MPP: A Framework for Distributed Polynomial Computations*

Olaf Bachmannf Hans Schonemann

Centre for Computer Algebra

Department of Mathematics

University of Kaiserslautern
Kaiserslautern, Germany

{obachman, hannes} @mathematik.uni-kl.de

Abstract

There are obvious advantages to providing communication
links between independent software tools, including the abil-
ity to do parallel distributed computation, distributed prob-
lem solving, and providing more direct access to a wealth
of computational resources. The challenge of providing con-
nectivity is to produce homogeneity in a heterogeneous envi-
ronment. We have explored this problem within the context
of applications specially designed for polynomial computa-
tions. Our solution uses the Multi Protocol (MP) to es-
tablish communication links between independent packages,
and the ideas of dictionaries, prototypes, and annotations
provided in MP. We describe the design of an MP dictionary
for polynomial computations (MPP), as well as the imple-
mentation of interfaces to SINGULAR, FACTORY, and Math-
ematica based on this dictionary. Important aspects of the
design and implementation include generality, efficiency, and
the ability to convey supplemental information. We include
a discussion of our experiences and some timings.

1 Introduction

Computing in a distributed fashion is coming of age, driven
in equal parts by advances in technology and by the desire to
simply and efficiently access the functionality of a growing
collection of specialized, stand-alone packages from within
a single framework. The challenge of providing connectivity
is to produce homogeneity in a heterogeneous environment,
overcoming differences at several levels (machine, applica-
tion, language, etc.). This is complicated by the desire to
also make the connection efficient. We have explored this
problem within the context of symbolic computation and,
in particular, with respect to systems specially designed for
polynomial computations.

*Work reported herein has been supported in part by the National
Science Foundation under Grant CCR-9503650, by the Deutsche
Forschungsgemeinschaft, and by the Stiftung Innovation des Landes
Rheinland-Pfalz.

T Also: Department of Mathematics and Computer Science, Kent
State University Kent, Ohio, email: obachman@mcs.kent.edu.

Appeared in the proceedings of the 1996 International
Symposium on Symbolic and Algebraic Computing (IS-
SAC’96).

Simon Gray

Department of Mathematics and Computer Science

Kent State University
Kent, OH 44242, USA

sgray@mecs.kent.edu

Our solution is based on mechanisms found in the Multi
Protocol (MP) [9, 10]: dictionaries, prototypes, and annota-
tions. Dictionaries address the problem of application het-
erogeneity by supplying a standardized representation and
semantics for, among other things, operators and data. A
prototype is a description of the structure and content of
a data object that may appear in a dictionary in combi-
nation with an operator and addresses the problem of effi-
ciency. Annotations provide supplemental semantic infor-
mation that may be useful to the receiver. Within this
framework, systems can exchange a polynomial object ef-
ficiently and with a shared and well-defined understanding
of the object’s meaning.

More specifically, we had the following goals:

1. Develop an MP Polynomial Dictionary (MPP) describ-
ing the syntax and semantics of polynomial structures
and polynomial operations.

2. Provide a collection of library routines which simplify
the implementation of interfaces to the MPP encodings.

3. Demonstrate the feasibility of the MPP dictionary and
the MPP library by implementing efficient MP link in-
terfaces based on the dictionary to three packages:
SINGULAR [12], FACTORY [15], and Mathematica.

1.1 Generality and efficiency

There were three concerns that guided our design and im-
plementation. First, the dictionary should be as general as
possible. By generality we mean non-system specific and
reflecting the needs of most systems. A general dictionary
simplifies the design and implementation of interfaces to dif-
ferent systems. Second, the representation of data should be
compact and the communication link should be efficient. Ef-
ficiency applies to the time it takes to transmit the data, to
convert between the transmitted and native encodings, and
to parse the expression. Third, the communication proto-
col should include support for embedding additional useful
information within a polynomial expression. This is a con-
cern for systems which are heavily typed and expend some
computational effort to generate the information. There is
a performance loss if the extra information generated by a
system cannot be communicated to the receiver, who must
then recompute it. We recognize that in many cases the
time to transmit and parse an expression will be dwarfed
by the computation time, and that within the context of a
distributed problem solving environment, efficiency is not a
dominating concern. However, there are circumstances in

which efficiency does matter, such as parallel computations
and the transmission of especially large data sets, and, cer-
tainly, there is no disadvantage to having an efficient link.

There i1s a well-known and natural tension between gen-
erality and efficiency, often resulting in interfaces which are
either general or efficient. The challenge in designing our
dictionary was to make it general enough so that an MPP in-
terface to some system would give it access to the resources
of any other system with an MPP interface, yet at the same
time be efficient enough so that the same interface could be
used in situations where efficiency was especially important
(e.g. parallel distributed computations).

2 The Multi Protocol

The link was built on top of the Multi Protocol (MP). MP’s
purpose is to support efficient communication of mathemat-
ical data among scientific computing systems. MP defines a
set of basic types and a mechanism for constructing struc-
tured data. Numeric data (fixed and arbitrary precision
floats and integers) are transmitted in a binary format (2’s
complement, IEEE float, etc.). MP transparently handles
byte-ordering and floating point representations. FExpres-
sions are transmitted between cooperating processes as lin-
earized, annotated syntax trees (preorder traversal) in a se-
quence of node packets, where each node packet contains a
node from the expression’s syntax tree. The node packet has
fields giving the type of the data carried in the packet, the
number of children (for operators) that follow, the number of
annotations, some semantic information, and the data. An-
notations efficiently carry additional information which may
be supplementary and can be safely ignored by the receiver,
or may contain information essential to the proper decod-
ing of the data. MP supports collections of definitions for
annotations and mathematical symbols (operators and sym-
bolic constants) in dictionaries. Operators and constants
which occur frequently have an optimized encoding and are
known as “common”. MP is independent of the transport
medium used to transmit the data and currently works with
files, sockets, the Parallel Virtual Machine (PVM) [16], and

ToolBus [4], a software bus architecture.

2.1 Dictionaries

A dictionary is an off-line, human-readable document com-
posed of three sections (others may be added in the future)
containing the definition of operators, constants, and anno-
tations. A definition may be formal or informal, but must
be sufficiently precise to be unambiguous.

There is no requirement that each dictionary has all three
sections. The first 256 entries in the operator and constant
sections are also given integer tags which have an especially
efficient encoding within MP (as “common” operators and
constants) and are where the most frequently occurring en-
tries should appear.

Each dictionary has a string name which identifies it to
users (e.g., “MP Polynomial Dictionary”) and a tag num-
ber which identifies it to other processes. When sending a
dictionary entry, the triple <type, dictionary tag, value id>
is enough to uniquely identify the value in a node packet.
The type gives the data type (Operator or Symbolic Con-
stant), the dictionary tag is a small integer, and the value
id is either a small integer or a string. The tuple <value id,
dictionary tag> does the same for annotations.

An implementation of a dictionary with respect to a par-
ticular system may simply consist of a table lookup mech-

anism, mapping between native and dictionary representa-
tions, or it may be more complex and include routines for
sending and receiving structured data, with accompanying
utility routines.

2.2 Annotations and prototypes

The sender may attach an annotation to any node packet
of an MP tree. Annotations are sent in annotation pack-
ets. MP defines a set of annotations and users may define
their own, placing the definitions in a dictionary. Annota-
tions are modified by a set of flags, which, for example, allow
the sender to identify an annotation as required or supple-
mental. An annotation with the Required flag set indicates
that the annotation carries information essential for prop-
erly decoding or interpreting the node’s data. Supplemental
annotations, on the other hand, are just that and may be
discarded without fear by the receiver. Another flag indi-
cates whether or not the annotation is valuated (takes an
argument). The argument is always given as an MP tree.

The prototype annotation, defined within MP, is espe-
cially important. In some circumstances we can minimize
the overhead incurred by the node packet header. Occa-
sionally, a block of data will be sent that is characterized
by having a homogeneous format. A vector of floating point
numbers is a good example, but the data could be more
structured - a vector of complex or rational numbers, or a
polynomial or ideal.

As an optimization, we can take advantage of this pat-
tern by using a prototype annotation whose value is an MP
tree specifying the structure and type of the data to be trans-
mitted. Individual nodes of this tree are either an operator
(for specifying structured data) or one of the MP types Meta
or CommonMeta, which specify the type of data to be found in
the data stream. Subsequently, only the data values corre-
sponding to meta entries in the prototype are placed in the
data stream. The entire collection of dataitems is placed in
a single data packet. The receiving side would retrieve the
prototype and use it to properly read the (headerless) data
from the stream. Figure 1 illustrates a very simple exam-
ple. For a vector of 1,000 fixed precision integers, the data
requires 4,000 bytes and an additional 4,000 bytes for the
overhead of the node packet headers. Using the prototype
to specify the element type of the vector reduces the total
size of the vector’s encoding from 8,008 bytes to 4,016 bytes
(only 16 bytes of overhead). This may also speedup pro-
cessing and simplify parsing by allowing blocks of data to
be treated as a single data item (and moved efficiently using
memepy()), as opposed to treating the elements individually.

It is important to point out that operators appearing
within a prototype may have a fixed or a variable number
of arguments, providing additional flexibility. If the number
of arguments is known at prototype specification time (the
time at which we create and send the prototype), then it can
be fixed within the prototype. However, if the number of
arguments is not known, or could vary (as in a list of uneven
lists), then the number of arguments for the operator in the
prototype is not given until data communication time (the
time at which we actually send the data).

A second advantage of prototypes is that supplemental
information can be supplied via annotations attached to the
nodes of the prototype. There is no need, then, to attach
those annotations to the actual data, saving both space and
processing time. We make extensive use of this mechanism
in the transmission of polynomials.

Type #Annots Value #Args Remarks

COP 1 list 1000 CommonOperatorPkt

AP ProtoType Prototype Annotation

CMP 0 IMP _Sint32 MP type specification
1 Beginning of data pkt
2

Figure 1: Encoding of a vector of 1000 fixnums

3 A Commented Outline of the MPP dictionary

Here we provide a commented outline of the MPP dictionary
and a brief discussion of some of the design decisions. For
more complete technical details, the reader is referred to [2].

The goal of this dictionary is to provide a framework
for doing distributed polynomial computations using MP.
The MPP dictionary introduces operators and annotations,
defines their meaning, and explains their syntax.

In describing the operators and annotations defined by
the MPP dictionary, we distinguish between (i) the encoding
of polynomials, (i) the encoding of polynomial structures
(like ideals, modules, etc.), and (iii) the encoding of polyno-
mial functions (like polynomial arithmetic, factorization of
polynomials, Grébner basis computations of ideals, etc.).

3.1 The encoding of polynomials in MPP

Most of the polynomial encodings used in CASs can be iden-
tified by one of the following representations:

representation applications

dense-distributive | Grébner basis systems:

e.g. SINGULAR, PoSSo
sparse-distributive | Macaulay 2 front-end <
compute-engine communications

dense-recursive earlier version of FACTORY

sparse-recursive polynomial factorization:
e.g. Macsyma, FACTORY

expression tree Maple’s DAG, Mathematica

Figures 2 to 5 illustrate the first four of these representa-
tions for the polynomial p(zs, z2, 1) = zg(z2(5x§+4)—3) =
ngxgxf + 4zx3x9 — 323.

tlalalz]

® ®

1] 1] of—

1]0fo]

1
o
Figure 2: Dense-distributive representation of p
\II eyl en] e — 1 [Gy [@yf— Il @3 |
® @ ®)

Figure 3: Sparse-distributive representation of p

To reach the goal of connectivity it would be sufficient to
pick one of these representations as the standard within MPP.
This would require a system to transform polynomials be-
tween the standard MPP encoding and its internal encoding
each time a polynomial is sent and received. Efficiency-wise,
this is certainly acceptable for applications performing more
complicated computations on the polynomials (e.g. factor-
ing, Grobner basis computations, even polynomial arith-
metic), since the time and space complexity of transfor-
mations between the different polynomial representations is

a

[,]

e 1]
e 0
® © O & o

Figure 4: Dense-recursive representation of p

SESPS

@y [1] ©o [1]]
e II% 09 WM
® @ 3

Figure 5: Sparse-recursive representation of p

usually dwarfed by the time and space complexity of the
actual computations. However, for interprocess communi-
cation between homogeneous systems (like those involved
in parallel distributed computations), the cost of additional
conversions might not only be unacceptable, but also un-
necessary. Consequently, to reach our goals of connectivity
and efficiency, we support five MPP encodings for polyno-
mials based on the dense-distributive, sparse-distributive,
dense-recursive, sparse-recursive, and expression tree repre-
sentations of polynomials.

This approach minimizes polynomial transformations: a
system can always send polynomials using the MPP encoding
which corresponds to its internal encoding. Consequently,
the generation of the corresponding MPP encoding incurs lit-
tle or no additional transformation cost. On the receiving
side, a system first checks on the representation of the in-
coming polynomials. If they are in the representation which
corresponds to the system’s internal encoding, they can be
read in and converted to the system’s internal encoding with
little or no additional transformation costs. Otherwise, ad-
ditional polynomial transformations need to be performed
prior to the conversion. At first glance, this would seem
to require that each system needs to transform polynomials
from each of the MPP encodings into its particular internal
encoding, and that this makes the implementation of MPP
interfaces more complicated. However, a system only needs
to implement one interface to the MPP encoding which cor-
responds to its internal encoding: transformations into this
encoding are accomplished by routines provided in the MpP
library (see section 4.1).

Besides efficiency, there is an additional argument for
having multiple representations for polynomials: polynomial
transformations might also lead to the loss of certain proper-
ties of, or information about, the polynomials. Consider, for
example, transformations from a distributive into a recur-
sive representation where the monomials of the distributive
polynomial are in a known ordering. Obviously, this order-
ing property gets lost after transforming the polynomial into
a recursive representation.

3.2 wmPP-polynomials

More formally, we define an MPP-polynomial as follows:

<MpP Poly> :: <MPP Number> | <MPP PrototypedPoly>
| <MPP TreePoly>

3.2.1 MPP-numbers

mppP-numbers form the leaves of MpP-polynomials. If not
further specified by a prototype annotation, MPP-numbers
are sent as node packets (i.e. with headers). More precisely,
we define

<MPP Number> :: <MPP Integer> | <MPP Rational> |
<MPP Float> | <MP_Constant>

<MmpP Integer> :
<MP_ApInt>

<MPUint32> | <MP_Sint32> |

<MPP Rational> :: <MPP Integer> | <Cop(Div)><MPP
Integer> <MPP Integer>

<wmppP Float> :
<MP_ApReal>

<MP_Real32> | <MPReal64> |

where <Cop(Div)> denotes a common operator packet with
the (common) operator Div, and the prefix MP_ denotes MP
node packets for the respective types.

The different MPP-number types are defined as values for
common meta types in the MPP dictionary. We may then
refer to these subsets of node packet types within prototype
annotations.

3.2.2 wvPP-prototyped polynomials

We refer to the encoding of dense-distributive, dense-
recursive, sparse-distributive, and sparse-recursive polyno-
mial representations as MPP-prototyped polynomials be-
cause they each have a prototype annotation specifying
the syntax (and part of the semantics) of the polyno-
mial data. We identify these encodings through the
common operators MPP_DenseDistPoly, MPP_DenseRecPoly,
MPP_SparseDistPoly, MPP_SparseRecPoly.

The semantics of the polynomials is only well-defined
if the prototype specifications are of a certain structure.
For example, for the dense-distributive encoding, it must
be specified (at prototype specification time) that each ar-
gument of the MPP_DenseDistPoly operator is a list of two
elements (i.e. a monomial), where the first element is a type
specification (giving the type of the coefficients) and the sec-
ond element is a fixed-length list of, say, n IMP_Sint32s (i.e.
there are n variables whose exponents are communicated as
a vector of signed 32-bit integers). The prototypes for the
other polynomial encodings can be described similarly as
can be seen from figures 2 - 5.

It should be noticed that these prototypes completely
define the structure of the polynomial data in such a way
that no further node packets are used in order to commu-
nicate the value of the exponents (i.e. all exponents and, if
necessary, variable numbers and list lengths are sent with-
out packet headers). This is the key for efficient polynomial
communications, since exponent values typically form the
majority of the polynomial data.

An obvious alternative to using prototypes is to define
the polynomial representations statically (i.e. off-line), as
done by PossoXDR, and require that applications supply
compiled routines capable of reading and writing these fixed

representations. This has the advantage of being quite fast,
but at the cost of generality. The advantage of always in-
cluding a prototype that provides, among other things, syn-
tactic information, is that a system implementing MP does
not need to know anything about the specifications in the
MPP dictionary and can nevertheless at least parse, display,
manipulate, and resend the polynomial data'. Furthermore,
as the timings in section 5 illustrate, prototypes do not de-
grade performance. The cost of transmitting the prototype
is negligible and with the support of specialized routines
which provide high-efficiency parsing for certain representa-
tions (like those provided in the MPP library), the reading
and writing of polynomials described by the prototype is
as efficient as a compiled routine for a fixed representation.
Prototypes only incur a performance penalty in the case
where an application knows nothing of the dictionaries in-
volved and must rely solely on the prototype to correctly
read in the data - essentially behaving like an interpreter.
In contrast, an application that receives, but does not un-
derstand, a statically defined object has no hope of properly
reading in the data.

With the prototype specifications at hand, it is straight-
forward to define the actual interpretation of the polynomial
data as is evident from figures 2 to 5.

One component of each encoding’s prototype is a speci-
fication of the type of the coefficients, which can be proto-
typed to be a

MPP-prototyped polynomial Using this mechanism, we
can easily and conveniently build polynomial exten-
sions (or polynomial “towers” as they are called by

PoSSo).

MPP-number As explained above, MPP-numbers are proto-
typed using the respective meta types and are sent as
node packets (i.e. with headers). This is useful for
coefficient domains where the elements may have dif-
ferent encodings, depending on their particular value
(e.g. rational numbers).

basic number type specification This specifies that the
type of the coefficients is one of the MP basic number
types and the coeflicients are sent as data packets (i.e.
without headers). This is useful for coefficient domains
where all elements have the same encoding (like Z/p
for small p). Notice that in this case the prototype
completely specifies the syntax of the polynomial data,
allowing it to be sent as a single data packet.

Besides being a syntax specification, a coefficient prototype
specification also defines the mathematical coefficient do-
main of a polynomial.

3.2.3 wmPP-expression tree polynomials

As one would expect, an MPP-expression tree polynomial (or
tree polynomial) is an MP tree representation for a polyno-
mial constructed from MPP-identifiers, MPP-numbers, and
the MP common operators Add, Mult, and Pwr. In order
to develop conversion routines from the tree representation
into one of the prototyped representations which does not
require (polynomial) arithmetic operations, it is necessary
to further specify the syntax of MPP-tree polynomials. In
other words, the syntactic specification of naive polynomi-
als given here describes the (sub) trees of an MP tree which

1Our thanks to Dan Grayson for stressing the importance of this
point to us.

can be converted into a prototyped polynomial specification
by purely syntactic means.
Hence, we define

+

<MPP TreePoly> :: <Term> | <MPP TreePoly>
<Term> | <MPP TreePoly> % <PP>

<PP> : <MpP-identifier> |
<MP_Sint32> | <PP> * <PP>

<MPP-identifier>

<Term> :
<PP>

<MPP-number> | <PP> | <MPP-number> *

where <MPP-identifier> is either an MP_Identifier or an
MP tree specifying an indexed identifier, and the symbols
“+ = *” are shorthands for the respective MP common
operators.

For example, the tree corresponding to x* (2*y+4) would
be an MPP-tree polynomial, whereas the tree corresponding
to 2*x*(y+2) would be considered as the product of two
MPP-tree polynomials (namely, 2*x and y+2).

3.3 Polynomial annotations

We refer to annotations attached to MPP-polynomials (or
MPP-polynomial type specifications) as polynomial annota-
tions. Within the MPP dictionary, we currently have the
following polynomial annotations defined:

Annotation type | Used to specify |

MPP_VarNumAnnot
MPP_VarNamesAnnot
MPP_OrderingAnnot
MPP_WeightsAnnot

number of variables

names of variables
monomial orderings
weights for orderings
MPP_DefRelsAnnot polynomial relations
MPP_IrreducibleAnnot irreducibility
MPP_ModuleVectorAnnot | module vectors

Polynomial annotations provide additional semantic in-
formation. They can be used, for example, to specify prop-
erties of the ring over which the polynomials are defined. All
polynomial annotations are valuated (except the irreducibil-
ity annotation) and supplemental (except the module vector
annotation).

3.3.1 VarNumber and VarNames annotations

The argument of the MPP_VarNumAnnotis an MP_Uint32spec-
ifying the number of variables of a polynomial. Although
this information is implicitly encoded in the prototype spec-
ification or in the polynomial data, it is often advantageous
to have that information available before starting to read
the data.

The argument of the MPP_VarNamesAnnot is either an
MPP-identifier or a list of MPP-identifiers. If a polynomial

has n variables, say zi,...,z,, and m variable names, say
V1, ..., Um were supplied, then the variable z,_; is assigned
the name v,,,—;. Notice that m might be different from n

(in fact, it is perfectly valid to specify no variable names at
all) and that the variable names are assigned to the actual
variables starting at the “end” (for reasons apparent from
section 3.3.5).

3.3.2 ordering annotation

This annotation is meaningful only to MPP-distributive poly-
nomial operators and specifies the ordering of the monomi-
als. The meaning of the polynomial data is undefined should

the monomials not be in the specified order. We refer to the
argument of the MPP_OrderingAnnot as an MPP-ordering.

Monomials form a semi-group w.r.t. multiplication. Rob-
biano ([14]) proved that any semi-group ordering can be de-
fined by a real valued matrix. Hence, from a general mathe-
matical point of view, it would be sufficient to restrict MPP-
orderings to matrices. However, not only do most systems
to date not support matrix orderings, it is also customary
and convenient to refer to commonly used orderings by more
compact means.

Hence, we propose an encoding of MPP-orderings which
compactly encodes a wide variety of commonly used mono-
mial orderings, and is rich and general enough to express
any monomial ordering. For this purpose, we define an
MPP-ordering to be either a simple complete MPP-ordering
or an MPP-product ordering. We further define a simple
MPP-ordering to be a simple complete MPP-ordering or an
incomplete MPP-ordering.

A simple MPP-ordering is encoded by an MP_Uint32 which
can itself have an additional valuated annotation of the type
OrderingWeights whose argument may be either a list or a
matrix of MP_Sint32s. We currently have the following sim-
ple MPP-orderings defined:

[ordering | annotation |
simple complete orderings
lexicographical none
negative lexicographical none
degree lexicographical weights (opt)
negative degree lexicographical weights (opt)
degree reverse lexicographical weights (opt)
negative degree reverse lexicographical | weights (opt)

matrix ordering matrix
incomplete orderings

weight vector weights

increasing module components none

decreasing module components none

An MPP-product ordering is encoded as a list whose el-
ements are triples <simple MPP-ordering, n, m >, where n
and m are encoded as MP_Uint32s and denote the subsets of
variables covered by this component of the ordering. There
is also the requirement that there exist a sequence of com-
plete MPP-orderings which covers all variables of the poly-
nomial.

This encoding of monomial orderings is very general and,
for example, is able to encode the monomial orderings of
SINGULAR, Macaulay [3], GB [7], and PoSSo [1].

Since this short treatise on monomial orderings is proba-
bly folklore for the Grobner basis folks, but may be too brief
for others, we refer both parties to [2] and [12] for further
details.

3.3.3 irreducible annotation

This annotation simply serves as a flag indicating the “ir-
reducibility” of some object. Its precise meaning depends
on the type of the object to which it is attached. If given
to polynomials, it obviously means that the polynomial is
irreducible. If given to an MPP-integer it specifies that the
integer is prime. If given to an MPP-rational, it means that
the rational number is normalized (i.e. the numerator and
denominator have no common divisor). When this annota-
tion is attached to some data which is “reducible” (i.e. does
not have the claimed property), the meaning of the data is

undefined.

3.3.4 defining relations annotation

The MPP_DefRelsAnnot annotation specifies mathematical
equivalence relations. Again, its precise meaning depends on
the type of the object to which it is attached. Tts argument
may be an MPP-integer, a univariate polynomial, or an ideal.

If this annotation has an MPP-integer as its argument,
say p, and is attached to an MPP-integer (or an MPP-integer
type specification), then the integer(s) are considered to be
from the mathematical domain Z/p.

If this annotation has a univariate irreducible polynomial
as its argument, say f(z), and is attached to a polynomial
(or a polynomial type specification), then the polynomial(s)
are considered to be polynomials from a ring over the alge-
braic extension with f(z) as its minimal polynomial.

Similarly, if this annotation has an ideal as argument,
say I, and is attached to a polynomial (or, a polynomial
type specification), then the polynomial(s) are considered
to represent equivalence class(es) from the residue class ring
modulo 7.

3.3.5 vector module annotation

Polynomial vectors form a free module over a polynomial
ring which is generated by canonical base vectors e to ey.
Hence, an element of this module is a sum of products of
a monomial m; with an e; and can therefore be considered
as a list of pairs (i, m;) and encoded as “polynomial” with
an additional variable which has a special meaning: its first
exponent 2 is considered to be the index of the base vector
e;. Furthermore, monomial orderings can be generalized
to include this special variable (see the module component
orderings).

Hence, if the MPP_ModuleVectorAnnot is attached to an
MPP-polynomial, then this “polynomial” encodes an element
of a free module where the exponent : of the first variable en-
codes the base vector e;. Since this fundamentally changes
the semantics of the data, the “understanding” of this an-
notation is essential and the annotation Required flag is set.

3.4 Encoding of polynomial structures

Experience with systems in the fields of algebra and alge-
braic geometry (like Macaulay) show that polynomial matri-
ces can be used to express most of the mathematical objects
occurring in those fields (e.g. ideals by their generator’s (1
x n) matrix, modules by their presentation matrix, etc.).
However, there are also stronger-typed systems which do
not take such a general approach to polynomial structures,
but distinguish between, say ideals, modules, and matrices
(for example, Macaulay 2 [11], CoCoA [5], SINGULAR).

In order to support stronger typed systems as well, we
follow their approach and provide mechanisms to distin-
guish polynomial structures by their encoding: different
MPP-operators are defined which have MPP-polynomials as
arguments and, from an encoding perspective, simply group
MPP-polynomials together. However, there is an important
semantic requirement for MPP-polynomial structures which
distinguishes them from other structures: there must exist
a polynomial ring such that all the polynomial arguments
of an MPP-polynomial structure are elements of this ring.
Otherwise, the semantics of the data are undefined. For ex-
ample, a list may consist of polynomials from Z/5[z] and
Q[z], whereas an ideal may not.

Currently, we have the following operators for polyno-
mial structures defined:

MPP_Vector: The polynomial arguments form a vector over
a free module (for another encoding see section 3.3.5).

MPP_Ideal: The polynomial arguments are the generators
of an ideal.

MPP_Matrix The number of polynomial arguments of this
operator is the total number of elements of the ma-
trix. For row-major (resp. column-major) matrices,
the row (column) dimension is given by the valuated
annotation NumberOfRows (resp. NumberOfColumns).

MPP_Module The polynomial vector arguments of this op-
erator are the generators of a sub-module of a free
module.

It should be noticed that the homogeneity of the polyno-
mial arguments of those structures can be used to efficiently
encode them by attaching the appropriate prototype anno-
tation to the structuring operator. This prototype speci-
fication then consists of the polynomial operator (such as
MPP_DenseDistPoly) together with its annotations. Hence,
the headers of the argument MPP-polynomials together with
their annotations only need to be communicated once with
the operator of the polynomial structure, instead of with
each polynomial.

Properties of polynomial structures can be communi-
cated using well-defined MPP-annotations. For example:

| annotation | attached to | value | explanation

MPP_IsPrime | MPP_Ideal |mnone is a prime ideal
MPP_Dim MPP_Tdeal |MP_Uint32 (Krull-)dimension
MPP_IsGB MPP_Ideal |MPP-ordering | generators form
MPP_Module a Grébner basis
w.r.t. ordering

3.5 Polynomial functions

Polynomial functions are encoded using MPP-operators. The
mappings between the mathematical functions and MPP-
operators is defined by the entries in the operator part of
the MPP dictionary. Each entry includes a description of the
function, as well as a specification of the number and types
of valid arguments.

For example, the operator MPP_Factor represents the fac-
torization of a polynomial and takes one MPP-polynomial as
its argument, while MPP_GB represents the standard basis
computation and takes two arguments, an MPP-ideal or an
MPP-module, and an MPP-ordering.

4 MPP Interfaces

4.1 The mpP library

The MPP library aids the implementation of interfaces to
the MPP dictionary. It includes a general parser for MP
trees which reads MP data from an MP link and builds the
respective MP trees in memory. This has the advantage that
an application can then “walk” through the tree to extract
data in any order it wishes and can manipulate the tree
before or while parsing it.

The MPP library has special data structures for the dif-
ferent encodings of MPP-polynomials. Based on these data
structures, MPP-polynomials can be efficiently and conve-
niently read in, stored, and manipulated. Routines are pro-
vided for converting between the different encodings.

As a result, the library may be used by an application
as a “black box”, which reads in the data from the MP link
and provides MPP-polynomials in the requested encoding,
transparently performing any necessary transformations.

4.2 Implemented MPP interfaces

The main algorithms in SINGULAR are centered on Grébner
and standard bases computations. SINGULAR uses a dense
distributive polynomial representation and is very flexible
with regard to monomial orderings. FEach polynomial ob-
ject within SINGULAR belongs to a certain base ring which
determines how the object is handled. SINGULAR, which
was originally designed as an interactive system, can now
also act as a compute server through its MPP interface.

SINGULAR always sends polynomials using the dense dis-
tributive encoding and the corresponding ring properties are
sent as polynomial annotations (variable names, monomial
ordering, coefficient domain, etc.).

Reading MPP dense-distributive polynomials (or polyno-
mial structures containing only polynomials in this repre-
sentation) is done directly from the MP link, where the an-
notations and their values are used to constitute a new ring
(if they are not compatible with the current global ring).
Missing information is recomputed or set to default values.
Other MP data is read from the link into the memory rep-
resentation of MP trees using routines from the MPP library.
After the transformation of all polynomial subtrees to the
dense-distributive encoding, the tree is converted to SINGU-
LAR data structures.

FACTORY is a general C++ class library of polynomial
algorithms for factorization, greatest common divisor, sub-
resultants, etc. It uses a sparse-recursive representation of
polynomials internally and naturally uses this representation
to send polynomials.

Receiving is done via the utility routines of the MPP li-
brary which are used to build an MP tree in memory and
transform all polynomials into the MPP sparse-recursive rep-
resentation. FACTORY does not have the need for a fully
specified ring in order to handle polynomial data (e.g. vari-
able names and other properties might be missing) which
eased the implementation of the interface. Overall, the de-
sign of FACTORY as a general library provided very conve-
nient tools to implement its MPP interface. We expect that
this will also apply to implementations of MPP interfaces to
other general polynomial libraries (such as Saclib).

Mathematica’s data is mainly expression trees which can
be sent and received via MathLink (see section 6 for a dis-
cussion of MathLink). We used MathLink to send data from
Mathematica to a small C program, mlmp, which served as
a MathLink-MP converter.

The conversion of a MathLink expression tree to an MP
tree is done in a straightforward fashion by recursing the
tree: each time a MathLink token is received by mlmp, a cor-
responding MP node packet is written to the MP link. Since
Mathematica communicates polynomials as general expres-
sion trees over MathLink, mlmp simply passes them on as
such through MP. In other words, polynomials are sent in
the MPP-expression tree encoding.

On the receiving side, mlmp uses the MPP library sim-
ply as a “black box” which reads the data from the MP link
and transforms all MPP-prototyped polynomials into the cor-
responding MPP-expression tree encoding. Afterwards, the
data is sent to Mathematica as a corresponding MathLink
expression tree using the mlmp converter.

The handling of annotations and of the somewhat simi-
lar Mathematica concept of “rules” was more complicated.
Within MP, a node header provides information about the
number of annotations attached to a node and those an-
notations immediately follow the node header (i.e. before
the arguments, if it is an operator), while in Mathematica

expressions, rules occur as additional arguments to the oper-
ator and can only be detected by preparsing the arguments.

Through its MPP interface, each of these systems can
exchange data with any other system implementing the in-
terface providing some of their functionality to each other.
This achieved one of our main goals: connectivity.

5 Timings

The total time to exchange data between cooperating pro-
cesses is the sum of the transmission and transformation
times. The transmission time depends on the data size
and the communication medium. In our context, the trans-
formation time is the time required for MP buffering, the
en/decoding of MPP data, and conversions from/to an ap-
plication’s internal data structure. Since this has been the
focus of our work, our timings measure transformation costs
only, excluding system time devoted to I/O (we used files)
and are independent of the communication medium.

The timings in tables 1 and 2 are in seconds and were
were taken on an RS/6000 Model 360, running ATX V 3.2.5,
with MP 1.1, SINGULAR 0.9.2, FACTORY 1.0, and Mathe-
matica 2.2 for the ideal represented by the 268 elements of
the degrevlex Grobner basis of (153y7,z4 + 9% + 5t21:4y2 +
ZthyQ z3, 215215;114 +7tzy6 + 9y8 +2t2z2yz3, 3t4x2y322 + 9z8,
322y +¢° + 52*).

SINGULAR FACTORY MMA
Object copy 0.70 1.93 -
Object size (3.3) (9.1) (9.7)
Sending
ASCIT 8.72 12.69 71.9
(size) (1.7) (1.7) (1.7)
MP “native” 0.68 4.50 55.6
(size) (1.9) (2.1) (5.7)
Receiving
ASCII 70.4 70.4 115
MP-ExprTree | 40.3 40.1 89.5
MP-SR 4.11 24.7 92.7
MP-DD 1.13 34.6 91.9

Table 1: Timings for Q[t,x,y,z] (58,962 monomials)

SINGULAR FACTORY MMA
Object copy < 0.1 0.41 -
Object size (0.25) (1.89) (2.1)
Sending
ASCIT 1.01 1.59 15.3
(size) (0.25) (0.25) | (0.25)
MP “native” | 0.11 0.80 6.77
(size) (0.29) (0.43) (1.2)
Receiving
ASCIT 9.77 13.4 14.7
MP-ExprTree | 6.38 10.0 9.31
MP-SR 0.64 3.60 10.1
MP-DD 0.12 3.00 9.85

Table 2: Timings for (Z/32003)[t,x,y,z] (14,782 monomials)

“Object copy” is the time it takes for the system to make
an internal copy of the object and can be used as a yardstick
against which to compare the other timings.> “Object size”
is the size (in megabytes) of the internal memory represen-
tation of the object. The ASCII format is a straightforward

2We were unable to obtain this time for Mathematica.

string representation that includes all the operators. For
example, 3z% 4+ 1 would be the string “3%x~2+1”. The MP
“native” format is the MPP-polynomial representation native
to the sending application. SINGULAR’s native representa-
tion is dense-distributive, FACTORY’s is sparse-recursive, and
Mathematica’s is expression tree (recall that the sender al-
ways sends using its native representation).

The boldface entries under Receiving give the times to
receive polynomials in the system’s native representation.
In those cases, the data is read in directly from the MP link
with no intervening transformations. In the other cases,
the data is first read into the MPP data structures, then
transformed into the receiver’s native MPP encoding before
being converted into the system’s internal data structures.

As our results illustrate, the best times occur when send-
ing or receiving is done in the application’s native encoding.
Clearly this is because the transformation overhead is min-
imized in these cases. Indeed, in the very best case these
times are comparable to the “Object copy” times, making
our design and implementation appropriate for highly ef-
ficient communications like those required by parallel dis-
tributed computations. A comparison of the timings for
SINGULAR and FACTORY here raises an interesting point.
Unlike SINGULAR, FACTORY has no primitive tree manipu-
lation functions for building its data structures (everything
is encapsulated by constructors, iterators, etc.) and instead
builds them using polynomial arithmetic operations. This is
a more expensive method of constructing the internal data
structures and accounts for the differences in the ratio be-
tween the “Object copy” and receiving times.

When receiving involves transformations between pro-
totyped encodings, the worst-case time complexity of the
transformations is O(nlogn), where n is the number of
monomials. This is due to the possibility of having to re-
order the monomials. However, as the timings verify, the
performance penalty is not too great.

When receiving involves transformations between proto-
typed and expression tree encodings, the worst case time
complexity of the transformations is not necessarily greater
than that for transformations between prototyped encod-
ings. In practice, however, the additional overhead of the
syntactic manipulations lead to a greater cost, as the tim-
ings show.

Lastly, the difference between the times for the expres-
sion tree and ASCII encodings is mainly attributable to two
factors: first, to the cost of string handling operations and,
second, to the polynomial arithmetic operations which must
be used to build the internal data structures.

6 Related Work

Currently there are several protocols in use that communi-
cate mathematical expressions.

MathLink [17] transmits expressions as linearized trees.
It includes a library of C routines to send and receive terms
of the expression. There is no real notion of an annotation
built into MathLink, but it would be possible to send addi-
tional information via strings embedded within an expres-
sion. MathLink has no equivalent to the idea of a dictionary
and there is no other support for providing shared semantics,
so the interpretation of an expression is left to the receiver.
Although MathLink is packaged with Mathematica and has
a set of Mathematica-specific routines, it is a general proto-
col that can be used independently of Mathematica.

ASAP (A Simple ASCII Protocol) [6] is a public do-

main mathematics protocol that exchanges expressions as

linearized, attributed trees. Contrary to its name, binary,
fixed precision integers can be transmitted, but most data
is transmitted as ASCII (cleartext) strings. Attributes are
similar to MP’s annotations, but lack flags providing further
information about the annotation. Like MathLink, ASAP
does not include the idea of a dictionary, relying on the user
to define the semantics of the expressions exchanged. Nei-
ther MathLink nor ASAP provide specialized encodings for
polynomials.

The POlynomial System SOlver (PoSSo) project [8], on
the other hand, is primarily devoted to polynomials and
includes a protocol, P0ssoXDR [1], defining the external
representation of the objects (PoSSo data types) manipu-
lated inside PoSSo processes. The encoding is an exten-
sion of the eXternal Data Representation (XDR) technol-
ogy. P0SSOXDR does not include annotations, nor a general
extension mechanism to support other kinds of mathemat-
ical objects. A limited form of a dictionary is available in
the sense that it is possible to define new types (described
in the Posso Data Description Language) and have them
registered with the PoSSo project for general use. How-
ever, commands in POSSOXDR are transmitted as data and
their meaning is specific to the sender/receiver pair. It was
felt that PossoXDR was inappropriate for our project be-
cause it is primarily a collection of data objects in support
of transmitting polynomials and is not a general protocol
for exchanging mathematical expressions.

These issues are also being considered as part of the
OpenMath effort and it is hoped that the lessons learned
with MP can contribute to that effort.

7 Conclusion and Future Work

The MPP dictionary and library accomplished the goals we
set out for them. Perhaps the single greatest barrier to pro-
viding connectivity is simplifying the view a software tool
has of the “rest of the world”. Clearly the more “stan-
dards” it must recognize, the larger and more complex the
interface must be. Using dictionaries appears to be a real-
istic way of tackling this problem. It provides a consistent
and extensible framework within which heterogeneous sys-
tems can exchange data with a shared understanding.

Also, we wanted to maximize efficiency, which is impor-
tant for high-speed communications, without sacrificing the
generality that is important to simplify building MPP in-
terfaces to different systems. This goal was mainly accom-
plished by supporting different polynomial representations
and a careful design of their (prototyped) MPP encodings.
This resulted in a “view” of polynomials that is general
enough to be compatible with most systems and yet effi-
cient enough for high-speed communications between ho-
mogeneous systems.

Based on this design, the MPP library eases the imple-
mentation of MPP interfaces by providing utility routines
for communicating and manipulating MPP-polynomials and
other MP data. Supporting multiple polynomial represen-
tations complicated the library and the implementation of
interfaces, but once the initial library implementation was
complete, the creation of additional interfaces was remark-
ably straightforward. The timings further validate the effi-
ciency aspects of our design.

Still, there is room for improvement and many avenues
to explore. We will refine and expand the MPP dictionary
and want to initiate an open discussion with a broader au-
dience regarding the dictionary’s contents and design. The
development of dictionaries in other areas of mathematics is

important as well. In general, the full power of the dictio-
nary idea needs to be explored.

The MPP library can be expanded and further optimized.
For example, the size of the polynomial expression trees
could be greatly reduced by taking advantage of the MP
common format and the set of MPP representations should
be extended to include straight-line programs in support of
“black-box” computations [13].

It is important to extend the number of systems that
have an MPP interface: we are especially interested in Saclib,
Macsyma, and Maple (but this is problematic for Maple
without easy access to its internals).

We are also very interested in exploring what might be
called “adaptive communication”. Recall that the total time
required to exchange data is the sum of the transmission
and transformation times. Optimizing for one may have a
deleterious effect on the other, and hence on the overall per-
formance. For example, generating an encoding that is more
compact may require extra processing time which may com-
pletely offset the gains made in transmission time. In the
future, we expect it will be possible for the sender to dy-
namically adapt to its computing environment by choosing
an encoding which takes into account the size and nature
of the data, the speed of the communication medium, as
well as the speed of the processors involved. With respect
to exchanging polynomial data using a transmission media
at least as fast as a LAN, our experiments have shown that
transformation costs usually dominate transmission costs.
However, further explorations have to be undertaken to see
how best to optimize overall performance.

In general, we feel it is important to “think distribu-
tively” and to design applications with connectivity in mind,
remaining aware of the benefits (and difficulties) of the dual
goals of generality and efficiency. Projects such as ours are
beginning to identify some of the areas where current design
paradigms should be rethought.

8 Availability

SINGULAR is available in binary format via anonymous ftp
from helios.mathematik.uni-k1l.de. The source for the
MP library is available from ftp.mcs.kent.eduin /pub/MP.
This includes the source and documentation for the MPP li-
brary. For more information on SINGULAR and FACTORY see
http://wew.mathematik.uni-k1.de/ wwwagag, and for MP
see http://symbolicnet.mcs.kent.edu/systems/mp.html.

Acknowledgments

The authors would like to thank Dan Grayson for his in-
sightful observations on certain aspects of MP and the de-
sign of the MPP dictionary, Ridiger Stobbe for his work on
the MPP-FACTORY interface, and Gert-Martin Greuel, Paul
Wang, and Norbert Kajler for their comments on earlier
drafts of this paper. The authors would also like to thank
G.-M. Greuel, G. Pfister, E. Hennig, and R. Sommer for

initiating our joint work.

References

[1] ABBOTT, J., AND TRAVERSO, C. Specification of the
POSSO External Data Representation. Tech. rep.,
Sept. 1995.

[2] BACHMANN, O., AND SCHONEMANN, H. A Manual for
the MPP Dictionary and the MPP Library. Reports

on Computer Algebra 4, Centre for Computer Alge-
bra, Department of Mathematics, University of Kaiser-
slautern, Jan. 1996.

[3] BAYER, D.; AND STILLMAN, M. Macaulay: A system
for computation in algebraic geometry and commuta-
tive algebra, 1992. Available via anonymous ftp from
zariski.harvard.edu.

[4] BERGSTRA, J., AND KLINT, P. The Discrete Time
ToolBus. Technical Report P9502, Programming Re-
search Group, University of Amsterdam, 1995.

[5] Capani, A., NIiEsI, G., AND ROBBIANO, L. CoCoA,
1995. see http://lancelot.dima.unige.it.

[6] DALMAS, S., GAETANO, M., AND SAUSSE, A. ASAP:
a Protocol for Symbolic Computation Systems. Tech.
rep., INRIA Technical Report 162, Mar. 1994.

[7] FAUGERE, J. Online documentation of GB. Available
from http://posso.ibp.fr/Gb.html.

[8] GONZALEZ-VEGA, L., AND REecro, T. The
PoSSo NEWSLETTER. Available electronically from
posso.dm.unipi.it, Mar. 1994.

[9] GrAY, S., KAJLER, N., AND WANG, P. S. Design
and Implementation of MP, a Protocol for Efficient Ex-
change of Mathematical Expressions. Journal of Sym-
bolic Computing.

[10] GrAY, S., KAJLER, N., AND WANG, P. S. MP: A
Protocol for Efficient Exchange of Mathematical Ex-
pressions. In Proc. of the International Symposium on
Symbolic and Algebraic Computation (ISSAC’94), Oz-
ford, GB (July 1994), M. Giesbrecht, Ed., ACM Press,
pp. 330-335.

[11] GRAYSON, D., AND STILLMAN, M. Macaulay 2,
1996. For further information contact the authors at
dan@math.uiuc.edu or mike@math.cornell.edu.

[12] GREUEL, G.-M., PFISTER, (3., AND SCHONEMANN, H.
Singular: A System for Computation in Algebraic Ge-
ometry and Singularity Theory. Department of Math-
ematics, University of Kaiserslautern.

[13] KALTOFEN, E. Greatest Common Divisors of Polyno-
mials Given by Straight-line Programs. Journal of the
ACM 35,1 (1986), 231-264.

[14] ROBBIANO, L. Term Orderings on the Polynomial Ring.
In Proceedings of EUROCAL 85, Lecture Notes in Com-
puter Science 204 (1985), pp. 513-517.

[15] STOBBE, R. FACTORY: a C++ Class Library for Mul-
tivariate Polynomial Arithmetic. Reports on Com-
puter Algebra 3, Centre for Computer Algebra, De-
partment of Mathematics, University of Kaiserslautern,
Jan. 1996.

[16] SUNDERAM, V. PVM: A Framework for Parallel Dis-
tributed Computing. Concurrency— Practice & Fxperi-
ence 2 (1990), 315-339.

[17] WOLFRAM RESEARCH, INC. MathLink Reference Guide
(version 2.2). Mathematica Technical Report, 1993.

