression

a function returning intvec

intvec operations with int (+, -, *, /, %)

intvec operations (+, -)

intvec operation with intmat (*)

NS otk W

a type cast to intvec

Example:

intvec v=-1,2;

intvec w=v,v; // concatenation
W5

= -1,2,-1,2

w=-2..2,v,1;

W,

~ -2,-1,0,1,2,-1,2,1
intmat m[s:l [2] =0,1,2,-2,3,1;
m*v;

= 2,-6,-1

typeof (L) ;

— intvec

v = intvec(m);

v;

~ 0,1,2,-2,3,1

ring r;

poly f = x2z + 2xy-z;
f;

— x2z+2xy-z

v = leadexp(f);

v

— 2,0,1

4.5.3 intvec operations

+ addition with intvec or int (component-wise)

- negation or subtraction with intvec or int (component-wise)

* multiplication with int (component-wise)
/, div division with int (component-wise)

%, mod modulo (component-wise)

<>, ==, <=, >=, > <

comparison (done lexicographically)

64

Chapter 4: Data types 65

intvec_expression [int_expression]

Example:

is an element of the intvec; the first element has index one.

intvec iv = 1,3,5,7,8;
iv+l; // add 1 to each entry

—

2,4,6,8,9

iv*2;

—>
iv;
—

iv-

—

2,6,10,14,16

1,3,5,7,8
10;
-9,-7,-5,-3,-2

iv=iv,0;

iv;
—
iv
[

1,3,5,7,8,0
div 2;
0,1,2,3,4,0

iv+iv;, // componentwise addition

—

2,6,10,14,16,0

iv[size(iv)-1]; // last-1 entry

—>
int

8
vec iw=2,3,4,0;

iv==iw; // lexicographic comparision

—
iv
—
iv
—

0

< iw;
1

I= jw;
1

iv([2];

—>
iw

3
= 4,1,2;

iv[iw];

—

713

4.5.4 intvec related functions

hilb
indepSet
leadexp
nrows
ghweight
size

sortvec

returns Hilbert series as intvec (see Section 5.1.39 [hilb], page 125)

sets of independent variables of an ideal (see Section 5.1.42 [indepSet], page 127)
the exponent vector of the leading monomial (see Section 5.1.54 [leadexp], page 135)
number of rows (see Section 5.1.75 [nrows]|, page 149)

returns quasihgomogeneous weights (see Section 5.1.89 [qhweight], page 157)

length of the intvec (see Section 5.1.102 [size|, page 166)

permutation for sorting ideals/modules (see Section 5.1.103 [sortvec], page 167)

Chapter 4: Data types 66

transpose
transpose of an intvec, returns an intmat (see Section 5.1.113 [transpose], page 174)

weight returns weights for the weighted ecart method (see Section 5.1.120 [weight], page 177)

4.6 link

Links are the communication channels of SINGULAR, i.e., something SINGULAR can write to
and/or read from. Currently, SINGULAR supports four different link types:

ASCII links (see Section 4.6.4 [ASCII links], page 67)
MPfile links (see Section 4.6.5.1 [MPfile links|, page 69)
MPtcp links (see Section 4.6.5.2 [MPtcp links|, page 70)
DBM links (see Section 4.6.6 [DBM links|, page 73)

4.6.1 link declarations

Syntax: link name = string expression ;
Purpose: defines a new communication link.
Default: none

Example:

link 1=":w example.txt";

int i=22; // cf. ASCII links for explanation
string s="An int follows:";

write(1l,s,1i);

=

— // type : ASCII

— // mode : w

~ // name : example.txt
— // open : yes

~ // read : not ready
— // write: ready
close(1); //

— An int follows:
— 22

—
close(1l);

4.6.2 link expressions
A link expression is:

1. an identifier of type link
2. a string describing the link

Chapter 4: Data types 67

A link is described by a string which consists of two parts: a property string followed by a name
string. The property string describes the type of the link (ASCII, MPfile, MPtcp or DBM) and the
mode of the link (e.g., open for read, write or append). The name string describes the filename of
the link, resp. a network connection for MPtcp links.

For a detailed format description of the link describing string see:

for ASCII links: Section 4.6.4 [ASCII links], page 67
for MPfile links: Section 4.6.5.1 [MPfile links|, page 69
for MPtcp links: Section 4.6.5.2 [MPtcp links|, page 70
for DBM links: Section 4.6.6 [DBM links|, page 73

4.6.3 link related functions

close closes a link (see Section 5.1.8 [close], page 107)
dump generates a dump of all variables and their values (see Section 5.1.20 [dump], page 114)

getdump reads a dump (see Section 5.1.36 [getdump], page 124)

open opens a link (see Section 5.1.77 [open], page 150)

read reads from a link (see Section 5.1.93 [read], page 160)

status gets the status of a link (see Section 5.1.105 [status]|, page 168)
write writes to a link (see Section 5.1.121 [write], page 178)

kill closes and kills a link (see Section 5.1.49 [kill], page 133)

4.6.4 ASCII links

Via ASCII links data that can be converted to a string can be written into files for storage
or communication with other programs. The data is written in plain ASCII format. The output
format of polynomials is done w.r.t. the value of the global variable short (see Section 5.3.7 [short],
page 187). Reading from an ASCII link returns a string — conversion into other data is up to the
user. This can be done, for example, using the command execute (see Section 5.1.23 [execute],
page 117).

The ASCII link describing string has to be one of the following:

1. "ASCII: " + filename

the mode (read or append) is set by the first read or write command.
2. "ASCII:r " + filename

opens the file for reading.
3. "ASCII:w " + filename

opens the file for overwriting.

4. "ASCII:a " + filename
opens the file for appending.

There are the following default values:

Chapter 4: Data types 68

e the type ASCII may be omitted since ASCII links are the default links.

e if non of r, w, or a is specified, the mode of the link is set by the first read or write command
on the link. If the first command is write, the mode is set to a (append mode).

e if the filename is omitted, read reads from stdin and write writes to stdout.

Using these default rules, the string ":r temp" describes a link which is equivalent to the link
"ASCII:r temp": an ASCII link to the file temp which is opened for reading. The string "temp"
describes an ASCII link to the file temp, where the mode is set by the first read or write command.
See also the example below.

Note that the filename may contain a path. An ASCII link can be used either for reading or
for writing, but not for both at the same time. A close command must be used before a change
of I/O direction. Types without a conversion to string cannot be written.

Example:

ring r=32003, (x,y,z) ,dp;
link 1=":w example.txt"; // type is ASCII, mode is overwrite

=

— // type : ASCII

— // mode : w

~ // name : example.txt
~ // open : no

—

// read : not ready
~ // write: not ready
status(1l, "open", "yes"); // link is not yet opened

— 0

ideal i=x2,y2,z2;

write (1,1,";",2,";","ideal i=",i,";");

status(l, "open", "yes"); // now link is open

— 1

status(l, "mode"); // for writing

= W

close(1l); // link is closed
write("example.txt","int j=5;");// data is appended to file
read("example.txt"); // data is returned as string
1

2

ideal i=

x2,

y2,

z2

int j=5;

11111111111

execute read(l); // read string is executed
— 1
— 2

Chapter 4: Data types 69

— // ** redefining i *x
close(1l); // link is closed

4.6.5 MP links

MP (Multi Protocol) links give the possibility to store and communicate data in the binary MP
format: Read and write access is very fast compared to ASCII links. MP links can be established
using files (link type is MPfile) or using TCP sockets (link type is MPtcp). All data (including
such data that can not be converted to a string) can be written to an MP link. For ring-dependent
data, a ring description is written together with the data. Reading from an MP link returns an
expression (not a string) which was evaluated after the read operation. If the expression read from
an MP link is not from the same ring as the current ring, then a read changes the current ring.

Currently, MP links are only available on Unix platforms and data is written without at-
tributes (which is likely to change in future versions). For a general description of MP, see
http://symbolicnet.mcs.kent.edu/areas/mp.html.

4.6.5.1 MPfile links

MPfile links provide the possibility to store data in a file using the binary MP format. Read
and write operations are very fast compared to ASCII links. Therefore, for storing large amounts
of data, MPfile links should be used, instead of ASCII links. Unlike ASCII links, data read from
MPftile links is returned as expressions one at a time, and not as a string containing the entire
content of the file. Furthermore, ring dependent data is stored together with a ring description.
Therefore, reading ring-dependent data might change the current ring.

The MPfile link describing string has to be one of the following:

1. "MPfile: " + filename

the mode (read or append) is set by the first read or write command.
2. "MPfile:r " + filename

opens the file for reading.
3. "MPfile:w " + filename

opens the file for overwriting.

4. "MPfile:a " + filename
opens the file for appending.

There are the following default values:

e if none of r, w, or a is specified, the mode of the link is set by the first read or write command
on the link. If the first command is write, the mode is set to a (append mode).

Note that the filename may contain a path. An MP file link can be used either for reading or
for writing, but not for both at the same time. A close command must be used before a change
of I/O direction.

Example:

Chapter 4: Data types 70

ring r;

link 1="MPfile:w example.mp"; // type=MPfile, mode=overwrite
1;

— // type : MPfile

~ // mode : w

~ // name : example.mp

~ // open : no

— // read : not ready

— // write: not ready

ideal i=x2,y2,z2;
write (1,1, i, "hello world");// write three expressions

write(1,4); // append one more expression
close(1l); // link is closed

// open the file for reading now

read(1l); // only first expression is read
= 1

kill r; // no basering active now

def i = read(l); // second expression

// notice that current ring was set, the name was assigned
// automatically

listvar(ring);

+ // mpsr_r0 [0] *ring

def s = read(1); // third expression

listvar();

= // s [0] string hello world

~ // mpsr_r0 [0] x*ring

= // i [0] ideal, 3 generator(s)

= // 1 [0] 1link

+ // LIB [0] string standard.lib

close(1l); // link is closed
dump("MPfile:w example.mp"); // dump everything to example.mp
kill i, s; // kill i and s

getdump("MPfile: example.mp");// get previous dump

listvar(); // got all variables and values back
~ // mpsr_r0 [0] *ring

= // i [0] ideal, 3 generator(s)

= // s [0] string hello world

= // 1 [0] 1link

— // LIB [0] string standard.lib

4.6.5.2 MPtcp links

MPtcp links give the possibility to exchange data in the binary MP format between two processes
which may run on the same or on different computers. MPtcp links can be opened in four different
modes:

listen SINGULAR acts as a server.
connect SINGULAR acts as a client.

launch SINGULAR acts as a client, launching an application as server.

Chapter 4: Data types 71

fork SINGULAR acts as a client, forking another SINGULAR as server.

The MPtcp link describing string has to be

e listen mode:
1. "MPtcp:listen --MPport " + portnumber

SINGULAR becomes a server and waits at the port for a connect call.
e connect mode:
2. "MPtcp:connect —-MPport " + portnumber
3. "MPtcp:connect --MPhost" + hostname + " --MPport " + portnumber

SINGULAR becomes a client and connects to a server waiting at the host and port.
e launch mode:
4. "MPtcp:launch"
5. "MPtcp:launch --MPapplication " + application
6. "MPtcp:launch --MPhost " + hostname
7. "MPtcp:launch —-MPhost " + hostname + " --MPapplication " + application

SINGULAR becomes a client and starts the application on a different host which acts as a server.
e fork mode:
8. "MPtcp:fork"

SINGULAR becomes a client and forks another SINGULAR on the same host which acts as a
server.

There are the following default values:

e if none of listen, connect, launch or fork is specified, the default mode is set to fork.

e if no application is specified (in mode launch) the default application is the value of
system("Singular") + " -b". (This evaluates to the absolute path of the SINGULAR cur-
rently running with the option "-b" appended.

e if no hostname is specified the local host is used as default host.

To open an MPtcp link in launch mode, the application to launch must either be given with an
absolute pathname, or must be in a directory contained in the search path. The launched applica-
tion acts as a server, whereas the SINGULAR that actually opened the link acts as a client. SINGU-
LAR automatically appends the command line arguments "--MPmode connect —-MPhost hostname
—--MPport portnumber" to the command line of the server application. Both hostname and port-
number are substituted by the values from the link specification. The client "listens" at the given
port until the server application does a connect call. If SINGULAR is used as server application it
has to be started with the command line option -b. Since launching is done using rsh, the host on
which the application should run must have an entry in the .rhosts file. Even the local machine
must have an entry if applications should be launched locally.

If the MPtcp link is opened in fork mode a child of the current SINGULAR is forked. All variables
and their values are inherited by the child. The child acts as a server whereas the SINGULAR that
actually opened the link acts as a client.

To arrange the evaluation of an expression by a server, the expression must be quoted using
the command quote (see Section 5.1.90 [quote], page 158), so that a local evaluation is prevented.

Chapter 4: Data types 72

Otherwise, the expression is evaluated first, and the result of the evaluation is written, instead of
the expression which is to be evaluated.

If SINGULAR is in server mode, the value of the variable mp_11 is the MPtcp link connecting to
the client and SINGULAR is in an infinite read-eval-write loop until the connection is closed from
the client side (by closing its connecting link). Reading and writing is done to the link mp_11: After
an expression is read, it is evaluated and the result of the evaluation is written back. That is, for
each expression which was written to the server, there is exactly one expression written back. This
might be an "empty" expression, if the evaluation on the server side does not return a value.

MPtcp links should explicitly be opened before being used. MPtcp links are bidirectional, i.e.,
can be be used for both, writing and reading. Reading from an MPtcp link blocks until data was
written to that link. The status command can be used to check whether there is data to read.

Example:

LIB "general.lib"; // needed for "killall" command

link 1="MPtcp:launch";

open(1l); 1; // 1 is ready for writing but not for reading
// type : MPtcp

// mode : launch

// name :

// open : yes

// read : not ready

// write: ready

111111

ring r; ideal i=x2+y,xyz+z,x2+y2;

write (1,quote(std(eval(i)))); // std(i) is computed on server
def j = read(l);j; // result of computation on server is read

= jl1]==z

= jl2]=y2-y

= j[3]=x2+y2

write(1l, quote(getdump(mp_11))); // server reads dump

dump (1) ; // dump is written to server (includes proc’s)
read(1); // result of previous write-command is read
killall("not", "link"); killall("proc"); // kills eveything, but links
+ // ** killing the basering for level 0

write(1l, quote(dump(mp_11))); // server writes dump

getdump (1) ; // dump is read from server

read(1l); // result of previous write-command is read
close(1); // server is shut down

listvar(all); // same state as we had before "killall()"
~ // mpsr_r0 [0] ring

= // T [0] *ring

= // j [0] ideal, 3 generator(s)

= // i [0] ideal, 3 generator(s)

Chapter 4: Data types 73

= // 1 [0] 1link

1 = "MPtcp:"; // fork link declaration
open(1l); 1; // Notice that name is "parent"
— // type : MPtcp

— // mode : fork

— // name : parent

= // open : yes

— // read : not ready

— // write: ready

write(l, quote(status(mp_11, "name")));

read(1); // and name of forked link is '"child"

— child

write(l,quote(i)); // Child inherited vars and their values
read(l);

— _[1]=X2+y
= _[2]=xyz+z
= _[3]=x2+y2
close(1); // shut down forked child

4.6.6 DBM links

DBM links provide access to data stored in a data base. Each entry in the data base consists
of a (key_string, value string) pair. Such a pair can be inserted with the command write (link,
key_string, value_string). By calling write(link, key_string), the entry with key key_string is
deleted from the data base. The value of an entry is returned by the command read(link,
key_string). With only one argument, read (link) returns the next key in the data base. Using this
feature a data base can be scanned in order to access all entries of the data base.

If a data base with name name is opened for writing for the first time, two files (name.pag and
name.dir) are automatically created, which contain the data base.

The DBM link describing string has to be one of the following:

1. "DBM: " + name
opens the data base for reading (default mode).

2. "DBM:r " + name
opens the data base for reading.

3. "DBM:rw " + name
opens the data base for reading and writing.

Note, that name must be given without the suffix .pag ors .dir. The name may contain an
(absolute) path.

Example:

link 1="DBM:rw example";

Chapter 4: Data types 74

write(1,"1","abc");
write(1,"3","XYZ");
write(1,"2","ABC");

=

// type : DBM

// mode : rw

// name : example
// open : yes

// read : ready
// write: ready
close(1);

// read all keys (till empty string):
read(1);

— 1

read(l);

— 3

read(1);

— 2

read(1);

—

// read data corresponding to key "1"
read(1,"1");

— abc

// read all data:
read(1l,read(l));

— abc
read(l,read(1));

— XYZ
read(1l,read(1));

— ABC

// close

close(1);

111111

4.7 list

Lists are arrays whose elements can be of any type (including ring and qring). If one element
belongs to a ring the whole list belongs to that ring. This applies also to the special list #. The
expression 1ist () is the empty list.

Note that a list stores the objects itself and not the names. Hence, if L is a list, L[1] for example
has no name. A name, say R, can be created for L[1] by def R=L[1];. To store also the name of
an object, say r, it can be added to the list with nameof (r) ;. Rings and qrings may be objects of
a list.

Note: Unlike other assignments a ring as an element of a list is not a copy but another reference
to the same ring.

4.7.1 list declarations

Chapter 4: Data types

Syntax: list name = expression list;
list name = list_expression;

Purpose: defines a list (of objects of possibly different types).
Default: empty list

Example:
list 1=1,"str";
1[1]1;
= 1
1[2];
— str
ring r;
listvar(r);
= // r [0] #ring
ideal i = x72, y°2 + z"3;

[3]:
_[1]1=x2
_[2]=2z3+y2
listvar(r); // the list 1 belongs now to the ring r
r [0] x*ring
1 [0] 1ist, size: 3
i [0] ideal, 2 generator(s)

1111111
f

1117

//
//
//

4.7.2 list expressions
A list expression is:

the empty list 1ist ()

a list of expressions of any type

an identifier of type list

a function returning list

list expressions combined by the arithmetic operation +

AN o

a type cast to list

See Section 3.4.5 [Type conversion and casting], page 34.

Example:

list 1 = "hello",1;
1;
— [1]:

75

Chapter 4: Data types

1

—
— [2]:
—>
1 = 1list();

=

— empty list
ring r =0,x,dp;
factorize((x+1)"2);
— [1]:
— _[1]1=1
— _[2]=x+1
— [2]:
— 1,2
1list(1,2,3);
[1]:

1
[2]:

2
[3]:

3

111111

4.7.3 list operations

+ concatenation
delete deletes one element from list, returns new list
insert inserts or appends a new element to list, returns a new list

list_expression [int_expression]
is a list entry; the index 1 gives the first element.

Example:

list 11 1,"hello",list(-1,1);
list 12 = 1ist(1,2,3);
11 + 12; // one new list
[1]:
1
[2]:
hello
[3]:
[1]:
-1
[2]:
1

[4]:
1
[5]:
2

1111111111111

76

Chapter 4: Data types 7

ISII11111111111111

; // two lists

4.7.4 list related functions

bareiss

betti
delete
facstd

factorize

insert
lres
minres

mres

names
res
size

sres

returns a list of a matrix (lower triangular) and of an intvec (permutations of columns,
see Section 5.1.2 [bareiss], page 103)

Betti numbers of a resolution (see Section 5.1.3 [betti], page 104)
deletes an element from a list (see Section 5.1.16 [delete], page 112)

factorizing Groebner basis algorithm (see Section 5.1.26 [facstd], page 118)

list of factors of a polynomial (see Section 5.1.27 [factorize], page 119)

inserts or appends a new element to a list (see Section 5.1.43 [insert], page 128)
minimal resolution (see Section 5.1.59 [Ires], page 139)

minimize a free resolution (see Section 5.1.64 [minres|, page 142)

minimal free resolution of an ideal resp. module, also minimizing the first module (see
Section 5.1.67 [mres|, page 144)

list of all userdefined variable names (see Section 5.1.71 [names|, page 146)
minimal free resolution of an ideal resp. module (see Section 5.1.96 [res|, page 162)
number of entries (see Section 5.1.102 [size], page 166)

free resolution of an ideal resp. module given by a standard base (see Section 5.1.104
[sres], page 167)

Chapter 4: Data types 78

4.8 map

Maps are ring maps from a preimage ring into the basering. Note that the target of a map
is ALWAYS the actual basering. Maps between rings with different coefficient fields are possible,
coefficients are mapped in the following way:

°* Zlp—Q i, »i€[-p/2,p/2] C Z
o Zlpw Z[p'" i, € Z/p—~i€[-p/2,p/2| C Z, i— [i]y € Z/p'

and as usual:

Qw— Z/p

Qw (Z/p)(a,-..)
Q+— Qa,...)
Z[p— (Z/p)(a,...)

See Section 5.1.41 [imap], page 127; Section 5.1.28 [fetch], page 119; Section 5.1.109 [subst],
page 171.

4.8.1 map declarations

Syntax: map name = preimage_ring name , ideal expression ;

Purpose: defines a ring map from preimage_ring to basering.
Maps the variables of the preimage ring to the generators of the ideal. If the ideal
contains less elements than variables in the preimage ring the remaining variables are
mapped to 0, if the ideal contains more elements these are ignored. The image ring
is always the actual basering. For the mapping of coefficients from different fields see
Section 4.8 [map], page 78.

Default: none
Note: There are standard mappings for maps which are close to the identity map: fetch and
imap.

The name of a map serves as the function which maps objects from the preimage ring
into the basering. These objects must be defined by names (no evaluation in the
preimage ring is possible).
Example:

ring r1=32003, (x,y,2) ,dp;

ideal i=x,y,z;

ring r2=32003, (a,b),dp;

map f=rl,a,b,atb;

// maps from rl to r2,

// x > a
//'y ->b
// z => a+b
£f(i);

— _[1]=a

— _[2]=b

Chapter 4: Data types 79

= _[3]=a+b

// operations like f(i[1]) or f(i*i) are not allowed
ideal i=f(i);

// objects in different rings may have the same name
map g = r2,a2,b2;

map phi = g(£f);

// composition of map f and g

// maps from rl to r2,

// x -> a2

/]y —> b2

// z -> a2+b2

phi(i);

— _[1]=a2

= _[2]=b2

— _[3]=a2+b2

See Section 4.8 [map], page 78; Section 4.2.2 [ideal expressions], page 50; Section 4.16 [ring],
page 95; Section 5.1.41 [imap|, page 127; Section 5.1.28 [fetch], page 119.

4.8.2 map expressions
A map expression is:

1. an identifier of type map
2. a function returning map
3. map expressions combined by composition using parentheses ((,))

4.8.3 map operations

) composition of maps. If, for example, £ and g are maps, then f (g) is an map expression
giving the composition of £ and g.

map_expression [int_expressions]
is a map entry (the image of the corresponding variable)

Example:

ring r=0, (x,y),dp;
map f=r,y,x; // the map f permutes the variables

f;

— f[1]=y

— f[2]=x

poly p=x+2y3;

f(p);

— 2x3+y

map g=f (f); // the map g defined as £°2, the involtution of f

g;

Chapter 4: Data types

= glil=x
— gl2]l=y

g(p) == p;
— 1

4.9 matrix

80

Objects of type matrix are matrices with polynomial entries. Like polynomials they can only be
defined or accessed with respect to a basering. In order to compute with matrices having integer

or rational entries define a ring with characteristic 0 and at least one variable.

A matrix can be multiplied by and added to a poly; in this case the poly is converted into a

matrix of the right size with the poly on the diagonal.

If A is a matrix then the assignment module M=A; or module M=module(A); creates a module
generated by the columns of A. Note that the trailing zero columns of A may be deleted by module

operations with M.

4.9.1 matrix declarations

Syntax: matrix name [rows] [cols] = list_of poly_expressions ;
matrix name = matrix_expression ;

Purpose: defines a matrix (of polynomials).

The given poly_list fills up the matrix beginning with the first row from the left to
the right, then the second row and so on. If the poly_list contains less than rows*cols
elements, the matrix is filled up with zeros; if it contains more elements, then only
the first rows*cols elements are used. If the right-hand side is a matrix expression the
matrix on the left-hand side becomes the same size as the right-hand side, otherwise
the size is determined by the left-hand side. If the size is omitted a 1x1 matrix is

created.
Default: 0 (1 x 1 matrix)

Example:
int ro = 3;
ring r
poly f=xyz;
poly g=z*f;

ideal i=f,g,g"2;

matrix m[ro] [3]

m[1,1]=x3y4
m[1,2]=0
m[1,3]=xyz
m[2,1]=xyz2

m[2,3]=xyz
m[3,1]1=0
m[3,2]=0

1131111118

32003, (x,y,2) ,dp;

x3y4, 0, i, £ ; // a 3 x 3 matrix

m[2,2]=x2y2z4

Chapter 4: Data types 81

— m[3,3]=0

print (m) ;

— x3y4,0, Xyz,

— xyz2,x2y2z4,xyz,

= 0, O, 0

matrix A; // the 1 x 1 zero matrix

matrix B[2][2] = m[1..2, 2..3]; //defines a submatrix
print (B);

— 0, Xyz,

— x2y2z4,xyz

matrix C=m; // defines C as a 3 x 3 matrix equal to m

print (C);

— x3y4,0, Xyz,
— xyz2,x2y2z4,xyz,
— 0, O, 0

4.9.2 matrix expressions

A matrix expression is:

1. an expression list of poly expressions
2. an identifier of type matrix
3. a function returning matrix
4. maftrix expressions combined by the arithmetic operations +, - or *
5. a type cast to matrix
Example:

ring r=0, (x,y),dp;;

poly f= x3y2 + 2x2y2 +2;

matrix H = jacob(jacob(f)); // the Hessian of f
matrix mc = coef(f,y);

print(mc);
= y2, 1,
— x3+2x2,2
module MD = [x+y,1,x], [x+y,0,y];
matrix M = MD;

print (M) ;

= x+y,x+y,

— 1, 0,

= X, ¥y

4.9.3 matrix operations

+ addition with matrix or poly; the poly is converted into a diagonal matrix

- negation or subtraction with matrix or poly; the poly is converted into a diagonal
matrix

Chapter 4: Data types

* multiplication with matrix or poly; the poly is converted into a diagonal matrix

==, <>, |= comparison

matrix_expression [int_expression, int_expression]

82

is a matrix entry, where the first index indicates the row and the second the column

Example:

ring r=32003,x,dp;

matrix A[3]([3] = 1,3,2,5,0,3,2,4,5;
print (4);

— 1,3,2,

~ 5,0,3,

— 2,4,5

matrix E[3][3]; E=E + 1; // the unit matrix
matrix B =xxE - A;

print (B);

— x-1,-3,-2,

— =5, x, -3,

— =2, -4,x-5

det (B) ; // the characteristic polynomial of A
— x3-6x2-26x+29

AxAxA - 6 * AxA - 26%A == -29%E; // Cayley-Hamilton
= 1

vector v =[x,-1,x2];

Axv;

— _[1,1]=2x2+x-3

— _[2,1]=3x2+5x

— _[3,1]1=5x2+2x-4
matrix m[2] [2]=1,2,3;
print (m-transpose(m));
- 0,-1,

— 1,0

4.9.4 matrix related functions

bareiss Gauss-Bareiss algorithm (see Section 5.1.2 [bareiss], page 103)

coef matrix of coefficients and monomials (see Section 5.1.9 [coef], page 107)
coeffs matrix of coefficients (see Section 5.1.10 [coeffs], page 108)

det determinant (see Section 5.1.17 [det], page 113)

diff partial derivative (see Section 5.1.18 [diff], page 113)

jacob Jacobi matrix (see Section 5.1.46 [jacob], page 130)

koszul Koszul matrix (see Section 5.1.51 [koszul], page 134)
lift lift-matrix (see Section 5.1.56 [lift], page 137)

liftstd standard basis and transformation matrix computation (see Section 5.1.57 [liftstd],

page 137)

Chapter 4: Data types 83

minor set of minors of a matrix (see Section 5.1.63 [minor], page 141)
ncols number of columns (see Section 5.1.72 [ncols|, page 147)

nrows number of rows (see Section 5.1.75 [nrows], page 149)

print nice print format (see Section 5.1.87 [print], page 156)

size number of matrix entries (see Section 5.1.102 [size], page 166)
subst substitute a ring variable (see Section 5.1.109 [subst], page 171)
trace trace of a matrix (see Section 5.1.112 [trace], page 174)
transpose

transpose a matrix (see Section 5.1.113 [transpose|, page 174)

wedge wedge product (see Section 5.1.119 [wedge|, page 177)

4.10 module

Modules are submodules of a free module over the basering with basis gen(1), gen(2),
They are represented by lists of vectors which generate the submodule. Like vectors they can only
be defined or accessed with respect to a basering. If M is a submodule of R", R the basering,
generated by vectors vy, ..., v, then vy,...,v; may be considered as the generators of relations of
R™/M between the canonical generators gen(1),...,gen(n). Hence any finitely generated R-module
can be represented in SINGULAR by its module of relations. The assignments module M=v1,...,vk;
matrix A=M; creates the presentation matrix of size n x k for R"/M, i.e., the columns of A are the
vectors vy,...,v; which generate M (cf. Section B.1 [Representation of mathematical objects],
page 239).

4.10.1 module declarations

Syntax: module name = list_of vector_expressions ;
module name = module_expression ;

Purpose: defines a module.
Default: [0]
Example:

ring r=0,(x,y,z),(c,dp);
vector s1 = [x2,y3,z];

vector s2 = [xy,1,0];

vector s3 = [0,x2-y2,z];

poly £ = xyz;

module m = s1, s2-s1,f*(s3-s1);
m;

— m[1]=[x2,y3,z]

= m[2]=[-x2+xy,-y3+1,-z]

— m[3]=[-x3yz,-xy4z+x3yz-xy3z]

// show m in matrix format (columns generate m)
print (m) ;

— x2,-x2+xy,-x3yz,

— y3,-y3+1, -xy4z+x3yz-xy3z,

=z, -z, 0

Chapter 4: Data types 84

4.10.2 module expressions
A module expression is:

an expression list of vector expressions

an identifier of type module

a function returning module

module expressions combined by the arithmetic operation +
multiplication of a module expressions with an ideal or poly expression: *

S gk W

a type cast to module

See Section 4.2 [ideal], page 50; Section 4.12 [poly], page 89; Section 3.4.5 [Type conversion and
casting|, page 34; Section 4.18 [vector|, page 99.

4.10.3 module operations

+ addition (concatenation of the generators and simplification)
* multiplication with ideal or poly, but not ‘module‘’ * ‘module’

module_expression [int_expression , int_expression]
is a module entry, where the first index indicates the row and the second the column

module_expressions [int_expression]
is a vector, where the index indicates the column

Example:

ring r=0, (x,y,z),dp;
module m=[x,y], [0,0,z];
print (m* (x+y)) ;

— x2+xy,0,

= xy+y2,0,

— 0, XZ+yz

4.10.4 module related functions

coeffs matrix of coefficients (see Section 5.1.10 [coeffs], page 108)

degree multiplicity, dimension and codimension of the module of leading terms (see Sec-
tion 5.1.15 [degree], page 112)

diff partial derivative (see Section 5.1.18 [diff], page 113)

dim Krull dimension of free module over the basering modulo the module of leading terms

(see Section 5.1.19 [dim], page 114)

eliminate
elimination of variables (see Section 5.1.21 [eliminate], page 115)

Chapter 4: Data types 85

freemodule

groebner

hilb
homog
interred

intersect

jet
kbase

lead
1lift
liftstd

lres

minbase

modulo

mres

mult

ncols
nrows
print
prune

ghweight

quotient
reduce

res

simplify
size
sortvec
sres

std

the free module of given rank (see Section 5.1.33 [freemodule], page 122)

Groebner basis computation (a wrapper around std,stdhilb,stdfglm,...) (see Sec-
tion 5.1.37 [groebner|, page 124)

Hilbert function of a standard basis (see Section 5.1.39 [hilb], page 125)
homogenization with respect to a variable (see Section 5.1.40 [homog], page 126)

interreduction of a module (see Section 5.1.44 [interred], page 129)

module intersection (see Section 5.1.45 [intersect], page 130)
Taylor series up to a given order (see Section 5.1.47 [jet], page 131)

vector space basis of free module over the basering modulo the module of leading terms
(see Section 5.1.48 [kbase], page 132)

initial module (see Section 5.1.52 [lead], page 134)
lift-matrix (see Section 5.1.56 [lift], page 137)

standard basis and transformation matrix computation (see Section 5.1.57 [liftstd],
page 137)

minimal resolution (see Section 5.1.59 [Ires], page 139)

minimal generating set of a homogeneous ideal resp. module or an ideal resp. module
over a local ring

represents (hl + h2)/h1l = h2/(h1 N h2) (see Section 5.1.65 [modulo], page 143)

minimal free resolution of an ideal resp. module, also minimizing the given module (see
Section 5.1.67 [mres], page 144)

multiplicity resp. degree of the module of leading terms (see Section 5.1.69 [mult],
page 145)

number of columns (see Section 5.1.72 [ncols], page 147)

number of rows (see Section 5.1.75 [nrows]|, page 149)

nice print format (see Section 5.1.87 [print], page 156)

minimize the embedding into a free module (see Section 5.1.88 [prune], page 157)

quasihomogeneous weights of an ideal resp. module (see Section 5.1.89 [ghweight],
page 157)

ideal quotient (see Section 5.1.91 [quotient], page 158)
normalform with respect to a standard basis (see Section 5.1.94 [reduce], page 161)

minimal free resolution of an ideal resp. module but not changing the given ideal resp.
module (see Section 5.1.96 [res], page 162)

simplify a set of vectors (see Section 5.1.101 [simplify], page 165)

number of non-zero generators (see Section 5.1.102 [size], page 166)
permutation for sorting ideals/modules (see Section 5.1.103 [sortvec], page 167)
free resolution of a standard basis (see Section 5.1.104 [sres|, page 167)

standard basis computation (see Section 5.1.106 [std], page 169, Section 5.1.57 [liftstd],
page 137)

Chapter 4:

subst
syz

vdim

weight

Data types 86

substitute a ring variable (see Section 5.1.109 [subst], page 171)
computation of the first syzygy module (see Section 5.1.111 [syz], page 173)

vector space dimension of free module over the basering modulo module of leading
terms (see Section 5.1.118 [vdim], page 176)

"optimal" weights (see Section 5.1.120 [weight], page 177)

4.11 number

Numbers are elements from the coefficient field. They can only be defined or accessed with
respect to a basering which determines the coefficient field.

4.11.1 number declarations

number name = number_expression ;

Syntax:

Purpose: defines a number.
Default: 0

Example:

ring r = 32003, (x,y,2) ,dp;
number n = 4/6;
n;

— -10667

ring r0 = 0,x,dp;
number n = 4/6;
n;

— 2/3

ring R=real,x,dp;
number n=4/6;

n;

— 6.667e-01
n=0.25e+2;

n;

— 2.500e+01

4.11.2 number expressions

A number expression is:

1. arational number (there are NO spaces allowed inside a rational number, see Section 4.3.2 [int
expressions|, page 55)

2. a floating point number (if the coefficient field is real):
<digits>. <digits>e<sign><digits>

3. an identifier of type number
. a function returning number

. an int expression (see Section 3.4.5 [Type conversion and casting], page 34)

Chapter 4: Data types

6. number expressions combined by the arithmetic operations +, -, *, /, =, or **.

7. a type cast to number

Example:

// the following expressions are in any ring int expressions
2/ 3;

— 0

4/ 8;

= 0

2 /2; // the notation of / for div might change in the future
— 1

ring r0=0,x,dp;

2/3, 4/8, 2/2 ; // are numbers

— 2/3 1/2 1

poly f = 2x2 +1;
leadcoef (f);

— 2

typeof () ;

— number

ring rr =real,x,dp;
1.7e-2; 1.7e+2; // are valid (but 1.7e2 not), if the field is ‘real
= 1.700e-02

= 1.700e+02

ring rp = (31,t),x,dp;
2/3, 4/8, 2/2 ; // are numbers
= (11) (-15) (1)

poly g = (3t2 +1)*x2 +1;
leadcoef(g);

— (3t2+1)

typeof (L) ;

— number

par(1);

= (t)

typeof (1) ;

— number

See Section 4.16 [ring], page 95; Section 3.4.5 [Type conversion and casting], page 34.

4.11.3 number operations

addition

negation or subtraction
multiplication

division

power, exponentiation (by an integer)

87

Chapter 4: Data types 88

comparison

Note: quotient and exponentiation is only recognized as a number expression is if is already a
number, see Section 6.3 [Miscellaneous oddities], page 193.
To acces the denominator or nominator of a rtional number see Chapter 6 [Tricks and pitfalls],
page 190.
For the behavior of comparison operators in rings with basering different from real or the rational
numbers, see Section 4.3.5 [boolean expressions|, page 58.

Example:

ring r=0,x,dp;

number n = 1/2 +1/3;

n;

— 5/6

n/2;

— 5/12

1/2/3;

— 1/6

1/2 * 1/3;

— 1/6

n=2;

n"-2;

— 1/4

// the following oddities appear here
2/(2+3);

— 0

number (2)/(2+3) ;

— 2/5

2°-2;

— 7 exponent must be non-negative
— ? error occurred in Z line 12: ‘2°-2;°¢
number (2) "-2;

— 1/4

3/4>=2/5;

— 1

2/6==1/3;

— 1

4.11.4 number related functions

cleardenom
cancels denominators of numbers in poly and divide by its content (see Section 5.1.7
[cleardenom], page 107)

leadcoef coefficient of the leading term (see Section 5.1.53 [leadcoef], page 135)
par n-th parameter of the basering (see Section 5.1.81 [par|, page 154)
pardeg degree of a number in ring parameters (see Section 5.1.82 [pardeg], page 154)

Chapter 4: Data types 89

parstr string form of ring parameter (see Section 5.1.83 [parstr]|, page 155)

4.12 poly

Polynomials are the basic data for all main algorithms in SINGULAR. They consist of finitely
many terms (coefficient*power product) which are combined by the usual polynomial operations
(see Section 4.12.2 [poly expressions|, page 89). Polynomials can only be defined or accessed with
respect to a basering which determines the coefficient type, the names of the indeterminants and
the monomial ordering.

ring r=32003, (x,y,z) ,dp;
poly f=x3+y5+z2;

4.12.1 poly declarations

Syntax: poly name = poly_expression ;
Purpose: defines a polynomial.
Default: 0

Example:
ring r = 32003, (x,y,z) ,dp;
poly s1 = x3y2+151x5y+186xy6+169y9;
poly s2 = 1*x"2%y~2%z"2+3z8;
poly s3 5/4x4y2+4/5*x*y~5+2x2y2z3+y7+11x10;
int a,b,c,t=37,5,4,1;
poly f=3*x"a+x*y~ (b+c)+t*x"a*xy b*z"c;

4.12.2 poly expressions
A poly expression is (optional parts in square brackets):

1. a monomial (there are NO spaces allowed inside a monomial)
[coefficient] ring_variable [exponent] [ring_variable [exponent] ...]

monomials which contain an indexed ring variable must be built from ring_variable and
coefficient with the operations * and ~

an identifier of type poly
a function returning poly
poly expressions combined by the arithmetic operations +, -, *, /, or ~

Uk N

a type cast to poly

Example:

2x, x3, 2x2y3, xyz, 2xy2; // are monomials
2xx, x"3, 2*x"2%y~3, x*y*z, 2*x*y~2; // are poly expressions

Chapter 4: Data types

2xx(1); // is a valid poly expression, but not 2x(1) (a syntax error)

2xx~3; // is a valid poly expression equal to 2x3 (a valid monomial)
// but not equal to 2x"3 which will be interpreted as (2x)"3
// since 2x is a monomial

ring r=0, (x,y) ,dp;

poly f = 10x2y3 +2x2y2-2xy+y -x+2;

lead(f);

> 10x2y3

simplify(f,1); // normalize leading coefficient

> x2y3+1/5x2y2-1/5xy-1/10x+1/10y+1/5

poly g = 1/2x2 + 1/3y;

cleardenom(g) ;

— 3x2+2y

int i = 102;

poly(i);

— 102

typeof (L) ;

— poly

See Section 4.16 [ring], page 95; Section 3.4.5 [Type conversion and casting], page 34.

4.12.3 poly operations

/

, Xk

<, <=,

addition

negation or subtraction

multiplication

division by a monomial, non divisible terms yield 0
power by an integer

>, >=, == <
comparison (of leading terms w.r.t. monomial ordering)

poly_expression [intvec_expression]

the monomial at the indicated place w.r.t. the monomial order

Example:

ring R=0, (x,y),dp;

poly £ = x3y2 + 2x2y2 + xy - x +y + 1;
f;

= x3y2+2x2y2+xy-x+y+1

f + xb + 2;

— x5+x3y2+2x2y2+xy-x+y+3

f * x2;

— xby2+2x4y2+x3y-x3+x2y+x2
(x+y) /x;

= 1

f/3x2;

90

Chapter 4: Data types

— 1/3xy2+2/3y2

x5 > f;

— 1

x<=y;

— 0

X>y;

— 1

ring r=0, (x,y),ds;
poly £ = fetch(R,f);
f;

= 1-x+y+xy+2x2y2+x3y2
xb > f;

— 0

f[2..4];

= —x+y+xy

size(f);

— 6

f[size(f)+1]; f[-1]; // monoms out of range are 0
— 0

— 0

intvec v = 6,1,3;
flvl; // the polynom built from the 1st, 3rd and 6th monom of f
= 1+y+x3y2

4.12.4 poly related functions

91

cleardenom
cancels denominators of numbers in poly and divide by its content (see Section 5.1.7
[cleardenom], page 107)

coef matrix of coefficients and monomials (see Section 5.1.9 [coef], page 107)

coeffs matrix of coefficients (see Section 5.1.10 [coeffs], page 108)

deg degree (see Section 5.1.14 [deg], page 111)

det determinant (see Section 5.1.17 [det], page 113)

diff partial derivative (see Section 5.1.18 [diff], page 113)

extged Bezout representation of ged (see Section 5.1.25 [extged], page 117)

factorize
factorize polynomial (see Section 5.1.27 [factorize], page 119)

finduni find univariate polynomials in a zero dimensional ideal (see Section 5.1.32 [finduni],
page 122)

ged greatest common divisor (see Section 5.1.34 [gcd], page 123)

homog homogenization (see Section 5.1.40 [homog], page 126)

jacob ideal resp. matrix of all partial derivatives (see Section 5.1.46 [jacob], page 130)

lead leading monomial (see Section 5.1.52 [lead], page 134)

leadcoef coefficient of the leading term (see Section 5.1.53 [leadcoef], page 135)

leadexp

the exponent vector of the leading monomial (see Section 5.1.54 [leadexp], page 135)

Chapter 4:

Data types 92

jet monomials with degree smaller k+1 (see Section 5.1.47 [jet], page 131)
ord degree of the leading monomial (see Section 5.1.79 [ord], page 153)
ghweight quasihomogenous weights (see Section 5.1.89 [ghweight], page 157)
reduce normal form with respect to a standard base (see Section 5.1.94 [reduce], page 161)
rvar test for ring variable (see Section 5.1.99 [rvar|, page 164)

simplify mnormalize a polynomial (see Section 5.1.101 [simplify], page 165)
size number of monomials (see Section 5.1.102 [size], page 166)

subst substitute a ring variable (see Section 5.1.109 [subst], page 171)
trace trace of a matrix (see Section 5.1.112 [trace]|, page 174)

var the indicated variable of the ring (see Section 5.1.116 [var|, page 176)
varstr variable in string form (see Section 5.1.117 [varstr], page 176)

4.13 proc

Procedures are sequences of SINGULAR commands in a special format. They are used to extend
the set of SINGULAR commands with user defined commands. Once a procedure is defined it can be
used as any other SINGULAR command. Procedures may be defined by either typing them on the
command line or by loading them from a file. For a detailed description on the concept of procedures
in SINGULAR see Section 3.6 [Procedures|, page 40. A file containing procedure definitions which
comply with certain syntax rules is called a library. Such a file is loaded using the command LIB.
For more information on libraries see Section 3.7 [Libraries|, page 44.

4.13.1 proc declaration

Syntax:

Purpose:

Example:

[static] proc proc_name [parameter_list]
["help_text"]
{
procedure_body
}
[example
{
sequence_of_commands;

3]

defines a new function, the proc proc_name, with the additional information help_text,
which is copied to the screen by help proc_name; and the example section which is
executed by example proc_name;.

The help_text, the parameter_list, and the example section are optional. The default
for a parameter_ list is (1ist #), see Section 3.6.3 [Parameter list], page 42. The help
and example sections are ignored if the procedure is defined interactively, i.e., if it was
not loaded from a file by a Section 5.1.55 [LIB], page 136 command.

Specifying static in front of the proc-definition (in a library file) makes this procedure
local to the library, i.e., accessible only for the other procedures in the same library,
but not for the users.

Chapter 4: Data types 93

proc milnor_number (poly p)
{
ideal i= std(jacob(p));
int m_nr=vdim(i);
if (m_nr<0)
{
"// not an isolated singularity";

}

return(m_nr) ; // the value of m_nr is returned

}

ring r1=0,(x,y,z),ds;
poly p=x"2+y~2+z"5;
milnor_number (p) ;

— 4

See Section 5.1.55 [LIB], page 136; Section 3.7 [Libraries], page 44; Section 3.6 [Procedures],
page 40

4.14 qring

SINGULAR offers the opportunity to calculate in quotient rings (factor rings), i.e., rings modulo
an ideal. The ideal has to be given as a standard basis. For a detailed description of the concept
of rings and quotient rings see Section 3.2 [Rings and orderings], page 20.

4.14.1 qring declaration

Syntax: gring name = ideal_expression ;
Default: none

Purpose: declares a quotient ring as the basering modulo ideal expression. Sets it as current
basering.

Example:

ring r=0,(x,y,2),dp;
ideal i=xy;

gring q=std(i);
basering;

— // characteristic : 0

~ // number of vars : 3

= // block 1 : ordering dp

= // : names Xy z
= // block 2 : ordering C

— // quotient ring from ideal

= _[1]l=xy

Chapter 4: Data types 94

4.15 resolution

The resolution type is intended as an intermediate representation which internally retains ad-
ditional information obtained during resolution computations. It furthermore enables the use of
partial results to compute, for example, Betti numbers or minimal resolutions. Like ideals and
modules, a resolution can only be defined w.r.t. a basering.

Note: to access the elements of a resolution, it has to be assigned to a list, which also completes
computations and may therefore take time, (resp. an access directly with the brackets [, 1 causes
implicitly a cast to a list).

4.15.1 resolution declarations

Syntax: resolution name = resolution_expression ;
Purpose: defines a resolution.
Default: none

Example:
ring R;
ideal i=z2,x;
resolution re=res(i,0);
re;
1 2 1 0
R <——R <—-R <—R

0 1 2 3
resolution not minimized yet

111111

betti(re);
— 1,1,0,

[3]:

—
=
— _[1]1=-z2*gen(1)+x*gen(2)
—
> _[1]1=0

4.15.2 resolution expressions
A resolution expression is:

1. an identifier of type resolution
2. a function returning a resolution
3. a type cast to resolution from a list of ideals resp. modules..

Chapter 4: Data types 95

See Section 3.4.5 [Type conversion and casting], page 34.

4.15.3 resolution related functions

betti Betti numbers of a resolution (see Section 5.1.3 [betti], page 104)

lres minimal resolution (see Section 5.1.59 [Ires], page 139)

minres minimize a free resolution (see Section 5.1.64 [minres|, page 142)

mres minimal free resolution of an ideal resp. module, also minimizing the given ideal resp.
module (see Section 5.1.67 [mres], page 144)

res minimal free resolution of an ideal resp. module but not changing the given ideal resp.
module (see Section 5.1.96 [res], page 162)

sres free resolution of a standard basis (see Section 5.1.104 [sres|, page 167)

4.16 ring

Rings are used to describe properties of polynomials, ideals etc. Almost all computations in
SINGULAR require a basering. For a detailed description of the concept of rings see Section 3.2
[Rings and orderings], page 20.

4.16.1 ring declarations

Syntax: ring name = coefficient_field, (names_of ring variables), (ordering) ;
Default: 32003, (x,y,2),(dp,C);

Purpose: declares a ring and sets it as the actual basering.

The coefficient_field is given by one of the following:

1. a non-negative int_expression less or equal 32003.
2. an expression_list of an int_expression and one or more names.
3. the name real.

The names_of ring variables is a list of names or indexed names.
The ordering is a list of block orderings where each block ordering is either

1p, dp, Dp, 1s, ds, or Ds optionally followed by a size parameter in parentheses.
wp, Wp, ws, Ws, or a followed by a weight vector given as an intvec_expression in parentheses.
M followed by an intmat_expresion in parantheses.

Ll e

cor C.

For the definition of the orderings, see Section 3.2.3 [Term orderings|, page 24, Section B.2
[Monomial orderings|, page 240.

Chapter 4: Data types 96

If one of coefficient_field, names_of ring variables, and ordering consists of only one entry, the
parentheses around this entry may be omitted.

4.16.2 ring related functions

charstr description of the coeffinet field of a ring (see Section 5.1.6 [charstr], page 106)

keepring move ring to next upper level (see Section 5.2.7 [keepring], page 182)

npars number of ring parameters (see Section 5.1.73 [npars|, page 148)

nvars number of ring variables (see Section 5.1.76 [nvars], page 150)

ordstr monomial ordering of a ring (see Section 5.1.80 [ordstr], page 154)

parstr names of all ring parameters or the name of the n-th ring parameter (see Section 5.1.83

[parstr], page 155)
qring quotient ring (see Section 4.14 [qring], page 93)
setring set a new basering (see Section 5.1.100 [setring], page 164)

varstr names of all ring variables or the name of the n-th ring variable (see Section 5.1.117
[varstr], page 176)

4.17 string

Variables of type string are used for output (almost every type can be "converted" to string)
and for creating new commands at runtime (see Section 5.1.23 [execute], page 117). They are also
return values of certain interpreter related functions (see Section 5.1 [Functions|, page 102). String
constants consist of a sequence of ANY characters (including newline!) between a starting " and
a closing ". There is also a string constant newline, which is the newline character. The + sign
"adds" strings, "" is the empty string (hence strings form a semigroup). Strings may be used to
comment the output of a computation or to give it a nice format. Strings may also be used for
intermediate conversion of one type into another.

string s="Hi";
string sl="a string with new line at the end"+newline;
string s2="another string with new line at the end

n.
b

s;sl;s2;

— Hi

— a string with new line at the end

—

— another string with new line at the end

—

ring r; ideal i=std(ideal(x,y"3));

"dimension of i =",dim(i),", multiplicity of i =",mult(i);

— dimension of i = 1 , multiplicity of i = 3

"dimension of i = "+string(dim(i))+", multiplicity of i = "+string(mult(i));
— dimension of i = 1, multiplicity of i = 3

nghgnpn s nen ;

— ab ¢

Chapter 4: Data types

97

A comma between two strings makes an expression list out of them (such a list is printed with
as a separating blank between), while a + concatenates strings.

4.17.1 string declarations

Syntax:
Purpose:
Default:

Example:

string name = string_expression ;

defines a string variable.

"M (the empty string)

string s1="Now I know";
string s2="how to encode a \" in a string...";
string s=si1+" "+s2; // concatenation of 3 strings

S5

— Now I know how to encode a " in a string...

sl,s2;

// 2 strings, separated by a blank in the output:

— Now I know how to encode a " in a string...

4.17.2 string expressions

A string expression is:

NS otk N

Example:

a type cast to string

a sequence of characters between two unescaped quotes (")
a list of string expressions

an identifier of type string

a function returning string

a substring (using the bracket operator)

string expressions combined by the operation +.

// string_expression[start, length] : a substring
// (possibly filled up with blanks)

// the substring of s starting at position 2

// with a length of 4

string s="123456";

s[2,4];
— 2345
"abcd"[2,2];

— bc

// string_expression[position] : a character from a string

s[3];
— 3

// string_expression[position..position]
// a substring starting at the first position up to the second

Chapter 4: Data types 98

// given position

s[2..4];

— 234

// a function returning a string
typeof (s);

— string

See Section 3.4.5 [Type conversion and casting], page 34.

4.17.3 string operations

+ concatenation

<=, >=, == <
comparison (lexicographic with respect to the ASCII encoding)

string_expression [int_expression]
is a character of the string; the index 1 gives the first character.

string_expression [int_expression, int_expression]
is a substring, where the first argument is the start index and the second is the length
of the substring, filled up with blanks if the length exceeds the total size of the string

string_expression [intvec_expression]
is a expression list of characters from the string

Example:

string s="abcde";
s[2];

— b

s[3,2];

— cd

">>”+S [1 s 10]+ll<<ll ;
— >>abcde <<
s[2]="BC"; s;

— aBcde

intvec v=1,3,5;
s=s[v]; s;

— ace

s="123456"; s=s[3..5]; s;
— 345

4.17.4 string related functions

charstr description of the coeffinet field of a ring (see Section 5.1.6 [charstr], page 106)
execute executing string as command (see Section 5.1.23 [execute], page 117)

find position of a substring in a string (see Section 5.1.31 [find], page 121)

Chapter 4: Data types 99

names

nameof
option
ordstr

parstr

read
size
typeof

varstr

list of strings of all userdefined variable names (see Section 5.1.71 [names], page 146)
name of an object (see Section 5.1.70 [nameof], page 146)

lists all defined options (see Section 5.1.78 [option], page 150)

monomial ordering of a ring (see Section 5.1.80 [ordstr], page 154)

names of all ring parameters or the name of the n-th ring parameter (see Section 5.1.83
[parstr]|, page 155)

read a file (see Section 5.1.93 [read], page 160)
length of a string (see Section 5.1.102 [size], page 166)
type of an object (see Section 5.1.115 [typeof], page 175)

names of all ring variables or the name of the n-th ring variable (see Section 5.1.117
[varstr], page 176)

4.18 vector

Vectors are elements of a free module over the basering with basis gen(1), gen(2), Each
vector belongs to a free module of rank equal to the biggest index of a generator with nonzero coeffi-
cient. Since generators with zero coefficients need not be written any vector may be considered also
as an element of a free module of higher rank. Like polynomials they can only be defined or accessed
with respect to this basering. (E.g., if f and g are polynomials then f*gen(1)+g*gen(3)+gen(4)
may also be written as [f,0,g,1] or as [f,0,g,1,0].). Note that the elements of a vector have
to be surrounded by square brackets ([, 1). (cf. Section B.1 [Representation of mathematical
objects], page 239)

4.18.1 vector declarations

Syntax:
Purpose:
Default:

Example:

vector name = vector_expression ;

defines a vector of polynomials (an element of a free module).

[0]

ring r=0,(x,y,z),(c,dp);

poly sl = x2;

poly s2 = y3;

poly s3 = z;

vector v = [s1, s2-s1, s3-sl1]+ sl*gen(5);

// v is a vector in the free module of rank 5
v,

— [x2,y3-x2,-x2+z,0,x2]

4.18.2 vector expressions

A vector expression is:

1. an identifier of type vector

Chapter 4: Data types 100

a function returning vector

a poly expression (via the canonical embedding p — p*gen(1))

vector expressions combined by the arithmetic operations + or -

a poly expression and a vector expression combined by the arithmetic operation *
a type cast to vector using the brackets [,]

A il o

Example:

// ordering gives priority to components:
ring rr=0, (x,y,z),(c,dp);

vector v=[x2+y3,2,0,x*y]+gen(6)*x6;

v;

~ [y3+x2,2,0,xy,0,x6]

vector w=[z3-x,3y];

v-w;

— [y3-z3+x2+x,-3y+2,0,xy,0,x6]

v*(z+x) ;

— [xy3+y3z+x3+x2z,2x+2z,0,x2y+xyz,0,x7+x62]

See Section 4.16 [ring], page 95; Section 3.4.5 [Type conversion and casting], page 34.

4.18.3 vector operations

+ addition
- negation or subtraction
/ division by a monomial, not divisible terms yield 0
<, <=, >, >= == <>
comparison of leading terms w.r.t. monomial ordering

vector_expression [int_expressions]
is a vector entry; the index 1 gives the first entry.

Example:

ring R=0, (x,y), (c,dp);
[x,yl-[1,x];

= [x-1,-x+y]
[1,2,x,4]1[3];

- ox

4.18.4 vector related functions

cleardenom
quotient of a vector by its content (see Section 5.1.7 [cleardenom], page 107)

Chapter 4:

coeffs
deg

diff
gen
homog
jet

lead
leadcoef
leadexp
nrows
ord
reduce
simplify
size

subst

Data types 101

matrix of coefficients (see Section 5.1.10 [coeffs], page 108)

degree (see Section 5.1.14 [deg], page 111)

partial derivative (see Section 5.1.18 [diff], page 113)

i-th generator (see Section 5.1.35 [gen], page 123)

homogenization (see Section 5.1.40 [homog], page 126)

k-jet: monomials with degree smaller k+1 (see Section 5.1.47 [jet], page 131)
leading monomial (see Section 5.1.52 [lead], page 134)

leading coefficient (see Section 5.1.53 [leadcoef], page 135)

the exponent vector of the leading monomial (see Section 5.1.54 [leadexp], page 135)
number of rows (see Section 5.1.75 [nrows]|, page 149)

degree of the leading monomial (see Section 5.1.79 [ord], page 153)

normal form with respect to a standard base (see Section 5.1.94 [reduce], page 161)
normalize a vector (see Section 5.1.101 [simplify], page 165)

number of monomials (see Section 5.1.102 [size], page 166)

substitute a ring variable (see Section 5.1.109 [subst], page 171)

Chapter 5: Functions and system variables 102

5 Functions and system variables

5.1 Functions

The general syntax of a function is
[target =] function_name (<arguments>);
If no target is specified, the result is printed.

In some cases (e.g. execute, export, keepring, kill, setring, type) the brackets are op-
tional. In the syntax of the commands help, break, quit, exit and LIB no brackets are allowed.

5.1.1 attrib

Syntax:
Type:

Purpose:

Example:

Syntax:
Type:

Purpose:

Example:

Syntax:
Type:

Purpose:

Example:

attrib (name)
none

displays the attribute list of the object called name.

ring r=0,(x,y,2),dp;
ideal I=std(maxideal(2));
attrib(I);

— attr:isSB, type int

attrib (name , string_expression)
any

returns the value of the attribute string_expression of the name. If the attribute is not
defined for this variable, attrib returns the empty string.

ring r=0, (x,y,2),dp;

ideal I=std(maxideal(2));

attrib(I,"isSB");

— 1

// although maxideal(2) is a standard basis,
// SINGULAR does not know it:
attrib(maxideal(2), "isSB");

= 0

attrib (name, string expression, expression)
none

sets the attribute string_expression of the name to the value expression.

ring r=0, (x,y,2),dp;

ideal I=maxideal(2); // the attribute "isSB" is not set
vdim(I);

— // **x I is no standardbasis

Chapter 5: Functions and system variables 103

— 4

attrib(I,"isSB",1); // the standard basis attribute is set here
vdim(TI);

— 4

Remark: An attribute may be described by any string_expression, but some are reserved. Only
the reserved attributes are used by the kernel of SINGULAR. Non-reserved attributes
may be used, however, in procedures and can considerably speed up computations.

Reserved attributes:

(not all are used at the moment)

isSB

isHomog
isCI
isCM
rank
withSB
withHilb
withRes
withDim
withMult

5.1.2 bareiss

standard basis - set by all commands compution a standard basis like
groebner, std, stdhilb etc.; used by lift, dim, degree, mult, hilb,
vdim, kbase

the weight vector for homogeneous or quasihomogeneous ideals/modules
complete intersection property

Cohen-Macaulay property

set the rank of a module (see Section 5.1.75 [nrows|, page 149)

value of type ideal resp. module is std

value of type intvec is hilb(_,1) (see Section 5.1.39 [hilb], page 125)
value of type list is a free resolution

value of type int is the dimension (see Section 5.1.19 [dim], page 114)
value of type int is the multiplicity (see Section 5.1.69 [mult], page 145)

Syntax: bareiss (matrix_expression)

Type: list of matrix and intvec

Purpose: applies Gauss-Bareiss algorithm (see Section C.5 [References]|, page 248) to a matrix
with an ’optimal’ pivotstrategy. Result is a list: the first entry is a lower triangular
matrix, the second entry an intvec with the permutations of the columns w.r.t. the
original matrix.

Example:

ring r2=0,(x(1..9)),ds;

matrix m[4] [5]=maxideal (1) ,maxideal(1);
print (m) ;

= x(1),x(2),x(3),x(4),x(5),

— x(6),x(7),x(8),x(9),x(1),

— x(2),x(3),x(4),x(5),x(86),

— x(7),x(8),x(9),0, 0

list 1lb=bareiss(m);

print (1b[1]);

= _[1,11,_[1,2],0, 0, 0,
— _[2,11,_[2,2],_[2,3], O, 0,
— _[3,11,_[3,2]1,x(6)*x(9),x(5)*x(9),0,

Chapter 5: Functions and system variables 104

— x(7), x(8), 0, 0, x(9)
1b[2];

— 1,2,5,4,3

1b[1]1[3,2];

— —x(4) *x(8)+x(3) *x(9)

See Section 5.1.17 [det], page 113; Section 4.9 [matrix], page 80.

5.1.3 betti

Syntax: betti (list_expression)
betti (resolution)

Type: intmat

Purpose: computes the graded Betti numbers of R"/M, if R denotes the basering and M a
homogeneous submodule of R" and the argument represents a resolution of R™/M:
The entry d of the intmat at place (i,j) is the minimal number of generators in degree
i+j of the j-th syzygy module (= module of relations) of R"/M (the 0-th (resp.l-st)
syzygy module of R"/M is R" (resp. M)). The argument is considered to be the result
of a res/sres/mres/Ires command. (Only the initial monomials are considered for the
computation of the graded Betti numbers.)

Example:

ring r=32003,(a,b,c,d) ,dp;

ideal j=bc-ad,b3-a2c,c3-bd2,ac2-b2d;

list T=mres(j,0); // 0 forces a full resolution

// a minimal set of generators for j:

print (T[1]);

— bc-ad,

— c¢3-bd2,

— ac2-b2d,

— b3-a2c

// second syzygy module of r/j which is the first

// syzygy module of j (minimal generating set):

print (T[2]);

— bd,c2,ac,b2,

— -a,-b,0, O,

— ¢, d, -b,-a,

~ 0, 0, -d,-c

// the second syzygy module (minimal generating set):

print (T[3]1);

— -b,

— a,

= -c,

— d

print (T[4]);

= 0

betti(T)
,0,0,0,
1,0,0,
3,4,1

b

b

b

Chapter 5: Functions and system variables 105

// most useful for reading off the graded Betti numbers:
print (betti(T),"betti");

— 0 1 2 3
|_> ______________________________
— 0 1 0 0 0
— 1 0 1 0 0
— 2 0 3 4 1
|_> ______________________________
— total: 1 4 4 1

Hence

e the Oth syzygy module of r/j (which is r) has 1 generator in degree 0 (which is 1)
e the 1st syzygy module T[1] (which is j) has 4 generators (one in degree 2 and three in degree

e the 2nd syzygy module T[2] has 4 generators (all in degree 4)
e the 3rd syzygy module T[3] has 1 generator in degree 5

where the generators are the columns of the shown matrix and degrees are assigned such that
the corresponding maps have degree 0 as is shown in the resolution below:

T T2l 4

0 r/j +— r(1) & r2) @ r3(3) & p4(4) L

«——r(5)«—0

See Section 5.1.59 [lres], page 139; Section 5.1.67 [mres|, page 144; Section 5.1.87 [print],
page 156; Section 5.1.96 [res], page 162; Section 5.1.104 [sres|, page 167; Section C.3 [Syzygies
and resolutions|, page 247; Section 4.15 [resolution], page 94.

5.1.4 char
Syntax: char (ring_ name)
Type: int
Purpose: returns the characteristic of the coefficient field of a ring.
Example:
ring r= 32003, (x,y) ,dp;
char(r);
— 32003
ring s= 0,(x,y),dp;
char(s);
= 0

ring ra=(7,a),(x,y),dp;
minpoly=a“~3+a+1;
char(ra);

= 7

ring rp=(49,a), (x,y) ,dp;
char (rp);

— 7

Chapter 5: Functions and system variables 106

ring rr=real,x,dp;
char(rr);
— 0

See Section 4.16 [ring], page 95; Section 5.1.6 [charstr], page 106.

5.1.5 char_series

Syntax: char_series (ideal expression)
Type: matrix

Purpose: the rows of the matrix represent the irreducible characteristic series of the ideal with
respect to the current variable ordering.
One applicatation is the decomposition of the zero set.
Example:
ring r= 32003, (x,y,2),dp;
print(char_series(ideal (xyz,xz,y)));
= Y,Z’
= X,y

See Section C.4 [Characteristic sets], page 247.

5.1.6 charstr

Syntax: charstr (ring name)
Type: string
Purpose: returns the description of the coefficient field of a ring.
Example:
ring r= 32003, (x,y) ,dp;
charstr(r);
— 32003
ring s= 0, (x,y),dp;
charstr(s);
— 0

ring ra=(7,a),(x,y),dp;
minpoly=a“~3+a+l;
charstr(ra);

— 7,a

ring rp=(49,a),(x,y),dp;
charstr (rp);

— 49,a

ring rr=real,x,dp;
charstr(rr);

— real

See Section 4.16 [ring], page 95; Section 5.1.4 [char], page 105; Section 5.1.80 [ordstr], page 154;
Section 5.1.117 [varstr], page 176.

Chapter 5: Functions and system variables 107

5.1.7 cleardenom

Syntax: cleardenom (poly_expression)
cleardenom (vector_expression)

Type: same as the input type

Purpose: multiplies a polynomial resp. vector by a suitable constant to cancel all denominators
from its coefficients and then divide it by its content.

Note:

Example:
ring r=0, (x,y,z),dp;
poly f=(3x+6y)"5;
f;
> 243x5+2430x4y+9720x3y2+19440x2y3+19440xy4+7776y5
cleardenom(f) ;
— x5+10x4y+40x3y2+80x2y3+80xy4+32y5

5.1.8 close

Syntax: close (link_expression) ;
Type: none
Purpose: closes a link.

Example:

link 1="MPtcp:launch";
open(1l); // start SINGULAR "server" on localhost in batchmode
close(1); // shut down SINGULAR server

See Section 4.6 [link], page 66; Section 5.1.77 [open], page 150.

5.1.9 coef

Syntax: coef (poly_expression, product_of ringvars)

Type: matrix

Syntax: coef (vector_expression, product_of ringvars, matrix_name, matrix name)
Type: none

Purpose: determines the monomials in f divisible by one of the ring variables of m (where f is the
first argument and m the second argument) and the coefficients of these monomails as
polynomials in the remaining variables.

First case: returns a 2 x n matrix M, n being the number of the determined mono-
mials. The first row consists of these monomials, the second row of the corresponding
coefficients of the monomials in f. Thus f = M[1,1]*M|2,1]+..+M[1,n]*M[2,n].

Second case: the first matrix (i.e. the 3rd argument) contains the monomials, the
second matrix (i.e. the 4th argument) the corresponding coefficients of the monomials
in the vector.

Chapter 5: Functions and system variables 108

Note: coef considers only monomials which really occur in f (i.e. are not 0), while coeffs
returns the coefficient 0 at the appropriate place if a monomial is not present (c.f.
Section 5.1.10 [coeffs], page 108).

Example:

ring r=32003, (x,y,z) ,dp;
poly f=x5+5x4y+10x2y3+y5;
matrix m=coef (f,y);
print (m) ;

= y5,y3, vy, 1,

— 1, 10x2,5x4,x5
f=x"20+xyz+xy+x2y+z3;
print (coef (f,xy));

— x20,x2y,Xy, 1,

= 1, 1, z+1,z3
vector v=[f,zy+77+xy];
print (v) ;

= [x20+x2y+xyz+z3+xy,xy+yz+77]
matrix mc; matrix mm;
coef (v,y,mc,mm) ;

print (mc) ;

= x2+xz+x,x20+z3,

= x+z, 77

print (mm) ;

= y,1,

= y,1

See Section 5.1.10 [coeffs]|, page 108.

5.1.10 coeffs

Syntax: coeffs (poly_expression , ring variable)
coeffs (ideal expression, ring variable)
coeffs (vector_expression, ring variable)
coeffs (module expression, ring variable)
coeffs (poly_expression, ring variable, matrix name)
coeffs (ideal expression, ring variable, matrix_name)
coeffs (vector_expression, ring variable, matrix_name)
coeffs (module_expression, ring_variable, matrix_name)

Type: matrix

Purpose: developes each polynomial from the first argument, say J, (poly_expression/ .. /mod-
ule_expression) as a univariate polynomial in the given ring_variable, say z, and returns
the coefficients as a k x d matrix M, where:

d-1 = maximum z-degree of all occuring polynomials

k = 1 in case J is a polynomial resp. number of generators in case J is an ideal; in
case of a vector or a module this procedure is repeated for each component and the
resulting matrices are appended.

If a third argument is present, say T, it contains the coefficients such that

matrix(J) = TxM.

Thus if M = (m;;) the j-th generator of an ideal J is equal to

Chapter 5: Functions and system variables 109

Note:

Example:

Syntax:

Type:

Purpose:

Example:

Jp=2"my;+ 2t maj+ .+ 25 my;,

while for a module J the i-th component of the j-th generator is equal to the entry [i,j]
of matrix(J) and we get

P 5] — S0 1 d—1
[’L,j] =z - m(i,]_)d+1,j + 2z - m(i,]_)d+2,j + ...+ 2z . mid,j

coeffs returns the coefficient 0 at the appropriate place if a monomial is not present,
while coef considers only monomials which really occur in the given expression.

ring r;

poly f=(x+y)~5;
matrix M=coeffs(f,y);
print (M) ;

x5,

bx4,

10x3,

10x2,

b5x,

1

ideal i=f,xyz+z"10%y~7;
print (coeffs(i,y));
x5, O,

bx4, xz,

10x3,0,

10x2,0,

bx, O,

111111

11111111

0, z10

coeffs (ideal expression, ideal expression, product_of ringvars)
coeffs (module expression, module expression, product_of ringvars)

matrix

let the first argument be M, the second argument be K (a set of monomials in P),
the third argument be the product P of variables to consider. M is supposed to be
consisting of elements of (resp. have entries in) a finitely generated module over a ring
in the variables not appearing in P. K should contain the generators of the module
over this smaller ring. Then coeffs(M,K,P) returns a matrix A of coefficients with
K*A=M such that the entries of A do not contain any variable from P.

If K does not contain all generators that are necessary to express M, then K¥A=M’
where M’ is the part of M that can be expressed.

ring r=32003, (x,y,z),dp;

ideal M=x2z+y3,xy;

print (coeffs(M,ideal (x2,xy,y2) ,xy));
= z,0,

— 0,1,

— 0,0

See Section 5.1.9 [coef], page 107; Section 5.1.48 [kbase|, page 132.

Chapter 5: Functions and system variables 110

5.1.11 contract

Syntax:
Type:

Purpose:

Example:

contract (ideal expression, ideal expression)
matrix

contracts each of the n elements of the second ideal J by each of the m elements of the
first ideal I, producing a m x n matrix.
Contraction is defined on monomials by:

zB=4) if B > A elementwise

tract(z2. 28) = .
contract(z”,z") {0, otherwise.

where A and B are the multiexponents of the ring variables represented by x. contract
is extended bilinearly to all polynomials.

ring r=0,(a,b,c,d),dp;
ideal I=a2,a2+bc,abc;
ideal J=a2-bc,abcd;
print (contract(I,J));
— 1,0,

— 0,ad,

— 0,d

See Section 5.1.18 [diff], page 113.

5.1.12 dbprint

Syntax:
Type:

Purpose:

Syntax:
Type:

Purpose:

Example:

dbprint (int_expression, expression_list)
none

applies the print command to each expression in the expression_list, if int_expression is
positive. dbprint may also be used in procedures in order to print results subject to
certain conditions.

dbprint (expression)
none

The print command is applied to the expression, if printlevel=>voice.

int debug=0;
intvec i=1,2,3;
dbprint (debug,i);
debug=1;

dbprint (debug,i);
— 1,2,3

voice;

— 1

printlevel;

— 0

dbprint (i) ;

Chapter 5: Functions and system variables 111

See Section 5.1.87 [print], page 156; Section 5.3.11 [voice], page 189; Section 5.3.6 [printlevel],
page 186; Section 3.8 [Debugging tools], page 46.

5.1.13 defined

Syntax: defined (name)

Type: int

Purpose: returns a value !=0 (TRUE) if there is a userdefined object with this name, and 0
(FALSE) otherwise.
A nonzero return value is the level where the object is defined (level 1 denotes the top

level, level 2 the level of a first procedure, level 3 the level of a procedure called by a
first procedure, etc.). A local object m may be identified by if (defined(m)==voice).
Example:

ring r= (0,t),(x,y),dp;

matrix m[5] [6]= x,y,1,2,0,x+y;

defined (mm) ;

— 0

defined(r) and defined(m);

= 1

defined(m)==voice; // m is defined in the current level

— 1

defined(x);

= -1

defined(z);

— 0

defined(t);

— -1

defined(42);

— -1

See Section 5.1.99 [rvar|, page 164; Section 5.3.11 [voice], page 189.

5.1.14 deg

Syntax: deg (poly_expression)
deg (vector_expression)

Type: int

Purpose: returns the maximal (weighted) degree of the terms of a polynomial or a vector;
deg(0) is -1.
Example:
ring r=0, (x,y,z),1p;
deg(0) ;
= -1
deg (x3+y4+xyz3) ;
— 5
ring rr=7,(x,y),wp(2,3);

Chapter 5: Functions and system variables 112

poly f=x2+y3;

deg(f);

= 9

ring R=7,(x,y),ws(2,3);
poly f=x2+y3;

deg(£f);

= 9

vector v=[x2,y];
deg(v);

— 4

See Section 5.1.47 [jet], page 131; Section 5.1.79 [ord], page 153; Section 4.12 [poly], page 89;
Section 4.18 [vector|, page 99.

5.1.15 degree

Syntax: degree (ideal_expression)
degree (module_expression)

Type: none

Purpose: computes the (Krull) dimension, codimension and the multiplicity of the ideal resp.
module generated by the leading monomials of the input and prints it. This is equal
to the dimension, codimension and multiplicity of the ideal resp. module if the input
is a standard basis with respect to a degree ordering.

Example:
ring r3=32003, (x,y,2),ds;
int a,b,c,t =11,10,3,1;
poly f =x"a+y~b+z" (3*c)+x" (c+2)*y~ (c-1)+x"(c-1)*y~ (c-1)*z3

+x7 (c—2) *y~cx (y2+t*x) ~2;

ideal i= jacob(f);
ideal iO=std(i);
degree(i0);
+ //codimension 3
+ //dimension 0
— //multiplicity 314

See Section 4.2 [ideal], page 50; Section 5.1.106 [std], page 169; Section 5.1.19 [dim], page 114;
Section 5.1.118 [vdim], page 176; Section 5.1.69 [mult], page 145.

5.1.16 delete

Syntax: delete (list_expression, int_expression)
Type: list
Purpose: deletes the element with the given index from a list (the input is not changed).

Example:

Chapter 5: Functions and system variables 113

list 1="a","b","c";
list li=delete(1,2);11;
[1]:

a
[2]:

C

[1]:
a
[2]:
b
[3]:

C

111311181111

See Section 4.7 [list], page 74; Section 5.1.43 [insert], page 128.

5.1.17 det
Syntax: det (intmat_expression)
det (matrix_expression)
Type: int resp. poly
Purpose: returns the determinant of a square matrix.
Example:

ring r=7,(x,y),wp(2,3);

matrix m[3][3]=1,2,3,4,5,6,7,8,x;
det (m) ;

— =3x-1

See Section 4.4 [intmat], page 60; Section 4.9 [matrix|, page 80; Section 5.1.63 [minor], page 141.

5.1.18 diff

Syntax:

Type:
Syntax:
Type:

Purpose:

Example:

diff (poly_expression, ring variable)
diff (vector_expression, ring variable)
diff (ideal_expression, ring variable)
diff (module_expression, ring_variable)
diff (matrix_expression, ring_variable)

the same as the type of the first argument
diff (ideal_expression, ideal_expression)
matrix

computes the partial derivative of a polynomial object by a ring variable (first forms)
respectively differentiates each polynomial (1..n) of the second ideal by the differential
operator corresponding to each polynomial (1..m) in the first ideal, producing a m x n
matrix.

Chapter 5: Functions and system variables 114

ring r= 0,(x,y,z),dp;

poly f=2*x"3%y+3*z"5;

diff (f,x);

— 6x2y

diff (f,z);

— 15z4

vector v=[f,y2+z];

diff(v,z);

— 16z4x*gen(1)+gen(2)

// corresponds to differential operators
// d2/dx2, d2/dx2+d2/dxdy, d3/dx/dy/dz:
ideal i=x2,x2+yz,xyz;

ideal j=x2-yz,xyz;

print (diff(i,j));

— 2,0,

— 1,x,

— 0,1

See Section 4.12 [poly], page 89; Section 4.18 [vector|, page 99; Section 4.2 [ideal], page 50;
Section 4.10 [module], page 83; Section 4.9 [matrix|, page 80; Section 5.1.11 [contract], page 110;
Section 5.1.46 [jacob], page 130; Section 5.1.116 [var]|, page 176;

5.1.19 dim

Syntax: dim (ideal_expression)
dim (modul_expression)

Type: int

Purpose: computes the dimension of the ideal resp. module generated by the leading monomials
of the generators representing the given ideal resp. module. This is also the dimension
of the ideal if it is represented by a standard basis. Note that the dimension of an ideal
I means the Krull dimension of the basering modulo I.

The dimension of a module is the dimension of its annihilator ideal.

Example:

ring r=32003,(x,y,z),dp;
ideal I=std(ideal(x2,xy,y5));
dim(I);

— 1

See Section 4.2 [ideal], page 50; Section 5.1.106 [std], page 169; Section 5.1.15 [degree], page 112;
Section 5.1.118 [vdim], page 176; Section 5.1.69 [mult], page 145.

5.1.20 dump

Syntax: dump (link_expression) ;

Type: none

Chapter 5: Functions and system variables

Purpose:

Example:

Restrictions:

For ASCII links, integer matrices contained in lists are dumped as integer list ele-
ments (and not as integer matrices), and lists of list are dumped as one flatted list.

ring r;

// write the whole session to the file dump.ascii

// in ASCII format
dump (" :w dump.ascii");
kill r;
// reread the session from the file

// redefining everything which was not explicitly killed before

// kill the basering

getdump ("dump.ascii");

//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//

1111127133311 117111113

* %
* %
* %k
* %k
* %k
* %
* %
* %
* %k
* %
* %k
* %
* %k

redefining
redefining
redefining
redefining
redefining
redefining
redefining
redefining
redefining
redefining
redefining
redefining
redefining

characteristic :
number of vars : 3

block

block

stdfglm **
stdhilb **
groebner *
res
quot **
quotl *x
quotientO
quotient1l
quotient?2
quotient3
quotientb
quotient4

intersectl **

32003

*

* %
* %
* %
* %
* %k
* %k

dumps (i.e. writes in one "message" or "block") the state of the SINGULAR session
(i.e., all defined variables and their values) to the specified link (which must be either
an ASCII or MP link) such that a getdump can later retrieve it.

1 : ordering dp

. names

Xy z

2 : ordering C

Furthermore, links themselves are not dumped.

See Section 5.1.36 [getdump], page 124; Section 4.6 [link], page 66; Section 5.1.121 [write],

page 178.

5.1.21 eliminate

Syntax:

Type:
Purpose:

the same as the type of the first argument

eliminate (ideal expression, product_of ring variables)

eliminate (module_expression, product_of ring_variables)

eliminate (ideal expression, product_of ring variables, intvec_hilb)
eliminate (module_expression, product_of ring_variables, intvec_hilb)

eliminates variables occurring as factors of the second argument from an ideal resp.
module by intersection with the subring not containing these variables.
eliminate does not need a special ordering nor a standard basis as input.

Chapter 5: Functions and system variables 116

Since elimination is expensive, it might be useful if the input is homogeneous, first to
compute the Hilbert function of the ideal (first argument) with a fast ordering (e.g.
dp). Then make use of it to speed up the computation: a Hilbert-driven elimination
uses the intvec provided as the third argument.

Example:

ring r=32003, (x,y,2) ,dp;
ideal i=x2,xy,yb5;
eliminate(i,x);

= _[1]=y5

ring R=0, (x,y,t,s,z),dp;
ideal i=x-t,y-t2,z-t3,s-x+y3;
eliminate(i,ts);

= _[1]=y2-xz

= _[2]=xy-z

= _[3]=x2-y

intvec v=hilb(std(i),1);
eliminate(i,ts,v);

= _[1]=y2-xz

= _[2]=xy-z

= _[3]=x2-y

See Section 4.2 [ideal], page 50; Section 4.10 [module], page 83; Section 5.1.106 [std], page 169;
Section 5.1.39 [hilb], page 125; Section 4.2 [ideal], page 50; Section 4.10 [module], page 83.

5.1.22 eval

Syntax: eval (expression)
Type: none

Purpose: evaluates (quoted) expressions. Within a quoted expression, the quote can be "undone"
by an eval (i.e., each eval "undoes" the effect of exactly one quote). Used only when
receiveing a quoted expression from a MPfile link. with quote and write to prevent
local evaluations when writing to an MPtcp link.

Example:

link 1="MPfile:w example.mp";

ring r=0, (x,y,2) ,ds;

ideal i=maxideal(3);

ideal j=x7,x2,z;

// compute i+j before writing, but not std
// this writes ’std(ideal(x3,...,z))°
write (1, quote(std(eval(i+j))));
option(prot);

close(1);

// now read it in again and evaluate

// read(l) forces to compute ’std(ideal(x3,...,z))’
read(l);

close(1);

Chapter 5: Functions and system variables 117

See Section 4.6.5.1 [MPfile links], page 69; Section 5.1.90 [quote], page 158; Section 5.1.121
[write], page 178.

5.1.23 execute

Syntax: execute(string_expression);
Type: none
Purpose: executes a string containing a sequence of SINGULAR commands.

Note: The string is inserted into the input stream at the next line break, NOT after the ; !
Hence, execute should be the only command on a line. execute should be avoided in
procedures whenever possible since it may give rise to name conflicts. Moreover, such
procedures cannot be precompiled (something SINGULAR will provide in the future).

Example:

ring r=32003, (x,y,z),dp;

ideal i=x+y,z3+22y;
write(">save_i",i);

ring r0=0,(x,y,z),Dp;

string s="ideal k="+read("save_i")+";";
S;

— ideal k=x+y,

— z3+22y

=

execute(s); // define the ideal k
k;

= k[1]=x+y

— k[2]=z3+22y

5.1.24 exit

Syntax: exit;

Purpose: exits (quits) SINGULAR, works also from inside a procedure or from an interrupt.

5.1.25 extged

Syntax: extgcd (int_expression, int_expression)
extgcd (poly_expression, poly_expression)

Type: list of 3 objects of the same type as the type of the arguments

Purpose: computes extended gcd: the first element is the greatest common divisor of the two
arguments, the second and third are factors such that if 1ist L=extgcd(a,b); then
L[1]=a*L[2]+b*L[3].

Note: polynomials must be univariate to apply extgcd

Example:

Chapter 5: Functions and system variables 118

extgcd(24,10);
[1]:

2
[2]:

-2
[3]:

5
ring r=0,(x,y),1lp;
extged (x4-x6, (x2+x5) *(x2+x3)) ;
[1]:

2x5+2x4
[2]:

x2+x+1
[3]:

1

111111

111111

See Section 5.1.34 [gcd], page 123; Section 4.3 [int], page 54; Section 4.12 [poly], page 89

5.1.26 facstd

Syntax:

Type:

Purpose:

Note:

Example:

facstd (ideal _expression)
facstd (ideal _expression, ideal expression)

list of ideals

returns a list of Groebner bases by the factorizing Groebner basis algorithm.

The intersection of these ideals has the same zero set as the input, i.e. the radical of
the intersection coincides with the radical of the input ideal. In many cases (but not
all!) this is already a decomposition of the radical of the ideal. (Note however, that,
in general, no inclusion holds.)

The second, optional argument gives a list of polynomials which define non-zero con-
straints. Hence, the intersection of the output ideals has a zero set which is the (closure
of the) complement of the zero set of the second argument in the zero set of the first
argument.

Not implemented for basering real, galoisfields with gftables and algebraic extensions
over the rational numbers.

ring r= 32003, (x,y,2),(c,dp);
ideal I=xyz,x2z;

facstd(I);

— [1]:

— _[1]=x

— [2]:

— _[1]==z

facstd(I,x);

— [1]:

—> _[1]==z

See Section 5.1.106 [std], page 169; Section 4.16 [ring], page 95; Section 4.2 [ideal], page 50.

Chapter 5: Functions and system variables 119

5.1.27 factorize

Syntax:

Type:

Syntax:
Type:

Purpose:

Note:

Example:

factorize (poly_expression)
factorize (poly_expression, 0)
factorize (poly_expression, 2)

list of ideal and intvec

factorize (poly_expression, 1)
ideal

computes the irreducible factors (as an ideal) of the polynomial together with or without
the multiplicities (as an intvec) depending on the second argument:

0: returns factors and multiplicities, first factor is a constant. May also be written with
only one argument

1: returns non-constant factors (no multiplicities)

2: returns non-constant factors and multiplicities

Not implemented for the coefficient fields real, finite fields of the type (p~n, a), and
algebraic extensions over the rational numbers.

ring r=32003, (x,y,2) ,dp;
factorize (9% (x-1) "2*(y+z));

[2]:

1,1,2
factorize (9% (x-1) 2% (y+z),1);
— _[1]=y+z
— _[2]=x-1
factorize (9% (x-1)"2x(y+z),2);

See Section 4.12 [poly], page 89

5.1.28 fetch

Syntax:
Type:

Purpose:

fetch (ring name, name)

number, poly, vector, ideal, module, matrix or list (the same type as the second argu-
ment)

maps objects between "almost identical" rings. fetch is the identity map between
rings and qrings with the same coefficient field and the same number of variables (but
possibly with different orderings), the i-th variable of the source ring is mapped to the

Chapter 5: Functions and system variables 120

i-th variable of the basering. This offers a convenient way to change variable names or
orderings, or to map objects from a ring to a quotient ring of that ring or vice versa.
Compared with imap, fetch is much more efficient, but less general.

Example:

ring r=0,(x,y,2),dp;
ideal i=maxideal(3);
ideal j=std(i);

poly f=x+y2+z3;
vector v=[f,1];
qring g=j;

poly f=fetch(r,f);
f;

— z3+y2+x

vector v=fetch(r,v);
v

— z3xgen(1)+y2*gen(1)+x*gen(1)+gen(2)
ideal i=fetch(r,i);
i;

i[1]=2z3

i[2]=yz2
i[3]=y2z

i[4]=y3

i[6]=xz2
i[6]=xyz
i[7]=xy2
i[8]=x2z
i[9]=x2y
i[10]=x3

ring rr=0,(a,b,c),lp;
poly f=fetch(q,f);
f;

— a+b2+c3

vector v=fetch(r,v);
v;

— axgen(1)+b2*gen(1)+c3*gen(1)+gen(2)
ideal k=fetch(q,i);

II1111111113

k[1]=c3

k[2]=bc2
k[3]=b2c
k[4]1=b3

k[5]=ac?2
k[6]=abc
k[7]=ab2
k[8]=a2c
k[9]=a2b
k[10]=a3

1111111111 Xx

See Section 5.1.41 [imap|, page 127; Section 4.8 [map|, page 78; Section 4.16 [ring], page 95;
Section 4.14 [qring], page 93.

Chapter 5: Functions and system variables 121

5.1.29 fglm

Syntax: fglm (ring name, ideal name)
Type: ideal

Purpose: calculates for the given ideal in the given ring a Groebner basis in the current ring.

Implements the so-called FGLM (Faugere, Gianni, Lazard, Mora) algorithm.
The ideal must be zero dimensional and given as a reduced Groebner basis in the given
ring. The result is a reduced Groebner basis.
The only permissable difference between the given ring and the current ring may be
the monomial ordering and a permutation of the variables resp. parameters.
The main application is to compute a lexicographical Groebner basis from a reduced
Groebner basis with respect to a degree ordering. This can be much faster than com-
puting a lexicographical Groebner basis directly.

ring r=0, (x,y,z) ,dp;

ideal i=y3+x2, x2y+x2, x3-x2, z4-x2-y;

option(redSB); // force the computation of a reduced SB

i=std(i);

vdim(i) ;

— 28

ring s=0,(z,x,y),1lp;

ideal j=fglm(r,i);

Js

= jl1]=y4+y3

= j[2]=xy3-y3

= j[3]=x2+y3

— j[4]=z4+y3-y

See Section 4.16 [ring], page 95; Section 4.14 [qring], page 93; Section 5.1.106 [std], page 169;
Section 5.1.78 [option|, page 150; Section 5.1.118 [vdim], page 176.

5.1.30 input from files

Syntax: < "‘filename’";
Type: none
Purpose: input comes from new file ‘filename’. This is shorthand execute read(filename).

Example:
< "example"; //read in the file example and execute it

See Section 5.1.23 [execute], page 117; Section 5.1.93 [read], page 160.

5.1.31 find

Syntax: find (string_expression, substring expression)
find (string_expression, substring expression, int_expression)

Type: int

Chapter 5: Functions and system variables 122

Purpose: returns the first position of the substring in the string or 0 (if not found),
start the search at the position given in the 3rd argument.

Example:
find("Aac" s uan) ;
= 2
find("abab","a"+"b");
= 1
find("abab","a"+"b",2);
— 3
find("abab","ab",3);
— 3
find("0123","abcd") ;
— 0

See Section 4.17 [string], page 96.

5.1.32 finduni

Syntax: finduni (ideal_expression)
Type: ideal

Purpose: returns an ideal such that the it-h generator is an univariate polynomial in the it-h ring
variable belonging to ideal expression.
The polynomials have minimal degree w.r.t. this property. The ideal must be zero
dimensional and given as a reduced Groebner basis in the current ring.

Example:

ring r= 0,(x,y,2), dp;

ideal i= y3+x2, x2y+x2, z4-x2-y;

option(redSB); // force computation of reduced basis
i= std(i);

ideal k= finduni(i);

print (k) ;

— x4-x2,

— y4+y3,

— z12

See Section 4.16 [ring], page 95; Section 5.1.106 [std], page 169; Section 5.1.78 [option|, page 150;
Section 5.1.118 [vdim], page 176.

5.1.33 freemodule

Syntax: freemodule (int_expression)
Type: module
Purpose: creates the free module of rank n generated by gen(1), ..., gen(n).

Example:

Chapter 5: Functions and system variables 123

ring r= 32003, (x,y),(c,dp);

freemodule(3);
— _[1]1=[1]
— _[2]=[0,1]

— _[31=[0,0,1]
matrix m = freemodule(3); // generates the 3x3 unit matrix

See Section 5.1.35 [gen], page 123; Section 4.10 [module], page 83.

5.1.34 ged

Syntax:

Type:
Purpose:
Note:

Example:

gecd (int_expression, int_expression)
gecd (poly_expression, poly_expression)

the same as the type of the arguments
computes the greatest common divisor.

Not implemented for the coefficient fields real, finite fields of the type (p~n, a), and
algebraic extensions over the rational numbers.

ged(2,3);

= 1

ring r=0,(x,y,2),1p;

gcd (3x2* (x+y) ,9x* (y2-x2)) ;
— x2+xy

See Section 5.1.25 [extged], page 117; Section 4.3 [int], page 54; Section 4.12 [poly], page 89

5.1.35 gen

Syntax:
Type:
Purpose:

Example:

gen (int_expression)
vector

returns the i-th free generator of a free module.

ring r= 32003, (x,y,2),(c,dp);
gen(3);

— [0,0,1]

vector v=gen(5) ;

poly f= xyz;

v=v+f*gen(4); v;

~ [0,0,0,xyz,1]

ring rr= 32003, (x,y,z),dp;
fetch(r,v);

— xyz*gen(4)+gen(5)

Chapter 5: Functions and system variables 124

See Section 5.1.33 [freemodule], page 122; Section 4.3 [int], page 54; Section 4.18 [vector], page 99.

5.1.36 getdump

Syntax: getdump (link expression) ;
Type: none

Purpose: reads the contents of the entire file resp. link and restores all variables from it. For
ASCII links, getdump is equivalent to a execute read (link); command. For MP
links, getdump should only be used on data which was previously dump’ed.

Example:
int i=3;
dump (" :w example.txt");
kill i;
option(noredefine) ;
getdump ("example.txt");
i;
= 3

Restrictions:
getdump is not supported for DBM links, or for a link connecting to stdin (standard
input).

See Section 4.6 [link], page 66; Section 5.1.20 [dump], page 114; Section 5.1.93 [read], page 160.

5.1.37 groebner

Syntax: groebner (ideal_expression)
groebner (module_expression)

Type: ideal or module

Purpose: returns a standard basis of an ideal or module with respect to the monomial ordering
of the basering using a heuristically choosen method.

Example:

ring r = 0, (a,b,c,d), 1p;

ideal i = a+b+c+d, ab+ad+bc+cd, abc+abd+acd+bcd, abcd-1;
groebner (i) ;

_[11=c2d6-c2d2-d4+1

_[2]=c3d2+c2d3-c-d

_[3]1=bd4-b+d5-d

_[4]1=bc-bd5+c2d4+cd-d6-d2

_[5]=b2+2bd+d2

_[6]=a+b+c+d

111111

See Section 5.1.106 [std], page 169; Section 5.1.107 [stdfglm], page 170; Section 5.1.108 [stdhilb],
page 171.

Chapter 5: Functions and system variables 125

5.1.38 help

Syntax:

Type:

Purpose:

Note:

Example:

help;

help command name ;
help section_title ;
help lib_name ;

help procedure_name ;

none

provides help information.

The online version of the manual is used for the first three forms of the help command.
help libname ; and help procedure_name ; directly display the help sections from
libraries and procedures, resp., if those are present. The latter forms do not enter the
online help system.

? may be used instead of help.

help;

help ring;

help Rings and orderings;
help all.lib;

See Section 3.7.1 [Format of a library], page 45; Section 3.6.1 [Procedure definition], page 40;
Section 3.1.3 [The online help system], page 16.

5.1.39 hilb

Syntax:

Type:

Purpose:

Example:

hilb (ideal_expression)

hilb (module_expression)

hilb (ideal_expression, int_expression)
hilb (module _expression, int_expression)

none (if called with one argument)
intvec (if called with two arguments)

computes the Hilbert series of the ideal resp. module defined by the leading terms of the
generators of the given ideal resp. module. If the input is homogeneous (all variable
weights 1) and a standard basis, this is the Hilbert series of the original ideal resp.
module.

Prints first and second Hilbert series with one argument, returns the n-th (n=1, 2)
Hilbert series as intvec with two arguments.

ring R=32003, (x,y,z) ,dp;
ideal i=x2,y2,z2;
ideal s=std(i);

hilb(s);

= // 1 t70
= // -3 t°2
— // 3 t74
= // -1 t76

Chapter 5: Functions and system variables 126

//
//
//
//
// codimension
// dimension
// degree
hilb(s,1);

~ 1,0,-3,0,3,0,-1,0
hilb(s,2);

~ 1,3,3,1,0

ct ot o
)
nhwNne~=Oo

w

11111111
1]
o

I
¢}

See Section C.2 [Hilbert function], page 246; Section 4.2 [ideal], page 50; Section 4.5 [intvec],
page 63; Section 4.10 [module|, page 83; Section 5.1.108 [stdhilb], page 171; Section 5.1.106 [std],
page 169.

5.1.40 homog

Syntax: homog (ideal expression)
homog (module_expression)
Type: int
Purpose: tests for homogeneity: return 1 for homogeneous input, 0 otherwise.
Syntax:
homog (polynomial expression, ring variable)
homog (vector_expression, ring_variable)
homog (ideal_expression, ring_variable)
homog (module_expression, ring_variable)
Type: same as first argument

Purpose: homogenizes polynomials, vectors, ideals or modules by multiplying each monomial
with a suitable power of the given ring variable (which must have weight 1).

Example:

ring r=32003, (x,y,2),ds;

poly s1=x3y2+x5y+3y9;

poly s2=x2y2z2+3z8;

poly s3=bx4y2+4xyb+2x2y2z3+y7+11x10;
ideal i=sl1,s2,s3;

homog(s2,2) ;

— x2y2z4+3z8

homog(i,z) ;

— _[1]1=3y9+x5yz3+x3y2z4

= _[2]=x2y2z4+3z8

— _[3]1=11x10+y7z3+5x4y2z4+4xy5z4+2x2y2z6
homog (i) ;

= 0

homog (homog(i,2z));

— 1

Chapter 5: Functions and system variables 127

See Section 4.12 [poly], page 89; Section 4.18 [vector|, page 99; Section 4.2 [ideal], page 50;
Section 4.10 [module], page 83.

5.1.41 imap

Syntax:
Type:

Purpose:

Example:

imap (ring_name, name)
p g

number, poly, vector, ideal, module, matrix or list (the same type as the second argu-
ment)

identity map on common subrings. imap is the map between rings, and qrings with the
compatible ground coefficient field which is the identity on variables and parameters of
the same name and 0 otherwise. (See Section 4.8 [map|, page 78 for a description of
possible mapping between different ground fields). Useful for mapping from a homoge-
nizing ring to the original ring or for mappings from/to rings with/without parameters.
Compared with fetch, imap is more general, but less efficient.

ring r = 0, (x,y,2,a,b,c),dp;
ideal i = xy2z3a4bb5 + 1, homog(xy2z3a4b5 + 1, c); i;
— i[1]=xy2z3adb5+1

— i[2]=xy2z3a4b5+c15

ring rl = 0,(a,b,X,Y,Z),1p;
ideal j = imap(r, i); j;

— j[1]1=a4bbxy2z3+1

= j[2]=a4bbxy2z3

ring r2 = (0’ a, b)’ (X,Y,Z), ls;
ideal j = imap(r, i); j;

= j[11=(1)+(a4b5) *xy22z3

— j[2]=(a4bb)*xy2z3

See Section 5.1.28 [fetch], page 119; Section 5.1.40 [homog], page 126; Section 4.8 [map], page 78;
Section 4.14 [qring], page 93; Section 4.16 [ring], page 95.

5.1.42 indepSet

Syntax:
Type:

Purpose:

Syntax:
Type:

Purpose:

indepSet (ideal expression)
intvec

computes a maximal set U of independent variables of the ideal given by a standard
basis. If v is the result then v[i] is 1 if and only if the i-th variable of the ring is an
independent variable. Hence the set U consisting of the variables x(i) s.t. v[i]=1 is a
maximal independent set.

U is a set of independent variables if and only if 7N K[U] = (0) is, i.e., eliminating the
remaining variables gives (0).

indepSet (ideal expression, int_expression)
list

computes a list of all maximal sets (if the flag is 0), or of all sets of independent variables
of the ideal given by the first argument

Chapter 5: Functions and system variables 128

Example:

ring r=32003,(x,y,z,u,v,w),dp;
ideal I=xyzw,yzVwW,UZW,XyV;
attrib(I,"isSB",1);
indepSet (I);
— 1,1,1,1,0,0
eliminate(I,vw);
= _[1]1=0
indepSet(I,0);
[1]:

1,1,1,1,0,0
[2]:

1,0,1,1,1,0
[3]:

0,1,1,1,1,0
[4] :

1,1,0,1,0,1
[5]:

1,0,1,0,1,1
[6]:

1,0,0,1,1,1
[7]1:

0,1,0,1,1,1

b

ERUSRUSRUSSUSSUSSUSIUSIUSSUSIUSRUSIUSIUSI S

]
[=]
Q.
[]

el
[72]
(0]
ct
~
—
[
~

[1]:
1,1,1,1,0,0
[2]:
1,0,1,1,1,0
[3]:
0,1,1,1,1,0
[4]:
1,1,0,1,0,1
[5]:
1,0,1,0,1,1
[6]:
1,0,0,1,1,1
[7]1:
0,1,0,1,1,1
[8]:
0,1,1,0,0,1
eliminate(I,xuv);
= _[1]1=0

1113111111111 1111

See Section 5.1.106 [std], page 169; Section 4.2 [ideal], page 50.

5.1.43 insert

Syntax: insert (list_expression, expression)
insert (list_expression, expression, int_expression)

Chapter 5: Functions and system variables 129

Type: list

Purpose: inserts a new element into a list at the beginning or (if called with 3 arguments) after
the given position (the input is not changed).
Example:
list L=1,2;
insert(L,4,2);
[1]:
1
[2]:
2
[3]:

ERURRUSRUSSUS N
N

'_l
[=]
0
[0]
=
ct
~
-
IS
N

[1] :))
4

[2]:
1

[3]:
2

111111

See Section 4.7 [list], page 74; Section 5.1.16 [delete], page 112.

5.1.44 interred

Syntax: interred (ideal_expression)
interred (module_expression)

Type: the same as the input type

Purpose: interreduces a set of polynomials/vectors.

input: fi,..., fn
output: gi,...,g, with s <=n and the properties

o (fla afn) = (gla "'795)

o L(g) #L(g;) for all i # j

e in the case of a global ordering (polynomial ring):
L(g;) does not divide m for all monomials m of {gy, ..., gi_1,Git1,---,9s }

e in the case of a local or mixed ordering (localization of polynomial ring):
if, for any i<>j, L(g;)|L(g;) then ecart(g;) > ecart(g;)
Remark: L(g) denotes the leading term of g and ecart(g) = deg(g) — deg(L(g)).

Example:

ring r=0, (x,y,z) ,dp;
ideal i=x2+z,z,2z;

interred(i);
= _[1]==z
= _[2]=x2

ring R=0, (x,y,2),ds;
ideal i=zx+y3,z+y3,z+xy;
interred(i);

Chapter 5: Functions and system variables 130

= _[1]=z+y3
= _[2]=z+xy
— _[3]=x2y-y3

See Section 4.2 [ideal], page 50; Section 4.10 [module], page 83; Section 5.1.106 [std], page 169.

5.1.45 intersect

Syntax: intersect (expression_list of ideal_expression)
intersect (expresion_list of module_expression)

Type: ideal resp. module
Purpose: ideal resp. module intersection.
Note: If the option computeSB is enabled then the result is a standard basis.
Example:

ring R=0, (x,y),dp;

ideal i=x;

ideal j=y;

intersect(i,j);

= _[1]=xy

ring r=181,(x,y,z),(c,1s);

ideal idl=maxideal(3);

ideal id2=x2+xyz,y2-z3y,z3+yb5xz;
ideal id3=intersect(idl,id2,ideal(x,y));
id3;

id3[1]=yz3+xy6z
id3[2]=yz4-y2z
id3[3]=y2z3-y3
id3[4]=xz3+x2y5z
id3[5]=xyz2+x2z
id3[6]=xyz3-xy2
1d3[7]=xy2z+x2y
id3[8]=x2yz+x3

11111111

See Section 4.2 [ideal], page 50; Section 4.10 [module], page 83; Section 5.1.78 [option], page 150.

5.1.46 jacob

Syntax: jacob (poly_expression)
jacob (ideal_expression)

Type: ideal, if the input is a polynomial
matrix, if the input is an ideal

Purpose: computes the Jacobi ideal resp. Jacobi matrix generated by all partial derivatives of
the input.

Example:

Chapter 5: Functions and system variables

ring R;

poly f=x"2+y~3+z"5;
jacob(f);

= _[1]=2x

— _[2]=3y2

— _[3]=5z4
ideal i=jacob(f);
print(jacob(i));
— 2,0, O,

~ 0,6y,0,

— 0,0, 20z3

131

See Section 4.2 [ideal], page 50; Section 4.10 [module], page 83; Section 5.1.18 [diff], page 113;
Section 5.1.76 [nvars|, page 150.

5.1.47 jet

Syntax: jet (poly_expression, int_expression)
jet (vector_expression, int_expression)
jet (ideal expression, int_expression)
jet (module_expression, int_expression)
jet (poly_expression, int_expression, intvec_expression)
jet (vector_expression, int_expression, intvec_expression)
jet (ideal expression, int_expression, intvec_expression)
jet (module_expression, int_expression, intvec_expression)

Type: the same as the type of the first argument

Purpose: deletes from the first argument all terms of degree (resp. weighted degree where the

weights are given by the third argument) bigger than the second argument.

Example:

ring r=32003, (x,y,z),(c,dp);

jet (1+x+x2+x3+x4,3);
= x3+x2+x+1

poly f=1l+x+y+z+x2+xy+xz+y2+x3+y3+x2y2+24;

jet(£,3);

— x3+y3+x2+xy+y2+xz+x+y+z+1

intvec iv=2,1,1;
jet(£,3,iv);

— y3+xy+y2+xz+x+y+z+l
// the part of f with (total) degree >3:

f-jet(£,3);
— x2y2+z4

// the homogeneous part of f of degree 2:

jet(f,2)-jet(£f,1);
= x2+xy+y2+xz

// the part of maximal degree:
jet(f,deg(£f))-jet (f,deg(£f)-1);

— x2y2+z4

// the absolute term of f:

jet (£,0);

Chapter 5: Functions and system variables 132

— 1
// now for other types:
ideal i=f,x,f*f;

jet(i,2);
= _[1]=x2+xy+y2+xz+x+y+z+1
= _[2]=x

= _[3]=3x2+4xy+3y2+4xz+2yz+z2+2x+2y+2z+1
vector v=[f,1,x];

jet(v,1);

— [x+y+z+1,1,x]

jet(v,0);

— [1,1]

V=[f,1,0];

module m=v,v,[1,x2,23,0,1];
jet(m,2);

= _[1]=[x2+xy+y2+xz+x+y+z+1,1]
= _[2]=[x2+xy+y2+xz+x+y+z+1,1]
~ _[3]1=[1,x2,0,0,1]

See Section 5.1.14 [deg], page 111; Section 4.3 [int], page 54; Section 4.5 [intvec|, page 63;
Section 4.2 [ideal|, page 50; Section 4.10 [module], page 83; Section 4.12 [poly], page 89; refvector.

5.1.48 kbase

Syntax:

Type:

Purpose:

Example:

kbase (ideal expression)

kbase (module_expression)

kbase (ideal expression, int_expresion)
kbase (module expression, int_expresion)

the same as the input type of the first argument

with one argument: computes a vector space basis (consisting of monomials) of the
quotient ring by the ideal resp. of a free module by the module in case this is finite
dimensional and if the input is a standard basis with respect to the ring ordering. If
the input is no standard basis, the leading terms of the input are used and the result
may have no meaning.

with two arguments: a part of the same result with degree of the monomials equal to
the second argument, the quotient need not be finite dimensional.

ring r=32003,(x,y,z),ds;
ideal i=x2,y2,z;

kbase (std(i));
= _[1]=xy

= _[2]=y

— _[3]=x

— _[4]=1

i=x2,y3,xyz;
kbase(std(i),2);
— _[1]==z2

= _[2]=yz

Chapter 5: Functions and system variables

— _[3]=xz
— _[4]=y2
— _[5]=xy

133

See Section 4.2 [ideal|, page 50; Section 4.10 [module], page 83; Section 5.1.118 [vdim], page 176.

5.1.49 kill

Syntax: kill(name);
kill(list_of names);

Type: none

Purpose: deletes objects.

Example:
int i=3;
ring r= 0,x,dp;
poly p;
listvar();
= // r [0] #ring
= // P [0] poly
= // i [0] dint 3
— // LIB [0] string standard.lib
kill(i,r);
// the variable ‘i‘ does not exist any more
1;
— ? ‘i¢ is undefined
— ? error occurred in Z line 7: ‘i;°¢
listvar();
— // LIB [0] string standard.lib

See Section 5.1.13 [defined], page 111; Section D.3 [general_lib], page 250; Section 5.1.71 [names],

page 146

5.1.50 killattrib

Syntax: killattrib (name, string expression) ;
Type: none
Purpose: deletes the attribute given as the second argument.
Example:
ring r= 32003, (x,y),1p;
ideal i=maxideal(1);
attrib(i,"isSB",1);
attrib(i);
— attr:isSB, type int
killattrib(i,"isSB");
attrib(i);
— no attributes

Chapter 5: Functions and system variables 134

See Section 5.1.1 [attrib], page 102; Section 5.1.78 [option], page 150.

5.1.51 koszul

Syntax: koszul (int_expression, int_expression)
koszul (int_expression, ideal_expression)
koszul (int_expression, int_expression, ideal_expression)

Type: matrix

Purpose: koszul(d,n) computes a matrix of the Koszul relations of degree d of the first n ring
variables.
koszul (d,id) computes a matrix of the Koszul relations of degree d of the generators
of the ideal id.
koszul(d,n,id) computes a matrix of the Koszul relations of degree d of the first n
generators of the ideal id.
koszul(1,id),koszul(2,id),... form a complex, that is, the product of koszul(i,id) and
koszul (i+1,id) equals zero.

Example:
ring r=32003, (x,y,2) ,dp;
print (koszul(3,2));
— -y,-z,0,
= x, 0, -z,
= 0, x, ¥y
ideal I=xz2+yz2+z3,xyz+y2z+yz2,xy2+y3+y2z;
print (koszul(1,I));
— xz2+yz2+z3,xyz+y2z+yz2,xy2+y3+y2z
print (koszul(2,I));
— -xyz-y2z-yz2,-xy2-y3-y2z,0,
— xz2+yz2+z3, O, -xy2-y3-y2z,
— 0, xz2+yz2+z3, xyz+y2z+yz2
print (koszul(2,I)x*koszul(3,I));

See Section 4.3 [int], page 54; Section 4.9 [matrix], page 80.

5.1.52 lead

Syntax: lead (poly_expression)
lead (vector_expression)
lead (ideal expression)
lead (module_expression)

Type: the same as the input type

Purpose: returns the leading (or initial) term(s) of a polynomial, a vector, or of the generators
of an ideal or module with respect to the monomial ordering.

Note: IN may be used instead of lead.

Chapter 5: Functions and system variables 135

Example:

ring r=32003, (x,y,z),(c,ds);
poly f=x2+y+z3;
vector v=[x"10,f];
ideal i=f,z;

module m=v,[0,0,1+x];
lead(f);

=y

lead(v);

— [x10]

lead(i);

= _[1]l=y

— _[2]==z

lead(m);

— _[1]1=[x10]

—~ _[2]1=[0,0,1]
lead(0);

— 0

See Section 4.12 [poly], page 89; Section 4.18 [vector|, page 99; Section 4.2 [ideal], page 50;
Section 4.10 [module], page 83.

5.1.53 leadcoef

Syntax: leadcoef (poly_expression)
leadcoef (vector_expression)

Type: number

Purpose: returns the leading (or initial) coefficient of a polynomial or a vector with respect to
the monomial ordering.

Example:

ring r=32003, (x,y,2),(c,ds);
poly f=x2+y+z3;

vector v=[2*x"10,f];
leadcoef (f);

— 1

leadcoef (v);

— 2

leadcoef (0);

— 0

See Section 4.11 [number], page 86 Section 4.12 [poly], page 89; Section 4.18 [vector|, page 99.

5.1.54 leadexp

Syntax: leadexp (poly_expression)
leadexp (vector_expression)

Chapter 5: Functions and system variables 136

Type:
Purpose:

Example:

intvec

returns the exponent vector of the leading monomial of a polynomial or a vector.

ring r=32003, (x,y,z),(c,ds);
poly f=x2+y+z3;

vector v=[2*x"10,f];
leadexp(f);

~ 0,1,0

leadexp(v);

— 10,0,0

leadexp(0);

— 0,0,0

See Section 4.5 [intvec|, page 63; Section 4.12 [poly], page 89; Section 4.18 [vector]|, page 99.

5.1.55 LIB

Syntax:
Type:

Purpose:

Syntax:
Type:
Purpose:

Example:

LIB string expression;
none

reads a library of procedures from a file. If the given filename does not start with ~, .
or /, the following directories are searched for (in that order): the current directory, the
directories given in the environment variable SINGULARPATH, some default directories
relative to the location of the SINGULAR executable program, and finally some default
absolute directories. You can view the search path which SINGULAR uses to locate
its libraries, by starting up SINGULAR with the option -v, or by issuing the command
system("with");".

Only the names of the procedures in the library are loaded, the body of the procedures
is read during the first call of this procedure. This minimizes memory consumption
by unused procedures. When SINGULAR is started with the -q or —-quiet option,
no message about the loading of a library is displayed. More exactly, option -q (and
likewise -—quiet) unsets option loadLib to inhibit monitoring of library loading (see
Section 5.1.78 [option], page 150).

Unless SINGULAR is started with the --no-stdlib option, the library standard.lib
is automatically loaded at start-up time.

LIB;
string

shows all loaded libraries.

option(loadLib); // show loading of libraries; standard.lib is loaded

LIB;
— standard.lib

// the names of the procedures of inout.lib
LIB "inout.lib"; // are now known to Singular

— // ** loaded /home/obachman/Singular-1.2/Singular/LIB/inout.lib (1.6,

— 1998/05/14)
LIB;
— standard.lib,inout.lib

Chapter 5: Functions and system variables 137

See Section 3.1.6 [Command line options], page 18; Section 2.3.3 [Procedures and libraries],
page 10; Appendix D [SINGULAR libraries]|, page 250; Section 4.13 [proc], page 92; Section D.1
[standard_lib], page 250; Section 4.17 [string], page 96; Section 5.1.110 [system], page 172.

5.1.56 lift

Syntax:

Type:

Purpose:

Note:

Example:

1lift (ideal_expression, subideal_expression)
1lift (module_expression, submodule_expression)

matrix

computes the transformation matrix which expresses the generators of a submodule in
terms of the generators of a module. Uses different algorithms for modules which are
resp. are not represented by a standard basis.

Hence, if sm is the submodule (or ideal), m the module (or ideal) and T the transforma-
tion matrix returned by lift then matrix (sm)=matrix(m) *T and sm=module (matrix (m)*T)
(or sm=ideal (matrix(m)*T)). Gives a warning if sm is not a submodule.

For local or mixed orderings this holds only up to units in the associated localized ring.

ring r;

ideal m=3x2+yz,7y6+2x2y+5xz;
poly f=y7+x3+xyz+z2;

ideal i=jacob(f);

matrix T=1ift(i,m);
matrix(m)-matrix(i)*T;

— _[1,1]1=0

= _[1,2]=0

See Section 4.2 [ideal], page 50; Section 4.10 [module], page 83.

5.1.57 liftstd

Syntax:

Type:

Purpose:

Example:

liftstd (ideal expression, matrix name)
liftstd (module_expression, matrix_name)

ideal or module

returns a standard basis of an ideal or module and the transformation matrix from the
given ideal resp. module to the standard basis.

Hence, if m is the ideal or module, sm the standard basis returned by 1iftstd, and T the
transformation matrix then matrix(sm)=matrix(m)*T and sm=ideal (matrix(m)*T)
respectivly sm=module (matrix(m) *T).

ring R=0, (x,y,2),dp;
poly f=x3+y7+z2+xyz;
ideal i=jacob(f);
matrix T;

ideal sm=1iftstd(i,T);
sm;

Chapter 5: Functions and system variables 138

sm[1]=xy+2z

sm[2]=3x2+yz

sm[3]=yz2+3048192z3
sm[4]=3024xz2-yz2

sm[5]=y2z-6xz
sm[6]=3097158156288z4+2016z3
sm[7]=7Ty6+xz

print (T);

~ 0,1,T[1,3], T[1,41,y, TI[1,6]1,0,
— 0,0,-3x+3024z, 3x, 0, TI[2,6],1,
~ 1,0,T[3,3], TI[3,4],-3x,T[3,6],0
matrix(sm)-matrix(i)*T;

_[1,1]=0

_[1,2]=0

_[1,3]=0

_[1,4]=0

_[1,51=0

_[1,6]1=0

_[1,7]1=0

1111111

1111111

See Section 4.2 [ideal], page 50; Section 4.16 [ring], page 95; Section 5.1.78 [option], page 150;
Section 5.1.106 [std], page 169; Section 4.9 [matrix], page 80.

5.1.58 listvar

Syntax:

Type:

Purpose:

Example:

listvar();

listvar(type);
listvar(ring name) ;
listvar(name);
listvar(all);

none

lists all (user-)defined names:

listvar(): all currently visible names except procedures

listvar(type): all currently visible names of the given type

listvar(ring name): all names which belong to the given ring

listvar(name): the object with the given name

listvar(all): all names except procedures

The current basering is marked with a *. The nesting level of variables in procedures
is shown in square brackets.

proc t1 { }
proc t2 { }
ring s;

poly ss;

ring r;

poly f=x+y+z;
int i=7;

ideal I=f,x,y;
listvar(all);

Chapter 5: Functions and system variables

// i

/l r

// I

// f

// s

// ss
// LIB
listvar();

// i

// r

// I

// f

// s

// LIB
listvar(r);

= //r

= // 1

= // £
listvar(t1);

= // t1
listvar(proc);
// t2

// t1

// intersectl
// quotient4
// quotientb
// quotient3
// quotient?2
// quotient1l
// quotientO
// quoti

// quot

// res

// groebner
// stdhilb
// stdfglm

1111111

111111

1111111111111 11

[o]
[o]

[o]
[o]

(o]
[o]

[o]
[o]

[o]
(o]
(o]

[o]

[o]
[o]
[o]
(o]
[o]
[o]
[o]
[o]
[o]
[o]
[o]
Lol
[o]
[o]
[o]

139

int 7

*ring

[0] 4ideal, 3 generator(s)
[0] poly

ring

[0] poly

string standard.lib

int 7

*ring

[0] 4ideal, 3 generator(s)
[0] poly

ring

string standard.lib

*ring
ideal, 3 generator(s)
poly

proc

proc

proc

proc from standard.lib (static)
proc from standard.lib

proc from standard.lib

proc from standard.lib

proc from standard.lib

proc from standard.lib

proc from standard.lib (static)
proc from standard.lib (static)
proc from standard.lib

proc from standard.lib

proc from standard.lib

proc from standard.lib

proc from standard.lib

See Section 3.6.2 [Names in procedures], page 42; Section 3.4.3 [Names|, page 32; Section 5.1.13
[defined], page 111; Section 5.1.71 [names|, page 146; Section 5.1.114 [type], page 174.

5.1.59 lIres

Syntax: lres (ideal_expression, int_expression)
lres (module_expression, int_expression)

Type: resolution

Purpose:

computes a free resolution of an ideal or module with LaScala’s method.

The ideal_expression resp. module_expression has to be homogeneous.

Chapter 5: Functions and system variables 140

More precisely, let M be given by a a generating set and A; = matriz(M). Then 1res
computes a minimal free resolution of M; = coker(A;)

e By 25 R A By — My — 0,
The computation stops after k steps, if the int expression k is not zero, and returns a
list of modules M; = module(4;), i=1..k.

If k=0, 1res(M,0) returns a list of n modules where n is the number of variables of
the basering.

Let 1ist 1=1res(M,0); then L[1] generates M, L[2] generates the first syzygy module
of L[1], etc. (L[i] = M; in the notations from above).

Note: To access the elements of a resolution, it has to be assigned to a list, which also
completes computations and may therefore take time.

Example:
ring r=0, (x,y,2),dp;
ideal i=xz,yz,x"3-y"3;
def 1l=lres(i,0);
print(betti(l),"betti"); // input to betti may be of type resolution

= 0 1 2
|_> ________________________
0 1 0 0
— 1 0 2 1
— 2 0 1 1
|_> ________________________
— total: 1 3 2
list 11=1;
1[2]; // elements can only be accessed in the list

— _[1]=-x*gen(1)+y*gen(2)
— _[2]=—x2*gen(2)+y2*gen (1)+z*gen(3)

See Section 5.1.3 [betti], page 104; Section 4.2 [ideal], page 50; Section 4.3 [int], page 54; Sec-
tion 5.1.64 [minres|, page 142; Section 4.10 [module], page 83; Section 5.1.67 [mres|, page 144;
Section 5.1.96 [res], page 162; Section 5.1.104 [sres|, page 167.

5.1.60 maxideal

Syntax: maxideal (int_expression)

Type: ideal

Purpose: returns the power given by int_expression of the maximal ideal generated by all variables

(maxideal(i)=(1) for i<=0).

Example:
ring r=32003, (x,y,2) ,dp;
maxideal (2);

_[1]1==22

_[2]=yz

_[31=y2

_[4]=xz

_[61=xy

_[6]=x2

111111

Chapter 5: Functions and system variables 141

See Section 4.2 [ideal], page 50; Section 4.16 [ring], page 95.

5.1.61 memory

Syntax: memory (int_expression)
Type: int

Purpose: returns statistics concerning the memory management:
memory (0) is the number of active bytes
memory (1) is the number of allocated bytes

Example:

"Objects of SINGULAR use (at the moment) " ,memory(0)," bytes,"
+newline+

"allocated from system (at the moment):", memory(1l), "bytes";
+ Objects of SINGULAR use (at the moment) 107290 bytes,

— allocated from system (at the moment): 110594 bytes

See Section 5.1.78 [option], page 150.

5.1.62 minbase

Syntax: minbase (ideal_expression)
minbase (module_expression)

Type: the same as the type of the argument

Purpose: returns a minimal set of generators of an ideal resp. module if the input is either
homogeneous or if the ordering is local.

Example:
ring r=181,(x,y,z),(c,1s);
ideal id2=x2+xyz,y2-z3y,z3+ybxz;
ideal id4=maxideal(3)+id2;
size(id4);
— 13
minbase(id4);

_[1]1=x2

_[2]=xyz+x2

_[3]1=xz2

_[4]=y2

_[5]=yz2

_[6]1=23

111111

See Section 5.1.68 [mstd], page 145.

5.1.63 minor

Syntax: minor (matrix_expression, int_expression)

Chapter 5: Functions and system variables 142

Type: ideal
Purpose: returns the set of all minors (=subdeterminants) of the given size of a matrix.

Example:

ring r = 0, (x(1..5)), ds;
matrix m[2][4]= x(1..4), x(2..5);
print (m) ;

= x(1),x(2),x(3),x(4),

— x(2),x(3),x(4),x(5)

ideal j = minor(m, 2);

J;

= j[1]1=-x(4) ~2+x(3)*x(5)

= j[2]=-x(3) *x(4)+x(2) *x(5)
= j[3]=-x(2) *x(4)+x (1) *x(5)
— j[4]1=-x(3)"2+x(2)*x(4)

= j[5]=-x(2)*x(3)+x (1) *x(4)
= j[6]1=-x(2) "2+x (1) *x(3)

See Section 5.1.17 [det], page 113.

5.1.64 minres

Syntax: minres (list)

Type: list

Syntax: minres (resolution)
Type: resolution

Purpose: minimizes a free resolution of an ideal or module given by the list resp. resolution
argument.

Example:
ring r1=32003, (x,y) ,dp;

ideal i=xb+xy4,x3+x2y+xy2+y3;
resolution rs=lres(i,0);

rs;

— 1 2 1 0
= rl <--r1 <-—-r1l <--ri
—

— 0 1 2 3
— resolution not minimized yet
—

list(rs);

= [1]:

— _[11=x3+x2y+xy2+y3

= _[2]=xy4

— _[31=y7

= [2]:

— _[1]1=-y4*gen(1)+x2*gen(2)+xy*gen(2)+y2*gen(2)+gen(3)
— _[2]1=-y3*gen(2)+x*gen(3)

Chapter 5: Functions and system variables 143

minres(rs);

—> 1 2 1 0
= rl <—-1r1 <—-1r1l <--ri
—

— 0 1 2 3
—

list(rs);

= [1]:

— _[1]1=x3+x2y+xy2+y3

— _[2]=xy4

= [2]:

— _[1]=xy4#*gen(1)-x3*gen(2)-x2y*gen(2) -xy2*gen(2)-y3*gen(2)

See Section 5.1.96 [res], page 162; Section 5.1.67 [mres|, page 144; Section 5.1.104 [sres], page 167.

5.1.65 modulo

Syntax: modulo (ideal expression, ideal expression)
modulo (module_expression, module_expression)

Type: module

Purpose: modulo(hl,h2) represents hy/(hyNhs) = (hy +ha)/hs) where by and h, are considered
as submodules of the same free module R' (I1=1 for ideals). Let H; resp. H, be the
matrices of size 1 x k resp. 1 x m having the columns of h; resp. h, as generators:

Rt B RUE R™ Then hy/(hy N hy) = R¥/ker(H,) where H; : R* — R'/Im(H,) =
R!'/h, is the induced map.
modulo(hl,h2) returns generators of the kernel of this induced map.
Example:

ring r;

ideal hi X,¥,2;

ideal h2 = x;

module m=modulo(hl,h2);

print (m) ;

~ 1,0, 0,0,

— 0,-z,x,0,

— 0,y, 0,x

See Section 5.1.111 [syz], page 173.

5.1.66 monitor

Syntax: monitor (string expression)
monitor (string expression, string expression)

Type: none

Purpose: controls recording all user input and/or program output into a file. The second argu-
ment describes what to log: "i" means input, "o" means output, "io" for both.
The default for the second argument is "i".

Chapter 5: Functions and system variables 144

Example:

Each monitor command closes a previous monitor file and opens the file given by the
first string expression.
monitor ("") turns off recording.

monitor("doe.tmp","io"); // log input and output to doe.tmp
ring r;

poly f=x+y+z;

int i=7;

ideal I=f,x,y;

monitor(""); // stop logging

5.1.67 mres

Syntax:

Type:

Purpose:

Note:

Example:

mres (ideal expression, int_expression)
mres (module expression, int_expression)

resolution

computes a minimal free resolution of an ideal or module M with the standard basis

method. More precisely, let A=matrix(M), then mres computes a free resolution of
M, = coker(A) = coker(A;)

i By 2 F A E s M, 0,

where the columns of the matrix A; are a minimal set of generators of M if the baser-
ing is local or if M is homogeneous. The computation stops after k steps, if the int
expression k is not zero, and returns a list of modules M; = module(4;), i=1..k.

If k=0 then mres(M,0) returns a resolution consisting of not more than n modules
where n is the number of variables of the basering. Let 1ist L=mres(M,0); then L[1]
consists of a minimal set of generators of the input, L[2] consists of a minimal set of
generators of the first szyzgy module of L[1], etc., until L[p+1], such that L[i] # 0 for
i<p but L[p+1], the first szyzgy module of L[p], is 0 (if the basering is not a qring).

To access the elements of a resolution, it has to be assigned to a list, which also
completes computations and may therefore take time.

ring r
ideal M

31991, (t,x,y,z,w),1s;
t2x2+tx2y+x2yz,t2y2+ty2z+y2zw,
t2z2+tz2w+xz2w, t 2w2+txw2+xyw2;
resolution L = mres(M,0);

1 4 15 18 7 1 0
r <——1r <K<--r <-—-r <——r <—71r <——-7r1

)
—
—
—
— 0 1 2 3 4 5 6
=

L
// projective dimension of M is 4

See Section 4.2 [ideal], page 50; Section 5.1.59 [lres|, page 139; Section 4.10 [module], page 83;
Section 5.1.96 [res], page 162; Section 5.1.104 [sres|, page 167.

Chapter 5: Functions and system variables 145

5.1.68 mstd

Syntax: mstd (ideal_expression)

Type: list

Purpose: returns a list consisting of a standard basis and a minimal set of generators.
Note: the input must be homogeneous and the ring a polynomial ring (global ordering).
Example:

ring r=0, (x,y,z,t) ,dp;
poly f=x3+y4+z6+xyz;
ideal j=jacob(f),f;
j=homog(j,t);j;
j[11=3x2+yz
j[2]=4y3+xzt
j[31=6z5+xyt3
j[4]1=0
j[6]=z6+y4t2+x3t3+xyzt3
mstd(j);
= [1]:
_[1]1=3x2+yz
_[2]=4y3+xzt
_[3]=6z5+xyt3
_[4]=xyzt3
_[51=y2z2t3
_[6]=yz3t4
_[7]1=xz3t4
_[81=yz2t7
_[9]=xz2t7
_[10]=y2zt7
_[11]=xy2t7
[2]:
_[1]1=3x2+yz
_[2]=4y3+xzt
_[3]1=6z5+xyt3
_[4]=xyzt3

11111

1113311111111 111

See Section 4.2 [ideal], page 50; Section 5.1.106 [std], page 169; Section 5.1.62 [minbase],
page 141.

5.1.69 mult

Syntax: mult (ideal expression)
mult (module_expression)

Type: int

Purpose: computes the degree of the monomial ideal resp. module generated by the leading
monomials of the input.
If the input is a standard basis of a homogeneous ideal then it returns the degree of
this ideal.

Chapter 5: Functions and system variables 146

If the input is a standard basis of an ideal in a (local) ring with respect to a local
degree ordering then it returns the multiplicity of the ideal (in the sense of Samuel,
with respect to the maximal ideal).

Example:
ring r= 32003, (x,y),ds;
poly f = (x"3+y"5) "2+x"2%y"7;
ideal i = std(jacob(f));
mult(i);
— 46
mult (std(f));
— 6

See Section 4.2 [ideal|, page 50; Section 5.1.106 [std], page 169; Section 5.1.15 [degree], page 112;
Section 5.1.118 [vdim], page 176; Section 5.1.19 [dim], page 114.

5.1.70 nameof

Syntax: nameof (expression)
Type: string
Purpose: returns the name of an expression as string.

Example:
int i = 9;
string s = nameof(i);
S;
— i
nameof (s) ;
— 8
nameof (i+1); //returns the empty string:
—
nameof (basering) ;
— basering
basering;
— ? ‘basering‘ is undefined
— ? error occurred in Z line 7: ‘basering;°
ring r;
nameof (basering) ;
= r

See Section 5.1.115 [typeof], page 175; Section 5.1.71 [names], page 146; Section 5.1.97 [reserved-
Name], page 163.

5.1.71 names

Syntax: names ()
names (ring name)

Type: list of strings

Chapter 5: Functions and system variables 147

Purpose: returns the names of all user defined variables which are ring independent (this includes
the names of procedures) or, in the second case, belong to the given ring.

Example:

—
—

—

—

— [3]:

— intersectl
— [4]:

— quotient4
— [5]:

— quotientb
— [6]:

— quotient3
— [7]:

— quotient?2
— [8]:

— quotientil
— [9]:

— quotientO
— [10]:

— quotl

— [11]:

— quot

— [12]:

— res

— [13]:

— groebner
— [14]:

— stdhilb
— [15]:

— stdfglm
— [16]:

—

See Section 5.1.70 [nameof], page 146; Section 5.1.97 [reservedName]|, page 163.

5.1.72 ncols

Chapter 5: Functions and system variables

Syntax: ncols (matrix_expression)
ncols (intmat_expression)
ncols (ideal expression)

Type: int

Purpose: returns the number of columns of a matrix or an intmat
or the number of given generators of the ideal, including zeros.

148

Note that size(ideal) counts the number of generators which are different from zero.

(Use nrows to get the number of rows of a given matrix or intmat.)

Example:

ring r;

matrix m[5] [6];

ncols(m);

— 6

ideal i=x,0,y;

ncols(i);

— 3

size(i);

— 2

See Section 4.9 [matrix], page 80; Section 5.1.75 [nrows|, page 149; Section 5.1.102 [size],

page 166.

5.1.73 npars

Syntax: npars (ring_name)

Type: int

Purpose: returns the number of parameters of a ring.
Example:

ring r=(23,t,v),(x,a(1..7)),1lp;
// the parameters are t,v
npars(r) ;

= 2

See Section 5.1.81 [par], page 154; Section 5.1.83 [parstr], page 155; Section 4.16 [ring], page 95.

5.1.74 nres

Syntax: nres (ideal_expression, int_expression)
nres (module_expression, int_expression)

Type: resolution

Purpose: computes a minimal free resolution of an ideal or module M with the standard basis
method. More precisely, let A;=matrix(M), then nres computes a free resolution of

M, = coker(A,;)

B2 R A Fy— M, — 0,

Chapter 5: Functions and system variables 149

where the columns of the matrix A; are the given set of generators of M. The com-
putation stops after k steps, if the int expression k is not zero, and returns a list of
modules M; = module(4;), i=1..k.

If k=0, nres(M,0) returns a list of n modules where n is the number of variables of
the basering. Let 1list 1=nres(M,0); then L[1]=M is identical to the input, L[2] is a
minimal set of generators of the first szyzgy module of L[1], etc. (L[i] = M; in the
notations from above).

Example:

ring r
ideal M

31991, (t,x,y,2z,w),1s;
t2x2+tx2y+x2yz, t2y2+ty2z+y2zw,
t2z2+tz2w+xz2w, t2w2+txw2+xyw2;
resolution L = nres(M,0);

L;

— 1 4 15 18 7 1 0
= r <-—-r <--7r {--r <= r <=1 <-=-r1
—

— 0 1 2 3 4 5 6
— resolution not minimized yet

—

See Section 4.2 [ideal], page 50; Section 5.1.59 [lres|, page 139; Section 4.10 [module], page 83;
Section 5.1.67 [mres|, page 144; Section 5.1.96 [res], page 162; Section 5.1.104 [sres|, page 167.

5.1.75 nrows

Syntax: nrows (matrix_expression)
nrows (intmat_expression)
nrows (intvec_expression)
nrows (module_expression)
nrows (vector_expression)

Type: int

Purpose: returns the number of rows of a matrix, an intmat or an intvec, resp.
the minimal rank of a free module in which the given module or vector lives (the index
of the last non-zero component). (Use ncols to get the number of columns of a given
matrix or intmat.)

Example:
ring R;
matrix M[2] [3];
nrows (M) ;
— 2
nrows (freemodule(4)) ;
— 4
module m=[0,0,1];
nrows (m) ;
— 3
nrows ([0,x,0]);
— 2

Chapter 5: Functions and system variables 150

See Section 5.1.35 [gen], page 123; Section 4.9 [matrix|, page 80; Section 4.10 [module], page 83;
Section 4.18 [vector], page 99; Section 5.1.72 [ncols], page 147.

5.1.76 nvars

Syntax: nvars (ring name)
Type: int
Purpose: returns the number of variables of a ring.
Example:
ring r=23,(x,a(1..7)),1ls;
nvars(r);
— 8

See Section 4.16 [ring], page 95; Section 5.1.116 [var], page 176.

5.1.77 open

Syntax: open (link expression) ;
Type: none
Purpose: opens a link.

Example:

link 1="MPtcp:launch";
open(1l); // start SINGULAR "server" on localhost in batchmode
close(1); // shut down SINGULAR server

See Section 4.6 [link], page 66; Section 5.1.8 [close], page 107.

5.1.78 option

Syntax: option ();
Type: string

Purpose: lists all defined options.

Syntax: option (option_name) ;
Type: none
Purpose: sets an option.

Note: To disable an option, use the prefix no.

Syntax: option (get);
Type: intvec

Chapter 5:

Purpose:

Syntax:
Type:

Purpose:

Values:

Functions and system variables 151

dumps the state of all options to an intvec.

option (set, intvec_expression) ;
none

restores the state of all options from an intvec (produced by option(get)).

The following options are used to manipulate the behaviour of computations:
none resets all options to the default

returnSB the functions syz,intersect,quotient,modulo return a standard base in-
stead of a generating set if returnSB is set. This option should not be used
for 1ift.

fastHC tries to find HC (highest corner of the staircase) as fast as possible during
a standard basis computation (only used for local orderings)

intStrategy
avoids divisions of coefficients during standard basis computations

minRes special (additional) minimizing during computations (res,mres),
assumes homogeneous case and degree-compatible ordering

morePairs
creates addditional (useless) pairs to speed up computation in some cases

notRegularity
disables the regularity bound for res/mres (see Section 5.1.95 [regularity],
page 161)

notSugar disables the sugar strategy

prot shows protocol information indicating the progress during the following
computations: facstd, fglm, groebner, lres, mres, minres, mstd, res,
sres, std, stdfglm, stdhilb, syz. See below for more details.

redSB computes a reduced standard basis in any standard basis computation
redTail reduction of the tails of polynomials during standard basis computations

sugarCrit
uses criteria similar to the homogeneous case to keep more useless pairs

weightM automatically computes suitable weights for the weighted ecart and the
weighted sugar method

There are further options that control the behaviour of the computations, but these
options are not manipulated using the option command:

multBound
a multiplicity bound is set (see Section 5.3.4 [multBound], page 186)

degBound a degree bound is set (see Section 5.3.1 [degBound], page 184)

The last set of options controls the output of SINGULAR:
Imap shows the mapping of variables with the imap command
loadLib shows loading of libraries (default)

debuglib warns about syntax errors during loading of libraries

Chapter 5: Functions and system variables 152

loadProc shows loading of procedures from libraries

mem shows memory usage in square brackets (see Section 5.1.61 [memory],
page 141)

prompt shows prompt (> resp. .) if ready for input (default)
reading shows the number of characters read from a file
redefine warns about variable redefinitions (default)

usage shows correct usage in error messages (default)

Example:

option(prot) ;

option();

+ //options: prot redefine usage prompt
option(notSugar) ;

option();

~ //options: prot notSugar redefine usage prompt
option(noprot) ;

option();

~> //options: notSugar redefine usage prompt
option(none) ;

option();

~ //options: none

ring r=0,x,dp;

degBound=22;

option();

— //options: degBound redTail intStrategy
intvec i=option(get);

option(none);

option(set,i);

option();

— //options: degBound redTail intStrategy

The output reported on option(prot) has the following meaning:

facstd F found a new factor
all other characters: like the output of std

fglm . basis monomial found
+ edge monomial found
- border monomial found
groebner all characters: like the output of std
lres . minimal syzygy found
n slanted degree, i.e., row of Betti matrix
(mn) calculate in module n
g pair found giving reductum and syzygy
mres [d] computations of the d-th syzygy module

all other characters: like the output of std

minres [d] minimizing of the d-th syzygy module

Chapter 5: Functions and system variables 153

mstd

res

sres

std

stdfglm

stdhilb

syz

all characters: like the output of std

[d] computations of the d-th syzygy module
all other characters: like the output of std

syzygy found

(n) n elements remaining
[n] finished module n
s found a new element of the standard basis

reduced a pair/S-polynomial to 0
postponed a reduction of a pair/S-polynomial

h used Hilbert series criterion

H(d) found a ’highest corner’ of degree d, no need to consider higher
degrees

(n) n critical pairs are still to be reduced

(S:n) doing complete reduction of n elements

d the degree of the leading terms is currently d

all characters in first part: like the output of std
all characters in second part: like the output of £glm

all characters: like the output of std
all characters: like the output of std

See Section 5.3.1 [degBound], page 184; Section 5.3.4 [multBound], page 186; Section 5.1.106
[std], page 169.

5.1.79 ord

Syntax: ord (poly_expression)
ord (vector_expression)

Type: int

Purpose: returns the (weighted) degree of the initial term of a polynomial or a vector; the weights
are the weights used for the first block of the ring ordering.
ord(0) is -1.

Example:

ring r=7,(x,y),wp(2,3);
ord(0) ;

— -1

poly f=x2+y3;

ord(f);

— 9

ring R=7, (x,y),ws(2,3);
poly f=x2+y3;

ord(f);

— 4

vector v=[x2,y];
ord(v) ;

— 3

See Section 5.1.14 [deg], page 111; Section 4.12 [poly], page 89; Section 4.18 [vector], page 99.

Chapter 5: Functions and system variables 154

5.1.80 ordstr

Syntax: ordstr (ring name)
Type: string
Purpose: returns the description of the monomial ordering of the ring.

Example:

ring r=7,(x,y),wp(2,3);
ordstr(r);
— wp(2,3),C

See Section 4.16 [ring], page 95; Section 5.1.117 [varstr], page 176; Section 5.1.83 [parstr],
page 155; Section 5.1.6 [charstr], page 106.

5.1.81 par
Syntax: par (int_expression)
Type: number

Purpose: returns the n-th parameter of the basering. This command should only be used if the
basering has at least one parameter.

Example:

ring r=(0,a,b,c), (x,y,2z),dp;
par(2);
= (b)

See Section 5.1.73 [npars], page 148; Section 5.1.83 [parstr], page 155; Section 4.16 [ring], page 95;
Section 5.1.116 [var|, page 176.

5.1.82 pardeg

Syntax: pardeg(number_expression)
Type: int
Purpose: returns the degree of a number considered as a polynomial in the ring parameters.

Example:

ring r=(0,a,b,c), (x,y,2z),dp;
pardeg(a”~2%b) ;
— 3

See Section 4.11 [number]|, page 86; Section 4.16 [ring], page 95; Section 5.1.116 [var|, page 176.

Chapter 5: Functions and system variables 155

5.1.83 parstr

Syntax:

Type:

Purpose:

Example:

parstr (ring name)
parstr (int_expression)
parstr (ring name, int_expression)

string

returns the list of parameters of the ring as a string
or the name of the n-th parameter for an integer n.
parstr(n) is equivalent to parstr(basering,n).

ring r=(7,a,b,c),(x,y),wp(2,3);
parstr(r);

— a,b,cC

parstr(2);

— b

parstr(r,3);

= C

See Section 5.1.6 [charstr], page 106; Section 5.1.73 [npars|, page 148; Section 5.1.80 [ordstr],
page 154; Section 5.1.81 [par|, page 154 Section 4.16 [ring], page 95; Section 5.1.117 [varstr],

page 176.

5.1.84 pause

Syntax:
Type:
Purpose:

Example:

pause;
none

pauses the execution of a procedure until the return key is pressed.

// the procedure will continue if return is pressed:
"press the return key to continue"; pause;

— press the return key to continue

— pause>

5.1.85 preimage

Syntax:

Type:

Purpose:

Note:

preimage (ring name, map-name, ideal name)
preimage (ring name, ideal expression, ideal name)

ideal

returns the preimage of an ideal under a given map.
The second argument has to be a map from the basering to the given ring (or an ideal
defining such a map), and the ideal has to be an ideal in the given ring.

To compute the kernel of a map, the preimage of zero has to be determined. Hence
there is no special command for computing the kernel of a map in SINGULAR.

Chapter 5: Functions and system variables 156

Example:

ring r1=32003, (x,y,z,w) ,1p;
ring r=32003, (x,y,z),dp;
ideal i=x,y,z;

ideal il=x,y;

ideal i0=0;

map f=ril,i;

setring ri;

ideal il=preimage(r,f,il);
il;

= i1[1]=w

= i1[2]=y

= i1[3]=x

// the kernel of f
preimage(r,f,i0);

— _[1]=w

See Section 4.8 [map]|, page 78; Section 4.16 [ring], page 95.

5.1.86 prime

Syntax:
Type:

Purpose:

Example:

prime (int_expression)

int

returns the largest prime less then 32004 smaller or equal to the argument;
returns 2 for all arguments smaller than 3.

prime (32004) ;
— 32003
prime (0) ;

= 2
prime(-1);

= 2

See Section 4.3 [int], page 54; Section D.3 [general lib], page 250.

5.1.87 print

Syntax:

Type:

Purpose:

print (expression) ;
print (expression, format_string) ;

none

prints expressions in a nice format, especially useful for matrices, modules and vectors.
The second form uses a string to determine the format.
At the moment only the "betti" format is used:

"betti" displays the graded Betti numbers of R"/M, if R denotes the basering and
if M is a homogeneous submodule of R":

Chapter 5: Functions and system variables 157

The entry d at (i,j) is the minimal number of generators in degree i+j of the
j-th syzygy module of R"/M (the 0-th (resp.1-st) syzygy module of R"/M
is R™ (resp. M))
Example:

ring r=0,(x,y,2),dp;

module m=[1,y], [0,x+2];

m;

— m[1]=y*gen(2)+gen(1)

— m[2]=x*gen(2)+z*gen(2)

print(m); // the columns generate m

— 1,0,

= y,X+z

intmat M=betti(mres(m,0));

print (M, "betti");

— 0 1
|_> __________________
— 0: 2 2
’_> __________________
— total 2 2

See Section 5.1.12 [dbprint], page 110; Section 5.3.7 [short], page 187; Section 5.1.114 [type],
page 174; Section 5.1.3 [betti], page 104.

5.1.88 prune

Syntax: prune (module_expression)
Type: module

Purpose: returns the module minimally embedded in a free module such that the corresponding

factor modules are isomorphic.

Example:

ring r=0,(x,y,2),dp;
module m=gen(1),gen(3), [x,y,0,z], [x+y,0,0,0,1];
print (m) ;

1,0,x,x+y,

,O’Y:O:
1,0,0
z,0
0,1

2

-

2

111113
[eNeNeoNe

’O’ ?
’O’ b
print (prune(m)) ;
=y,

— z

See Section 4.10 [module], page 83.

5.1.89 ghweight

Syntax: ghweight (ideal_expression)

Chapter 5: Functions and system variables 158

Type: intvec

Purpose: computes the weight vector of the variables for a quasihomogeneous ideal. If the input
is not weighted homogeneous, an intvec of zeroes is returned.

Example:

ring h1=32003, (t,x,y,2) ,dp;
ideal i=x4+y3+z2;
ghweight (i) ;

— 1,3,4,6

See Section 4.2 [ideal], page 50; Section 4.5 [intvec|, page 63; Section 5.1.120 [weight], page 177.

5.1.90 quote

Syntax: quote (expression)
Type: none

Purpose: prevents expressions from evaluation. Used only in connections with write in MPfile
links, prevents evalution of an expression before sending to an other SINGULARprocess.
Within a quoted expression, the quote can be "undone" by an eval (i.e., each eval
"undoes" the effect of exactly one quote).

Example:

link 1="MPfile:w example.mp";

ring r=0,(x,y,2),ds;

ideal i=maxideal(3);

ideal j=x7,x2,z;

option(prot);

// compute i+j before writing, but not std
write (1, quote(std(eval(i+j))));
close(1l);

// now read it in again and evaluate:
read(1);

= 1(12)s2-s3---s-s———-—--7-

— product criterion:4 chain criterion:0
= _[1]==z

— _[2]=x2

= _[3]=xy2

— _[4]=y3

close(1);

See Section 5.1.22 [eval], page 116; Section 5.1.121 [write], page 178; Section 4.6.5.1 [MPfile
links|, page 69.

5.1.91 quotient

Syntax: quotient (ideal_expression, ideal_expression)
quotient (module_expression, module_expression)

Chapter 5: Functions and system variables 159

Type: ideal
Syntax: quotient (module_expression, ideal expression)
Type: module

Purpose: computes the ideal quotient resp. module quotient.
quotient (i, j)= {a € basering | a - j C i} in the first case and
quotient (m,j)= {b € basering” | bj C m}, where m C basering”, in the second case.

Example:

ring r=181,(x,y,2),(c,1s);

ideal idl=maxideal(3);

ideal id2=x2+xyz,y2-z3y,z3+y5xz;
ideal id6é=quotient(idl,id?2);

id6;

— id6[1]=z
— id6[2]=y
— id6[3]=x
quotient (id2,id1);
— _[1]==z2
= _[2]=yz
— _[3]=y2
— _[4]=xz
— _[56]=xy
— _[6]=x2

module m=x*freemodule(3),y*freemodule(2);
ideal id3=x,y;

quotient (m,id3) ;
— _[1]1=[1]
— _[2]=[0,1]

— _[3]=[0,0,x]

See Section 4.2 [ideal], page 50; Section 4.10 [module], page 83.

5.1.92 random

Syntax: random (min_integer, max integer)
Type: int

Purpose: returns random integer between min_integer and max_integer.

Syntax: random (max_integer, rows, cols)
Type: intmat

Purpose: returns a random intmat of size rows x cols with entries between -max_integer and
+max_integer (inclusively).

Note: The random generator can be set to a startvalue with
the function system by a commandline option.

Example:

Chapter 5: Functions and system variables 160

random(1,1000) ;

— 35

random(1,2,3);

— 0,0,0,

- 1,1,-1

// start the random generator with 210
system("random",210) ;
random(-1000,1000) ;

— 707

random(-1000,1000) ;

— 284

system("random",210) ;
random(-1000,1000) ; // the same random values again
— 707

See Section 3.1.6 [Command line options], page 18; Section 4.3 [int], page 54; Section 4.4 [intmat],
page 60; Section 5.1.110 [system|, page 172.

5.1.93 read

Syntax:

Type:

Purpose:

Example:

read (link_expression)

for DBM links:

read (link_expression)

read (link_expression, string expression)

any

reads data from a link.

For ASCII links, the content of the entire file is returned as one string. If the ASCII
link is the empty string, read reads from standard input the keyboard.

For MP links, one expression is read from the link, and returned after an evaluation.
As long as there is no data to read from an MPtcp link the read command blocks (i.e.,
does not return). The status command can be used to check whether or not there is
data to read.

For DBM links, a read with one argument returns the value of the next entry in the
data base, and a read with two arguments returns the value to the key given as the
second argument from the data base.

ring r=32003,(x,y,z),dp;

ideal i=x+y,z3+22y;

// write the ideal i to the file save_i
write(":w save_i",i);

ring r0=0,(x,y,z),Dp;

// create an ideal k equal to the content
// of the file save_i

string s="ideal k="+read("save_i")+";";
execute s;

k;

= k[1]=x+y

> k[2]=23+22y

Chapter 5: Functions and system variables 161

See Section 5.1.23 [execute], page 117; Section 5.1.36 [getdump], page 124; Section 4.6 [link],
page 66; Section 5.1.105 [status], page 168; Section 5.1.121 [write], page 178.

5.1.94 reduce

Syntax: reduce (poly_expression, ideal_expression)
reduce (poly_expression, ideal_expression, int_expression)
reduce (vector_expression, ideal expression)
reduce (vector_expression, ideal expression, int_expression)
reduce (vector_expression, module_expression)
reduce (vector_expression, module_expression, int_expression)
reduce (ideal expression, ideal expression)
reduce (ideal expression, ideal expression, int_expression)
reduce (module_expression, ideal expression)
reduce (module_expression, ideal expression, int_expression)
reduce (module_expression, module_expression)
reduce (module_expression, module_expression, int_expression)

Type: the type of the first argument

Purpose: reduces a polynomial, vector, ideal or module to its normal form with respect to an
ideal or module represented by a standard basis. Return 0 if and only if the polynomial
(resp. vector, ideal, module) is an element (resp. subideal, submodule) of the ideal
(resp. module). The result may have no meaning if the second argument is not a
standard basis.
The third (optional) argument 1 forces a reduction which considers only the leading
term and does no tail reduction.

Note: NF may be used instead of reduce.

Example:
ring rl = 0,(z,y,x),ds;
poly s1=2xby+7x2y4+3x2yz3;
poly s2=1x2y2z2+3z8;
poly s3=4xy5+2x2y2z3+11x10;
ideal i=s1,s2,s3;
ideal j=std(i);
reduce (3z3yx2+7y4x2+yx5+z12y2x2,3) ;
— -yx5+2401/81y14x2+2744/81y11x5+392/27y8x8+224/81y5x11+16/81y2x14
reduce (3z3yx2+7y4x2+yx5+z12y2x2,5j,1) ;
— -yx5+z12y2x2

See Section 4.2 [ideal], page 50; Section 4.18 [vector], page 99; Section 5.1.106 [std], page 169.

5.1.95 regularity

Syntax: regularity (list_expression) regularity (resolution_expression)
Type: int

Purpose: computes the regularity of a homogeneous ideal resp. module from a minimal resolution
given by the list expression.

Chapter 5: Functions and system variables 162

Example:

Let 0 - @, Kzlegn — ... > @D, K[z]eao — I — 0 be a minimal resolution of I
considered with homogeneous maps of degree 0. The regularity is the smallest number
s with the property deg(e, ;) < s+ i for all 4.

If the input to the commands res and mres is homogeneous the regularity is computed
and used as a degree bound during the computation unless option(notRegularity) ;
is given.

ring rh3=32003, (w,x,y,2),(dp,C);

poly f= x11+y10+z9+x5*y2+x2*y2*z3+x*xy~3* (y2+x) ~2;
ideal j= homog(jacob(f),w);

def jr=res(j,0);

regularity(jr);

— 23

list jj=jr;

regularity(jj);

— 23

See Section 5.1.96 [res], page 162; Section 5.1.67 [mres|, page 144; Section 5.1.104 [sres], page 167;
Section 5.1.64 [minres]|, page 142; Section 5.1.78 [option], page 150.

5.1.96 res

Syntax: res (ideal_expression, int_expression)
res (module_expression, int_expression)

Type: resolution

Purpose: computes a minimal free resolution of an ideal or module M using a heuristically choosen
method. More precisely, let A;=matrix(M), then res computes a free resolution of
M, = coker(A;)

A2 A1
. — F, S F, — Fy — M, — 0,

where the columns of the matrix A; are the given set of generators of M. The com-
putation stops after k steps, if the int expression k is not zero, and returns a list of
modules M; = module(4;), i=1..k.
If k=0, res(M,0) returns a list of n modules where n is the number of variables of
the basering. Let list 1=res(M,0); then L[1]=M is identical to the input, L[2] is a
minimal set of generators of the first szyzgy module of L[1], etc. (L[i] = M; in the
notations from above).

Note: To access the elements of a resolution, it has to be assigned to a list, which also
completes computations and may therefore take time.

Example:

ring r
ideal M

31991, (t,x,y,z,w),1s;

t2x2+tx2y+x2yz, t2y2+ty2z+y2zw,
t2z2+tz2w+xz2w, t 2w2+txw2+xyw2;
resolution L = res(M,0);

L;

= 1 4 15 18 7 1 0

Chapter 5: Functions and system variables

= r <-—-r <--r <--r <——r <=1 <K
—

— 0 1 2 3 4 5
— resolution not minimized yet

—

betti(L);

~ 1,0,0,0,0,0,

~ 0,0,0,0,0,0,

~ 0,0,0,0,0,0,

~ 0,4,0,0,0,0,

~ 0,0,0,0,0,0,

~ 0,0,0,0,0,0,

~ 0,0,6,0,0,0,

~ 0,0,9,16,2,0,

~ 0,0,0,2,5,1

M
M
-
-
M

See Section 4.2 [ideal], page 50; Section 5.1.59 [Ires], page 139; Section

163

r

6

4.10 [module], page 83;

Section 5.1.67 [mres], page 144; Section 5.1.74 [nres], page 148; Section 5.1.104 [sres|, page 167;

Section 5.1.111 [syz], page 173.

5.1.97 reservedName

Syntax: reservedName ()
Type: none
Syntax: reservedName (string expression)
Type: int
Purpose: prints a list of all reserved identifiers (first form) or tests whethe
identifier.
Example:
reservedName() ;
= ... // output skipped
reservedName ("ring") ;
= 1
reservedName ("xyz") ;
— 0

See Section 5.1.71 [names], page 146.

5.1.98 resultant

Syntax: resultant (poly_expression, poly_expression, ring variable)
Type: poly
Purpose: computes the resultant of the first and second argument with

given as the third argument.

Example:

r the string is a reserved

respect to the variable

Chapter 5: Functions and system variables 164

ring r=32003, (x,y,2) ,dp;

poly f=3%(x+2)"3+y;

poly g=x+y+z;

resultant(f,g,x) ;

— 3y3+9y2z+9yz2+3z3-18y2-36yz-18z2+35y+36z-24

See Section 4.12 [poly], page 89; Section 4.16 [ring], page 95.

5.1.99 rvar

Syntax: rvar (name)
rvar (poly_expression)
rvar (string expression)

Type: int

Purpose: returns the number of the variable (hence its boolean value is TRUE) if the name is a
ring variable or if the string is the name of a ring variable of the basering.

Example:

ring r=29,(x,y,z),1lp;

rvar(x) ;

— 1

rvar(r);

— 0

rvar(y) ;

— 2

rvar(var(3));

— 3

rvar("x");

— 1

See Section 5.1.13 [defined], page 111; Section 4.16 [ring], page 95; Section 5.1.116 [var], page 176;
Section 5.1.117 [varstr], page 176.

5.1.100 setring

Syntax: setring ring name;
Type: none
Purpose: changes the basering to another (already defined) ring.
Example:
ring ri1=0,(x,y),1p;
// the basering is ri
ring r2=32003,(a(1..8)),ds;
// the basering is r2
setring ri;
// the basering is again rl

nameof (basering) ;
listvar();

Chapter 5: Functions and system variables 165

Use in procedures:
All changes of the basering by a definition of a new ring or a setring command in a
procedure are local to this procedure. Use keepring to move a ring which is local to a
procedure up by one nesting level.

See Section 4.14 [gring], page 93; Section 4.16 [ring], page 95; Section 5.2.7 [keepring], page 182.

5.1.101 simplify

Syntax: simplify (poly_expression, int_expression)
simplify (vector_expression, int_expression)
simplify (ideal _expression, int_expression)
simplify (module expression, int_expression)

Type: the type of the first argument

Purpose: returns the "simplified" first argument depending on the simplification rule given as
the second argument.
The simplifications rules are the sum of the following functions:

1 normalize (make leading coefficients 1)

2 erase zero generators/columns

4 keep only the first from identical generators/columns

8 keep only the first from generators/columns which differ by a factor from

the ground field
16 keep only the first from generators/columns whose leading monomials differ

32 keep only the first from generators/columns whose leading monomials are
not divisible.

Example:

ring r = 0, (x,y,z), (c, dp);

ideal i = 0, 2x, 2x, 4x, 3x + y, 5x2;

simplify(i, 1);
_[1]1=0
_[2]=x
_[3]=x
_[4]=x
_[5]=x+1/3y
_[6]=x2
simplify(i, 2);
_[1]=2x
_[2]=2x
_[3]1=4x
_[4]1=3x+y
_[5]=bx2
simplify (i, 4);
_[1]1=0
_[2]=2x
_[3]=4x
_[41=3x+y

111111

11111

1111

Chapter 5: Functions and system variables

— _[5]=5x2
simplify(i, 8);
— _[1]1=0

— _[2]=2x

= _[3]=3x+y

— _[4]=5x2
simplify(i, 16);
— _[1]1=0

— _[2]=2x

— _[3]1=5x2
simplify(i, 32);
= _[1]1=0

— _[2]=2x

simplify(i, 32 + 2 + 1);

= _[1]=x

matrix A[2][3]=x,0,2x,y,0,2y;
simplify(A,2+8); // by automatic conversion to module

= _[11=[x,y]

166

See Section 4.12 [poly], page 89; Section 4.18 [vector|, page 99; Section 4.2 [ideal], page 50;
Section 4.10 [module], page 83.

5.1.102 size

Syntax: size (string expression)
size (intvec_expression)
size (intmat_expression)
size (poly_expression)
size (vector_expression)
size (ideal _expression)
size (module_expression)
size (matrix_expression)
size (list_expression)
size (resolution)

Type: int

Purpose:

ideal or module

string, intvec, list or resolution
returns the length, i.e. the number of characters, entries or elements.

returns the number of (non zero) generators.

poly or vector

returns the number of monomials.

matrix or intmat

Example:

returns the number of entries (rows*columns).

string s="hello";

Chapter 5: Functions and system variables 167

size(s);

— b

intvec iv=1,2;
size(iv);

— 2

ring r=0,(x,y,2),1p;
poly f=x+y+z;
size(f);

— 3

vector v=[x+y,0,1];
size(v);

— 3

ideal i=f,y;
size(i);

= 2

module m=v,[0,1],[0,0,1],2%v;
size(m) ;

— 4

matrix mm[2] [2];
size (mm) ;

— 4

See Section 4.17 [string], page 96; Section 4.5 [intvec|, page 63; Section 4.4 [intmat], page 60;
Section 4.12 [poly], page 89; Section 4.18 [vector]|, page 99; Section 4.2 [ideal], page 50; Section 4.10
[module], page 83; Section 5.1.72 [ncols], page 147; Section 5.1.75 [nrows|, page 149.

5.1.103 sortvec

Syntax: sortvec (ideal expression)
sortvec (module_expression)

Type: intvec

Purpose: computes the permutation v: I[i] -> I[v[i]] which orders the ideal resp. module by their
initial term, starting with the smallest.

Example:

ring r=0,(x,y,2),dp;
ideal I=x,y,z,x3,xz;
sortvec(I);

—~ 3,2,1,5,4

See Section D.3 [general lib], page 250.

5.1.104 sres

Syntax: sres (ideal_expression, int_expression)
sres (module_expression, int_expression)

Type: resolution

Chapter 5: Functions and system variables 168

Purpose:

Note:

Example:

computes a free resolution of an ideal or module with Schreyer’s method. The ideal
resp. module has to be a standard basis. More precisely, let M be given by a standard
basis and A; = matriz(M). Then sres computes a free resolution of M; = coker(A;)

s By 2 F A E M, 0,

The computation stops after k steps, if the int expression k is not zero, and returns a
list of modules (given by standard bases) M; = module(4;), i=1..k.

If k=0, sres(M,0) returns a list of n modules where n is the number of variables of
the basering.

Even if sres does not compute a minimal resolution, the betti command gives the
true betti numbers! In many cases of interest sres is much faster than any other
known method. Let 1list 1=sres(M,0); then L[1]=M is identical to the input, L[2]
is a standard basis with respect to the Schreyer ordering of the first szyzgy module of
L[1], etc. (L[i] = M; in the notations from above).

To access the elements of a resolution, it has to be assigned to a list, which also
completes computations and may therefore take time.

ring r = 31991, (t,x,y,z,w),ls;

ideal M = t2x2+tx2y+x2yz,t2y2+ty2z+y2zw,
t2z2+tz2w+xz2w, t 2w2+txw2+xyw2;

M = std(M);

resolution L. = sres(M,0);

L;

= 1 35 141 209 141 43 4 0

= r <--r <--r <--r <--r <--r <——r <——-r1

—>

— 0 1 2 3 4 5 6 7

— resolution not minimized yet

—

print (betti(L),"betti");

—> 0 1 2 3 4 5

|_> __

— 0: 1 0 0 0 0 0

— 1: 0 0 0 0 0 0

— 2: 0 0 0 0 0 0

— 3: 0 4 0 0 0 0

— 4: 0 0 0 0 0 0

— 5: 0 0 0 0 0 0

— 6: 0 0 6 0 0 0

— T: 0 0 9 16 2 0

—> 8: 0 0 0 2 5 1

|_> __

— total 1 4 15 18 7 1

See Section 5.1.3 [betti], page 104; Section 4.2 [ideal], page 50; Section 4.3 [int], page 54; Sec-
tion 5.1.59 [lres|, page 139; Section 5.1.64 [minres], page 142; Section 4.10 [module], page 83;
Section 5.1.67 [mres|, page 144; Section 5.1.96 [res], page 162; Section 5.1.111 [syz], page 173.

5.1.105 status

Chapter 5:

Syntax:
Type:
Syntax:

Type:

Purpose:

Example:

Functions and system variables 169

status (link_expression, string expression)
string

status (link expression, string expression, string_expression)

status (link expression, string expression, string expression, int_expression)

int

returns the status of the link as asked for by the second argument. If a third
argument is given, the result of the comparison to the status string is returned:
(status(1l,s1)==s2) is equivalent to status(1,s1,s2). If a fourth integer argument
(say, i) is given and if status(1l,s1,s2) yields 0, then the execution of the current
process is suspended (the process is put to “sleep”) for approximately i microseconds,
and afterwards the result of another call to status(1,s1,s2) is returned. The latter is
useful for “polling” the read status of MPtcp links such that busy loops are avoided (see
Section A.27 [Parallelization with MPtcp links], page 237 for an example). Note that
on some systems, the minimium time for a process to be put to sleep is one second.
The following string expressions are allowed:

"name" the name string given by the definition of the link (usually the filename)
"type" returns "ASCII", "MPfile", "MPtcp" or "DBM"

"open" returns "yes" or "no"

"openread"

returns "yes" or "no"

"openwrite"
returns "yes" or "no"

"read" returns "ready" or "not ready"

"write" returns "ready" or "not ready"

"mode" returns (depending on the type of the link and its status) "","w","a","¢"
or "rw"

link 1=":w example.txt";
status(1l,"write");

— not ready

open(1l);
status(l,"write","ready");
— 1

close(1l);

See Section 4.6 [link]|, page 66; Section 5.1.77 [open], page 150; Section 5.1.93 [read], page 160;
Section 5.1.121 [write], page 178.

5.1.106 std

Syntax:

Type:

std (ideal_expression)

std (module_expression)

std (ideal expression, intvec_expression)
std (module_expression, intvec_expression)

ideal or module

Chapter 5: Functions and system variables 170

Purpose:

Example:

returns a standard basis of an ideal or module with respect to the monomial ordering
of the basering. A standard basis is a set of generators such that the leading terms
generate the leading ideal resp. module.

Use an optional second argument as Hilbert series (result of hilb(i,1), see Sec-
tion 5.1.39 [hilb], page 125), if the ideal resp. module is homogeneous, (Hilbert driven
standard basis computation, Section 5.1.108 [stdhilb], page 171).

ring r = 32003, (x,y,z), ds;

poly s1 = 1x3y2 + 151xby + 169x2y4 + 151x2yz3 + 186xy6 + 169y9;
poly s2 1x2y2z2 + 3z8;

poly s3 5x4y2 + 4xy5 + 2x2y2z3 + 1y7 + 11x10;

ideal i = s1, s2, s3;

// compute standard basis j

ideal j = std(i);

See Section 4.2 [ideal], page 50; Section 4.16 [ring], page 95; Section 5.1.78 [option], page 150;
Section 5.1.26 [facstd], page 118; Section 5.1.68 [mstd], page 145; Section 5.1.107 [stdfglm], page 170;
Section 5.1.108 [stdhilb], page 171.

5.1.107 stdfglm

Syntax:

Purpose:

Syntax:

Purpose:

Note:
Type:

Example:

stdfglm (ideal_expression)

returns a standard basis of an ideal in the basering, calculated via the FGLM algorithm
from the ordering "dp" (degrevlex) to the ordering of the basering.

stdfglm (ideal_expression, string expression)

returns a standard basis of an ideal in the basering, calculated via the FGLM algorithm
from the ordering given by the second argument to the ordering of the basering.

The first argument has to be a zero-dimensional ideal.

ideal

ring r 0,(x,y,2),1p;

ideal i y3+x2, x2y+x2, x3-x2, z4-x2-y;

ideal il= stdfglm(i); //uses fglm from "dp" to "lp"
il;

i1[1]=z12

i1[2]=yz4-z8

i1[3]=y2+y-2z8-z4

i1[4]=xy-xz4-y+z4

i1 [5]=x2+y-z4

eal i2= stdfglm(i,"Dp"); //uses fglm from "Dp" to "lp"

11111

i

[
N Q.

i2[1]=z12
i2[2]=yz4-28
12[3]=y2+y-z8-z4
i2[4] =xy-xz4-y+z4
12 [6]=x2+y-z4

11111

Chapter 5: Functions and system variables 171

See Section 4.2 [ideal], page 50; Section 4.16 [ring], page 95; Section 5.1.78 [option], page 150;
Section 5.1.26 [facstd], page 118; Section 5.1.68 [mstd], page 145; Section 5.1.106 [std], page 169;
Section 5.1.108 [stdhilb], page 171.

5.1.108 stdhilb

Syntax: stdhilb (ideal_expression)
stdhilb (ideal_expression, intvec_expression)

Type: ideal

Purpose: returns a standard basis of a homogeneous ideal with respect to the monomial ordering
of the basering (Hilbert driven standard basis computation). First the Hilbert series is
computed (if not given).

Use an optional second argument as Hilbert series (result of hilb(i,1), see Sec-
tion 5.1.39 [hilb], page 125).

Example:

ring r = 0,(x,y,2),1lp;

ideal i y3+x2, x2y+x2, x3-x2, z4-x2-y;
ideal il= stdhilb(i); i1;
i1[1]=z12

i1[2]=yz4-z8
i1[3]=y2-yz4+y-z4
i1[4]=y2z4-y2+yz4-y+z4
i1[5]=y3-y+z4

i1[6]=y4+y3

i1[7]=xy-xz4-y3

i1[8]=xy3-y3

i1[9]=x2+y3
i1[10]=x2z4+x2+xy3
i1[11]=x2y+x2

i1[12]=x3-x2

// is in this case equivalent to:
intvec v=1,0,0,-3,0,1,0,3,-1,-1;
ideal i2=stdhilb(i,v);

111111111111

See Section 4.2 [ideal], page 50; Section 5.1.39 [hilb], page 125; Section 4.16 [ring], page 95;
Section 5.1.78 [option], page 150; Section 5.1.26 [facstd], page 118; Section 5.1.68 [mstd], page 145;
Section 5.1.106 [std], page 169; Section 5.1.107 [stdfglm], page 170.

5.1.109 subst

Syntax: subst (poly_expression, ring_variable, monomial)
subst (vector_expression, ring variable, monomial)
subst (ideal expression, ring variable, monomial)
subst (module expression, ring variable, monomial)

Type: poly, vector, ideal or module (the same as the first argument)

Purpose: substitutes a ring variable by a monomial (a polynomial of length <=1).

Chapter 5:

Example:

Functions and system variables

ring r=0,(x,y,2),dp;
poly f=x2+y2+z2+x+y+z;
subst (f,x,3/2);

= y2+z2+y+z+15/4

int a=1;

subst (f,y,a);

> X2+z2+x+2z+2

subst (f,y,2);

= x2+2z2+x+2z

172

See Section 4.12 [poly], page 89; Section 4.18 [vector|, page 99; Section 4.2 [ideal], page 50;
Section 4.10 [module], page 83.

5.1.110 system

Syntax:

Type:

Purpose:

Functions:

system (expression_list)

the first expression must be of type string and selects the desired function.
depends on the desired function, may be none

interface to internal data and the operating system.
Not all functions work on every platform.

system("sh",string_expression)
shell escape, returns the return code of the shell

system("pid")
returns the process number (for creating unique names)

system("getenv",string_expression)
returns shell environment variable given as the second argument

system("tty")
resets the terminal

system("version")
returns the version number of SINGULAR (type int)

system("contributors")
returns names of people who contributed to the Singular kernel

system("random",int_expression)

resets the random generator to the given value and return it (type int)

system("random")
returns the seed of the random generator (type int)

system("gen")

returns the generating element of the multiplicative group of Z/p\{0} (as

int) where p is the characteristic of the basering

system("nblocks" [, ring])

returns the number of blocks of ring, or the number of parameters of the

current basering, if no second argument is given.

Chapter 5: Functions and system variables 173

system("HC")

returns the order of the highest corner of the last computation or 0

system("Singular")

returns the absolute (path) name of the running SINGULAR (type string)

system("long_option_name")

returns the value of the (command-line) option "long_option_name"; for
on/off options, the return value is of type int and either 1 or 0; for all other
options, the return type is string.

Example for UNIX:

// a listing of the current directory:
system("sh","1s");

// execute a shell, return to SINGULAR with exit:
system("sh","sh");

string unique_name="/tmp/xx"+string(system("pid"));
unique_name;

— /tmp/xx4711

system("getenv","PATH") ;

+~ /bin:/usr/bin:/usr/local/bin
system("Singular");

— /usr/local/bin/Singular

// report minimal display time
system("--min-time") ;

— 0.5

Example for MSDOS:

5.1.111

Syntax:

Type:
Purpose:

Example:

// a listing of the current directory:
system("sh","dir");

// execute a shell, return to SINGULAR with exit:
system("sh","command") ;

string unique_name="/tmp/xx"+string(system("pid"));
unique_name;

— /tmp/xx0

syz (ideal expression)
syz (module_expression)

module

computes the first syzygy (i.e. the module of relations of the given generators) of the
ideal resp. module.

ring R=0, (x,y),(c,dp);
ideal i=x,y;

syz(i);

= _[1]1=[y,-x]

See Section 4.2 [ideal], page 50; Section 5.1.59 [lres|, page 139; Section 4.10 [module], page 83;
Section 5.1.67 [mres], page 144; Section 5.1.74 [nres|, page 148; Section 5.1.96 [res], page 162;
Section 5.1.104 [sres]|, page 167.

Chapter 5: Functions and system variables 174

5.1.112 trace

Syntax: trace (intmat_expression)
trace (matrix_expression)
Type: int resp. poly
Purpose: returns the trace of an intmat resp a matrix.
Example:
intmat m[2] [2]=1:2:3,4;
print (m) ;
— 1 2
— 3 4
trace(m) ;
)

See Section 4.4 [intmat], page 60; Section 4.9 [matrix|, page 80.

5.1.113 transpose

Syntax: transpose (intmat_expression)
transpose (matrix_expression)

Type: same type as the argument
Purpose: transposes a matrix.

Example:

ring R=0,x,dp;
matrix m[2] [3]=1,2,3,4,5,6;

— 4,5,6

print (transpose(m)) ;
1,4,

= 2,
>

2,5
3,6

2

See Section 4.4 [intmat], page 60; Section 4.9 [matrix|, page 80.

5.1.114 type

Syntax: type (name) ;
Type: none

Purpose: lists the [name, level, type and] value of a variable. To display the value of an expression,
it is sufficient to type expression;.

Example:

Chapter 5: Functions and system variables 175

int i=3;

i;

= 3

type i;

= // 1 [0] int 3

See Section 5.1.58 [listvar], page 138; Section 5.1.87 [print], page 156; Chapter 4 [Data types],
page 49.

5.1.115 typeof

Syntax: typeof (expression)
Type: string

Purpose: returns the type of an expression as string.
Returns the type of the first list element if the expression is an expression list.

Possible types are: "ideal", "int", "intmat", "intvec", "list", "map", "matrix",
"module"”, "number", "none", "poly", "proc", "qring", "resolution", "ring",
"string", "vector".

For internal use only are the types "package", "7unknown type?".

Example:
int i = 9;
i;
= 9
typeof (L) ;
— int
print (i) ;
= 9
typeof (L) ;
— none
type i;
= // 1 [0] int 9
typeof (L) ;
— string
string s
S5
— int
typeof (s);
— string
proc p() { "hello"; return();}
pQO;
— hello
typeof (L) ;
~ none

typeof (1) ;

See Chapter 4 [Data types], page 49.

Chapter 5: Functions and system variables 176

5.1.116 var

Syntax: var (int_expression)
Type: poly
Purpose: returns the n-th ring variable for a given integer n.
Example:
ring r=0,(x,y,2),dp;
var(2);
=y

See Section 4.16 [ring], page 95; Section 4.3 [int], page 54; Section 5.1.76 [nvars|, page 150;
Section 5.1.117 [varstr], page 176.

5.1.117 wvarstr

Syntax: varstr (ring name)
varstr (int_expression)
varstr (ring name, int_expression)

Type: string
Purpose: returns the list of the names of the ring variables as a string

or the name of the n-th ring variable for a given integer n.
varstr(n) is equivalent to varstr(basering,n).

Example:
ring r=0,(x,y,2),dp;
varstr(r);
= X,¥,2
varstr(r,1);
= X
varstr(2);
=y

See Section 4.16 [ring], page 95; Section 4.3 [int], page 54; Section 5.1.76 [nvars]|, page 150;
Section 5.1.116 [var|, page 176; Section 5.1.80 [ordstr], page 154; Section 5.1.6 [charstr|, page 106;
Section 5.1.83 [parstr], page 155.

5.1.118 vdim

Syntax: vdim (ideal_expression)
vdim (module_expression)

Type: int

Purpose: computes the vector space dimension of the ring (resp. free module) modulo the ideal
(resp. module) generated by the initial terms of the given generators. If the generators
are a standard basis, this is the same as the vector space dimension of the ring (resp.
free module) modulo the ideal (resp. module).

If the ideal resp. module is not zero-dimensional, -1 is returned

Chapter 5: Functions and system variables 177

Example:
ring r=0, (x,y),ds;
ideal i=x2+y2,x2-y2;
ideal j=std(i);
vdim(j);
— 4

See Section 4.2 [ideal], page 50; Section 5.1.106 [std], page 169; Section 5.1.19 [dim], page 114;
Section 5.1.15 [degree|, page 112; Section 5.1.69 [mult], page 145; Section 5.1.48 [kbase], page 132.

5.1.119 wedge

Syntax: wedge (matrix_expression, int_expression)
Type: matrix
Purpose: computes the n-th exterior power of matrix for a given integer n.

Example:
ring r;
matrix m[2][3] = x,y,y,2z,z,x;
print (m) ;
= X,¥,Y,
= Z,Z,X
print (wedge(m,2));
— Xz-yz,-X2+yz,Xy-yz

See Section 4.9 [matrix], page 80; Section 5.1.63 [minor|, page 141; Section 4.3 [int], page 54.

5.1.120 weight

Syntax: weight (ideal_expression)
weight (module_expression)

Type: intvec

Purpose: computes an "optimal" weight vector for an ideal resp. module which may be used as
weight vector for the variables in order to speed up the standard basis algorithm. If
the input is weighted homogeneous, a weight vector for which the input is weighted
homogeneous is found.

Example:

ring h1=32003, (t,x,y,2) ,dp;
ideal i=
9x8+y7t3z4+5x4y2t2+2xy2z3t2,
9y8+7xy6t+2xby4t2+2x2yz3t2,
9z8+3x2y3z2t4;

intvec e=weight(i);

€;

= 5,7,5,7

ring r=32003, (a,b,c,d) ,wp(e);

Chapter 5: Functions and system variables 178

See Section 4.2

5.1.121 write

map f=hl,a,b,c,d;
ideal iO=std(f(i));

[ideal], page 50; Section 4.5 [intvec], page 63; Section 5.1.89 [qghweight], page 157.

Syntax: write (link _expression, expression_list) ;
for DBM links:
write(link, string expression, string_expression) ;
write(link, string expression) ;

Type: none

Purpose: writes data to a link.

If the

link is of type ASCII, all expressions are converted to strings (and separated by a

newline character) before they are written. As a consequence, only such values which
can be converted to a string can be written to an ASCIT link.

For MP links, ring-dependent expressions are written together with a ring description.
To prevent an evaluation of the expression before it is written, the quote command
(possibly together with eval) can be used. A write blocks (i.e. does not return to the
prompt), as long as a MPtcp link is not ready for writing.

For DBM links, write with three arguments inserts the first string as key and the
second string as value into the dbm data base.

Called with two arguments it deletes the entry with the key specified by the string from
the data base.

Example:

See Section 5.1

//write the lines with the values of the variables f and i
//then the value of m+a into the file "outfile"

write(":w outfile",f,i,m+a);

string filename=":a outfile";

//now append the string "that was f,i,m+a" (without the quotes)
// at the end of the file "outfile"

write(filename,"that was f,i,m+a");

// saving and retrieving data:

ring r=32003, (x,y,z) ,dp;

ideal i=x+y,z3+22y;

write(":w save_i",i);// this writes x+y,z3+22y to the file save_i

ring r=32003, (x,y,z) ,dp;

string s=read("save_i"); //creates the string x+y,z3+22y

execute "ideal k="+gs+";"; // this defines an ideal k which
// is equal to i.

.93 [read], page 160; Section 4.6 [link], page 66; Chapter 4 [Data types], page 49;

Section 5.1.90 [quote], page 158; Section 5.1.22 [eval], page 116; Section 5.1.20 [dump], page 114.

Chapter 5: Functions and system variables 179

5.2 Control structures

A sequence of commands surrounded by curly brackets ({ and }) is a so called block. Blocks are
used in SINGULAR in order to define procedures and to collect commands belonging to if, else,
for and while statements and to the example part in libraries. Even if the sequence of statements
consists of only a single command it has to be surrounded by curly brackets! Variables which are
defined inside a block are not local to that block. Note that there is no ending semicolon at the
end of the block.

Example:

if (i>j)

{
// This is the block
int temp;
i=temp;
i=j;
j=temp;
kill temp;

5.2.1 break

Syntax: break;
Purpose: leaves the innermost for- or while-block.

Example:

while (1)
{

if (...)
{
break; // leave the while block

}
}

See Section 5.2 [Control structures|, page 179; Section 5.2.10 [while], page 183; Section 5.2.5
[for], page 181.

5.2.2 continue

Syntax: continue;

Purpose: skips the rest of this loop und jumps to the beginning of the block. This command is
only valid inside a for or a while construct.

Note: Unlike the C-construct it does not execute the increment statement. The command
continue is mainly for internal use.

Example:

Chapter 5: Functions and system variables 180

for (int i =1 ; i<=10; i=i+1)

{

if (i==3) { i=8;continue; }
// skip the rest if i is 3 and
// continue with the next i: 8
i;

11111~
= O 00N =

o

See Section 5.2 [Control structures|, page 179; Section 5.2.5 [for], page 181; Section 5.2.10 [while],
page 183.

5.2.3 else

Syntax: if (boolean expression) true_block else false block

Purpose: executes false_block if the boolean_expression of the if statement is false. This com-
mand is only valid in combination with an if command.

Example:
int i=3;
if (i > 5)
{
"i is bigger than 5";
}
else
{
"i is smaller than 6";
}

+— 1 is smaller than 6

See Section 5.2.6 [if], page 181; Section 4.3.5 [boolean expressions|, page 58; Section 5.2 [Control
structures|, page 179.

5.2.4 export

Syntax: export name ;
export list_of names ;

Purpose: converts a local variable of a procedure to a global one.

Note: Objects defined in a ring are not automatically exported
when exporting the ring, (use keepring instead).

Example:

Chapter 5: Functions and system variables 181

proc pl
{
int i,j;
export ij;
intmat m;
listvar();
export m;
}
pl1O);
= // m [1] intmat 1 x 1
= /] j [1] int O
= // 1 [0] int O
listvar();
— // m [0] dintmat 1 x 1
= // i [0] dint O

See Section 5.2.7 [keepring], page 182.

5.2.5 for

Syntax:

Purpose:

Example:

for (init_commands; boolean_expression; iterate_.commands) block

repetitive, conditional execution of a command block.

The command init_command is executed first. Then boolean_expression is evaluated.
If its value is TRUE the block is executed, otherwise the for statement is complete.
After each execution of the block, the command iterate_command is executed and
boolean_expression is evaluated.

The command break; leaves the innermost for construct.

// sum of 1 to 10:

int s=0;
for (int i=1; i<=10; i=i+1)
{
s=s+i;
}
S;
— b5

See Section 5.2 [Control structures|, page 179; Section 4.3.5 [boolean expressions|, page 58;
Section 5.2.10 [while], page 183; Section 5.2.6 [if], page 181; Section 5.2.1 [break]|, page 179; Sec-
tion 5.2.2 [continue], page 179.

5.2.6 if
Syntax:

Purpose:

if (boolean_expression) true_block
if (boolean_expression) true_block else false_block

executes true_block if the boolean condition is true. If the if statement is followed by
an else statement and the boolean condition is false, then false_block is executed.

Chapter 5: Functions and system variables 182

Example:
int i = 9;
matrix m [i][i];
if (i > 5 and typeof(m) == "matrix")
{
m[i]J[i] = i;
}

See Section 5.2.3 [else], page 180; Section 5.2.1 [break], page 179; Section 5.2 [Control structures],
page 179; Section 4.3.5 [boolean expressions|, page 58.

5.2.7 keepring

Syntax: keepring name ;

Purpose: moves the specified ring to the next (upper) level. This command can only be used
inside of procedures and it should be the last command before the return statement.
There it provides the possibility to keep a ring which is local to the procedure (and its
objects) accessible after the procedure ended without making the ring global.

Example:

proc P1

{
ring r=0,x,dp;
keepring r;

}
proc P2
{
"inside P2: " + nameof(basering);
P10);
"inside P2, after call of P1: " + nameof(basering);
}
ring ri= 0,y,dp;
P2();

— inside P2: ri1

— inside P2, after call of Pl: r
"at top level: " + nameof (basering);
— at top level: rl

5.2.8 quit

Syntax: quit;

Purpose: quits SINGULAR, works also from inside a procedure. The commands quit and exit
are synonymous.

Example: quit;

5.2.9 return

Chapter 5: Functions and system variables

Syntax: return (expression_list) ;
return ();
Type: any

Purpose: returns the result(s) of a procedure.
Can only be used inside a procedure.

Example:

proc p2
{

int i,j;

for(i=1;i<=10;i++)

{

J=3+s

}

return(j);
}
// can also return an expression list, i.e., more than value
proc tworeturn ()
{ return (1,2); }
int i,j = tworeturn();
// return type may even depend on the input
proc type_return (int i)
{

if (i > 0) {return (i);}

else {return (list(i));}
}
// then we need def type (or list) to collect value
def tl1 = type_return(1);
def t2 = type_return(-1);

See Chapter 4 [Data types]|, page 49; Section 4.13 [proc], page 92.

5.2.10 while

Syntax: while (boolean_expression) block

Purpose: repetitive, conditional execution of block.
The command break leaves the innermost while construct.

Example:

int i = 9;

while (i>0)

{
// ... // do something for i=9, 8, ..., 1
i=i-1;

}

while (1)

{
// ... // do something forever

if (i == -5) // but leave the loop if i is -5

183

Chapter 5: Functions

and system variables 184

break;

See Section 5.2 [Control structures|, page 179; Section 4.3.5 [boolean expressions|, page 58;
Section 5.2.1 [break], page 179.

5.2.11 ~ (breakpoint)

Syntax: ~s
Purpose: sets a breakpoint. Whenever SINGULAR reaches the command ~; in a sequence of
commands it prompts for input. The user may now input lines of SINGULAR commands.
The line length can not exceed 80 characters. SINGULAR proceeds with the execution
of the command following ~; as soon as it receives an empty line.
Example:
proc t
{
int i=2;
return(i+1l);
}
t(0);
+— -- break point in t --
— == 0: called from STDIN --
// here local variables of the procedure can be accessed
i;
— 2
— -- break point in t --
— 3

See Section 3.8.2 [Break points], page 47.

5.3 System variables

5.3.1 degBound

Type: int

Purpose: The standard basis computation is stopped if the total (weighted) degree exceeds
degBound.
degBound should not be used for a global ordering with inhomogeneous input.
Reset this bound by setting degBound to 0.

Example:

Chapter 5: Functions and system variables 185

degBound = 7;

option();

~ //options for ’std’-command: degBound

ideal j=std(i);

degBound;

= 7

degBound = 0; //resets degree bound to infinity

See Section 5.1.14 [deg], page 111; Section 4.3 [int], page 54; Section 5.1.78 [option], page 150.

5.3.2 echo

Type: int

Purpose: input is echoed if echo >= voice.
echo is a local setting for a procedure and defaulted to 0.
echo does not affect the output of commands.

Example:

echo = 1;
int i = echo;
— int i = echo;

See Section 4.3 [int], page 54; refvoice.

5.3.3 minpoly

Type: number

Purpose: describes the coefficient field of the current basering as an algebraic extension with
the minimal polynomial equal to minpoly. Setting the minpoly should be the first
command after defining the ring.

Note: The minimal polynomial has to be specified in the syntax of a polynomial. Its variable
is not one of the ring variables, but the algebraic element which is being adjoined to
the field. Algebraic extension are in SINGULAR only possibel over the rational numbers
or Z/p, p prime number.

SINGULAR. does not check whether the given polynomial is irreducible! It can be checked
in advance with the function factorize Section 5.1.27 [factorize], page 119.

Example:

//(QLil/(i~2+1)) [x,y,z]:
ring Cxyz=(0,1i),(x,y,z),dp;
minpoly=i~2+1;

i2;

= (-1)

See Section 4.16 [ring], page 95.

Chapter 5: Functions and system variables 186

5.3.4 multBound

Type: int

Purpose: The standard basis computation is stopped if the ideal is zerodimensional in a ring
with local ordering and its multiplicity (mult) is lower than multBound.
Reset this bound by setting multBound to 0

Example:
multBound = 20;
option();
— //options for ’std’-command: multBound
ideal j=std(i);
multBound;
— 20

multBound = 0; //disables multBound

See Section 4.3 [int], page 54; Section 5.1.69 [mult], page 145; Section 5.1.78 [option], page 150.

5.3.5 noether

Type: poly

Purpose: The standard basis computation in local rings cuts off all monomials above (in the
sense of the monomial ordering) the monomial noether during the computation.
Reset noether by setting noether to 0

Example:
ring R=32003, (x,y,2),ds;
ideal i=x2+y~12,y13;
std(i);
= _[1]=x2+y12
= _[2]=y13
noether = x711;
std(i);
— _[1]=x2
noether = 0; //disables noether

See Section 4.12 [poly], page 89; Section 5.1.106 [std], page 169.

5.3.6 printlevel

Type: int
Purpose: sets the debug level for dbprint. If printlevel >= voice dbprint is equivalent to
print, otherwise nothing is printed.

Example:

voice;
=1

Chapter 5: Functions and system variables 187

printlevel=0;
dbprint (1) ;
printlevel=voice;
dbprint (1) ;

=1

See Section 4.3 [int], page 54; Section 5.1.12 [dbprint], page 110; Section 5.3.11 [voice], page 189.

5.3.7 short

Type:

Purpose:

Example:

int

the output of monomials is done in the short manner, if short is nonzero. A C-like
notion is used, if short is zero. Both notations may be used as input.

The default depends on the names of the ring variables (0 if there are names of variables
longer than 1 character, 1 otherwise). Every change of the basering sets short to the
proper default value for that ring and overwrites the previous setting.

ring r=23,x,dp;
int save=short;

short = 1;
2x2,x2;
— 2x2 x2
short = 0;
2x2,x2;

= 2%x72 x72
short=save;//resets short to the previous value

5.3.8 timer

Type:

Purpose:

Example:

nt

1. the CPU time used for each command is printed if timer >0 and if this time is
bigger than a (customizable) minimal time;

2. yields the used CPU time since the start-up of SINGULAR in a (customizable)
resolution.

The default setting of timer is 0, the default minimal time is 0.5 seconds, and the
default timer resolution is 1 (i.e., default unit of time is one second). The minimal
time and timer resolution can be set using the command line options —-min-time and
--ticks-per-sec and can be checked using system("--min-time") and system("--
ticks-per-sec").

How to use timer in order to measure the time for a sequence of commands, see example
below.

timer = 1; // The time of each command is printed
int t=timer; // initialize t by timer
ring r=0, (x,y,z),dp;

Chapter 5: Functions and system variables 188

poly p=(x+2y+3z+4xy+5xz+6yz) "20;
— //used time: 1.55 sec
// timer as int_expression:
t = timer - t;
t; // yields the time in ticks-per-sec (default 1)
= 2
// since t was initialized by timer
execute "int tps=" + system("--ticks-per-sec");
t/tps; // yields the time in seconds
— 2

See Section 3.1.6 [Command line options], page 18; Section 5.1.110 [system], page 172; Sec-
tion 5.3.10 [rtimer], page 188.

5.3.9 TRACE

Type:

Purpose:

Example:

sets level of debugging.
TRACE=1 messages about entering and leaving of procedures are displayed.

TRACE=3 messages about entering and leaving of procedures together with line num-

bers are displayed.

TRACE=4 each line is echoed and the interpretation of commands in this line is sus-

pended until the user presses RETURN.

TRACE is defaulted to 0.
TRACE does not affect the output of commands.

TRACE = 1;
LIB "general.lib";
sum(1..100);

— entering sum (level 0)
+ leaving sum (level 0)
— 5050

See Section 4.3 [int], page 54.

5.3.10 rtimer

Type:

Purpose:

Example:

identical to timer, except that real times (i.e., wall-clock) times are reported, instead
of CPU times.

See Section 5.3.8 [timer|, page 187; Section 3.1.6 [Command line options]|, page 18; Sec-
tion 5.1.110 [system], page 172.

Chapter 5: Functions and system variables 189

5.3.11 voice

Type: int
Purpose: shows the nesting level of procedures.

Example:
voice;
= 1

proc p
{

voice;

}
= 2

See Section 5.1.12 [dbprint], page 110; Section 5.1.58 [listvar|, page 138; Section 5.3.6 [printlevel],
page 186.

Chapter 6: Tricks and pitfalls 190

6 Tricks and pitfalls

6.1 Limitations
SINGULAR has the following limitations:

e the characteristic of a prime field must be less than 32004
e the (weighted) degree of a monomial must be smaller than 2147483648
e the exponent of a ring variable must be smaller than 32768

e a ring must have 505 variables or less
(501 on a DEC Alpha)

e integers (of type int) have the limited range from -2147483647 to 2147483647
e the length of an identifier is unlimited but listvar displays only the first 20 characters

6.2 Major differences to the C programming language

Although many constructs from SINGULAR’s programming language are similar to those from
the C programming language, there are some subtle differences. Most notably:
No rvalue of increments and assignments

The increment ++ (resp. decrement operator --) has no rvalue, i.e., cannot be used on the
right-hand sides of assignments. So, instead of

j = i++; // WRONG!!!
(which results in an error), it must be written
i++; j = 1i;
Likewise, an assignment expression does not have a result. Therefore, compound assignments
like i = j = k; are not allowed and result in an error.
Evaluation of logical expressions

All arguments of a logical expressions are first evaluated and then the value of the logical expres-
sion is determined. For example, the logical expressions (a | | b) is evaluated by first evaluating a
and b, even though the value of b has no influence on the value of (a || b), if a evaluates to true.
Therefore, the following results in a syntax error

if (defined(i) && i > 0) {J¥ // WRONG!!!

if the variable i is undefined. This must be written instead as

Chapter 6: Tricks and pitfalls 191

if (defined(i))
{

if (A > 0) {}
}

Note that this evaluation is different from the left-to-right, conditional evaluation of logical
expressions (as found in most programming languages). For example, in these other languages, the
value of (1 || b) is determined without ever evaluating b.

However, there are several short work-arounds for this problem:

1. Ifavariable (say, i) is only to be used as a boolean flag, then define (value is true) and undefine
(value is false) i instead of assigning a value. Using this scheme, it is sufficient to simply write

if (defined(i))

in order to check whether i is true. Use the command kill to undefine a variable (see
Section 5.1.49 [kill], page 133).

2. If a variable can have more than two values, then define it, if necessary, before it is used for
the first time. For example, if the following is used within a procedure

if (! defined(DEBUG)) { int DEBUG = 1;}

3 {..}
2) {...}

if (DEBUG
if (DEBUG

then a user of this procedure does not need to care about the existence of the DEBUG variable
— this remains hidden from the user. However, if DEBUG exists globally, then its local default
value is overwritten by its global one.

No case or switch statement

SINGULAR does not offer a case (or, switch) statement. However, it can be imitated in the
following way:

while (1)

{
if (choice == choice_1) { ...; break;}
if (choice == choice_n) { ...; break;}
// default case
..; break;

}

Usage of commas

In SINGULAR, a comma separates list elements and the value of a comma, expression is a list.
Hence, commas can not be used to combine several expressions into a single expression. For
example, instead of writing

Chapter 6: Tricks and pitfalls 192

one has to write

for (i,j = 1,5; i<5 || j<10; i++, j++) {...}

Usage of brackets

In SINGULAR, curly brackets ({ }) must always be used to enclose the statement body following
such constructs like if, else, for, while, even if this block consists of only a single statement.
Similarly, in the return statement of a procedure parentheses (()) must always be used to enclose
the return value. Even if there is no value to return, parentheses have to be used after a return
statement (i.e., return() ;). For example,

if (i == 1) return ij; // WRONG!!!!!
results in a errors. Instead, it must be written as

if (4 == 1) { return (i); }

Behaviour of continue

SINGULAR’s continue construct is only valid inside the body of a for or while construct. It
skips the rest of the loop-body and jumps to the beginning of the block. Unlike the C-construct
SINGULAR’s continue does not execute the increment statement. For example,

for (int i =1 ; i<=10; i=i+1)

{

if (i==3) { i=8;continue; }
// skip the rest if i is 3 and
// continue with the next i: 8
i;

11111~
= © 00N =

o

Although the SINGULAR language is a strongly typed programming language, the type of the
return value of a procedure does not need to be specified. As a consequence, the return type of
a procedure may vary, i.e., may, for example, depend on the input. However, the return value of
such a procedures may then only be assigned to a variable of type def.

proc type_return (int i)

{

Chapter 6: Tricks and pitfalls 193

if (i > 0) {return (i);}
else {return (list(i));}
}

def t1 = type_return(1);
def t2 = type_return(-1);
typeof (t1); typeof(t2);
— int

— list

Furthermore, it is mandatory to assign the return value of a procedure to a variable of type def,
if a procedure changes the current ring using the keepring command (see Section 5.2.7 [keepring],
page 182) and returns a ring-dependent value (like a polynomial or module).

proc def_return

{
ring r=0, (x,y),dp;
poly p = x;

keepring r;

return (x);

}

def p = def_return();

// poly p = def_return(); would be WRONG!!!
typeof (p);

— poly

On the other hand, more than one value can be returned by a single return statement. For
example,

proc tworeturn () { return (1,2); }
int i,j = tworeturn();

6.3 Miscellaneous oddities

1. integer division

A sequence of digits and / without spaces is of type number. With spaces it is an expression
of type int (and / is the integer division). To avoid confusion use the operand div.

ring r=32002,x,dp;

3/2;

— -15994

3/ 2;

= 1

3 div 2;

= 1

number (3) / number(2);

— -15994

number a=3;

number b=2;

a/ b;

— -15994

Chapter 6: Tricks and pitfalls 194

a div b;
— ? ‘number‘ div ‘number‘ is not supported
— ? error occurred in Z line 9: ‘a div b;¢

2. monomials and precedence
The computation of a monomial has precedence over all operators:

ring r=0, (x,y) ,dp;
2xy~2 == (2*x*y)"2;

— 1

2xy~2 == 2x*y~2;

— 0

2x*y~2 == 2xx * (y~2);
= 1

3. meaning of mult

For an arbitrary ideal or module i, mult(i) returns the multiplicity of the ideal generated by
the leading monomials of the given generators of i, hence depends on the monomial ordering!

A standard mistake is to interpret degree(i) or mult (i) for an inhomogeneous ideal i as
the degree of the homogenization or as something like the ’degree of the affine part’. For the
ordering dp (degree reverse lexicographical) the converse is true: if i is given by a standard
basis, mult (i) is the degree of the homogeneous ideal obtained by homogenization of i and
then putting the homogenizing variable to 0, hence it is the degree of the part at infinity (this
can also be checked by looking at the initial ideal).

4. size of ideals

size counts the non-zero entries of an ideal (resp. module). Use ncols to determine the actual
number of entries in the ideal (resp. module).

5. computations in qrings

SINGULAR computes in a quotient rings as long as possible with the given representative of a
polynomial, say, £. L.e., it usually does not reduce £ w.r.t. the quotient ideal. This is only
done when necessary during standard bases computations or by an explicit reduction using the
command reduce (f, std(0)) (see Section 5.1.94 [reduce], page 161).

6. substring selection

Two comma — separated ints in square brackets after a string select a substring. An intvec in
square brackets after a string selects the respective single characters of the string and returns
them as an expression list of two strings. In particular,

string s = "one-word";

s[2,6]; // a substring starting at the second char
— ne-wor

size(_);

— 6

intvec v = 2,6;

slvl; // the second and the sixth char
— n o

string st = _; // stick toghter by an assignment
st;

= n

size(_);

= 1

v =2,6,8;

slvl;

— nod

Chapter 6: Tricks and pitfalls 195

6.4 Identifier resolution

In SINGULAR, an identifier (i.e., a "word") is resolved in the following way and order: It is
checked for

a reserved name,

a local variable (w.r.t. a procedure),

a local ring variable (w.r.t. a ring locally set in a procedure),

a global variable,

a monomial consisting of local ring variables written without operators,

AN ol

a monomial consisting of global ring variables written without operators.

Consequently, it is allowed to have general variables with the same name as ring variables.
However, the above identifier resolution order must be kept in mind. Otherwise, surprising results
may come up.

ring r=0, (x,y),dp;

int x;

x*y; // resolved product int*poly, i.e. Oxy

— 0

xy; // "xy" is one identifier and resolved to monomial xy
= Xy

For these reasons, we strongly recommend not to use variables which have the same name(s) as
ring variables.

Appendix A: Examples 196

Appendix A Examples

A.1 Milnor and Tjurina

The Milnor number resp. the Tjurina number of a power series f in K[[zy,...,z,]] is

milnor(f) = dimK(K[['xl’ s axn]]/JG’COb(f))
resp.

tjurina(f) = dimg (K |[[z1, . . ., z,]]/((f) + jacob(f)))

where jacob(f) is the ideal generated by the partials of f. tjurina(f) is finite, if and only if f has an
isolated singularity. The same holds for milnor(f) if K has characteristic 0. SINGULAR displays -1
if the dimension is infinite.

SINGULAR cannot compute with infinite power series. But it can work in Loc,) K[z, ..., 2,],
the localization of K|[zy,...,z,] at the maximal ideal (zy,...,z,). To do this one has to define an
s-ordering like ds, Ds, 1s, ws, Ws or an appropriate matrix ordering (look at the manual to get infor-
mation about the possible monomial orderings in SINGULAR, or type help Monomial orderings;
to get a menu of possible orderings. For further help type e.g. help local orderings;).

We shall show in the example below how to realize the following:

e set option prot to have a short protocol during standard basis computation

e define the ring rl with char 32003, variables x,y,z, monomial ordering ds, series ring (i.e.
K[x,y,z] localized at (x,y,z))

e list the information about r1 by typing its name

e define the integers a,b,c.t

e define a polynomial f (depending on a,b,c,t) and display it
e define the jacobian ideal i of f

e compute a standard basis of i

e compute the Milnor number (=250) with vdim and create and display a string in order to
comment the result (text between quotes " "; is a ’string’)

e compute a standard basis of i+(f)

e compute the Tjurina number (=195) with vdim

e then compute the Milnor number (=248) and the Tjurina number (=195) for t=1
e reset the option to noprot

option(prot);

ring rl = 32003, (x,y,2),ds;

rl;

~ // characteristic : 32003

= // number of vars : 3

= // block 1 : ordering ds

= // : names Xy z
= // block 2 : ordering C

int a,b,c,t=11,5,3,0;
poly f = x"a+y~b+z~(3*c)+x" (c+2)*y~(c-1)+x" (c-1)*y~ (c-1)*z3+

Appendix A: Examples 197

x"(c-2)*xy ek (y"2+t*x) "2;
f;
— yb+xb5y2+x2y2z3+xy7+z9+x11
ideal i=jacob(f);
i;
— i[1]=5x4y2+2xy2z3+y7+11x10
— 1[2]=by4+2x5y+2x2yz3+7xy6
— 1[3]=3x2y2z2+9z8
ideal j=std(i);
— 7(2)s8-510.511(2)s12.5(3)s13(4)s(5)s14(6)s(7)15--.5(6)-16.-.5(5)17.5(
= T)s.--s18(6) .--19-..sH(24)20....21.-—-
— product criterion:10 chain criterion:69
"The Milnor number of f(11,5,3) for t=0 is", vdim(j);
+— The Milnor number of £(11,5,3) for t=0 is 250

j=i+f; // overwrite j

j=std(j);

— 7(3)s8-510.511(3)s.512(4)s(5)s13(6)s(8)s14(9) .s(10).15--sH(23)....16.
[SRR 17....... sH(21) (9)sH(20)16(10) .17 . ————————- sH(19)16-

— product criterion:10 chain criterion:53

vdim(j); // compute the Tjurina number for t=0

— 195

t=1;

f=x"a+y b+z" (3*c)+x" (c+2) *y~ (c-1)+x" (c-1) *y~ (c-1) *z3
+x”7 (c-2) *y~c* (y~2+t*x) "2;

ideal il=jacob(f);

ideal jl=std(il);

— 7(2)88-510.811.512(2)s813(3)s.5(4)s14(5)s(6)s15(7)..... s(8)16.s....s(9
D T Y A s18(10)..... s(11)..-.19....... sH(24)...... 20........
Y S P —

— product criterion:11 chain criterion:83

"The Milnor number of £(11,5,3) for t=1:",vdim(j1);

— The Milnor number of f(11,5,3) for t=1: 248

vdim(std(j1+£f)); // compute the Tjurina number for t=1

— 7(16)s8-s10.811.5.5(16)-12.8(16)-s13(16)s(17)s(18)s(19)-s..-14-s(17) -

— s.8.8(17)s15(18)..-s(18)...——.16....—....... s(16) .sH(23) .s(18)...17..
o ST 18, .0t sH(20)17-.——---—- ...s(12) .---.----...sH(19)16-----
—

— product criterion:15 chain criterion:174

— 195

option(noprot) ;

A.2 Procedures and LIB

The computation of the Milnor number (for an arbitrary isolated complete intersection singu-
larity ICIS) and the Tjurina number (for an arbitrary isolated singularity) can be done by using
procedures from the library sing.lib. For a hypersurface singularity it is very easy to write a
procedure which computes the Milnor number and the Tjurina number.

We shall demonstrate:

Appendix A: Examples 198

e loading the library sing.lib

e define a local ring in 2 variables and characteristic 0

e define a plane curve singularity

e compute Milnor number and Tjurina number by using the procedures milnor and tjurina

e write your own procedures: (A procedure has a list of input parameters and of return values,
both lists may be empty.)

— the procedure mil which must be called with one parameter, a polynomial. The name g
is local to the procedure and is killed automatically. mil returns the Milnor number (and
displays a comment).

— the procedure tjur where the parameters are not specified. They are referred to by #[1]
for the 1-st, #[2] for the 2-nd parameter etc. tjur returns the Tjurina number (and
displays a comment).

— the procedure milrina which returns a list consisting of two integers, the Milnor and the
Tjurina number.

LIB "sing.lib";

// you should get the information that sing.lib has been loaded

// together with some other libraries which are needed by sing.lib
ring r = 0,(x,y),ds;

poly f = x7+y7+(x-y) "2*x2y2;

milnor (f) ;

— 28

tjurina(f);

— 24

proc mil (poly g)

{
"Milnor number:";
return(vdim(std(jacob(g))));

}

mil(f);

+— Milnor number:

— 28

proc tjur

{
"Tjurina number:";
return(vdim(std(jacob(#[1])+#[1])));

X

tjur(f);

— Tjurina number:

— 24

proc milrina (poly f)

{
ideal j=jacob(f);
list L=vdim(std(j)),vdim(std(j+£f));
return(L);

}

milrina(f); // a list containing Milnor and Tjurina number

Appendix A: Examples 199

[1]:
28
[2]:
24
milrina(f)[2]; // the second element of the list
— 24

1111

A.3 Ciritical points

The same computation which computes the Milnor resp. the Tjurina number, but with ordering
dp instead of ds (i.e. in K[zy,...,z,] instead of Loc(,) K[y, ..., x,]) gives:

e the number of critical points of f in the affine plane (counted with multiplicities)
e the number of singular points of f on the affine plane curve f=0 (counted with multiplicities)

We start with the ring rl from section Section A.1 [Milnor and Tjurinal, page 196 and its
elements.

The following will be realized below:

e reset the protocol option and activate the timer

e define the ring r2 with char 32003, variables x,y,z and monomial ordering dp (= degrevlex)
(i.e. the polynomial ring = K[x,y,z]).

e Note that polynomials, ideals, matrices (of polys), vectors, modules belong to a ring, hence we
have to define f and jacob(f) again in r2. Since these objects are local to a ring, we may use
the same names. Instead of defining f again we map it from ring rl to r2 by using the imap
command (imap is a convenient way to map variables from some ring identically to variables
with the same name in the basering, even if the groundfield is different. Compare with fetch
which works for almost identical rings, e.g. if the rings differ only by the ordering or the names
of the variables and which may be used to rename variables). Integers and strings however do
not belong to any ring. Once defined they are globally known.

e The result of the computation here (together with the previous one in Section A.1 [Milnor and
Tjurinal, page 196) shows that (for t=0) dimg (Loc,) K |z1,. .., z,]/jacob(f)) = 250 (previously
computed) while dimg (K [z, ..., z,]/jacob(f)) = 536. Hence f has 286 critical points, counted
with multiplicity, outside the origin. Moreover, since dimg (Loc(,)K|z1,...,x,]/(jacob(f) +
(f)) = 195 = dimg (K |21, ..., 2,/ (jacob(f) + (f))), the affine surface =0 is smooth outside
the origin.

ring rl = 32003, (x,y,z),ds;

int a,b,c,t=11,5,3,0;

poly f = x"a+y b+z" (3*c)+x" (c+2)*y~(c-1)+x~ (c-1)*y~ (c-1)*z3+
x"(c-2)*xy cx (y"2+t*x) "2;

timer=1;

ring r2 = 32003, (x,y,z),dp;

poly f=imap(rl,f);

ideal j=jacob(f);

vdim(std(j));

— 536

vdim(std(j+£));

Appendix A: Examples 200

— 195
timer=0; // reset timer

A.4 Saturation

Since in the example above, the ideal j+(f) has the same vdim in the polynomial ring and in
the localization at 0 (each 195), =0 is smooth outside 0! Hence j+(f) contains some power of the
maximal ideal m. We shall check this in a different manner: For any two ideals i, j in the basering
R let

sat(i,j) = {z € R| Ins.t. zx (") Ci}

:Ui:j”
n=1

denote the saturation of i with respect to j. This defines, geometrically, the closure of the comple-
ment of V(j) in V(i) (V(i) denotes the variety defined by i). In our case, sat(j+(f),m) must be the
whole ring, hence generated by 1.

The saturation is computed by the procedure sat in elim.lib by computing iterated ideal
quotients with the maximal ideal. sat returns a list of two elements: the saturated ideal and the
number of iterations. (Note that maxideal(n) denotes the n-th power of the maximal ideal).

LIB "elim.1lib"; // loading library elim.lib

// you should get the information that elim.lib has been loaded

// together with some other libraries which are needed by it

option(noprot) ; // no protocol

ring r2 = 32003, (x,y,2z),dp;

poly f = x"11+y~5+z" (3*3)+x~ (3+2)*y~ (3-1)+x~ (3-1) *y~ (3-1) *z3+
x"(3-2)*y~3%(y~2)"2;

ideal j=jacob(f);

sat (j+f ,maxideal(1));

— [1]:

— _[11=1

— [2]:

— 17

// list the variables defined so far:

listvar();

= // r2 [0] *ring

= // j [0] ideal, 3 generator(s)
= // f [0] poly

— // LIB [0] string standard.lib,elim.li..., 52 char(
— s)

A.5 Long coefficients

The following innocent example produces in its standard basis extremely long coefficients in
char 0 for the lexicographical ordering. But a very small deformation does not (the undeformed
example is degenerate with respect to the Newton boundary). This example demonstrates that it
might be wise, for complicated examples, to do the calculation first in positive char (e.g. 32003). It

Appendix A: Examples 201

was shown, that in complicated examples, more than 95 percent of the time needed for a standard
basis computation is used in the computation of the coefficients (in char 0). The representation of
long integers with real is demonstrated.

timer = 1; // activate the timer
option(prot);

ring RO = 0,(x,y),1p;

poly f = x5+yl1l+xy9+x3y9;

ideal i = jacob(f);

ideal il = i,i[1]1*i[2]; // undeformed ideal

ideal i2 i,1[1]1*i[2]+1/1000000*x5y8; // deformation of il

il; i2;

i1[1]=5x4+3x2y9+y9

i1[2]=9x3y8+9xy8+11y10
i11[3]=45x7y8+27x5y17+45x5y8+55x4y10+36x3y17+33x2y19+9xy17+11y19
12[1]1=5x4+3x2y9+y9

12[2]=9x3y8+9xy8+11y10
i2[3]=45x7y8+27x5y17+45000001/1000000x5y8+55x4y10+36x3y17
+33x2y19+9xy17+11y19

ideal j = std(il);
V19-520.521(1)s822(2)23-527.828.529.830.831.532.833.534.535.836
.837.s38.839.540.5.70-

product criterion:1 chain criterion:30

//used time: 1.9 sec

1111111
[

21111

.
-

j[11=264627y39+26244y35-1323135y30-131220y26+1715175y21
+164025y17+1830125y16
j[2]1=-12103947791971846719838321886393392913750065060875xy8
+286391521141683198701331939250003266767738632875y38
+3195440220690902692676462287757356578554430672591y37
-57436621420822663849721381265738895282846320y36
-1657764214948799497573918210031067353932439400y35
-21301848158930819119567722389898682697001205500y34
-1822194158663066565585991976961565719648069806148y33
+4701709279892816135156972313196394005220175y32
+135187226968819226760078697600850686824231975y31
+3873063305929810816961516976025038053001141375y30
-1325886675843874047990382005421144061861290080000y29
-15977201954760631419467945895542406089526966887310y28
+262701813363090926606333480026253304267126525y27
+7586082690893335269027136248944859544727953125y26
+86785307410649464602285843351672148965395945625y25
+5545808143273594102173252331151835700278863924745y24
-19075563013460437364679153779038394895638325y23
-548562322715501761058348996776922561074021125y22
-15746545267764838607395746471568100780933983125y21
+1414279129721176222978654235817359505555191156250y20
+20711190069445893615213399650035715378169943423125y19
-272942733337472665573418092977905322984009750y18
-7890651158453345058018472946774133657209553750y17
-63554897038491686787729656061044724651089803125y16

N A A A

Appendix A: Examples 202

—

+22099251729923906699732244761028266074350255961625y14

— -14793713967965590435357948972258591339027857296625y10

— j[3]=5x4+3x2y9+y9

// Compute average coefficient length (=51) by

// - converting j[2] to a string in order to compute the number
// of characters

// - divide this by the number of monomials:
size(string(j[2]))/size(j[2]);

— 51

vdim(j);

— 63

// For a better representation normalize the long coefficients

// of the polynomial j[2] and map it to real:

poly p=-(1/12103947791971846719838321886393392913750065060875) *j [2] ;
ring Rl=real, (x,y),1lp;

pol
p;

N A A A A

//
set
j =
>
=

y p=imap(RO,p);

-xy8

+2.366e-02y38
+2.640e-01y37
-4.745e-06y36
-1.370e-04y35
-1.760e-03y34
-1.505e-01y33
+3.884e-07y32
+1.117e-05y31
+3.200e-04y30
-1.095e-01y29
-1.320e+00y28
+2.170e-05y27
+6.267e-04y26
+7.170e-03y25
+4.582e-01y24
+1.576e-06y23
-4.532e-05y22
-1.301e-03y21
+1.168e-01y20
+1.711e+00y19
+2.255e-05y18
-6.519e-04y17
-5.251e-03y16
+1.826e+00y14
-1.222e+00y10

Compute a standard basis for the deformed ideal:
ring RO;
std(i2);
v13.514(2)s15.516.19-s.520.521.23-
product criterion:3 chain criterion:7

Appendix A: Examples 203

J;

— jl1]l=y16

— j[2]=-729xy8+1331y14-891y10
> j[3]=5x4+3x2y9+y9

vdim(j);

— 40

A.6 Parameters

Let us now deform the above ideal by introducing a parameter t and compute over the ground
field Q(t). We compute the dimension at the generic point, i.e. dimgy)Q(t)[z,y]/7. (This gives the
same result as for the deformed ideal above. Hence, the above small deformation was "generic".)

For almost all a € @ this is the same as dimgQ[z,y]/jo, where jo = j|;—,.

ring Rt = (0,t), (x,y),1p;

Rt;

— // characteristic : 0

— // 1 parameter t

~ // minpoly : 0

— // number of vars : 2

= // block 1 : ordering lp
= // : names Xy
= // block 2 : ordering C

poly f = xb+yll+xy9+x3y9;

ideal j = i,i[1]*i[2]+t*x5y8; // deformed ideal, parameter t
vdim(std(j));

— 40

ring R=0, (x,y),1p;

ideal i=imap(Rt,i);

int a=random(1,30000);

ideal j=i,i[1]*i[2]+a*x5y8; // deformed ideal, fixed integer a
vdim(std(j));

— 40

A.7 T1 and T2

T1 resp. T2 of an ideal j do usually denote the vector spaces of infinitesimally deformations
resp. of obstructions. In SINGULAR there are procedures T1 and T2 in sing.1ib to compute this.
T1(j) and T2(j) compute a standard basis of a presentation of these modules. A basis of the
vectorspaces T1 resp. T2 is computed by applying kbase: kbase(T1(j)); resp. kbase(T2(j));,
the dimensions by applying vdim. For a complete intersection j the procedure Tjurina does also
compute T1, but faster (T2=0 in this case). For a non complete intersection, it is faster to use the
procedure T12 instead of T1 and T2. Type help T1; (or help T2; or help T12;) to obtain more
detailed information about these procedures.

Appendix A: Examples 204

We give three examples, the first being a hypersurface, the second a complete intersection, the
third no complete intersection:

e load sing.1ib

e check wether the ideal j is a complete intersection. It is, if number of variables = dimension +
minimal number of generators

e compute the Tjurina number

e compute a vectorspace basis (kbase) of T1

e compute the Hilbert function of T1

e create a polynomial encoding the Hilbert series
e compute the dimension of T2

LIB "sing.1lib";
ring R=32003, (x,y,z),ds;

/] -
// hypersurface case (from series T[p,q,r]):
int p,q,r = 3,3,4;

poly f = x"pt+y gtz r+xyz;

tjurina(f);

— 8

kbase (Tjurina(f));
~ // Tjurina number = 8
— _[1]==z3

— _[2]==z2

= _[3]=yz

— _[4]=xz

— _[5]==z

— _[6]=y

= _[7]=x

— _[8]=1

// Tjurina number = 8

/] =

// complete intersection case (from series P[k,1]):
int k,1 =3,2;
ideal j=xy,x"k+y~1+z2;

dim(std(j)); // Krull dimension

=1

size(minbase(j)); // minimal number of generators
= 2

tjurina(j); // Tjurina number

= 6

module T=Tjurina(j);

~ // Tjurina number = 6

kbase (T) ; // a sparse output of the k-basis of T1
— _[1]=z*gen(1)

= _[2]=gen(1)

= _[3]=y*gen(2)

— _[4]=x2%gen(2)

Appendix A: Examples 205

— _[5]=x*gen(2)

= _[6]=gen(2)

print (kbase(T)); // columns of matrix are a k-basis of T1
— z,1,0,0, 0,0,

~ 0,0,y,x2,x,1

/] ——mmmmm e

// general case (cone over rational normal curve of degree 4):
ring r1=0,(x,y,z,u,v),ds;

matrix m[2] [4]=x,y,z,u,y,2,u,V;

ideal i=minor(m,2); // 2x2 minors of matrix m
module M=T1(i); // a presentation matrix of T1
— // dim T1 = 4

vdim(M) ; // Tjurina number

= 4

hilb(M); // display of both Hilbert series
— // 4 t°0

— // -20 t°1

= // 40 t°2

= // -40 t°3

= // 20 t°4

= // -4 t°5

—

= // 4 t°0

— // codimension = 5

— // dimension =0

— // multiplicity = 4

intvec vi=hilb(M,1); // first Hilbert series as intvec

intvec v2=hilb(M,2); // second Hilbert series as intvec

vl;

— 4,-20,40,-40,20,-4,0

v2;

— 4,0

v1[3]; // 3-rd coefficient of the 1-st Hilbert series
— 40

module N=T2(i);

— // dim T2 = 3

// In some cases it might be useful to have a polynomial in some ring
// encoding the Hilbert series. This polynomial can then be

// differentiated, evaluated etc. It can be done as follows:

ring H = 0,%,1s;

poly hi;
int ii;
for (ii=1; ii<=size(vl); ii=ii+l)
{
hi=hi+vi[ii]*t~(ii-1);
}
hi; // 1-st Hilbert series

— 4-20t+40t2-40t3+20t4-4t5
diff(hi,t); // differentiate hi

Appendix A: Examples 206

— -20+80t-120t2+80t3-20t4
subst (hl,t,1); // substitute t by 1
= 0

// The procedures T1, T2, T12 may be called with two arguments and then
// they return a list with more information (type help T1; etc.)

// e.g. T12(i,<any>); returns a list with 9 nonempty objects where

// _[1] = std basis of Tl-module, _[2] = std basis of T2-module,

// _[3]= vdim of T1, _[4]= vdim of T2

setring ri; // make rl again the basering
list L = T12(i,1);

= // dim T1 = 4

= // dim T2 = 3

kbase(L[1]); // kbase of Ti1

= _[1]=1*gen(2)
= _[2]=1*gen(3)
— _[3]=1*gen(6)
— _[4]=1*gen(7)
kbase(L[2]); // kbase of T2
= _[1]=1*gen(6)
= _[2]=1*gen(8)
— _[3]=1*gen(9)

L[3]; // vdim of T1
— 4
L[4]; // vdim of T2
— 3

A.8 Deformations

e The libraries sing.1ib resp. deform.1lib contain procedures to compute the miniversal (=
semiuniversal deformation) of an isolated complete intersection singularity resp. arbitrary
isolated singularity.

e The procedure deform in sing.1lib returns a matrix whose columns represent a basis of 1-st
order miniversal deformations.

e The procedure versal in deform.1ib computes a formal miniversal deformation up to a certain
order which can be prescribed by the user. For a complete intersection the 1-st order part is
already miniversal.

e The procedure versal extends the basering to a new ring with additional deformation pa-
rameters which contains the equations for the miniversal base space and the miniversal total
space.

e There are default names for the objects created, but the user may also choose own names.

e If the user sets printlevel=2; before running versal, some intermediate results are shown.
This is useful since versal is already complicated and since it might run quite long on more
complicated examples. (type help versal;)

We compute for the same examples as in the preceeding section the miniversal deformations:

LIB "deform.lib";
ring R=32003, (x,y,z),ds;

Appendix A: Examples 207

// hypersurface case (from series T[p,q,r]):

int p,q,r = 3,3,4;

poly f = x"pt+y gtz r+xyz;

print (deform(f));

— z3,z2,yz,Xz,z,y,X,1

// the miniversal deformation of f=0 is the projection from the

// miniversal total space to the miniversal base space:

// { (4,B,C,D,E,F,G,H,x,y,2z) | x3+y3+xyz+z4+A+Bx+Cxz+Dy+Eyz+Fz+Gz2+Hz3 =0 }
// --> { (A,B,C,D,E,F,G,H) }

// complete intersection case (from series P[k,1]):
int k,1 =3,2;

ideal j=xy,x"k+y~1+z2;

print (deform(j));

~ 0,0, 0,0,z,1,

~ y,x2,x,1,0,0

versal(j); // using default names
// smooth base space

// ready: T1 and T2

// Result belongs to ring Px.

// Equations of total space of miniversal deformation are

// given by Fs, equations of miniversal base space by Js.

// Make Px the basering and list objects defined in Px by typing:
setring Px; show(Px);
listvar(matrix);

// NOTE: rings Qx, Px, So are alive!

// (use ’kill_rings("");’ to remove)

setring Px;

show (Px) ; // show is a procedure from inout.lib

~ // ring: (32003),(A,B,C,D,E,F,x,y,2),(ds(6),ds(3),C);

~ // minpoly = 0

11111111111

listvar(ideal);

// ___ Equations of miniversal base space ___
Js;

—

// ___ Equations of miniversal total space ___
Fs;

— Fs[1,1]=xy+Ez+F

— Fs[1,2]=y2+z2+x3+Ay+Bx2+Cx+D

// the miniversal deformation of V(j) is the projection from the
// miniversal total space to the miniversal base space:

// { (A,B,C,D,E,F,x,y,z) | xy+A+Bz=0, y2+z2+x3+C+Dx+Ex2+Fy=0 }
// -->{ (A,B,C,D,E,F) }

// general case (cone over rational normal curve of degree 4):
ring r1=0,(x,y,z,u,v),ds;

matrix m[2] [4]=x,y,z,u,y,2z,u,V;

ideal i=minor(m,2); // 2x2 minors of matrix m
int time=timer;

Appendix A: Examples 208

// Def_r is the name of the miniversal base space with
// parameters A(1),...,A(4)

versal(i,0,"Def_r","A(");

// ready: T1 and T2

// Result belongs to ring Def_rPx.
// Equations of total space of miniversal deformation are
// given by Fs, equations of miniversal base space by Js.
// Make Def_rPx the basering and list objects defined in Def_rPx by t
yping:
setring Def_rPx; show(Def_rPx);
listvar(matrix);
// NOTE: rings Def_rQx, Def_rPx, Def_rSo are alive!
// (use ’kill_rings("Def_r");’ to remove)
"// used time:",timer-time,"sec"; // time for miniversal
— // used time: O sec
// the miniversal deformation of V(i) is the projection from the
// miniversal total space to the miniversal base space:
// { (A(1..4),x,y,2,u,v) |

111111111117

// -y~ 2+x*z+A (2) *x-A(3) *y=0, -y*z+x*xu-A(1)*x-A(3)*z=0,
// —y*u+x*xv-A(3) *u-A(4)*2=0, -z"2+y*u-A(1)*y-A(2)*z=0,
// —z¥u+y*v-A(2) *u-A(4)*u=0, -u"2+z*v+A(1)*u-A(4)*v=0 }
// -——> { A(1..4) |

// -A(1)*A(4) = A(3)*A(4) = -A(2)*A(4)-A(4)"2 =0}

e S

A.9 Finite fields

We define a variety in n-space of codimension 2 defined by polynomials of degree d with generic
coefficients over the prime field Z/p and look for zeroes on the torus. First over the prime field and
then in the finite extension field with p* elements. In general there will be many more solutions in
the second case. (Since the SINGULAR language is interpreted, the evaluation of many for-loops is
not very fast):

int p=3; int n=3; int d=5; int k=2;

ring rp = p,(x(1..n)),dp;

int s = size(maxideal(d));

S;

= 21

// create a dense homogeneous ideal m, all generators of degree d, with
// generic (random) coefficients:

ideal m = maxideal(d)*random(p,s,n-2);

m;

= m[1]=x(1) "3*x(2) "2-x (1) *x(2) “4+x (1) “4*x(3) -x (1) "3*x (2) *x(3) +x (1) *x (2)
= "3%x(3)+x(2) “4%x(3) +x(2) "3*x(3) "2+x (1) *x(2) *x(3) "3+x(1) *x(3) "4-x(3) "5
—

// look for zeroes on the torus by checking all points (with no component 0)
// of the affine n-space over the field with p elements :

ideal mt;

int i(1..n); // initialize integers i(1),...,i(n)

Appendix A: Examples 209

int 1;
s=0;
for (i(1)=1;i(D)<p;i(1)=1(1)+1)
{
for (i(2)=1;i(2)<p;i(2)=1(2)+1)
{
for (i(3)=1;i(3)<p;i(3)=1(3)+1)
{
mt=m;
for (1=1;1<=n;1=1+1)
{
mt=subst (mt,x(1),i(1));
}
if (size(mt)==0)
{
"solution:",i(1..n);
s=s+1;
}
}
}
}
— solution: 1 1 2
— solution: 1 2 1
— solution: 1 2 2
+— solution: 2 1 1
— solution: 2 1 2
— solution: 2 2 1

"//",s,"solutions over GF("+string(p)+")";

— // 6 solutions over GF(3)

// Now define a ring rpk with p"k elements, call the primitive element z.
// Hence ’solution exponent: 0 1 5’ means that (z70,z"1,z"5) is a

// solution

ring rpk=(p~k,z),(x(1..n)),dp;

rpk;
— // # ground field : 9
— // primitive element : z
~ // minpoly t 1%z72+1%z7142%270
+ // number of vars : 3
= // block 1 : ordering dp
— // : names x(1) x(2) x(3)
= // block 2 : ordering C
ideal m=imap(rp,m);
s=0;
ideal mt;
for (i(1)=0;i(1)<p k-k;i(1)=i(1)+1)
{
for (i(2)=0;i(2)<p k-k;i(2)=i(2)+1)
{

for (i(3)=0;1(3)<p~k-k;i(3)=1(3)+1)
{

mt=m;

Appendix A: Examples

1111111131333 1711711173333033333331333313111111117

(-

for (1=1;1<=n;1=1+1)

{

mt=subst (mt,x(1) ,z~i(1));

}

if (size(mt)==0)

{

"solution exponent:",i(1..n);

s=s+1;

}
}

solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution
solution

exponent:
exponent:
exponent :
exponent :
exponent :
exponent :
exponent:
exponent:
exponent:
exponent:
exponent:
exponent :
exponent :
exponent :
exponent :
exponent:
exponent:
exponent:
exponent :
exponent:
exponent :
exponent :
exponent :
exponent :
exponent:
exponent:
exponent :
exponent:
exponent:
exponent :
exponent :
exponent :
exponent :
exponent:
exponent:
exponent :
exponent:
exponent:
exponent :

OO DDA DWOWDWWWNNNMNNNMNNMNMNMNNRRRPRRRRRPRPOOOOCOOCOOCOCOOC

P R,POOPRRPPOOOOOOTPRPWWOOOOOOOITWNNNOOOOOOAPRNRFRFEFERPBABAPLPWRLOOO
NP, OPONOP WFROWWURONFEFNNOOCPAPROOONNFLPORFRLFP,LONWOHEOOOO BN

210

Appendix A: Examples 211

solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent:
solution exponent: 6 4
"//",s,"solutions over GF("+string(p~k)+")";
— // 52 solutions over GF(9)

JIITIITIIITT11
DO OO O U ol ol ol
DO NNNNEFEOOO - -
NOOOODOTTWNOOOWwWwE O

A.10 Elimination

Elimination is the algebraic counterpart of the geometric concept of projection. If f =
(fis---,fn) = K© — k™ is a polynomial map, the Zariski-closure of the image is the zero-set of
the ideal

j=JNk[z,...,z,], where
J: (.’L']_ —f]_(t]_,...,tr),...,./L'n—fn(t]_,...,tT)) g k[tl,...,tT,wl,...,.’L‘n]

i.e of the ideal j obtained from J by eliminating the variables ¢;,...,¢,. This can be done by
computing a standard basis of J with respect to a product ordering where the block of t-variables
comes before the block of x-variables and then selecting those polynomials which do not contain
any t. In SINGULAR the most convenient way is to use the eliminate command. In contrast to
the first method, with eliminate the result need not be a standard basis in the given ordering.
Hence, there may be cases where the first method is to be preferred.

WARNING: In the case of a local or a mixed ordering, elimination needs special care. f may
be considered as a map of germs f : (k",0) — (k™,0), but even if this map germ is finite, we are in
general not able to compute the image germ because for this we would need an implementation of
the Weierstrass preparation theorem. What we can compute, and what eliminate actually does,
is the following. Let V(J) be the zero-set of J in k" x (k™,0), then the closure of the image of V(J)
under the projection

pr: k" x (k™,0) — (k™,0)

can be computed. Note that this germ contains also those components of V(J) which meet the fibre
of pr but not necessarily in the origin. This is achieved by an ordering with the block of t-variables
having a global ordering (and coming before the x-variables) and the x-variables having a local
ordering. In a local situation we propose eliminate with ordering ls.

In any case, if the input is weighted homogeneous (=quasihomogeneous), the variables should
be given the correct weights. SINGULAR offers a function weight which proposes, given an ideal or
module, integer weights for the variables, such that the ideal resp. module is as homogeneous as
possible with respect to these weights. The function finds correct weights, if the input is weighted
homogeneous (but is rather slow for many variables). In order to check, whether the input is
quasihomogeneous, use the function ghweight, which returns an intvec of correct weights if the
input is quasihomogeneous and an intvec of zeroes otherwise.

Appendix A: Examples 212

Let us give two examples:

1. First we compute the equations of the simple space curve T[7]' consisting of two tangential
cusps given in parametric form.

2. We compute weights for the equations and check that the equations are quasihomogeneous
with these weights.

3. Then we compute the tangent developable of the rational normal curve in P*.

// 1. Compute equations of curve given in parametric form:
// Two transversal cusps in (k~3,0):
ring rl = 0,(t,x,y,2),1s;

ideal il = x-t2,y-t3,z; // parametrization of the first branch
ideal i2 = y-t2,z-t3,x; // parametrization of the second branch
ideal j1 = eliminate(il,t);

ji; // equations of the first branch

- j1[11=z

— j1[2]=y2-x3

ideal j2 = eliminate(i2,t);

j2; // equations of the second branch
- j2[1]1=x

= j2[2]=z2-y3

// Now map to a ring with only x,y,z as variables and compute the
// intersection of jl1 and j2 there:

ring r2 = 0,(x,y,z),ds;

ideal jl= imap(rl,jl); // imap is a convenient ringmap for
ideal j2= imap(rl,j2); // inclusions and projections of rings
ideal i = intersect(j1,j2);

i; // equations of both branches

— i[1]=22-y3+x3y

= i[2]=xz

— i[3]=xy2-x4
— i[4]=x3z

//

// 2. Compute the weights:

intvec v= ghweight(i); // compute weights
A&

— 4,6,9

//

// 3. Compute the tangent developable
// The tangent developable of a projective variety given parametrically

// by F=(f1,...,fn) : P°r --> P n is the union of all tangent spaces
// of the image. The tangent space at a smooth point F(tl,...,tr)
// is given as the image of the tangent space at (tl,...,tr) under

// the tangent map (affine coordinates)

// T(1l,...,tr): (y1,...,yr) ——> jacob(f)*transpose((yl,...,yr))

// where jacob(f) denotes the jacobian matrix of f with respect to the
// t’s evaluated at the point (t1,...,tr).

// Hence we have to create the graph of this map and then to eliminate
// the t’s and y’s.

// The rational normal curve in P4 is given as the image of

// F(s,t) = (s4,s3t,s2t2,st3,t4)

Appendix A: Examples 213

// each component being homogeneous of degree 4.
ring P = 0,(s,t,x,y,a,b,c,d,e),dp;

ideal M = maxideal(1l);
ideal F = M[1..2]; // take the 1-st two generators of M
F=F~4;

// simplify(...,2); deletes O-columns
matrix jac = simplify(jacob(F),2);
ideal T = x,y;

ideal J = jac*transpose(T);

ideal H = M[5..9];

ideal i = H-J; // this is tricky: difference between two
// ideals is not defined, but between two
// matrices. By automatic type conversion
// the ideals are converted to matrices,
// subtracted and afterwards converted
// to an ideal. Note that ’+’ is defined
// and adds (concatenates) two ideals

i;

— i[1]=-4s3x+a

— i[2]=-3s2tx-s3y+b

— i[3]=-2st2x-2s2ty+c

— i[4]=-t3x-3st2y+d

— i[6]=-4t3y+e

// Now we define a ring with product ordering and weights 4

// for the variables a,...,e.

// Then we map i from P to P1 and eliminate s,t,x,y from i.
ring P1 = 0,(s,t,x,y,a,b,c,d,e),(dp(4),wp(4,4,4,4,4));

ideal i = fetch(P,i);

ideal j= eliminate(i,stxy); // equations of tangent developable
Js

— j[1]1=3c2-4bd+ae

— j[2]=2bcd-3ad2-3b2e+4ace

— j[3]1=8b2d2-9acd2-9b2ce+14abde-4a2e2

// We can use the product ordering to eliminate s,t,x,y from i
// by a std-basis computation.

// We need proc ’nselect’ from elim.lib.

LIB "elim.1lib";

j = std(i); // compute a std basis j
j = nselect(j,1,4); // select generators from j not
j; // containing variable 1,...,4

— j[1]1=3c2-4bd+ae
— j[2]=2bcd-3ad2-3b2e+4ace
— j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde

A.11 Free resolution

In SINGULAR a free resolution of a module or ideal has its own type: resolution. It is a structure
that stores all information related to free resolutions. This allows partial computations of resolutions
via the command res. After applying res, only a pre-format of the resolution is computed which
allows to determine invariants like Betti-numbers or homological dimension. To see the differentials

Appendix A: Examples 214

of the complex, a resolution must be converted into the type list which yields a list of modules:
the k-th module in this list is the first syzygy-module (module of relations) of the (k-1)st module.
There are the following commands to compute a resolution:

res Section 5.1.96 [res], page 162
computes a free resolution of an ideal or module using a heuristically chosen method.
This is the prefered method to compute free resolutions of ideals or modules.

lres Section 5.1.59 [Ires], page 139
computes a free resolution of an ideal or module with LaScala’s method. The input
needs to be homogeneous.

mres Section 5.1.67 [mres], page 144
computes a minimal free resolution of an ideal or module with the Szyzygy method.

sres Section 5.1.104 [sres|, page 167
computes a free resolution of an ideal or module with Schreyer’s method. The input
has to be a standard basis.

nres Section 5.1.74 [nres], page 148

computes a free resolution of an ideal or module with the standard basis method.
minres minimizes a free resolution of an ideal or module.
syz Section 5.1.111 [syz], page 173

computes the first Szyzygy (i.e., the module of relations of the given generators).

res(i,r), lres(i,r), sres(i,r), mres(i,r), nres(i,r) compute the first r modules of the
resolution of i, resp. the full resolution if r=0 and the basering is not a qring. See the the manual
for a precise description of these commands.
Note: The command betti does not require a minimal resolution for the minimal betti numbers.

Now let’s look at an examples which uses resolutions: The Hilbert-Burch theorem says that the
ideal i of a reduced curve in K has a free resolution of length 2 and that i is given by the 2x2 minors
of the 2nd matrix in the resolution. We test this for the two transversal cusps in K3. Afterwards
we compute the resolution of the ideal j of the tangent developable of the rational normal curve in
P* from above. Finally we demonstrate the use of the type resoltuion in connection with the Ires
command.

// Two transversal cusps in (k~3,0):
ring r2 =0,(x,y,2),ds;
ideal i =z2-1y3+x3y,xz,-1xy2+x4,x3z;

resolution rs=mres(i,0); // computes a minimal resolution
rs; // the standard representation of complexes
— 1 3 2 0
= r2 <--1r2 <--1r2 <--712
—
— 0 1 2 3
—

list resi=rs; // convertion to a list
print(resi[1]); // the 1-st module is i minimized
— Xz,
— z2-y3+x3y,
— xy2-x4

print(resi[2]); // the 1-st syzygy module of i

Appendix A: Examples 215

— -z,-y2+x3,

— x, O,

=y, z

resil[3]; // the 2-nd syzygy module of i

— _[1]1=0

ideal j=minor(resi[2],2);

reduce(j,std(i)); // check whether j is contained in i
— _[1]=0

— _[2]1=0

— _[3]1=0

size(reduce(i,std(j))); // check whether i is contained in j
= 0

// size(<ideal>) counts the non-zero generators

// The tangent developable of the rational normal curve in P"4:

ring P = 0,(a,b,c,d,e),dp;

ideal j= 3c2-4bd+ae, -2bcd+3ad2+3b2e-4ace,
8b2d2-9acd2-9b2ce+9ac2e+2abde-1a2e2;

resolution rs=mres(j,0);

rs;

= 1 2 1 0
= P <-—-P <-—-P <K--P
—

— 0 1 2 3
—

list L=rs;

print (L[2]);

— 2bcd-3ad2-3b2e+4ace,

— -3c2+4bd-ae

// create an intmat with graded betti numbers
intmat B=betti(rs);

// this gives a nice output of betti numbers
print (B, "betti");

— 0 1 2
’_> ________________________
— 0 1 0 0
— 1 0 1 0
— 2 0 1 0
—> 3 0 0 1
|_> ________________________
— total: 1 2 1

// the user has access to all betti numbers
// the 2-nd column of B:

B[1..4,2];

— 0110

ring cyc5=32003, (a,b,c,d,e,h),dp;

ideal i=

atb+c+d+e,

ab+bc+cd+de+ea,

abc+bcd+cde+deateab,
abcd+bcde+cdea+deab+eabce,

Appendix A: Examples 216

h5-abcde;

resolution rs=lres(i,0); //computes the resolution according LaScala
rs; //the shape of the minimal resolution

— 1 5 10 10 5 1 0
— cycb <-- cycb <-- cycb <-- cycb <-- cycb <-- cycb <-- cych
=

— 0 1 2 3 4 5 6

— resolution not minimized yet

—

print(betti(rs),"betti"); //shows the Betti-numbers of cyclic 5

— total: 1 5 10 10 5 1
dim(rs); //the homological dimension

111111111111 11

size(1list(rs)); //gets the full (non-reduced) resolution
— 6

minres(rs); //minimizes the resolution

— 1 5 10 10 5 1 0
— cycb <-- cycb <-- cycb <-- cycb <-- cycb <-- cycb <-- cych
—

= 0 1 2 3 4 5 6

—

size(list(rs)); //gets the minimized resolution

— 6

A.12 Ext

We start by showing how to calculate the n-th Ext group of an ideal. The ingredients to do this,
are by the definition of Ext the following: calculate a (minimal) resolution at least up to length
n, apply the Hom-functor, and calculate the n-th Homology group, so form the quotient ker /Im in
the resolution sequence.

The Hom functor is given simply by transposing (hence dualizing) the module or the corre-
sponding matrix with the command transpose. The image of the n — 1-st map is generated by
the columns of the corresponding matrix. To calculate the kernel apply the command syz at the
n — 1-st transposed entry of the resolution. Finally, the quotient is obtained by the command

Appendix A: Examples 217

modulo, which gives for two modules A = ker, B = Im the module of relations of A/(AN B) in the
usual way. As we have a chain complex this is obviously the same as ker/Im.

We collect these statements in this short procedure.

proc ext(int n, ideal I)

{
resolution rs = mres(I,n+1);
module tAn transpose(rs[n+1]);
module tAn_1 transpose(rs[n]);
module ext_n modulo(syz(tAn) ,tAn_1);
return(ext_n);

}

Now consider the following example:

ring r5 = 32003, (a,b,c,d,e),dp;

ideal I = a2b2+ab2c+b2cd, a2c2+ac2d+c2de,a2d2+ad2e+bd2e,a2e2+abe2+bce2;
print (ext(2,I));

1,0,0,0,0,0,0,

0,1,0,0,0,0,0
0,0,1,0,0,0,0
0,0,0,1,0,0,0
0,0,0,0,1,0,0
0,0,0,0,0,1,0
0,0,0,0,0,0,1
(/

b b b b b

b b b b b

-

2

’0’ 2

2 2 2 2

1111111

3 ’0’ 3 3
3,1); /

2

too big to be displayed here

The library homolog.lib contains several procedures for computing Ext-modules and related
modules, which are much more general and sophsticated then the above one. They are used in the
following example.

If M is a module, then Ext'(M, M) resp. Ext’(M, M) are the modules of infinitesimal defor-
mations resp. of obstructions of M (like T1 and T2 for a singularity). Similar to the treatment for
singularities, the semiuniversal deformation of M can be computed (if Ext' is finite dimensional)

with the help of Ext', Ext” and the cup product. There is an extra procedure for Ext*(R/J, R) if
J is an ideal in R since this is faster than the general Ext.

We compute

e the infinitesimal deformations (= Ext' (K, K)) and obstructions (= Ext’(K, K)) of the residue
field K = R/m of an ordinary cusp, R=Lock[z,y]/(z*> —), m=(z,y). For Ext'(m,m) here
we have to compute Ext (1,syz(m) ,syz(m)) with syz(m) the first syzygy module of m, which
is isomorphic to Ext’ (K, K).

e Ext’(R/i, R) for some ideal i and with an extra option

LIB "homolog.lib";

ring R=0, (x,y),ds;

ideal i=x2-y3;

gring q = std(i); // defines the quotient ring Loc_k[x,y]/(x2-y3)

Appendix A: Examples 218

ideal m = maxideal(l);
module T1K = Ext(1,m,m); // computes Ext~1(R/m,R/m)
~ // degree of Ext~1:

— // codimension = 2

— // dimension =0

— // multiplicity = 2

—

print (T1K) ;

~ 0, 0,y,x,0,y,0, x2-y3,

~ -y2,x,x,0,y,0,x2-y3,0,

~ 1, 0,0,0,0,0,0, 0

printlevel=2; // gives more explanation
module T2K=Ext(2,m,m); // computes Ext~2(R/m,R/m)

~ // Computing Ext~2 (help Ext; gives an explanation):

— // Let 0<--coker(M)<--FO0<--F1<--F2<--... be a resolution of coker(M),
—

— // and 0<--coker (N)<--G0<--G1 a presentation of coker(N),
— // then Hom(F2,G0)-->Hom(F3,G0) is given by:

— y2,x,

= X, ¥

~ // and Hom(F1,G0) + Hom(F2,G1)-->Hom(F2,G0) is given by:
= —Y.X, X,O,Y,O:

~ x, -y2,0,x,0,y

—

— // degree of Ext"2:

— // codimension = 2

— // dimension =0

— // multiplicity = 2

—

print (std(T2K));
— -y2,0,x, 0,y,
= O: X,‘Y,Y,O,
— 1, 0,0, 0,0
printlevel=0;
module E = Ext(1,syz(m),syz(m));
— // degree of Ext~1:

— // codimension 2

~ // dimension =
—~ // multiplicity

1
]
N O

print (std(E));
— -y,x, 0, 0,0,x
= Os -y,"y,Y,
— 0,
= 0
— 0

-

= O O

o = O

O O -
O OO OMN

1
My
N
S
S

//We see from the matrices that T2K and E are isomorphic
//as it should be; but both are differently presented

Appendix A: Examples 219

ring $=0, (x,y,2) ,dp;
ideal i = x2y,y2z,z3x;
module E = Ext_R(2,i);

~ // degree of Ext~2:
+— // codimension = 2
+ // dimension =1
— // degree =7
—

print (E);

~ 0,y,0,z2,

— z,0,0,-x,

— 0,0,x,-y

// if a 3-rd argument is given (of any type)
// a list of Ext"k(R/i,R), a SB of Ext"k(R/i,R) and a vector space basis
// is returned:

list LE = Ext_R(3,i,"");

— // degree of Ext~3:

— // codimension = 3

— // dimension =0

=2

1
~
~
Q.
(]
o]
H
®
(0]

.o

[1]:
_[1]1=y*gen(1)
_[2]=x*gen(1)
_[3]1=z2*gen(1)
[(2]1:
_[1]=y*gen(1)
_[2]=x*gen(1)
_[3]1=z2*gen(1)
[3]:

-[1,1]==
-[1,2]=1

print (LE[2]);

— y,x,z2

print (kbase (LE[2])) ;
— z,1

II1I111T111111RT

A.13 Polar curves

The polar curve of a hypersurface given by a polynomial f € k[zy,...,z,,t] with respect to ¢
(we may consider f = 0 as a family of hypersurfaces parametrized by t) is defined as the Zariski
closure of V(9f/0zy,...,0f/0z,) \ V(f) if this happens to be a curve. Some authors consider
V(0f/0z,...,0f/0x,) itself as polar curve.

We may consider projective hypersurfaces (in P"), affine hypersurfaces (in k") or germs of
hypersurfaces (in (k",0)), getting in this way projective, affine or local polar curves.

We shall compute this now for a family of plane curves. We need the library elim.1ib for
saturation and sing.1lib for the singular locus.

Appendix A: Examples 220

LIB "elim.1lib";
LIB "sing.lib";
// Affine polar curve:

ring R = 0,(x,z,t),dp; // global ordering dp

poly f = zb+xz3+x2-tz6;

dim_slocus(f) ; // dimension of singular locus
— 1

ideal j = diff(f,x),diff(f,z);

dim(std(j)); // dim V(j)

— 1

dim(std(j+ideal(£))); // V(j,f) also 1-dimensional
= 1

// j defines a curve, but to get the polar curve we must remove the

// branches contained in f=0 (they exist since dim V(j,f) = 1). This
// gives the polar curve set theoretically. But for the structure we
// may take either j:f or j:f"k for k sufficiently large. The first is
// just the ideal quotient, the second the iterated ideal quotient

// or saturation. In our case both is the same.

ideal q = quotient(j,ideal(f)); // ideal quotient

ideal gsat = sat(j,f)[1]; // saturation, proc from elim.lib
ideal sq = std(q);

dim(sq) ;

= 1

// 1-dimensional, hence q defines the affine polar curve

//

// to check that q and gsat are the same, we show both inclusions, i.e.
// both reductions must give the 0O-ideal

size(reduce(gsat,sq));

— 0

size(reduce(q,std(gsat)));

— 0

gsat;

— gsat[1]=12zt+3z-10

— qgsat [2]=5z2+12xt+3x

— gsat [3]1=144xt2+72xt+9x+50z

// We see that the affine polar curve does not pass through the origin,
// hence we expect the local polar "curve" to be empty

/] == e

// Local polar curve:

ring r = 0,(x,z,t) ,ds; // local ordering ds

poly f = zb+xz3+x2-tz6;

dim_slocus(f) ; // dimension of singular locus
= 1

ideal j = diff(f,x),diff(f,z);

dim(std(j)); // V(j) 1-dimensional

— 1

dim(std(j+ideal(£))); // V(j,f) also 1-dimensional
— 1

ideal q = quotient(j,ideal(f)); // ideal quotient

Q5

Appendix A: Examples 221

— ql1]=1

// The local polar "curve" is empty, i.e V(j) is contained in V(f)

/] —mmmm e

// Projective polar curve: (we need "sing.lib" and "elim.lib")

ring P = 0, (x,z,t,y) ,dp; // global ordering dp

poly f = zb+xz3+x2-tz6;

f = zby+xz3y2+x2y4-tz6; // homogenize f with respect to y
// but consider t as parameter

dim_slocus(f) ; // projective 1-dimensional singular locus

— 2

ideal j = diff(f,x),diff(f,z);

dim(std(j)); // V(j), projective 1-dimensional

— 2

dim(std(j+ideal(£))); // V(j,f) also projective 1-dimensional

= 2

ideal q = quotient(j,ideal(f));

ideal gsat = sat(j,f)[1]; // saturation, proc from elim.lib

dim(std(qgsat));

— 2

// projective 1-dimensional, hence q and/or gsat define the projective
// polar curve. In this case, q and gsat are not the same, we needed
// 2 quotients.
// Let us check both reductions:
size(reduce(qgsat,std(q)));
= 4
size(reduce(q,std(qgsat)));
= 0
// Hence q is contained in gsat but not conversely
q;
= ql[1]=12zty+3zy-10y2
— ql[2]1=60z2t-36xty-9xy-50zy
gsat;
— gsat[1]1=12zt+3z-10y
— gsat [2]=12xty+5z2+3xy
— gsat [3]1=144xt2+72xt+9x+50z
— gsat [4]=z3+2xy2
// Now consider again the affine polar curve,
// homogenize it with respect to y (deg t=0) and compare:
// affine polar curve:
ideal qa = 12zt+3z-10,5z2+12xt+3x,-144xt2-72xt-9x-50z;
// homogenized:
ideal gh = 12zt+3z-10y,5z2+12xyt+3xy,-144xt2-72xt-9x-50z;
size(reduce(qh,std(gsat)));
= 0
size(reduce(gsat,std(qh)));
= 0
// both ideals coincide

Appendix A: Examples 222

A.14 Depth

We compute the depth of the module of Kaehler differentials Dy (R) of the variety defined by the
(m+1)-minors of generic symmetric nxn matrix. We do this by computing the resolution over the
polynomial ring. Then, by the Auslander-Buchsbaum formula, the depth is equal to the number
of variable minus the length of a minimal resolution. This example was suggested by U. Vetter in
order to check wheter his bound depth(D(R)) > m(m +1)/2 + m — 1 could be improved.

LIB "matrix.lib"; LIB "sing.lib";

int n = 4;

int m = 3;

n*x(n+1)/2; // will become number of variables

int N =
ring R = 32003,x(1..N),dp;
matrix X = symmat(n); // proc from matrix.lib
// creates the symmetric generic nxn matrix
print (X);

= x(1),x(2),x(3),x(4),

— x(2),x(5),x(6),x(7),

— x(3),x(6),x(8),x(9),

— x(4),x(7),x(9),x(10)

ideal J = minor(X,m);

J=std(J);

// Kaehler differentials D_k(R)

// of R=k[x1..xn]/J:

module D = J*freemodule(N)+transpose(jacob(J));
ncols(D);

— 110

nrows (D) ;

— 10

//

// Note: D is a submodule with 110 generators of a free module
// of rank 10 over a polynomial ring in 10 variables.
int time = timer;

module sD = std(D);

resolution Dres = sres(sD,0); // the full resolution
timer-time; // time used for std + sres
= 1

intmat B = betti(Dres);
print (B, "betti");

—> 0 1 2 3 4 5 6
|_> __
— 0: 10 0 0 0 0 0 0
— 1: 0 10 0 0 0 0 0
— 2: 0 84 144 60 0 0 0
— 3: 0 0 35 80 60 16 1
|_> __
+ total: 10 94 179 140 60 16 1
N-ncols(B)+1; // the desired depth

— 4

Appendix A: Examples 223

A.15 Formatting output

We show how to insert the result of a computation inside a text by using strings. First we
compute the powers of 2 and comment the result with some text. Then we do the same and give
the output a nice format by computing and adding appropriate space.

// The powers of 2:

int n;

for (n = 2; n<=128; n =n * 2)
"n = " + string (n);}

= n =2

= n =4

= n =8

— n =16

— n = 32

— n = 64

— n = 128

// The powers of 2 in a nice format
int j;

string space = "";
for (n = 2; n<=128; n =n * 2)

{
space = nn;
for (j = 1; j <= 5 - size (string (n)); j = j+1)
{ space = space + " "; }
"n =" + space + string (n);

}

= n = 2

= n = 4

= n = 8

— n 16

= n = 32

— n= 64

= n = 128

A.16 Cyclic roots

We write a procedure returning a string that enables us to automatically create the ideal of
cyclic roots over the basering with n variables. The procedure assumes that the variables consist
of a single letter each (hence no indexed variables are allowed; the procedure cyclic in poly.lib
does not have this restriction). Then we compute a standard basis of this ideal and some numerical
information. (This ideal is used as a classical benchmark for standard basis computations).

// We call the procedure ’cyclic’:
proc cyclic (int n)
{
string vs = varstr(basering)+varstr(basering);
int c=find(vs,",");
while (c!=0)
{

Appendix A: Examples 224

vs=vs[1,c-1]+vs[c+1l,size(vs)];
c=find(vs,",");

}

string t,s;

int 1i,j;

for (j=1; j<=n-1; j=j+1)

{
t="";
for (i=1; i <=n; i=i+l1)
{

t =t + vsl[i,jl + "+";

}
t = t[1,size(t)-1] + ","+newline;
s=s+t;

}

s=s+vs[1,n]+"-1";
return (s);

}

ring r=0,(a,b,c,d,e),lp; // basering, char 0, lex ordering

string sc=cyclic(nvars(basering));

scC; // the string of the ideal

at+b+c+d+e,

ab+bc+cd+de+ea,

abc+bcd+cde+dea+teab,

abcd+bcde+cdea+deab+eabce,

abcde-1

execute("ideal i="+sc+";"); // this defines the ideal of cyclic roots
i;

111113

i[1]=a+b+c+d+e

i[2] =ab+bc+cd+ae+de
i[3]=abc+bcd+abe+ade+cde
i[4]=abcd+abce+abde+acde+bcde
i[5]=abcde-1

timer=1;

ideal j=std(i);

— //used time: 7.5 sec

111113

size(j); // number of elements in the std basis
— 11

degree(j);

+— // codimension = 5

— // dimension =0

— // degree =70

A.17 G_a -Invariants

We work in characteristic 0 and use the Lie algebra generated by one vectorfield of the form

Z iE,;a/aiEH_l .

LIB "invar.lib";

Appendix A: Examples 225

int n=5;
int i;
ring s=32003,(x(1..n)),wp(1,2,3,4,5);
// definition of the vectorfield m=sum m[i,1]*d/dx(i)
matrix m[n] [1];
for (i=1;i<=n-1;i=i+1)
{
m[i+1,1]=x(i);
}
// computation of the ring of invariants
ideal in=invariantRing(m,x(2),x(1));
in; //invariant ring is generated by 5 invariants
in[1]=x(1)
in[2]=x(2) "2-2*x(1)*x(3)
in[3]=x(3) "2-2*x(2)*x(4)+2*x (1) *x(5)
in[4]=x(2) "3-3*x(1)*x(2)*x(3)+3*x(1) " 2*x(4)
in[5]=x(3) "3-3*x(2)*x(3)*x(4)-15997*x (1) *x (4) "2+3*x(2) "2*x(5) -6*x (1) *
x(3)*x(5)
ring 9=32003,(x,y,z,u,v,w),dp;
matrix m[6] [1];
m[2,1]=x;
m[3,1]=y;
m[5,1]=u;
m[6,1]1=v;
// the vectorfield is: xd/dy+yd/dz+ud/dv+vd/dw
ideal in=invariantRing(m,y,x);
in; //invariant ring is generated by 6 invariants
in[1]=x
in[2]=u
in[3]=v2-2uw
in[4]=zu-yv+xw
in[6]=yu-xv
in[6]=y2-2xz

111111

111111

A.18 Invariants of a finite group

Two algorithms to compute the invariant ring are implemented in SINGULAR, invariant_ring
and invariant_ring_random, both by Agnes E. Heydtmann (agnes@math.uni-sb.de):

Bases of homogeneous invariants are generated successively and those are chosen as primary
invariants that lower the dimension of the ideal generated by the previously found invariants (see
paper "Generating a Noetherian Normalization of the Invariant Ring of a Finite Group" by Decker,
Heydtmann, Schreyer (1997) to appear in JSC). In the non-modular case secondary invariants are
calculated by finding a basis (in terms of monomials) of the basering modulo the primary invariants,
mapping to invariants with the Reynolds operator and using those or their power products such
that they are linearly independent modulo the primary invariants (see paper "Some Algorithms in
Invariant Theory of Finite Groups" by Kemper and Steel (1997)). In the modular case they are
generated according to "Generating Invariant Rings of Finite Groups over Arbitrary Fields" by
Kemper (1996, to appear in JSC).

Appendix A: Examples 226

We calculate now an example from Sturmfels: "Algorithms in Invariant Theory 2.3.7":

LIB "finvar.lib";

ring R=0, (x,y,2),dp;

matrix A[3][3]=0,1,0,-1,0,0,0,0,-1;

// the group G is generated by A in G1(3,Q);

print (A);

~ 0, 1,0,

— -1,0,0,

— 0, 0,-1

// the fourth power of A is 1:

print (AxA*xAxA); // the fourth power of A is 1

~ 1,0,0,

~ 0,1,0,

— 0,0,1

// Use the first method to compute the invariants of G:
matrix B(1..3);

B(1..3)=invariant_ring(A);

// SINGULAR returns 2 matrices, the first containing
// primary invariants and the second secondary

// invariants, i.e. module generators over a Noetherian
// normalization

// the third result are the irreducible secondary invariants
// if the Molien series was available

print (B(1));

— z2,x2+y2,x2y2

print (B(2));

— 1,xyz,x2z-y2z,x3y-xy3

print (B(3));

— xyz,x2z-y2z,x3y-xy3

// Use the second method,

// with using random numbers between -1 and 1:
B(1..3)=invariant_ring_random(A,1);

print(B(1..3));

— z2,x2+y2,x4+y4-z4

— 1,xyz,x2z-y2z,x3y-xy3

— Xyz,x2z-y2z,x3y-xy3

A.19 Factorization

The factorization of polynomials is implemented in the C++ libraries Factory (written mainly
by Ruediger Stobbe) and libfac (written by Michael Messollen) which are part of the SINGULAR
system.

ring r = 0,(x,y),dp;

poly £ = 9x16-18x13y2-9x12y3+9x10y4-18x11y2+36x8y4
+18x7y5-18x5y6+9x6y4-18x3y6-9x2y7+9y8;

// =9 * (x5-1y2) "2 * (x6-2x3y2-1x2y3+y4)

factorize(f);

— [1]:

Appendix A: Examples 227

_[11=9
_[2]=x6-2x3y2-x2y3+y4
_[3]=-x5+y2
[2]:
1,1,2
// returns factors and multiplicities,
// first factor is a constant.
poly g = (y4+x8)*(x2+y2);
factorize(g);
— [1]:
— _[11=1
— _[2]=x2+y2
— _[3]1=x8+y4
— [2]:
— 1,1,1
// The same in characteristic 2:
ring r =2,(x,y) ,dp;
— // ** redefining r *x
poly g = (y4+x8)*(x2+y2);
factorize(g);
— [1]:
— _[11=1
— _[2]=x+y
— _[3]=x2+y
—
—

11111

[2]:
1,2,4

A.20 Puiseux pairs

The Puiseux pairs of an irreducible and reduced curve singularity are its most important invari-
ants. They can be computed from its Hamburger-Noether expansion. The library hnoether.1ib
written by Martin Lamm uses the algorithm of Antonio Campillo "Algebroid curves in positive
characteristic" SLN 813, 1980. This algorithm has the advantage that it needs least possible field
extensions and, moreover, works in any characteristic. This fact can be used to compute the invari-
ants over a field of finite characteristic, say 32003, which will then be most probably be the same
in characteristic 0.

We compute the Hamburger-Noether expansion of some plane curve singularities given by a
polynomial f in two variables. This is a matrix which allows to compute the parametrization (up
to a given order) and all numerical invariants like

e characteristic exponents

e puiseux pairs (of a complex model)
e degree of the conductor

e delta invariant

e generators of semigroup

Besides this, the library contains procedures to compute the Newton polygon of f, the squarefree
part of f and a procedure to convert one set of invariants to another.

Appendix A: Examples

LIB "hnoether.lib";

// ======== The irreducible case ========
ring s = 0,(x,y),ds;

poly f = y4-2x3y2-4x5y+x6-x7;

list hn = develop(f);

— h(0) 1

— a(1,2) =1

= h(1) = 2

— a(2,2) = 1/4

— a(2,3) = -1/2

show(hn[1]) ; // Hamburger-Noether matrix
— // matrix, 3x3

— 0,x, O,

— 0,1, x,

— 0,1/4,-1/2
displayHNE (hn) ;
-y+z(0)*z (1)

— HNE[2]=-x+z (1) "2+z (1) "2%z(2)
— HNE[3]=1/4%z(2)"2-1/2%z(2)"3

—

HNE[1]

// Hamburger-Noether development

setring s;

displayInvariants(hn) ;

— characteristic exponents : 4,6,7

— puiseux pairs : (3,2)(7,2)

— degree of the conductor : 16

— delta invariant : 8

— generators of semigroup : 4,6,13

— sequence of multiplicities: 4,2,2,1

// invariants(hn); returns the invariants as list

param(hn) ;

// partial parametrization of f

// param takes the first variable as
// except the ring has >2 variables
— // ** Warning: result is exact up to order 5 in x and 7 in y !

— _[11=1/16x4-3/16x5+1/4x7

— _[2]=1/64x6-5/64x7+3/32x8+1/16x9-1/8x10

ring extring=0, (x,y,t),ds;

poly f=x3+2xy2+y2;

list hn=develop(f,-1);

— Warning! You have defined too many variables!

— All variables except the first two will be ignored!

— h(0) =1
— a(l,2) = -1

param(hn) ;
— // ** Warning: result is exact up to order 2 in x and 3 in y !

= _[1]=-t2
— _[2]=-t3
list hnl=develop(f,6);

Warning! You have defined too many variables!

11111

A1l variables except the first two will be ignored!

h(0) =
a(1,2)
a(1,4)

1

-1
2

// partial parametrization of f

228

Appendix A: Examples 229

— a(1,6) = -4

param(hnl) ; // a better parametrization

— // ** Warning: result is exact up to order 6 in x and 7 in y !
= _[1]=-t2+2t4-4t6

= _[2]=-t3+2t5-4t7

// instead or recomputing you may extend the development:
list hn2=extdevelop(hn,12);

a(1,4) = 2

a(1,6) = -4

a(1,8) = 8

a(1,10) = -16

a(1,12) = 32

param(hn?) ; // a still better parametrization

+ // ** Warning: result is exact up to order 12 in x and 13 in y !
= _[1]1=-t2+2t4-4t6+8t8-16t10+32t12

= _[2]=-t3+2t5-4t7+8t9-16t11+32t13

// ======== The reducible case ========

ring r = 0,(x,y),dp;

poly f=x11-2y2x8-y3x7-y2x6+y4x5+2y4x3+y5x2-y6;

// = (x6-1y2) * (x6-2x3y2-1x2y3+y4)

list hn=reddevelop(f);

— HNE of one branch found

— finite HNE found

11111

= 777 result: 2 branch(es) successfully computed ~~~
show(hn[1][1]); // Hamburger-Noether matrix of 1st brach
~ // matrix, 3x3
~ 0,x,0,
— 0,1,x,
— 0,1,-1
displayInvariants(hn) ;
—--- invariants of branch number 1 : ---
characteristic exponents : 4,6,7
puiseux pairs : (3,2)(7,2)
degree of the conductor : 16
delta invariant : 8
generators of semigroup : 4,6,13

sequence of multiplicities: 4,2,2,1

——— invariants of branch number 2 : —-—-—

characteristic exponents : 2,5
puiseux pairs : (5,2)
degree of the conductor : 4
delta invariant : 2
generators of semigroup : 2,5
sequence of multiplicities: 2,2,1

—————————————— intersection multiplicities : -————————————-

1111117111111 3111111111

Appendix A: Examples 230

param(hn[2]); // parametrization of 2nd branch
= _[1]=x2
— _[2]=x5

// extended parametrization of 1st

A.21 Primary decomposition

There are two algorithms implemented in SINGULAR which provide primary decomposition:
primdecGTZ, based on Gianni/Trager/Zacharias (written by Gerhard Pfister) and primdecSY, based
on Shimoyama/Yokoyama (written by Wolfram Decker and Hans Schoenemann).

The result of primdecGTZ is returned as a list of ideals, where the even indexed ideals form the
prime ideal and the odd indexed ideals form the corresponding primary ideal.

The result of primdecSY is a list of list-tupels of ideals, the primary ideal and the corresponding
prime ideal.

LIB "primdec.1lib";
ring r = 0,(a,b,c,d,e,f),dp;
ideal i= f3, ef2, e2f, bcf-adf, de+cf, bet+taf, e3;
primdecGTZ (i) ;
— [1]:
[1]:
_[1]1=f
_[2]=e
[2]:
_[1]1=f
_[2]=e
[2]:
[1]:
_[11=£3
_[2]=ef2
_[3]=e2f
_[4]=e3
_[5]=de+cf
_[6]=be+af
_[7]=-bc+ad
[2]:
_[1]1=f
_[2]=e
_[3]=-bc+ad
// We consider now the ideal J of the base space of the
// miniversal deformation of the cone over the rational
// normal curve computed in section *11% and compute
// its primary decomposition.
ring R = 0,(A,B,C,D) ,dp;
ideal J = CD, BD+D2, AD;
primdecGTZ(J) ;
— [1]:
— [1]:

1111111313111 11111111

Appendix A: Examples

111111111111

_[11=D
[2]:
_[11=D
[2]:
[1]:
_[1]1=C
_[2]=B+D
_[3]1=A
[2]:
_[1]1=C
_[2]1=B+D
_[3]1=A

231

// We see that there are two components which are both
// prime, even linear subspaces, one 3-dimensional,
the other 1-dimensional.

(This is Pinkhams example and was the first found
surface singularity with two components of
different dimensions)

Let us now produce an embedded component in the last

example, compute the minimal associated primes and

the radical. We use the Characteristic set methods.
intersect (J,maxideal(3));

primdecSY(J);

N A A A

[1]:

[1]:

_[11=D

[2]:

_[11=D
[2]:

[1]:

_[1]=C
_[2]=B+D
_[3]=A

[2]:

_[11=C

_[2]1=B+D

_[3]1=A
[3]:

[1]:
_[1]1=D2
_[2]=C2
_[3]1=B2
_[4]1=AB
_[5]1=A2
_[61=BCD
_[71=ACD

[2]:

_[11=D
_[2]=C

//shows that the maximal ideal is
//embedded (takes a few seconds)

Appendix A: Examples 232

— _[3]1=B
— _[4]1=A
minAssChar (J);
= [1]

> _[1]=C

—> [2]=B+D
— _[3]1=A

— [2]:

— _[11=D
radical(J);

— _[1]=CD

~ _[2]1=BD+D2
— _[3]1=AD

A.22 Normalization

The normalization will be computed for a reduced ring R/I. The result is a list of rings; ideals
are always called KK in the rings of this list. The normalization of R/I is the product of the factor
rings of the rings in the list divided out by the ideals KK.

LIB "normal.lib";

// ———- first example: rational quadruple point —-----
ring R=32003, (x,y,z),wp(3,5,15);

ideal I=z*(y3-x5)+x10;

list pr=normal(I);

def S=pr[1i];

setring S;

KK
— KK[1]1=T(2)*T(3)-T(1)*T(4)

— KK[2]=T (1) "7+T (1) "2*T(2)~3-T(1) "2*T(3)+T(2)*T(5)

— KK[3]=T (1) "4*T(2) ~2+T (1) "2+T(5)-T(2)*T(4)

— KK[4]=T (1) 5+T(4)+T (1) 24T (2) ~2*T(5)+T(2) " 3*T(4)-T(3)*T(4)+T(5)"2
— KK[5]=T(1)"6xT(3)+T (1) "2*T(2) "2*T(4)-T(1)*T(3) ~“2+T(4)*T(5)

— KK[6]=T (1) "4*T(2)*T(4)+T(1)*T(3)*T(5)-T(4)"2

[/l ————= second example: union of straight lines -----

ring R1=0,(x,y,z),dp;

ideal I=(x-y)*(x-z)*(y-z);

list qr=normal(I);

def S1=qr[1]; def S2=qr[2]; def S3=qr[3];

setring S1; KK;

— KK[1]=0

setring S2; KK;

— KK[1]=0

setring S3; KK;

— KK[1]=0

Appendix A: Examples 233

A.23 Kernel of module homomorphisms

Let A, B two matrices of size m X r and m X s over the ring R and consider the corresponding
maps

R R" R
We want to compute the kernel of the map R™ -2 R™ —»s R™ /Im(B) . This can be done using

the modulo command: M
modulo(A, B) = ker(R" — R™/Im(B)) .

ring r=0, (x,y,2), (c,dp);
matrix A[2][2]=x,y,z,1;
matrix B[2] [2]=x2,y2,22,xz;
modulo(A,B);

= _[1]1=[yz2-x2,x2z-x22]

= _[2]=[xyz-y2,-x2z+y2z]
= _[3]1=[x2z-xy,xyz-yz2]

= _[4]1=[x3-y2z]

A.24 Algebraic dependence

Let g, fi, ..., fr € K[z1,...,2,]. We want to check whether
1. fi, ..., fr are algebraically dependent.
Let I = (Y1 — f1,...,Y. — f») C Klzy,...,2p,Y1,...,Y,]. Then I N K[Y;,...,Y,] are the
algebraic relations between fi, ..., f..

2. g EK[fla"';fr]'
g € K[fi,...,fr] if and only if the normalform of g with respect to I and a blockordering
with respect to X = (z1,...,2,) and Y = (Y3,...,Y,) with X > Y is in K[Y]. Then g =
h(fi,---s fr)-

Both questions can be answered using the following procedure. If the second argument is zero,
it checks for algebraic dependence and returns the ideal of relations between the generators of the
given ideal. Otherwise it checks for subring membership and returns the normal form of the second
argument with respect to the ideal I.

proc algebraicDep(ideal J, poly g)
{
def R=basering; // give a name to the basering
int n=size(J);
int k=nvars(R);
int i;
intvec v;

// construction of the new ring
v [n+k]=0; // construct a weight vector

for(i=1;i<=k;i++)

{

Appendix A: Examples

}

v[i]l=1;
}
string orde="(a("+string(v)+"),dp);";
string ri="ring Rhelp=("+charstr(R)+"),
("+varstr(R)+",Y(1.."+string(n)+")),"+orde;
// ring definition as a string
execute(ri); // execution of the string

// construction of the new ideal I=(J[1]1-Y(1),...,J[n]l-y(®))
ideal I=imap(R,J);
for(i=1;i<=n;i++)
{
I[il=I[i]-var(k+i);
}
poly g=imap(R,g);
if(g==0)
{
// construction of the ideal of relations by elimination
poly el=var(1);
for(i=2;i<=k;i++)
{
el=el*var(i);
}
ideal KK=eliminate(I,el);
keepring(Rhelp) ;
return (KK) ;
}
// reduction of g with respect to I
ideal KK=reduce(g,std(I));
keepring(Rhelp) ;
return(KK) ;

// applications of the procedure
ring r=0,(x,y,2),dp;

ideal i=xz,yz;
algebraicDep(i,0);

—

_[1]=0

setring r; kill Rhelp;
ideal j=xy+z2,z2+y2,x2y2-2xy3+y4;
algebraicDep(j,0);

—

_[11=Y(1) "2-2*%Y (1) *Y (2)+Y(2) "2-Y(3)

setring r; kill Rhelp;
poly g=y2z2-xz;
algebraicDep(i,g);

—

_[11=Y(2)"2-Y(1)

setring r; kill Rhelp;
algebraicDep(j,g);

—

_[1]=-z"4+z"2%Y (2) —x*z

234

Appendix A: Examples 235

A.25 Classification

Classification of isolated hypersurface singularities with respect to right equivalence is provided
by the command classify of the library classify.1lib written by Kai Krueger. The classification
is done using the algorithm of Arnold. Before entering this algorithm, a first guess based on the
Hilbert polynomial of the Milnor algebra is made.

LIB "classify.lib";

ring r=0, (x,y,z),ds;

poly p=singularity("E[6k+2]",2)[1];

pP=p+z"2;

p;

— z2+x3+xy6+y8

// We received a E_14 singularity in normal form

// from the database of normal forms. Since only the residual
// part is saved in the database, we added z"2 to get an E_14
// of embedding dimension 3.

//

// Now we apply a coordinate change in order to deal with a
// singularity which is not in normal form:

map phi=r,x+y,y+z,x;

poly g=phi(p);

// Yes, q really looks ugly, now:

q;

— x2+x3+3x2y+3xy2+y3+xy6+y7+6xy5z+6y6z+15xy4z2+15y522+20xy32z3+20y42z3+15
— xy2z4+15y3z4+6xyz5+6y2z5+xz6+yz6+y8+8y7z+28y6z2+56y523+70y4z4+56y3z5+
— 28y2z6+8yz7+z8

// Classification

classify(q);

About the singularity :

Milnor number (f) = 14
Corank (f) = 2
Determinacy <= 12

Guessing type via Milnorcode: E[6k+2]=E[14]

Computing normal form ...
I have to apply the splitting lemma. This will take some time....:-)
Arnold step number 9
The singularity
¢x3-9/4x4+27/4x5-189/8x6+737/8x7+6x6y+15x5y2+20x4y3+15x3y4+6x2y5+x
y6-24089/64x8-xTy+11/2x6y2+26x5y3+95/2x4y4+47x3y5+53/2x2y6+8xy7+y8+10
4535/64x9+27x8y+135/2x7y2+90x6y3+135/2x5y4+27x4y5+9/2x3y6-940383/128x
10-405/4x9y-2025/8x8y2-675/2x7y3-2025/8x6y4-405/4x5y5-135/8x4y6+43590
15/128x11+1701/4x10y+8505/8x9y2+2835/2x8y3+8505/8x7y4+1701/4x6y5+567/
8x5y6-82812341/512x12-15333/8x11y-76809/16x10y2-25735/4x9y3-785625/16x
8y4-16893/8x7y5-8799/16x6y6-198x5y7-495/4x4y8-565x3y9-33/2x2y10-3xy11-
1/4y12°
is R-equivalent to E[14].
Milnor number = 14
modality =1
z2+x3+xy6+y8

N A A A A A

Appendix A: Examples 236

// The library also provides routines to determine the corank of q

// and its residual part without going through the whole

// classification algorithm.

corank(q) ;

= 2

morsesplit(q) ;
y3-9/4y4+27/4y5-189/8y6+737/8y7+6y6z+15y522+20y4z3+15y3z4+6y2z5+yz6-2
4089/64y8-y7z+11/2y62z2+26y52z3+95/2y4z4+47y3z5+53/2y2z6+8yz7+2z8+104535
/64y9+27y8z+135/2y72z2+90y62z3+135/2y5z4+27y4z5+9/2y3z6-940383/128y10-4
05/4y9z-2025/8y8z2-675/2y72z3-2025/8y6z4-405/4y525-135/8y4z6+4359015/1
28y11+1701/4y10z+8505/8y9z2+2835/2y823+8505/8y7z4+1701/4y6z5+567/8y5z
6-82812341/512y12-15333/8y11z-76809/16y10z2-25735/4y923-78525/16y8z4~
16893/8y7z5-8799/16y62z6-198y527-495/4y4z8-55y329-33/2y2z10-3yz11-1/4z
12

11111111

A.26 Fast lexicographical GB

Compute Groebner basis in lexicographical ordering by using FGLM algorithm (stdfglm) and
Hilbert driven Groebner (stdhilb).

The command stdfglm works only for zero dimensional ideals and returns a reduced Groebner
basis.

For the ideal below, stdfglm is more than 100 times and stdhilb about 10 times faster than
std.

ring r =32003, (a,b,c,d,e),1lp;

ideal i=a+b+c+d, ab+bc+cd+ae+de, abc+bcd+abe+ade+cde,
abc+abce+abdet+acde+bcde, abcde-1;

int t=timer;

ideal jl=stdfglm(i);

timer-t;

— 0

size(j1); // size (no. of polys) in computed GB

— 5

t=timer;

ideal j2=stdhilb(i);

timer-t;

— 1

size(j2); // size (no. of polys) in computed GB

— 158

// usual Groebner basis computation for lex ordering

t=timer;

ideal jO =std(i);

timer-t;

— 6

Appendix A: Examples 237

A.27 Parallelization with MPtcp links

In this example, we demonstrate how MPtcp links can be used to parallelize computations.

To compute a standard base for a zero-dimensional ideal in the lexicographical ordering, one
of the two powerful routines stdhilb (see Section 5.1.108 [stdhilb], page 171)s and stdfglm (see
Section 5.1.107 [stdfglm], page 170) should be used. However, one can not a priory predict which
one the two commands is faster. This very much depends on the (input) example. Therefore, we
use MPtcp links to let the two commands work on the problem independently and in parallel, so
that the one which finishes first delivers the result.

The example we use is the so-called "omndi example". See Tim Wichmann; Der FGLM-
Algorithmus: verallgemeinert und implementiert in Singular; Diplomarbeit Fachbereich Mathe-
matik, Universitaet Kaiserslautern; 1997 for more details.

ring r=0,(a,b,c,u,v,w,x,y,2),1p;

ideal i=a+c+v+2x-1, ab+cu+2vw+2xy+2xz-2/3, ab2+cu2+2vw2+2xy2+2xz2-2/5,
ab3+cu3+2vw3+2xy3+2xz3-2/7, abd+cud+2vwid+2xy4+2xz4-2/9, vw2+2xyz-1/9,
vw4+2xy2z2-1/25, vw3+xyz2+xy2z-1/15, vwd+xyz3+xy3z-1/21;

link 1_hilb,1_fglm = "MPtcp:fork","MPtcp:fork"; // 1.
open(l_fglm); open(l_hilb);

write(1_hilb, quote(system("pid"))); // 2.
write(1_fglm, quote(system("pid")));

int pid_hilb,pid_fglm = read(1_hilb),read(1l_fglm);

write(1_hilb, quote(stdhilb(i))); // 3.
write(1_fglm, quote(stdfglm(eval(i))));

while ((! status(1l_hilb, "read", "ready", 1)) &% // 4.
(! status(l_fglm, "read", "ready", 1))) {}

if (status(l_hilb, "read", "ready"))

{

"stdhilb won !!!!"; size(read(1_hilb));

close(1_hilb); pid_fglm = system("sh","kill "+string(pid_£fglm));
}

else // 5.

{

"stdfglm won !!!!"; size(read(l_fglm));

close(1_fglm); pid_hilb = system("sh","kill "+string(pid_hilb));
}

— stdfglm won !!!!

= 9

Some explainatory remarks are in order:

1. Instead of using links of the type MPtcp:fork, we alternatively could use MPtcp:launch links
such that the two "competing" SINGULAR processes run on different machines. This has the

Appendix A: Examples 238

advantage of "true" parallel computing since no resource sharing is involved (as it usually is
with forked processes).

2. Unfortunately, MPtcp links do not offer means to (asynchronously) interrupt or kill an attached
(i.e., launched or forked) process. Therefore, we explicitely need to get the process id numbers
of the competing SINGULAR processes, so that we can later "kill" the looser.

3. Notice how quoting is used in order to prevent local evaluation (i.e., local computation of
results). Since we "forked" the two competing processes, the identifier i is defined and has
identical values in the two child processes. Therefore, the innermost eval can be ommited
(as is done for the 1_hilb link), and only the identifier i needs to be communicated to the
children. However, when MPtcp:launch links are used, the inner evaluation must be applied so
that actual values, and not the identifiers are communicated (as is done for the 1_fglm link).

4. We go into a "sleepy" loop and wait until one of the two children finished the computation.
That is, the current process checks appr. once a per second the status of one of the connecting
links, and sleeps (i.e., suspends its execution) in the intermediate time.

5. The child which won delivers the result and is terminated with the usual close command.
The other child which is still computing needs to be terminated by an explicit (i.e., system)
kill command, since it can not be terminated through the link while it is still computing.

Appendix B: Polynomial data 239

Appendix B Polynomial data

B.1 Representation of mathematical objects

SINGULAR distinguishes between objects which do not belong to a ring and those which belong
to a specific ring (see Section 3.2 [Rings and orderings], page 20). We comment only on the latter
ones.

Internally all ring-dependent objects are polynomials or structures built from polynomials (and
some additional information). Note that SINGULAR stores (and hence prints) a polynomial auto-
matically w.r.t. the monomial ordering.

Hence, in order to define such an object in SINGULAR, one has to give a list of polynomials in a
specific format.

For ideals resp. matrices this is straight forward: The user gives a list of polynomials which
generate the ideal resp. which are the entries of the matrix. (The number of rows and columns
have to be given when creating the matrix.)

A vector in SINGULAR is always an element of a free module over the basering. It is given as a
list of polynomials in one of the following formats [fi, ..., fn] or fi xgen(1) + ...+ f, * gen(n), where
gen(i) denotes the i-th canonical generator of a free module (with 1 at place i and 0 everywhere else)
Both forms are equivalent. A vector is internally represented in the second form with the gen(7)
being "special" ring variables, ordered accordingly to the monomial ordering. Therefore, the form
[fi, .-, fn] is given as output only if the monomial ordering gives priority to the component, i.e.,
is of the form (c,...) (see Section B.2.3 [Module orderings|, page 242). However, the procedure
show from the library inout.1lib displays always the bracket form.

A vector v = [f1,..., f] should always be considered as a column vector in a free module of
rank equal to nrows(v) where nrows(v) is equal to the maximal index r such that f. # 0 This is
due to the fact, that internally v is a polynomial in a sparse representation, i.e. f; x gen(s) is not
stored if f; = 0 (for reasons of efficiency), hence the last 0-entries of v are lost. Only more complex
structures are able to keep the rank.

A module M in SINGULAR is given by a list of vectors vy, ..., v;, which generate the module as a
submodule of the free module of rank equal to nrows(M) which is the maximum of nrows(v;).

If one wants to create a module with a larger rank than given by its generators, one has to use
the command attrib(m,"rank",r) (see Section 5.1.1 [attrib], page 102, Section 5.1.75 [nrows],
page 149) or define a matrix first, then converting it into a module. Modules in SINGULAR are
almost the same as matrices, they may be considered as sparse representations of matrices. A
module of a matrix is generated by the columns of the matrix and a matrix of a module has as
columns the generators of the module. These conversions preserve the rank and the numbers of
generators resp. the numbers of rows and columus.

By the above remarks it may appear that SINGULAR is only able to handle submodules of a
free module. This is not true, SINGULAR can compute with any finitely generated module over
the basering R. Such a module, say N, is not represented by its generators but by its (generators
and) relations. This means that N=R"/M where n is the number of generator of N and MCR" the

Appendix B: Polynomial data 240

module of relations, and N is given by M. In other words, defining in SINGULAR a module M as a
submodule of a free module R™ can also be considered as the definition of N=R"/M.

Most functions in SINGULAR, when applied to M, really deal with M, but others deal with
N=R"/M. For example, std(M) computes a standard basis of M (and thus gives another represen-
tation of N as N=R"/std(M)). But dim(M) resp. vdim(M) returns dim(R"/M) resp. dim,(R"/M), if
M is given by a standard basis. The function syz(M) returns the first syzygy of M, i.e., the module
of relations of the given generators of M which is equal to the second syzygy module of N. Refer
to the description of each function in Section 5.1 [Functions], page 102 to get information which
module the functions deals with.

The numbering in res and other commands for computing resolutions refer to a resolution of
N=R"/M (see Section 5.1.96 [res], page 162; Section C.3 [Syzygies and resolutions]|, page 247).

Since any ring in SINGULAR is defined over a ground field, it is possible to compute in any field
which is a valid ground field in SINGULAR. For doing so, one has to define a ring with the desired
ground field and at least one variable. The elements of the field are of type number, but may also
be considered as polynomials (of degree 0). Large computations should be faster if the elements of
the field are defined as numbers.

The above remarks do also apply to quotient rings. Polynomial data are stored internally in the
same manner, the only difference is that this polynomial representation is in general not unique.
reduce (f,std(0)) computes a normal form of a polynomial f in a quotient ring (cf. Section 5.1.94
[reduce], page 161).

B.2 Monomial orderings

A monomial ordering (term ordering) on K|z, ..., z,] is a total ordering < on the set of mono-
mials (power products) {z®|a € N*} which is compatible with the natural semigroup structure, i.e.
% < o implies z7x* < z7xP for any v € N*. We do not require < to be a wellordering. See the
literature cited in Section C.5 [References], page 248.

It is known that any monomial ordering can be represented by a matrix M in GL(n,R), but, of
course, only integer coefficients are of relevance in practice.

Global orderings are wellorderings (i.e. 1 < z; for each variable z;), local orderings satisfy
1 > z; for each variable. If some variables are ordered globally and others locally we call it a mixed
ordering. Local or mixed orderings are not wellorderings.

If K is the groundfield, z = (zy,...,z,) the variables and < a monomial ordering, then Loc
K[z] denotes the localization of K[z] with respect to the multiplicatively closed set {1+g|g =10
or g € K[z]\{0} and L(g) < 1}. L(g) denotes the leading monomial of g, i.e. the biggest monomial
of g with respect to <. The result of any computation which uses standard basis computations has
to be interpreted in Loc K[z]. SINGULAR offers the monomial orderings described in the following
sections, a definition of a ring includes the definition of its monomial ordering, see Section 3.2
[Rings and orderings], page 20. in an effective way:

Appendix B: Polynomial data 241

B.2.1 Global orderings

For all these orderings: Loc K[x] = K[x]

Ip: lexicographical ordering.
¢ <.’I)'B®31 S’LS’I’LO[I :,81,...,()[,',1 :/Bifl,ai <,8,

dp: degree reverse lexicographical ordering.
z? < 2° & deg(z®) < deg(z”), where deg(z®) = a; + -+ + ay, or
deg(z®) = deg(z®) and 31 <i < n:
Ap = By, .- y Qi1 = ﬁi—i—laai > B;.

Dp: degree lexicographical ordering.
z? < 2 & deg(z?®) < deg(z”), where deg(z®) = a; + -+ + ay, or
deg(z®) = deg(z’)and 31 <i < m:
ar =P, 01 = Bimr, i < B

wp: weighted reverse lexicographical ordering.
wp(wy,...,w,), w; positive integers, is defined as dp but with deg(z®) = wyay + -+ +
Wyl -

Wp: weighted lexicographical ordering.
Wp(ws,...,w,), w; positive integers, is defined as Dp but with deg(z®) = wyaq + -+ +
Wy

B.2.2 Local orderings

For 1s, ds, Ds and, if the weights are positive integers, also for ws and Ws, we have Loc K[z] =
K[z](s), the localization of K[x| at the maximal ideal (1, ...,2,).

Is: negative lexicographical ordering.
<z eIl<i<n:a =p0,...,0i1 = Bic1, 0 > B

ds: negative degree reverse lexicographical ordering.
z¢ < 1° & deg(z®) > deg(z”), where deg(z®) = a; + -+ + a, or
deg(z®) = deg(z”’) and 31 < i< n:
A = By, - y Qi1 = ﬁi—i—laai > B;.

Ds: negative degree lexicographical ordering.
z? < 2 & deg(z®) > deg(z”), where deg(z®) = a; + -+ + ay, or
deg(z®) = deg(z”) and 31 <1 <mn:
ar =By = Bisi, o < S

ws: (general) weighted reverse lexicographical ordering.
ws(wy,...,w,), w; a nonzero integer, ws,...,w, any integer (including 0), is defined
as ds but with deg(z®) = wiaq + -+ + wy,.

Ws: (general) weighted lexicographical ordering.
Ws(wy,...,w,), w; a nonzero integer, ws,...,w, any integer (including 0), is defined
as Ds but with deg(z®) = wia; + -+ - + wpay,.

Appendix B: Polynomial data 242

B.2.3 Module orderings

SINGULAR offers also orderings on the set of “monomials” {z%¢;la € N",1 <14 <r} on Loc K[z|"
= Loc K[x]e; +...+Loc K[x]e,, where ey, ..., e, denote the canonical generators of Loc K[x]", the
r-fold direct sum of Loc K[x]|. (The function gen(i) yields e;).

We have two possibilities, either to give priority to the component of a vector of Loc K[x]|" or
(which is the default in SINGULAR) to give priority to the coefficients. The orderings (<,c) and
(<,C) give priority to the coefficients; (¢,<) and (C,<) give priority to the components.

Let < be any of the monomial orderings of Loc K[x] as above.

(<,C): <m= (<, C) denotes the module ordering (giving priority to the coefficients):
z%; <, xﬂej & e < 1P,
or 2% = 27 and i < j.
Example:

ring r = 0, (x,y,z), ds;

// the same as ring r = 0, (x,y,z), (ds, C);
[x+y2,z3+xy] ;

— x*gen(1)+xy*gen(2)+y2*gen(1)+z3*gen(2)
[x,x,x];

— x*gen(3)+x*gen(2)+x*gen(1)

(C,<): <m= (C, <) denotes the module ordering (giving priority to the component):
z%; < wﬁej &1 < g,
or i =j and z% < z°.
Example:

ring r = 0, (x,y,2), (C,1p);
[x+y2,z3+xy];

— xy*gen(2)+z3*gen(2)+x*gen(1)+y2*gen(1)
x,x,x];

— x*gen(3)+x*gen(2)+x*gen(1)

(<,0): <n= (<, c) denotes the module ordering (giving priority to the coefficients):
z%€; <, 2Pe; & 2 < 1P,
or z¢ = z% and i > j.
Example:

ring r = 0, (x,y,2), (1p,c);
[x+y2,z3+xy];

— xy*gen(2)+x*gen(1)+y2*gen(1)+z3*gen(2)
[x,x,x];

— xxgen(1)+x*gen(2)+x*gen(3)

(c,<): <m= (¢, <) denotes the module ordering (giving priority to the component):
T%; <, 1Pe; &0 > 7,
or i =j and z% < z”.
Example:

ring r = 0, (x,y,z), (c,1lp);
[x+y2,z3+xy];

= [x+y2,xy+z3]

[x,x,x];

— [x,x,x]

Appendix B: Polynomial data 243

The output of a vector v in K[z]" with components vy, ..., v, has the format v, x gen(1)+ ...+
v, * gen(r) unless the ordering starts with c. In this case a vector is written as [vq,...,v,]. In all
cases SINGULAR can read the input in both formats.

B.2.4 Matrix orderings
Let M be an invertible n x n matrix with integer coefficients and My, ..., M,, the rows of M.

The M-ordering < is the following: z° < z° < there exists an i : 1 <=1i <=n: M, xa =M, *
b,...,.M;_1 xa =M;_; xband M; xa <M; * b.

Thus, z* < z° if and only if M * a is smaller than M * b with respect to the lexicographical
ordering.

The following matrices represent (for 3 variables) the global and local orderings defined above
(note that the matrix is not uniquely determined by the ordering):

1 00 1 1 1 1 1 1
Ip: {0 1 0 dp: [0 0 -1 Dp: {1 0 O
0 0 1 0 -1 0 0 10

1 2 3 1 2 3
wp(1,2,3): {0 0 -1 Wp(1,2,3): |1 0 0

0 -1 0 010

-1 0 0 -1 -1 -1 -1 -1 -1
Is: 0O -1 0 ds: 0 0 -1 Ds: 1 0 0
0 0 -1 0 -1 0 0 1 0

-1 -2 -3 -1 -2 -3

ws(1,2,3): 0 0 -1 Ws(1,2,3): 1 0 0

0 -1 0 0 1 0

Product orderings (see next section) represented by a matrix:

(dp(3), wp(1,2,3)):

1 1 1 0 0 0
0 0 -1 0 0 0
0 -1 0 0 0 0
0 0 0 1 2 3
00 0 0 0 -1
00 0 0 -1 0

(Dp(3), ds(3)):
111 0 0 0
100 0 0 O
010 0 0 0
000 -1 -1 -1
000 0 0 -1
000 0 -1 0

Appendix B: Polynomial data 244

Orderings with extra weight vector (see below) represented by a matrix:

a(1,2,3),dp(3)):
1 1 1 0 0 0
0 0 -1 0 0 0
0 -1 0 0 0 0
o0 0 1 2 3
00 0 1 1 1
00 0 0 0 -1
0 0 0 0 —1 0
(a(1,2,3,4,5),Dp(3), ds(3)):
1234 5 0
111 0 0 0
100 0 0 0
010 0 0 0
000 -1 -1 -1
000 0 0 -1
000 0 -1 0

Example:

ring r = 0, (x,y,z), M(1, 0, O,
o, 1, 0,
0, 0, 1);

which may also be written as:

intmat m[3][3]=1, O, O, O, 1, O, O, O, 1;

m;

— 1,0,0,

— 0,1,0,

— 0,0,1

ring r = 0, (x,y,2z), M(m);

r;

~ // characteristic : 0

— // number of vars : 3

= // block 1 : ordering M

= // : names Xy z
= // : weights 1 00
= // : weights 01 0
= // : weights 0 0 1
= // block 2 : ordering C

If the ring has n variables and the matrix contains less than n x n entries an error message is
given, if there are more entries, the last ones are ignored.

WARNING: SINGULAR does not check whether the matrix has full rank. In such a case some
computations might not terminate, others might give a nonsense result.

Appendix B: Polynomial data 245

Having these matrix orderings SINGULAR can compute standard bases for any monomial ordering
which is compatible with the natural semigroup structure. In practice the global and local orderings
together with block orderings should be sufficient in most cases. These orderings are faster than
the corresponding matrix orderings, since evaluating a matrix product is time consuming.

B.2.5 Product orderings

Let z = (z1,...,2,) = z(l.n) and y = (y1,...,Ym) = y(1..m) be two ordered sets of variables,
<; a monomial ordering on K[z] and <, a monomial ordering on K[y]. The product ordering (or
block ordering) < := (<, <2) on K|z,y] is the following:

oy’ < zhyP & 2 <4 24
or z* = z% and 3’ <, y®.

Inductively one defines the product ordering of more than two monomial orderings.

In SINGULAR, any of the above global orderings, local orderings or matrix ordering may be
combined (in an arbitrary manner and length) to a product ordering. E.g. (1p(3), M(1, 2, 3, 1,
1,1,1,0, 0), ds(4), ws(1,2,3)) defines: 1p on the first 3 variables, the matrix ordering M(1,
2,3,1,1,1, 1, 0, 0) on the next 3 variables, ds on the next 4 variables and ws(1,2,3) on the
last 3 variables.

B.2.6 Extra weight vector

a: a(wiy,...,w,), wi,...,w, any integer (including 0), defines deg(z*) = wia; + - - - + W, .
1% < 27 < deg(z®) < deg(z”),
z® > 1” < deg(z®) > deg(z”)

An extra weight vector does not define a monomial ordering by itself: it can only be used in

combination with other orderings to insert an extra line of weights into the ordering matrix.
Example:

rlng r = O, (X,Y,Z), (3(1,2’3)’
wp(4,5,2));
ring s = 0, (x,y,z), (a(1,2,3),dp);

ring g= 0, (a,b,c,d),(1p(1),a(1,2,3),ds);

Appendix C: Mathematical background 246

Appendix C Mathematical background

This chapter introduces some of the mathematical notions and definitions used throughout the
manual. It is mostly a collection of the most prominent definitions and properties and refer for
details to some articles or text books.

C.1 Standard bases

Definition

Let I CLoc<K[z] be an ideal. L(I) denotes the ideal of Loc.K[z] generated by {L(f)|f € I}.
fi,---,fs € I is called a standard basis of I if {L(f1),...,L(fs)} generates the ideal
L(I) cLoc<K]z].

Properties

Normal form:
A function NF : K[z]" x {G|G standardbasis} — K|[z]", (p,G) — NF(p|G), is called a
normal form if for any p € K[z]" and any G the following holds: if NF(p|G) # 0 then
L(g) /L(NF(p|G)) for all g € G. NF(g|G) is called a normal form of p with respect
to G (such a function is not unique).

ideal membership:
felif NF(f,std(I))=0for I C Rresp. I CR".

Hilbert function:
Let I C K[z]" be homogeneous, then the Hilbert function H; of the ideal I and the
Hilbert function H,(I) of the leading ideal L(I) coincides. H; = Hpy.

C.2 Hilbert function

Let M = @ M, be a graded module over K[z, ...,z,]. The Hilbert function of M H), is defined
by
The Hilbert-Poincare series of M is the power series

HPy(t)= Y Hy(i)t' =) dimgMt’

It turns out that H Py (t) can be written in two useful ways:
Q(t) P(t)
HPy(t) = = .
w (1) (I—t)» (1= ¢t)dim)

where Q(t) and P(t) are polynomials from Z[t]. Q(t) is called first Hilbert series, and P(t) the
second Hilbert series.

If P(t) = S p, axt* then Hy(s) = Sr, ax (“""7%7') (the Hilbert polynomial) for s > N.

d—1

Appendix C: Mathematical background 247

C.3 Syzygies and resolutions

Syzygies

Let I = (g1,..-,94) C KJz|".
The module of syzygies syz(I) is ker(K[z]? — Kz]", >, w; * e; — >, w; * g;).

Free resolutions

Let I = (¢1,..-,9s) C K[z]" and M = K[z]"/I. A free resolution of M is a long exact sequence

B 2R A E M — 0,

where the columns of the matrix A; are generators of I. The length of the sequence is at most
n, where n is the number of variables in the polynomial resp. power series ring. Free resolutions
over other rings may be infinite. Considered as modules, A; is a set of generators of the input, A,
consists of a set of generators of the first szyzgy module of A,, etc.

Betti numbers

The graded Betti number b; ; of R"/M (M a homogeneous submodule of R") is the minimal
number of generators in degree i+j of the j-th syzygy module (= module of relations) of R"/M
(the 0-th (resp.1-st) syzygy module of R"/M is R" (resp. M)).

Regularity

Let 0 » @, K[zlegn — ... = @D, Kl[z]e,o — I — 0 be a minimal resolution of I considered
with homogeneous maps of degree 0. The regularity is the smallest number s with the property
deg(e, ;) < s+ for all 4.

C.4 Characteristic sets

Let < be the lexicographical ordering z; < ... < z,, on R = K|[zy,...,z,]. For f € R let lvar(f)
(the leading variable of f) be the largest variable in lead(f) (the leading term of f with respect to
<), e if f = ap(zy, ..., Tp1)z§ + ... + ag(xy, ..., Tp—1) for some k < n then lvar(f) = z, moreover
let ini(f) := ar(x1, ..., Tr_1).

Aset T ={fi,..., fr} C R is called triangular if lvar(f;) < ... < lvar(f,). The pseudoremainder
r = prem(g, f) of g with respect to f is defined by ini(f)* x ¢ = ¢ * f + r with the property
deglvaﬂ"(f) (’I") < de.glvm‘(f) (f)7 a minimal.

(T,U) is called a triangular system, if UCT and if T is a triangular set such that ini(T") does
not vanish on Zero(T') \ Zero(U)(=: Zero(T' \ U)).

Appendix C: Mathematical background 248

T is called irreducible if for every i there are no d;,f/,f!' with the property:

lvar(d;) < lvar(f;)

lvar(f]) = lvar(f!') = lvar(f;)

0 & prem({d;, ini(f),ini(f;)}, {f1, s ficr})
such that prem(d; * f; — f] * f!', {f1,..., fi_1}) = 0.

(T,U) is irreducible if T is irreducible.

Let G = {g1,...,95} then there are irreducible triangular sets T1,...,7; such that Zero(G) =
Uit (Zero(T; \ I;)) where I, = {ini(f), f € T;}.

The set {71, ...,T;} is called a irreducible characteristic series of the ideal (G).

Example:

ring R= 0,(x,y,z,u),dp;

ideal i=-3zu+y2-2x+2,
-3x2u-4yz-6xz+2y2+3xy,
-3z2u-xu+y2z+y;

print (char_series(i));

= _[1,1],3x2z-y2+2yz, 3x2u-3xy-2y2+2yu,

— X, -y+2z, -2y2+3yu-4

C.5 References

The Centre for Computer Algebra Kaiserslautern publishes a series of preprint which are elec-
tronically available at http://www.mathematik.uni-kl.de/~zca/Reports_on_ca. Other sources
to check are http://symbolicnet.mcs.kent.edu/, http://www.can.nl/,... and the following
book list:

Text books on computational algebraic geometry

e Adams, W.; Loustaunau, P.: An Introduction to Grébner Bases. Providence, RI, AMS, 1996

e Becker, T.; Weisspfenning, V.: Grobner Bases - A Computational Approach to Commutative
Algebra. Springer, 1993

e Cohen, H.: A Course in Computational Algebraic Number Theory, Springer, 1995

e Cox, D.; Little, J.; O’Shea, D.: Ideals, Varieties and Algorithms. Springer, 1996

e Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, 1995
e Mishra, B.: Algorithmic Algebra, Texts and Monographs in Computer Science. Springer, 1993
e Sturmfels, B.: Algorithms in Invariant Theory. Springer 1993

e Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry.
Springer, 1998

Appendix C: Mathematical background 249

Descriptions of algorithms

e Bareiss, E.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math.
Comp. 22 (1968), 565-578

e Campillo, A.: Algebroid curves in positive characteristic. SLN 813, 1980
e Chou, S.: Mechanical Geometry Theorem Proving. D.Reidel Publishing Company, 1988

e Decker, W.; G.-M. Greuel, G.-M.; Pfister, G.: Primary decomposition: algorithms and com-
parisons. Preprint, Univ. Kaiserslautern, 1998. To appear in: Greuel, G.-M.; Matzat, B. H.;
Hiss, G. (Eds.), Algorithmic Algebra and Number Theory. Springer Verlag, Heidelberg, 1998

e Decker, W.; G.-M. Greuel, G.-M.; de Jong, T.; Pfister, G.: The normalisation: a new algorithm,
implementation and comparisons. Preprint, Univ. Kaiserslautern, 1998

e Decker, W.; Heydtmann, A.; Schreyer, F. O.: Generating a Noetherian Normalization of the
Invariant Ring of a Finite Group, 1997, to appear in Journal of Symbolic Computation

e Faugere, J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation of zero-dimensional
Grobner bases by change of ordering. Journal of Symbolic Computation, 1989

e Gribe, H.-G.: On factorized Grobner bases, Univ. Leibzig, Inst. f’ur Informatik, 1994

e Grassmann, H.; Greuel, G.-M.; Martin, B.; Neumann, W.; Pfister, G.; Pohl, W.; Schénemann,
H.; Siebert, T.: On an implementation of standard bases and syzygies in SINGULAR. Proceed-
ings of the Workshop Computational Methods in Lie theory in AAECC (1995)

e Greuel, G.-M.; Pfister, G.: Advances and improvements in the theory of standard bases and
syzygies. Arch. d. Math. 63(1995)

e Kemper; Generating Invariant Rings of Finite Groups over Arbitrary Fields. 1996, to appear
in Journal of Symbolic Computation

e Kemper and Steel: Some Algorithms in Invariant Theory of Finite Groups. 1997

e Schénemann, H.: Algorithms in SINGULAR, Reports on Computer Algebra 2(1996), Kaiser-
slautern

e Siebert, T.: On strategies and implementations for computations of free resolutions. Reports
on Computer Algebra 8(1996), Kaiserslautern

e Wang, D.: Characteristic Sets and Zero Structure of Polynomial Sets. Lecture Notes, RISC
Linz, 1989

Appendix D: SINGULAR libraries 250

Appendix D SINGULAR libraries

SINGULAR comes with a set of standard libraries. Their content is described in the following
subsections.

D.1 standard_lib

The library standard.lib provides extensions to the set of built-in commands and is automat-
ically loaded during the start of SINGULAR. It contains:

groebner see Section 5.1.37 [groebner|, page 124.

stdfglm see Section 5.1.107 [stdfglm|, page 170.

stdhilb see Section 5.1.108 [stdhilb], page 171.

D.2 all_lib
LIBRARY: all.lib Load all libraries
classify.lib PROCEDURES FOR THE ARNOLD-CLASSIFIER OF SINGULARITIES
deform.1lib PROCEDURES FOR COMPUTING MINIVERSAL DEFORMATION
elim.1lib PROCEDURES FOR ELIMINATION, SATURATION AND BLOWING UP
finvar.1lib PROCEDURES TO CALCULATE INVARIANT RINGS & MORE
general.lib PROCEDURES OF GENERAL TYPE
graphics.lib PROCEDURES TO DRAW WITH MATHEMATICA
hnoether.lib PROCEDURES FOR THE HAMBURGER-NOETHER-DEVELOPMENT
homolog.lib PROCEDURES FOR HOMOLOGICAL ALGEBRA
inout.lib PROCEDURES FOR MANTPULATING IN- AND OUTPUT
invar.lib PROCEDURES FOR COMPUTING INVARIANTS OF (C,+)-ACTIONS
matrix.lib PROCEDURES FOR MATRIX OPERATIONS
normal.lib PROCEDURES FOR COMPUTING THE NORMALIZATION
poly.lib PROCEDURES FOR MANIPULATING POLYS, IDEALS, MODULES
presolve.lib PROCEDURES FOR PRE-SOLVING POLYNOMIAL EQUATIONS
primdec.lib PROCEDURES FOR PRIMARY DECOMPOSITION
primitiv.lib PROCEDURES FOR FINDING A PRIMITIVE ELEMENT
random.1lib PROCEDURES OF RANDOM MATRIX AND POLY OPERATIONS
ring.lib PROCEDURES FOR MANTPULATING RINGS AND MAPS
sing.lib PROCEDURES FOR SINGULARITIES
standard.lib PROCEDURES WHICH ARE ALWAYS LOADED AT START-UP
latex.lib PROCEDURES FOR TYPESET OF SINGULAROBJECTS IN TEX

paramet.lib PROCEDURES FOR PARAMETRIZATION OF PRIMARY DECOMPOSITION

D.3 general_lib

Appendix D: SINGULAR libraries 251

LIBRARY: general.lib PROCEDURES OF GENERAL TYPE

A_Z("a” ,Il) ;
binomial(n,m[,../..]1);

string a,b,... of n comma seperated letters
n choose m (type int), [type string/type number]

factorial(nl[,../..]1);
fibonacci(nl[,pl);
kmemory () ;

killall(Q);
number_e(n) ;
number_pi(n) ;
primes(n,m);
product(../..[,v]);
ringweights(r) ;

sort (ideal/module) ;

sum(vector/id/..[,v]);

which(command) ;

n factorial (=n!) (type int), [type string/number]
nth Fibonacci number [char p]

int = active memory (kilobyte)

kill all user-defined variables

compute exp(l) up to n decimal digits

compute pi (area of unit circle) up to n digits
intvec of primes p, n<=p<=m

multiply components of vector/ideal/...[indices v]
intvec of weights of ring variables of ring r
sort generators according to monomial ordering
add components of vector/ideal/...[with indices v]
searches for command and returns absolute

path, if found

(parameters in square brackets [] are optional)

D.4 matrix_lib

LIBRARY: matrix.lib
compress (A) ;
concat (A1,A2,..);
diag(p,n);
dsum(A1,A2,..);
flatten(A);
genericmat(n,m[,id]);
is_complex(c);
outer(A,B);

power (A,n) ;
skewmat (n[,id]);
submat (A,r,c);
symmat (n[,id]) ;
tensor(A,B);
unitmat(n);
gauss_col(A);
gauss_row(A);
addcol(A,cl,p,c2);
addrow(A,rl,p,r2);
multcol(A,c,p);
multrow(A,r,p);
permcol(A,i,j);
permrow(A,i,j);

PROCEDURES FOR MATRIX OPERATIONS

matrix, zero columns from A deleted

matrix, concatenation of matrices A1,A2,...
matrix, nxn diagonal matrix with entries poly p
matrix, direct sum of matrices A1,A2,...

ideal, generated by entries of matrix A

generic nxm matrix [entries from id]

1 if list c is a complex, 0 if not

matrix, outer product of matrices A and B
matrix/intmat, n-th power of matrix/intmat A

generic skew-symmetric nxn matrix [entries from id]
submatrix of A with rows/cols specified by intvec r/c
generic symmetric nxn matrix [entries from id]
matrix, tensor product of matrices A nd B

unit square matrix of size n

transform constant matrix A into col-reduced nf
transform constant matrix A into row-reduced nf

add p*(cl-th col) to c2-th column of matrix A, p poly
add p*(rl-th row) to r2-th row of matrix A, p poly
multiply c-th column of A with poly p

multiply r-th row of A with poly p

permute i-th and j—-th columns

permute i-th and j-th rows

(parameters in square brackets [] are optional)

D.5 sing_lib

LIBRARY: sing.lib
codim (idl, id2);
deform(i);
dim_slocus(i);
is_active(f,id);
is_ci(i);
is_is(i);
is_reg(f,id);
is_regs(il,id]);
milnor(i);
nf_icis(i);
slocus(i);
spectrum(f,w) ;
Tjurina(i);
tjurina(i);
T1(i);

T2((1);

T12(i);

D.6 elim_lib

LIBRARY: elim.1lib
blowup0(j[,s1,s2]);
elim(id,n,m);
eliml(id,p);
nselect(id,n[,m]);
sat (id, j);
select(id,n[,m]);

Appendix D: SINGULAR libraries 252

PROCEDURES FOR SINGULARITIES

vector space dimension of of id2/idl if finite
infinitesimal deformations of ideal i

dimension of singular locus of ideal i

is poly f an active element mod id? (id ideal/module)
is ideal i a complete intersection?

is ideal i an isolated singularity?

is poly f a regular element mod id? (id ideal/module)
are gen’s of ideal i regular sequence modulo id?
milnor number of ideal i; (assume i is ICIS in nf)
generic combinations of generators; get ICIS in nf
ideal of singular locus of ideal i

spectrum numbers of w-homogeneous polynomial £

SB of Tjurina module of ideal i (assume i is ICIS)
Tjurina number of ideal i (assume i is ICIS)
Tl-module of ideal i

T2-module of ideal i

T1- and T2-module of ideal i

PROCEDURES FOR ELIMINATIOM, SATURATION AND BLOWING UP

create presentation of blownup ring of ideal j
variable n..m eliminated from id (ideal/module)
p=product of vars to be eliminated from id

select generators not containing nth [..mth] variable
saturated quotient of ideal/module id by ideal j
select generators containing nth [..mth] variable

(parameters in square brackets [] are optional)

D.7 inout_lib

LIBRARY: inout.lib

allprint(list);
dbpri(n,list);

lprint(poly/...[,nl);

pmat (matrix[,n]);
rMacaulay(string) ;
show (any) ;

showrecursive(id,p);

split(string,n);
tab(n);

PROCEDURES FOR MANIPULATING IN- AND OUTPUT

print list if ALLprint is defined, with pause if >0
print objects of list if int n<=printlevel

display poly/... fitting to pagewidth [size n]

print form-matrix [first n chars of each colum]

read Macaulay_1 output and return its Singular format
display any object in a compact format

display id recursively with respect to variables in p
split given string into lines of length n

string of n space tabs

Appendix D: SINGULAR libraries 253

writelist(fil,nam,L); write the list L into a file ‘fil‘ and call it ‘nam‘
(parameters in square brackets [] are optional)

D.8 random_lib

LIBRARY: random.lib PROCEDURES OF RANDOM MATRIX AND POLY OPERATIONS

genericid(id[,p,b]); generic sparse linear combinations of generators of id
randomid(id, [k,b]); random linear combinations of generators of id
randommat (n,m[,id,b]); nxm matrix of random linear combinations of id
sparseid(k,ul,0,p,b]); ideal of k random sparse poly’s of degree d [u<=d<=o]
sparsemat(n,m[,p,b]); nxm sparse integer matrix with random coefficients
sparsepoly(ul,o,p,b]l); random sparse polynomial with terms of degree in [u,0]
sparsetriag(n,m[..]); nxm sparse lower-triag intmat with random coefficients
(parameters in square brackets [] are optional)

D.9 deform_lib

LIBRARY: deform.lib PROCEDURES FOR COMPUTING MINIVERSAL DEFORMATION
by Bernd Martin (martin@math.tu-cottbus.de)

versal(Fo[,d,anyl) miniversal deformation of isolated singularity Fo
mod_versal(Mo,I,[,d,any]) miniversal deformation of module Mo modulo ideal I
1lift_kbase(N,M); lifting N into standard kbase of M

lift_rel_kb(N,M[,kbM,p]) relative lifting N into a kbase of M
kill_rings(["prefix"]) kills the exported rings from above

SUB-PROCEDURES used by main procedure:
get_rings,compute_ext,get_inf_def,interactl,
interact2,negative_part,homog_test

D.10 homolog_lib

LIBRARY: homolog.lib PROCEDURES FOR HOMOLOGICAL ALGEBRA

cup (M) ; cup: Ext~1(M’,M’) x Ext~1() --> Ext~2()

cupproduct (M,N,P,p,q); cup: Ext"p(M’,N’) x Ext"q(N’,P’) --> Ext"p+q(M’,P’)
Ext_R(k,M); Ext"k(M’,R), M module, R basering, M’=coker (M)

Ext (k,M,N); Ext"k(M’,N’), M,N modules, M’=coker(M), N’=coker(N)
Hom(M,N) ; Hom(M’,N’), M,N modules, M’=coker(M), N’=coker(N)
homology(A,B,M,N) ker(B)/im(A), homology of complex R"k--A->M’--B->N’
kernel(A,M,N); ker(M’--A->N’) M,N modules, A matrix

kohom(A,k) ; Hom(R"k,A), A matrix over basering R

kontrahom(A,k) ; Hom(A,R°k), A matrix over basering R

Appendix D: SINGULAR libraries

D.11 poly_lib

LIBRARY: poly.lib

cyclic(int) ;
katsura([il);

freerank(poly/...
is_homog(poly/. ..
is_zero(poly/...);

lcm(ideal);

maxcoef (poly/...)
maxdeg(poly/...)
maxdegl (poly/. ..
mindeg(poly/...);
mindegl(poly/...);
normalize(poly/...);

rad_con(p,I);
content (f) ;

(parameters in

D.12 ring_lib

LIBRARY: ring.lib

changechar ("R",c[,r]);
changeord("R",o[,r]);
changevar ("R",v[,r]);
defring("R",c,n,v,0);
defrings(nl[,pl);
defringp(nl,pl);
extendring("R",n,v,0);
fetchall(R[,str]);
imapall (R[,str]);
mapall(R,i[,str]);

D.13 finvar_lib

LIBRARY: finvar.lib

cyclotomic(...)

group_reynolds(...)

254

PROCEDURES FOR MANIPULATING POLYS, IDEALS, MODULES

ideal of cyclic n-roots

katsura [i] ideal

rank of coker(input) if coker is free else -1

int, =1 resp. =0 if input is homogeneous resp. not
int, =1 resp. =0 if coker(input) is O resp. not
lcm of given generators of ideal

maximal length of coefficient occuring in poly/...
int/intmat = degree/s of terms of maximal order
int = [weighted] maximal degree of input
int/intmat = degree/s of terms of minimal order
int = [weighted] minimal degree of input

such that leading coefficient is 1
check radical containment of poly p in ideal I
content of polynomial/vector f

square brackets [] are optional)

normalize poly/...

PROCEDURES FOR MANTPULATING RINGS AND MAPS

make a copy R of basering [ring r] with new char c
make a copy R of basering [ring r] with new ord o
make a copy R of basering [ring r] with new vars v

define a ring R in specified char c, n vars v, ord o

define ring Sn in n vars, char 32003 [p], ord ds

define ring Pn in n vars, char 32003 [p], ord dp

extend given ring by n vars v, ord o and name it R

fetch all objects of ring R to basering

imap all objects of ring R to basering

map all objects of ring R via ideal i to basering

ringtensor("R",s,t,..);create ring R, tensor product of rings s,t,...
(parameters in square brackets [] are optional)

LIBRARY TO CALCULATE INVARIANT RINGS & MORE
(c) Agnes Eileen Heydtmann,
send bugs and comments to agnes@math.uni-sb.de

cyclotomic polynomial
finite group and Reynolds operator

Appendix D: SINGULAR libraries 255

molien(...) Molien series
reynolds_molien(...) Reynolds operator and Molien series
partial_molien(...) partial expansion of Molien series
evaluate_reynolds(...) image under the Reynolds operator
invariant_basis(...) basis of homogeneous invariants
invariant_basis_reynolds(...) basis of homogeneous invariants
primary_charO(...) primary invariants
primary_charp(...) primary invariants
primary_charO_no_molien(...) primary invariants
primary_charp_no_molien(...) primary invariants
primary_charp_without(...) primary invariants
primary_invariants(...) primary invariants
primary_charO_random(...) primary invariants
primary_charp_random(...) primary invariants
primary_charO_no_molien_random(...) primary invariants
primary_charp_no_molien_random(...) primary invariants
primary_charp_without_random(...) primary invariants
primary_invariants_random(...) primary invariants
power_products(...) exponents for power products
secondary_char0(...) secondary invariants
secondary_charp(...) secondary invariants
secondary_no_molien(...) secondary invariants

secondary_with_irreducible_ones_no_molien(...)
secondary invariants

secondary_not_cohen_macaulay(...) secondary invariants
invariant_ring(...) primary and secondary invariants
invariant_ring_random(...) primary and secondary invariants
algebra_containment(...) answers query of algebra containment
module_containment(...) answers query of module containment
orbit_variety(...) ideal of the orbit variety
relative_orbit_variety(...) ideal of a relative orbit variety
image_of _variety(...) ideal of the image of a variety

D.14 primdec_lib

LIBRARY: primdec.lib: PROCEDURE FOR PRIMARY DECOMPOSITION

minAssGTZ(I); computes the minimal associated primes
via Gianni,Trager,Zacharias

minAssChar (I); computes the minimal associated primes
using characteristic sets

primdecGTZ(I); computes a complete primary decomposition
via Gianni,Trager,Zacharias

primdecSY(I); computes a complete primary decomposition

via Shimoyama-Yokoyama
testPrimary(L,k); tests whether the result of the primary
decomposition is correct
radical(I); computes the radical of the ideal I
equiRadical(I); computes the radical of the equidimensional part

Appendix D: SINGULAR libraries 256
of the ideal I
prepareAss(I); computes the radicals of the equidimensional parts of I

D.15 invar_lib

LIBRARY: invar.lib PROCEDURES FOR COMPUTING INVARIANTS OF (C,+)-ACTIONS

invariantRing(matrix m,poly p,poly q,int choose)
// ring of invariants of the action of the additive group

// defined by the vectorfield corresponding to the matrix m
// (m[i,1] are the coefficients of d/dx(i))
// the polys p and q are assumed to be variables x(i) and x(j)
// such that m[j,1]=0 and m[i,1]=x(j)
// if choose=0 the computation stops if generators of the ring
// of invariants are computed (to be used only if you know that
// the ring of invariants is finitey generated)
// if choose<>0 it computes invariants up to degree choose

actionIsProper (matrix m)

// returns 1 if the action of the additive group defined by the
// matrix m as above i proper and O if not.

D.16 latex_lib

LIBRARY: latex.lib PROCEDURES FOR TYPESET OF SINGULAROBJECTS IN LATEX2E
by Christian Gorzel, send bugs and
comments to gorzelc@math.uni-muenster.de

closetex(fnm) ; writes closing line for TeX-document

opentex (fnm) ; writes header for TeX-file fnm

tex(fnm) ; calls LaTeX2e for TeX-file fnm

texdemo([n]); produces a file explaining the features of this 1lib
texfactorize(fnm,f); creates string in TeX-Symbolformat for factors of poly f
texmap (fnm,m,r1,r2); creates string in TeX-Symbolformat for map m:ri1->r2
texname (fnm,s) ; creates string in TeX-Symbolformat for identifier
texobj (1) ; creates string in TeX-Symbolformat for any (basic) type
texpoly(f,n[,1]); creates string in TeX-Symbolformat for poly

texproc (fnm,p) ; creates string in TeX-Symbolformat of text from proc p
texring(fnm,r[,1]); creates string in TeX-Symbolformat for ring/qring
rmx(s) ; removes .aux and .log files of TeXfile s

xdvi(s); calls xdvi for dvi-file s

(parameters in square brackets [] are optional)

Global Variables:
TeXwidth, TeXnofrac, TeXbrack, TeXproj, TeXaligned, TeXreplace, NoDollars
are used to control the typesetting

Appendix D: SINGULAR libraries 257

Call example texdemo; to become familiar with the features of latex.lib

TeXwidth : int: -1,0,1..9, >9 controls the breaking of long polynomials
TeXnofrac : (int) flag, write 1/2 instead of \frac{1}{2}
TeXbrack : string: possible values {,(,<,|, the empty string

controls brackets around ideals and matrices
TeXproj : (int) flag, write : instead of , in intvecs and vectors
TeXaligned : (int) flag, write maps (and ideals) aligned
TeXreplace : list, entries twoelemented list for replacing symbols
NoDollars : (int) flag, suppresses surrounding $ signs

D.17 hnoether_lib

LIBRARY: hnoether.lib PROCEDURES FOR THE HAMBURGER-NOETHER-DEVELOPMENT

Important procedures:

develop(f [,nl]); Hamburger-Noether development from the irred. polynomial f
reddevelop(f) ; Hamburger-Noether development from the (red.) polynomial f
extdevelop(hne,n); extension of Hamburger-Noether development hne from f
param(hne) ; returns a parametrization of f (input=output(develop))
displayHNE (hne) ; display Hamburger-Noether development as an ideal
invariants(hne) ; invariants of f, e.g. the characteristic exponents
displayInvariants(hne); display invariants of f

generators (hne) ; computes the generators of the semigroup of values
intersection(hnel,hne2); intersection multiplicity of two curves

stripHNE (hne) ; reduce amount of memory consumed by hne

D.18 classify_lib

LIBRARY: classify.lib PROCEDURES FOR THE ARNOLD-CLASSIFIER OF SINGULARITIES

A library for classifying isolated hypersurface singularities w.r.t. right
equivalence, based on the determinator of singularities by V.I. Arnold.
Author: Kai Krueger, krueger@mathematik.uni-kl.de

last modified: 04.04.1998

basicinvariants(f); computes Milnor number, determinacy-bound and corank of f

classify(f); normal form of poly f determined with Arnold’s method
corank(f) ; computes the corank of f (i.e. of the Hessian of f)
Hcode (v) ; coding of intvec v acoording to the number repetitions
init_debug([nl); print trace and debugging information depending on int n

internalfunctions(); display names of internal procedures of this library

milnorcode(f[,e]); Hilbert poly of [e-th] Milnor algebra coded with Hcode
morsesplit(f); residual part of f after applying the splitting lemma
quickclass(f) normal form of f determined by invariants (milnorcode)

Appendix D: SINGULAR libraries 258

singularity(s,[]); normal form of singularity given by its name s and index
swap (a,b); returns b,a

tschirnhaus (f,v); Tschirnhaus transformation of f w.r.t. variable v

A _L(s/f) shortcut for quickclass(f) or normalform(s)
normalform(s) ; normal form of singularity given by its name s

debug_log (lev,[]) print trace and debugging information w.r.t level>QDeBug
(parameters in square brackets [] are optional)

D.19 graphics_lib

LIBRARY: graphics.lib PROCEDURES FOR GRAPHICS WITH MATHEMATICA
staircase(fname,I); Mathematica text for displaying staircase of I

mathinit () ; string for loading Mathematica’s ImplicitPlot
plot(fname,I[# s]); Mathematica text for various plots

D.20 normal_lib

LIBRARY: normal.lib: PROCEDURE FOR NORMALIZATION (I)

normal (ideal I)
// computes a set of rings such that their product is the
// normalization of the reduced basering/I

Appendix E: Library function index

Appendix E Library function index

AL 258
A _Z. 251
actionIsProper..............l 256
addcol ... 251
addrow ... 251
algebra_containment 255
allprint............. 252
B

basicinvariants.................. ...l 257
binomial........... ... i 251
blowupO ...vvvvi e e 252
C

changechar...................l 254
changeord................ ...l 254
changevar.ot e 254
classify..............o i i il 257
closetex...........iiii il 256
COMPT@SS . vttt teeiiee e e i eeeiiee e eeatennn, 251
concat ... 251
COMLENE ..ottt e 254
COTANK . . ettt et e e e e e et e e e 257
L3« 3 253
cupproduct. 253
cyclic 254
cyclotomic........ ... il 254
D

ADPTi .o 252
deformo 252
defring.............l 254
defringp.......... ... Ll 254
defrings........ccoiiiiiiiiiii i 254
develop ...ttt e e 257
Aiag. e 251
dim_S1oCUSttt e 252
displayHNE....................l 257
displayInvariants............................... 257
ASUM. . ..o 251
E

elim...... .. 252
eliml ... 252
equiRadicall 255
evaluate_reynolds................ooiiiiiaina.nn. 255
EXb. 253
EXt_ R .. 253

259
extdevelop. ...l 257
extendring............ ...l 254
F
factorial....... ...ttt 251
fetchallt 254
fibonacci......ooiiiiiiii i e 251
flatten.......cooiiiiiiii i e e 251
freerank....... 254
G
gauss_col......... ... il 251
o= N = of) 251
generators..............l 257
genericid.....................LLil 253
genericmat...............iiiiiiiiiii 251
group_reynoldsiiiiiiiiiii i 254
H
Heode ..o e e 257
Hom. ..o e e 253
homology 253
I
image_of _variety............... ..ol 255
imapall.......... ...l 254
init_debug.............. ...l 257
internalfunctions................ .o, 257
intersectionoiii i 257
invariant_basis............ e, 255
invariant_basis_reynolds....................... 255
invariant_ring.............. ...l 255
invariant_ring random.......................... 255
invariantRing.................... ...l 256
invariants............ i 257
is_active.ot e 252
1S G o e 252
is_complexX.............. i 251
AS_HOMOG ...ttt 254
18 A8 i 252
I T o= - 252
18 TegS . i 252
1S ZOT O . it e 254
K
RAESUTA . .o ie et 254
Kernelt 253
Rill rings. ..ot 253
Killall ... e 251

Appendix E: Library function index

lift _kbase. ...t e
lift_rel Kb ... e

maxdegl
MilNoT ..ottt e
milnorcode.oviiiiiiii e
minAssChar.......... i
MinAssGTZ.........coiiiiiin i

morsesplit...........l
multcol e
MULETOW . .ottt e et e

N

O

opentex.........
orbit_varietyl

260
primary_charQ...............ol 255
primary_charO_no_molien........................ 255
primary_charO_no_molien_random................ 255
primary_charO_random..................coovunnnn 255
primary_charp.........cccoiiiiiiiiiiiiiiiiiiinn, 255
primary_charp_no_molien........................ 255
primary_charp_no_molien_random................ 255
primary_charp _random........................... 255
primary_charp_without.......................... 255
primary_charp_without_random.................. 255
primary_invariants 255
primary_invariants_random 255
primdecGTZ...........l 255
primdecSY.......... ... 255
PTiMES e 251
PTOQUCE . ..ottt e 251
Q
quickclass. ...t 257
R
TAA_COM . ittt ittt i 2564
radicaloiiiii i e 255
randomid............l 253
randommatouiiiii 253
reddevelop............ ... il 257
relative_orbit_variety..................... ... 255
reynolds_molien...........covvuuinniiiiinnnnnn. 255
ringtensor.......... il 254
ringweightsl 251
rMacaulay.................oiiiiiiiiii 252
B 15 ST 256
S
sat..... e 252
secondary_charO.................. 255
secondary_charp..................ooiiiiiL, 255
secondary_no_molien 255
secondary_not_cohen_macaulay.................. 255
secondary_with_irreducible_ones_no_molien... 255
SELECT . ittt et 252
SO . .ttt e 252
showrecursiveol 252
singularityl 258
skewmat 251
SLOCUS vt e e, 252
= o 251
sparseid.........oiiiiiiii i e 253
sparsemat............... ..ol 253
SParsSepPoOly. 253
sparsetriagiiiiiiiiiii 253
SPECETUMottt e 252
SPLit o 252

Appendix E: Library function index

staircase.ot e 258
stripHNE. 257
submat 251
SUM. ottt tts ettt tts e iia e 251
SYMMAL .. v v vttt i e e 251
T

T e e 252
TL . 252
52 252
1721 - T 252
BONSOT oot e e s 251
testPrimaryl 255
7= PP 256
teXAemMO . ..ot e e 256
texfactorize ...t 256
TEXMAD - .ottt e 256
BOXNAME . .o vttt ettt ee ettt 256

261
TeXPOLY ..o 256
TEXPIOC . ottt 256
texXTing 256
tjurina..........o oo o 252
Tjurina............o ool i 252
tschirnhauscoiiiiii it 258
unitmat e 251
VerSal .. it e 253
Which 251
writelist.......c.ii 253
X
XAVd o e e e, 256

Chapter 7: Index

7 Index

!

e 58
&

& e 58
o e 58
?

T e 125
L] e 58
P 184
>

D e e 58
<

L 121
o e e 58
D e 58
A

Algebraic dependence............oooiiiiiiiiiiiiin 233
alllib ..o 250
AN e e 58, 190
ASCITHnKS. ..o 67
attrib. ... 102
B
Background.................ooo o 3
bareiss 103
betti ..o 104
Betti number............... oo 247
block 36, 179
boolean exXpressions.coviiiiiiiiiiiiiea... 58
boolean operations................ciiiiiiiiiia 59
bracket 192
break....... 179
breakpoint. ... 184
C

C programming language 190
S .+ vttt e ettt e e e 191

262
Change of rings.l 11
char 105
char_Series.ooueiiiiiii 106
Characteristic SetS......cvviiireieviinneennnnnnn.. 247
Charstr ... e e 106
Classificationoiiiiiiiiii e 235
classify lib. 257
cleardenom i 107
close ... 107
ol . e 107
coeffs.......... 108
(700510 - P 191
Command line options................cciiii.... 18
Commandsovviiiiiii e 102
continue ... 179, 192
[670) 41 - Y1 (A 110
Control structures, 179
copyright 1
Critical points. ... 199
Cyclic TOOtS « v ovee e e 223
D
Datatypes........oovviiiiiiiiii i 49
DBM HnKS. ..vveviiiii et 73
dbprint 110
Debugging tools ool 46
def o 49
def declarations.............ccoieiiiiiinninnnn.... 49
defined 111
deformlib............. 253
Deformations..........ccoviiiiii i, 206
deg. .o 111
degBoundo 184
degree ... 112, 194
delete ... 112
Depth ..o 222
det o e 113
diff .. 113
dim .. 114
AV o e 56, 193
AUIND. .o 114
E
BCHO . o e 185
Editing input..........coviiiiiiii e 18
elimlib..... ... 252
eliminate............... 115
Elimination.............. 211
elSe. e 181

Chapter 7: Index

eval L. 116
Evaluation of logical expressions 190
Examples.. ... 196
Examples of ring declarations 21
EXECULE . . . ot et e e e e 117
eXit. ... 117, 182
EXPOTt ..ot 180
expression list L 49
Bt 216
XtECd . oo 117
Extra weight vector...............ooiiien ... 245
F

facstd ... 118
Factorizationol 226
factorize.ooev e 119
2701 703 o P 1
Fast lexicographical GB......................0000 236
fetch . ..o 119
fglm . e 121
filecmd ... 121
find ..o 121
finduni ... 122
Finite fields.o o 208
finvar lib ... 2564
First steps.....ccoii e 5
Flow control........ 36
) 181
Format of a librarycoovvviiiiinnn, 45
Formatting output.................... ...l 223
Free resolution............ il 213
freemoduleo 122
Functions...........ol 102
G

G_a-Invariants ..., 224
BCA .t e 123
o0 1 123
General command syntaxc.ovvviiniininn.s 29
General CONCEPtS .. .vvventinin i 16
General syntax of a ring declaration................ 22
general lib.........ol 250
getdump. ... 124
Getting started il 5
Global orderings................c.coiiiiiii... 241
GM P . 1
graphicslib......... 258
groebmer.......... ... i 124
H

help .o 125
hilb o 125
Hilbert functiono 246

263
Hilbert series 246
hnoetherdib...................................... 257
homog.......... ... 126
homolog lib.............. i 253
How to enter and exit............oooeeiiiiiine.... 16
How to use thismanual 3
I
ideal. 50
ideal declarationscovviiiiiiiinniienninn, 50
ideal expressions............oooiiiiiiiiii i 50
Ideal membership..............c. it 246
ideal operations.ccciiiiiiii i 51
ideal related functions 52
ideals. ..o e 194
identifier 195
1 181
IIAD - oottt e e 127
Implemented algorithms0 25
IN 134
IndepSet....ooouii 127
infoinalibrary...........oooii i 45
inoutlib......... 252
mput............. 36
ISETE . o ettt e e e 128
I e 54
int declarationsccoviiiiiiii i 55
INt EXPreSSIONS . . oottt et 55
int operations.coouiii i 56
int related functions 57
integer division oo 193
Interactive use.........cooiniiniiii i 16
interred ...t 129
Interrupting SINGULAR........................... 17
INEErSECt . .o vttt e e 130
Intmat......cooviin i e 60
intmat declarationscocvviiiiiiiiian, 60
Intmat exXpressionsoveeiiiiiii .. 61
intmat operations..............oiiiiiiiiii 62
intmat related functions 63
Introduction ... 3
INEVEC . oottt e 63
intvec declarations............ccoiiiiiiiiiiiia.. 63
INtVEC eXPresSiONSvu e et 64
intvec operations i 64
intvec related functionsl 65
invardib........co i e 256
Invariants of a finite group..................ovuun 225

Chapter 7: Index

kbase.oovii e 132
keepring.......... ... 182
kernel ... 155
Kernel of module homomorphisms 233
kil 133
killattrib 133
koszul 134
L

latex lib. ... o 256
lead . ..o 134
leadcoef 135
leadexp...coovein e 135
LB e 136
lbfac. ...ooue 1
lbparse. ..o 47
Libraries.coovni i 44
0 127 250
3 137
liftstd ... 137
Limitations.coo e 190
link .. oo 66, 237
link declarations.coooiiiiiiiiiii 66
link expressions.covviin i 66
link related functions 67
] 74
list declarations.ccoiiiiiiiiiiiiieanan, 74
list expressions. oL, 75
list operations oL, 76
list related functions...............c.cooiiiea. 77
BStvar.o e 138
Loading of a library................cooiiiiiia... 44
local names. ... 42
Local orderings....................oooii L 241
Long coefficientsl 200
P 139
M

80 1 o 78
map declarationso i 78
MAP EXPreSSIONS ..o .vtvett ittt it 79
map OpPerationsoouuiiiiiiinniiaann. 79
Mathematical background 246
MABTIX . .\t et 80
matrix declarations 80
MAtTIX EXPreSSIONS . .\ vttt it e nineeeanns 81
mMatrix Operations.covvviiin i, 81
Matrix orderings..................o il 243
matrix related functions 82
matrix_ lib 251
maxideal 140

40153 0070 oy O 141

264
Milnor. 196
mMinbaseovii i 141
411 4T) 141
minpolyo i 185
TOINITES .« oo et et et e e e e e e e e e 142
MO ..ot e 56
module............ 83
module declarations. 83
module expressions 84
module operations............c.coiiiiiiiiiieea.. 84
Module orderingsc.ovviiiiiiiiiiie e 242
module related functions........................... 84
Modules and and their annihilator 13
modulo.......... 143
8703 0110 P 143
Monomial orderings................... ... 240
monomials and precedence........................ 194
M e 1
MP HnKS ..o 69
MPfile linksooi 69
LY 8 Ty o P P 237
MPtep links ..o 70
0% P 144
MStd .. 145
mulb.......oiii e 145, 194
multBound 186
N
nameof...... 146
0 0 <Y N 146
Names. ... 32
Names in procedures..............ccooieiiuiann .. 42
NCOLS . et e 147
NE o e 161
noether.......... ... 186
Normal form..........coiiiiiiiiiii i 246
normal lib.........co i 258
Normalization 232
40 P 58
40T o~ 148
08 148
TITOWS -t e oot e ettt et e ettt aa e e et ie e eaaa et 149
NUIMDET . . . et 86
number declarations 86
NUMbEr eXPreSSiONS « ..o vvvve ettt 86
nUMbEr OPErations.cvvevtvure i iieennnns 87
number related functions........................... 88
TIVATS + v vt v te e veie e s i n e an et eanneanss 150
O
ODbJeCtS . . oot 34
(03 7= R 150
Option ... 150

Chapter 7: Index

163 58, 190
103 o P 153
103 6 =1 5 154
OUEPUL . e e e e 36
P

02 154
Parallelization o i 237
Parameter list 42
Parameters...........coo 203
PArdeg. ..o 154
Parstr 155
PAUSE. ¢ o ettt et et e e 155
Polar curves........ ..o 219
POy 89
poly declarations 89
poly expressions i, 89
poly operationscceiiiiiiiiiiii e 90
poly related functions...................coeiiit 91
polydib. ..o 254
Polynomial data............... 239
Preface 1
Preimageoontt it i 155
Primary decomposition........................... 230
primdeclib....... 255
PIiINE. . .ottt 156
PIint ..o 156
printlevel 186
93 6 92
proc declarationcoiiiiiiii i 92
Procedure commands 44
Procedure definitioncooviiiiii.. 40
Procedureso 40
Procedures and LIB ...t 197
Procedures and libraries 10
Product orderingsl 245
PrOmMPE ..o s 16
PIULE. . .ttt ettt e e 157
Puiseux pairs...............o oo 227
Q

ghweight 157
QUiDE oo 93
qring declaration...............o 93
QUIL .o 182
QUOtE. ..o 158
quotient ...t 158
R

TANAOI . . oottt et e e s 159
random lib 253
TEAM . o oo e 160
readline. 1

265
TEAUCE . . oottt e 161
References...........ooiiiin i 248
regularityo 161
Regularityooo i 247
Representation of mathematical objects........... 239
TS & ettt ettt e e e e e e 162
reservedNameot 163
resolution. ... 94
Resolution..........cooiiiiiiiii et 14
resolution declarations........................... .. 94
resolution expressions...............coviiieiiii... 94
resolution related functions 95
resultant 163
TEOUTIL . ..ot e 182
TIIE ettt e e 95
ring declarations................. ... oo 95
ring related functions ool 96
ringlib........o 254
Rings and orderings...................l 20
Rings and standard bases..................cooiunn 7
TVAUE . ot e 190
0 164
S
Saturation............... . 200
Setring ... 164
ShOTt ..o 187
Simplify 165
singlib.......... 251
SINGULAR libraries.ccooeiiiainaiaaan.. 250
SINGULARHIST 18
3 12 PPt 194
SIZE. .o 166
Sleep ... 168
SOTEVEC . oottt ie ettt et i e 167
Special characters................ccoiiiiiiii. 31
STES vttt ttee e e e 167
Standard bases 246
standard libo . 250
Startup sequenceoiiiiiiriiiia.. 20
SEAEUS e 168
St - 169
stdfglm 170
stdhilbo 171
String. 96
string declarationscoviiiiiiiiiien, 97
StTing eXpressions............ovviiiiiiiniiieniia.n 97
string operations..............coiiiiiiii i 98
string related functions 98
SUDSE . .t 171
SUSpend 168
switch.. ... 191

Chapter 7: Index

System variables. oo 184
SYZ o et e 173
Syzygies and resolutionsoo.n 247

P 203
T e e 203
Term orderingst 24
The online help system 16
The SINGULAR language 29
timer......... 187, 188
Tjurina. ... 196
BraCe . oo 174
TRACE . ..o e 188
transpose. ... 174
Tricks and pitfalls ..., 190
type. ... 174
Type casting............cooiiiiiiiiii i 35
Type conversionovviiiiiiii .. 34

266
U
untyped definitions ..o 49
\%
22 P 176
VATSET .« 176
VAIM o e 176
VECHOT . .o 99
vector declarations. oo 99
VECtOT EXPIESSIONS. + . uvvve v ettt iannnes, 99
VECtOr OPErationsovuvvvveviniiieerninnnen.n. 100
vector related functions.................. ... 100
version in a library............ol 45
VOICE .« o et e e e e e e 189
\%%
Wedge ..o 177
weight .. .oooi 177
while. ... 183
WIIEE .« oo ettt e 178

Short Contents

1 Preface . ..uieeeeeeeeeeeiieeiseesssssssessesssssanss 1
2 Introduction « ..eeeeeesoeeesooessssosessosossasoassssas 3
3 General concepts « o oo v v v e ettt ettt onns 16
4 Data tyPes oo oo oo v vt eeesosessossosossssssssssssnsss 49
5 Functions and system variables « « « e e e s s 0o v v v vvvessoossss 102
6 Tricksand pitfalls oo s o s v v v v v v oesosoossssossssssoosss 190
Appendix A Examples......ccieeiniennieeeeennennnas 196
Appendix B Polynomial data « « v oo v e e s s s i i iinnnennennnnns 239
Appendix C Mathematical background oo v v s v e e i 246
Appendix D SINGULAR libraries « o o o o e e v o v v v v eevnennnnsas 250
Appendix E Library function index « v o s s s s s s 00 vvoooooossoss 259
T INdeX v oeeeeeeeeeeeeeeeesosssssssosssossssssssssss 262

Table of Contents

1 Prefacevvvviiieininieieeenenenesnnnnnaas 1

1.1 Availability . ..ot 1
1.2 Acknowledgements 2
2 Introductioniiiieeiieennennennns 3
2.1 Background.............. e 3
22 Howtowusethismanual............... 3
2.3 Getting started 5
2.3.1 First steps ..ottt 5

2.3.2 Rings and standard bases 7

2.3.3 Procedures and libraries............. 10

234 Changeofrings............coiiiiiiiiie i 11

2.3.5 Modules and their annihilator 13

2.3.6 Resolution 14

3 Generalconceptsccivvviviinnieass.. 16

3.1

3.2

3.3

3.4

3.5

Interactive useo 16
3.1.1 Howtoenterandexit...............cccooiiiiiena. .. 16
3.1.2 The SINGULAR prompt ..., 16
3.1.3 The online help system................. 16
3.1.4 Interrupting SINGULAR.............................. 17
3.1.5 Editinginput........ ... 18
3.1.6 Command line optionsccoiiriiinn.... 18
3.1.7 Startup sequUenceuuuiiieieeiiiiiia. 20

Rings and orderings oot 20
3.2.1 Examples of ring declarations.......................... 21
3.2.2 General syntax of a ring declaration.................... 22
3.2.3 Term orderingsooeeuieieiiiiiminnanneeannn. 24

Implemented algorithms, 25
Commands to compute standard bases........................ 26
Further processing of standard bases.......................... 26
Commands to compute resolutions 27
Further processing of resolutions 27
Processing of polynomials............ i . 27
Matrix computations 28
Controlling computationsccooiiiiiiinea.. 28

The SINGULAR languageooune e 29
3.4.1 General command syntaxc... ... 29
3.4.2 Special characters i 31
343 NameSttt e 32
344 ObJectS .. oot e 34
3.4.5 Type conversion and casting........................... 34
3.4.6 Flow control 36

Input and output 36
MoODItOTINng .« v v vttt 36
Howtouselinks........coo i 36
ASCITHnKS. ..o e 37
MPfile linksoovi 38

MPtep lnks . ..ooo 39

ii

DBM InKS .. 39

3.6 Procedures 40
3.6.1 Procedure definition 40

3.6.2 Names in procedures............ooveuiniiiiinnenn... 42

3.6.3 Parameter list............ 42

3.6.4 Procedure commandsiiiiiiiiiiia.. 44

3.7 LADrariesottt e e e 44
3.7.1 Format ofalibrary................... 45

3.7.2 Guidelines for writing a library 45

3.8 Debugging tools......... .. 46
3.8.1 Tracing of procedures................ 46

3.8.2 Break points.......... 47

3.8.3 Printingofdata............. L. 47

3.8.4 libparsecoeuii i 47

4 Datatypes......coviiiiiiiiiiiiiiiiiiiraennnnn. 49
4.0 def . 49
4.1.1 defdeclarations.o, 49

4.2 ddeal 50
4.2.1 ideal declarations................ ..., 50

4.2.2 ideal eXPressionsvuu i 50

4.2.3 ideal operations i 51

4.2.4 ideal related functions...........l 52

R 1 54
4.3.1 int declarations......... 55

4.3.2 INt €XPIeSSIONS . ..o\ttt ettt 55

4.3.3 intoperations........... 56

4.3.4 int related functions i 57

4.3.5 boolean expressions.............ooiiiiiiiiiiiii ... 58

4.3.6 boolean operations................ciiiiiiiiiaiia.. 59

4.4 Intmat ... e 60
4.4.1 intmat declarations 60

4.4.2 intmat eXpressionsS.veeiieiiii i 61

4.4.3 intmat operations.............. ..ol 62

4.4.4 intmat related functions.................. 63

4D INEVEC . ottt e 63
4.5.1 intvec declarations................, 63

4.5.2 INtVeC eXPreSSiONS. vvvin ettt 64

4.5.3 intvec operationsiiiiiiiii . 64

4.5.4 intvec related functions L 65

4.6 DNk ... 66
4.6.1 link declarations........... 66

4.6.2 link expressions.t 66

4.6.3 link related functions 67

4.6.4 ASCITHNKS . ..ot e 67

4.6.5 MPHnKS......coooi 69

4.6.5.1 MPfilelinks i, 69

4.6.5.2 MPtep links ... 70

4.6.6 DBM UnKS.... ... 73

O T 74
4.7.1 list declarationso i 74

4.7.2 list eXpressionscuuueene 75

4.7.3 listoperations............c.ooiiiiiiniiin i, 76

4.7.4 list related functions Tl

Z RTINS ' F: o A 78
4.8.1 map declarations 78

iii

4.8.2 1MAP EXPIESSIONS . .« ot vttt ettt 79

4.8.3 map Operations.ottt 79

49 mabTIX .. e 80
4.9.1 matrix declarations L 80

4.9.2 matrixX eXpressionsSovuuitint e 81

4.9.3 matrix operations.......... i 81

4.9.4 matrix related functions............ 82

410 module. 83
4.10.1 module declarations L 83

4.10.2 module exXpressions 84

4.10.3 module operations.............. ..., 84

4.10.4 module related functions 84

411 number. 86
4.11.1 number declarations oL, 86

4.11.2 number expressionsvuiiriineii . 86

4.11.3 number operations. 87

4.11.4 number related functions.................. 88

402 POly. . 89
4.12.1 poly declarations i 89

4.12.2 pOly €XPressionsvuu it e 89

4.12.3 poly operations.t 90

4.12.4 poly related functions......................... ... 91

N T N) o 92
4.13.1 procdeclaration........... 92

414 QUing . .ot 93
4.14.1 qring declaration i, 93

4.15 resolution. 94
4.15.1 resolution declarations 94

4.15.2 resolution exXpressions...............oiiiiiiiia... 94

4.15.3 resolution related functions.................... 95

4016 TINg . oot 95
4.16.1 ring declarations........... i 95

4.16.2 ring related functions L 96

A7 SETIN o ot 96
4.17.1 string declarations........... 97

4.17.2 string eXpressions.oueieuiineiiaiaa. 97

4.17.3 string operations i 98

4.17.4 string related functions.................. 98

418 VeCHOT . oottt 99
4.18.1 wvector declarations............., 99

4.18.2 vector eXPresSiONScovuerneenneieennenaen.. 99

4.18.3 vector operations............ i, 100

4.18.4 wvector related functions 100

5 Functions and system variables................ 102
5.1 Functions. ... 102
511 attrib. ... 102

5.1.2 bar€iSs.o 103

5.1.3 betti... ..o 104

5.14 char. 105

5.1.5 char Seriesoouiiniii 106

5.1.6 charstr....... ... 106

5.1.7 cleardenom. 107

B.18 ClOSE. ..t 107

B.1.9 coef .. 107

5.1.10 coeffs. ..o 108

contract 110

dbprint 110
defined 111
deg . oo 111
degree 112
delete. ... e 112
det .o e 113
diff . . 113
dim .o 114
dUump. ... 114
eliminate 115
eval .. 116
EXECULE . oottt 117
CXIb . e 117
extged ... 117
facstd ..o 118
factorize 119
fetch ..o 119
fglm . .o 121
input fromfiles........ 121
And ... 121
findunicoii 122
freemodule............ ... 122
B e o 123
) 123
getdump 124
BrOEDIeT 124
help ..o 125
hilb .. 125
homog. ... 126
IMAD - e ettt et e e e 127
indepSet 127
F DY) of A 128
Imterredt 129
INEEISECE . . oot 130
JACOD L 130
Jeb . 131
kbase. ... 132
Kill .. 133
killattrib. 133
koszul 134
lead 134
leadcoef. 135
leadexp ..o v 135
LIB o 136
A 137
Liftstdo 137
BStVAT ot e 138
IS . ot e 139
maxideal........ ... e 140
100153 4410 o 20 141
minbase 141
001570 o 141
IINTES . o ottt e e e e e e e e e 142
modulo...... ... 143

.67
.68
.69
.70
1.71
5.1.72
5.1.73
5.1.74
5.1.75
5.1.76
5.1.77
5.1.78
5.1.79
5.1.80
5.1.81
5.1.82
5.1.83
5.1.84
5.1.85
5.1.86
5.1.87
5.1.88
5.1.89
5.1.90
5.1.91
5.1.92
5.1.93
5.1.94
5.1.95
5.1.96
5.1.97
5.1.98
5.1.99
5.1.100
5.1.101
5.1.102
5.1.103
5.1.104
5.1.105
5.1.106
5.1.107
5.1.108
5.1.109
5.1.110
5.1.111
5.1.112
5.1.113
5.1.114
5.1.115
5.1.116
5.1.117
5.1.118
5.1.119
5.1.120
5.1.121

—_ =

o.
o.
o.
o.
o.

000 1 P 144
mstd ... 145
mulb. e 145
nameof 146
DMAINIES « - o e oee ettt e e e e e 146
NCOIS .« ottt e 147
101 012 i 148
TITES . e ettt e e e e e e e e e e e 148
TITOWS « - e e et e et et et et e et et e e e e e e e 149
01077 150
0 0 T 150
OPEIOTL . . .ttt 150
OTd . ot 153
OrdStr . .o 154
DAL o et ee 154
Pardego 154
PATStT L 155
PAUSE . ottt et e 155
PrelmMage . . o ittt 155
Prie. . .ot e e e 156
Print . ..o 156
PTULE . . o ettt et e e e e e et et et 157
ghweight. 157
QUOTE . .o 158
quotient 158
Tandom e 159
TEAA - .ttt 160
TedUCe . . o oo 161
regularity ... 161
1 162
reservedName i 163
resultant e 163
172 164
SEUTING . .. oot 164
simplify. ... 165
B . v et e e 166
SOTEVEC . oottt 167
U 167
status ... 168
St . 169
stdfglm 170
stdhilb.. ... 171
Subst ... 171
System. ... 172
27/ 173
BTACE . e 174
BTANSPOSE . o v ot e 174
17374 <P 174
BYPeOf .« o 175
122 o 176
VATSET . .o 176
VAIIL . oo e e 176
WEAZE - ettt 177
Welght 177
WIIbE . 178

5.2 Control structures.ot 179

vi

5.2.1 break........ . 179

5.2.2 continuet 179

5.23 else. ... 180

5.24 eXPOTt ..o 180

5.2, fOr L 181

52,6 . 181

5.2.7 Keepringt 182

B.28 QUEL « e et e 182

9.2.9 return e 182

5210 while..... ..o 183

5.2.11 ~ (breakpoint). ..o 184

5.3 System variables 184
53.1 degBound...... 184

B.3.2 eCho. ... o 185

533 minpoly 185

534 multBound.......... 186

5.3.5 moether...... 186

5.3.6 oprintlevel L. 186

5.3.7 short ... 187

5.3.8 tImero 187

53.9 TRACE ... e 188

5.3.10 rtimer 188

5.3 11 VOICE . oo ve et 189

6 Tricksand pitfalls............................ 190
6.1 Limitationso oo 190
6.2 Major differences to the C programming language 190
6.3 Miscellaneous oddities iiiiiii . 193
6.4 Identifier resolutiont 195
Appendix A Examples.............covinnnn.. 196
A1l Milnorand Tjurina ..o 196
A2 Proceduresand LIB 197
A3 Critical poIntS. e 199
A4 Saturation 200
A5 Long coefficients. 200
A6 Parameters..............ooi i 203
AT Tland T2. .. 203
A8 Deformations.oi i 206
A9 Finitefields ... o 208
A10 Eliminationo o 211
A1l Free resolutionooiuiii i 213
A 12 EXb. . 216
A 13 Polar Curves. 219
A14 Depth ... 222
A.15 Formatting output................. 223
A16 Cyclic TOOtS . - oo vttt 223
A17 Ga-Invariants. 224
A.18 Invariants of a finite group 225
A 19 Factorization 226
A20 Puiseux PairS........oouiumiee et 227
A.21 Primary decomposition i 230
A.22 Normalization....... oo, 232
A.23 Kernel of module homomorphisms 233
A.24 Algebraic dependence...............c 233

vii

A.25
A.26
A.27

Classification. 235
Fast lexicographical GB........... 236
Parallelization with MPtcp links........... 237

Appendix B Polynomial data 239

B.1
B.2

Representation of mathematical objects 239
Monomial orderings............... i 240
B.2.1 Global orderingsc.iiiiii 241
B.2.2 Localorderingsoooiiiiiiiiiiiiii.. 241
B.2.3 Module orderings L. 242
B.2.4 Matrix orderings i 243
B.2.5 Product orderings......... L 245
B.2.6 Extra weight vector 245

Appendix C Mathematical background 246

C.1
C.2
C.3
C4
C.5

Standard bases e 246
Hilbert functionc i 246
Syzygies and resolutions............ i 247
Characteristic SetSoovii it e 247
References ... 248

Appendix D SINGULAR libraries............... 250

D.1 standardlib......... 250
D.2 alldib. ... 250
D.3 general lib oo 250
D4 matrix lib.. ... 251
D5 sing lib ... 251
D6 elimlib e 252
D.7 inout lib 252
D.8 random. lib....... 253
D.9 deform lib ... 253
D.10 homolog lib 253
D1 poly lib ... 254
D2 ring lib ..o 254
D13 finvar lib.o 254
D14 primdeclib 255
D5 dnvar lib 256
D16 latex Iib ... oo 256
D.17 hnoetherlib........... . 257
D18 classify libo 257
D.19 graphicslibo 258
D.20 mormal lib 258
Appendix E Library function index.............. 259

T IndeX ...ttt sttt ittt eeeseeenennnnas 262

viii

