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1 Introduction 

Mass spectrometry in combination with optical spectroscopy has proven to be a powerful tool 

to study the intrinsic properties of isolated ionic molecular systems, such as their  

structure[1-9], reactivity[10-15], catalytic activity[16-22], absorption[23-31] and magnetism[32-48]. 

Several techniques have been developed for the ionization of samples or the transfer of ionic 

species into the gas phase for subsequent examination, e.g. laser vaporization sources (LVAP) 

[32, 33, 49-53], matrix assisted laser desorption/ionization (MALDI)[54-56], and most notably the 

electrospray ionization[57-60] (ESI) technique. ESI is a popular soft ionization technique, allowing 

e.g. for the transfer of intact metal complexes, reaction intermediates and thermally labile 

biomolecules into the gas phase. 

Transition metal complexes exhibit diverse optical, catalytic or magnetic properties making 

them indispensable in synthesis or various industrial and medical applications. They are used 

in homogenous catalysis[61], in chemical industry and research, or as pharmaceuticals[62, 63] in 

the treatment of e.g. cancer. The applicability of metal complexes depends heavily on their 

stability, reactivity, binding motifs etc., which are dictated by the molecular geometry. Hence, 

the elucidation of the molecular structure is essential to gain fundamental insight into the 

intrinsic properties of metal complexes. 

Infrared absorption spectroscopy is commonly applied in order to obtain structural 

information on molecular systems in the gas phase. However, due to the typically low particle 

density in the gas phase, measuring absorption spectra by directly detecting the attenuation 

of incident light is not possible. Instead, an action scheme, the so called infrared (multiple) 

photon dissociation (IR(M)PD) spectroscopy is used.[1-3, 5, 16, 64] Infrared photons are absorbed 

resonantly and excite particular vibrations within the molecule. The received energy is spread 

across the whole molecule via internal vibrational redistribution (IVR), allowing for re-

excitation of the same vibrational coordinate. This process is repeated until a dissociation 

threshold of the molecule is overcome and the ion fragments. The low density of vibrational 

states in small systems can impede IVR, and together with vibrational anharmonicities, results 

in a bottleneck for multiple photon absorption and hence for dissociation.[65, 66] Large 

molecules and clusters have generally large heat capacities and may require more laser power 
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for weaker bands to appear in IRMPD spectra.[67] The resonant two-color IRMPD technique 

enhances fragmentation efficiencies and thus, may reveal otherwise “dark bands”.[66, 68] 

To gain structural information from experimental IRMPD spectra, comparison to calculated IR 

absorption spectra is required. For this purpose, density functional theory (DFT) has proven 

to produce reliable linear harmonic absorption spectra at low cost.[69, 70] 

The magnetic properties of a sample strongly correlate with surrounding of molecular units. 

In solid state physics, for example, the magnetism is based on the spin (intrinsic angular 

momentum and an additional angular momentum induced by the spatial motion of electrons), 

long range magnetic order and their respective coupling.[71] For transition metals (bulk 

ferromagnets Fe, Co, Ni), the bulk magnetism is dominated by the spin magnetic moment, as 

the orbital magnetic moment is often quenched by orbital hybridization and reduced 

symmetry.[72] Reducing the size of the investigated system, i.e. going from bulk to transition 

metal clusters down to the single atom, the orbital moment is gradually restored.[34] Single 

Molecule Magnets (SMM) provide another highly interesting form of magnetism, as their 

magnetic properties, including high magnetic moments and anisotropy barriers, do not 

originate from long range magnetic ordering, but are intrinsic properties of the individual 

molecule.[73] X-ray magnetic circular dichroism (XMCD) spectroscopy in combination with sum 

rule analysis allows for an element selective detection and assignment of spin and orbital 

contributions to the magnetic moment.[74, 75] The technique was initially applied to surface 

samples, thin films and deposited clusters,[76-79] and in the recent past successfully extended 

to gas phase experiments, allowing for the investigation of magnetic moments devoid of 

environmental influences.[32-35, 41, 47, 48, 80, 81] Recently, a first proof-of-principle study on the 

model SMM Mn12-acetate in the gas phase confirmed the XMCD signature of bulk 

measurements.[82] Building on the success of our previous gas phase XMCD experiments, we 

present expanded investigations on further mono- and multimetallic metal complexes.  

This thesis comprises four independent research projects (chapters 3 to 6) using XMCD 

spectroscopy, IRMPD spectroscopy and DFT calculations for magnetic and structural 

characterization of isolated gaseous ions. All chapters are prepared as manuscript for 

publication, containing a preamble that declares the individual contributions of the co-authors 

to the projects. 
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The experimental setups and methods are introduced and explained in detail in chapter 2. 

This includes the different ESI sources, ion trap mass spectrometers, photon sources via table-

top laser and synchrotron, as well as the spectroscopic (IRMPD, XAS, XMCD) and theoretical 

(DFT) methods employed. Chapter 3 deals with XMCD spectroscopic investigations on a set of 

isostructural trinuclear heterobimetallic complexes containing two manganese(II) and a 

lanthanide(III) metal centers. We address the element selective contributions of the spin and 

orbital magnetic moments quantitatively and compare the results to magnetic data obtained 

by bulk magnetometry. Chapter 4 presents the characterization of an iron(II) Spin-Crossover 

complex by temperature dependent XMCD spectroscopy in the gas phase and DFT modeling. 

Chapter 5 reports on the structural elucidation of self-assembled aggregates of (methylated) 

nucleobases and tetracyanoplatinate(II) by two-color IRMPD spectroscopy in conjunction with 

DFT calculations. Chapter 6 elucidates the gas phase structures of some selected fluorescein 

derivatives in different charged states by IRMPD spectroscopy together with DFT 

computations. A summary of the results is given in chapters 7 and 8. 
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2 Experimental Setup and Methods 

2.1 Electrospray Ionization (ESI) 

The Electrospray ionization (ESI) allows for a gentle transfer of ions from the solution into the 

gas phase. The fundamentals for this method have been described by ZELENY in 1917 and 

realized by DOLE 1968.[1, 2] First experiments were conducted with heavy molecular ions like 

polystyrenes or lysozyme, but the mass – charge ratio was not resolved by the used mass 

spectrometers. YAMASHITA and FENN combined the ESI-source with a quadrupole mass 

spectrometer and FENN was rewarded with the Nobel Prize for the application.[3-6] The ESI 

technique was initially used in analyses of biomolecules and proteins, but has become a 

valuable tool in mass spectrometry in all scientific fields.[7-11]  

 

 
Figure 1:[12] Schematic depiction of an ESI source, operated in positive ion mode.  

 

In the ESI process, a solution of a sample is pinched through an electroconductive capillary by 

a syringe pump. The capillary itself is held on a potential of some kV with respect to the 

counterelectrode. The strong electric field causes a charge separation in the electrolyte and 

the ions of the corresponding polarity approach the liquid surface.[13] The emerging liquid jet 

is deformed to the so called TAYLOR-cone.[1, 14] By the interplay of viscosity and surface tension 

the liquid jet becomes instable and breaks into small droplets. The size of the droplets depends 
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on parameters like the difference in potential, flow rate and type of solvent etc.[13, 15] 

According to the polarity of the applied potential, the droplets provide a surplus charge. The 

coulomb repulsion causes a divergence of the droplets. By evaporation of solvent molecules, 

the diameter of the droplets decreases steadily and the surface charge density increases up 

to the so called Rayleigh limit. The Coulomb repulsion exceeds the surface tension and the 

droplets disintegrate into much smaller droplets.[12, 13] This process is repeated several times 

until the droplets are nanometer-sized (cf. Fig. 1). The release of the ions into the gas phase is 

discussed in three different models.[12]  

 

 

Figure 2: Schematic depiction of the discussed ESI models. 

 

In the ion evaporation model, small ions are directly emitted from the surface of the 

nanodroplets due to the exalted charge density (cf. Fig. 2A).[12, 16, 17] 

In the charge residue model, small nanodroplets provide single ions and the solvent 

evaporates successively, leaving the bare ions in the gas phase (cf. Fig. 2B).[2, 18, 19]  

The chain ejection model describes the transfer of unfolded proteins from the solution into 

the gas phase. Nonpolar domains that are directed to the inside of the protein in the folded 

state interact with the solvent and approach the droplet surface. The protein is ejected step 

by step from the droplet into the gas phase (cf. Fig. 2C).[12, 20, 21] 
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It should be mentioned, that the term ionization may be misleading. The process does not 

describe an ionization process in the proper meaning of the word, but rather a transfer of 

ions from a solution into the gas phase.  

 

2.1.1 The Apollo II ESI Source 

The Bruker Apollo II ESI source serves to transfer the ions from the solvated state into the gas 

phase. The source consists of the spray needle, the spray chamber and the transfer capillary 

(cf. Fig. 3). 

 

 

Figure 3:[22] 3D-model of the Bruker Apollo Electrospray Ionization (ESI) source.  

 

The sample solution is injected into the spray needle using a syringe pump. The nebulizer gas 

(nitrogen) is used to nebulize the solution to an aerosol and provide a constant ion current. 

The dry gas (nitrogen) is used to reduce the solvents’ droplet size. Neutral particles and solvent 

molecules are drained by the waste pump. A kV potential is applied to the spray shield in order 

to attract the charged droplets and ions from the spray needle. The polarity of the potential 

is adapted to the polarity of the species of interest – anions or cations. Another potential of 

500 V is used to focus the ions to the aperture of the transfer capillary or inlet capillary. The 

capillary serves to transfer the ions from the chamber at ambient pressure to the first vacuum 
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stage of the mass spectrometer and represents a barrier between two pressure areas. The 

internal diameter and the length of the inlet capillary define the gas flow and hence the 

pressure of the first vacuum stage. The tails of the capillary are metal coated in order to enable 

a voltage gradient for the ion transfer.  

 

2.1.2 The Custom-Built ESI source 

The ion source for the X-ray magnetic circular dichroism (XMCD) experiments is different to 

the commercially available Apollo II ESI source described in chapter 2.1.1. The custom-built 

ESI was provided by the group of Thomas SCHLATHÖLTER (Zernike Institute for Advanced 

Materials, University of Groningen, The Netherlands).[23] The main components are the spray 

needle (stainless steel), the transfer capillary (stainless steel) and the radio frequency (RF) ion 

funnel. The spray needle is located on a x,y,z translation stage in order to allow for an 

optimization of the needle position resulting in a maximum ion signal intensity. A high voltage 

of 3 to 5 kV is applied to the spray needle to form the TAYLOR-cone and enable optimum spray 

conditions. The generated ions are transferred into the vacuum by the transfer capillary, which 

is heated by a constant voltage of 10 to 30 V. After the capillary, the ions are captured by a RF 

operated ion funnel consisting of 26 ion lenses with tapering diameter. The RF voltage has a 

frequency of approx. 250 kHz and a peak to peak amplitude of 250 mV. The RF field is 

superimposed on a constant potential gradient, decreasing from 120 V on the first ion lens to 

30 V on the last ion lens. After the ion funnel the ions are directly forwarded to the first 

hexapole ion guide of the NanoCluster Trap (cf. chapter 2.2.2). The samples are injected by a 

syringe pump at a flow rate of about 0.2 ml/h. In contrast to the Apollo II ESI source, no 

nebulizer or dry gas is used in the custom-built ESI source.[22] 
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2.2 Ion Trap Mass Spectrometers 

2.2.1 The Bruker amaZon SL mass spectrometer 

A modified Bruker amaZon SL mass spectrometer was used for the InfraRed multiple photon 

Dissociation (IRMPD) experiments. The main parts of the spectrometer are shown in Fig. 4. 

 

 

Figure 4:[22] The Bruker amaZon SL mass spectrometer. 

 

 

The vacuum system  

The ion transfer into the gas phase occurs in the spray chamber at ambient pressure, the mass 

detection occurs at a high vacuum in the range of 10-6 mbar. The amaZon SL is differentially 

pumped in four stages to bridge almost nine orders of magnitude pressure differences.  

The ions and the spray gas enter the mass spectrometer via the inlet capillary. The tiny inner 

diameter allows for a backing pump to maintain an equilibrium pressure of a few milibars (cf. 

Fig. 5). The next vacuum stage is separated by a skimmer, evacuated by a split-flow 

turbomolecular pump. Both following vacuum stages, which are separated by skimmers, are 

connected to the split-flow turbomolecular pump by different valves. This arrangement allows 

for a pressure of approx. 10-6 mbar in the fourth stage.  
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Figure 5:[22] Schematic depiction of the differentially pumped mass spectrometer.  

 

 

Double ion funnel and multipole ion optic 

The biggest challenge for mass spectrometers with atmospheric pressure ionization (API) is 

the transfer of the ions from ambient pressure to the first vacuum stage.  

 

 
Figure 6:[22] The double ion funnel.  

 

The double ion funnel is shown in Fig. 6. In contrast to common ion optics, the ion funnel 

focuses the ions from a large initial volume to a small outlet nozzle. The ions are focused 

regardless to their mass to charge ratio and a large tolerance with respect to their direction 
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of propagation. A radio frequency (RF) voltage applied to the stacked apertures of the ion 

funnel generates an effective potential trapping the ions in the funnel. The ion funnel is 

arranged off-axis to the inlet capillary to avoid contamination of the subsequent ion optics. 

Two adjustable direct voltages at the first and last aperture serve to guide the ions through 

the aperture at the funnel end. The funnel aperture itself defines the barrier to the next 

vacuum stage. An ensuing RF voltage operated multipole guides the ions via several focusing 

lenses into the ion trap. 

 

The ion trap: PAUL-trap 

The ion trap conduces to the trapping and mass detection of the ions. It consists of an ion 

conditioning unit, the actual ion trap and a detection unit (cf. Fig. 7). 

 

 
Figure 7:[22] Construction drawing of the PAUL-trap used in the Bruker amaZon SL 

mass spectrometer.  

 

The ion trap itself is composed of the entrance and exit cap and a ring electrode (cf. Fig. 8). 

The entrance and exit cap provide a pinhole to enable injection and ejection of the ions. The 

hyperbolic geometry of the electrodes generates a quadrupolar trapping potential, 

superimposed to higher order components. Helium is used to thermalize the ions and facilitate 

an efficient ion trapping. The Helium partial pressure is a sensitive parameter, affecting signal 

intensities and peak width. The Helium pressure is stabilized by a high precision proportional 

integral derivative (PID).  
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Figure 8: [22] Schematic depiction of a PAUL-trap.  

 

The ions are detected by a DALY-detector, consisting of an aluminium-coated steel electrode 

that generates secondary electrons at preceding ion impact. The secondary electrons are 

accelerated to a scintillator creating photons detected by a photomultiplier.[24] The DALY-

detector allows for the detection of anions and cations with a simultaneous minimization of 

mass distortion of electron multipliers.  

The ion trap has various tasks. The ions are accumulated, stored, isolated, excited, (collision 

induced dissociation, CID) and ejected for mass detection. The flexibility of PAUL-type traps 

offers several advantages in comparison to linear quadrupole instruments with respect to 

sensitivity and mass-selectivity.  

In the first part of the analysis cycle, the ions are accumulated in the ion trap. The continuous 

ion current has to be suspended for the subsequent mass analysis. A high voltage gate lens is 

used to deflect the ion current from the trap beyond the accumulation period. During the 

accumulation period a RF voltage of 781 kHz is applied to the ring electrode, the endcaps are 

grounded. The oscillating potential difference between the ring electrode and the endcaps 

generates a quadrupolar electric field. Ions of certain mass to charge ratios can be stored in 

the trap, depending on the RF voltage. The quadrupolar field can be compared to a three 

dimensional pseudopotential well, where the depth depends on the ion mass and the RF 

voltage. An auxiliary voltage applied to the endcaps in order to isolate, fragment and detect 

precursor ions and their fragment ions. Entering the trap, the ions lose kinetic energy by 

collisions with the Helium background gas and can be trapped in the ion trap. The trapping 
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efficiency depends on the m/z – ratio, the ion mass, the depth of the pseudopotential well 

and the phase of the RF voltage at the time of the injection. The accumulation time is typically 

in the range of 0.01 – 200 ms. 

 

 

Figure 9:[25] The time depending potential well of the RF is shown for (a) a phase 

angle of 90° where the ions are trapped in the radial-dimension but not in the 

axial-dimension, and (b) a phase angle of 270° where the ions are trapped in only 

the axial direction. An ion injected in the axial direction must have kinetic energy 

to overcome the potential barrier presented in (a), and contrarily should not have 

too much kinetic energy to be trapped if injected during situation (b).  

 

In order to enable IR photon irradiation of the trapped ions, the PAUL-trap was modified in 

collaboration with the manufacturer of the mass spectrometer Bruker Daltonic GmbH. Two 

holes of 2 mm in diameter (inner surface) and 6 mm (outer surface) were drilled into the ring 

electrode (cf. Fig. 10). The aperture at the inner surface was reduced to minimize Helium loss 

from the trap and the apertures are additionally used as iris for laser alignment.[26] The laser 

beam enters the vacuum chamber by a barium fluoride window (BaF2, W1, W2, cf. Fig. 10) 

attached to the vacuum chamber cover by Viton® gaskets. The beam of the tuneable IR laser 

(IRscan) is led vertically through the center of the ion trap to allow for a maximum overlap 

between laser beam and ion cloud. The laser beam is deflected by two silver mirrors (M1, M2) 

and diverted off the vacuum chamber passing the second barium fluoride window (W2). In 

the two color experiments, the IR laser beams (IRscan, IRfix) are arranged counterpropagating.  
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Figure 10:[26] Schematic depiction of the IR beam path through the ring electrode 

(RE) of the PAUL-trap. W1, W2: barium fluoride windows; M1, M2 deflection 

mirrors.  

 

 

2.2.2 The NanoCluster Trap setup 

The NanoCluster Trap is a custom-built ion trap mass spectrometer for gas-phase X-ray 

magnetic circular dichroism (XMCD) experiments. The setup was built by the groups of 

Thomas MÖLLER, Bernd von ISSENDORF and Tobias LAU and is operated and supervised by Tobias 

LAU at the UE52 beamline at BESSY II in Berlin. The required superconducting magnet was 

supplied by Akira TERASAKI.  

The NanoCluster Trap is a custom-built ion trap mass spectrometer to record total ion yield 

(TIY) gas phase X-ray absorption spectra (XAS) with linear polarized light, as well as XAS spectra 

with circularly polarized light for XMCD studies.[27-39] The ion source can be chosen among the 

Electrospray Ionization (ESI) source or a magnetron sputter source. The generated ions are 

transferred via a hexapole ion guide into a quadrupole mass filter (Extrel, 40 – 4000 amu), 

where the ion of interest can be mass selected (cf. Fig. 11). The selected ions are transferred 
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Figure 11:[40] Schematic drawing of the NanoCluster Trap setup, built by the groups 

of Thomas MÖLLER, Bernd von ISSENDORF and Tobias LAU, operated by the group of 

Tobias LAU at the UE52 beamline at BESSY II. The 5 T magnet superconducting 

magnet was provided by Akira TERASAKI. The ion source is not shown in the figure. 

 

via various electrostatic lenses into a quadrupole ion beam bender that bends the ion beam 

by 90 degrees onto the axis of the superconducting magnet and the X-ray propagation axis. 

The ion loss due to the deflection by the stray field of the magnet is partially compensated by 

the electrostatic lenses prior to the ion beam bender. After the bender, a quadrupole ion guide 

transfers the ions into the linear quadrupole ion trap (cf. Fig. 12). The trap is located in the 

high field region (5T) of the superconducting solenoid. Depending on the mass of the ions of 

interest, the ion trap is operated at frequencies between 2 and 4 MHz. The cooling of the ion 

trap is performed by evaporative liquid Helium cooling to temperatures of 3.5 – 4 K and the 

ions are cooled by collisional cooling at a constant Helium backing pressure of 10-7 to 10-6 

mbar. The effective ion temperature is higher at approx. 10 – 20 K, due to the RF heating from 

the operation of the ion trap.[35] The ions are ejected from the trap at a frequency of about 

100 Hz to the reflectron time of flight (TOF) mass spectrometer to record mass spectra. The 

X-ray beam enters the NanoCluster Trap setup at the quadrupole ion beam bender, passes the 

ion guide and irradiates the ions in the linear quadrupole ion trap. A GaAsP-diode is located 

at the reflectron stage of the TOF mass spectrometer to record the photon flux of the 

beamline for normalization of the XA spectra. Depending on the absorption edge and the 
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number of chromophores, the trapped ions are irradiated for 5 to 15 s at an exit slit width of 

200 to 500 µm at a certain photon energy. The resulting spectral resolution is in between the 

range of 0.5 to 2.5 eV. 

 

 

Figure 12:[40] Top: Schematic drawing of the cryogenically cooled quadrupole ion 

trap. It comprises four parallel rods (d = 6 mm, L = 25 cm) along with four shack 

fins (side electrodes). The fins generate a static potential gradient that pushes the 

ions continuously to the trap exit aperture, allowing for a more efficient emptying 

and trapping. The rods and side electrodes are made of non-magnetic 

molybdenum, since the trap is located in the high field region of the 

superconducting solenoid.  
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2.3 Photon Generation 

2.3.1 LaserVision Optical Parametric Oscillator / Amplifier IR Laser System 

The IR photons are generated via two LaserVision optical parametric oscillator / amplifier 

(OPO / A) systems, pumped by a Continuum Powerlite DLS 8000 Nd:YAG laser (cf. Fig. 13).[41-

44] The Nd:YAG laser has a repetition rate of 10 Hz and the pulse length of the fundamental 

beam (1064 nm) is approx. 7 ns. The pulse energy is in the range of 550 – 600 mJ/pulse. A 

beam splitter divides the fundamental beam into one third directed towards the OPO stage 

and two thirds directed towards the OPA stage. The OPO part of the fundamental is frequency 

doubled to 532 nm in a potassium titanyl phosphate crystal (KTP, second harmonic 

generation, SHG).[45] The non-converted fundamental beam is dumped, and the green 532 nm 

beam is used to pump the OPO stage. The optical parametric oscillator consists of two 

potassium titanyl phosphate (KTP) crystals and a resonator. The pumping frequency ν532nm is 

split into the signal and idler waves ν1,s and ν1,I and it is ν532nm = ν1,s + ν1,i. The energetic 

distribution of the signal and idler waves is tuned by the angle between the crystal and the 

incident pumping laser beam. The OPO generates idler radiation in the range of 

7400 – 4700 cm-1, and signal radiation in the range of 14000 – 11300 cm-1. 

 

 
Figure 13: Principle scheme of the LaserVision KTP/KTA OPO/OPA laser system, 

revealing the non-linear optical processes for the generation of IR photons. 
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In this regard the two OPO/A systems differ. One system is a narrowband system (nb) and one 

system is a broadband system (bb). An optical grating is used in the nb system to reduce the 

bandwidth of the signal and idler radiation (single mode operation, cf. Fig. 14). The nb system 

has a spectral resolution of less than 0.3 cm-1, the bb system 0.9 cm-1 though. 

 

 
Figure 14: Schematic representation of the beam path of the narrowband (nb) 

LaserVision OPO/OPA laser system. Inset: alternative OPO setup in the broadband 

(bb) system. 

 

The signal radiation ν1,s of the OPO stage is separated by a silicon filter in the BREWSTER angle 

and the idler radiation ν1,i directed to the OPA stage, where the fundamental ν1064nm is 

decomposed into a signal and idler wave. The amplification process does not require a 

resonator and the signal wave is represented by the OPO idler wave ν1,i.[46] The OPA stage 

consists of four potassium titanyl arsenate (KTA) crystals illuminated by the remaining two-

thirds of the ν1064nm beam collinear with the OPO idler wave ν1,i. The process generates the 

signal 2 (ν2,s) and idler 2 (ν2,i) waves, whereby the idler 1 wave corresponds to the signal 2 

(ν1,i = ν2,s). The Signal 2 is in the range of 7400 – 4700 cm-1 and the idler 2 is in the range of 

2700 – 2200 cm-1. Due to the energy conservation it is:  
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������� = �	,� + �	, = ��, + �	, = ���	�� − ��,� + �	,  (1) 

 

The idler 2 wave is suitable for IRMPD measurements in the stretching vibration region (OH, 

NH, CH). The signal 2 wave is suitable for measurements in the near IR region e.g. for the 

detection of low lying electronic transitions. The spectral range below 2500 cm-1 is accessible 

by difference frequency generation (DFG) using the signal 2 and idler 2 waves. The DFG is 

proceeded in a silver gallium diselenide (AgGaSe2) crystal that generates IR radiation in the 

range of approx. 800 – 2200 cm-1 (νDFM = ν2,s – ν2,i).[47] The residual signal and idler radiation is 

deflected by a zinc-selenide (ZnSe) window. The overall IR radiation intensity varies from 

approx. 0.1 – 20 mJ/pulse, due to inherent absorption of the crystals and windows, water and 

carbon dioxide absorption. The lower limit for The IRMPD experiments is at approx.  

1000 cm-1, owing to the inherent absorption of the BaF2 windows. An exemplary laser energy 

curve is shown in Fig. 15. 

 

 

Figure 15: Energy curve of the LaserVision broadband (bb) OPO/A system.  
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The IR radiation of the bb system is focused by a calcium fluoride (CaF2) lens with a focal length 

of 0.5 m, to a spot located 8 cm in front of the first deflection mirror in the mass spectrometer 

to prevent damages at the optics. The DFG radiation is focused by a parabolic mirror with a 

focal length of 0.152 m. The IR radiation of the nb system is focused by a CaF2 lens with a focal 

length of 0.75 m into the PAUL-trap. A delay generator (DG645, Stanford Research Systems) is 

used for the synchronization of the laser systems and the mass spectrometer. The ion 

packages can be irradiated by one to ten laser pulses each. The time delay of the laser pulses 

of the bb and nb system can be adjusted by the delay generator, the default value for the two 

color experiments is tIR,fix - tIR,tuned = 100 ns. 

The beam path of the LaserVision OPO/A systems is shown in Fig. 14. The various nonlinear 

processes for the frequency conversions require different beam polarizations. The 

polarization and thus the IR output energy can be adjusted by the half-wave plates (λ/2-plate) 

shifting the polarization of the ν1064nm radiation. The emerging horizontal (h) and vertical (v) 

beam polarizations at different optical elements are summarized in Tab. 1. The IR frequency 

was calibrated using a wave meter (bb system: Bristol Instruments: 821B-NIR, nb system: 

Toptica Photonics: HighFinesse IRII-WS7). 

 

Table 1: Beam polarization before and after different optical elements of the 

LaserVision OPO/A IR laser system (cf. Fig. 14).[26] 

optical element In Out 

OPO λ/2-plate ν1064nm (h) ν1064nm (v) 

SHG KTP ν1064nm (v) ν532nm (v) 

OPO KTP ν532nm (v) ν1,s (h) + ν1,i (v) 

dove prism and wave 
plate 

ν1,s (h) + ν1,i (v) ν1,s (v) + ν1,i (h) 

silicon filter 1 ν1,s (v) + ν1,i (h) ν1,i (h) = ν2,s (h) 

OPA λ/2-plate ν1064nm (h) ν1064nm (v) 

OPA KTA ν1064nm (v) & ν1,i (h) ν1064nm (v) + ν2,s (h) + ν2,i 
(v) silicon filter 2 ν2,s (h) + ν2,i (v) ν2,s (h) or ν2,i (v) 

AgGaSe2 crystal ν2,s (h) + ν2,i (v) νDFM 
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2.3.2 Soft X-ray Synchrotron Radiation at the UE52-PGM Beamline at BESSY II 

The presented X-ray absorption spectra were recorded with the NanoCluster Trap setup at the 

Helmholtz-Zentrum Berlin für Materialien und Energie. The required photons are generated 

at the soft X-ray undulator beamline UE52. In the following, a short overview on synchrotron 

radiation and undulators is given. A detailed description is given elsewhere.[48] 

If electrons are accelerated to relativistic velocities on a circular orbit, they emit 

electromagnetic radiation called synchrotron radiation. At the BESSY II synchrotron facility, 

the electrons are accelerated to approx. 1.7 GeV and then transferred into the storage ring. In 

the storage ring there are straight beam path sections alternating with dipole, quadrupole, 

and sixtupole magnets for the deflection, focusing and correction of the electron beam. The 

dipole magnets bend the electron beam to form a circular beam path. The spatial deflection 

generates bremsstrahlung, which can be focused, monochromatized and used in X-ray 

experiments. The energy loss of the electrons is compensated by reacceleration in RF cavities 

located in the storage ring. 

Another possibility of generating highly brilliant synchrotron radiation is the use of so called 

undulators, which are located in the straight beam paths of the storage ring. The undulators 

are built of concatenated permanent magnets with alternating polarity (cf. Fig. 16). The 

magnet arrangement causes an oscillatory motion of the electrons, generating X-rays. One 

electron emits multiple light waves passing through the magnet array, which can interfere 

constructively and generate highly brilliant X-radiation. The photon energy is adjusted by 

manipulating the gap between the permanent magnets. 

The beamline UE52 used for the presented XMCD experiments is equipped with an APPLE 2 

(advanced planar polarized light emitter) undulator.[50-53] It is built up of 4 rows of permanent 

magnets of alternating polarization. All rows of magnets can be shifted individually against 

each other. The undulator can generate linear (horizontal and vertical) and circular (left and 

right handed) polarized radiation, depending on the magnet gap and shift (cf. Fig. 16). The 

UE52 beamline is a soft X-ray beamline, providing an energy range of 85 to 1600 eV (cf. Tab. 2). 

The spectral resolution is adjusted by variation of the exit slit width of the used plane-grating 

mirror (PGM) monochromator. The storage ring is operated in the “top up” mode, resulting in 

a periodic electron injection (every few minutes) to keep a constant ring current of 260 mA.  
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Figure 16:[49] Arrangement of the concatenated permanent magnets of an APPLE 2 

(advanced planar polarized light emitter) undulator.[50-52] (a) Magnet arrangement 

for horizontal photon polarization and (b) arrangement for circular photon 

polarization. 

 

 

Table 2.2: Technical specifications of the UE52-PGM beamline at BESSY II.[54] 

energy range  85 – 1600 eV (soft X-ray regime) 

resolving power at 400 eV > 10000 

polarization variable 

degree of polarization 90 % 

photon flux (500 – 1000 eV) > 1012 photons / s 

divergence 0.8 mrad x 0.2 mrad 
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2.4 Methods 

2.4.1 InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy 

The infrared spectroscopy is a powerful tool for the structural elucidation of diverse 

substances. It provides information on the position of a charge (at ions, e.g. protonated 

functional group), the presence of certain functional groups (-OH, -NH2, -C=O), symmetry and 

presence of hydrogen bonds.[55] The structure of a molecule is strongly related to its 

vibrational fingerprint. In the condensed phase, the decrease of the intensity of the infrared 

light by absorption is measured. Due to the low particle density in ion traps of often less than 

108 cm-3, a decrease in the photon intensity of the incident IR beam cannot be detected.[55] 

The infrared multiple photon dissociation (IRMPD) spectroscopy represents an action 

spectroscopy. The species of interest is isolated in the ion trap and the ion cloud is irradiated 

by a tuneable IR laser. When the IR laser frequency is in resonance with a vibrational mode of 

the isolated ion, the ion absorbs photons and the energy is redistributed among the whole 

molecule. Thus, the internal energy of the ions increases until the dissociation barrier is 

reached and weak bonds break.[55] The fragment ions are detected by the mass spectrometer. 

The IRMPD spectrum is obtained by plotting the fragmentation efficiency vs. the IR laser 

frequency. In the IRMPD process, the absorption of several photons is necessary for a 

fragmentation and by this, the fragmentation efficiency is not linearly correlated to the 

absorption cross section and the laser power. Hence, IRMPD absorption bands may differ 

significantly in intensity or disappear completely compared to calculated harmonic absorption 

spectra.[56-58] The absorption of multiple photons is an incoherent process and thus, the 

absorbed energy is quickly dissipated by the internal vibrational redistribution (IVR) process 

to all vibrational degrees of freedom. This leads to an effective heating of the molecular ion.[55, 

59] Multiple cycles, involving the photon energy redistribution and the subsequent increase of 

the internal energy are sketched in Fig. 17.  

The photon energy in the IR spectroscopy regime is approx. 800 – 4000 cm-1, which 

corresponds to 10 – 50 kJ/mol. Thus, single photons can only break very weak molecular 

bonds. Binding energies of organic molecules are one order of magnitude higher in energy. 

(e.g. C – C 348 kJ/mol, C = O 743 kJ/mol, O – H 463 kJ/mol, N – H 388 kJ/mol).[60] Hence, in 

order to break covalent bonds, multiple IR photons are necessary.[58] 
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Figure 17: Schematic representation of the infrared multiple photon dissociation 

spectroscopy, involving the cycles of photon absorption and internal vibrational 

redistribution (IVR).[58] 

 

In order to fragment very stable ions, tagging represents an alternative technique.[61] Instead 

of isolating the species of interest, a weakly bound and chemically unreactive atom or 

molecule is attached to the species (e.g. Argon, Helium atoms or Hydrogen molecules). A 

resonant absorption of IR photons induces a cleavage of the bond between the ion and the 

tag. The cryogenic temperatures required for the tagging technique are only accessible in 

supersonic expansion jets or cryogenically cooled ion traps. The perturbation of the tag is 

assumed to be negligible in the evaluation of tagged IR(M)PD spectra.[58]  

 

 

Figure 2.18: Timing scheme of the scanning IR laser (IRscan) and the frequency fixed 

IR laser (IRfix). 
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Besides the already pictured IRMPD experiments using a single IR OPO/A, the so-called two-

color IRMPD technique was used as well. The first laser is set to a fixed frequency, resonant to 

a vibrational absorption mode and the second laser is tuned to record the spectrum. The 

temporal succession is flexible in the range of microseconds (µs) to nanoseconds (ns) (cf. Fig. 

2.18). Our experience has shown, that the irradiation of the tuned laser prior to the frequency 

fixed laser is preferable. A reversed scheme leads to heating of the ions, resulting in a band 

broadening. The second laser enables the absorption of additional photons in order to 

augment the fragmentation efficiency or IRMPD yield or overcome IVR bottlenecks and reveal 

otherwise “dark” bands.[62] 

The two-color IRMPD process is shown in Fig. 19 (based on the depiction of ROITHOVÀ[58]). The 

absorption of a second (blue) IR photons is feasible when the energy of the first IR photon is 

redistributed via IVR across the molecule. The restriction is does not apply for the red photon 

which is absorbed immediately. The energy input is expedited and the dissociation threshold 

is reached more quickly.  

 

 
Figure 19: Schematic representation of the IRMPD process using the two-color 

IRMPD technique. 
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2.4.2 Density Functional Theory (DFT) 

The interpretation of various experimental results is facilitated by comparison with quantum 

chemical calculations. Density functional Theory (DFT) represents a computationally cheap 

approach for the calculation of diverse molecular properties like bond lengths, bond energies, 

IR frequencies and electronic properties.[63-67] The basic idea of DFT is the possibility to qualify 

the energy of an electronic systems by its electron density �����, described by THOMAS and 

FERMI.[68, 69] The electron shell is treated as electron gas, whereas the kinetic and electrostatic 

energy is expressed by the electron density �����.[70] This model is not able to qualify chemical 

bonds, since the energy of a molecule is always higher than the sum of the single atom 

energies.[71] The theorem of KOHN and HOHENBERG showed in 1964, that the electronic ground 

state energy and all other properties of the ground state are determined by the ground state 

electron density and the variational principle is able to assess the ground state energy.[72] 

The minimization of the energy, using the variational principle was derived by KOHN and 

SHAM.[73] The energy is described as a function of the electron density �����: 

���� =  ����� +  ∫ �� �������������� + 12 "����� + �#$��� (2) 

 

����� is the kinetic energy, "���� represents the Coulomb potential and the exchange-

correlation energy is given by �#$���, describing the electron-electron interaction. The KOHN-

SHAM wavefunction is a single slater determinant, which is constructed using a set of orbitals 

that are the lowest energy solution to 

%− ℏ	
2' (	 + ��))����* Φ��� = ,Φ��� (3) 

 

with the orbital energy , of the corresponding Kohn-Sham orbital -. The electron density of 

the entire system is described as: 

����� = . |Φ���|	0
  (4) 

 

The estimation of the exchange-correlation energy �#$��� plays a crucial role within DFT as it 

inherits all unknown factors and the amount strongly depends on the used functionals. The 
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kinetic energy and the integral in equation (2) instead are calculated cheaply, since they cover 

only one and two electron integrals.  

The local density approach (LDA) describes the exchange-correlation energy per particle in a 

homogeneous electron gas, where spin up and spin down electron density is considered 

differentiated.[65] Generalized gradient approximations (GGA) are used to calculate the 

exchange-correlation energies according to Hartree-Fock methods. The combination of LDA 

and GGA in so-called hybrid functionals has proven to achieve reasonable results in the 

computation of atomic and molecular properties.[74, 75] 

The determination of structural properties is conducted by performing geometry 

optimizations with all possible start geometries, resulting in different local minimum 

structures. Comparison of the energy of the local minima allow for the determination of the 

global minimum structure. The comparison of calculated harmonic frequencies of the most 

favourable minimum structures with experimental IRMPD or IR absorption spectra allows for 

a reliable structural assignment.[76] 

All quantum chemical calculations in the presented work were performed using the Gaussian 

09 program package.[77] The choice of specific functionals and basis sets is discussed in the 

respective chapters. The calculations were gratefully performed on the computing clusters of 

the TU Kaiserslautern under the supervision of Prof. Dr. Christoph vAN WÜLLEN.  

 

2.4.3 X-ray Absorption and X-ray Magnetic Circular Dichroism (XMCD) Spectroscopy 

The absorption of photons of the X-ray regime, usually leads to an excitation of core electrons 

within an atom. The absorption is either resonant or non-resonant. In the latter case, the core 

electron is excited into a free-electron like continuum state. The photon energy (ℎ2) exceeds 

the binding energy (�3) of the electron and the excess energy is converted into kinetic energy 

(�4�) of the electron. This process is described by the photoelectric effect (cf. eq. (5), with 5 

being the work function).  

�4� ≤ ℎ2 − �3 − 5 (5) 
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In the case of a resonant absorption, the core electron is excited into an empty valence state 

(or valence hole) of the atom. In both cases the system is left with an empty core state (or 

core hole). The hole can be filled by an electron dropping down from an energetically higher 

level. The released energy corresponds to the difference between the dropping electron and 

the core hole and can be emitted either as radiation (fluorescence) or by ejection of another 

valence electron (AUGER electron). 

In the following, the resonant absorption as excitation from an initial core state to a valence 

hole will be described in a one electron portrait and in terms of a process of first order. Hence, 

a time dependent perturbation of the system by the electromagnetic field of the X-rays leads 

to a prompt excitation from the initial state |-7 to an empty valence or final state |87 without 

interference from intermediate states |97.  

The transition probability �) from |-7 to |87 is described by FERMI’s golden rule, taking only 

the first order term into account as derived by DIRAC:[78] 

�) = 2:ℏ ;<8;=>��;-?;	 @A, − ,)B � A,)B 

 
 

(6) 
 
 

=>�� interaction Hamiltonian  ,,) energy of the initial and final state   �A,)B density of final states per unit energy  

 

The interaction Hamiltonian for resonant X-ray absorption can be described as the product of 

the momentum operator C and the vector potential D with the elementary charge E and the 

electron mass '�:[79-82] 

=>�� = F'� C · D (7) 

 

The initial and final states and the matrix elements provide an electronic and a photon part. 

After evaluation of the photon part and quantization of the electromagnetic field, the 

corresponding matrix elements H can be described as a transition between two electronic 

states |I7 and |J7:[83] 
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H = <J;C · K FL·M;I? 
 

(8) 
 

with K being the unit photon polarization operator. If the dipole approximation is applied, the 

dependence from the photon wave vector L is eliminated through a series expansion of the 

exponential function and truncation after the first term. The electron momentum operator C 

can be expressed by the length operator M:[79] 

 

H = NJ|C · K �1 + -L · M + ⋯ �|I7 ≅ NJ|C · K|I7 = -'�QNJ|M · K|I7 (9) 

 

With '� being the electron rest mass and Q = Q3 − QR the photon frequency associated 

with the transistion from |I7 to |J7. The dipole approximation assumes that the size of the 

absorbing atomic shell is small relative to the X-ray wavelength:[79] 

 

|M| ≪ 1|L| = T2: (10) 

 

This means the electric field which drives the electronic transition is constant across the 

atomic volume. The derived absorption cross section  UR3�  is expressd by: 

 

UR3� = 4:	 F	
4:,�ℏW ℏQ|NJ|K · M|I7|	@AℏQ − ��3 − �R�B���3� (11) 

 

The X-ray absorption resonance intensity XY�� is given by the integration over the absorption 

cross section after normalization of the electronic states |I7 and |J7: 

XY�� = 4:	 F	
4:,�ℏW ℏQ|NJ|K · M|I7|	 = Z|NJ|K · M|I7|	 

 
 

(12) 
 
 

Z = 4:	[)ℏQ proportionality factor  

[) = F	
4:,�ℏW  fine structure constant   

 

When polarized photons are considered, the polarization dependent dipole operator \]̂  must 

be included into the product  K · M. The angular momentum of the light is expressed by ℏ_. In 

the case of linear polarized light _ = 0, for circularly polarized light _ = ± 1 and [ indicates 

the X-ray incident direction in Cartesian coordinates. 
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\]̂ = K]̂ · M = K · M (13) 

 

For the X-ray absorption resonance intensity XY�� follows 

XY�� = Z|NJ|K · M|I7|	 = Z;<J;K]̂M;I?;	 = Z;<J;\]̂ ;I?;	
 (14) 

 

The polarization dependent dipole operator \]̂  may be expressed by spherical harmonics 

bc,�d�e, "�or RACAH’s spherical tensor operators  f��c�
.[84, 85] In an one electron picture, the 

initial |I7 and final |J7 electronic states can be expressed by the following simple wave 

function: 

g�,c���bc,�dh�,�i = ;g�,c���; k, 'c, l, '�? 

 

(15) 
 
 g�,c���  radial component of the wave function  bc,�d   angular part of the wave function  h�,�i  spin part of the wave function  k, 'c , l, '� quantum numbers  

 

The transition matrix elements factor into a spin, radial and angular part (eq. 16). Since the 

spin part is not influenced by the dipole operator, the spin is maintained upon excitation. The 

polarization dependence is preserved in the angular part, whereas the angle integrated 

transition strength is expressed in the radial factor of the wave function.  

<J;\]̂ ;I? = <g�m,c���; k, 'c, l, '�n ;\]̂ ;g�,o���; W, 'o , l, '�? 

<J;\]̂ ;I? = @�'�n , '��<g�m,c���;�;g�,o���? . pF],q^ rk, 'csfq���sW, 'otu�v,�d,q  

<J;\]̂ ;I? =     wCxy                 Mz{xz|                            zy}~|zM  

(16a) 

(16b) 

 

The inspection of the non-zero matrix elements of equation (16b) allows for the derivation of 

the dipole selection rules for X-ray excitations: 

• �k = k′ − k = ±1 

• �'c = 'cn − 'c = _ = 0, ±1 

• �l = l′ − l = 0 

• �'� = '�n − '� = 0 
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Intensity sum rule for the charge 

Following the definition of the X-ray propagation ([) and the polarization dependent dipole 

operator \]̂ , one can define the resonant X-ray absorption intensity, independent of the 

orientation (white line intensity) 

〈X〉 = 13 AX�̂ + X�̂ + X�̂ B = 13 �X]�� + X]� + X]��� (17) 

 

This can be deduced from the average over three orthogonal measurements on nonmagnetic 

samples with higher than monoclinic symmetry as sum over _ or [. If the sample possesses a 

spherical symmetry a single measurement is enough.  

The white line intensity for magnetic samples can be determined using linear polarized light 

and an angular average. When circularly polarized light is used, the sample must be 

magnetically saturated with an orientation parallel and antiparallel to the X-ray propagation 

direction ([) and one has to sum over both intensities. The orientation independent X-ray 

absorption intensity is directly proportional to the number of d states above the FERMI level, 

that is, the number of holes in the d band (cf. Fig. 20).[79] 

 

 

 

 

 

 

a)                                                   b)  

Figure 20:[79, 86, 87] Illustration of the intensity sum rule by a) a scheme of the 

absorption of linear polarized X-ray photons and b) normalized L2,3 edge X-ray 

absorption spectra of the 3d metals iron, cobalt, nickel and copper.  

The absorption intensity drops with increasing number of 3d electrons, that is, less 

holes in the valence band.  
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The white line intensity for a transition from a core �9, W�state to a valence state �9′, �� with 

W = � − 1 is proportional to the number of unoccupied states in the valence shell ��: 

〈X〉 = f ∙ �� (18) 

f = Zg	 ���	����, (19) 

Z = ���ℏ���� , (20) 

 

where g is the radial matrix element for the transition  9, W →  9′, �. 

 

XMCD and sum rule analysis 

If the intensity sum rule for the charge is considered using circularly polarized light, the X-ray 

absorption can be derived as spin dependent. This implicates the possibility to identify 

characteristics in the “spin-up” and “spin-down” holes in the valence orbitals by evaluating 

the differences in the X-ray absorption intensities and allows for the determination of 

magnetic moments.  

The spin dependence in the X-ray absorption intensities can be explained by a two-step model 

(cf. Fig. 21):[87] 

A) The circularly polarized X-ray photon is absorbed by an electron in the spin-orbit split 

initial ground state |-7. For the 2� → 3� transition (L2,3 absorption edges) in e.g. 

transition metals, this corresponds to the 2��/	 and the 2��/	levels. The spin-orbit 

coupling of the ground state causes the angular momentum of the X-ray photon to be 

partially transferred to the spin of the excited electron, leading to its spin polarization. 

This spin polarization is opposite for the 2��/	 and 2��/	 levels, since the spin-orbit 

coupling is opposite as well (l + s and l - s). The quantization axis of the excited electron 

and the photon angular momentum are identical, parallel or antiparallel to the 

propagation direction of the X-rays. 

B) The spin polarized electrons are excited into an exchange split valence shell with an 

odd number of electrons, thus uneven population of “spin-up” and “spin-down” 
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electron holes. The electron holes serve as a detector for the spin polarized excited 

electrons. The maximum difference in the X-ray absorption (XMCD effect) can be 

observed if the spin moments of the valence electrons are aligned to the photon 

angular momentum which coincides with the X-ray propagation direction.  

 

 
Figure 21:[86, 87] Relative transition probabilities for “spin-up” (↑) and “spin-down” 

(↓) electrons from the spin orbit split 2p levels, i.e. 2p3/2 (a) and 2p1/2 (b) level 

upon excitation with circularly polarized photons with q = ± 1 (q = -1 = -

ħ = transition marked in grey and q = +1 = +ħ = transitions marked in black). 

Transition probabilities for the excitation of spin up or spin down electrons switch 

when the photon helicity is reversed. Positive (q = +1) circularly polarized light 

predominantly excites spin up electrons at the L3 edge (2p3/2 → 3d) and at the L2 

edge (2p1/2 → 3d), it mostly excites spin down electrons. The situation is reversed 

for negative (q = -1) circularly polarized photons. 

 

The statistical weight of the different transition probabilities for a transition from an initial 

state |I7. with the configuration |W, 'o , '�7 to a final state |J7 with the configuration 

|k, 'c, '�m7 can be derived from the transition matrix elements, taking the dipole selection 

rules into consideration. According to STÖHR and WU, the transition matrix elements can be 

expressed by:[88-90] 
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<9n, k, 'c;\�����;9, W, 'o? = ��W + 'o + 2��W + 'o + 1�2�2W + 3��2W + 1� g 

 

(21) 

<9n, k, 'c;\�����;9, W, 'o? = ��W − 'o + 2��W − 'o + 1�2�2W + 3��2W + 1� g (22) 

k = W + 1 (23) 

9 �9′� main quantum number of the core (final) state  

c �k� 
orbital angular momentum quantum number of the core 
(final) state 

 

'o �'c� orbital magnetic quantum number of the core (final) state  

 

 
Figure 22:[86, 87] Transition probabilities from the different mj = ± ½ states 

(degenerated) of the p1/2 spin orbit split level into final d states in a LS coupling 

scheme (modified from Ref [91]). The statistical weights of the individual transitions 

are given for the absorption of either a photon with angular momentum (a) q = +ħ 

or (b) q = -ħ. Thus, Δml = +1 for Fig. 22 (a) and Δml = -1 for Fig. 22 (b). ↑denotes 

spin up and ↓ spin down states. The representation of the electronic state in 

terms of spherical harmonics is given on the right. 
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The photon angular momentum is not completely transferred to the electron spin, instead 

some of it is transferred to the electron angular momentum. The angular momentum is as 

well sensed by the valence shell if the valence shell has an angular momentum k � 0. When a 

negative circularly polarized photon �_ = −1 = −ħ� is absorbed, only transitions with �'c =
−1 are allowed. The other way round, when a positive circularly polarized photon 

�_ = +1 = +ħ� is absorbed only transitions with �'c = +1 are allowed. The dipole selection 

rules are illustrated in Fig. 23: 

 

 
Figure 23: Sensitivity of the XMCD effect of orbital magnetism.[86, 87, 92] 

 

 

 
Figure 24:[86, 87] Probing of orbital angular momentum by XMCD spectroscopy. If 

the valence shell has an orbital angular momentum l ≠ 0, a net orbital angular 

momentum can arise if the mL states are not equally occupied. 
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Due to the conservation of momentum, the angular momentum of the absorbed circular 

polarized X-ray photon is transferred to the excited electron in terms of different spin and 

orbital momentum degrees of freedom. This can be detected by a magnetic valence shell and 

results in different absorption intensities for positive and negative circularly polarized X-rays. 

In the early 1990’s, THOLE and CARRA derived the contributions of spin and orbital angular 

momenta to the XMCD effect.[93, 94] The so called “sum rules” give access to quantitative 

information about the expectation value of the spin 〈��〉 and orbital angular momentum 

〈��〉. In the general formulation for a dipole transition  

|W, k�7  →  |W��, k���7  from a ground (core) state with an orbital angular momentum W into an 

excited (valence) state with an orbital angular momentum k and 9 being the population and a 

quantization axis in z-direction, they read as:[92-95] 

∫ ��� − ����Q�����∫ ��� + �� + ����Q�����
= 12 W�W + 1� − k�k + 1� − 2k�k + 1��4k + 2 − 9� 〈��〉 (24) 

 

for the expectation value of the orbital angular momentum and 

∫ ��� − ����Q − pW + 1W u ∫ ��� − ����Q���� ∫ ��� + �� + ����Q�����
= k�k + 1� − 2 − W�W + 1�3W�4k + 2 − 9� 〈��〉 

 

+ k�k + 1��k�k + 1� + 2W�W + 1� + 4� − 3�W − 1�	�W + 2�	
6kW�k + 1��4k + 2 − 9� 〈��〉 

(25) 

 

for the expectation value of the spin with: 

¡�, ¡� Transitions from spin orbit split levels  �� XA spectrum recorded with positive circularly polarized 

light (q = +ħ) 

 �� XA spectrum recorded with negative circularly polarized 
light (q = -ħ) 

 �� XA spectrum recorded with linearly polarized light (q = 0)  

 

In a more clearly, simplified expression, these formulas can be rewritten as: 

∫ ��� − ����Q�����∫ ��� − �� + ����Q�����
= I 〈��〉9�  (26) 

and 
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− p∫ ��� − ����Q − J ∫ ��� − ����Q���� u
∫ ��� − �� + ����Q�����

= W〈��〉 + �〈��〉9�  (27) 

 

with 

9� number of holes in the final state / shell ( = 4lf + 2 – n) I, J, W, � sum rule related prefactors 

 

The quantization axis (z) coincides with the X-ray propagation direction and the magnetic field. 

The expectation value for the magnetic dipole term 〈��〉 describes an aspheric spin 

contribution in a non-cubic system. If there is an anisotropy in the distribution of the spins, 

that is, a spin asymmetry along the quantization axis, the magnetic dipole term may alter der 

spin magnetic moment by up to 20 % in anisotropic media.[96-98]  

The integration limits ¡� and ¡� for a 2� → 3� transition (W = 1, k = 2; typical for first row 

transition metals) correspond to the L3 and L2 absorption edges. The magnetism of the f-

electrons in rare earth compounds is usually studied at the transition 3� → 48 (M5,4 

absorption edge). In general, if the orbital angular momentum of the initial state is k and of 

the final state is k) , the sum rule related prefactors are summarized in Tab. 3. 

 

Table 3: Sum rule related prefactors for different dipole transitions.[91] k  k)  I J W �  

s: 0 p: 1 1 - - -  
p: 1 d: 2 1/2 2 2/3 7/3  
d: 2 f: 3 1/3 3/2 2/3 2  

 

Since usual X-ray absorption spectra are only recorded for negative ���� and positive 

���� circularly polarized light, the XA spectrum of the linearly polarized light ���� is unknown 

in most cases. However, for systems with cubic symmetry the denominator of the sum rules 

can be approximated by:[97, 99] 

�� + �� + �� ≈ �� + �� + ��� + ���2 = 32 ��� + ��� (28) 
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For non-cubic systems, the deviation is still quite low and the integral of eq. 28 remains a 

reasonable approximation.  

The expectation values for the spin 〈��〉 and orbital angular momentum 〈��〉 are directly 

related to the spin '�, orbital 'c and total magnetic moment '£ by the following relation: 

 

'� = −¤��¥〈��〉 (29) 

'� = −¤��¥〈��〉 (30) 

'£ = '� + '� = −�¥�¤�〈��〉 − ¤�〈��〉� = −�¥�〈��〉 + 2〈��〉� = −�¥¤£〈¦�〉 

 

(31) 

¤� g-factor of the electron spin gS = 2.0  ¤� g-factor of the orbital momentum gL = 1.0  ¤£ g-factor of the total magnetic moment.  〈¦�〉 expectation value of the total magnetic moment.  

 

For a 2� → 3� transition, (29) and (30) can be rewritten using equations (26) and (27): 

 

'� = −¤��¥
− p∫ ��� − ����Q − 2 ∫ ��� − ����Q���§ u23 ∫ ��� + �� + ����Q�§���

9� − ¤��¥ 72 〈��〉 

 

(32) 

'� = −¤��¥ ∫ ��� − ����Q�§���12 ∫ ��� + �� + ����Q�§���
9� (33) 

 

 

When abbreviating the integrations as follows: 

Z = ∫ ��� − ����Q�§   

 

(34) 

© = ∫ ��� − ����Q��   

 

(35) 

f = 	� ∫ ��� + �� + ����Q�§���   

 

(36) 
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one may write: 

'� = ¤��¥ �Z − 2©�f 9� − ¤��¥ 72 〈��〉 

 

(37) 
 

'� = −¤��¥ 43 Z + ©f 9�  (38) 

 

From the equations (32) and to(38) the ratio of orbital to spin magnetic moment can be 

derived for a 2� → 3� transition: 

'�'� ≈  �¥〈��〉2�¥〈��〉 = 23 ∫ ��� − ����Q�§���∫ ��� − ����Q − 2 ∫ ��� − ����Q���§
= 23 Z + ©Z − 2© (39) 

 

The ratio  〈��〉 to 2〈��〉 + 〈��〉 provides a contribution from the magnetic dipole operator. 

However, this contribution is neglected in the following since it can be expected to be small 

in the investigated systems and under the experimental conditions (< 5%, cf. chapters 3  

and 4).[92, 100] The ratio '� '�⁄  can be determined without knowing the number of electron 

holes 9� in the valence shell and the normalisation with the sum spectrum �� + �� + �� and 

the incomplete polarization of the synchrotron radiation. Thus, some sources of errors from 

the applications of some rules vanish, making the determination of '� '�⁄  more precise than 

the individual determination of '� or '�.[92] 

 

Remarks on the application and correction of sum rules 

The derivation of the sum rules is based on several approximations. The presented two-step 

model and the application of the sum rules have some requirements to fulfil. 

• The dipole selection rules allow for transitions from a 2p ground state into both, the 

4s and 3d states. The application of sum rules is only valid, if transition from 2p to 4s 

are negligible. For the L3,2 absorption edges of 3d transition metals, the contribution is 

less than 5 % and can be removed by subtraction of a two-step function (cf. chapters 

3 and 4).[92-94, 99, 101] 
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• The energy dependence of the radial matrix elements and spin orbit coupling constant 

is not taken into account. This happens if the electrons of the final states are bound 

weaker and more delocalized in comparison to final state excitations close to the 

absorption threshold.[97] 

• The contribution of relativistic effects on the radial matrix elements should be 

negligible. This means that the radial matrix elements for the k + ½ and k - ½ 

excitations should be the same. 

• The dipole approximation neglects higher terms in the series expansion. Higher terms 

e.g. the quadrupolar transition should have less spectral weight than the error bar. 

• For the application of the spin sum rule, the L3 and L2 edges must be separable in 

energy, hence the spin orbit splitting must be sufficiently large. This includes spectral 

overlap and quantum mechanical mixing, that is a mixture of k + ½ and k - ½ 

excitations of the same energy induced by an additional interaction like the 2p – 3d 

Coulomb interaction.[102] 

 

The deviation of the spin sum rule due to core-valence Coulomb interaction has not been 

quantified in the original derivation of the sum rule by CARRA.[100] This effect largely depends 

on the atomic species and its electron configuration. JO et al. have numerically investigated 

the deviation from the XMCD spin sum rule for selected 3d transition metal ions and trivalent 

4f rare earth ions by atomic calculations taking into account the multipole electron-electron 

interaction. The deviations reach from about 7 % for Ni3+ to more than 30 % for Mn3+ for the 

3d transition metal ions and from less than 1 % for Er3+ to 230 % for Sm3+ for the rare earth 

ions.[100, 103] The presented magnetic moments calculated by the spin sum rule in this work 

have been corrected as explained in the respective chapters. 

 

Temperature and magnetic field dependence of magnetizations 

The alignment (or magnetization) of samples providing a magnetic dipole and a respective 

magnetic moment with respect to the quantization axis (z) depends on the temperature and 
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the external magnetic field strength. The quantization axis coincides with the axis of the 

external magnetic field. The degree of the alignment corresponds to the projection (mS/L/J
(z)) 

of the intrinsic magnetic moment (mS/L/J) onto the quantization axis. At 100 % alignment, the 

projection is equal to the intrinsic magnetic moment. Strong external magnetic fields improve 

the alignment whereas high temperatures decrease the alignment by thermal randomization 

(cf. Fig. 25).[87] The BRILLOUIN functions (equations 40-42) describe the spin, orbital and total 

magnetizations depending on the temperature � and the magnetic field strength ©. 

 

 

Figure 25:[87] Schematic depiction of the intrinsic spin (mS) and orbital (mL) 

magnetic moments and their projection (magnetizations) onto the quantization 

axis (mS
(z) and mL

(z)). The influences of temperature and magnetic field strength on 

the alignment are indicated by the green and black arrow. 

 

 

'���� = ¤��¥� «2� + 12� coth «2� + 12� �¥¤��©¯¥� ° − 12� coth « 12� �¥¤��©¯¥� °° 

 

(40) 
 

'���� = ¤��¥� «2� + 12� coth «2� + 12� �¥¤��©¯¥� ° − 12� coth « 12� �¥¤��©¯¥� °° 

 

(41) 
 

'£��� = ¤£�¥¦ «2¦ + 12¦ coth «2¦ + 12¦ �¥¤£¦©¯¥� ° − 12¦ coth « 12¦ �¥¤£¦©¯¥� °° 
(42) 
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'�/�/£���
 

projection of the spin/orbital/total intrinsic magnetic moment 
onto the quantization axis 

 

�, �, ¦ total spin, orbital and total angular momentum, J = L + S  ¤� LANDÉ-factor of the electron spin, gS = 2.0  ¤� LANDÉ-factor of the orbital magnetic moment, gL = 1.0  ¤£ LANDÉ-factor of the total magnetic moment  © magnetic field strength  � temperature  

 

The BRILLOUIN functions allow for a scaling of experimental magnetizations at a given magnetic 

field and temperature to the projection at 0 K and infinite magnetic field equal to the intrinsic 

magnetic moments. Alternatively, the experimental magnetization can be utilized in order to 

determine the temperature of a system with a certain magnetic moment at a known magnetic 

field. The spin orbit coupling in the systems presented in this work, hence the coupling 

between spin (S) and orbital (L) angular momentum to the total angular momentum (J), 

exceeds the individual coupling of S or L to the external magnetic field.[33, 35, 104] Thus, 

considerations of this matter are confined to the total angular momentum.  

 

Data Treatment 

Due to the relatively small amount of metal ions in the investigated samples, the fragment ion 

intensity amounts only several percent of the parent ion signal intensity. An assignment of the 

fragment ion peaks was hardly possible, since the calibration of the time of flight mass 

spectrometer was sacrificed to the optimization of the fragment ion signal intensity. The 

polarization dependent XA spectra were recorded in an alternating scheme. For every 

polarization at a specific absorption edge, five to ten raw spectra were averaged. A detailed 

description of the Data Treatment can be read in the PhD thesis of Matthias TOMBERS.[87] 
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3.1 Preamble 

The following chapter is prepared as a manuscript for publication. I conducted the XMCD 

experiments, data evaluation and the simulations. I received experimental support by 

Matthias Tombers and Johannes Lang and Vicente Zamudio-Bayer. Asamanjoy Bhunia, 

Munendra Yadav and Ravi Yadav synthesized the samples in the group of Peter W. Roesky. 

Sebastian Schmitt and Yanhua Lan conducted the SQUID measurements in the group of Annie 

Powell. Tobias Lau, Bernd von Issendorf and Akira Terasaki operate the NanoCluster Trap 

experimental setup at the BESSY II synchrotron. Thomas Schlathölter and Ronnie Hoekstra 

provided the Electrospray Ionization (ESI). I wrote the manuscript and revised it with the help 

of Matthias Tombers, Peter W. Roesky, Annie K. Powell and Gereon Niedner-Schatteburg. 
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3.2 Abstract 

We report polarization dependent gas phase X-ray absorption (XA) spectra of hetero-

bimetallic 3d-4f complex ions in terms of X-ray magnetic circular dichroism (XMCD) 

spectroscopy. The magnetic coupling of the metal centers of trimetallic [Mn2Ln] –type 

complexes (Ln = Nd, Eu, Gd, Dy, Lu) is very weak. The element selectivity of the XMCD 

technique in combination with the sum rule analysis allows for decomposition of the total 

magnetic moments into its individual parts, that is, spin and orbital angular momentum of the 

respective metal ion. The consequences of this are checked through variation of the 

incorporated lanthanide ion. The findings are compared to bulk SQUID magnetometry and are 

in very good agreement. The experimental magnetic moments are analyzed by temperature 

dependent Brillouin functions to enable a temperature estimation of the investigated complex 

ions in the gas phase. The temperature findings are in accordance to similar experiments on 

metal clusters.  

 

3.3 Introduction 

Molecular magnetism especially in the so called single molecule magnets (SMMs) has become 

a growing field of research since the discovery of the archetypal manganese acetate 

coordination cluster [Mn12O12(OAc)16(H2O)4] in the early 1980s, and the subsequent discovery 

of its magnetic bistability or SMM behavior. Potential applications for SMMs include quantum 

computing and information storage.[1-9] A large number of mono- and polynuclear metal 

complexes with manifold molecular architectures have been reported. [6, 10-16] Much effort is 

currently spent on the design of heterometallic SMMs that combine 3d transition metal ions 

and 4f lanthanide ions.[17-22] The objective is the combination of high spin ground states by the 

3d ions and large single-ion anisotropy by the 4f ions at the same time.[23]  

Characterization of the aforementioned complexes is usually performed inter alia by means 

of SQUID magnetometry in ac and dc mode, EPR, NMR, µSR, PND, INS.[10] Besides this, the 

synchrotron based techniques e.g. X-ray absorption spectroscopy (XAS) with circularly 

polarized light have been used thoroughly in molecular magnetism due to their unique 

capability to obtain element specific magnetic information, as well as the separation of spin 
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and orbital angular momenta.[24-30] The experiments are in general carried out on solid 

crystals, diluted powder samples, or surface deposited molecules. The determined magnetic 

moments and e.g. the anisotropy energies are ascribed to the intrinsic properties of the 

isolated molecules. However, the environment of the molecules can have an influence. This 

can be observed for surface deposited molecules, where charge transfer from the surface to 

the molecule may lead to a partial reduction of the metal ions and therefore to perturbed 

magnetic properties.[31, 32] 

In previous work, gas phase X-ray magnetic circular dichroism (XMCD) spectroscopy on 

trapped and cooled metal cluster ions has been demonstrated as a valuable tool to 

characterize the magnetic properties of pure metal clusters, alloyed clusters and metal cluster 

adsorbates since any perturbation due to crystal lattice, substrate-surface interaction, 

solvation effects etc. can be avoided.[33-45] The comparison of spin and orbital magnetic 

moments of small clusters or nanoparticles with their bulk values shows, that the per-atom 

magnetic moments for clusters can be significantly higher.[33, 39]  

In this work, we use XMCD spectroscopy to characterize the magnetic properties of a set of 

five structurally identical 3d-4f bimetallic complexes of the [Mn2Ln]-type where we can vary 

the lanthanide ion to give Ln = Nd, Eu, Gd, Dy, Lu (Fig. 1). We study these in detail for the first 

time in the gas phase and can compare the results to those from standard bulk magnetometry. 

In addition, we look for a benchmark for future gas phase characterization of magnetic 

properties of interesting magnetic compounds like single-molecule magnets.  

The [Mn2Ln]-core of the compounds is stabilized using the Schiff base 2,2'-{[(2-

aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H4L) as 

proligand. This proligand has three potential coordination pockets, which enable the 

coordination of one or three metal ions allowing for the possible formation of mono- and tri-

nuclear complexes. Within this concept, we recently published the trinuclear mixed 3d-4f 

complex (NHEt3)2[Dy{Mn(L)}2](ClO4)·2(H2O) (abbreviated as [Mn2Dy]; Fig. 1).[46, 47] Herein, we 

also report the synthesis and characterization of the analogues Nd, Eu, Gd, and Lu compounds 

(Fig. 1).  
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Figure 1: [Mn2Ln]-type complexes.[46] 

 

3.4 Experimental methods and setup 

Recording XMCD spectra of isolated complexes 

The presented polarization dependent X-ray Absorption (XA) spectra were recorded at the 

NanoCluster Trap which is connected to the UE52-PGM soft X-ray beamline at the BESSY II 

synchrotron facility of the Helmholtz-Zentrum Berlin. The NanoCluster Trap is a custom built 

mass spectrometer to record Total Ion Yield (TIY) gas phase XA spectra.[38, 39, 43] For our 

experiments we used a custom built Electro Spray Ionization (ESI) source to transfer our multi 

metal complexes into the gas phase.[41]  

The samples for our gas phase measurements were prepared as a solution in acetonitrile 

(CH3CN) at a concentration of approx. 10-3 mol/L. The investigated cationic species 

[C44H46N8O12LnMn2]+ (abbreviated as[Mn2Ln](H)2
+) are formed out of the trimetallic anion by 

protonation of two carboxylic groups coordinated to the central lanthanide ion during the ESI 

process. 

The cation of interest ([Mn2Ln](H)2
+) is mass selected in a linear quadrupole mass filter (Extrel, 

40 – 4000 amu). The ions are guided into and stored in a linear quadrupole ion trap which is 

located within the high field region (5 T) of a superconducting solenoid. The trap is operated 

at frequencies between 2 and 4 MHz depending on the mass of the investigated ions. The 
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linear quadrupole ion trap is cooled down to temperatures < 4 K by evaporative liquid He 

cooling. The ions are cooled down by collisional cooling in the vacuum chamber at a constant 

He backing pressure in the range of 10-6 to 10-7 mbar. The ions are thermalized at a somewhat 

higher temperature of approx. 10 – 15 K caused by radio frequency (RF) heating caused by the 

ion trap operation.[39] The trap is filled by a constant ion current from the source. The ions are 

ejected from the trap into the time of flight (TOF) mass spectrometer at a frequency of approx. 

100 Hz. The XA is recorded by TIY spectroscopy whereas the ions are irradiated by the X-rays 

for 10 – 15 s at a fixed photon energy.[34, 35, 48, 49] A GaAsP diode records the X-ray intensity 

coming from the undulator beamline which is used for normalization of the XA spectra to the 

photon flux. The spectra at the Mn L2,3 absorption edge were recorded with an exit slit size of 

200 µm and a corresponding spectral resolution of ~200 meV. The spectra at the lanthanide 

M4,5 absorption edges were recorded with an exit slit size of 500 µm and a corresponding 

spectral resolution of ~2.5 eV. The fragment intensity amounts to only a small fraction of the 

parent ion intensity. The XA spectra were alternately taken for left (negative) and right handed 

(positive) circularly polarized light.  

 

Sum rule analysis of XMCD effects  

The so called sum rules link the spectral intensities of the XA spectra of different photon 

helicity to the projection of the spin and orbital magnetizations of a sample.[50-53] The recorded 

XMCD spectra were analyzed in terms of sum rule analysis: 

'���� = ¤��¥ Z − J©
W 32 f 9� − ¤�μ¥ �W 〈�²〉 

'���� = −¤��¥ Z + ©
I 32 f 9� 

where nh is the number of electron holes in the final state, gS and gL the g-factors for the 

electron spin and orbital angular momentum (gS = 2.0, gL = 1.0), µB the Bohr magneton and 

a,b,c and d are sum rule related prefactors. In this work, we assume Mn2+ and Ln3+ to be in an 

3d5 and 4fn high spin state (n = 3, 6, 7, 9 for Ln = Nd, Eu, Gd, Dy, respectively). The Lu M4,5 

absorption edge was not measured for the [Mn2Lu](H)2
+ compound, due to the minor photon 
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flux in this energy region. We chose the number of unoccupied valence orbitals to be nh = 5 

for Mn2+ and nh = 11, 8, 7, or 5 for Nd3+, Eu3+, Gd3+ and Dy3+, respectively. The prefactors a,b,c 

and d are 1/2, 2, 2/3, and 7/3 for the Mn L3,2 absorption edges and 1/3, 3/2, 2/3, and 2 for the 

Ln M5,4 absorption edges.[54] 

 

a)  

b)  

Figure 2: a) XMCD spectrum and the integrated XMCD intensity for the Mn L3,2 

absorption edges of the [Mn2Eu](H)2
+ ion. The Integral over the L3 edge is labeled 

A, the integral over the L2 edge is labeled B. b) Sum of the XA spectra for right and 

left handed circular polarity and its integral of the [Mn2Eu](H)2
+ ion. The integral 

over the L3 and L2 absorption edge is labeled C. Note, that the XAS at the respective 

lanthanide M5 and M4 absorption edges are considered for the lanthanides’ local 

magnetizations.  
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The integrals A, B and C are extracted from the XMCD spectrum (difference spectrum of XAS 

with different helicities) and the sum spectrum (sum of the XAS with different helicities) at the 

manganese L3,2 and the lanthanide M5,4 absorption edges, respectively (cf. Fig. 2). A two-step 

function is subtracted from the XA sum spectra to eliminate the non-resonant absorption. We 

follow the procedure described by Chen at al. (cf. Fig. S6).[50] Sum rule analysis allows us to 

extract the projection (mS
(z) and mL

(z)) of the intrinsic spin and orbital magnetic moments (mS 

and mL) onto the quantization axis. In the following, mS
(z) and mL

(z) are called spin and orbital 

magnetization. The quantization axis coincides with the magnetic field and the X-ray 

propagation direction.  

 

Correction factors: 

The sum rules only apply to transitions between well-defined shells. For the manganese ions 

we consider the transition from the 2p core state to a 3d valence state, for the lanthanide ions 

we consider the transition from the 3d core state to a 4f valence state. The valence states are 

not always separated, even if they appear so. This leads to inaccuracies in the magnetic 

moments calculated by the sum rules, particularly for the spin sum rule.[55] The imprecision of 

the sum rules has been reviewed in many publications.[55-63] Teramura et al. have introduced 

correction factors for the spin sum rule based on calculations on an atomic model, taking into 

account the Coulomb interaction in the L2,3/M4,5 absorption and the expectation value for the 

magnetic dipole operator <Tz>, which is not accessible in our XMCD experiment.[59-64] The 

presented magnetizations in this work are corrected by the suggested procedure of Teramura 

(cf. Tabs. S1, S2), for the uncorrected data see supplement (Figs. S8, S9, Tab. S3, S4). 

 

Bulk phase Magnetometry 

The bulk phase magnetometry measurements were conducted using a Quantum Design 

SQUID magnetometer MPMS. The magnetometer works in a temperature range between 1.8 

and 400 K for dc applied fields ranging from -70 to +70 kOe. Measurements were performed 

on the polycrystalline samples dispersed in Apeizon grease. The magnetic data were corrected 

for the sample holder and the diamagnetic contributions estimated from Pascal constants.[46] 
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General Procedure for the Synthesis of Complexes (NHEt3)2[Dy{Mn(L)}2](ClO4)·2(H2O) [47] 

General considerations: Elemental analyses were carried out with an Elementar vario EL III 

analyzer. IR spectra were obtained on a Bruker IFS 113v FTIR spectrometer. 3-Formyl salicylic 

acid, tris-(2-aminoethyl)amine, all lanthanide nitrates, Mn(ClO4)2·6H2O, and all solvents were 

used as purchased from commercial sources without further purification. 

 

Synthesis: 3-Formylsalicylic acid (67 mg, 0.4 mmol) and tris(2-aminoethyl)amine (0.03 mL, 0.2 

mmol) were dissolved in ethanol / water (15 mL / 5 mL) mixture. Then triethylamine (0.14 mL, 

1 mmol) was added dropwise with stirring. To the resulting solution Mn(ClO4)2(H2O)6 (75 mg, 

0.2 mmol) and Ln(NO3)3·(H2O)m (m = 5 (Nd, Eu, Gd) and m = 6 (Lu)) (0.1 mmol) were added 

and the subsequent mixture was stirred for another 12 h. The solution was then filtered and 

kept for crystallization. Within one week, needle shaped yellow crystals were collected, 

washed with diethyl ether and dried in vacuum. 

 

(NHEt3)2[Nd{Mn(L)}2](ClO4)·2(H2O) 

Yield: 46 mg, 31%. (based on Nd). IR (KBr pellet): ῡ = 3446 (br), 3415 (br), 2858 (w), 1638 (s), 

1593 (s), 1552 (s), 1439 (s), 1413 (s), 1372 (w), 1297 (s), 1225 (m), 1193 (m), 1160 (m), 1094 

(s), 1026 (m), 997 (m), 986 (m), 961 (m), 877 (m), 832 (m), 800 (m), 765 (s), 667 (m), 624 (m), 

482 (w) cm-1. Anal. Calcd for C56H80ClNdMn2N10O18: C, 45.73; H, 5.48; N, 9.52. Found: C, 45.06; 

H, 5.44; N, 9.44. 

 

(NHEt3)2[Eu{Mn(L)}2](ClO4)·2(H2O) 

Yield: 57 mg, 39%. (based on Eu). IR (KBr pellet): ῡ = 3447 (br), 2907 (w), 2858 (w), 1634 (s), 

1594 (s), 1554 (s), 1440 (s), 1414 (s), 1373 (w), 1332 (m), 1297 (s), 1231 (m), 1193 (m), 1159 

(m), 1094 (s), 1026 (m), 997 (m), 986 (m), 962 (m), 877 (m), 832 (m), 801 (m), 764 (s), 667 (m), 

624 (m), 600 (w), 483 (w), 457 (w) cm-1. Anal. Calcd for C56H80ClEuMn2N10O18: C, 45.49; H, 5.45; 

N, 9.47. Found: C, 45.41; H, 5.34; N, 9.44. 
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(NHEt3)2[Gd{Mn(L)}2](ClO4)·2(H2O) 

Yield: 45 mg, 30%. (based on Gd). IR (KBr pellet): ῡ = 3415 (br), 3293 (w), 3246 (w), 2923 (m), 

2864 (w), 2360 (m) 1635(s), 1558 (s), 1440 (s), 1406 (m), 1295 (s), 1233 (w), 1094 (s), 1028 (m), 

986 (w), 961 (w), 876 (m), 833 (w), 803 (w), 765 (w), 666 (w), 624 (w), 480 (w) cm-1. Anal. Calcd 

for C56H80ClGdMn2N10O18: C, 45.33; H, 5.43; N, 9.44. Found: C, 44.87; H, 5.43; N, 9.39. 

 

(NHEt3)2[Lu{Mn(L)}2](ClO4)·2(H2O) 

Yield: 59 mg, 39%. (based on Lu). IR (KBr pellet): ῡ = 3438 (br), 2902 (w), 2857 (w), 1630 (s), 

1594 (m), 1552 (m), 1462 (s), 1440 (m), 1414 (m), 1335 (w), 1301 (m), 1231 (m), 1194 (w), 

1162 (w), 1096 (s), 1026 (w), 986 (w), 966 (m), 960 (m), 878 (m), 833 (w), 805 (w), 761 (m), 

669 (m), 624 (m), 603 (w), 551 (w), 482 (w), 455 (w), 409 (w) cm-1. Anal. Calcd for 

C56H80ClLuMn2N10O18: C, 44.79; H, 5.37; N, 9.33. Found: C, 45.40; H, 5.44; N, 9.17. 

 

X-ray crystallographic studies of (NHEt3)2[Dy{Mn(L)}2](ClO4)·2(H2O): The details of the X-ray 

crystallography measurements in the compound with Ln = Dy were reported previously.[46] 

The other compounds were measured analogously. Thus a suitable crystal of (NHEt3)2-

[Dy{Mn(L)}2](ClO4)·2(H2O) was covered in mineral oil (Aldrich) and mounted onto a glass fiber 

and transferred directly into the cold stream of a Stoe IPDS 2 diffractometer.  

All structures were solved by using the program SHELXS/T.[65] The remaining non-hydrogen 

atoms were located from successive difference Fourier map calculations. The refinements 

were carried out by using full-matrix least-squares techniques on F2 by using the program 

SHELXL.[65] The hydrogen atom contributions of all of the compounds were calculated, but not 

refined. In each case, the locations of the largest peaks in the final difference Fourier map 

calculations, as well as the magnitude of the residual electron densities, were of no chemical 

significance.  

Crystal data for Mn2Nd: C44H44Mn2N8NdO12•ClO4•2(H2O)•2(C6H16N), M = 1470.87, a = 

10.7964(3) Å, b = 15.8740(5) Å, c = 19.6279(6) Å, α = 77.872(2)°, β = 84.929(2)°, γ = 73.340(2)°, 

V = 3149.31(17) Å3, T = 100 K, space group P-1, Z = 2, μ(MoKα) = 1.327 mm-1, 34019 reflections 

measured, 15284 independent reflections (Rint = 0.0578). The final R1 values were 0.0427 (I > 
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2σ(I)). The final wR(F2) values were 0.0856 (I > 2σ(I)). The final R1 values were 0.0729 (all data). 

The final wR(F2) values were 0.0949 (all data). The goodness of fit on F2 was 0.941.  

Crystal data for Mn2Eu: C44H44EuMn2N8O12•ClO4•2(H2O)•2(C6H16N), M = 1478.59, a = 

10.8074(5) Å, b = 15.8727(8) Å, c = 19.6925(9) Å, α = 77.729(4)°, β = 85.158(4)°, γ = 73.222(4)°, 

V = 3159.4(3) Å3, T = 150 K, space group P-1, Z = 2, μ(MoKα) = 1.493 mm-1, 34767 reflections 

measured, 34767 independent reflections. The final R1 values were 0.1416 (I > 2σ(I)). The final 

wR(F2) values were 0.3287 (I > 2σ(I)). The final R1 values were 0.1922 (all data). The final wR(F2) 

values were 0.3636 (all data). The goodness of fit on F2 was 1.285.  

Crystal data for Mn2Tm: C44H44Mn2N8O12Gd•ClO4•2(H2O)•2(C6H16N), M = 1483.88, a = 

10.7923(7) Å, b = 15.8330(9) Å, c = 19.7272(11) Å, α = 77.652(4)°, β = 85.215(5)°, γ = 73.203(5)°, 

V = 3151.6(3) Å3, T = 200 K, space group P-1, Z = 2, μ(MoKα) = 1.554 mm-1, 46115 reflections 

measured, 46115 independent reflections. The final R1 values were 0.1002 (I > 2σ(I)). The final 

wR(F2) values were 0.2380 (I > 2σ(I)). The final R1 values were 0.1811 (all data). The final wR(F2) 

values were 0.2758 (all data). The goodness of fit on F2 was 0.969.  

Crystal data for Mn2Lu: C44H44LuMn2N8O12•ClO4•2(H2O)•2(C6H16N), M = 1501.60, a = 

10.8378(3) Å, b = 15.7953(5) Å, c = 20.2009(6) Å, α = 76.445(2)°, β = 86.642(2)°, γ = 72.035(2)°, 

V = 3197.54(17) Å3, T = 200 K, space group P-1, Z = 2, μ(MoKα) = 2.04 mm-1, 95545 reflections 

measured, 95545 independent reflections. The final R1 values were 0.0901 (I > 2σ(I)). The final 

wR(F2) values were 0.2363 (I > 2σ(I)). The final R1 values were 0.1112 (all data). The final wR(F2) 

values were 0.2606 (all data). The goodness of fit on F2 was 1.034.  
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3.5 Results and Discussion 

Following the earlier published procedures for (NHEt3)2[Dy{Mn(L)}2](ClO4)·2(H2O), we 

generated 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-

benzoic acid H4L in situ as proligand. Further reaction in an EtOH / H2O (3:1) mixture with 

triethylamine, Mn(ClO4)2·6H2O and Ln(NO3)3·5H2O (10:2:1) resulted in the trinuclear mixed 3d-

4f complexes (NHEt3)2[Ln{Mn(L)}2](ClO4)·2(H2O) (Ln = Nd, Eu, Gd, Lu; (abbreviated as [Mn2Ln]) 

(Scheme 2). All new compounds were characterized by standard analytical / spectroscopic 

techniques and the solid-state structures were established by single crystal X-ray diffraction 

(Figure 3). All compounds are isostructural to the earlier described dysprosium species 

(NHEt3)2[Ln{Mn(L)}2](ClO4)·2(H2O) and will thus only be described here briefly. The asymmetric 

unit of each contains two (NHEt3)+ cations, one (ClO4)-, one [Ln{Mn(L)}2]- coordination anion 

and two water molecules. The central Ln(III) atom is 8-fold coordinated, being in the center of 

a distorted square antiprism coordination polyhedron. The two manganese ions are 7-fold 

coordinated by four nitrogen atoms of the tris-(2-aminoethyl)amine subunit and three oxygen 

atoms of which two are phenoxy groups and the remaining one is part of a carboxyl group 

(Figures S1-S4). By considering the lanthanide contraction, bonding parameters of all 

compounds are in comparison to [Mn2Dy] in a similar range and thus will not be discussed 

here. 

 

 
Scheme 2: Synthesis of (NHEt3)2[Ln{Mn(L)}2](ClO4)·2(H2O) (Ln = Nd, Eu, Gd, Lu). 
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Figure 3: Solid state structure of the [Nd{Mn(L)}2]- anion of (NHEt3)2-

[Ln{Mn(L)}2](ClO4)·2(H2O), omitting hydrogen atoms for clarity. The corresponding 

Eu, Gd and Lu compounds are isostructural (see ESI, Figs. S1-S4).  

 

 

3.5.1 XMCD Spectroscopy of isolated [Mn2Ln](H)2
+  

3.5.1.1 The Mn Absorption Edges L2, L3 

To address the magnetism of the incorporated manganese ions of the isolated complexes, we 

recorded XA spectra of [Mn2Ln](H)2
+ for positively and negatively circularly polarized X-rays at 

the manganese 2p3/2 / 2p1/2 (L3/L2) absorption edges, corresponding to a 2p → 3d excitation, 

by TIY spectroscopy. 

The polarization dependent XA spectra measured at the Mn L3,2 absorption edge show a 

substantial dichroic effect (cf. Fig. 4). The Mn ions in the investigated complexes are expected 

to be in a +II oxidation state with a 3d5 electron configuration which means that we have either 

one unpaired electron in a low spin state or five unpaired electrons in a high spin state. At the 

given ligand field, the Mn2+ ions are expected to be in a high spin state with five unpaired 

electrons. This orbital occupation entails a significant spin magnetic moment of 5 µB per atom 

(mS) and an orbital magnetic moment of 0 µB per atom (mL) according to HUND’s rules.  
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Figure 4: The manganese L3,2 edges: Polarization dependent XA spectra for 

negative (blue) and positive (red) circular photon polarization for the five 

isostructural, bimetallic 3d-4f trinuclear complexes [Mn2Ln](H)2
+ (Ln = Nd, Eu, Gd, 

Dy, Lu). 

 

The measured XAS spectra for positive and negative polarization of the five complexes 

differing only in the incorporated lanthanide ion look similar (cf. Fig. 4). The dichroic effect at 

the first subpeak of the L3 absorption peak around 640.5 eV is approximately the same 

magnitude. There are minor differences in the second and third subpeak of the L3 absorption 

at 641.8 and 644.0 eV. The dichroic effects in the spectra of [Mn2Eu](H)2
+ and [Mn2Gd](H)2

+ 

seem less pronounced compared to the other three complexes. The L2 absorption peaks look 
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much alike except for the [Mn2Eu](H)2
+ species, where the dichroic effect seems smaller as 

well. These findings can also be discerned in the XMCD spectra (cf. Fig. S7) 

 

 
Figure 5: Magnetizations of the Mn2+ cations: contributions by spin (mS

(z), filled 

blue circles), contributions by orbit (mL
(z), filled red squares), total values (mJ

(z), 

filled black triangles); together with the mL
(z) to mS

(z) ratio (open purple triangles) 

on the manganese ions within the investigated mixed 3d-4f trinuclear complexes 

of the type [Mn2Ln](H)2
+. 

 

The magnetizations at the Mn atoms are extracted by sum rule analyses of the XAS spectra at 

the Mn L3,2 absorption edges (cf. Fig. 5). The background subtraction from the manganese XA 

sum spectra due to excitations into higher unoccupied (nonmagnetic) d states is performed 

by a two-step function. The step height for the L3 edge is 2/3, the step height at the L2 edge 

1/3 of the full edge jump, according to the degeneracy of the spin-orbit split 2p initial states 

(cf. Fig. S6).[39, 50, 54] The total magnetizations per atom/ion (mJ
(z)) for all complexes is in the 

range of 2.48 – 2.72 µB / Mn2+ and is almost exclusively contributed by the spin magnetic 

moment (mS
(z) = 2.21 – 2.71 µB / Mn2+) (cf. Fig 5). The orbital magnetic moments of the Nd, Dy, 

and Lu species match the predicted value of mL = 0 for a d5 high spin configuration with 5 singly 

occupied d-orbitals very well. The Eu and Gd species seem to have a minor orbital contribution 
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of up to mL
(z) = 0.27 µB / Mn2+ (for Eu) to the total magnetization of the Mn2+ ions (cf. 

integrated XMCD signal Fig. S7). The residual mL
(z) values may for example be explained by a 

distorted ligand field and/or partial low spin configurations of the d5 configuration. Detailed 

structural studies of the complexes may reveal slight differences in the molecular geometry. 

For all complexes the magnetizations of the manganese ions correspond very well to the 

expected values for decoupled Mn2+ ions in an octahedral ligand environment, in between the 

error bars. Also the mL/mS ≈ 0 corresponds to the Mn2+ ground state (S = 5/2, L = 0, J = 5/2). 

Due to the substantial spin magnetizations, an antiferromagnetic coupling scheme between 

the manganese ions can be excluded. The extracted spin and orbital magnetizations by sum 

rule analyses as well as the total magnetization and the orbital to spin magnetization ratio are 

summarized in Tab. 1. 

 

Table 1: Experimental orbital (mL
(z)), spin (mS

(z)), total (mJ
(z)) magnetization and the 

orbital to spin ratios (mL
(z)/mS

(z)) at the manganese ions of the [Mn2Ln](H)2
+ 

complexes. 

 

 

 

 

 

 

 

3.5.1.2 The Lanthanide Absorption Edges M4, M5 

In order to push the limits of the combination of XMCD spectroscopy and sum rule analysis to 

differentiate the magnetic properties of the incorporated lanthanide ions, we recorded X-ray 

absorption spectra at the respective lanthanide M5,4 absorption edges corresponding to the 

excitation 3d104fn → 3d94fn+1. Due to decreasing photon flux at the undulator with increasing 

photon energy, we were not able to record the XA spectra for [Mn2Lu](H)2
+ at the Lu M5,4 

absorption edge (> 1500 eV). Since Lu3+ has a diamagnetic 4d104f14 ground state electron 

configuration, no contribution of Lu3+ to the magnetic properties of [Mn2Lu](H)2
+ is expected. 

 

 
mL

(z) /  
µB/Mn2+ 

mS
(z) /  

µB/Mn2+ 
mJ

(z) / 
µB/Mn2+ 

mL
(z)/mS

(z) 

[Mn2Nd](H)2
+ 0.01 2.71 2.72 0.00 

[Mn2Eu](H)2
+ 0.27 2.21 2.48 0.12 

[Mn2Gd](H)2
+ 0.15 2.47 2.62 0.06 

[Mn2Dy](H)2
+ -0.05 2.65 2.60 -0.02 

[Mn2Lu](H)2
+ 0.02 2.49 2.51 0.01 
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XMCD spectroscopy at the Nd 3d (M5,4) absorption edge 

The XA spectra of the [Mn2Nd](H)2
+ ion in the range of 955 – 1030 eV show a rather small 

dichroic effect on the M5 absorption at 979 eV and a substantial dichroic effect on the M4 

absorption at 1000 eV (Fig. 6, left), indicating a magnetic moment at the NdIII center. The non-

resonant background was subtracted using a two-step function.[50] The step height at the M5 

edge is ¼, at the M4 edge ¾ of the full edge jump. The statistically expected ratio of 3:2 based 

on the 3d orbital degeneracy is not observed in our experiment due to the 3d-4f interaction.[66] 

The XA sum integral and the XMCD integral show two plateaus after the first and after the 

second absorption edge (990 and 1020 eV), giving the integrals A, B and C (cf. chapter 2). Our 

gas phase XA/XMCD spectra at the neodymium absorption edge closely resemble bulk 

spectra.[66-68] Assuming a high spin state for the neodymium giving a number of unoccupied 

valence orbitals nh = 11 for Nd(III), sum rule analysis (inclusive spin sum rule correction) yields 

a spin magnetization of mS
(z) = -0.60 µB/Nd3+ and an orbital magnetization of 

mL
(z) = 1.23 µB / Nd3+. Note, that the spin sum rule correction has a major impact on the spin 

magnetization (the value of the original spin sum rule yields mS
(z) = -2.41 µB / Nd3+, see Fig. 

S11, Tab. S6). The experimental ratio mL
(z)/mS

(z) ≈ -2.05 corresponds to the ground state of 

Nd3+ in accordance with HUND’s rules. The (corrected) extracted magnetizations are 

summarized in Tab. S6. (Tab. 2). 

 

XMCD spectroscopy at the Eu 3d (M5,4) absorption edge 

The polarization dependent XA spectra of [Mn2Eu](H)2
+ in the range of 1100 – 1190 eV show 

very small dichroic effects, implying also a very small magnetic moment at the Eu3+ center of 

the complex (Fig 6, right). The non-resonant background in the sum spectrum was subtracted 

using a two-step function.[50] The step height at the M5 edge is 1/3, at the M4 edge 2/3 of the 

full edge jump. The statistically expected ratio of 3:2 based on the 3d orbital degeneracy is not 

observed in our experiment due to the 3d-4f interaction.[66] Although the integrated XMCD 

signal shows some minor dichroic effect, the intensity is so low that one can assume a 

negligible magnetization at the Eu3+ center. For the free Eu3+ ion in the ground state it can be 

deduced L = 3, S = 3 and J = 0, and thus a diamagnetic 7F0 ground state, according to HUND’s 

rules.[69] The combination of XMCD spectroscopy and sum rule analysis usually allows for 
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distinction of the orbital and spin magnetic moments. In our case both cancel out to a total 

magnetic moment mJ
(z) ≈ 0. Due to the low XMCD signal intensity, we skipped the use of sum 

rule analysis.  

 

      

Figure 6: The lanthanide M5,4 edges: Polarization dependent X-ray absorption 

spectra for negative (blue) and positive (red) circular photon polarization, the 

resulting XMCD spectra (black) and the integral of the XMCD signal (red) on the Nd 

M5,4 (left) and the Eu M5,4 (right) absorption edges of the [Mn2Nd](H)2
+ and 

[Mn2Eu](H)2
+ mixed 3d-4f trinuclear complexes. Note, that the ordinates for the 

sum spectra and their integrals are different.  

 

XMCD spectroscopy at the Gd 3d (M5,4) absorption edge 

The XA spectra for negative and positive helicity of [Mn2Gd](H)2
+ in the range of 1165 – 1250 

eV show large dichroic effects on the M5 and M4 absorption edges at 1184 and 1215 eV, 

respectively (Fig. 7, left). This indicates a large total magnetic moment at the Gd3+ center. The 

integrated sum spectrum shows two plateaus after the M5 and after the M4 absorption edges. 

We did not observe non-resonant background after normalization of the spectra. The 

integrated XMCD signal shows also two plateaus after both absorption edges. We assume a 
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high spin configuration with the number of electron holes in the valence orbital nh = 7. We 

calculated a spin magnetization of mS
(z) = 4.14 µB / Gd3+ and an orbital magnetization of 

mL
(z) = 0.01 µB / Gd3+, leaving a total magnetization of mJ

(z) = 4.15 µB / Gd3+ and a ratio 

mL
(z) / mS

(z) = 0 (Tab. 2). These values are reasonable given the fact, that prediction by HUND’s 

rules results in L = 0, S = 7/2 and J = 7/2. The experimental as well as the theoretical value for 

the orbital to spin magnetization ratio according to HUND’s Rules agree with mL / mS = 0.  

 

Table 2: Experimental orbital (mL
(z)), spin (mS

(z)), total (mJ
(z)) magnetizations 

and the orbital to spin ratios (mL
(z)/mS

(z)) at the Lanthanide ions of the 

[Mn2Ln](H)2
+ complexes. 

 

 

 

 

  

 
mL

(z) / 
µB / Ln3+ 

mS
(z) / 

µB / Ln3+ 

mJ
(z) / 

µB / Ln3+ mL
(z) / mS

(z) 

[Mn2Nd](H)2
+ 1.23 -0.60 0.63 -2.05 

[Mn2Eu](H)2
+   ≈0  

[Mn2Gd](H)2
+ 0.01 4.14 4.15 0.00 

[Mn2Dy](H)2
+ 2.88 3.57 6.45 0.81 
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Figure 7: Polarization dependent X-ray absorption spectra for negative (blue) and 

positive (red) circular photon polarization, the resulting XMCD spectra (black) and 

the integral of the XMCD signal (red) on the Gd M5,4 (left) and the Dy M5,4 (right) 

absorption edges of the [Mn2Gd](H)2
+ and [Mn2Dy](H)2

+ mixed 3d-4f trinuclear 

complexes. Note, that the ordinates for the sum spectra and their integrals are 

different. 

 

XMCD spectroscopy at the Dy 3d (M5,4) absorption edge 

The XA spectra of the [Mn2Dy](H)2
+ ion in the range of 1270 – 1350 eV show a very large 

dichroic effect on the M5 absorption edge at 1292 eV, and almost no dichroism on the M4 

absorption edge at 1327 eV (Fig. 7, right). A contribution of spin and orbital magnetization can 

be expected for this species. As in the case of [Mn2Gd](H)2
+ we do not observe a non-resonant 

background after normalization of the absorption spectra. The integrated sum spectrum 

shows two pronounced plateaus after the M5 and the M4 absorption edges. The integral of 

the XMCD signal provides a plateau after the M5 absorption edge that remains roughly 

constant at the M4 absorption edge. The lanthanide ion Dy3+ has a 3d104f9 ground state 

electron configuration, we assume the number of electron holes in the valence shell to nh = 5. 

We calculated a spin magnetization of mS
(z) = 3.57 µB / Dy3+ and an orbital magnetization of 
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mL
(z) = 2.88 µB / Dy3+. This results in a total magnetization of mJ

(z) = 6.45 µB / Dy3+ and an orbital 

to spin magnetic ratio of mL
(z) / mS

(z) = 0.81 (Tab. 3). HUND’s rules predict L = 5, S = 5/2 and 

J = 15/2 for the ground state of Dy3+ and a magnetic moment ratio of mL / mS = 1. The 

calculated ratio mL
(z) / mS

(z) = 0.81 is in reasonable good accordance with this. 

 

 
Figure 8: Spin (mS

(z), filled blue circles), orbital (mL
(z), filled red squares), total 

(mtot
(z), filled black triangles) magnetizations and the mL

(z) to mS
(z) ratio (open 

purple triangles) on the Ln atoms within the investigated bimetallic 3d-4f 

trinuclear complexes of the type [Mn2Ln](H)2
+. 

 

The calculated spin (mS
(z)), orbital (mL

(z)), total (mJ
(z)) magnetizations and the orbital to spin 

magnetic ratios (mL
(z)/mS

(z)) of the investigated complexes are plotted in Fig. 8 and summarized 

in Tab. 3. The magnetic properties of the Ln3+ ions meet the expectations corresponding to 

the respective 4fn electron configuration. The found magnetizations on the lanthanide ions 

are in line with predictions of HUND’s rules for free Ln3+ ions. Our results support the 

assumption, that the magnetic f-electrons of lanthanide ions are confined and scarcely 

interact with surrounding ligand systems.[70-72]  
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Table 3: Experimental orbital to spin magnetization ratios (mL
(z)/mS

(z)) and 

total magnetizations (mJ
(z)) of the trivalent lanthanide ions in the 

[Mn2Ln](H)2
+ complexes (this work) and textbook values for free lanthanide 

ions LnIII.[69]  

 
mL

(z)/mS
(z)  

this work 
mL/mS [69] 

mJ,Ln
(z) 

this work 
mJ,Ln(T→ 0 K) 

[Mn2Nd](H)2
+ -2.05 -2 0.63 3.27 

[Mn2Eu](H)2
+  0.5  0 

[Mn2Gd](H)2
+ 0.00 0 4.15 7 

[Mn2Dy](H)2
+ 0.81 1 6.45 10 

 

 

3.5.2 Estimate of the Ion Temperature  

The [Mn2Dy] complex was studied in detail and the metal ions provide very weak exchange 

interactions (JMn−Mn = 0.00 cm−1, JDy−Mn = 0.22 cm−1).[22, 46] The magnetic moments can 

presumably orient independently, which allows us to estimate the [Mn2Ln](H)2
+ ion 

temperature by projection of the measured total magnetizations mJ
(z) (of the manganese ions 

and the lanthanide ions independently) onto a Brillouin function of the temperature at a 

magnetic field of 5 T described by:  

'£��� = ¤£μ¥¦ «2¦ + 12¦ ° coth «2¦ + 12¦ μ¥¤£¦©¯¥� ° − 12¦ coth « 12¦ μ¥¤£¦©¯¥� ° 

with: 

mJ
(z): projection of the total magnetic moment onto the quantization axis 

J total angular momentum, J = L + S 
gJ Landé-factor of the total magnetic moment 
B magnetic field strength 
T temperature 
 

Table 4: Spin Orbit coupling constants for the 

Mn2+ ion ζ3d and selected lanthanide ions ζ4f.[73] 

Ion ζ3d / cm-1 ζ3d / kJ/mol 
Mn2+ 347 4.15 

Ion ζ4f / cm-1 ζ4f / kJ/mol 
Nd3+ 884 10.58 
Eu3+ 1326 15.86 
Gd3+ 1450 17.35 
Dy3+ 1932 23.11 



 3. Intrinsic Magnetism of Hetero-Bimetallic 3d-4f Complexes by XMCD Spectroscopy 
 

 

 
74 

 

The total magnetic moments are approximated as a sum of the individual spin and orbital 

magnetic moments (mJ ≈ mS + mL). This is reasonable because the strong spin-orbit coupling 

in the Mn2+ and Ln3+ ions (cf. Tab. 4) is more than one order of magnitude higher compared to 

the thermal and magnetic energy equivalents under the experimental conditions and in 

addition, the exchange interactions between the metal ions are weak (cf. Tabs. 4,5). In our 

experiments the coupling between the spin (S) and orbital (L) angular momentum to the total 

angular momentum (J) exceeds the individual coupling of S or L to the applied external 

magnetic field.[39, 40, 74, 75] 

 

Table 5: Thermal energy (left) and magnetic energy (right) equivalents. 

T / K E / cm-1 E / kJ/mol B / T E / cm-1 E / kJ/mol 
5 3.475 0.0416 0.1 0.04668 0.0006 

10 6.950 0.0831 1.0 0.46686 0.0056 
50 34.752 0.4157 2.0 0.93373 0.0112 

100 69.503 0.8314 5.0 2.3343 0.0279 
300 208.51 2.4943 7.0 3.2681 0.0391 

 

The Brillouin function for a Mn2+ ion in the ground state is shown in Fig. 9. For the five 

investigated complexes [Mn2Ln](H)2
+ with different incorporated lanthanide ions, the same 

Brillouin function is plotted one below the other (see color code). The calculated mJ
(z) values 

and the assumed error of 20 % are shown as a dotted horizontal line. The corresponding 

temperature as a projection onto the temperature axis is shown as dotted vertical line. The 

colored areas represent the uncertainty. The evaluated temperatures differ only slightly in the 

range of 12.3 to 13.9 K with an average of �³ = 13.3K , which is in line with the temperatures 

expected, even if the uncertainty is relatively high (ΔT ≈ ± 4 K).  

The Brillouin functions of Nd3+, Gd3+ and Dy3+ in their respective ground state configuration 

are shown in Fig. 10. The calculated mJ
(z) values are shown as a dotted horizontal line, the 

shaded area represents the assumed error of 20 % (for Gd3+ and Dy3+) and 40 % (for Nd3+), 

respectively. The corresponding temperature as a projection onto the temperature axis is 

shown as dotted vertical line, again the shaded area represents the temperature uncertainty. 

The evaluated temperature of the Gd3+ ion yields 13.8 K, the temperature of the Dy3+ ion yields 

14.6 K. The difference of < 1 K and the average of 14.2 K is consistent with the temperatures 

extracted from the manganese data. The temperature uncertainty is approx. ± 4.5 K for Gd3+ 
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Figure 9: Simulated magnetizations mJ

(z) of the Mn2+ ion in the ground state 

(S = 5/2, L = 0, J = 5/2), as Brillouin function of the ion temperature at a magnetic 

field of B = 5 T. The experimentally determined magnetizations (mJ
(z)) are 

projected onto the Brillouin function to identify the ion temperature.  

 

and ± 5.5 K for Dy3+. The temperature derived from the Nd3+ data is 23.4 ± 11 K. This value is 

significantly augmented compared to Gd3+ and Dy3+ but still in the expected temperature 

range for the experiment. The Brillouin curve for the Nd3+ ion is much shallower compared to 

Gd3+ or Dy3+, resulting in an augmented uncertainty for the temperature. A further explanation 

might be a higher error in the correction of the spin sum rule.[60] The error in the original spin 

sum rule is > 100 %, additionally, the <Tz>/<S> ratio is > 30 %. Hence the error for the 

experimentally determined mJ
(z) is probably higher (estimated 40 %).  
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Figure 10: Simulated magnetizations mJ

(z) of the Nd3+ (top, black), Gd3+ (middle, 

orange) and Dy3+ (bottom, blue) ions in the ground state, as Brillouin function of 

the ion temperature at a magnetic field of B = 5 T. The experimentally determined 

magnetizations (mJ
(z)) are projected onto the Brillouin function to identify the ion 

temperature. 

 

All in all, the ion temperatures determined in this study are in very good agreement with those 

assessed in previous experiments at the NanoCluster Trap, conducted on metal cluster ions 

and metal cluster ion adsorbates.[37-45] Zamudio-Bayer et al. find ion temperatures of 7.4 to 

27.3 K for Ni2+ under very similar experimental conditions.[45] For the Co3(benzene)n
+ cluster 

ion with n = 0-3, Akin et al. found temperatures in the range of 12 – 31 K.[37] 

 

3.5.3 Magnetometry of Bulk Samples 

The magnetic susceptibilities of the isostructural [Mn2Ln] complexes were measured between 

1.8 and 300 K under an applied field of 0.1 T. The data are summarized in Tab. 6 and shown as 

χT vs T plots in Fig. 11. The χT product of [Mn2Nd] steadily decreases from 12.3 cm3Kmol-1 at 

room temperature to a weakly defined minimum of 11.1 cm3Kmol-1 at 12 K and then increases 

to 11.9 cm3Kmol-1 (cf. Fig. 11 and Tab. 6, S3). The χT product of [Mn2Eu] steadily decreases 
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from 10.1 cm3Kmol-1 at 300 K to 7.8 cm3Kmol-1 at 1.8 K (cf. Fig. 11 and Tab. 6, S3). The χT 

product of [Mn2Gd] remains constant at approx. 16 cm3Kmol-1 to 40 K and then increases to 

reach 19.9 cm3Kmol-1 at 1.8 K (cf. Fig. 11 and Tab. 6, S3). The χT product of [Mn2Dy] steadily 

decreases from 23.2 cm3Kmol-1 at 300 K to a minimum of 21.2 cm3Kmol-1 at 11 K and then 

increases to 23.8 cm3Kmol-1 at 1.8 K (cf. Fig.11 and Tab. 6, S3). The χT product of [Mn2Lu] 

steadily decreases from 8.9 cm3Kmol-1 at room temperature to 7.3 cm3Kmol-1at 1.8 K with a 

behavior very similar to that of the [Mn2Eu] compound (cf. Fig. 11 and Tab. 6, S3).  

 

Table 6: Experimental χT products at 1.8 K, 300 K and the 

sum of Curie constants for the five [Mn2Ln]-type complexes.  

 
χT / cm3Kmol-1 

1.8 K 

χT / cm3Kmol-1 

300 K 

Σi Ci / 

cm3Kmol-1 

[Mn2Nd] 11.95 12.33 10.39 
[Mn2Eu] 7.83 10.09 8.75 
[Mn2Gd] 19.88 16.70 16.63 
[Mn2Dy] 23.76 23.18 22.93 
[Mn2Lu] 7.28 8.85 8.75 

 

 

The χT products for all five complexes at room temperature under an applied DC field of 

1000 Oe are consistent with the expected values for one isolated Ln(III) ion and two Mn(II) 

ions (cf. Tabs. 6, S3). The initial decrease in the χT product of [Mn2Nd], [Mn2Eu] and [Mn2Dy] 

with temperature can be explained as a result of the thermal depopulation of the mJ levels of 

the Nd3+, Eu3+ and Dy3+ ions, respectively.[46] The increase of the χT value for the species with 

paramagnetic lanthanides [Mn2Nd], [Mn2Gd] and [Mn2Dy] below 10 K indicates weak 

ferromagnetic interactions between the Mn2+ ions and the lanthanide ions. The lanthanide 

ions with a diamagnetic ground state Eu3+ (7F0) and Lu3+ (1S0) should scarcely contribute to the 

molar susceptibilities and their χT products are expected to originate solely from the Mn2+ 

ions. The augmented χT values especially at higher temperatures for the europium species are 

due to thermally populated low lying excited states of the Eu3+ ion. This finding is widely 

known as Van Vleck magnetism of the Eu3+ ion.[76-80] (cf. Tab S4). The drop of χT of [Mn2Eu] 

and [Mn2Lu] can originate from an antiferromagnetic coupling of the manganese moments at 

very low temperatures. 
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Figure 11: Measured temperature dependence of the χT product of five 

isostructural bimetallic complexes of the [Mn2Ln]-type (sum formula: 

[C44H44N8O12LnMn2(C6H16N)2(ClO4)(H2O)2], with Ln = Nd, Eu, Gd, Dy, Lu).  

 

The field dependence of the magnetization was measured at 2, 3 and 5 K for all [Mn2Ln] 

samples. The M vs. H plot at 2K shows a relative fast increase and an approach to saturation 

for all samples (cf. Fig. 12). The saturated magnetizations at maximum magnetic field (7 T) are 

in very good agreement with the expected values as a sum of spin-only values for very weakly 

exchange coupled metal ions (cf. Tab. 7). The magnetization value of 13.57 µB for [Mn2Nd] is 

in approximate agreement with that expected of 13 µB which is the sum of the contribution of 

one Nd3+ (3.0 µB) and two Mn2+ (5 µB). For [Mn2Eu], the magnetization of 9.99 µB agrees very 

well with the expected contribution of only two Mn2+ of 5.0 µB (with Eu3+ being diamagnetic). 

The magnetization of [Mn2Gd] of 16.66 µB is also close to the expected value of 17 µB (7.0 µB 

for Gd3+ and 5.0 µB for each Mn2+). The [Mn2Dy] complex provides a molar magnetization of 

16.02 µB, which is still in reasonable agreement with the expected magnetization of 15.0 µB 

(5.0 µB for Dy3+ and 5.0 µB for each Mn2+). The magnetization of [Mn2Lu] of 9.81 µB is in 

accordance to the solely contribution from just the two paramagnetic Mn2+ ions of 2 x 5.0 µB.  
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Figure 12: Molar magnetizations at 2 K of five isostructural bimetallic complexes 

of the [Mn2Ln]-type (sum formula: [C44H44N8O12LnMn2(C6H16N)2(ClO4)(H2O)2], with 

Ln = Nd, Eu, Gd, Dy, Lu). The horizontal dashed lines correspond to the expected 

values as sum of the individual spin-only contributions of one Ln(III) and two Mn(II) 

ions. 

 

The saturation of the magnetization at high magnetic fields is less pronounced for [Mn2Nd] 

and [Mn2Dy]. Furthermore, the maximum measured magnetization is slightly higher 

compared to the calculated values (positive ΔMrel., cf. Tab. 7). This indicates the presence of 

magnetic anisotropy and/or the population of low-lying excited states. For [Mn2Nd] and 

[Mn2Dy] the plot of M vs. H/T at different temperatures shows that the curves are not 

superposed on to a single master curve, supporting the assumption of either presence of 

magnetic anisotropy and/or population of low-lying excited states (cf. Fig. S5).[47]  

 

Table 7: Molar magnetizations of [Mn2Ln] measured at 2 K and 

7 T (Mexp.), the expected values (spin-only, Mtheo.) and the 

relative deviation (ΔMrel.) for all five complexes. 

 Mexp. / µB (7 T) Mtheo. / µB ΔMrel. 

[Mn2Nd] 13.57 13 +4.4 % 
[Mn2Eu] 9.99 10 -0.1 % 
[Mn2Gd] 16.66 17 -2.0 % 
[Mn2Dy] 16.02 15 +6.8 % 
[Mn2Lu] 9.81 10 -1.9 % 
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3.6 Conclusions 

The combination of element selective X-ray magnetic circular dichroism spectroscopy (XMCD) 

and sum rule analysis allows for the assessment of the individual contributions to the total 

magnetic moment of a hetero-bimetallic complex. We show that we are able to extract the 

contribution of spin and orbital magnetizations of the manganese ions and of the lanthanide 

ions separately.  

Due to the vanishing orbital angular momenta of the manganese ions and the substantial spin 

magnetizations, a high spin configuration is confirmed. The XMCD effects and the respective 

spin and orbital angular momenta of the lanthanide ions vary, according to the occupation of 

the f-orbitals. We have confirmed the diamagnetic ground state of Eu3+. The mL/mS ratios 

reported for Nd3+, Gd3+ and Dy3+ are in a very good agreement with the values expected from 

HUND’s rules. 

By comparing the experimental mJ
(z) at the given experimental conditions with a Brillouin plot 

for the Mn2+ and the respective Ln3+ ground states as a function of the temperature at a 

constant magnetic field of 5 T, we are able to approximate the ion temperature of the hetero-

bimetallic complexes. The values of around 14 K are in the expected temperature range, due 

to RF heating of the ions caused by the trap operation. 

We have shown that the combination of XMCD spectroscopy of isolated hetero-bimetallic 

complexes in the gas phase with sum rule analysis is a powerful tool for the investigation of 

interesting magnetic compounds, free of solvation effects, crystal packing effects or 

interaction with surfaces.  

To evaluate the magnetic data obtained from the gas phase studies, we performed bulk 

magnetometry of crystalline samples. The SQUID measurements show weak ferromagnetic 

interactions between the paramagnetic trivalent lanthanide ions (Nd3+, Gd3+ and Dy3+) and the 

surrounding Mn2+ ions at temperatures < 10 K. A magnetic coupling of the manganese ions via 

the diamagnetic lanthanide ions (Eu3+ and Lu3+) is not observed. However, the susceptibility 

measurements reveal Van Vleck paramagnetism for [Mn2Eu] due to thermal population of low 

lying excited states of the Eu3+ ion.  
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The magnetization measurements show a good agreement between the expected 

magnetization for weak exchange coupled ions and the measured saturation value at high 

fields. The less pronounced saturation of magnetization of [Mn2Nd] and [Mn2Dy] indicate the 

presence of magnetic anisotropy and/or population of low-lying excited states, supported by 

the M vs. H/T plots, lacking a superposition of the magnetization curves at different 

temperatures.  
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Content 

Figure S1: Molecular structure of [Mn2Nd] in the solid-state.  

Figure S2: Molecular structure of [Mn2Eu] in the solid-state.  

Figure S3: Molecular structure of [Mn2Gd] in the solid-state.  

Figure S4: Molecular structure of [Mn2Lu] in the solid-state.  

Table S1: The expectation values of magnetic quantities and the ratio of XI to XE of the Sz sum 

rule for Mn2+ calculated with 10 Dq = 1.5 eV.  
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Table S2: The expectation values of magnetic quantities and the ratio of XI to XE of the Sz sum 

rule for Nd3+, Gd3+ and Dy3+. 

Table S3: Ground states of the ions Mn2+ and Ln3+, and the respective calculated Curie 

constants. 

Table S4: Lowest lying excited states of the Ln3+ ions. 

Figure S5: DC magnetic data. Field dependence of magnetization of the [Mn2Ln]-type 

complexes (Ln = Nd, Eu, Gd, Dy, Lu) as M vs. H/T plots. 

Figure S6: Sum of positive and negative XA spectra (black) and their integrated sum (red) for 

five different mixed 3d-4f trinuclear complexes [Mn2Ln](H)2
+ (Ln = Nd, Eu, Gd, Dy, Lu). 

Figure S7: XMCD spectra (black) and their integrated sum (red) for five different mixed 3d-4f 

trinuclear complexes [Mn2Ln](H)2
+ (Ln = Nd, Eu, Gd, Dy, Lu). 

Figure S8: Semi-logarithmic plot of the measured temperature dependence of χT of five 

complexes of the [Mn2Ln]-type (sum formula: [C44H44N8O12LnMn2(C6H16N)2(ClO4)(H2O)2], with 

Ln = Nd, Eu, Gd, Dy, Lu). 

Figure S9: Relative orientation of the total magnetic moments mJ
(z)/mJ as Brillouin function of 

the temperature for Mn2+, Nd3+, Gd3+ and Dy3+. 

Figure S10: Calculated Magnetizations of the Mn2+ cations by the original sum rules: 

contributions by spin (mS
(z), filled blue circles), contributions by orbit (mL

(z), filled red squares), 

total values (mJ
(z), filled black triangles); together with the mL

(z) to mS
(z) ratio (open purple 

triangles) on the manganese ions within the investigated mixed 3d-4f trinuclear complexes of 

the type [Mn2Ln](H)2
+. 

Table S5: Experimental orbital (mL
(z)), spin (mS

(z)), total (mtot
(z)) magnetization and the orbital 

to spin ratios (mL
(z)/mS

(z)) at the manganese ions of the [Mn2Ln](H)2
+ complexes obtained by 

the original sum rules. 

Figure S11: Calculated Spin (mS
(z), filled blue circles), orbital (mL

(z), filled red squares), total 

(mtot
(z), filled black triangles) magnetizations by the original sum rules and the mL

(z) to mS
(z) 
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ratio (open purple triangles) on the Ln atoms within the investigated bimetallic 3d-4f trinuclear 

complexes of the type [Mn2Ln](H)2
+. 

Table S6: Experimental orbital (mL
(z)), spin (mS

(z)), total (mtot
(z)) magnetizations and the orbital 

to spin ratios (mL
(z)/mS

(z)) at the Ln3+ ions of the [Mn2Ln](H)2
+ complexes obtained by the 

original sum rules. 
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Figure S1: Molecular structure of [Mn2Nd] in the solid-state. Hydrogen atoms are 

omitted for clarity. Ellipsoids displayed at 50% probability. 
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Figure S2: Molecular structure of [Mn2Eu] in the solid-state. Hydrogen atoms are 

omitted for clarity. Ellipsoids displayed at 50% probability. 
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Figure S3: Molecular structure of [Mn2Gd] in the solid-state. Hydrogen atoms are 

omitted for clarity. Ellipsoids displayed at 50% probability. 
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Figure S4: Molecular structure of [Mn2Lu] in the solid-state. Hydrogen atoms are 

omitted for clarity. Ellipsoids displayed at 50% probability. 
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Correction of the spin sum rules by Takeo Jo et al..[59, 60] 

The Sz sum rule for the L2,3 edge in 3d transition metal systems is expressed as: 

¶· = ¶¸. 

The relative integrated magnetic circular dichroism (MCD) intensity is defined as 

¶· = ∫ A¹�����¹����Bº�»§ �	 ∫ A¹�����¹����Bº�»�∫ A¹�����¹¼����¹����Bº�»§�»�
    

and the expectation value is given by 

¶¸ = 	������� 〈��〉 + �������� 〈��〉. 

The absorption spectra with positive and negative light helicity are given by �±�Q�, with 

linearly polarized light by ���Q� along the z direction. L3 and L2 denote the integrated region 

with respect to Q, the number of 3d electrons is given by 9. 

 

Table S1: The expectation values of magnetic quantities 

and the ratio of XI to XE of the Sz sum rule for Mn2+ 

calculated with 10 Dq = 1.5 eV.[59]  

 9 〈��〉 〈��〉 ¶·/¶¸ 
Mn2+ 5 -2.50 0.00031 0.680 
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The Sz sum rule for the rare earths is very similar: 

¶· = ¶¸, 

but the integrated MCD intensity is defined by 

¶· = ¶·�H�� − �	 ¶·�H��  

and  

¶·�H�� = ∫ A¹�����¹����Bº�½¾∫ A¹�����¹¼����¹����Bº�½¾�½¿
, 

¶·�H�� = ∫ A¹�����¹����Bº�½¿∫ A¹�����¹¼����¹����Bº�½¾�½¿
. 

The expectation value is given by 

¶¸ = 	������� 〈��〉 + ����� 〈��〉. 

The absorption spectra with positive and negative light helicity are given by �±�Q�, with 

linearly polarized light by ���Q� along the z direction. M5 and M4 denote the integrated region 

with respect to Q, the number of 4f electrons is given by 9. 

 

Table S2: The expectation values of magnetic quantities 

and the ratio of XI to XE of the Sz sum rule for Nd3+, Gd3+ 

and Dy3+.[60]  

 9 〈��〉 〈��〉 ¶·/¶¸ 
Nd3+ 3 1.20 0.378 2.076 
Gd3+ 7 -3.466 0.010 0.949 
Dy3+ 9 -2.417 0.128 0.919 
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Table S3: Ground states of the Mn2+ and Ln3+ ions and the respective calculated 

Curie constants. 

Ion e--config. S L J 2S+1LJ gJ C / cm3Kmol-1 

Mn(II) [Ar] 3d5 5/2 0 5/2 6S5/2 2 4.377 
Nd(III) [Xe] 4f3 3/2 6 9/2 4I9/2 8/11 1.637 
Eu(III) [Xe] 4f6 3 3 0 7F0   
Gd(III) [Xe] 4f7 7/2 0 7/2 8S7/2 2 7.878 
Dy(III) [Xe] 4f9 5/2 5 15/2 6H15/2 4/3 14.172 
Lu(III) [Xe] 4f14 0 0 0 1S0   
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Table S4: Lowest lying excited states of the Ln3+ ions.[81] 
Ion e--config. Term Level / cm-1 

Nd(III) [Xe] 4f3 4I9/2 0 
  4I11/2 1880 
  4I13/2 3860 
  4I15/2 5910 
  4F3/2 11290 
  4F5/2 12320 
  4F7/2

 13280 
  4F9/2

 14570 
Eu(III) [Xe] 4f6 7F0

 0 
  7F1

 370 
  7F2

 1040 
  7F3

 1890 
  7F4

 2860 
  7F5

 3910 
  7F6

 4940 
Gd(III) [Xe] 4f7 8S7/2

 0 
  6P7/2

 32120 
  6P5/2

 32720 
  6P3/2

 33290 
Dy(III) [Xe] 4f9 6H15/2 0 

  6H9/2
  

  6H13/2
 3460 

  6H11/2
 5780 

  6H7/2
 9060 

  6H5/2
 10100 

  6F1/2  
  6F11/2

  
  6F9/2

 8950 
  6F7/2

 10870 
  6F5/2

 12270 
  6F3/2

 13060 
Lu(III) [Xe] 4f14 1S0 0 

  2F7/2 90433 
  2F7/2

 94768 
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Figure S5: DC magnetic data. Field dependence of magnetization of the [Mn2Ln]-

type complexes (Ln = Nd, Eu, Gd, Dy, Lu) as M vs. H/T plots. 
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Figure S6: Sum of positive and negative XA spectra (black) and their integrated 

sum (red) for five isostructural bimetallic 3d-4f trinuclear complexes [Mn2Ln](H)2
+ 

(Ln = Nd, Eu, Gd, Dy, Lu). The grey shaded areas represent the two-step functions 

subtracted after normalization, approximating the direct 2p photoionization and 

2p → ns, nd (n > 3) contributions.[39] Note, that the ordinates for the sum spectra 

and their integrals are different. 
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Figure S7: XMCD spectra (black) and their integrated sum (red) for five 

isostructural bimetallic 3d-4f trinuclear complexes [Mn2Ln](H)2
+ (Ln = Nd, Eu, Gd, 

Dy, Lu). 
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Figure S8: Semi-logarithmic plot of the measured temperature dependence of χT 

of five isostructural complexes of the [Mn2Ln]-type (sum formula: 

[C44H44N8O12LnMn2(C6H16N)2(ClO4)(H2O)2], with Ln = Nd, Eu, Gd, Dy, Lu).  
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Figure S9: Relative orientation of the total magnetic moments mJ

(z)/mJ as Brillouin 

function of the temperature for Mn2+, Nd3+, Gd3+ and Dy3+. 
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Figure S10: Calculated Magnetizations of the Mn2+ cations by the original sum 

rules: contributions by spin (mS
(z), filled blue circles), contributions by orbit (mL

(z), 

filled red squares), total values (mJ
(z), filled black triangles); together with the mL

(z) 

to mS
(z) ratio (open purple triangles) on the manganese ions within the investigated 

mixed 3d-4f trinuclear complexes of the type [Mn2Ln](H)2
+.[51, 52] 

 

Table S5: Experimental orbital (mL
(z)), spin (mS

(z)), total (mtot
(z)) magnetization and 

the orbital to spin ratios (mL
(z)/mS

(z)) at the manganese ions of the [Mn2Ln](H)2
+ 

complexes obtained by the original sum rules. [51, 52] 
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Figure S11: Calculated Spin (mS

(z), filled blue circles), orbital (mL
(z), filled red 

squares), total (mtot
(z), filled black triangles) magnetizations by the original sum 

rules and the mL
(z) to mS

(z) ratio (open purple triangles) on the Ln atoms within the 

investigated bimetallic 3d-4f trinuclear complexes of the type [Mn2Ln](H)2
+.[51, 52] 

 

Table S6: Experimental orbital (mL
(z)), spin (mS

(z)), total (mtot
(z)) 

magnetizations and the orbital to spin ratios (mL
(z)/mS

(z)) at the Ln3+ ions of 

the [Mn2Ln](H)2
+ complexes obtained by the original sum rules.[51, 52] 
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Bayerb,c, J. Tobias Laub, Bernd von Issendorffc, Akira Terasakid, Thomas Schlathöltere, Ronnie 

Hoekstrae, Hans-Jörg Krügera, and Gereon Niedner-Schatteburga 

(a) Fachbereich Chemie and Forschungszentrum OPTIMAS, Kaiserslautern, Germany 

(b) Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, 

Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany 

(c) Physikalisches Institut, Universität Freiburg, Germany 

(d) Department of Chemistry, Kyushu University, Fukuoka, Japan 

(e) Zernike Institute for Advanced Materials, University of Groningen, Groningen, The 

Netherlands 

 

4.1 Preamble 

The following chapter is prepared as a manuscript for publication. I conducted the XMCD 

experiments, data evaluation and the quantum chemical calculations. I received experimental 

support by Matthias Tombers and Johannes Lang and Vicente Zamudio-Bayer. Markus Schmitz 

synthesized the samples in the group of Hans-Jörg Krüger. Tobias Lau, Bernd von Issendorf 

and Akira Terasaki operate the NanoCluster Trap experimental setup at the BESSY II 

synchrotron. Thomas Schlathölter and Ronnie Hoekstra provided the Electrospray Ionization 

(ESI). I wrote the manuscript and revised it with the help of Matthias Tombers and Gereon 

Niedner-Schatteburg. 
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4.2 Abstract 

Spin-Crossover complexes have become an attractive field of research due to their potential 

application in e.g. electronic devices. Extensive research has contributed to a nearly outright 

understanding of the phenomenon. However, most investigations focus on the design, 

synthesis and application of Spin-Crossover complexes. In order to gain more fundamental 

insight to the phenomenon, investigations on isolated systems are necessary. We report the 

first X-ray magnetic circular dichroism (XMCD) spectroscopic study of an isolated octahedral 

iron(II) Spin-Crossover complex in the gas phase. The combination of temperature dependent 

XMCD spectroscopy and sum rule analysis allows for the temperature dependent 

determination of magnetic moments of transition metal complexes. Our investigations show, 

that the determination of a Spin-Crossover process in the gas phase is demanding. Though, 

first results suggest an actual transition from low spin to high spin upon increasing the ion 

temperature.  

 

4.3 Introduction 

Spin-Crossover complexes represent a highly active and growing field of research due to their 

potential application in molecular electronic devices.[1-3] The transition occurs as an entropy-

driven redistribution of electrons in the valence d-orbitals of transition metal compounds due 

to an external perturbation e.g. changes in temperature, pressure or photon irradiation.[4-10] 

Many reported octahedral iron(II) complexes display representatives of Spin-Crossover 

properties.[3-5, 11-14] The 1A1g low spin ground state due to a (t2g)6 electron configuration can be 

thermally excited into a 5T2g high spin state with a (t2g)4(eg)2 electron configuration.[3] The 

transition can be observed in elongated bond lengths originating from the occupation of the 

σ-antibonding eg-orbitals in the high spin state.[3] The observed transition temperatures can 

vary widely, depending on different parameters like e.g. ligand field strength, packing effects, 

counterions, residual solvent molecules in the crystal etc.[3, 4] Dissolving a Spin-Crossover 

complex in suitable solvents can lead to a drastic reduction of the transition temperature.[15] 

However, investigations of the Spin-Crossover behavior in the gas phase are missing so far. 

Due to the missing crystal pressure, the transition temperature is expected to be reduced once 

again compared to dissolved Spin-Crossover complexes. We present an approach for 
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investigations on the Spin-Crossover behavior in the gas phase, using X-ray magnetic circular 

dichroism (XMCD) spectroscopy on isolated ions in the gas phase. The magnetic moments of 

Spin-Crossover ions, cooled by Helium buffer gas to cryogenic temperatures, orient in an 

external magnetic field. The combination of XMCD spectroscopy and sum rule analysis allows 

for a temperature dependent determination of magnetic moments of transition metal ions or 

complex ions.[16-21]. 

In this work, we investigated an octahedral iron(II) complex showing a gradual Spin-Crossover 

in SQUID measurements of crystalline samples from a singlet state to a quintet state in the 

range of 250 – 380 K.[15] The detailed sum formula of the complex is 

[(C28H28N4)Fe(C6H4NO2)(ClO4)] (abbreviated as [Fe(L-N4Bz2)(pyc)]ClO4 or as 1). The central 

iron(II) ion is in an octahedral coordination sphere, coordinated by a tetraazamacrocyclic 

ligand: N,N’-Dibenzyl-2,11-diaza[3.3](2,6)pyridinophane (abbreviated as L-N4Bz2) and a 

picolinate anion (abbreviated as pyc). The perchlorate anion acts as a counterion. The 

macrocyclic ligand contributes two amine and two pyridine nitrogen donor atoms. The 

picolinate anion coordinates the metal ion by the nitrogen donor atom and the carboxyl 

oxygen donor atom. The nitrogen atoms of the pyridine rings and the nitrogen and oxygen 

atoms of the picolinate anion form the equatorial coordination plane, the amine nitrogen 

atoms are bound to the metal at the axial coordination sites.[3] The pyridine units and the small 

ring size of the macrocyclic ligand are responsible for the rather steric rigidity of the complex.[3] 

The crystal structure of 1 can be found in the thesis of M. SCHMITZ.[15]  

 

4.4 Computational and Experimental methods 

4.4.1 Theoretical methods 

We performed density functional theory (DFT) calculations on the Spin-crossover complex for 

geometry optimization starting from the crystal structure and IR frequencies at 298.15 K. 

Electron spin density (ρs(r)) isosurfaces were calculated using the multiwfn software 

(ρs(r) = ρα(r) – ρβ(r)) and plotted using the GaussView 3.0 software.[22-24] The calculations were 

conducted at the B3LYP[25-27]/cc-pVDZ/cc-pVTZ[28-33] (N, C, H) level of theory with the Stuttgart 

RSC 1997 effective core potential[34, 35] representing the iron atoms as implemented in the 

Gaussian 09 program package[36]. Due to the over stabilization of high spin states in B3LYP 
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caused by the exact Hartree-Fock exchange Hx
HF (20 %), we performed additional calculations 

using B3LYP with a reduced Hx
HF: B3LYP* (15 %) and B3LYP** (10 %).[26, 37, 38] 

 

4.4.2 Experimental methods and setup 

Recording XMCD spectra of isolated complexes 

The presented polarization dependent X-ray Absorption (XA) spectra were recorded at the 

NanoCluster Trap which is connected to the UE52-PGM soft X-ray beamline at the BESSY II 

synchrotron facility of the Helmholtz-Zentrum Berlin. The NanoCluster Trap is a custom built 

mass spectrometer to record Total Ion Yield (TIY) gas phase XA spectra.[21, 39, 40] For our 

experiments we used a custom-built Electrospray Ionization (ESI) source to transfer the iron(II) 

complex into the gas phase.[41]  

The sample for our gas phase measurements were prepared as a solution in acetonitrile 

(CH3CN) at a concentration of approx. 10-4 mol/L. The investigated cationic species 

[C34H32N5O2Fe]+ (abbreviated as 1+ or[FeII(L-N4Bz2)(pyc)]+) is formed already in the solution by 

dissolvation of the cation and counter-anion.  

The cation of interest (1+) is mass selected in a linear quadrupole mass filter (Extrel, 

40 – 4000 amu). The ions are guided into and stored in a linear quadrupole ion trap which is 

located within the high field region (5 T) of a superconducting solenoid. The trap is operated 

at frequencies between 2 and 4 MHz depending on the mass of the investigated ions. The 

linear quadrupole ion trap can be cooled down to temperatures ≤ 4 K by evaporative liquid He 

cooling. The ions are cooled down by collisional cooling in the vacuum chamber at a constant 

He backing pressure in the range of 10-6 to 10-7 mbar. The ions are thermalized at a somewhat 

higher temperature caused by radio frequency (RF) heating of the ion trap operation.[21] The 

trap is filled by a constant ion current from the source. The ions are ejected from the trap into 

the reflectron time of flight (ReTOF) mass spectrometer at a frequency of approx. 100 Hz. The 

X-ray absorption (XA) is recorded by total ion yield (TIY) spectroscopy whereas the ions are 

irradiated by the X-rays for 10 – 15 s at a fixed photon energy. A GaAsP diode records the X-

ray intensity coming from the undulator beamline which is used for normalization of the XA 

spectra to the photon flux. The spectra at the Fe L2,3 absorption edge were recorded with an 
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exit slit size of 200 µm and a corresponding spectral resolution of ~400 meV at 707 eV photon 

energy. The fragment intensity amounts only a small fraction of the parent ion intensity. The 

XA spectra were alternately taken for left and right handed circularly polarized light (cf. Fig. 1). 

 

Sum rule analysis of XMCD effects  

The spin and orbital sum rules introduced by CARRA and THOLE link the spectral intensities of 

the XA spectra at different photon helicities to the projection of the spin and orbital 

magnetizations of a magnetic sample.[42-45] The resulting XMCD spectra were analyzed in 

terms of sum rule analysis:  

 

'���� = ¤��¥ Z − J©
W 32 f 9� − ¤�μ¥ �W 〈�²〉 

'���� = −¤��¥ Z + ©
I 32 f 9� 

whereas nh is the number of electron holes in the final state, gS and gL the g-factors for the 

electron spin and orbital angular momentum (gS = 2.0, gL = 1.0), µB the BOHR magneton and 

a,b,c and d are sum rule related prefactors. In this work, we assume Fe2+ to be in a 3d6 state. 

We chose the number of unoccupied valence orbitals to be nh = 4 for Fe2+. The prefactors a,b,c 

and d are 1/2, 2, 2/3, and 7/3 for the Fe L3,2 absorption.[46] 

The integrals A, B and C are extracted from the XMCD spectrum (difference spectrum of XA 

with different helicities) and the sum spectrum (sum of the XAS with different helicities, cf. 

Fig. 1). A two-step function is subtracted from the XA sum spectra to eliminate the non-

resonant absorption. We follow the procedure described by CHEN et al. (cf. Figs. S2-S4).[42] Sum 

rule analysis allows us to extract the projection (mS
(z) and mL

(z)) of the intrinsic spin and orbital 

magnetic moments (mS and mL) onto the quantization axis . The quantization axis coincides 

with the magnetic field and the X-ray propagation direction.  
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 (a)  

(b)  

(c)  

Figure 1: (a) XA spectra of the [FeII(L-N4Bz2)(pyc)]+ ion at the L3,2 absorption edges 

at both photon helicities (Ttrap = 4 K). (b) XMCD spectrum / integrated XMCD 

intensity for the Fe L3,2 absorption edges of the [FeII(L-N4Bz2)(pyc)]+ ion. The 

Integral over the L3 edge is named A, the integral over the L2 edge is named B. (c) 

Sum of the XA spectra and its integral of the [FeII(L-N4Bz2)(pyc)]+ ion. The integral 

over the L3 and L2 absorption edges is named C.  



4. Gas Phase XMCD Spectroscopy of an Octahedral Iron(II) Spin-Crossover Complex 
 

113 
 

Correction factors: 

The original sum rules only apply to transitions between well-defined shells. For the iron ions 

we consider the transition from the 2p core state to a 3d valence state. However, the valence 

states are not always completely separated. This leads to inaccuracies in the magnetic 

moments calculated by the sum rules, particularly for the spin sum rule.[47] The inaccuracies 

of the sum rules have been reviewed in many publications.[47-55] TERAMURA et al. have 

introduced correction factors for the spin sum rule based on calculations on an atomic model, 

taking into account the Coulomb interaction in the L2,3 absorptions and the expectation value 

for the magnetic dipole operator <Tz>, which is not accessible in our XMCD experiment.[51-56] 

The presented magnetizations in this work are corrected by the suggested procedure of 

TERAMURA, (cf. Tab. S1) for the uncorrected data see supplement (Figs. S5, S8; Tabs. S5). 

 

4.5 Results and Discussion 

4.5.1 DFT calculations 

The prediction of the spin ground state of transition metal complexes by theoretical methods 

is still challenging.[37, 38] Especially for spin state splittings, it is known that hybrid functionals 

like B3LYP overstabilize the high spin states due to the inclusion of substantial Hartree-Fock 

exchange Ex
HF (20 %). [26, 37, 57] In order to determine the relative energies of different spin 

states, we performed geometry optimizations with the B3LYP functional and varied the 

contribution of the exact Hartree-Fock exchange: standard B3LYP (20 %), B3LYP* (15 %) and 

B3LYP** (10 %). A low spin (LS) state (singlet, occupation of the t2g orbitals only) and a high 

spin (HS) state (quintet) present possible electron configurations for the octahedrally 

coordinated FeII ion. Apparently, the triplet state could also be taken into account, but we do 

not discuss it here as it is not found to be important in the experimental studies (cf. Tab S4, 

Fig. S1).[15] The calculations were performed using cc-pVDZ and cc-pVTZ basis sets. The relative 

energies are listed in Tab. 1. 
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Table 1: Relative zero-point vibrational energies (ZVPE) and thermal free 

energies at 298.15 K of geometry optimized structures of 1+ at different 

multiplicities by variation of Ex
HF and basis size (in kJ/mol). 

functional basis set ZPVE 
thermal free energies 

(298.15 K) 
  S = 0 S = 2 S = 0 S = 2 
B3LYP cc-pVTZ +24.8 0.0 +39.5 0.0 
B3LYP cc-pVDZ +26.8 0.0 +41.1 0.0 
B3LYP* cc-pVDZ +0.7 0.0 +15.1 0.0 
B3LYP* cc-pVTZ 0.0 +1.7 +13.3 0.0 
B3LYP** cc-pVDZ 0.0 +26.8 0.0 +34.7 

 

The choice of a double or triple zeta basis has a minor impact on the relative energies of 

different spin states. Hence, we back on cc-pVDZ to qualify general considerations. The 

calculations using the original B3LYP attribute the HS state (S = 2, quintet) to the ground state 

by approx. 25 kJ/mol (ZPVE) or 40 kJ/mol (ΔG298.15). This behavior opposing to the 

experimental results, where the spin state transition proceeds from the singlet state to the 

quintet state upon increasing the temperature, is known from DFT calculations with hybrid  

 

                  

Figure 2: Left: Geometry optimized structure of 1+ in the high spin (HS) state (C: 

gray, O: red, N: blue, Fe: steel blue). Right: Geometry optimized structure of 1+ in 

the high spin (HS) state, displaying the spin density isosurface (purple) located at 

the iron atom. All Hydrogen atoms are omitted for clarity. 
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functionals with considerable Hartree-Fock exchange. Reducing the Ex
HF contribution to 15 % 

(B3LYP*) dramatically reduces the relative energies of the singlet state to 0.7 kJ/mol (ZPVE) 

and 15.1 kJ/mol (ΔG298.15). A further decrease of Ex
HF to 10 % (B3LYP**) results in a formally 

correct description of the singlet state as ground state. However, the best description of the 

relative energies of 1+ is given by B3LYP*, because the difference in the ZPVE is very small and 

the thermal free energies at room temperature (298.15 K) favor the quintet state as observed 

in the experiment. The search for an adequate theoretical description of spin state related 

experiments like Spin-Crossover processes is a highly active field of research.[57-63] A common 

approach is the adaption of various functionals to the experimental data of thoroughly studied 

systems in order to enable predictions for similar systems. The subsequently presented 

electron spin density isosurfaces and structural data from DFT calculations were obtained by 

calculations using the B3LYP* functional (15 % Hx
HF). The optimized structure of 1+ in the high 

spin (HS) state (quintet) is shown in Fig. 2 (left), the spin density is localized predominantly at 

the metallic iron center (Fig. 2, right, purple isosurface). 

 

 

Figure 3: Geometry optimized structure of 1+ in the low spin (LS) state (C: gray, O: 

red, N: blue, Fe: steel blue). All Hydrogen atoms are omitted for clarity. 
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The geometry optimized structure of 1+ for the low spin (LS) state (singlet) is presented in Fig. 

3. Note, that there is no electron spin density for the low spin configuration. The structural 

differences among the spin states are small but unambiguous. Some of the characteristic 

structure parameters in comparison to the crystal structure data are summarized in Tab. 2 (LS, 

110 K) and Tab. 3 (HS, 333 K) (for the atomic coordinates of both structure minima, cf. 

Tabs. S2, S3). The high spin configuration provides elongated bond lengths between the iron 

atom and the six ligand atoms in the octahedral coordination sphere, that is the nitrogen 

atoms of the pyridine rings, the amino nitrogen atoms of the macrocyclic ligand and the 

nitrogen and oxygen atoms of the picolinate ligand. Also, the backbone of the macrocyclic 

ligand is contracted in the high spin state, resulting in a smaller angle between the two 

iron – pyridine nitrogen bonds and the iron – amine nitrogen bonds. 

The structural parameters of the crystal structure analysis at 110 K are in very good agreement 

with the DFT geometry optimized singlet structure (cf. Tab. 2). The deviations of the bond 

lengths/angles are < 4 %. 

 

Table 2: Selected structure parameters of LS 1+ obtained by DFT/geometry 

optimization (singlet, B3LYP*/cc-pVDZ) in comparison to the crystal structure 

data at 110 K. Bond lengths in angstrom, bond angle in degree. 

Structure parameter Crystal structure 
110 K 

DFT opt. 1+ 
(singlet) 

Deviation / % 

d(Fe – Npy) 1.896 / 1.883 1.931 / 1.928 2.58 / 3.02 
d(Fe – Namin) 2.094 / 2.088 2.157 / 2.155 3.63 / 3.83 
d(Fe – Npyc) 1.965 2.017 3.05 
d(Fe – Opyc) 1.978 1.957 0.05 
β(Npy – Fe – Npy) 86.6 85.855 0.92 
β(Namin – Fe – Namin) 161.5 159.984 0.46 

 

The structural parameters of the crystal structure analysis at 333 K are still in good agreement 

with the DFT geometry optimized quintet structure (cf. Tab. 3). Nevertheless, the deviations 

of the bond lengths and angles is augmented to < 8 %. This can be explained by the gradual 

Spin-Crossover process, which is not yet completed at 333 K. If the crystals are heated further, 

the samples become amorphous and a crystal structure analysis is no longer possible.[15] 
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Table 3: Selected structure parameters of HS 1+ obtained by DFT/geometry 

optimization (quintet, B3LYP*/cc-pVDZ) in comparison to the crystal structure 

data at 333 K. Bond lengths in angstrom, bond angle in degree. 

Structure parameter Crystal structure 
333 K 

DFT opt. 1+ 
(quintet) 

Deviation / % 

d(Fe – Npy) 2.027 / 2.030 2.181 / 2.185 7.60 / 7.64 
d(Fe – Namin) 2.197 / 2.215 2.364 / 2.357 7.60 / 6.41 
d(Fe – Npyc) 2.066 2.221 7.50 
d(Fe – Opyc) 1.995 2.026 1.55 
β(Npy – Fe – Npy) 82.9 79.070 4.62 
β(Namin – Fe – Namin) 152.0 145.729 4.13 

 

The differences in the iron – nitrogen and iron – oxygen bond lengths and angles in the 

different spin states can be explained by the different d-orbital occupation of the iron center. 

In the high spin state, the σ-antibonding eg orbital set is occupied, resulting in elongated bond 

lengths.[15]  

 

4.5.2 XMCD spectroscopy at the Fe L3,2 absorption edges 

The magnetic properties of the metal centers of the complex ion 1+ are studied by gas phase 

XMCD spectroscopy on the iron L3,2 absorption edges. This corresponds to the transition from 

the spin-orbit-split 2p3/2 and 2p1/2 orbitals (L3 and L2) into the 3d valence orbitals.  

The iron ion in 1+ is in a formal oxidation state of +II, thus the expected electron configuration 

is 3d6. There are two spin states observed in temperature dependent crystal structure analysis 

and in temperature dependent magnetic SQUID measurements.[15] 1H-NMR spectroscopic 

investigations using the NMR-Evans-method show a similar magnetic behavior, shifted by ca. 

100 K towards lower temperatures.[15] The data are interpreted as an electron redistribution 

from an initial low spin configuration with three pairs of electrons in the t2g orbitals and two 

unoccupied eg orbitals. The final high spin configuration at higher temperatures provides one 

pair of electrons in one t2g orbital, two unpaired electrons in the remaining t2g orbitals and one 

unpaired electron each in the eg orbitals. The magnetic moments for the HS and LS are hence 

significantly different. The expected spin magnetic moment for the HS configuration amounts 

4 µB per atom and 0 µB per atom for the low spin configuration. The non-degeneracy of the d-

orbitals in the octahedral ligand field quenches the orbital angular momenta in first order.[64] 

The spin-orbit coupling steadily regenerates a certain amount of orbital momentum by mixing 
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of degenerate excited states into the ground state.[65] Yet, the total magnetic moment mJ for 

a free Fe2+ ion (in the high spin state) is 6 µB as sum of the spin (mS) and orbital angular moment 

(mL), due to the spin–orbit coupling (ζ3d(Fe2+) = 410 cm-1 [66]), which is superior to the individual 

coupling of the spin and orbital magnetic moments to the external magnetic field. 

The polarization dependent X-ray absorption spectra for 1+ are recorded at three different ion 

trap temperatures: Ttrap = 4 K, 15 K and 25 K (cf. Fig 5). The spectrum at Ttrap = 4 K shows a 

substantial dichroic effect at the first subpeak of the L3 absorption edge at 708.4 eV, a change 

of sign prior to the second subpeak at 711 eV and a less pronounced dichroism at the L2 

absorption edge at 721 eV. This indicates a distinct magnetic moment at the iron center of the 

complex already at very low temperatures. The overall shape of the XA spectra does not 

change upon increasing the ion trap temperature, though the extent of the dichroic effect 

decreases at higher temperatures due to randomization of the orientation of the magnetic 

moments.  

 

 
Figure 5: Polarization dependent XA spectra for negative (blue) and positive (red) 

circular photon polarization of 1+ ([FeII(L-N4Bz2)(pyc)]+) at different ion trap 

temperatures. Top: Ttrap = 4 K, middle: Ttrap = 15 K, bottom: Ttrap = 25 K. 
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The magnetizations at the iron center are extracted by sum rule analysis at the Fe L3,2 

absorption edges (Fig. 6). The background subtraction from the iron XA sum spectra 

originating from excitations into higher unoccupied and nonmagnetic d states is performed by 

a two-step function. The step height at the L3 edge is 2/3 and the step height for the L2 edge 

is 1/3 of the full edge jump, in agreement with the degeneracy of the spin-orbit split 2p initial 

states (cf. Figs. S2-S4 ESI).[21, 42, 46] The sum rule analysis can be performed by integration of 

the entire measured spectral range or by integration of the defined L3,2 absorption range. 

Ideally there should be no difference. Due to small XMCD effects at higher temperatures, the 

signal to noise ratio increases resulting in slightly altered intensity integrals  

(cf. Figs. 6, S2-S4). The magnetizations obtained by integration of the entire spectral range are 

represented as lucent data in Fig. 6. We chose the limited integration range for the subsequent 

evaluation.  

 

 
Figure 6: Spin (mS

(z), filled blue circles), orbital (mL
(z), filled red squares), total (mJ

(z), 

filled black triangles) magnetizations and the mL
(z) to mS

(z) ratio (open purple 

triangles) on the Fe2+ ions in 1+ ([FeII(L-N4Bz2)(pyc)]+) obtained with tight 

integration limits. The shaded data represent the magnetizations obtained by 

integration of the entire measured range. 
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The values for the spin (mS
(z)), orbital (mL

(z)), total (mJ
(z)) magnetizations and the mL

(z) to mS
(z) 

ratio are summarized in Tab. 4. The total magnetizations mJ
(z) vary from 0.51 to 0.91 µB per 

atom and are dominated by the spin magnetization, which varies from 0.45 to 0.81 µB per 

atom. The orbital angular magnetization is relatively constant (0.06 to 0.11 µB per atom). This 

results in an almost invariable mL
(z) / mS

(z) ratio as well. We assume the low values of orbital 

angular magnetization, which is zero in between the error bars, to originate from the 

quenching of the orbital angular momenta in non-degenerated d-orbitals as described 

previously. The residual values may be induced by spin-orbit coupling.  

 

Table 4: Corrected experimental spin, orbital angular, total 

magnetizations and the orbital to spin magnetization ratio of 1+ 

obtained by sum rule analysis. 

Ttrap / K mS
(z) / µB mL

(z) / µB mJ
(z) / µB mL

(z) / mS
(z) 

4 K 0.81 0.10 0.91 0.12 
15 K 0.63 0.11 0.74 0.17 
25 K 0.45 0.06 0.51 0.13 

 

The significant XMCD effect and the substantial spin magnetizations show, that the ions are 

not exclusively in the low spin configuration. Though, the values are too low to represent 

exclusively high spin configuration of the iron(II) ions. We have probably a mixture of low spin 

and high spin ions in the experiment, resulting in an intermediate averaged magnetization, 

since the method is not able to address different spin states of the same element separately.  

In order to check our assumption, we simulate the temperature dependent Brillouin behavior 

of a Fe2+ ion in the ground state. If all ions are entirely in the high spin state, they should 

behave Brillouin-like. In the first step, we estimate the ion temperatures by projection of the 

experimentally determined total magnetizations mJ
(z) onto the temperature axis via the 

temperature dependent Brillouin function of a free high spin Fe2+ ion at a constant magnetic 

field of 5 T (cf. Fig. 7). The resulting ion temperatures are 63, 77 and 114 K, respectively. These 

values are much too high compared to the values from similar experiments under similar 

conditions.[67, 68] Though, we have neglected the partially quenched orbital angular 

momentum being overestimated in the simulation. Therefore, we focus on the Brillouin 

behavior of the spin magnetization mS
(z) (cf. Fig. 8). The resulting ion temperatures of 33, 42 
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and 59 K are lower compared to those derived by mJ
(z), but still too high to match the 

experimental conditions.[67, 68] 

The precise estimation of the difference between the trap temperature and the ion 

temperature is challenging. The ion temperature is certainly higher than the trap temperature 

due to radio frequency (RF) heating from the trap operation. Computer simulations are 

unreliable, due to the high amount of operation parameters that can have a tremendous 

impact on the ion temperature. In our approach we want to derive the temperature on the 

basis of similar experiments, where the ion temperature is determined fairly accurate. 

 

 
Figure 7: Simulated total magnetization mJ

(z) of the Fe2+ ion in the ground state, 

represented as Brillouin function of the ion temperature at a magnetic field of 

B = 5 T. The experimentally determined total magnetizations (mJ
(z)) are projected 

onto the Brillouin function to identify the ion temperature. 
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Figure 8: Simulated spin magnetizations mS

(z) of the Fe2+ ion in the ground state, 

represented as Brillouin function of the ion temperature at a magnetic field of 

B = 5 T. The experimentally determined magnetizations (mS
(z)) are projected onto 

the Brillouin function to identify the ion temperature. 

 

Assuming a constant temperature offset, we can build the derivative of the magnetizations 

with respect to the temperature for the experimental data, fitted linearly in approximation 

(cf. Fig. 9), and the simulated Brillouin functions for mJ
(z) (cf. Fig. 10) and mS

(z) (cf. Fig. 11). The 

linear fit of the experimental data results in slopes of -0.019 and -0.017 µB/K, respectively. 
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Figure 9: Spin (mS

(z), filled blue circles), orbital (mL
(z), filled red squares), total 

(mtot
(z), filled black triangles) magnetizations and the mL

(z) to mS
(z) ratio (open 

purple triangles) on the Fe2+ ions in complex 1+ obtained by tight integration limits. 

The dashed line represents a linear fit of mJ
(z) and mS

(z) respectively. The shaded 

data represent the magnetizations obtained by integration of the entire measured 

range. 

 

 
Figure 10: Top: Simulated magnetization of the Fe2+ ion in the ground state as a 

Brillouin function of the temperature. Bottom: Derivative of mJ
(z) with respect to 

the temperature. The grey shaded area represents the slope of the linear fit of the 

experimentally determined magnetization. 
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Figure 11: Top: Simulated magnetization of the Fe2+ ion in the ground state as a 

Brillouin function of the temperature. Bottom: Derivative of ms
(z) with respect to 

the temperature. The grey shaded area represents the slope of the linear fit of the 

experimentally determined magnetization. 

 

A comparison of the slope of the linearly fitted experimental data to the derivative of the 

simulated Brillouin curves results in an ion temperature range of 47 to 55 K for mJ
(z) and 38 to 

40 K (cf. Figs. 10,11). Again, the obtained temperatures are too high to match the results of 

similar experiments.[67, 68] We assume having a mixture of both, high spin and low spin 

configuration in the gas phase molecular ion ensemble. Since the contribution of the RF 

heating to the ion temperature is demanding, we calculate the high spin and low spin fractions 

for different assumed ion temperature in four different scenarios. The respective fractions are 

calculated by: 
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and we estimate mL,LS
(z) ≈ 0. Although, the total magnetization mJ

(z) is not representative due 

to the quenching of the orbital angular momentum, we run through the scenarios of various 

RF heating impacts taking both into account, the total magnetization mJ
(z) and the spin 

magnetization mS
(z). 

 

Scenario 1: No temperature offset 

In the first scenario, we assume Ttrap = Tion. Regarding the total magnetization mJ
(z), there is an 

increasing fraction of high spin ions increasing the temperature (cf. Tab. 5).  

 

Table 5: Calculation of the HS fractions using the experimental and 

theoretical total magnetizations mJ
(z) assuming Ttrap = Tion. 

Ttrap / K Tion / K mJ,exp
(z) mJ

(z)
HS mJ

(z)
LS xHS 

4  4  0.91 5.41 0 0.168 
15 15  0.74 2.93 0 0.252 
25 25  0.51 1.91 0 0.267 

 

Regarding the spin magnetization mS
(z), there is also an increasing fraction of high spin ions 

upon increasing the temperature (cf. Tab. 6).  

 

Table 6: Calculation of the HS fractions using the experimental and 

theoretical spin magnetizations mS
(z) assuming Ttrap = Tion. 

Ttrap / K Tion / K mS,exp
(z) mS

(z)
HS mS

(z)
LS xHS 

4  4  0.81 3.54 0 0.229 
15 15  0.63 1.65 0 0.382 
25 25  0.45 1.04 0 0.433 

 

This scenario supports the assumption of a Spin-Crossover process in the gas phase, though it 

appears unlikely at once. The ions are obviously warmer than the ion trap, caused by RF 

heating of the linear quadrupole ion trap operation. 
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Scenario 2: Constant temperature offset 

In the second scenario, we assume a constant temperature shift of ΔT ≈ 9 K. At maximum 

cooling power (Ttrap = 4 K) the ion temperature is about 15 K (cf. chapter 3). The difference of 

9 K is applied also for Ttrap = 15 and 25 K, resulting in Tion = 15, 24 and 34 K respectively. 

Regarding the total magnetization mJ
(z), the high spin fraction increases by 6 % from Ttrap = 4 K 

to 15 K and decreases by 2 % from Ttrap = 15 K to 25 K (cf. Tab. 7). 

 

Table 7: Calculation of the HS fractions using the experimental and 

theoretical total magnetizations mJ
(z) assuming a constant 

temperature offset ΔT = 9 K. 

Ttrap / K Tion / K mJ,exp
(z) mJ

(z)
HS mJ

(z)
LS xHS 

4  15  0.91 2.93 0 0.311 
15 24 0.74 1.98 0 0.374 
25 34  0.51 1.44 0 0.354 

 

Regarding the spin magnetization ms
(z) there is also a maximum in the high spin fraction at 

Ttrap = 15 K. The high spin fraction increases from Ttrap = 4 K to 15 K by approx. 10 % and 

decreases by less than 1 % from Ttrap = 15 K to 25 K (cf. Tab. 8). 

 

Table 8: Calculation of the HS fractions using the experimental and 

theoretical spin magnetizations mS
(z) assuming a constant 

temperature offset ΔT = 9 K. 

Ttrap / K Tion / K mS,exp
(z) mS

(z)
HS mS

(z)
LS xHS 

4  15  0.81 1.65 0 0.491 
15 24 0.63 1.08 0 0.583 
25 34  0.45 0.78 0 0.577 

 

This scenario supports the assumption of a gas phase Spin-Crossover in parts. The rise in the 

high spin fraction from Ttrap = 4 to 15 K is much more significant compared to the decrease 

from Ttrap = 15 to 25 K. This scenario 2 appears more likely than assuming a total absence of 

RF heating in scenario 1. 
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Scenario 3: Increasing Temperature offset 

In the third scenario, we assume the energy input via RF heating to increase linearly with the 

temperature. We chose an increasing temperature offset of ΔT = 9, 15 and 20 K for the trap 

temperatures Ttrap = 4, 15 and 25 K to an ion temperature of Tion = 15, 30 and 45 K respectively.  

 

Table 9: Calculation of the HS fractions using the experimental and 

theoretical total magnetizations mJ
(z) assuming an increasing 

temperature offset ΔT = 9, 15 and 20 K. 

Ttrap / K Tion / K mJ,exp
(z) mJ

(z)
HS mJ

(z)
LS xHS 

4  15  0.91 2.93 0 0.311 
15 30 0.74 1.62 0 0.457 
25 45  0.51 1.10 0 0.464 

 

Regarding the total magnetization mJ
(z), we see an increasing high spin fraction with the 

temperature (cf. Tab. 9). The amount rises from 31.1 % to 45.7 % increasing the trap 

temperature from 4 to 15 K. A further increase of the trap temperature to 25 K yields in a 

further increase of the high spin fraction by 0.7 %.  

 

Table 10: Calculation of the HS fractions using the experimental 

and theoretical spin magnetizations mS
(z) assuming an increasing 

temperature offset ΔT = 9, 15 and 20 K. 

Ttrap / K Tion / K mS,exp
(z) mS

(z)
HS mS

(z)
LS xHS 

4  15  0.81 1.65 0 0.491 
15 30 0.63 0.88 0 0.716 
25 45  0.45 0.59 0 0.763 

 

A similar behavior is observed regarding the spin magnetization ms
(z) (cf. Tab. 10). The first 

temperature raise yields a high spin fraction increase by 22.5 %. A further increase in 

temperature yields only 4.7 % higher high spin fraction.  

This scenario also indicates an actual Spin-Crossover process in the gas phase. The increase in 

the high spin fraction from Ttrap = 4 to 15 K is very clear, the increase from Ttrap = 15 to 25 K 

much smaller, but significant. This finding is as well independent of the consideration of mJ
(z) 

or mS
(z).  
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Scenario 4: Decreasing Temperature offset 

In the fourth and last scenario, we assume a decreasing energy input into the ions via RF 

heating upon increasing the trap temperature. The temperature offset thus decreases from 

ΔT = 9 K at Ttrap = 4 K, to ΔT = 5 K at Ttrap = 15 K to ΔT = 0 K at Ttrap = Tion = 25 K.  

 

Table 11: Calculation of the HS fractions using the experimental 

and theoretical total magnetizations mJ
(z) assuming a decreasing 

temperature offset ΔT = 9, 5 and 0 K. 

Ttrap / K Tion / K mJ,exp
(z) mJ

(z)
HS mJ

(z)
LS xHS 

4  15 0.91 2.93 0 0.311 
15 20 0.74 2.33 0 0.318 
25 25 0.51 1.91 0 0.267 

 

Relating to the total magnetization mJ
(z), the high spin fraction scarcely increases from Ttrap = 4 

to 15 K by 0.7 % and drops by 5.1 % at further increase of the trap temperature (cf. Tab. 11). 

Referring to the spin magnetization mS
(z), the calculated high spin fraction decreases upon 

increasing the trap temperature as well (cf. Tab. 12). 

 

Table 12: Calculation of the HS fractions using the experimental 

and theoretical spin magnetizations mS
(z) assuming ad decreasing 

temperature offset ΔT = 9, 5 and 0 K. 

Ttrap / K Tion / K mS,exp
(z) mS

(z)
HS mS

(z)
LS xHS 

4  15  0.81 1.65 0 0.491 
15 20 0.63 1.28 0 0.492 
25 25  0.45 1.04 0 0.433 

 

Assuming a decreasing energy input into the molecular ions via RF heating upon increasing 

the temperature, the Spin-Crossover doesn’t take place in the gas phase. On the contrary, the 

calculated high spin fraction of the ions decreases, independent of the consideration of mJ
(z) 

or mS
(z). However, this scenario is the most implausible.  
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Evaluation of the scenarios 

The first scenario is very unlikely. Various experiments at this experimental setup have shown 

a distinct RF heating of the ions from the operation of the linear quadrupole ion trap.[18, 19, 21, 

39-41, 67-70] The effective energy input caused by the RF heating depends on many parameters 

e.g. trap type and geometry, the type of the buffer gas, buffer gas pressure, trap voltage and 

amplitude and much more.[71-74] A systematic study of the temperature dependence of the RF 

heating of transition metal complexes in the NanoCluster Trap is missing so far. Most 

applications of cryogenic ion traps aim for maximum cooling in order to orient magnetic 

moments best possible (XMCD studies) or enable tagging of e.g. noble gases for high 

resolution vibrational and rotational spectroscopy.[16-18, 69, 71, 75-82] Though simulations and 

experiments indicate an increasing energy input by RF heating when increasing the ion trap 

temperature.[71, 77, 83] The fourth scenario, assuming a decreasing temperature offset appears 

less likely as previously observed.[77] We assume a constant (scenario 2) or an increasing 

temperature offset (scenario 3) to be most likely. Both scenarios 2 and 3 indicate a Spin-

Crossover to be present in the gas phase, showing an increasing high spin fraction of the 

molecular ions upon increasing the trap temperature.  

This experiment, investigating the Spin-Crossover process of a transition metal complex in the 

gas phase using a cryogenic linear quadrupole ion trap in combination with total ion yield (TIY) 

spectroscopy using the X-ray magnetic circular dichroism (XMCD), is the first of its kind. The 

lack of data points prevents an unambiguous assertion. Nevertheless, these first results show 

a drop in the magnetizations upon increasing temperatures deviating from the expected 

Brillouin behavior, indicating a transition in the spin state. Further temperature dependent 

experiments on isolated transition metal complexes without Spin-Crossover behavior will help 

to establish an ion temperature calibration in the experimental setup with fixed parameters. 

Subsequent temperature dependent measurements on Spin-Crossover complexes will allow 

for a more reliable confirmation for the observation of a temperature induced change in the 

spin state in the gas phase.  
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4.6 Conclusions 

We have presented the first gas phase XMCD spectroscopic study of a mononuclear iron(II) 

Spin-Crossover complex [Fe(L-N4Bz2)(pyc)]+ at different temperatures in combination with DFT 

modelling.  

We have confirmed, that an accurate description of spin transitions in metal complexes along 

with structural reorganization via DFT calculations largely depends on the extent of exact 

Hartree-Fock exchange in hybrid functionals such as B3LYP. We have found B3LYP* (15 % Hx
HF) 

to sufficiently describe the proximity of the relative energies of 1+ in different spin states, 

required for Spin-Crossover processes. The geometry optimized structures with different 

multiplicities, namely singlet and quintet, represent the crystal structure data very well. The 

singlet calculation can be assigned to the crystal structure at 110 K, providing reduced 

iron – ligand bond lengths. The vanishing magnetic moment at temperatures < 250 K is nicely 

matched by the non-existent spin density in the calculation. The bond lengths of the quintet 

calculation nicely match to the crystal structure data measured at 333 K. Also the calculated 

spin density located at the central iron(II) ion fits to the magnetic moment measured at 

T > 280 K. 

We recorded polarization dependent gas phase XMCD spectra of the isolated complex cation 

1+ at the Fe L3,2 absorption edges at three different ion temperatures. The spectra recorded 

with negative and positive circularly polarized photons show a significant dichroic effect at all 

temperatures, indicating a certain magnetic moment at the central iron(II) atom. Since the 

spin and total magnetic moments are much smaller than expected for an all-high spin 

configuration of the complex, we assume a mixture of high spin and low spin configurations 

as our method only provides the average magnetizations of the ion ensemble. A pure 

randomization of orientation of the magnetic moments at higher temperatures assuming an 

all high spin configuration can be excluded as the lowest ion temperature can be estimated 

from similar experiments. 

Running through different scenarios, calculating the high spin fractions at three different 

temperatures, using the spin and total magnetization and simulated Brillouin functions, yields 

evidences for an actual Spin-Crossover process in the gas phase, as the high spin fraction 

increases with the temperature. Additional measurements are necessary in order to calibrate 
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the ion temperature at a given trap temperature for a more reliable evidence. For this 

purpose, a manganese(II) complex with a temperature independent d5 high spin electron 

configuration appears suitable. 
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4.8 Appendix 

 

DFT modelling and XMCD spectroscopy at the Fe L3,2 absorption edges on a 

dinuclear Fe(II) Spin-Crossover complex  

 

In this chapter we present preliminary results of investigations on a dinuclear iron(II) Spin-

Crossover complex 2. We performed DFT modelling in terms of geometry optimizations, 

energy and electron spin density calculations for different spin states and recorded XA spectra 

at negative and positive circular photon helicity at the iron L3,2 absorption edges. 

Complex 2 is a dinuclear iron(II) complex with the sum formula 

[(C16H20N4)Fe(C14N4H8)Fe(C16H20N4) (ClO4)2] · 2 EtCN synthesized and characterized by Michèle 

GRAF.[84] The iron(II) ions are each coordinated by a tetraazamacrocyclic ligand: N,N’-Dimethyl-

2,11-diaza[3.3](2,6)pyridinophane (abbreviated as L-N4Me2) and connected by a dianionic 

2,2’-bibenzimidazolate molecule (abbreviated as BiBzIm2-). The perchlorate anions act as 

counterions. The nitrogen atoms of the of the pyridine rings and the nitrogen atoms of the 

bibenzimidazolate anion form the equatorial coordination plane of the dinuclear complex, the 

amine nitrogen atoms of the macrocyclic ligands occupy the axial coordination sites of the 

iron(II) ions (cf. Fig. A1). The investigated cationic complex in the gas phase has the sum 

formula [C46H48N12Fe2]2+ (abbreviated as 22+ or [{FeII(L-N4Me2)}2(BiBzIm)]2+). 

 

 
Figure A1: Crystal structure of the complex cation 22+ at 293 K in sideview (C: gray, 

N: blue, Fe: steel blue).[84] 
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SQUID measurements of a crystalline sample of 2 show a sharp spin transition at the transition 

temperature T = 175 K. Decreasing the temperature causes one of two iron(II) ions to change 

from high spin to low spin. The other iron(II) ion remains in the high spin state. Although there 

are two iron(II) ions in the complex, a low spin / low spin (LS / LS) configuration can neither be 

detected by crystal structure nor SQUID measurements even at low temperatures. This 

behavior can be explained by the ring strain in the bibenzimidazolate ligand. The coordination 

of a low spin iron(II) ion reduces the bond lengths between the iron ion and the nitrogen donor 

atoms and induces a bending of the ligand backbone. This results in a degradation of the 

overlap between the metal orbitals and the ligand orbitals and the low spin state of the second 

iron(II) ion can no longer be stabilized.[84] The synthesis and a detailed characterization of 2 

can be found in the PhD thesis of M. GRAF.[84]  

We performed DFT calculations on the B3LYP(*)/cc-pVDZ(C, H, N)/Stuttgart RSC 1997 ECP (Fe) 

level of theory, to calculate the relative energies and optimize the geometry of the cationic 

species of the spin-crossover complex ion 22+ in different spin states, hence  

multiplicities.[25-36] We conducted the calculations with the standard B3LYP (20 % Hx
HF) and 

with the modified B3LYP* (15 % Hx
HF) functional (cf. chapter 3.1). The intermediate spin state 

triplet and septet are not discussed here, as they are not found in the experiment. Both FeII 

centers have a 3d6 electron configuration, resulting in a nonet state for the high spin / high 

spin (HS / HS) configuration (eight unpaired electrons, 2 S + 1 = 9) and a quintet state for the 

low spin / high spin (LS / HS) configuration (four unpaired electrons, 2 S + 1 = 5). The relative 

energies of the nonet, quintet and the conceivable singlet state are summarized in Tab A1. 

 

Table A1: Relative zero-point vibrational energies (ZVPE) and thermal free energies at 

298.15 K of geometry optimized structures of 22+ at different multiplicities by variation 

of Hx
HF (in kJ/mol). 

functional ZPVE thermal free energies (298.15 K) 
 S = 0 

LS/LS 
S = 2 
LS/HS 

S = 4 
HS/HS 

S = 0 
LS/LS 

S = 2 
LS/HS 

S = 4 
HS/HS 

B3LYP +91.6 +43.1 0.0 +113.9 +52.0 0.0 
B3LYP* +42.1 +18.0 0.0 +63.2 +25.4 0.0 

 

Just as in the DFT calculations for the mononuclear 1+ complex (cf. chapter 3.1), the high spin 

states are significantly energetically favored using the original B3LYP functional. Reducing Hx
HF 
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to 15 % causes an equalization of the relative zero-point vibrational and thermal free energies. 

The singlet state is invariably highest in energy. However, further modelling of DFT functionals 

is necessary for an adequate computational description of the ground state of 22+. The 

subsequently presented minimum structures and electron spin density isosurfaces were 

calculated using B3LYP*/cc-pVDZ (C, H, N)/Stuttgart RSC 1997 ECP (Fe). 

The optimized structure of 22+ in the HS / HS state (nonet) is shown in Fig. A2, the optimized 

structure of 22+ in the LS / HS state (quintet) is shown in Fig. A3. The electron spin density is 

each plotted as purple isosurface.  

 

 

 
Figure A2: Geometry optimized sturcture of 22+ in the HS / HS state (nonet) by DFT 

in sideview (top) and topview (bottom) (C: gray, N: blue, Fe: steel blue). The purple 

isosurfaces represent the spin density. All hydrogen atoms are omitted for clarity. 

 

The spin density of 22+ in the nonet calculation (HS/HS) is equally distributed among both 

iron(II) center atoms (cf. Fig. A2). This indicates both iron atoms to be in an equivalent d6 high 

spin state, providing four unpaired electrons each, two in the elevated eg orbital set and two 

in the t2g orbital set. The spin density of 22+ in the quintet (LS/HS) calculation is localized on 

one iron(II) center (cf. Fig. A3). The extension of the spin density is equal to those of both 

iron(II) ions in the nonet calculation, indicating an equivalent d6 high spin state. The other 
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iron(II) ion provides no spin density, suggesting a low spin d6 configuration with three electron 

pairs occupying the t2g orbital set. 

 

 

 
Figure A3: Geometry optimized sturcture of 22+ in the LS / HS state (quintet) by 

DFT in sideview (top) and topview (bottom) (C: gray, N: blue, Fe: steel blue). The 

purple isosurface represents the spin density. All hydrogen atoms are omitted for 

clarity. 

 

A comparison of selected structure parameters, namely bond lengths and bond angles, of the 

quintet and nonet calculations shows, that the coordination geometry of the iron(II) ions in 

the nonet calculation is very similar, resulting in a highly symmetric structure for 22+ (cf. Fig. 

A3 and Tab. A2).  

In the quintet calculation, the coordination geometry of Fe(2) is similar to those of both iron 

ions in the nonet calculation. Though, the bond lengths and angles of Fe(1) are significantly 

different (cf. Tab A2). For example, the iron – nitrogen bond lengths are significantly reduced. 

The structure parameters of our DFT/B3LYP* calculations of 22+ in the quintet and nonet state 

nicely represent the crystal structure data of complex 2 at 150 and 293 K, respectively.[84] 

 



4. Gas Phase XMCD Spectroscopy of an Octahedral Iron(II) Spin-Crossover Complex 
 

137 
 

 
Figure A4: Geometry optimized sturcture of 22+ in the high spin state (nonet) by 

DFT in sideview (C: gray, N: blue, Fe: steel blue). The numbering relates to Tab. A2, 

indicating the structure parameters.  

 

Table A2: Selected structure parameters of 22+ obtained by DFT/B3LYP* geometry 

optimization calculations in the LS (quintet) and HS (nonet) state in comparison to the 

crystal structures of 2 at 150 and 293 K respectively. Bond lengths in angstrom, bond angles 

in degree.[84] 

Structure  
parameter 

DFT: HS/LS 
(quintet) 

Crystal struct. 
at 150 K[84] 

DFT: HS/HS 
(nonet) 

Crystal struct. 
at 293 K[84] 

d(Fe(1) – N(1)) 2.158 2.095 2.358 2.262 
d(Fe(1) – N(2)) 1.947 1.908 2.205 2.133 
d(Fe(1) – N(3)) 2.159 2.079 2.356 2.238 
d(Fe(1) – N(4)) 1.947 1.904 2.206 2.116 
d(Fe(1) – N(5)) 2.107 2.045 2.201 2.135 
d(Fe(1) – N(6)) 2.106 2.044 2.198 2.139 
d(Fe(2) – N(9)) 2.360 2.260 2.356  
d(Fe(2) – N(10)) 2.207 2.127 2.206  
d(Fe(2) – N(11)) 2.359 2.286 2.358  
d(Fe(2) – N(12)) 2.206 2.151 2.205  
d(Fe(2) – N(8)) 2.213 2.182 2.198  
d(Fe(2) – N(7)) 2.214 2.174 2.201  
β(N(1)-Fe(1)-N(3)) 160.339 161.54 144.344 146.89 
β(N(2)-Fe(1)-N(4)) 86.107 85.13 78.737 79.71 
β(N(5)-Fe(1)-N(6)) 82.214 82.96 81.179 81.97 
β(N(9)-Fe(2)-N(11)) 144.288 146.72 144.343  
β(N(10)-Fe(2)-N(12)) 78.697 79.61 78.737  
β(N(7)-Fe(2)-N(8)) 82.102 83.31 81.180  

 

In order to determine the spin and orbital magnetizations of 22+ in the gas phase, we measured 

XA spectra with negative and positive circularly polarized photons at the iron L3,2 absorption 

edges (cf. Fig. A5). The trap was cooled to approx. Ttrap = 4 K. The first peak at the L3 absorption 

edge is split, resulting in two subpeaks at 708 and 709 eV and an additional shoulder at 711 eV. 
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There is a substantial dichroic effect at the L3 edge, changing sign at 710 eV, indicating some 

magnetizations on the iron centers.  

 

 
Figure A5: Top: The iron L3,2 edges: Polarization dependent X-ray absorption 

spectra for negative (blue) and positive (red) circular photon polarization of 22+ at 

4 K trap temperature. Middle: Sum spectrum (black) of XAS of negative and 

positive circular photon polarization and the integrated intensity (red). The gray 

shaded areas represent the two-step functions subtracted after normalization, 

approximating the direct 2p photoionization and 2p → ns, nd (n > 3) 

contributions.[21] Bottom: The resulting XMCD spectrum (black) as difference 

between the XAS of positive and negative circular polarization and the integrated 

intensity (red). In the left figure, the integration was performed over the entire 

measured spectral range. In the right figure, the integration was limited to the 

area of the absorption edges.  

 

The splitting at the L3 edge may hint to different spin states of the iron ions, compared to the 

XAS spectra of the mononuclear iron complex 1+, discussed in the main text. The dichroic 

effect on the L2 edge at 720 – 725 eV is in contrast rather small. Due to the increased the signal 

to noise ratio, we integrated the sum spectra and XMCD spectra only in the range of 

703 – 729 eV (cf. Fig. A5).  
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The resulting spin, orbital angular and total magnetizations, as well as the orbital to spin 

magnetization ratio are summarized in Tab. A3. We corrected the spin sum rule for the 

magnetic anisotropy term <Tz> and the 2p-3d interaction by the method of TERAMURA et al. (cf. 

Tab. S1).[51] The spin magnetization yields 0.92 µB / atom. For the HS / HS configuration a 

maximum value of 4 µB / atom would be expected due to four unpaired electrons at both 

iron(II) centers, assuming a ferromagnetic coupling scheme. The LS / HS configuration would 

yield 2 µB /atom in average as a low spin iron ion does not contribute to a spin magnetic 

moment. The orbital angular magnetization yields 0.12 µB / atom. The non-degeneracy of the 

d-orbitals in the octahedral ligand field quenches the orbital angular magnetic moment in first 

order.[64] Some orbital moment may be retained due to the spin-orbit coupling (cf. chapter 

3.1). The calculated magnetizations of 22+ are very similar to those, obtained for 1+. Since the 

coupling constants of the iron ions are unknown and there are no data for augmented trap 

temperatures yet, we do not estimate the ion temperature simulating a Brillouin function. An 

assignment of HS / HS or LS / HS configuration is hence not possible at this point. Additional 

measurements on this complex are intended.  

 

Table A3: Experimental spin, orbital angular magnetizations and the 

orbital to spin magnetization ratio per metal ion of 22+ obtained by sum 

rule analysis. Trap temperature Ttrap = 4 K.  

 
mS

(z) /  
µB/atom 

mL
(z) /  

µB/atom 
mL

(z) / mS
(z) 

mJ
(z) /  

µB/atom 
Corr. Sum rule 0.92 0.12 0.13 1.04 
Original Sum rule 0.78 0.12 0.15 0.90 
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Table S1: The expectation values of magnetic quantities and the ratio of XI to XE of the Sz sum 

rule for Fe2+ calculated with 10 Dq = 1.5 eV. 

Table S2 Atom coordinates of the DFT geometry optimized (B3LYP*/cc-pVDZ) complex ion 1+ 

in the low spin configuration (singlet). 

Table S3: Atom coordinates of the DFT geometry optimized (B3LYP*/cc-pVDZ) complex ion 

1+ in the high spin configuration (quintet). 

Table S4: Relative zero-point vibrational energies (ZVPE) and thermal free energies at 

298.15 K of geometry optimized structures of 1+ at S = 0,1,2 by variation of exact exchange 

and basis size (in kJ/mol). 

Figure S1: Left: Geometry optimized structure of 1+ in the intermediate triplet state (C: gray, 

O: red, N: blue, Fe: steel blue). 

Figure S2: Sum of positive and negative XA spectra (black) and their integrated sum (red) of 1+ 

at 4 K trap temperature. XMCD spectra (black) and their integrated sum (red) at 4 K trap 

temperature. 
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Figure S3: Sum of positive and negative XA spectra (black) and their integrated sum (red) of 1+ 

at 15 K trap temperature. XMCD spectra (black) and their integrated sum (red) at 15 K trap 

temperature. 

Figure S4: Sum of positive and negative XA spectra (black) and their integrated sum (red) of 1+ 

at 25 K trap temperature. XMCD spectra (black) and their integrated sum (red) at 25 K trap 

temperature. 

Figure S5: Uncorrected spin (mS
(z), filled blue circles), orbital (mL

(z), filled red squares), total 

(mtot
(z), filled black triangles) magnetizations and the mL

(z) to mS
(z) ratio (open purple triangles) 

on the Fe2+ ions in 1+ ([FeII(L-N4Bz2)(pyc)]+) obtained with tight integration limits. 

Table S5: Uncorrected spin, orbital angular magnetizations and the orbital to spin 

magnetization ratio of 1+ obtained by sum rule analysis.  

Figure S6: Simulated magnetizations mJ
(z) of the Fe2+ ion in the ground state, as Brillouin 

function of the ion temperature at a magnetic field of B = 5 T. 

Figure S7: Simulated magnetizations mS
(z) of the Fe2+ ion in the ground state, as Brillouin 

function of the ion temperature at a magnetic field of B = 5 T. 

Figure S8: Uncorrected Spin (mS
(z), filled blue circles), orbital (mL

(z), filled red squares), total 

(mtot
(z), filled black triangles) magnetizations and the mL

(z) to mS
(z) ratio (open purple triangles) 

on the Fe2+ ions in complex 1 ([FeII(L-N4Bz2)(pyc)]+) obtained with tight integration limits. 

Figure S9: Top: Simulated total magnetization of the Fe2+ ion in the ground state as a Brillouin 

function of the temperature. 

Figure S10: Top: Simulated spin magnetization of the Fe2+ ion in the ground state as a Brillouin 

function of the temperature. 

Table S6: Atom coordinates of the DFT geometry optimized (B3LYP*/cc-pVDZ) complex ion 22+ 

in the HS/HS configuration (nonet). 

Table S7: Atom coordinates of the DFT geometry optimized (B3LYP*/cc-pVDZ) complex ion 22+ 

in the LS/HS configuration (quintet). 

Table S8: Relative zero-point vibrational energies (ZVPE) and thermal free energies at 298.15 K 

of DFT geometry optimized structures of 22+ at S = 0,1,2,3,4 by variation of exact exchange: 

B3LYP / B3LYP* (in kJ/mol). 

Figure S11: DFT/B3LYP* geometry optimized structures of 22+ (a) singlet sideview (b) singlet 

topview (c) triplet sideview (d) triplet topview (e) septet sideview (f) septet topview (C: gray, 

N: blue, Fe: steel blue). 
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Correction of the spin sum rules by Takeo Jo et al..[51, 52] 

The Sz sum rule for the L2,3 edge in 3d transition metal systems is expressed as: 

¶· = ¶¸. 

The relative integrated magnetic circular dichroism (MCD) intensity is defined as 

¶· = ∫ A¹�����¹����Bº�»§ �	 ∫ A¹�����¹����Bº�»�∫ A¹�����¹¼����¹����Bº�»§�»�
    

and the expectation value is given by 

¶¸ = 	������� 〈��〉 + �������� 〈��〉. 

The absorption spectra with positive and negative light helicity are given by �±�Q�, with 

linearly polarized light by ���Q� along the z direction. L3 and L2 denote the integrated region 

with respect to Q, the number of 3d electrons is given by 9. 

 

Table S1: The expectation values of magnetic quantities 

and the ratio of XI to XE of the Sz sum rule for Fe2+ 

calculated with 10 Dq = 1.5 eV.[51]  

 9 〈��〉 〈��〉 ¶·/¶¸ 
Fe2+ 6 -1.69 0.0126 0.875 
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Table S2: Atom coordinates of the DFT geometry optimized 
(B3LYP*/cc-pVDZ) complex ion 1+ in the low spin 
configuration (singlet). 
atom x y z 
N -0.377053 -0.188631 -0.116116 
C 0.907024 0.207958 -0.336485 
C 1.19248 1.336586 -1.134425 
H 2.239206 1.648787 -1.30658 
C 0.114386 2.056653 -1.700184 
H 0.309294 2.942941 -2.33268 
C -1.214057 1.638689 -1.452655 
H -2.073519 2.189842 -1.877221 
C -1.425457 0.500512 -0.645311 
C 1.937406 -0.608571 0.435315 
H 2.057794 -0.117816 1.429693 
H 2.936488 -0.597729 -0.063735 
N 1.459346 -2.025191 0.705285 
C -2.786012 -0.017308 -0.192223 
H -3.587606 0.213096 -0.935058 
H -3.041593 0.524728 0.748465 
N -2.749362 -1.496628 0.153459 
C -2.973635 -2.35745 -1.078006 
H -3.743729 -1.918298 -1.757774 
H -3.377052 -3.335091 -0.720191 
C 1.773648 -2.94797 -0.459677 
H 1.826671 -3.983989 -0.046763 
H 2.773044 -2.727584 -0.907709 
C -1.669528 -2.643499 -1.823001 
N -0.571048 -2.66953 -1.010901 
C 0.670033 -2.933608 -1.518056 
C -1.559614 -2.918991 -3.202341 
H -2.455996 -2.893297 -3.849635 
C -0.283709 -3.21701 -3.73747 
H -0.169725 -3.432159 -4.816389 
C 0.848617 -3.218272 -2.888337 
H 1.858177 -3.429532 -3.287426 
C 2.103455 -2.545461 1.999638 
H 1.689363 -1.904951 2.809656 
H 1.704391 -3.574637 2.144753 
C -3.80645 -1.798452 1.227192 
H -3.715419 -2.886604 1.443959 
H -3.471501 -1.243622 2.131648 
Fe -0.705978 -1.892647 0.761623 
N -1.048458 -3.56297 1.854232 
O -0.822763 -1.008689 2.528847 
C -1.181973 -3.27811 3.190656 
C -1.048461 -1.79107 3.570428 
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C -1.423771 -4.27649 4.157066 
H -1.516793 -3.956122 5.210725 
C -1.53443 -5.620606 3.743001 
H -1.724129 -6.426977 4.476641 
C -1.397041 -5.918509 2.365753 
H -1.474981 -6.955885 1.990957 
C -1.155679 -4.866703 1.458382 
H -1.042666 -5.059683 0.37414 
O -1.152835 -1.450069 4.754264 
C 3.637392 -2.55307 2.053685 
C 4.341365 -1.470487 2.649108 
H 3.777407 -0.625732 3.092463 
C 4.388657 -3.65146 1.55148 
H 3.865862 -4.532459 1.128872 
C 5.800856 -3.653872 1.612685 
H 6.367198 -4.521397 1.223086 
C 5.753645 -1.470347 2.713449 
H 6.282124 -0.622001 3.188761 
C 6.487277 -2.559249 2.188272 
H 7.592527 -2.563729 2.243881 
C -5.259744 -1.44074 0.886557 
C -5.813133 -0.199936 1.306487 
H -5.196443 0.504809 1.899205 
C -7.153189 0.136318 1.006482 
H -7.567004 1.103707 1.349763 
C -7.966876 -0.768217 0.285788 
H -9.018005 -0.509197 0.056142 
C -7.437901 -2.015743 -0.119816 
H -8.0763 -2.739688 -0.661529 
C -6.098096 -2.34929 0.183148 
H -5.710935 -3.345008 -0.111625 
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Table S3: Atom coordinates of the DFT geometry optimized 

(B3LYP*/cc-pVDZ) complex ion 1+ in the high spin 

configuration (quintet). 

atom x y z 
N -0.385243 -0.096563 -0.062745 
C 0.897172 0.231834 -0.369266 
C 1.189567 1.262495 -1.290921 
H 2.23841 1.524067 -1.525433 
C 0.114469 1.94201 -1.908877 
H 0.31217 2.75427 -2.633639 
C -1.214323 1.557732 -1.615549 
H -2.072215 2.053498 -2.107119 
C -1.426513 0.516721 -0.683632 
C 1.967954 -0.558272 0.392563 
H 2.08438 -0.077289 1.392962 
H 2.956204 -0.486611 -0.12574 
N 1.578791 -1.996491 0.648556 
C -2.815475 0.026409 -0.256772 
H -3.585575 0.314644 -1.014603 
H -3.07591 0.551098 0.693224 
N -2.858952 -1.45587 0.040026 
C -2.97866 -2.293466 -1.21036 
H -3.723142 -1.865585 -1.927066 
H -3.368185 -3.291735 -0.895406 
C 1.817098 -2.886989 -0.546704 
H 1.848726 -3.936435 -0.165519 
H 2.807936 -2.685255 -1.024857 
C -1.630368 -2.514344 -1.909213 
N -0.564353 -2.678552 -1.075985 
C 0.693026 -2.801176 -1.58784 
C -1.481818 -2.565202 -3.313216 
H -2.360851 -2.43705 -3.97232 
C -0.190506 -2.76284 -3.853645 
H -0.044378 -2.806683 -4.949409 
C 0.91779 -2.860689 -2.98124 
H 1.945293 -2.967702 -3.376583 
C 2.288578 -2.531477 1.895557 
H 1.922658 -1.905611 2.741817 
H 1.896779 -3.563563 2.050922 
C -3.975079 -1.774737 1.03894 
H -3.904229 -2.870074 1.235603 
H -3.694073 -1.249353 1.980545 
Fe -0.761289 -1.973134 0.983113 
N -1.117922 -3.822944 2.160134 
O -0.940133 -1.192254 2.843752 
C -1.256364 -3.505306 3.484391 
C -1.156373 -2.005287 3.865428 
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C -1.482199 -4.489389 4.473224 
H -1.583116 -4.155428 5.521343 
C -1.568477 -5.842066 4.083835 
H -1.744425 -6.635394 4.83544 
C -1.426811 -6.172045 2.713564 
H -1.488192 -7.219393 2.364407 
C -1.202952 -5.133164 1.788131 
H -1.085282 -5.341138 0.705717 
O -1.281977 -1.691721 5.053045 
C 3.823622 -2.543429 1.862554 
C 4.566212 -1.456144 2.39893 
H 4.034517 -0.604516 2.868039 
C 5.979727 -1.459323 2.370852 
H 6.539939 -0.607262 2.801092 
C 6.675342 -2.555813 1.810774 
H 7.78187 -2.562569 1.794481 
C 4.537582 -3.648312 1.322417 
H 3.985074 -4.530269 0.941444 
C 5.950806 -3.654217 1.291881 
H 6.488806 -4.526788 0.874363 
C -5.403009 -1.397993 0.620038 
C -5.965192 -0.154201 1.017662 
H -5.377409 0.536849 1.654158 
C -7.279395 0.202593 0.637731 
H -7.701777 1.172137 0.964153 
C -8.057442 -0.684326 -0.141894 
H -9.088861 -0.409372 -0.433941 
C -7.519281 -1.934136 -0.528019 
H -8.131102 -2.643754 -1.117312 
C -6.205078 -2.288113 -0.145869 
H -5.810126 -3.284331 -0.428636 
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Table S4: Relative zero-point vibrational energies (ZVPE) and thermal free energies at 298.15 K 

of geometry optimized structures of 1+ at S = 0,1,2 by variation of exact exchange and basis 

size (in kJ/mol). 

functional basis set ZPVE 
thermal free energies 

(298.15 K) 
  S = 0 S = 1 S = 2 S = 0 S = 1 S = 2 
B3LYP cc-pVTZ +24.8 +29.3 0.0 +39.5 +34.1 0.0 
B3LYP cc-pVDZ +26.8 +32.3 0.0 +41.1 +37.1 0.0 
B3LYP* cc-pVDZ +0.7 +13.9 0.0 +15.1 +18.9 0.0 
B3LYP** cc-pVDZ 0.0 +21.4 +26.8 0.0 +26.2 +34.7 
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Figure S1: Left: Geometry optimized structure of 1+ in the intermediate triplet 

state (C: gray, O: red, N: blue, Fe: steel blue). Right: Geometry optimized structure 

of 1+ in the intermediate triplet state, displaying the spin density surface (purple) 

located at the iron atom. All Hydrogen atoms are omitted for clarity. 
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Figure S2: Left: Sum of positive and negative XA spectra (black) and their 

integrated sum (red) of 1+ at 4 K trap temperature. The grey shaded areas 

represent the two-step functions subtracted after normalization, approximating 

the direct 2p photoionization and 2p → ns, nd (n > 3) contributions.[21] Note, that 

the ordinates for the sum spectra and their integrals are different. Right: XMCD 

spectra (black) and their integrated sum (red) at 4 K trap temperature. The 

integrals in top left and top right represent the whole measured spectral region. 

The integrals in bottom left and bottom right are restricted to close proximity of 

the absorption bands. 
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Figure S3: Left: Sum of positive and negative XA spectra (black) and their 

integrated sum (red) of 1+ at 15 K trap temperature. The grey shaded areas 

represent the two-step functions subtracted after normalization, approximating 

the direct 2p photoionization and 2p → ns, nd (n > 3) contributions.[21] Note, that 

the ordinates for the sum spectra and their integrals are different. Right: XMCD 

spectra (black) and their integrated sum (red) at 15 K trap temperature. The 

integrals in top left and top right represent the whole measured spectral region. 

The integrals in bottom left and bottom right are restricted to close proximity of 

the absorption bands. 
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Figure S4: Left: Sum of positive and negative XA spectra (black) and their 

integrated sum (red) of 1+ at 25 K trap temperature. The grey shaded areas 

represent the two-step functions subtracted after normalization, approximating 

the direct 2p photoionization and 2p → ns, nd (n > 3) contributions.[21] Note, that 

the ordinates for the sum spectra and their integrals are different. Right: XMCD 

spectra (black) and their integrated sum (red) at 25 K trap temperature. The 

integrals in top left and top right represent the whole measured spectral region. 

The integrals in bottom left and bottom right are restricted to close proximity of 

the absorption bands. 
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Figure S5: Uncorrected spin (mS

(z), filled blue circles), orbital (mL
(z), filled red 

squares), total (mtot
(z), filled black triangles) magnetizations and the mL

(z) to mS
(z) 

ratio (open purple triangles) on the Fe2+ ions in 1+ ([FeII(L-N4Bz2)(pyc)]+) obtained 

with tight integration limits. The shaded data represent the magnetizations 

obtained by integration of the entire measured range. 

 

 

Table S5: Uncorrected spin, orbital angular magnetizations and 

the orbital to spin magnetization ratio of 1+ obtained by sum rule 

analysis. 

Ttrap / K mS
(z) / µB mL

(z) / µB mL
(z) / mS

(z)  

3.5 0.69 0.10 0.14 0.27 
15 K 0.54 0.11 0.21 0.40 
25 K 0.38 0.06 0.16 0.36 
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Figure S6: Simulated magnetizations mJ

(z) of the Fe2+ ion in the ground state, as 

Brillouin function of the ion temperature at a magnetic field of B = 5 T. The 

experimentally determined but uncorrected total magnetizations (mJ
(z)) are 

projected onto the Brillouin function to identify the ion temperature. 

 

 
Figure S7: Simulated magnetizations mS

(z) of the Fe2+ ion in the ground state, as 

Brillouin function of the ion temperature at a magnetic field of B = 5 T. The 

experimentally determined but uncorrected spin magnetizations (mS
(z)) are 

projected onto the Brillouin function to identify the ion temperature. 
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Figure S8: Uncorrected Spin (mS

(z), filled blue circles), orbital (mL
(z), filled red 

squares), total (mtot
(z), filled black triangles) magnetizations and the mL

(z) to mS
(z) 

ratio (open purple triangles) on the Fe2+ ions in complex 1 ([FeII(L-N4Bz2)(pyc)]+) 

obtained with tight integration limits. The dashed line is a linear fit of mJ
(z) and mS

(z) 

respectively. The shaded data represent the magnetizations obtained by 

integration of the entire measured range. 

 

 

Slope of the linear fits:  

� '£���
� � =  −0.017 ± 0.003 

Temperature range: 49 – 59 K (cf. Fig. S9). 

� '����
� � =  −0.015 ± 0.001 

Temperature range: 40 – 43 K (cf. Fig. S10). 
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Figure S9: Top: Simulated total magnetization of the Fe2+ ion in the ground state 

as a Brillouin function of the temperature. Bottom: Derivative of mJ
(z) with respect 

to the Temperature. 
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Figure S10: Top: Simulated spin magnetization of the Fe2+ ion in the ground state 

as a Brillouin function of the temperature. Bottom: Derivative of ms
(z) with respect 

to the Temperature. 
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Table S6: Atom coordinates of the DFT geometry optimized 

(B3LYP*/cc-pVDZ) complex ion 22+ in the HS/HS configuration 

(nonet). 
atom x y z 

Fe 10.2731 2.85071 7.77041 
N 8.27606 2.01868 8.70322 
N 8.88868 4.56394 7.64468 
N 11.7038 4.72224 7.66325 
N 10.3157 3.59225 9.84705 
N 10.2638 2.18797 5.67485 
N 11.1761 0.50452 4.34483 
C 7.16707 2.93489 8.23423 
H 6.84807 2.56648 7.2293 
H 6.27528 2.86278 8.90813 
C 7.61218 4.3945 8.08438 
C 6.77157 5.49824 8.35182 
H 5.7338 5.34164 8.70101 
C 7.28979 6.80214 8.17707 
H 6.65532 7.68582 8.37819 
C 8.63662 6.9672 7.77975 
H 9.07854 7.97576 7.67514 
C 9.41435 5.81405 7.53116 
C 10.8828 5.85785 7.09229 
H 10.9151 5.75037 5.98109 
H 11.3399 6.84951 7.34119 
C 12.1609 4.99617 9.07905 
H 13.043 4.33699 9.26599 
H 12.5129 6.05374 9.18993 
C 11.0948 4.67051 10.1321 
C 10.9333 5.40113 11.3306 
H 11.5805 6.27107 11.549 
C 9.92183 5.00303 12.235 
H 9.77299 5.5539 13.1828 
C 9.07808 3.91878 11.9008 
H 8.2536 3.61299 12.5717 
C 9.30017 3.24012 10.6816 
C 8.45711 2.05157 10.2052 
H 8.99366 1.11268 10.4844 
H 7.46761 2.03374 10.7296 
C 7.96826 0.61092 8.27475 
H 8.80919 -0.05157 8.57925 
H 7.87094 0.58233 7.16604 
H 7.01821 0.23435 8.73483 
C 12.9051 4.49233 6.78962 
H 12.5614 4.24636 5.76001 
H 13.4845 3.63028 7.19038 
H 13.5699 5.39368 6.75042 
C 11.0503 1.08049 5.57275 
C 9.80491 2.37282 4.35148 
C 8.94785 3.35553 3.79207 
H 8.50914 4.1541 4.4207 
C 8.6704 3.2778 2.41119 
H 8.00458 4.02934 1.94629 
C 9.22872 2.24631 1.59648 
H 8.98335 2.22069 0.51788 
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C 10.0816 1.26189 2.13828 
H 10.5083 0.46126 1.50409 
C 10.3712 1.32768 3.52575 
N 12.5107 -0.57939 6.63295 
N 11.5984 1.10408 7.96294 
C 11.7243 0.52809 6.73503 
C 12.9696 -0.76424 7.95633 
C 13.8267 -1.74695 8.51577 
H 14.2654 -2.54554 7.88715 
C 14.1041 -1.66922 9.89664 
H 14.7699 -2.42076 10.3616 
C 13.5458 -0.63771 10.7113 
H 13.7911 -0.61208 11.7899 
C 12.693 0.34672 10.1695 
H 12.2662 1.14736 10.8037 
C 12.4033 0.28092 8.78205 
Fe 12.5014 -1.24212 4.53739 
N 14.4985 -0.41005 3.60463 
N 13.8859 -2.95533 4.66312 
N 11.0708 -3.11367 4.64447 
N 12.4589 -1.98363 2.46073 
C 15.6075 -1.32624 4.07365 
H 15.9264 -0.95785 5.0786 
H 16.4993 -1.2541 3.39979 
C 15.1624 -2.78586 4.22346 
C 16.003 -3.88958 3.95603 
H 17.0408 -3.73297 3.60687 
C 15.4848 -5.1935 4.13074 
H 16.1193 -6.07716 3.92962 
C 14.138 -5.35858 4.52802 
H 13.6961 -6.36715 4.63259 
C 13.3602 -4.20545 4.7766 
C 11.8918 -4.24929 5.21543 
H 11.8594 -4.14183 6.32663 
H 11.4346 -5.24095 4.96649 
C 10.6137 -3.38758 3.22866 
H 9.73162 -2.72841 3.04171 
H 10.2617 -4.44515 3.11775 
C 11.6798 -3.06189 2.17564 
C 11.8414 -3.79249 0.97712 
H 11.1942 -4.66243 0.75871 
C 12.8528 -3.39436 0.07272 
H 13.0017 -3.94521 -0.87505 
C 13.6966 -2.31011 0.40701 
H 14.5211 -2.0043 -0.26389 
C 13.4744 -1.63147 1.62624 
C 14.3175 -0.44292 2.10263 
H 13.781 0.49596 1.82346 
H 15.307 -0.42509 1.57826 
C 14.8063 0.99771 4.03312 
H 13.9653 1.66019 3.7286 
H 14.9035 1.02629 5.14183 
H 15.7563 1.37431 3.57308 
C 9.86941 -2.8838 5.51808 
H 10.2131 -2.63783 6.5477 
H 9.29005 -2.02175 5.11732 
H 9.20461 -3.78516 5.55725 
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Table S7: Atom coordinates of the DFT geometry optimized 

(B3LYP*/cc-pVDZ) complex ion 22+ in the LS/HS configuration 

(quintet). 
atom x y z 

Fe 3.2465 2.25939 19.6966 
Fe 5.38955 5.95613 16.0929 
N 1.49987 1.62445 18.5987 
N 1.99671 2.29002 21.1887 
N 4.71324 2.40852 21.2729 
N 3.41666 0.35283 20.0507 
N 3.11398 4.31686 19.2668 
N 4.58578 2.29812 18.0703 
N 5.51552 3.79106 16.5353 
N 3.9751 5.91066 17.7951 
N 3.85341 6.22234 14.3225 
N 5.41805 8.12618 15.6965 
N 7.48212 6.65054 16.9351 
N 6.67214 6.05149 14.2996 
C 0.31125 1.9547 19.4888 
H -0.54993 1.27008 19.2862 
H -0.01659 2.98747 19.2188 
C 0.69064 1.96311 20.9668 
C -0.19766 1.74023 22.0402 
H -1.25398 1.47621 21.8469 
C 0.29262 1.8569 23.3624 
H -0.38071 1.6819 24.2223 
C 1.65116 2.18798 23.5788 
H 2.05785 2.27901 24.6032 
C 2.4833 2.3979 22.4588 
C 3.94345 2.83798 22.5128 
H 3.95761 3.95443 22.5301 
H 4.44791 2.4853 23.4467 
C 5.28613 1.00884 21.4365 
H 5.65454 0.84031 22.4792 
H 6.17033 0.94163 20.7579 
C 4.29339 -0.06809 21.0077 
C 4.28815 -1.40293 21.4651 
H 5.00503 -1.73193 22.2401 
C 3.34723 -2.30519 20.9149 
H 3.31778 -3.35597 21.2588 
C 2.43692 -1.85342 19.9303 
H 1.68869 -2.53889 19.4908 
C 2.49889 -0.50522 19.5187 
C 1.65064 0.12174 18.4157 
H 2.18724 -0.03287 17.4488 
H 0.65423 -0.37841 18.3254 
C 1.27427 2.25085 17.2489 
H 2.14685 2.02513 16.598 
H 1.19196 3.35225 17.3755 
H 0.34113 1.85939 16.7693 
C 5.8517 3.36932 21.0598 
H 6.55578 3.36689 21.9306 
H 5.43674 4.39149 20.9224 
H 6.4006 3.07442 20.139 
C 3.9181 4.61575 18.2142 
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C 2.55663 5.56982 19.6028 
C 1.6343 5.94788 20.615 
H 1.21719 5.20219 21.3183 
C 1.26555 7.30679 20.6988 
H 0.54917 7.62873 21.4782 
C 1.79742 8.28065 19.7998 
H 1.48305 9.33648 19.9024 
C 2.71364 7.92343 18.789 
H 3.12806 8.68205 18.0974 
C 3.09534 6.56052 18.6882 
C 4.68616 3.56507 17.5925 
C 5.45767 1.57446 17.2283 
C 5.8078 0.19808 17.1988 
H 5.37602 -0.51849 17.9231 
C 6.72408 -0.22973 16.2155 
H 7.014 -1.29656 16.1695 
C 7.2873 0.68418 15.2737 
H 8.00029 0.306 14.5169 
C 6.95164 2.05385 15.2886 
H 7.38596 2.7577 14.5526 
C 6.03284 2.50341 16.2721 
C 3.44117 7.67806 14.3377 
H 2.6293 7.77154 15.0988 
H 3.00707 7.98413 13.3516 
C 4.58168 8.61886 14.7424 
C 4.75918 9.91204 14.2017 
H 4.06414 10.2997 13.4336 
C 5.85018 10.6901 14.653 
H 6.01532 11.7066 14.2488 
C 6.74969 10.1437 15.5971 
H 7.63351 10.7157 15.9366 
C 6.50358 8.84345 16.0926 
C 7.39825 8.14866 17.1261 
H 8.41882 8.61028 17.1365 
H 6.9527 8.32025 18.1358 
C 8.50746 6.25532 15.8949 
H 8.75301 5.18177 16.0808 
H 9.45534 6.83842 16.0214 
C 7.98294 6.38111 14.46 
C 8.78244 6.78114 13.366 
H 9.84825 7.03731 13.5137 
C 8.18711 6.85888 12.0857 
H 8.7876 7.16764 11.2094 
C 6.80943 6.57569 11.9417 
H 6.31037 6.66847 10.959 
C 6.07657 6.18197 13.084 
C 4.58241 5.83905 13.0536 
H 4.0921 6.29476 12.1555 
H 4.48788 4.73095 12.951 
C 2.6287 5.36322 14.4661 
H 2.11639 5.6194 15.4205 
H 2.9385 4.2942 14.4992 
H 1.91473 5.51007 13.6147 
C 7.83492 6.00467 18.2452 
H 7.85988 4.90043 18.1086 
H 7.05116 6.25685 18.9949 
H 8.83042 6.35116 18.6261 
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Table S8: Relative zero-point vibrational energies (ZVPE) and thermal free energies 

at 298.15 K of DFT geometry optimized structures of 22+ at S = 0, 1, 2, 3, 4 by 

variation of exact exchange: B3LYP / B3LYP* (in kJ/mol). 

 B3LYP B3LYP* 
Spin state ZPVE Th. Free Energy 

(298.15 K) 
ZPVE Th. Free Energy 

(298.15 K) 
S = 0 (singlet) +91.6 +113.9 +42.1 +63.2 
S = 1 (triplet) +101.9 +112.9 +61.5 +72.7 
S = 2 (quintet) +43.1 +52.0 +18.0 +25.4 
S = 3 (septet) +55.2 +57.3 +39.4 +39.9 
S = 4 (nonet) 0 0 0 0 
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(a) 

 

(b) 

 

(c) 

 

(d) 

(e) (f) 

 

Figure S11: DFT/B3LYP* geometry optimized structures of 22+ (a) singlet sideview 

(b) singlet topview (c) triplet sideview (d) triplet topview (e) septet sideview (f) 

septet topview (C: gray, N: blue, Fe: steel blue). The purple isosurfaces represent 

the electron spin density. All hydrogen atoms are omitted for clarity. 
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5 Structural Characterization of (Methylated) Thymine/Uracil-

Tetracyanoplatinate(II)-Aggregates by Two Color Enhanced 

Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy  

Joachim M. Hewer, Yevgeniy Nosenko, Michael Lembach, Christoph Riehn and Gereon 

Niedner-Schatteburg 

Fachbereich Chemie and Forschungszentrum OPTIMAS, Kaiserslautern, Germany 

 

5.1 Preamble 

The following chapter is prepared as a manuscript for publication. I conducted the InfraRed 

Multiple Photon Dissociation (IRMPD) experiments, data evaluation and the quantum 

chemical calculations. I received experimental support by Michael Lembach. Yevgeniy 

Nosenko and Gereon Niedner-Schatteburg helped to interpret the data. I wrote and revised 

this manuscript with the help of Christoph Riehn. 
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5.2 Abstract 

We present IR spectroscopic investigations of isolated gas phase aggregates of 

tetracyanoplatinate(II) dianions and thymine or uracil nucleobases and their methyl-

substituted derivatives. These aggregates are regarded as model systems for the exploration 

of photophysical processes associated with photodynamic therapy (PDT). The two-color 

infrared multiple photon dissociation (IRMPD) technique reveals dark bands by overcoming 

intramolecular vibrational redistribution (IVR) bottlenecks. Associated density functional 

theory (DFT) calculations provide several stable isomeric structures, which we identify by 

comparing their linear absorption spectra with the recorded two-color IRMPD spectra. 

Aggregates with unsubstituted nucleobases exhibit strong (N1H) hydrogen bonds between the 

cyanide ligands of Pt(CN)4
2- and the secondary amino groups of the nucleobases. Further 

CH – NC interactions stabilize the geometrically planar aggregates. The methyl substituted 

species bind to the tetracyanoplatinate(II) solely mediated by CH – NC interactions, forming 

planar clusters as well.  

 

5.3 Introduction 

Transition metal complexes of e.g. platinum and rhenium still play an important role in recent 

pharmaceutical research, as they are employed in the treatment of various types of tumors.[1, 

2] Cis-diamminedichloridoplatinum(II), known as cisplatin, is an example for an extensively 

used drug in the treatment of testicular, ovarian, bladder and cervical cancer.[3-7] Cisplatin 

targets the cellular DNA at the guanine nucleobases and forms cross-links between two 

adjacent strands of DNA.[3] The photodynamic therapy (PDT) and photoactivated 

chemotherapy (PACT) represent promising developments to avoid damage to healthy cells 

and tissue.[1, 8, 9] PDT involves administration of a photosensitizing chemical substance 

followed by its activation by light irradiation.[9, 10] There is a particular focus on platinum II and 

IV complexes in the current research for new PDT pharmaceuticals to control the metal 

reactivity by photoexcitation in clinical situations.[3, 11, 12] 
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Figure 1: General depiction of the nucleobase – tetracyanoplatinate(II) 

Aggregates. 

 

Tetracyanoplatinate(II) – nucleobase adducts are established model systems for the 

exploration of fundamental photophysical and photochemical processes in PDT with 

platinum(II) pharmaceuticals.[13-16] Investigations on isolated complexes help to improve the 

understanding of the platinate(II) – nucleobase binding.[16] A. SEN et al. have studied the UV 

photophysics of isolated [Pt(CN)4]2- – nucleobase (nucleobase = uracil, thymine, cytosine, 

adenine) complexes in detail.[15] Structural information is paramount to acquire fundamental 

insight into their reactivity. In this work, we report the first IR spectroscopic investigations on 

the gas-phase structures of nucleobase – [Pt(CN)4]2- complexes. We chose the DNA 

nucleobase thymine and the RNA nucleobase uracil as well as their respective methylated 

forms (cf. Fig 1, Tab.1). The substitution of the proton in position 1 by a methyl group is the 

first step to mimic nucleotides/nucleosides being the components of the single-stranded RNA 

and the double-stranded DNA double helices in the cell.  

 

Table 1: Key to the (substituted) nucleobases depending on 

substituents R1 and R2 (refer to Fig. 1). 

R1 R2 Nucleobase Abbreviation 

-CH3 -H Thymine T 

-CH3 -CH3 1-Methylthymine 1-mT 

-CH3 -C5H9O3 Deoxythymidine dT 

-H -H Uracil U 

-H -CH3 1-Methyluracil 1-mU 

-H -C5H9O4 Uridine rU 
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5.4 Experimental and computational methods 

A detailed description of the experimental setup has been published previously.[17] The 

dianionic aggregates were generated via electrospray ionization (ESI) from an aqueous 

solution of the respective (substituted) nucleobases or nucleosides and K2Pt(CN)4 with a 

stoichiometric ratio of 1:1 at a concentration of approximately 1 mM. The solutions were 

infused continuously into the ESI chamber with a syringe pump at a flow rate of 2 µL/min. We 

used nitrogen as nebulizer gas at a pressure of 7 to 8 psi and as a drying gas with a temperature 

of 150 °C and a flow rate of 1 to 2 L/min. The electrospray needle was held at 4.5 kV. The 

IRMPD experiments were performed using a modified Paul-type ion trap mass spectrometer 

(AmaZon SL, Bruker Daltonics). The ion source was operated in the negative electrospray 

ionization mode. The scan speed was 13000 m/z per second with a resolution of 0.3 FWHM, 

the scan range was at least from 50 to 600 m/z. The Instrument was controlled by 

BrukerTrapControl 7.0 software, data analysis was done with BrukerDataAnalysis 4.0 

software.  

A KTP/KTA (KTP = potassium titanyl phosphate; KTA = potassium titanyl arsenate) optical 

parametric oscillator/amplifier (OPO/OPA, LaserVision) system pumped by a pulsed 10 Hz 

injection seeded Nd:YAG laser (PL8000, Continuum) was used as a source of tunable IR 

radiation (δṽ = 0.9 cm-1, δt = 7 – 10 ns) for recording the vibrational spectra. The idler wave 

(≤ 10 mJ/per pulse) was used to record the spectra in the range of 2500 – 3700 cm-1. The 

difference frequency (DF) generated radiation in a AgGaSe2 crystal (≤ 2 mJ/per pulse) was 

applied in the range of 1150 – 2200 cm-1. The idler radiation was focused by a CaF lens with a 

focal length of 50 cm. The DF beam was focused by a parabolic mirror with a focal length of 

15 cm. The two-color (2c-) IRMPD experiments were facilitated using a second IR OPO/A 

system set to a selected vibrational resonance frequency. The respective idler radiation was 

focused by a CaF lens with a focal length of 75 cm. The frequency fixed laser pulses were 

delayed by 100 ns with respect to the first scanning IR laser. The IR spectra were measured as 

ion chromatograms while continuously scanning the IR laser frequency. An IRMPD spectrum 

is achieved by plotting the total IRMPD yield as a function of the IR laser frequency. The total 

IRMPD yield (Y(ν)) is defined by: 
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b�2� = ∑ X)Y∑ X)Y + ∑ XqY  

where Iifr and Iifr are the respective ion intensities of fragment and parent ions. The IR 

frequency was calibrated using a 821B-NIR Bristol Instruments wave meter. The IR beam was 

detected by a power meter after passing through the ion trap. Due to the intrinsically 

nonlinear power dependencies of IRMPD yields, the spectra were not normalized.  

The minimum energy structures, binding energies and linear IR absorption spectra were 

calculated at the DFT/B3LYP[18-20] level of theory, using the aug-cc-pVTZ [21, 22](C, H, N, O) basis 

set and the Stuttgart RSC 1997[23, 24] (Pt) effective core potential as implemented in the 

Gaussian 09 program package.[25] All geometry optimized isomers represent true energy 

minima as they were checked for the absence of imaginary vibrational frequencies. The 

harmonic vibrational frequencies of the stretching modes (> 2500 cm-1) were scaled by a 

factor of 0.958. All other frequencies (< 2500 cm-1) were scaled by a factor of 0.986. The line 

spectra were deconvoluted by GaussSum using a Lorentzian function with  

FWHM = 10 cm-1.[26] The counterpoise method was used to calculate the basis set 

superposition error (BSSE).[27] 

The visualization of weak interactions such as hydrogen bonds or van der Waals-interactions 

was realized using the multiwfn and VMD software based on the non-covalent interaction 

(NCI) technique.[28-31] Details of this method and its application have already been published 

elsewhere.[32, 33] The method is based on the analysis of the electron densities ρ and their 

reduced gradients s(ρ). When weak interactions are present, the electron density ρ is low and 

its reduced gradient s(ρ) is close to zero. The typical weak interaction regions can be identified 

as troughs in plots of the reduced gradient s(ρ) in dependence of the sign of the second 

eigenvalue λ2 of the Hessian matrix. The nature of the weak interaction can be evaluated by 

sign and value of λ2. Positive values correspond to nonbonding or repulsive interactions and 

negative values correspond to bonding, favorable or attractive interactions, respectively. 

Visualization of the interactions is realized by plotting isosurfaces of the reduced gradient, 

with sign and value of λ2 related to a RGB coloring scheme. Red isosurfaces correspond to a 

positive sign of λ2 and represent unfavorable interactions e.g. steric repulsion. Blue isosurfaces 
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correspond to a negative sign of λ2 and represent strong favorable interactions, e.g. hydrogen 

bonds. Green isosurfaces correspond to van der Waals interactions and λ2 very close to zero.  

 

 
Figure 2: RGB coloring scheme for the visualization of type and strength of non-

covalent interactions in molecules and clusters.[34] 

 

5.5 Results and Discussion 

The formation of the self-assembled (methylated) nucleobase – tetracyanoplatinate(II) 

aggregates was deduced from the recording of anion signals at the respective masses in the 

mass spectra (Figs. S1 – S8, ESI). The dianionic character of the investigated species is 

demonstrated by the 0.5 m/z spacings between the isotope peaks in the mass spectra. The 

fragment ions of [T · Pt(CN)4]2- and [U · Pt(CN)4]2- upon resonant infrared irradiation are in 

accordance with the fragment ions observed in CID-experiments by A. SEN et al..[16] At higher 

laser energies we observed an additional fragment ion: [Pt(CN)3]- (Tab. S1, ESI). Substitution 

of the proton in position 1 with a methyl group [1-mT, 1-mU] prevents a proton transfer from 

the nucleobase to the tetracyanoplatinate(II) (Tab. S1, ESI).  

The structure of the self-assembled aggregates is elucidated by comparison of experimental 

IRMPD spectra with calculated harmonic vibration spectra of geometry optimized minimum 

structures. The presented minimum structures are based on the nucleobases in the lactam 

form. Enolic structures were also considered in the calculations but resulted in significantly 

increased relative energies (+ > 50 kJ/mol), hence they are not discussed here. IRMPD spectra 

often depend non-linearly on laser power flux.[17] Due to incoherent multiple photon 

absorption, bands in IRMPD spectra can be broadened, shifted or deformed.[35, 36] The low 

density of states in small systems can hinder the internal vibrational redistribution, and, 

together with vibrational anharmonicities, result in a bottleneck for the multiple photon 
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absorption and hence for dissociation.[17, 37] Large molecules and clusters reveal large heat 

capacities and may require more laser power for weaker bands to appear in IRMPD spectra.[38] 

Several multi-excitation schemes have been suggested to overcome these limitations.[39-42] 

We have already presented several examples for a two-color (2c)-excitation scheme revealing 

additional bands, not visible in the one-color (1c) IRMPD spectrum.[17, 43] In this study we use 

this 2c-IRMPD technique in the frequency range of 1150 – 2200 cm-1 to reveal or augment 

weak bands. For fragmentation channels, calculated binding energies and bond lengths of the 

following discussed structures see Tabs. S1-S3. 

 

5.5.1 Thymine – Tetracyanoplatinate(II): [T · Pt(CN)4]2- 

Computed binding isomers 

By geometry optimization calculations we obtained three minimum structures for the 

thymine – Pt(CN)4
2- complex (cf. Fig. 3). In the most stable isomer T_A, the 

tetracyanoplatinate(II) is bound to the thymine via a hydrogen bond between the N1H group 

and a nitrogen atom of a cyanide ligand. The structure is additionally stabilized by several CH 

– cyanide ligand interactions resulting in a planar structure. In contrast, in the second 

minimum structure T_B (+12 kJ/mol), the thymine and Pt(CN)4
2- planes are orthogonal. The 

connection is also mediated by a hydrogen bond of the N1H group to a cyanide nitrogen atom 

and stabilized further by an additional interaction of the C6H proton with the same cyanide 

nitrogen atom. Interactions to further CN groups are missing due to the perpendicular planes 

of thymine and tetracyanoplatinate(II). The energetically highest lying isomer T_C 

(+79 kJ/mol) has only one almost linear (β(N3-H-N) = 178.7 °) hydrogen bond between the 

N3H group and a cyanide nitrogen ligand. The C=O groups have a shielding effect (electrostatic 

and steric), preventing further CH – NC interactions. The pyrimidinic and Pt(CN)4
2- planes are 

orthogonal. The relative energies of the minimum structures and NCI plots in Fig. 3 show, that 

the main part of the binding between thymine and Pt(CN)4
2- is mediated by the N1H – NC 

hydrogen bonds (blue isosurface) and further stabilization by the CH – NC interactions (green 

isosurface). The ring strain of the hetero-aromatic cycle is represented as red isosurface in the 

NCI plot.  
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Figure 3: DFT/B3LYP calculated minimum structures and NCI plots of 

thymine – Pt(CN)4
2- aggregates. 

 

Comparison of experimental IRMPD spectra and calculated harmonic vibration frequencies 

The experimental one-color IRMPD spectrum of [T · Pt(CN)4]2- exhibits one sharp band at 

3457 cm-1 and at least three bands in the region of 2600 to 3200 cm-1 (cf. Fig. 4). In the 

fingerprint region between 1150 and 2200 cm-1, we observe three bands at 1673 cm-1, 

1725 cm-1 and 2111 cm-1. Using the 2c-IRMPD technique (IRfix = 3457 cm-1, cf. section 2) 

additional dark bands at 1201, 1488 and 1644 cm-1 occur, as well as enhanced one-color 

IRMPD bands. The sharp band at 3457 cm-1 can be assigned to a free NH stretching vibration, 

the broad bands between 2700 – 3200 cm-1 originate from the CH stretching vibrations and a 

hydrogen bonded NH vibration. The sharp band at 2111 cm-1 can be assigned to the cyanide 

C≡N stretching modes, the intense bands at 1673 and 1725 cm-1 to the two C=O stretching 

modes of thymine.  
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The calculated harmonic spectrum of T_A is in very good agreement with the experimental 

1c/2c-IRMPD spectrum (cf. Fig. 4). The recorded band at 3457 cm-1 is unambiguously assigned 

to the free N3H stretching mode. The C6H stretching vibration mode of T_A is represented by 

the absorption at 3056 cm-1 in the experimental spectrum. It is broadened due to a significant 

interaction of the C6H proton with the cyanide ligands. The broadened bands around 2873 

and 2937 cm-1 fit quite well to the calculated C7H stretching and hydrogen bonded N1H 

stretching modes. The C≡N stretching modes at 2111 cm-1 are not sensitive to the binding 

motif, as the perturbation by CH or NH protons in close proximity is very small (approx. 5 cm-

1) and not resolved in the experiment. The C=O stretching vibrations are as well not very 

sensitive to the structure since there is no considerable interaction of these functional groups 

to Pt(CN)4
2-. The bands at 1673 and 1725 cm-1 are referred to the C4=O and C2=O stretching  

 

 
Figure 4: Experimental one and two color IRMPD spectrum of the 

thymine – Pt(CN)4
2- aggregate (probe frequency: 3457 cm-1) in comparison to the 

calculated harmonic absorption spectra of the minimum structures (cf. Fig. 3). 

Note, that above 2500 cm-1 (T_A), 2850 cm-1 (T_B) or 2800 cm-1 (T_C) the 

intensities of the calculated spectra are multiplied by a factor of 10. 
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modes, the band at 1644 cm-1 can be assigned to the C6H bending mode. The band 1488 cm-

1 represents the hydrogen bound N1H bending vibration. The band at 1201 cm-1 can be 

assigned to a mode, best described as N1 – C6 stretching vibration which is moderately 

intense in the calculated harmonic spectra. Overall, the spectral signature of the T_A 

minimum structure fits best to the IRMPD spectrum, especially in the CH-stretching region 

which is also most sensitive to the binding motif. The spectroscopic data presented here, 

cannot exclude presence of T_B, the calculated relative energies render the population of T_B 

and T_C unlikely (cf. Tab.1). 

 

Table 1: Population of the minimum structures T_A, T_B, and 

T_C calculated by the Maxwell-Boltzmann-distribution at 300, 

400, and 500 K. 

Temperature / K 
T_A 

0 kJ/mol 
T_B 

+12 kJ/mol 
T_C 

+79 kJ/mol 

300 0.9919 0.0081 ~10-14 
400 0.9736 0.0264 ~10-11 
500 0.9472 0.0528 ~10-9 

 

 

5.5.2 Methylthymine – Tetracyanoplatinate(II): [1-mT · Pt(CN)4]2- 

Computed binding isomers 

For 1-methylthymine, we found four minimum structures (cf. Fig. 5). The most stable isomer 

1-mT_A exhibits several CH – NC interactions mediating the binding between the nucleobase 

and the tetracyanoplatinate(II) anion. A methyl proton of C8H interacts with two adjacent 

cyanides. There are interactions between the C6H proton and a proton of the C7H methyl 

group and a cyanide ligand, respectively. In total, the structure 1-mT_A provides four CH – NC 

interactions, leading to a planar geometry. The second most stable is planar as well. There are 

CH – NC interactions between a C8H methyl proton and a cyanide ligand, between the C6H 

proton and the same cyanide ligand and between a C7H methyl proton and an adjacent 

cyanide ligand. 1-mT_B has in total only three CH – NC interactions, leading to a 

destabilization of +5 kJ/mol compared to 1-mT_A. In the third most stable isomer 1-mT_C 

(+9 kJ/mol), the bond between 1-mT and Pt(CN)4
2- is also mediated by CH – NC interactions. 

The plane of the heteroaromatic cycle and Pt(CN)4
2- are perpendicular. Two protons of the C8 
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methyl group each interact with an adjacent cyanide ligand. The C6H proton is in the center 

and interacts with both vicinal cyanide ligands equally. The least stable isomer 1-mT_D 

(+55 kJ/mol) is in analogy to T_C stabilized by one single linear hydrogen bond between the 

N3H proton and a cyanide ligand. Both C=O groups have a shielding effect, preventing further 

CH – NC interactions. The planes of 1-mT and Pt(CN)4
2- are perpendicular as well.  

 

 

Figure 5: DFT/B3LYP calculated minimum structures and NCI plots of  

1-methylthymine – Pt(CN)4
2- aggregates. 

 

Comparison of experimental IRMPD spectra and calculated harmonic vibration frequencies 

The experimental one and two color IRMPD spectra and the calculated harmonic absorption 

spectra of the minimum structures are shown in Fig. 6. The IRMPD spectrum reveals a sharp 
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band at 3457 cm-1 and at least three absorptions in the CH stretching region between 2800 

and 3200 cm-1. There are three absorptions in the fingerprint region of the one color spectrum 

at 2107, 1686 and 1703 cm-1, with the two color technique four additional bands at 1642, 

1470, 1446 and 1320 cm-1 emerge. The sharp band at 3457 cm-1 can be assigned to a free NH 

stretching vibration, the broadened region bands are expected to be CH stretching vibrations. 

The band at 2107 cm-1 is assigned to the C≡N stretching vibra�ons of the cyanide ligands. The 

intense absorptions at 1686 and 1703 cm-1 are referred to the carbonyl C=O stretching 

vibrations. The calculated harmonic spectra of 1-mT_A, 1-mT_B and 1-mT_C are very similar, 

apart from the CH stretching region and the range below 1600 cm-1. In total, 1-mT_A fits best 

to the experimental spectrum. The band at 3457 cm-1 represents the free N3H stretching  

 

 
Figure 6: Experimental one and two color IRMPD spectrum of the  

1-Methylthymine – Pt(CN)4
2- aggregate (probe frequency: 3457 cm-1) in 

comparison to the DFT calculated harmonic absorption spectra of the minimum 

structures (cf. Fig. 5). Note, that above 2500 cm-1 (1-mT_A, 1-mT_B, 1-mT_C), and 

2750 cm-1 (1-mT_D) the intensities of the calculated spectra are multiplied by a 

factor of 5. 
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vibration. We assign the band at 3058 cm-1 to a C8H methyl stretching vibration, which is 

broadened due to the interaction of one proton with the cyanide ligand. The absorption at 

2941 cm-1 matches the C6H stretching vibration and is also broadened due to the oriented 

binding of the proton to a cyanide. The weak absorption band at 2872 cm-1 is less shifted and 

broadened and can be referred to the C7H methyl stretching vibration forming weaker 

interactions with the cyanide ligand. The C≡N stretching vibra�ons are rather insensitive to 

the structural geometry and do not shift or split significantly in the calculated  

harmonic absorption spectra but can be assigned to the measured band at 2107 cm-1. We 

assign the two strong absorption bands at 1686 and 1703 cm-1 to the two C=O carbonyl 

stretching vibrations present in all harmonic absorption spectra, the smaller absorption at 

1642 cm-1 represents the C6H bending mode which is considerably strong in the calculated 

spectra of 1-mT_A and 1-mT_B. The fingerprint region is dominated by CH bending modes and 

NH bending modes. The spectral signature of 1-mT_A fits best to the experimental spectrum 

regarding the absorption bands at 1310 cm-1, which is assigned to the bending motion of free 

N3H. The experimental bands at 1446 and 1470 cm-1 match the spectrum of 1-mT_A, 

regarding frequency difference and relative intensity. However, the differences in the 

harmonic spectra of 1-mT_A, 1-mT_B and 1-mT_C are small and cannot be excluded by 

comparison with the experimental IRMPD spectrum only. The difference in the thermal free 

energies makes a population of 1-mT_C and 1-mT_D very unlikely, 1-mT_B is structurally 

similar to 1-mT_A and may contribute by 12 % (cf. Tab. 2). 

 

Table 2: Population of the minimum structures 1-mT_A, 1-mT_B, 1-mT_D and 

1-mT_D calculated by the Maxwell-Boltzmann-distribution at 300, 400, and 

500 K. 

Temperature / K 
1-mT_A 

0 kJ/mol 
1-mT_B 

+5 kJ/mol 
1-mT_C 

+9 kJ/mol 
1-mT_D 

+55 kJ/mol 
300 0.8607 0.1159 0.0233 ~10-10 
400 0.7757 0.1725 0.0518 ~10-08 
500 0.7067 0.2122 0.0811 ~10-06 
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5.5.3 Uracil – Tetracyanoplatinate(II): [U · Pt(CN)4]2- 

Computed binding isomers 

Geometry optimization calculations of uracil – tetracyanoplatinate(II) aggregates resulted in 

only two minimum structures (cf. Fig. 7). The most stable minimum U_A provides a N1H 

hydrogen bond to a cyanide ligand and two additional CH – NC interactions of the C6H proton 

with two adjacent cyanides, resulting in a planar overall structure. The binding motif of U_A 

is very similar to T_A. Isomer U_B is +80 kJ/mol less stable compared to U_A. Uracil and 

Pt(CN)4
2- are connected by a quasi linear N3H hydrogen bond to a cyanide ligand. The 

electrostatic and steric shielding effects of adjacent carbonyl groups prevent further NH or CH 

interactions with the tetracyanoplatinate(II). The planes of uracil and Pt(CN)4
2- are 

perpendicular. The binding motif is in analogy to T_C and 1-mT_D.  

 

 
Figure 7: DFT/B3LYP calculated minimum structures and NCI plots of  

Uracil – Pt(CN)4
2- aggregates. 

 

Comparison of experimental IRMPD spectra and calculated harmonic vibration frequencies 

The experimental one and two color IRMPD spectra and the calculated harmonic absorption 

spectra of the minimum structures of [U · Pt(CN)4]2+ are shown in Fig. 8. The IRMPD spectrum 

reveals a sharp band at 3457 cm-1. The CH stretching region between 2600 and  

3200 cm-1 is very broadened, including at least three absorptions at approx. 2812, 2929 and 

3061 cm-1. In the fingerprint region we observe three absorptions in the one color spectrum 
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at 2108, 1686 and 1732 cm-1: The second IR laser reveals additional bands at 1616, 1488 and 

1214 cm-1. 

 

 
Figure 8: Experimental one and two color IRMPD spectrum of the Uracil – Pt(CN)4

2- 

aggregate (probe frequency: 3457 cm-1) in comparison to the DFT calculated 

harmonic absorption spectra of the minimum structures (cf. Fig. 7). Note, that 

above 2950 cm-1 (U_A) and 2800 cm-1 (U_B) the intensities of the calculated 

spectra are multiplied by a factor of 10. 

 

Comparison of the IRMPD spectrum with the calculated harmonic spectra shows, that the 

linear absorption spectrum of U_A is in very good agreement with the experiment. The sharp 

band at 3457 cm-1 is assigned to a free NH stretching vibration. The broad CH stretching region 

represents the C5H and C6H stretching vibrations and a hydrogen bound N1H stretching 

vibration. The band at 2108 cm-1 is referred to the C≡N stretching vibra�ons of the cyanide 

ligands. The two carbonyl C2=O and C4=O stretching modes can be assigned to the bands at 

1686 and 1732 cm-1 regarding their splitting and relative intensities. The C6H bending mode 

is visible at 1616 cm-1 in the IRMPD spectrum, the N1H bending mode at 1488 cm-1 and the 
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C5H bending mode at 1214 cm-1. The harmonic spectrum of U_B has some similarities with 

the IRMPD spectrum but the intense hydrogen bound N3H mode is not observed in the IRMPD 

spectrum, the spectral fingerprint in the region below 1700 cm1 does not fit well and the 

relative energy of +80 kJ/mol makes a population of U_B very unlikely (~10-16 at 300 K) 

 

5.5.4 1-Methyluracil – Tetracyanoplatinate(II): [1-mU · Pt(CN)4]2- 

Computed binding isomers 

The geometry optimization calculations of 1-methyluracil – tetracyanoplatinate(II) aggregates 

resulted in four minimum structures (cf. Fig. 9). The most stable isomer 1-mU_A provides 

CH – NC interactions between a C7H methyl proton and two vicinal cyanide ligands and the 

C6H proton is straight bound to a cyanide nitrogen atom. The binding motif is similar to the  

1-mT_A isomer. The second most stable isomer 1-mU_B (+5 kJ/mol) has a binding motif 

similar to 1-mT_B. There is a C7H methyl proton cyanide interaction, the central C6H proton 

binds to two vicinal cyanides, and the C5H proton interacts with a cyanide nitrogen. 1-mU_A 

and 1-mU_B provide a planar geometry. The binding motif of 1-mU_C (+57 kJ/mol) is in 

analogy to T_C, 1-mT_D and U_B respectively. There is one linear hydrogen bond between the 

N3H proton and a cyanide nitrogen, while the pyrimidinic plane and the 

tetracyanoplatinate(II) are oriented perpendicular. There is an additional minimum structure 

1-mU_D (+57 kJ/mol), where the Pt(CN)4
2- is tied by one NH3 – NC hydrogen bond and a 

CH – NC interaction between a C7H methyl proton and an adjacent cyanide ligand. The 

pyrimidinic plane and tetracyanoplatinate(II) are perpendicular.  

 

Comparison of experimental IRMPD spectra and calculated harmonic vibration frequencies 

The experimental one and two color IRMPD spectra and the calculated harmonic absorption 

spectra of the minimum structures of [1-mU · Pt(CN)4]2+ are shown in Fig. 10. The IRMPD 

spectrum reveals a sharp band at 3457 cm-1. The CH stretching bands between 2900 and  

3100 cm-1 are broadened and scarcely resolved. We can identify at least two absorptions at 

approx. 2963 and 3051 cm-1. The one color IRMPD in the fingerprint region shows three bands  
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Figure 9: DFT/B3LYP calculated minimum structures and NCI plots of  

1-methyluracil – Pt(CN)4
2- aggregates. 

 

at 2111, 1710 and 1686 cm-1, the second laser reveals two additional bands at 1626 and  

1316 cm-1. The calculated spectra of 1-mU_A and 1-mU_B are very similar, apart from the CH 

stretching region and the different splitting of the two carbonyl stretching vibrations C4=O 

and C2=O. The band at 3457 cm-1 is assigned to the free N3H stretching mode, present in both, 

1-mU_A and 1-mU_B. The broadened CH stretching region makes an assignment challenging. 

However, the broad IRMPD spectrum hints to 1-mU_A, due to the relatively strong bond of 

the C6H proton to the cyanide nitrogen, increasing also the absorption intensity, in the 

calculated spectrum. The band at 2111 cm-1 is referred to the C≡N stretching vibra�ons. Both 

absorptions at 1710 and 1686 cm-1 are assigned to the C2=O and C4=O carbonyl stretching 

vibrations. The weak absorption at 1626 cm-1 represents the C6H bending mode, the weak 
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Figure 10: Experimental one and two color IRMPD spectrum of the  

1-methyluracil – Pt(CN)4
2- aggregate (probe frequency: 3457 cm-1) in comparison 

to the DFT calculated harmonic absorption spectra of the minimum structures (cf. 

Fig. 9). Note, that above 2500 cm-1 (1-mU_A, 1-mU_B, 1-mU_D) and above 

2800 cm-1 (1-mU_C) the intensities of the calculated spectra are multiplied by a 

factor of 10. 

 

absorption at 1316 cm-1 represents the N3H bending mode. Since the IRMPD spectra of  

1-mU_A and 1-mU_B differ only slightly in the CH stretching range, the experimental spectrum 

cannot be assigned unambiguously. The consideration of the thermal free energies shows, 

that besides 1-mU_A, 1-mU_B may be populated by ca. 12 % (cf. Tab. 2). Due to their high 

relative energy, 1-mU_C and 1-mU_D are not taken into account. 
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Table 3: Population of the minimum structures 1-mU_A, 1-mU_B, 1-mU_C and 

1-mU_D calculated by the Maxwell-Boltzmann-distribution at 300, 400, and 

500 K. 

Temperature / K 
1-mU_A 

0 kJ/mol 
1-mU_B 

+5 kJ/mol 
1-mU_C 

+57 kJ/mol 
1-mU_D 

+57 kJ/mol 
300 0.8813 0.1187 ~10-10 ~10-10 
400 0.8181 0.1819 ~10-08 ~10-08 
500 0.7690 0.2122 ~10-07 ~10-07 

 

 

5.6 Conclusions 

We presented one and two color infrared multiple photon dissociation action spectra of 

[T · Pt(CN)4]2-, [1-mT · Pt(CN)4]2-, [U · Pt(CN)4]2- and [1-mU · Pt(CN)4]2- in combination with 

computational geometry optimizations and calculated harmonic vibrational spectra. The 

recorded vibrational spectra are reproduced well by DFT harmonic spectra of optimized 

structures. The observed binding motifs of the non-methylated and methylated nucleobases 

to the tetracyanoplatinate(II) are analogous. 

Thymine and uracil are bound primarily via a N1H hydrogen bond to a nitrogen atom of a 

cyanide ligand, supported by various CH – CN interactions. For both nucleobases, we find 

experimentally similar aggregate geometries to those reported by A. SEN et al. which are solely 

based on computations.[13-16] The methylated nucleobases bind the tetracyanoplatinate(II) 

complex only by CH – NC interactions. A concomitant stabilization via a strong NH – NC and 

weaker CH – NC interactions is not possible due to the carbonyl groups adjacent to the 

remaining N3H proton. Instead, solely CH – NC interactions mediate the loosely bound 

nucleobase – tetracyanoplatinate(II) aggregate. The two energetically most favorable isomers 

1-mT_A/B and 1-mU_A/B are very close in structure and energy, enabling both isomers to 

contribute in the gas phase.  

First IRMPD experiments on the aggregates of the nucleosides thymidine and uridine 

representing the next step in mimicking DNA/RNA strands were conducted (cf. Figs. S9-S18) 

The binding motif of the nucleosides thymidine and uridine and is unlike. The N1H proton of 

the nucleobase is replaced by a cyclic sugar side chain. In the case of the DNA nucleoside 
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thymidine it is deoxyribose, in the case of the RNA nucleoside uridine it is ribose. The CH – NC 

interactions become less pronounced and the pentose’s hydroxyl groups form stable 

hydrogen bonds with the cyanide ligands of tetracyanoplatinate(II). The flexibility of the sugar 

backbone and the large number of polarized functional groups allow for a vast number of 

possible isomers. This and the highly broadened absorption bands in the CH / OH / NH 

stretching region make an assignment difficult. Yet, calculations show that the binding motif 

compared to the nucleobases changes in favor of CN – HO hydrogen bonds.  

Additional IR(M)PD experiments on tetracyanoplatinate(II) – nucleobase adducts using 

messenger spectroscopy (e.g. He tagging) in cryogenically cooled ion traps may help in 

resolving the significant CH-stretching region superimposed to the broadened hydrogen 

bound NH region. 
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Figure S1: Mass spectrum of the isolated [T · Pt(CN)4]2- aggregate without (black) 

and with resonant infrared photon irradiation (red). Note, that there is basic 

fragmentation due to stiff isolation conditions. The inset shows the experimental 

and simulated isotopic pattern of [T · Pt(CN)4]2-. 
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Figure S2: Experimental and simulated mass peaks of the fragments of  

[T · Pt(CN)4]2-: a) deprotonated thymine [T-H]-; b) tetracyanoplatinate(II) dianion 

[Pt(CN)4]2-; c) triscyanoplatinate(II) anion [Pt(CN)3]-; d) protonated 

tetracyanoplatinate(II) anion [Pt(CN)4H]-. 
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Figure S3: Mass spectrum of the isolated [1-mT · Pt(CN)4]2- aggregate without 

(black) and with resonant infrared photon irradiation (red). Note, that there is 

basic fragmentation due to stiff isolation conditions. The inset shows the 

experimental and simulated isotopic pattern of [1-mT · Pt(CN)4]2-. 

 

  



 5. Structural Characterization of (Methylated) Thymine/Uracil-Tetracyanoplatinate(II)-
Aggregates by Two Color Enhanced Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy 

 

 

 
198 

 

 

Figure S4: Experimental and simulated mass peaks of the fragments of  

[1-mT · Pt(CN)4]2-: a) tetracyanoplatinate(II) dianion [Pt(CN)4]2-; b) triscyano-

platinate(II) anion [Pt(CN)3]-; c) protonated tetracyanoplatinate(II) anion 

[Pt(CN)4H]-. 
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Figure S5: Mass spectrum of the isolated [U · Pt(CN)4]2- aggregate without (black) 

and with resonant infrared photon irradiation (red). Note, that there is basic 

fragmentation due to stiff isolation conditions. The inset shows the experimental 

and simulated isotopic pattern of [U · Pt(CN)4]2-. 
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Figure S6: Experimental and simulated mass peaks of the fragments of  

[U · Pt(CN)4]2-: a) deprotonated uracil [U-H]-; b) tetracyanoplatinate(II) dianion 

[Pt(CN)4]2-; c) triscyano-platinate(II) anion [Pt(CN)3]-; d) protonated 

tetracyanoplatinate(II) anion [Pt(CN)4H]-. 
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Figure S7: Mass spectrum of the isolated [1-mU · Pt(CN)4]2- aggregate without 

(black) and with resonant infrared photon irradiation (red). Note, that there is 

basic fragmentation due to stiff isolation conditions. The inset shows the 

experimental and simulated isotopic pattern of [1-mU · Pt(CN)4]2-. 
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Figure S8: Experimental and simulated mass peaks of the fragments of  

[1-mU · Pt(CN)4]2-: a) tetracyanoplatinate(II) dianion [Pt(CN)4]2-; b) triscyano-

platinate(II) anion [Pt(CN)3]-. 
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Table S1: Fragmentation channels of the [Nu · Pt(CN)4]2- 

aggregates upon infrared photon irradiation, sorted by their m/z 

ratio. Note, that the deprotonated nucleobase as product ion is 

only present at thymine and uracil, which have a NH – NC 

hydrogen bond in their lowest lying minimum structure. 

 

 

 

Parent ion Product ion Neutral / ionic loss 

[T · Pt(CN)4]2- [T-H]- [Pt(CN)4H]- 
 [Pt(CN)4]2- [T] 
 [Pt(CN)3]- [T]+[CN]- 
 [Pt(CN)4H]- [T-H]- 

[1-mT · Pt(CN)4]2- [Pt(CN)4]2- [1-mT] 
 [Pt(CN)3]- [1-mT]+[CN]- 
 [Pt(CN)4H]- [1-mT-H]- 

[U · Pt(CN)4]2- [U-H]- [Pt(CN)4H]- 
 [Pt(CN)4]2- [U] 
 [Pt(CN)3]- [U]+[CN]- 
 [Pt(CN)4H]- [U-H]- 

[1-mU · Pt(CN)4]2- [Pt(CN)4]2- [1-mU] 
 [Pt(CN)3]- [1-mU]+[CN]- 
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Table S2: DFT computed binding energies of [Nu · Pt(CN)4]2- 

geometry optimized minimum structures at 0 and 298 K 

(B3LYP/aug-cc-pVTZ). The values are corrected by the basis 

set superposition error (BSSE). 

Nucleobase 
Binding energy / kJmol-1 
0 K 298 K 

Thymine   
T_A 131 85 
T_B 119 73 
T_C 45 6 

1-Methylthymine   
1-mT_A 99 57 
1-mT_B 95 51 
1-mT_C 96 48 
1-mT_D 42 2 
Uracil   
U_A 134 89 
U_B 47 8 

1-Methyluracil   
1-mU_A 102 60 
1-mU_B 98 55 
1-mU_C 49 3 
1-mU_D 43 3 
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Table S3: Hydrogen bond distances for the NH – CN and CH – CN 

interactions in [Nu · Pt(CN)4]2- sorted by length. All H-bonds 

lengths below 3.3 Å are listed. 

Nucleobase  H-bond length / Å 
Thymine   

T_A N1H – NC1 1.81 
 C6H – NC1 2.97 
 C6H – NC2 2.48 
   

T_B N1H – NC1 1.74 
 C6H – NC1 2.77 
   

T_C N1H – NC1 1.67 
1-Methylthymine   

1-mT_A C7H – NC1 2.69 
 C7H – NC2 3.05 
 C6H – NC2 2.09 
 C8H – NC2 2.99 
   

1-mT_B C7H – NC1 2.21 
 C6H – NC1 2.30 
 C8H – NC2 2.60 
   

1-mT_C C7H – NC1 2.57 
 C7H – NC2 2.55 
 C6H – NC1 2.76 
 C6H – NC2 2.81 
   

1-mT_D N3H – NC 1.67 
Uracil   
U_A N1H – NC1 1.79 

 C6H – NC1 3.05 
 C5H – NC2 2.40 
   

U_B N3H – NC 1.67 
1-Methyluracil   

1-mU_A C7H – NC1 2.85 
 C7H – NC2 2.70 
 C6H – NC2 2.07 
   

1-mU_B C7H – NC1 2.19 
 C6H – NC1 2.62 
 C6H – NC2 3.00 
 C5H – NC2 2.47 
   

1-mU_C N3H – NC 1.67 
   

1-mU_D N3H – NC1 2.02 
 C5H – NC2 2.38 

 



 5. Structural Characterization of (Methylated) Thymine/Uracil-Tetracyanoplatinate(II)-
Aggregates by Two Color Enhanced Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy 

 

 

 
206 

 

 
Figure S9: DFT/B3LYP (aug-cc-pVDZ (C, H, N, O); Stuttgart 1997 ECP (Pt)) calculated 

four most stable minimum structures and NCI plots of Thymidine – Pt(CN)4
2- 

aggregates. 
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Figure S10: Experimental one and two color IRMPD spectrum of the Thymidine – 

Pt(CN)4
2- aggregate (probe frequency: 3454 cm-1) in comparison to the DFT 

calculated harmonic absorption spectra of the four most stable minimum 

structures (cf. Fig. S9). Note, that above 2500 cm-1 the intensities of the calculated 

spectra are multiplied by a factor of 5, except for the grey shaded area. 
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Figure S11: DFT/B3LYP (aug-cc-pVDZ (C, H, N, O); Stuttgart 1997 ECP (Pt)) 

calculated less stable minimum structures and NCI plots of Thymidine – Pt(CN)4
2- 

aggregates dT_E to dT_K. 
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Figure S12: Experimental one and two color IRMPD spectrum of the Thymidine – 

Pt(CN)4
2- aggregate (probe frequency: 3454 cm-1) in comparison to the DFT 

calculated harmonic absorption spectra of the less stable minimum structures (cf. 

Fig. S11). Note, that above 2500 cm-1 the intensities of the calculated spectra are 

multiplied by a factor of 5. 
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Figure S13: DFT/B3LYP (aug-cc-pVDZ (C, H, N, O); Stuttgart 1997 ECP (Pt)) 

calculated four most stable minimum structures and NCI plots of 

Uridine – Pt(CN)4
2- aggregates. 
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Figure S14: Experimental one and two color IRMPD spectrum of the Uridine – 

Pt(CN)4
2- aggregate (probe frequency: 3454 cm-1) in comparison to the DFT 

calculated harmonic absorption spectra of the four most stable minimum 

structures (cf. Fig. S13). Note, that above 2500 cm-1 the intensities of the 

calculated spectra are multiplied by a factor of 5. 
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Figure S15: DFT/B3LYP (aug-cc-pVDZ (C, H, N, O); Stuttgart 1997 ECP (Pt)) 

calculated less stable minimum structures and NCI plots of Uridine – Pt(CN)4
2- 

aggregates rU_E to rU_M. 
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Figure S16: Experimental one and two color IRMPD spectrum of the Uridine – 

Pt(CN)4
2- aggregate (probe frequency: 3454 cm-1) in comparison to the DFT 

calculated harmonic absorption spectra of the less stable minimum structures (cf. 

Fig. S15). Note, that above 2500 cm-1 the intensities of the calculated spectra are 

multiplied by a factor of 5. 
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Figure S17: DFT/B3LYP (aug-cc-pVDZ (C, H, N, O); Stuttgart 1997 ECP (Pt)) 

calculated less stable minimum structures and NCI plots of Uridine – Pt(CN)4
2- 

aggregates rU_N to rU_V. 
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Figure S18: Experimental one and two color IRMPD spectrum of the Uridine – 

Pt(CN)4
2- aggregate (probe frequency: 3454 cm-1) in comparison to the DFT 

calculated harmonic absorption spectra of the less stable minimum structures (cf. 

Fig. S17). Note, that above 2500 cm-1 the intensities of the calculated spectra are 

multiplied by a factor of 5. 

 





 
 

 
217 

 

6 Gas Phase Structure of Fluorescein, 2,7-Dichlorofluorescein and 5-

Nitrofluorescein Ions by Infrared Multiple Photon Dissociation 

Spectroscopy and Density Functional Theory 

Joachim M. Hewer, Sebastian Becker, Dimitri Imanbaew and Gereon Niedner-Schatteburg 

Fachbereich Chemie and Forschungszentrum OPTIMAS, Kaiserslautern, Germany 

 

6.1 Preamble 

The following chapter is prepared as a manuscript for publication. I conducted the infrared 

multiple photon dissociation (IRMPD) experiments, data evaluation and the density functional 

theory (DFT) calculations. I received experimental support by Sebastian Becker. Dimitri 

Imanbaew helped with discussions and interpreting the data. I wrote the manuscript and 

revised it with the help of Gereon Niedner-Schatteburg. 
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6.2 Abstract 

Fluorescein and its derivatives are prominent fluorescent dyes known for almost 150 years. 

The photophysical properties strongly depend on respective functionalization groups and the 

examined prototropic form. We report an IRMPD spectroscopic study of isolated gas phase 

fluorescein [F], 2’,7’-dichlorofluorescein [DCF] and 5-nitrofluorescein [5NF] in the dianionic, 

monoanionic and cationic form for structural elucidation. The infrared multiple photon 

dissociation (IRMPD) experiments are conducted using a two-color excitation scheme, to 

reveal dark bands and overcome intramolecular vibrational redistribution (IVR) bottlenecks 

The experimental data are supported by density functional theory (DFT) calculations in terms 

of geometry optimization, harmonic vibrational spectra, relative energies and rotational 

barriers. The experimental spectra are in an excellent agreement with the calculated harmonic 

spectra. The assigned gas phase structures are strongly correlated to the relative energies of 

different isomers in the gas phase and in the solution.  

 

6.3 Introduction 

Fluorescein (F) was first synthesized by Adolf von Baeyer in 1871, using phthalic anhydride and 

resorcinol.[1] Owing to its bright fluorescence and the feasibility of functionalization 

fluoresceins have been extensively studied, characterized and are used in a large variety of 

applications.[2-14] One of the most valuable application of fluorescein derivatives like 

fluorescein isothiocyanate is the labelling of proteins in medical diagnostics.[6, 14] The major 

drawbacks of fluorescein are the deactivation by photobleaching and the strong dependence 

of the fluorescence on solvent properties and pH level even in the physiological area.[9, 15] 

Much effort has been spent in the development of more robust dyes based on fluorescein. 

For example, 2’,7’-dichlorofluoescein (DCF) is more photostable has a much lower pKa value 

and is hence less dependent on the pH level at equal fluorescence properties.[16] It has been 

used in various fields, for example as an acid/alkaline indicator[17, 18], reactant in free radical 

reactions[19], fluorescent probe in micellar examination[20, 21] and in the analysis of oxidative 

stress[22-26]. 5-Nitrofluorescein (5NF) instead has a much less pronounced fluorescence.[27] The 

electron withdrawing nitro group causes a redshift of the absorption and emission maxima by 
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rendering the positive charge of the phenyl and an electric attraction to the xanthene, 

stabilizing the xanthene unit and decreasing the HOMO-LUMO energy gap.[28]  

The fluorescence properties e.g. lifetime and quantum yield of fluorescein derivatives are not 

only correlated to the respective functionalization groups but are also highly sensitive to the 

prototropic form. There are four prototropic forms for fluoresceins conceivable in solution: 

the dianion, the monoanion, the neutral and the cation.[9, 26] The dianions represent the most 

fluorescent prototropic forms, exhibiting quantum yield of 0.92 ([F])[9, 26, 29, 30], 0.88  

([DCF])[26, 31] and 0.29 ([5NF])[32] ([F] and [DCF] in water, [5NF] in methanol). The monoanions 

have a noticeably lowered quantum yield in aqueous solution: 0.37 ([F]) and 0.17 ([DCF]) due 

to the alterated molecular geometry and electron structure compared to the  

dianion.[9, 26, 29-31] The monoanions provide two different tautomeric forms depending on the 

respective protonation site at the xanthene carbonyl groups or at the benzoate unit. Raman 

and FTIR spectroscopies of fluorescein in solution suggest the protonation site at the xanthene 

unit to prevail.[33] Investigations on fluorescein by the JOCKUSCH lab using potodissociation (PD) 

spectroscopy, infrared multiple photon dissociation (IRMPD) spectroscopy and fluorescence 

spectroscopy present strong evidence for the benzoate protonation site to be dominant in the 

gas phase.[26, 34, 35] 

 

 
Figure 1: General depiction of the investigated fluorescein derivatives displaying 

the atom numbering. 
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In the present study, we report as well on IRMPD spectroscopy in combination with density 

functional theory (DFT) on the charged prototropic forms of [F], [DCF] and [5NF] (cf. Fig.1, 

Tab. 1). IRMPD spectroscopy has proven valuable in studying isolated molecules and ions like 

complexes, amino acids etc.[36-39]  

We expand the spectral range, using a LaserVision optical parametric oscillator/amplifier 

system covering the spectral range from approx. 1000 – 4000 cm-1 including the OH-stretching 

region. DFT calculations support the experimental data regarding harmonic absorption 

spectra of geometry optimized minimum structures, relative energies in the gas phase and in 

solution and rotational barriers. 

 

Table 1: Key to the fluorescein derivatives depending on substituents R1 
and R2 (refer to Fig. 1). 

R1 R2 Species Abbreviation 

-H -H Fluorescein [F] 

-Cl -H 2’,7’-Dichlorofluorescein [DCF] 

-H -NO2 5-Nitrofluorescein [5NF] 

 

 

6.4 Experimental and Computational methods 

A detailed description of the experimental setup has been published elsewhere.[36] The ionic 

species were generated via Electrospray Ionization (ESI) from a solution of fluorescein, 2’,7’-

dichlorofluorescein and 5-nitrofluorescein in methanol (MeOH) at a concentration of 

approximately 1 mmol/L. The respective solutions were infused continuously into the ESI 

chamber using a syringe pump at a flow rate of approx. 3 µL/min. Nitrogen was used as 

nebulizer gas at a pressure of 7 to 8 psi and as a drying gas with a temperature of 200 °C and 

a flow rate of 2 L/min. The electrospray needle was held at 4.5 kV. All IRMPD experiments 

were performed using a modified PAUL-type ion trap mass spectrometer (AmaZon SL, Bruker 

Daltonics). The ion source was operated in the positive (for the cationic species) and negative 

(for the monoanionic and dianionic) electrospray ionization mode. The scan speed was 13000 

m/z per second with a resolution of 0.3 FWHM, the scan range was at least from 50 to 700 
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m/z. The Instrument was controlled by the BrukerTrapControl 7.0 software, data analysis was 

performed with BrukerDataAnalysis 4.0 software.  

A KTP/KTA (KTP = potassium titanyl phosphate; KTA = potassium titanyl arsenate) optical 

parametric oscillator/amplifier (OPO/OPA, LaserVision) system, pumped by a pulsed 10 Hz 

injection seeded Nd:YAG laser (PL8000, Continuum) was used as a source of tunable IR 

radiation (δṽ = 0.9 cm-1, δt = 7 – 10 ns) for recording the vibrational spectra. The idler wave 

(≤ 10 mJ per pulse) was used to record the spectra in the range of 2500 – 3700 cm-1. The 

difference frequency generated (DFG) radiation in an AgGaSe2 crystal (≤ 2 mJ per pulse) was 

applied in the range of approx. 1100 – 2000 cm-1. The idler radiation was focused by a calcium 

fluoride (CaF) lens with a focal length of 50 cm. The DFG beam was focused by a parabolic 

mirror with a focal length of 15 cm. The two-color (2c) IRMPD experiments were facilitated 

using a second IR OPO/A system set to a selected vibrational resonance frequency. The 

respective idler radiation was focused by a calcium fluoride (CaF) lens with a focal length of 

75 cm. The frequency fixed laser pulses were irradiated with a delay of 100 ns with respect to 

the first scanning IR laser. The IR spectra were measured as ion chromatograms while 

continuously scanning the IR laser frequency. The IRMPD spectra are achieved by plotting the 

total IRMPD yield (Y(ν)) as a function of the IR laser frequency: 

 

b�2� = ∑ X)Y∑ X)Y + ∑ XqY  

 

where Iifr and Iifr represent the respective ion intensities of fragment and parent ions. The IR 

frequency was calibrated using a wave meter (821B-NIR, Bristol Instruments). The IR beam 

intensity was detected by a power meter after passing through the ion trap. The spectra were 

not normalized due to the intrinsically nonlinear power dependencies of IRMPD yields.  

The minimum energy structures, transition states and linear IR absorption spectra were 

calculated at the DFT/B3LYP[40-42] level of theory, using the 6-311++G**[43] (C, H, N, O) and  

6-31++G**[44] (Cl) basis sets as implemented in the Gaussian 09 program package.[45] All 

geometry optimized isomers represent true energy minima since they were checked for the 

absence of imaginary vibrational frequencies. The harmonic vibrational frequencies of the 
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stretching modes (> 2500 cm-1) were scaled by a factor of 0.954. All other frequencies 

(< 2500 cm-1) were scaled by a factor of 0.978. The line spectra were deconvoluted by Gabedit 

software using a Lorentzian function with FWHM = 5 cm-1.[46] The free energy of the geometry 

optimized minimum structures in methanolic solution were determined taking into account 

solvent effects by means of the self-consistent reaction field method (SCRF) with the polarized 

continuum (PCM) model.[47-50] 

 

6.5 Results and Discussion 

All ionic species were generated via Electrospray Ionization. The gas phase structure of the 

dianions, anions and cations is elucidated by comparison of experimental one (1c) and two 

color (2c) IRMPD spectra with calculated harmonic vibrational spectra of geometry optimized 

minimum structures. In most cases IRMPD spectra depend non-linearly on the laser photon 

flux.[36] Incoherent multiple photon absorptions cause IRMPD bands to become broad, shifted 

or deformed.[51, 52] The low density of states in small molecular systems can hinder the internal 

vibrational redistribution (IVR) and can together with anharmonicities result in a bottleneck 

for numerous photon absorption, thus for dissociation.[36, 53] The large heat capacities in large 

molecules may require higher laser power for weaker bands to become visible.[54] Diverse 

experimental multi-excitation schemes have been suggested for compensation.[55-58] An 

example for a two-color (2c) excitation scheme revealing several additional bands has already 

been presented.[36] In this study we use a similar 2c-IRMPD technique for the cationic species. 

The dianionic and monoanionic species fragment easily upon infrared photon irradiation due 

to the accessible fragmentation channels like electron detachment and loss of carbon dioxide. 

The fragmentation pattern of the cationic species is much more complicated compared to 

those of the anions. We assume this to originate from significantly increased fragmentation 

enthalpies or/and fragmentation transition states. Due to the complicated fragmentation 

pattern of the cations, we are not able to calculate these enthalpies/transition states. The 

fragmentation patterns of all ionic species is in agreement with the findings of JOCKUSCH et al. 

using IRMPD and photodissociation spectroscopy (cf. Tab. S1).[26, 34, 35] 
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6.5.1 Dianions 

6.5.1.1 Fluorescein Dianion 

Geometry optimization of the dianionic species of fluorescein ([F-2H]2-) via DFT  

(B3LYP/6-311++G**) yielded a single minimum structure [F-2H]2-_A (cf. Fig. 2). Both hydroxyl 

groups at the xanthene ring and the benzoic acid moiety are deprotonated. The structure is 

symmetric and provides a planar xanthene unit perpendicular connected to the planar 

benzoate plane.  

 

Figure 2: Calculated minimum structure of dianionic fluorescein [F-2H]2- (C: gray, 

O: red, H: white). Left: Topview. Right: Sideview. 

 

The experimental one color IRMPD spectrum in the range of 1200 – 1850 cm-1 is shown in 

Fig. 3. It shows at least six significant absorption bands at 1352, 1377, 1477, 1578, 1628 and 

1639 cm-1. The absorption at 1639 cm-1 is assigned to the asymmetric CO stretching vibration 

of the benzoate moiety νas(COb), the more intense peak at 1628 cm-1 is assigned to a 

combination of νas(COb) and a CC stretching mode of the xanthene ring ν(CCx). The intense and 

broad absorption band at 1578 cm-1 with a shoulder to lower photon energies represents a 

vibrational mode involving ν(CCx) and an asymmetric stretching vibration of the CO groups of 

the xanthene ring νas(COx). The shoulder is assigned to the symmetric CO stretching mode in 
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Figure 3: Experimental one color IRMPD spectrum of dianionic fluorescein [F-2H]2-

in comparison to the calculated harmonic absorption spectrum of the minimum 

structure [F-2H]2-_A. 

 

the xanthene moiety νs(COxan). The resolution of the experimental spectrum does not resolve 

the distinct peaks due to saturation effects based on too high photon flux in the experiment. 

The broad absorption at 1477 cm-1 can be assigned to the calculated double peak at approx. 

1463 and 1473 cm-1 representing CC stretching modes of the xanthene ring. Two peaks at 1377 

and 1352 cm-1 are well represented by CH bending modes in the calculated harmonic 

absorption spectrum (β(C2’H,C7’H) and β(CHx)). The symmetric CO stretching mode of the 

benzoate νs(COb) provides a low intensity in the calculated spectrum and is not pronounced in 

the experimental spectrum. However, the spectral signature of the experiment fits the 

calculated harmonic absorption spectrum very well. 

 

6.5.1.2 2’,7’-Dichlorofluorescein Dianion 

The DFT geometry optimization (B3LYP/6-311++G**(C, H, O)/6-31++G**(Cl)) of the dianionic 

twofold chlorine substituted fluorescein derivative in positions 2’ and 7’ ([DCF-2H]2-) yields a 
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single minimum structure ([DCF-2H]2-_A) as well (cf. Fig. 4). The structure is likewise 

symmetric. 

 

 

Figure 4: Calculated minimum structure of dianionic 2’,7’-dichlorofluorescein 

[DCF-2H]2- (C: gray, O: red, H: white, Cl: green). Left: Topview. Right: Sideview. 

 

The experimental one color IRMPD spectrum in comparison to the calculated harmonic 

vibrational absorption spectrum of [DCF-2H]2-_A is shown in Fig. 5. The IRMPD spectrum 

shows six absorption bands at 1315, 1364, 1486, 1578, 1626 and 1648 cm-1. The overall 

signature of the experimental and calculated spectra is very similar to those of [F-2H]2-, apart 

from the relative band intensities. The bands at 1648 and 1626 cm-1 are assigned to the 

asymmetric CO stretching vibration of the benzoate νas(COb) in combination with a xanthene 

CC stretching mode ν(CCx). The broadened absorption band at 1578 cm-1 with a shoulder to 

lower photon energies is assigned to the most intense asymmetric CO stretching vibration in 

combination with CC stretching vibrations in the xanthene moiety. The calculated symmetric 

CO stretching vibration in the xanthene moiety has low intensity and is represented as 

shoulder by the asymmetric shape of the peak at 1578 cm-1. The calculated xanthene CC 

stretching vibrations between 1450 and 1500 cm-1 are reported by the asymmetric shaped 

peak at 1486 cm-1 in the IRMPD spectrum. The CH bending modes at approx. 1310 and 

1365 cm-1 are represented well by the peaks at 1364 and 1315 cm-1 in the experimental IRMPD 

spectrum. The low intensity of the peak at 1315 cm-1 can be explained by the decreasing laser 

power at lower photon energies. In general, the peak positions and intensities fit the 

calculated harmonic vibrational absorption spectrum remarkably well.  
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Figure 5: Experimental one color IRMPD spectrum of dianionic 2’,7’-

dichlorofluorescein [DCF-2H]2-in comparison to the calculated harmonic 

absorption spectrum of the minimum structure [DCF-2H]2-_A. 

 

 

6.5.1.3 5-Nitrofluorescein Dianion 

The geometry optimized structure of dianionic 5-nitrofluorescein is shown in Fig. 6. Also here, 

geometry optimization via DFT (B3LYP/6-311++G**) resulted in a single minimum structure 

[5NF-2H]2-_A.  

 

 
Figure 6: Calculated minimum structure of dianionic 5-nitrofluorescein [5NF-2H]2- 

(C: gray, O: red, H: white, N: blue). Left: Topview. Right: Sideview. 
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The one and two color IRMPD spectra in comparison to the calculated harmonic vibrational 

absorption spectrum of [5NF-2H]2-_A is shown in Fig. 7. In the two color experiment, the 

frequency fixed IR laser was irradiated at the CH stretching absorption at 3044 cm-1 with a 

delay of 100 ns subsequent to the scanning laser (cf. Chapter 2). The two color IRMPD 

spectrum shows a slightly increased fragmentation yield for all absorptions. Additional or dark 

bands could not be revealed. The spectra show seven absorption bands in the region of 

1200 – 1800 cm-1. The absorption bands at 1657 and 1628 cm-1 are assigned to the 

asymmetric CO stretching vibrations of the benzoate in combination with CC stretching 

vibrations of the xanthene moiety (νas(COb) and ν(CCx)). The intense absorptions at 1580 and 

1560 cm-1 are assigned to the asymmetric and symmetric CO stretching mode of the carbonyl 

groups of the xanthene plane (νas/s(COx) and ν(CCx)). The broad peak at 1485 cm-1 represents 

two calculated intense CC stretching modes in the xanthene moiety ν(CCx). The measured peak 

at 1376 cm-1 represents an intense CH bending mode β(C2’H,C7’H) and the peak at 1354 cm-1 

presumably represents the symmetric NO and CN stretching mode of the nitro group 

νs(NO) / ν(CN). The calculated harmonic absorption spectrum is well represented by the one 

and two color IRMPD spectra. 

 

 
Figure 7: Experimental one and two color IRMPD spectrum of dianionic 5-

nitrofluorescein [5NF-2H]2- in comparison to the calculated harmonic absorption 

spectrum of the minimum structure [5NF-2H]2-_A. 
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The calculated minimum structures of the dianionic species of all fluorescein derivatives are 

very similar, due to their lack in conformational degrees of freedom. They all provide a planar 

xanthene unit perpendicularly connected to plane of the benzoate unit. The positions and 

relative intensities of the peaks of the scaled harmonic absorption spectra are very well 

represented by the one and two color IRMPD spectra. These findings are in good agreement 

with the free electron laser (FEL) IRMPD measurements reported by YAO et al..[26] 

 

6.5.2 Cations 

The cationic species of fluorescein, 2’,7’-dichlorofluorescein and 5-nitrofluorescein ([F+2H]+, 

[DCF+2H]+, [5NF+2H]+) are protonated at both xanthene carbonyl groups and the benzoic acid 

unit. The resulting hydroxy groups provide many possible conformational isomers, by rotation 

of the hydroxy groups and the COOH group. Only the most stable isomers are discussed in the 

main text. For less stable minimum structures and harmonic vibrational absorption spectra 

see Figs. S1 – S6.  

 

6.5.2.1 Fluorescein cation 

The DFT based geometry optimization calculations of the cationic fluorescein species [F+H]+ 

resulted in twelve minimum structures [F+H]+_A – [F+H]+_L. Due to energetic considerations, 

only [F+H]+_A to [F+H]+_F are discussed in the following.  

The minimum structures [F+H]+_A to [F+H]+_F only differ in the relative orientation of the 

hydroxy protons (cf. Fig. 8). They can be divided into two sets of isomers ([F+H]+_A to [F+H]+_C 

and [F+H]+_D to [F+H]+_F, respectively), which are close in energy. The relative orientation of 

the COOH group is equal in each set of isomers. The protonation of the COOH oxygen atom 

opposite to the xanthene unit is energetically favorable. The isomers in the individual sets 

differ in the relative orientation of the hydroxy protons of the xanthene moiety. In all isomers, 

the OH group is in one plane with the xanthene moiety. The difference of < 1 kJ / mol shows, 

that there is no energetically prevailing isomer in the cationic species of unsubstituted 

fluorescein. 
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Figure 8: The six most stable minimum structures [F+H]+_A to [F+H]+_F of the 

cationic species of fluorescein [F+H]+ calculated by DFT/B3LYP. 

 

The experimental one and two color IRMPD spectra of [F+H]+ in comparison to calculated 

harmonic absorption spectra of the six energetically most stable isomers is shown in Fig. 9. All 

calculated spectra are very similar, since the only conformational degrees of freedom are 

given by rotation of the hydroxy groups of the xanthene unit and the rotation around the CC 

axis in the benzoic acid unit. Major differences are restricted to the spectral region below 

1300 cm-1. The experimental spectra show two peaks at 3617 and 3576 cm-1 in the OH 

stretching region. The intense peak at 3617 cm-1 is assigned to the symmetric and asymmetric 

stretching modes of the hydroxy groups in the xanthene unit. The peak at 3576 cm-1 is 

assigned to the OH stretching mode of the benzoic acid unit. The one color IRMPD spectrum 
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in the region from 1000 – 1850 cm-1 shows no significant absorption. Though, with the two 

color technique at least nine bands in the region from 1191 to 1746 cm-1 are revealed. Due to 

 

 

Figure 9: Experimental one and two color IRMPD spectrum of cationic fluorescein 

[F+H]+ in comparison to the calculated harmonic absorption spectra of the six most 

stable minimum structures [F+H]+_A to [F+H]+_F. Note, that the intensity of the 

two color IRMPD spectrum < 1850 cm-1 is multiplied by a factor of 5. 
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the lack of significant differences in the calculated harmonic spectra, we will not discuss the 

region from 1000 – 1850 cm-1 in detail. But we state, that the spectral signature of the two 

color IRMPD spectrum fits the calculated harmonic spectra very well. Due to the difference of 

approx. 13 kJ / mol, the population of isomers [F+H]+_D to [F+H]+_F can be neglected under 

our experimental conditions. The distinction between the population of [F+H]+_A, [F+H]+_B 

and [F+H]+_C based on the IRMPD spectra is not possible, due to the similar harmonic 

absorption spectra. An even population of all three isomers appears likely.  

 

 

Figure 10: Definition of the dihedral angle for the rotation of the hydroxy group of 

the xanthene ring in cationic [F+H]+ isomers. Rotation by 180° converts [F+H]+_A 

into [F+H]+_B.  

 

In order to check for a conversion from one isomer to the other in the gas phase we calculate 

the rotational barrier of the hydroxy groups of the xanthene ring. We define the respective 

dihedral angle (cf. Fig. 10) and calculate a potential energy surface (PES, in terms of single 

point calculations without geometrical relaxation) for the rotation around the CO bond. A 

rotation by 180° converts [F+H]+_A into [F+H]+_B. Additionally, we calculate the transition 

states at 90° and 270° to determine a more reliable barrier height. 

The calculated potential energy surface for the rotation of the hydroxy group is shown in 

Fig. 11. The barrier height obtained by single point calculations amounts 33 kJ / mol. The 

transition state calculated with geometrical relaxation yields a barrier height of only 

28 kJ / mol. The PES at 180° identifies Isomer [F+H]+_B as minimum structure but it is 

described less stable by 8 kJ / mol. From energetic considerations we can conclude, that at 

our experimental conditions (300 – 450 K, 10-4 mbar He) a conversion of one isomer into the 

other is doubtful. It is more likely, that [F+H]+_A, [F+H]+_B and [F+H]+_C are populated already 
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in solution and are transferred into the gas phase by the ESI. Furthermore, a conversion during 

the ESI process is also conceivable.  

 

 

Figure 11: Potential energy surface for the rotation of the hydroxy group of the 

xanthene ring of [F+H]+_A. The single point calculations result in a rotational 

barrier of 33 kJ/mol. The transition state (TS) calculations result in an effective 

rotational barrier of 28 and 29 kJ/mol, respectively. The relative energy of isomer 

[F+H]+_B is not represented satisfactorily in the single point calculations. 

 

 

6.5.2.2 2’,7’-Dichlorofluorescein cation 

The DFT based geometry optimization calculations on the substituted cationic 2’,7’-

dichlorofluorescein species [DCF+H]+ resulted in eleven minimum structures [DCF+H]+_A – 

[F+H]+_K. Due to energetic considerations, only [DCF+H]+_A to [DCF+H]+_E are discussed in 

the following.  

The two already stated only possible conformational degrees of freedom are again 

represented by the rotation of the hydroxy groups of the xanthene unit and the rotation of 

the COOH group of the benzoic acid around the CC bond. The five most stable minimum 
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shown in Fig. 12. Here again, the minima can be divided in two groups, with similar orientation 

of the COOH group. In [DCF+H]+_A, [DCF+H]+_B and [DCF+H]+_D the acidic proton is bound to 

the oxygen atom opposite to the xanthene unit. In [DCF+H]+_C and [DCF+H]+_E the acidic 

proton is bound to the oxygen atom neighboring the xanthene unit. In between the minima 

sets, the relative orientation of the xanthene hydroxy groups varies. In DCF, the chlorine atoms 

in positions 2’ and 7’ interact with the xanthene hydroxy groups. If the hydroxy proton of the 

xanthene moiety is oriented towards the chlorine atom, weak hydrogen bonds are formed. 

The resulting energy gain (+11 kJ / mol) is exhibited in the relative energy of the isomers 

[DCF+H]+_A and [DCF+H]+_B with two and one stabilizing OH-Cl hydrogen bond, respectively.  

 

 

Figure 12: The five most stable minimum structures [DCF+H]+_A to [DCF+H]+_E of 

the cationic species of 2’,7’-dichlorofluorescein [DCF+H]+ calculated by DFT/B3LYP. 
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The experimental one color IRMPD spectrum of [DCF+H]+ in comparison to the calculated 

harmonic spectra of the five most stable minimum structures is shown in Fig. 13. Significant  

 

 
Figure 13: Experimental one and two color IRMPD spectrum of cationic 2’,7’-

dichlorofluorescein [DCF+H]+ in comparison to the calculated harmonic absorption 

spectra of the five most stable minimum structures [DCF+H]+_A to [DCF+H]+_E. 

Note, that the intensity of the two color IRMPD spectrum < 1850 cm-1 is multiplied 

by a factor of 5. 

0.00

0.25

0.50

0.75

1.00

0

500

1000

0

500

1000

0

500

1000

0

500

1000

1000 1200 1400 1600 1800 3400 3600

0

500

1000

1290

1455

1596 1744

to
ta

l 
IR

M
P

D
 y

ie
ld [DCF+H]

+

 1c IRMPD

 2c IRMPD IR@3523cm
-1

x5

3523

in
te

n
s
it
y
 /
 k

m
⋅m

o
l-1

[DCF+H]
+
_A

0 kJ/mol

[DCF+H]
+
_B

+11 kJ/mol

[DCF+H]
+
_C

+14 kJ/mol

[DCF+H]
+
_D

+24 kJ/mol

energy / cm
-1

[DCF+H]
+
_E

+26 kJ/mol



6. Gas Phase Structure of Fluorescein, 2,7-Dichlorofluorescein and 5-Nitrofluorescein Ions by 
Infrared Multiple Photon Dissociation Spectroscopy and Density Functional Theory 

 

235 
 

differences are visible in the OH stretching region due to the redshift of the OH stretching 

vibration of hydrogen bound protons. Apart from the relative intensities, the region from 1000 

to 1850 cm-1 is quite similar for all isomers. The one color IRMPD spectrum shows a single 

intense absorption at 3523 cm-1 (cf. Fig. 13). Due to the stability of the complex, the IR laser 

power in the region from 1000 to 1850 cm-1 induces no fragmentation. Using the two color 

technique (IRfix@3523 cm-1) several absorption bands at 1290, 1455, 1596 and 1744 cm-1 

become visible. Unfortunately, the two color IRMPD spectrum in the OH stretching region 

does not reveal clear additional absorption bands. The intense band at 3523 cm-1 is assigned 

to the OH stretching vibration of the hydrogen bound hydroxy groups of the xanthene unit 

which appears at approx. 3545 cm-1 in the calculated spectra of [DCF+H]+_A/B/C/E. Due to 

the repeated lack of significant differences in the calculated harmonic spectra, we will not 

discuss the region from 1000 – 1850 cm-1 in detail. But we state once more, that the spectral 

signature of the two color IRMPD spectrum matches the calculated harmonic spectra very 

well. From energetic considerations, we can assume only isomer [DCF+H]+_A to be populated 

under our experimental conditions.  

In order to check for the energetic impact of the OH-Cl hydrogen bonds on a conceivable 

conversion from isomer [DCF+H]+_A into isomer [DCF+H]+_B, we calculate the rotational 

barrier of the OH groups of the xanthene ring. We define the respective dihedral angle (cf. Fig. 

14) and calculate an analogous potential energy surface (PES, in terms of single point 

calculations without geometrical relaxation) for the rotation around the CO bond. A rotation 

by 180° converts [DCF+H]+_A into [DCF+H]+_B. Furthermore, we calculate the transition states 

to determine a more precise barrier height. 

 

 
Figure 14: Definition of the dihedral angle for the rotation of the hydroxy group of 

the xanthene ring in cationic [DCF+H]+ isomers. Rotation by 180° converts 

[DCF+H]+_A into [DCF+H]+_B.  
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The calculated potential energy surface for the rotation of the OH group in [DCF+H]+ is shown 

in Fig. 15. The barrier height obtained by single point calculations amounts 42 kJ / mol. The 

transition state calculated with geometrical relaxation yields a barrier height of approx. 

37 kJ / mol. The PES at 180° identifies Isomer [DCF+H]+_B as minimum structure, but is 

described less stable by 6 kJ / mol. The interaction of the OH-Cl hydrogen bonds causes the 

dihedral angles of the transition states structures to change from 90°/270° to approx. 

100°/260°. From energetic considerations we can assume, that at the experimental conditions 

(300 – 450 K, 10-4 mbar He) a conversion of isomers is unlikely, resulting in the population of 

only [DCF+H]+_A. 

 

 
Figure 15: Potential energy surface for the rotation of the hydroxy group of the 

xanthene ring of [DCF+H]+_A. The single point calculations result in a rotational 

barrier of 42 kJ/mol. The transition state (TS) calculations result in an effective 

rotational barrier of 37 and 38 kJ/mol, respectively. The relative energy of isomer 

[F+H]+_B is well represented in the single point calculations. 

 

 

6.5.2.3 5-Nitrofluorescein cation 

The DFT based geometry optimization calculations of the substituted cationic 5-

nitrofluorescein species [5NF+H]+ resulted in ten minimum structures [5NF+H]+_A to 

[5NF+H]+_J. Due to energetic considerations, only [5NF+H]+_A to [5NF+H]+_F are discussed 

hereinafter.  
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Figure 16: The six most stable minimum structures [5NF+H]+_A to [5NF+H]+_F of 

the cationic species of 5-nitrofluorescein [5NF+H]+ calculated by DFT/B3LYP. 

 

The conformational degrees of freedom for variation of the isomers are represented by the 

rotation of the OH groups of the xanthene unit and the rotation of the COOH group of the 

benzoic acid around the CC bond. The six most stable minimum structures of cationic 5-

nitrofluorescein obtained by geometry optimization via DFT are shown in Fig. 16. As in the 

case of unsubstituted fluorescein, the minima can be divided in two groups, with similar 

orientation of the COOH group. In [5NF+H]+_A, [5NF+H]+_B and [5NF+H]+_C the acidic proton 

is bound to the oxygen atom opposite to the xanthene unit. In [5NF+H]+_D, [DCF+H]+_E and 

[DCF+H]+_F the acidic proton is bound to the oxygen atom oriented towards the xanthene 

moiety. In between the minima sets, the relative orientation of the xanthene OH groups 
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Figure 17: Experimental one and two color IRMPD spectrum of cationic 5-

nitrofluorescein [5NF+H]+ in comparison to the calculated harmonic absorption 

spectra of the six most stable minimum structures [5NF+H]+_A to [5NF+H]+_F. 

 

changes. There is no hydrogen bond interaction or similar possible in 5NF. As for unsubstituted 

fluorescein, the individual isomers of each group of isomers are very close in energy 
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(< 1 kJ / mol). A rotation of 180° around the CC bond between phenyl ring and COOH 

destabilizes the isomers by 14 kJ / mol. 

The experimental one and two color IRMPD spectra of [5NF+H]+ in comparison to the 

calculated harmonic spectra of the six most stable minimum structures is shown in Fig. 17. 

Due to the missing interactions of the OH protons to nearby atoms, no significant differences 

are visible in the calculated harmonic spectra. Apart from the relative intensities, only the 

regions < 1250 cm-1 are different. The one color IRMPD spectrum shows two bands at 3614 

and 3570 cm-1 in the OH stretching region and one band at 1603 cm-1. Using the two color 

technique with an additional laser irradiating at 3614 cm-1, at least six further absorptions at 

1295, 1352, 1455, 1540, 1636 and 1750 cm-1 are revealed. The most intense band at  

3613 cm-1 is assigned to the OH stretching vibration of the OH groups of the xanthene unit, 

the band at 3570 cm-1 is assigned to the OH stretching vibration of the COOH group. Because 

of the lack of substantial differences in the calculated harmonic spectra we will not discuss the 

region from 1000 – 1850 cm-1 in detail. Nevertheless, the spectral signature of the two color 

IRMPD spectrum is in good agreement with the calculated harmonic spectra. Comparing the 

relative energies the isomers, we assume a uniform distribution of the population of the 

isomers [5NF+H]+_A/B/C under our experimental conditions.  

 

 
Figure 18: Definition of the dihedral angle for the rotation of the hydroxyl group 

of the xanthene ring in cationic [5NF+H]+ isomers. Rotation by 180° converts 

[5NF+H]+_A into [5NF+H]+_B.  

 

To further investigate a possible energetic impact of the nitro group at the benzoic acid unit 

on a conversion from isomer [5NF+H]+_A into isomer [5NF+H]+_B/C, we compute the 

rotational barrier of the hydroxy groups of the xanthene ring. We define the respective 
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dihedral angle (cf. Fig. 18) and compute the corresponding potential energy surface (PES, in 

terms of single point calculations without geometrical relaxation) for the rotation around the 

CO bond. A rotation by 180° converts [5NF+H]+_A into [5NF+H]+_B. Additionally, we calculate 

the transition states in order to determine a more accurate rotational barrier height. 

 

 
Figure 19: Potential energy surface for the rotation of the hydroxy group of the 

xanthene ring of [5NF+H]+_A. The single point calculations result in a rotational 

barrier of 34 kJ/mol. The transition state calculations result in an effective 

rotational barrier of 28 and 29 kJ/mol, respectively. The relative energy of isomer 

[5NF+H]+_B is not represented satisfactorily in the single point calculations. 

 

The calculated PES for the rotation of the hydroxy group in [5NF+H]+ is depicted in Fig. 19. The 

calculated barrier heights (single point calculations) amount 34 kJ / mol. The transition states 

calculated with geometrical relaxation yield barrier heights of approx. 29 kJ / mol. The 

potential energy surfaces at a dihedral angle of 180° identifies Isomer [5NF+H]+_B as local 

minimum structure, but is described less stable by 9 kJ / mol. These values are similar to those, 

obtained for unsubstituted fluorescein, thus the nitro group has very little influence on the 

rotational barrier of the OH groups of the xanthene unit or the gas phase structure of [5NF+H]+ 

at all. We assume, a uniform population of [5NF+H]+_A/B/C at the experimental conditions 

(300 – 450 K, 10-4 mbar He). Due to the rotational barrier height, a conversion in the gas phase 

is unlikely. 
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For the cationic species of the fluorescein derivatives, we have identified multiple low-energy 

rotamers. Several rotamers are not unambiguously distinguishable by IR spectroscopy due to 

the lack of significant differences in the calculated harmonic spectra. The conversion of 

isomers by rotation of the hydroxy groups seems unlikely regarding the respective calculated 

potential energy surface. The presented IRMPD spectra are in excellent agreement with the 

computed harmonic absorption spectra and the investigations by YAO et al..[26] 

 

6.5.3 Monoanions 

We also studied the gas phase structure of monoanionic fluorescein derivatives by IRMPD 

spectroscopy and accompanying DFT calculations. The monoanions provide several isomeric 

structures due to the possibilities of the deprotonation. The remaining acidic hydrogen atom 

is located either at the xanthene moiety or the benzoic acid unit. Additional conformational 

degrees of freedom are given by the rotation of the xanthene OH group and the rotation of 

the COOH group of the benzoic acid unit. The main text discusses only the most stable isomers, 

for the less stable isomers see Figs. S7-S12. 

 

6.5.3.1 Fluorescein anion 

Geometry optimization of different start geometries for the anionic fluorescein species [F-H]- 

by DFT/B3LYP resulted in seven different minimum structures. The five most stable minimum 

structures are shown in Fig. 20. The minimum structures [F-H]-_A/B/C are deprotonated at 

the hydroxy groups of the xanthene unit compared to the neutral fluorescein molecule. They 

differ in the relative orientation of the COOH group of the benzoic acid moiety. Deprotonation 

at the formally more acidic COOH group results in the (up to 31 kJ / mol) less stable isomers 

[F-H]-_D, and [F-H]-_E, differing in the relative orientation of the hydroxy group of the 

xanthene unit.  

The experimental one color IRMPD spectrum is in comparison to the calculated harmonic 

absorption spectra on the DFT/B3LYP level of theory is shown in Fig. 21. The experiment shows 

an intense absorption at 3420 cm-1 and a weak absorption at 3657 cm-1 in the OH stretching 

region. The range between 1200 and 1900 cm-1 exhibits six absorption bands at 1750, 1628 

1588, 1485, 1388 and 1350 cm-1. The calculated spectra of the isomers [F-H]-_A, [F-H]-_B, and 
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[F-H]-_C differ significantly in the position of the OH and CO stretching vibrations of the 

benzoic acid (ν(OHbenz) ≈ 3400 – 3600 cm-1, ν(CObenz) ≈ 1700 – 1800 cm-1). The band at 

3420 cm-1 is assigned to the redshifted OH stretching vibration of the benzoic acid proton  

 

 
Figure 20: The five most stable minimum structures [F-H]-_A to [F-H]-_E of the 

anionic species of fluorescein [F-H]- calculated by DFT/B3LYP. Note, that the 

structures [F-H]-_A to [F-H]-_C are deprotonated at the xanthene ring and the 

structures [F-H]-_D and [F-H]-_E are deprotonated at the benzoate moiety. 

 

hydrogen bound to the xanthene carbon atom in [F-H]-_A. The redshift of the OH stretching 

mode from [F-H]-_B to [F-H]-_A amounts 141 cm-1. The conceivable conversion from [F-H]-_A 

to [F-H]-_B was calculated in terms of a potential energy surface for the rotation of the C-O 

bond, though the barrier amounts 40 kJ/mol and is hence unlikely (cf. Fig. S13). The band at 
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Figure 21: Experimental one color IRMPD spectrum of anionic fluorescein species 

[F-H]- in comparison to the calculated harmonic absorption spectra of the five 

most stable minimum structures [F-H]-_A to [F-H]-_E. Note, that the red graph in 

the experimental spectrum is magnified by a factor of 20, exposing a weak 

absorption at 3657 cm-1. 
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1750 cm-1 is assigned to the asymmetric stretching CO stretching vibration of the benzoic acid 

carbonyl group. Apart from the weak band at 3657 cm-1, the experimental spectrum is in good 

agreement with the harmonic spectrum of [F-H]-_A. Neither the benzoic acid OH stretching 

vibration of [F-H]-_B nor the benzoic acid OH stretching vibration of [F-H]-_C are able to 

represent this band, due to the relative shift of > 50 cm-1. Instead the OH stretching vibrations 

of the xanthene OH group of the isomers [F-H]-_D and [F-H]-_E fit the frequency very well. 

Regarding solely the IRMPD spectrum, a majoritarian population of [F-H]-_A with a spare 

population of [F-H]-_D/E appears reasonable. A natural population of [F-H]-_D/E in the gas 

phase seems unlikely due to their elevated relative energy of 31 kJ / mol. We calculated the 

relative energy of all minimum structures in the gas phase and in methanolic solution (cf. Tab. 

2). Due to solvation effects, the energetic order is very different. A deprotonation of the 

benzoic acid is favored in solution, whereas the most stable isomer in the gas phase [F-H]-_A 

is destabilized by 13 kJ / mol. Assuming a decent energy input to the ions during the transfer 

from solution to the gas phase via electrospray ionization, we suggest the majority of the ions 

to be converted from [F-H]-_D/E to [F-H]-_A. Apparently, some of the [F-H]-_D/E ions retain 

their molecular structure. 

 

Table 2: Relative thermal free energies (ΔGrel) of the calculated minimum structures of 

anionic fluorescein [F-H]- (DFT/B3LYP) at 298.15 K in the gas phase and in solution 

(methanol). 

Minimum structure ΔGrel (gas phase) / kJ·mol-1 ΔGrel,solv (methanol) / kJ·mol-1 

[F-H]-_A 0.0 +13.0 

[F-H]-_B +1.7 +3.5 

[F-H]-_C +9.5 +0.8 

[F-H]-_D +30.7 +2.3 

[F-H]-_E +31.0 0.0 

 

 

6.5.3.2 2’,7’-Dichlorofluorescein anion 

The four most stable geometry optimized minimum structures of anionic 2’,7’-

dichlorofluorescein [DCF-H]- obtained by DFT/B3LYP are shown in Fig. 22. The most stable 

structures [DCF-H]-_A/B/C are as well deprotonated at the xanthene hydroxyl group 
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compared to the neutral species, and differ in the relative orientation of the COOH group. A 

deprotonation at the benzoic acid in isomer [DCF-H]-_D results in a destabilization of 

37 kJ/mol. 

The experimental one and two color IRMPD spectra in comparison to the calculated harmonic 

absorption spectra of the four most stable isomers are shown in Fig. 23. The experimental 

spectra provide an intense absorption at 3450 cm-1 and a moderately intense absorption 

at3580 cm-1 in the OH stretching region. The area between 1200 and 1850 cm-1 exhibits eight 

absorptions at 1325, 1354, 1492, 1575, 1602, 1626, 1742 and 1757 cm-1. Significant 

differences between [DCF-H]-_A/B/C are exhibited in the position/intensity of the OH 

 

 

Figure 22: The four most stable minimum structures [DCF-H]-_A to [DCF-H]-_D of 

the anionic species of 2’,7’-dichlorofluorescein [DCF-H]- calculated by DFT/B3LYP. 

Note, that the structures [DCF-H]-_A to [DCF-H]-_C are deprotonated at the 

xanthene ring and the structure [DCF-H]-_D is deprotonated at the benzoate 

moiety. 

 

stretching vibration of the COOH group. The intense absorption at 3450 cm-1 is assigned to the 

OH stretching vibration (ν(OHbenz)) in [DCF-H]-_B. The redshift of the OH stretching mode from  
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Figure 23: Experimental one and two color IRMPD spectrum of anionic 2’,7’-

dichlorofluorescein species [DCF-H]- in comparison to the calculated harmonic 

absorption spectra of the four most stable minimum structures [DCF-H]-_A to 

[DCF-H]-_D. 

 

[DCF-H]-_A to [DCF-H]-_B amounts 113 cm-1. The conceivable conversion from [F-H]-_A to [F-

H]-_B was calculated in terms of a potential energy surface for the rotation of the C-O bond, 

0.00

0.25

0.50

0.75

1.00

0

500

1000

0

500

1000

0

500

1000

1200 1400 1600 1800 3000 3200 3400 3600 3800

0

500

1325

1354

1492

1575
1602

1626

1742
1757

3065

3450
to

ta
l 
IR

M
P

D
 y

ie
ld [27DCF-H]

-

 1c IRMPD

 2c IRMPD IR@3450cm
-1

 2c IRMPD IR@3580cm
-1

3580

ν
as

(CO
benz

)

[DCF-H]
-
_A

0 kJ/mol

ν(OH
benz

)

ν
as

(CO
benz

) ν(OH
benz

)

[DCF-H]
-
_B

+4 kJ/mol

ν
as

(CO
benz

)

ν(OH
xan

)

ν(OH
benz

)

in
te

n
s
it
y
 /
 k

m
⋅m

o
l-1

[DCF-H]
-
_C

+7 kJ/mol

energy / cm
-1

[DCF-H]
-
_D

+37 kJ/mol



6. Gas Phase Structure of Fluorescein, 2,7-Dichlorofluorescein and 5-Nitrofluorescein Ions by 
Infrared Multiple Photon Dissociation Spectroscopy and Density Functional Theory 

 

247 
 

though the barrier amounts 40 kJ/mol and is hence unlikely (cf. Fig. S14). The band at  

3580 cm-1 is assigned to the OH stretching vibration of the COOH group (ν(OHbenz)) averted 

from the molecule in [DCF-H]-_A. The assumption of the presence of both isomers [DCF-H]-

_A/B is supported by the double peak at 1742/1757 cm-1 reflecting the relative shift of the 

asymmetric CO stretching vibration of the COOH unit (ν(CObenz)). Due to the lack of significant 

differences, contributions from isomer [DCF-H]-_C to the IRMPD spectrum cannot be 

excluded, though the relative energy of +7 kJ / mol make it unlikely. In contrast to the 

unsubstituted fluorescein, the chlorine substituted anion seems to have no contribution from 

isomer [DCF-H]-_D which is deprotonated at the benzoate site. This hypothesis is supported 

by comparison of the relative energies of the isomers in methanolic solution (cf. Tab. 3). Unlike 

[F-H]-, [DCF-H]- prefers the xanthene deprotonation site in the gas phase and in methanolic 

solution.  

 

Table 3: Relative thermal free energies (ΔGrel) of the calculated minimum structures of 

anionic 2’,7’-dichlorofluorescein [DCF-H]- (DFT/B3LYP) at 298.15 K in the gas phase and 

in solution (methanol). 

Minimum structure ΔGrel (gas phase) / kJ·mol-1 ΔGrel,solv (methanol) / kJ·mol-1 

[DCF-H]-_A 0.0 +2.9 

[DCF-H]-_B +3.5 +15.0 

[DCF-H]-_C +6.8 0.0 

[DCF-H]-_D +37.3 +15.4 

 

 

6.5.3.3 5-Nitrofluorescein anion 

The five most stable minimum structures of anionic 5-nitrofluorescein [5NF-H]- obtained by 

geometry optimization via DFT/B3LYP are shown in Fig. 24. The most stable structures  

[5NF-H]-_A/B/C are deprotonated at the hydroxy group of the xanthene unit. Deprotonation 

at the benzoic acid results in a destabilization of 16 kJ/mol in [5NF-H]-_D/E. The isomers of 

different deprotonation sites differ in the relative orientation of the remaining COOH and OH 

group, respectively. The energetic order of the different isomers is equal to that, observed for 

unsubstituted fluorescein [F-H]-, but the relative energy is significantly different. The isomers 

of [5NF-H]- are closer in energy. 
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Figure 24: The five most stable minimum structures [5NF-H]-_A to [5NF-H]-_E of 

the anionic species of 5-nitrofluorescein [5NF-H]- calculated by DFT/B3LYP. Note, 

that the structures [5NF-H]-_A to [5NF-H]-_C are deprotonated at the xanthene 

ring and the structures [5NF-H]-_D and [5NF-H]-_E are deprotonated at the 

benzoate moiety. 

 

The experimental one and two color IRMPD spectra of [5NF-H]- in comparison to the 

calculated harmonic absorption spectra of the most stable minimum structures are shown in 

Fig. 25. The IRMPD spectrum shows three absorptions in the OH stretching region at 3404, 

3575 and 3649 cm-1. The range between 1200 and 1900 cm-1 shows at least nine absorption 

bands with two very broad absorptions, each involving at least three distinct bands 

(1487 – 1534 cm-1 and 1550 – 1661 cm-1). Significant differences in the calculated absorption  
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Figure 25: Experimental one and two color IRMPD spectrum of anionic 5-

nitrofluorescein species [5NF-H]- in comparison to the calculated harmonic 

absorption spectra of the five most stable minimum structures [5NF-H]-_A to 

[5NF-H]-_E. 

 

spectra occur in the OH stretching region, whereat [5NF-H]-_B and [5NF-H]-_C as well as [5NF-

H]-_D and [5NF-H]-_E cannot be distinguished unambiguously. The intense absorption at 

3404 cm-1 is assigned to the COO-H stretching vibration ν(OHbenz) in [5NF-H]-_A. The redshift 
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of the OH stretching mode from [5NF-H]-_B to [5NF-H]-_A amounts 153 cm-1. The conceivable 

conversion from [5NF-H]-_A to [5NF-H]-_B was calculated in terms of a potential energy 

surface for the rotation of the C-O bond, though the barrier amounts 39 kJ/mol and is hence 

unlikely (cf. Fig. S15). The weak absorption at 3575 cm-1 is assigned to the OH stretching 

vibration of the unaltered COOH group of [5NF-H]-_B. The medium intense band at  

3649 cm-1 is allocated to the free OH stretching modes of the energetically unfavorable 

isomers [5NF-H]-_D/E. Thus, the OH stretching area indicates a population of at least three 

different isomers. The bulky absorptions in the CO stretching region indicate the presence of 

multiple isomers as well. Considering the relative energy in the gas phase, only [5NF-H]-_A/B 

should be populated at the experimental conditions. Isomer [5NF-H]-_C is the most stable in 

methanolic solution (cf. Tab. 4). As described for [F-H]- before, we assume [5NF-H]-_C to retain 

its structure during the transfer from the solution into the gas phase via ESI. 

 

Table 4: Relative thermal free energies (ΔGrel) of the calculated minimum structures 

of anionic 5-nitrofluorescein [5NF-H]- (DFT/B3LYP) at 298.15 K in the gas phase and 

in solution (methanol). 

Minimum structure ΔGrel (gas phase) / kJ·mol-1 ΔGrel,solv (methanol) / kJ·mol-1 

[5NF-H]-_A 0.0 +23.5 

[5N F-H]-_B +2.0 +11.5 

[5N F-H]-_C +8.8 +10.3 

[5N F-H]-_D +15.7 0.0 

[5N F-H]-_E +16.3 +0.2 

 

The monoanionic species show a rather unexpected deprotonation site in the gas phase. For 

all fluorescein derivatives, a deprotonation at the xanthene unit is favored, whereas the actual 

acidic COOH groups retain the proton. Nevertheless, unsubstituted  

fluorescein shows a weak absorption in the OH stretching region at 3657 cm-1 indicating a 

partial population of fluorescein deprotonated at the benzoate which is assumed to originate 

from the solvated phase. In 2’,7’-dichlorofluorescein the assignment is more challenging due 

to the redshift of the OH stretching vibration based on the hydrogen bond to the neighboring 

chlorine atom. According to the relative free energies, the favored deprotonation site of the 

solvated ions is likewise the xanthene unit. The spectra of anionic 5-nitrofluorescein show 
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presence of several deprotonation sites and rotamers. The assumption is supported by the 

comparison of the relative free energies of the different isomers in the gas phase and in 

methanolic solution. The electron withdrawing nitro group favors a deprotonation at the 

benzoic acid. 

 

6.6 Conclusions 

We performed gas phase one and two color IRMPD experiments on the three charged 

prototropic forms of fluorescein, 2’,7’-dichlorofluorescein and 5-nitrofluorescein in 

combination with DFT calculations elucidating minimum structures, relative free energies, 

transition states, and rotational barriers.  

The dianionic species are entirely deprotonated, resulting in a single minimum structure. Our 

experimental IRMPD spectra match the calculated harmonic spectra very well, regarding peak 

position and intensity. The cationic species show excellent agreements between the two color 

IRMPD spectra and the calculated harmonic spectra. Due to the lack of significant differences 

in the calculated harmonic absorption spectra an unequivocal assignment is challenging. The 

calculated potential energy surfaces representing a conversion by rotation of the hydroxyl 

group shows, that a transformation of the ions in the gas phase is very unlikely. The initially 

unexpected deprotonation site of monoanionic fluorescein was first reported by YAO et al. and 

endorsed by this study, additionally taking the vibrational OH stretching region into 

account.[26] The utilized two color IRMPD technique has repeatedly proven valuable to 

overcome bottlenecks and enhance weak IRMPD absorption bands of stable molecules and 

allows for a more exhaustive spectral range and advanced spectral resolution in comparison 

to Yao’s Free Electron Laser (FEL) data. 

We have shown that the favored deprotonation site of monoanionic fluorescein derivatives in 

the gas phase and in methanolic solution is thoroughly represented by DFT energy calculations 

and largely depends on inherent substituents. The presented data provide strong evidence for 

a partial conservation of the favored minimum structures in methanolic solution during the 

transfer into the gas phase via ESI. Investigations using different ionization techniques, e.g. 

the Laser Induced Liquid Bead Ion Desorption (LILBID) in combination with mass spectrometry 

could help to elucidate the properties of defined dye-solvent cluster ions. The presented work 
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contributes to a better understanding of the interactions between solvent molecules and dyes 

and may help for tuning properties in the future development of dyes.  
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Content 

Table S1: Fragmentation channels of the dianionic and monoanionic fluorescein, 2’,7’-

dichlorofluorescein and 5-nitrofluorescein species 

Figure S1: Less stable minimum structures [F+H]+_G to [F+H]+_L of the cationic species of 

fluorescein [F+H]+ calculated by DFT/B3LYP. 

Figure S2: Experimental one and two color IRMPD spectrum of cationic fluorescein [F+H]+ in 

comparison to the calculated harmonic absorption spectra of the less stable minimum 

structures [F+H]+_G to [F+H]+_L. 

Figure S3: Less stable minimum structures [DCF+H]+_F to [F+H]+_K of the cationic species of 

2’,7’-dichlorofluorescein [DCF+H]+ calculated by DFT/B3LYP. 

Figure S4: Experimental one and two color IRMPD spectrum of cationic 2’,7’-

dichlorofluorescein [DCF+H]+ in comparison to the calculated harmonic absorption spectra of 

the less stable minimum structures [DCF+H]+_F to [DCF+H]+_K. 

Figure S5: Less stable minimum structures [5NF+H]+_G to [5NF+H]+_J of the cationic species 

of 5-nitrofluorescein [5NF+H]+ calculated by DFT/B3LYP. 

Figure S6: Experimental one and two color IRMPD spectrum of cationic 5-nitrofluorescein 

[5NF+H]+ in comparison to the calculated harmonic absorption spectra of the less stable 

minimum structures [5NF+H]+_G to [5NF+H]+_J. 

Figure S7: Less stable minimum structures [F-H]-_F and [F-H]-_G of the anionic species of 

fluorescein [F-H]- calculated by DFT/B3LYP. 

Figure S8: Experimental one color IRMPD spectrum of anionic fluorescein species [F-H]- in 

comparison to the calculated harmonic absorption spectra of the less stable minimum 

structures [F-H]-_F and [F-H]-_G. 

Figure S9: Less stable minimum structures [DCF-H]-_E to [DCF-H]-_G of the anionic species of 

2’,7’-dichlorofluorescein [DCF-H]- calculated by DFT/B3LYP. 
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Figure S10: Experimental one and two color IRMPD spectrum of anionic 2’,7’-

dichlorofluorescein species [DCF-H]- in comparison to the calculated harmonic absorption 

spectra of the less stable minimum structures [DCF-H]-_E to [DCF-H]-_G. 

Figure S11: Less stable minimum structures [5NF-H]-_F and [5NF-H]-_G of the anionic species 

of 5-nitrofluorescein [5NF-H]- calculated by DFT/B3LYP. 

Figure S12: Experimental one and two color IRMPD spectrum of anionic 5-nitrofluorescein 

species [5NF-H]- in comparison to the calculated harmonic absorption spectra of the less 

stable minimum structures [5NF-H]-_F and [5NF-H]-_G. 

Figure S13: Potential energy surface (PES) for the conversion of [F-H]-_A to [F-H]-_B by 

rotation of the OH group around the C-O bond. 

Figure S14: Potential energy surface (PES) for the conversion of [DCF-H]-_A to [DCF-H]-_B by 

rotation of the OH group around the C-O bond. 

Figure S15: Potential energy surface (PES) for the conversion of [5NF-H]-_A to [5NF-H]-_B by 

rotation of the OH group around the C-O bond. 
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Table S1: Fragmentation channels of the dianionic and monoanionic fluorescein, 

2’,7’-dichlorofluorescein and 5-nitrofluorescein species. The respective main 

fragmentation channel is highlighted in bold. 

Parent ion Parent ion mass Fragment ion mass Neutral/ionic loss 

[F-2H]2- 165 286 -CO2, -e- 

  285 -CO2H, -e- 

[DCF-2H]2- 199 354 -CO2, -e- 

  353 -CO2H, -e- 

  319 -CO2, -HCl, -e- 

[5NF-2H]2- 188 331 -CO2, -e- 

  301 -CO2, -NO, -e- 

  285 -CO2, -NO2, -e- 

[F-H]- 331 287 -CO2 

  286 -CO2H 

[DCF-H]- 399 355 -CO2 

  354 -CO2H 

  319 -CO2H, -HCl 

[5NF-H]- 376 332 -CO2 

  331 -CO2H 

  315 -CO2, -H2O 

  302 -CO2, -NO 

  285 -CO2H, -NO2 
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Figure S1: Less stable minimum structures [F+H]+_G to [F+H]+_L of the cationic 

species of fluorescein [F+H]+ calculated by DFT/B3LYP. 
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Figure S2: Experimental one and two color IRMPD spectrum of cationic fluorescein 

[F+H]+ in comparison to the calculated harmonic absorption spectra of the less 

stable minimum structures [F+H]+_G to [F+H]+_L. 
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Figure S3: Less stable minimum structures [DCF+H]+_F to [F+H]+_K of the cationic 

species of 2’,7’-dichlorofluorescein [DCF+H]+ calculated by DFT/B3LYP. 
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Figure S4: Experimental one and two color IRMPD spectrum of cationic 2’,7’-

dichlorofluorescein [DCF+H]+ in comparison to the calculated harmonic absorption 

spectra of the less stable minimum structures [DCF+H]+_F to [DCF+H]+_K. 
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Figure S5: Less stable minimum structures [5NF+H]+_G to [5NF+H]+_J of the 

cationic species of 5-nitrofluorescein [5NF+H]+ calculated by DFT/B3LYP. 
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Figure S6: Experimental one and two color IRMPD spectrum of cationic 5-

nitrofluorescein [5NF+H]+ in comparison to the calculated harmonic absorption 

spectra of the less stable minimum structures [5NF+H]+_G to [5NF+H]+_J. 
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Figure S7: Less stable minimum structures [F-H]-_F and [F-H]-_G of the anionic 

species of fluorescein [F-H]- calculated by DFT/B3LYP. 
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Figure S8: Experimental one color IRMPD spectrum of anionic fluorescein species 

[F-H]- in comparison to the calculated harmonic absorption spectra of the less 

stable minimum structures [F-H]-_F and [F-H]-_G. Note, that the red graph in the 

experimental spectrum is magnified by a factor of 20, exposing a weak absorption 

at 3657 cm-1. 
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Figure S9: Less stable minimum structures [DCF-H]-_E to [DCF-H]-_G of the anionic 

species of 2’,7’-dichlorofluorescein [DCF-H]- calculated by DFT/B3LYP. 
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Figure S10: Experimental one and two color IRMPD spectrum of anionic 2’,7’-

dichlorofluorescein species [DCF-H]- in comparison to the calculated harmonic 

absorption spectra of the less stable minimum structures [DCF-H]-_E to  

[DCF-H]-_G. 
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Figure S11: Less stable minimum structures [5NF-H]-_F and [5NF-H]-_G of the 

anionic species of 5-nitrofluorescein [5NF-H]- calculated by DFT/B3LYP. 
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Figure S12: Experimental one and two color IRMPD spectrum of anionic 5-

nitrofluorescein species [5NF-H]- in comparison to the calculated harmonic 

absorption spectra of the less stable minimum structures [5NF-H]-_F and  

[5NF-H]-_G. 
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Figure S13: Potential energy surface (PES) for the conversion of [F-H]-_A to  

[F-H]-_B by rotation of the OH group around the C-O bond. The dihedral angle is 

defined by the C-C-O-H atoms of the benzoic acid moiety. 
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Figure S14: Potential energy surface (PES) for the conversion of [DCF-H]-_A to  

[DCF-H]-_B by rotation of the OH group around the C-O bond. The dihedral angle 

is defined by the C-C-O-H atoms of the benzoic acid moiety. 
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Figure S15: Potential energy surface (PES) for the conversion of [5NF-H]-_A to  

[5NF-H]-_B by rotation of the OH group around the C-O bond. The dihedral angle 

is defined by the C-C-O-H atoms of the benzoic acid moiety. 
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7 Summary and Outlook 

The presented work encompasses magnetic investigations on metal complexes and structural 

investigations on metal complexes and fluorescein derivatives as isolated ions, transferred 

into the gas phase by Electrospray Ionization (ESI). The experimental conditions in ion traps 

facilitate exploration of intrinsic molecular magnetic and structural properties exempt from 

any influences of e.g. solvent, bulk or auxiliary surfaces. 

X-ray Magnetic Circular Dichroism (XMCD) spectroscopy in combination with sum rule analysis 

allows to separately address the spin and orbital contributions to the magnetic moments of 

open valence metal ions. The XMCD experiments were conducted at the NanoCluster Trap 

connected to the UE52-PGM soft X-ray beamline at the BESSY II synchrotron facility of the 

Helmholtz-Zentrum für Materialien und Energie GmbH in Berlin. 

The structural studies using InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy were 

conducted with a modified Bruker amaZon SL PAUL-trap mass spectrometer in combination 

with two LaserVision OPO/OPA laser systems providing tunable infrared light covering a 

spectral region from 1000 – 4000 cm-1. Quantum chemical calculations based on density 

functional theory (DFT) serve to determine of geometry minimum structures and to calculate 

the corresponding linear harmonic IR absorption spectra in order to identify isomer 

populations by comparison of calculated to experimental spectra.  

Gas phase XMCD studies on a set of structurally analogous trinuclear hetero-bimetallic 3d-4f 

complexes [Mn2Ln] containing two manganese(II) ions and a lanthanide(III) ion (neodymium, 

europium, gadolinium, dysprosium or lutetium) provided insight into the spin and orbital 

contributions of the individual metal centers to the total molecular magnetic moment. Due to 

the vanishing orbital angular momenta on the manganese ions and the substantial spin 

magnetizations, a d5 high spin configuration was determined for all complexes. The XMCD 

effects and the respective spin and orbital angular momenta of the lanthanide ions vary, in 

conjunction with the f-orbital occupancy. We have confirmed the diamagnetic ground state 

of Eu3+. The mL/mS ratios reported for Nd3+, Gd3+ and Dy3+ are in excellent agreement with the 

expected values derived from HUND’s rules. By comparing the experimental total 

magnetization mJ
(z) at the given experimental conditions with a Brillouin plot for the Mn2+ and 

the respective Ln3+ ground states as a function of the temperature at a constant magnetic field 
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of 5 T, we were able to approximate the ion temperature of the hetero-bimetallic complexes. 

The values of approx. 14 K are in the expected ion temperature range, due to RF heating of 

the ions caused by the trap operation. Correction terms for the application of the spin sum 

rule were found to be indispensable for qualitative and quantitative analysis of magnetic 

moments in isolated metal complexes studied by XMCD spectroscopy. The results from gas 

phase studies were corroborated bulk magnetometry in terms of SQUID measurements on 

crystalline samples. SQUID measurements reveal weak ferromagnetic interactions between 

the paramagnetic trivalent lanthanide ions (Nd3+, Gd3+ and Dy3+) and the adjacent Mn2+ ions 

at temperatures < 10 K. A magnetic coupling of the manganese ions via the diamagnetic 

lanthanide ions (Eu3+ and Lu3+) was not observed. The magnetization measurements show a 

good agreement between the expected magnetization for weakly exchange coupled ions and 

the measured saturation value at high fields. In summary, we have shown that a combination 

of XMCD spectroscopy on complexes in the gas phase and sum rule analysis is a powerful tool 

to determine the intrinsic magnetic properties of isolated molecules. 

The have presented for the first time an extensive experimental and theoretical study of a 

mononuclear octahedral iron(II) Spin-Crossover complex [Fe(L-N4Bz2)(pyc)]+ (1+) by XMCD 

measurements at different temperatures in the gas phase in combination with DFT modeling. 

We have confirmed that an accurate description of spin transitions in metal complexes along 

with structural reorganization via DFT calculations is challenging, due to the large dependence 

of the relative energies at different multiplicities on the extent of exact Hartree-Fock (HF) 

exchange in hybrid functionals such as B3LYP. A customized B3LYP* (15 % Hx
HF) functional, 

employing 15 % of exact HF exchange was found to satisfactorily describe the energetic 

spacing of the spin states of 1+, required for Spin-Crossover processes. The geometry 

optimized structures in singlet and quintet states are in excellent agreement with 

crystallographic data. The singlet calculation can be assigned to the crystal structure measured 

at 110 K, revealing reduced iron – ligand bond lengths. The vanishing magnetic moment at 

temperatures < 250 K is nicely matched by the non-existent spin density in the calculation. 

The bond lengths of the quintet calculation match the crystal structure data at 333 K very well. 

The calculated spin density at the iron(II) center is in accordance with the magnetic moment 

measured at temperatures > 280 K. 
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Photon polarization dependent gas phase XMCD spectra of the isolated complex cation 1+ 

recorded at the Fe L3,2 absorption edges at different ion trap temperatures show significant 

dichroic effects. This indicates a certain magnetic moment at the iron(II) metal center. As the 

spin and total magnetic moments are much smaller than expected for an all-high spin 

configuration of the complex, we assume a coexistence of high spin and low spin 

configurations, since the method only provides an average magnetization of the ion ensemble. 

A pure orientational randomization of the magnetic moments at higher temperatures, 

assuming an all-high spin configuration seems unlikely as the lowest ion temperature can be 

estimated to approx. 15 K from similar experiments. Calculating the high spin fractions at 

three different temperatures using the spin and total magnetization and simulated Brillouin 

functions, provides strong evidence for a Spin-Crossover process in the gas phase, as the high 

spin fraction was found to increase with temperature. Future studies including an ion 

temperature calibration are necessary to prove our assumption. Manganese(II) complexes 

exhibiting a temperature independent d5 high spin configuration appear to be suitable 

systems for this purpose. 

We performed structural characterization of (methylated) pyrimidine-based thymine (T) and 

uracil (U) nucleobases bound to dianionic tetracyanoplatinate(II), which are a popular model 

system to explore fundamental photophysical and photochemical processes in photodynamic 

therapy (PDT). Using a one and two color IRMPD technique in combination with DFT for 

geometry optimization and harmonic frequency calculation, we were able to conclusively 

determine the structures of [T · Pt(CN)4]2-, [1-mT · Pt(CN)4]2-, [U · Pt(CN)4]2- and  

[1-mU · Pt(CN)4]2- aggregates. The observed binding motifs of the non-methylated and 

methylated nucleobase complexes are identical, although the intermolecular interactions 

differ significantly. The non-methylated nucleobases thymine and uracil are bound primarily 

via a N1H hydrogen bond to a nitrogen atom of a cyanide ligand. The found geometries are 

similar to those, reported in a purely theoretical study by JOCKUSCH et al. solely based on 

computations. Calculations on the methylated nucleobases reveal a similar binding motif to 

tetracyanoplatinate(II). However, the concomitant stabilization via a strong NH – NC and 

weaker CH – NC interactions is not reconcilable, due to shielding carbonyl groups adjacent to 

the remaining N3H proton. Solely CH – NC interactions mediate the loosely bound 

nucleobase – tetracyanoplatinate(II) aggregate.  
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First experiments on the respective binding motif of the nucleosides thymidine and uridine 

suggest a remarkably different behavior. The N1H proton of the nucleobases is replaced by a 

cyclic sugar side chains. The CH – NC interactions become less pronounced and the pentose’s 

hydroxy groups form stable hydrogen bonds with the cyanide ligands of 

tetracyanoplatinate(II). The flexibility of the sugar backbone and the large number of polarized 

functional groups result in numerous possible isomers. Definite structural assignments were 

not possible, owing to the highly broadened experimental absorption bands in the CH/OH/NH 

stretching region. Additional experiments using messenger spectroscopy (e.g. He tagging) in a 

cryogenically cooled ion trap may help to resolve the band structure in the crucial CH 

stretching region, which is superimposed by the hydrogen bound OH/NH stretching region. 

However, our calculations at least show that the binding motif compared to the (methylated) 

nucleobases changes in favor of CN – HO hydrogen bonds.  

The second structural characterization study was performed on the three charged forms of 

fluorescein (F), 2’,7’-dichlorofluorescein (DCF) and 5-nitrofluorescein (5NF). Fluorescein 

derivatives are frequently used for protein labeling in medical diagnostics, owing to their 

bright fluorescence and the easy conjugation to biomolecules. The fluorescence properties, 

however, are strongly influenced by functional groups and the charge state. We performed 

gas phase one and two color IRMPD experiments in combination with DFT calculations to 

elucidate minimum structures, their relative free energies, transition states, and rotational 

barriers for interconversion of rotamers. The dianionic species are entirely deprotonated 

resulting in a single minimum structure. The experimental IRMPD spectra match the 

calculated harmonic IR spectra extraordinarily well, with regard to peak position and intensity. 

The experimental two color IRMPD spectra are in excellent agreement with calculated 

harmonic IR spectra of geometry optimized minimum structures. However, a lack of distinct 

spectral features in the calculated harmonic absorption spectra make an unequivocal 

assignment challenging. The unsuspected deprotonation site of monoanionic fluorescein at 

the xanthene moiety was first reported in an IRMPD study by JOCKUSCH et al. and endorsed by 

this study, additionally taking the vibrational OH stretching region into account. We have 

shown that the deprotonation site of monoanionic fluorescein derivatives in the gas phase 

and in methanolic solution is described accurately by DFT energy calculations on minimum 

structures and depends on the substituents. The presented data provide strong evidence for 
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a partial conservation of the favored minimum structures in methanolic solution during the 

transfer into the gas phase via ESI. The utilized two color IRMPD technique has once more 

proven valuable to overcome bottlenecks and enhance weak IRMPD absorption bands of 

stable molecules and allows for a wider spectral range and improved spectral resolution in 

comparison to experimental data obtained with Free Electron Laser (FEL) sources. Future 

investigations using different ionization techniques, e.g. the Laser Induced Liquid Bead Ion 

Desorption (LILBID) in combination with mass spectrometry and spectroscopy could help to 

elucidate the properties of defined dye-solvent cluster ions.  

 





 
 

 
281 

 

8 Zusammenfassung und Ausblick 

Die vorliegende Arbeit beschäftigt sich mit magnetischen Untersuchungen an isolierten 

ionischen Metallkomplexen und strukturellen Untersuchungen an isolierten ionischen 

Metallkomplexen und Fluoresceinderivaten. Dafür wurden die Proben durch Elektrospray-

Ionisation (ESI) aus einer Lösung in die Gasphase überführt. Die experimentellen Bedingungen 

in Ionenfallen erlauben die Erforschung von intrinsischen molekularen magnetischen und 

strukturellen Eigenschaften ohne störende äußere Einflüsse durch beispielsweise 

Lösungsmitteleffekte, Packungseffekte in Kristallen oder Wechselwirkungen mit Oberflächen. 

Der Zirkulare Magnetische Dichroismus mit Röntgenstahlung (XMCD-Spektroskopie) in 

Kombination mit der Anwendung der sogenannten Summenregeln erlaubt es, die Spin- und 

Bahnbeiträge zum gesamten magnetischen Moment von offenschaligen Metallkernen 

getrennt voneinander getrennt zu bestimmen. Die XMCD-Experimente wurden an der 

NanoCluster Trap durchgeführt, welche an der UE52-PGM-Beamline für weiche 

Röntgenstrahlung an der BESSY II-Synchrotronanlage des Helmholtz-Zentrum für Materialien 

und Energie GmbH in Berlin angeschlossen ist. 

Die Studien zur Strukturaufklärung mithilfe der mit infraroten Multiphotonen-Dissoziation 

(IRMPD-Spektroskopie) wurden mit einem modifizierten Bruker amaZon SL PAULfallen-

Massenspektrometer in Kombination mit zwei optisch parametrischen Oszillator-

/Verstärkersystemen (OPO/OPA) der Firma LaserVision durchgeführt. Dabei wird der infrarote 

Spektralbereich von etwa 1000 bis 4000 cm-1 abgedeckt. Quantenchemische Berechnungen 

auf Basis der Dichtefunktionaltheorie (DFT) dienen zur Bestimmung von geometrischen 

Minimumstrukturen und deren linearen harmonischen IR Absorptionsspektren um die 

Population von Isomeren durch den Vergleich von berechneten und experimentellen Spektren 

zu bestimmen. 

Untersuchungen an einem Satz von isostrukturellen trinuklearen hetero-bimetallischen 3d-4f-

Komplexen [Mn2Ln] unter Verwendung der XMCD-Spektroskopie in der Gasphase, lieferten 

die jeweiligen Spin- und Bahnbeiträge der einzelnen Metallzentren zum gesamten 

magnetischen Moment. Die Komplexe verfügen dabei jeweils über zwei Mangan(II)-Ionen und 

ein Ion(III) der Gruppe der Seltenen Erden (Neodym, Europium, Gadolinium, Dysprosium oder 

Lutetium). Aufgrund des verschwindenden magnetischen Bahnmoments an den 
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Manganionen und den signifikanten Spinmomenten konnte eine d5 high spin Konfiguration 

bestätigt werden. Die XMCD-Effekte und die jeweiligen Spin- und Bahnmomente der 

Lanthanid-Ionen variieren stark, je nach der Besetzung der jeweiligen f-Orbitale. Dabei konnte 

der diamagnetische Grundzustand von Eu3+ bestätigt werden. Die experimentell bestimmten 

mL/mS-Verhältnisse für Nd3+, Gd3+ und Dy3+ stimmen mit den erwarteten Werten nach den 

HUND’schen Regeln sehr gut überein. Durch Vergleichen der experimentell bestimmten 

Gesamtmagnetisierung mJ
(z) bei den gegebenen experimentellen Bedingungen mit einem 

Brillouin-Diagramm für die Mn2+ und Ln3+ Ionen im jeweiligen Grundzustand als Funktion der 

Temperatur bei einem konstanten Magnetfeld von 5 T, konnte die Ionentemperatur der 

[Mn2Ln]-Komplexe abgeschätzt werden. Die Werte von ca. 14 K liegen im erwarteten 

Temperaturbereich der Ionen die sich aufgrund der Hochfrequenzspannung die an der Falle 

anliegt im Vergleich zur Fallentemperatur erwärmen. Korrekturen für die Anwendung der 

Spin-Summenregel haben es erstmals ermöglicht nicht nur qualitative, sondern auch 

quantitative Aussagen über die magnetischen Momente von isolierten Metallkomplexen zu 

treffen. Die Ergebnisse der Gasphasenuntersuchungen wurden durch die 

Festkörpermessungen in Form von SQUID-Messungen an kristallinen Proben untermauert. Die 

SQUID-Messungen zeigen schwache ferromagnetische Wechselwirkungen zwischen den 

paramagnetischen dreiwertigen Lanthanidionen (Nd3+, Gd3+ und Dy3+) und den benachbarten 

Mn2+-Ionen bei Temperaturen <10 K. Eine magnetische Kopplung der Manganionen über die 

diamagnetischen Lanthanidionen (Eu3+ und Lu3+) wird nicht beobachtet. Die gemessenen 

Magnetisierungen zeigen eine gute Übereinstimmung zwischen der erwarteten 

Magnetisierung für schwach austauschgekoppelte Ionen und dem gemessenen 

Sättigungswert bei hohen Feldern. In dieser Studie haben wir gezeigt, dass eine Kombination 

von XMCD-Spektroskopie an isolierten Komplexen in der Gasphase und Summenregelanalyse 

ein leistungsfähiges Werkzeug für die Untersuchung interessanter magnetischer 

Verbindungen frei von Lösungsmitteleffekten, Kristallpackungseffekten oder 

Wechselwirkungen mit Oberflächen darstellt. 

Wir haben erstmals eine umfassende experimentelle und theoretische Untersuchung an 

einem mononuklearen oktaedrischen Eisen(II) Spin-Crossover Komplexes [Fe(L-N4Bz2)(pyc)]+ 

(1+) mittels XMCD Spektroskopie bei verschiedenen Temperaturen in der Gasphase in 

Kombination mit DFT-Berechnungen durchgeführt. Wir konnten bestätigen, dass eine 
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angemessene Beschreibung von Spinübergängen in Metallkomplexen zusammen mit 

struktureller Reorganisation durch DFT-Berechnungen schwierig ist. Das liegt hauptsächlich an 

der starken Abhängigkeit der relativen Energien bei unterschiedlichen Multiplizitäten vom 

Ausmaß des exakten Hartree-Fock-Austausches Hx
HF in Hybridfunktionalen wie z.B. B3LYP. Ein 

modifiziertes Funktional B3LYP* mit 15 % exaktem Hartree-Fock-Austausch zeigt eine 

verhältnismäßig genaue Beschreibung der Nähe der energetischen Abstände von 1+ in 

verschiedenen Spin-Zuständen. Diese energetische Nähe unterschiedlicher Spinzustände ist 

Voraussetzung für Spin-Crossover-Prozesse. Die geometrieoptimierten Strukturen im 

Singulett- und Quintettzustand geben die Kristallstrukturdaten sehr gut wieder. Die 

Singulettrechnung kann der Kristallstruktur bei 110 K zugeordnet werden, die sich durch 

reduzierte Eisen-Ligand-Bindungslängen auszeichnet. Das verschwindende magnetische 

Moment bei Temperaturen < 250 K wird durch die nicht vorhandene Spindichte in der 

Rechnung korrekt dargestellt. Die Bindungslängen der Quintettrechnung spiegeln die 

Kristallstruktur bei 333 K sehr gut wieder. Die berechnete Spindichte am zentralen Eisen(II) -

Ion, wird experimentell durch das gemessene magnetische Moment bei Temperaturen 

> 280 K wiedergegeben. 

Polarisationsabhängige XMCD-Spektren des isolierten Komplexkations 1+ an den Fe L3,2-

Absorptionskanten bei verschiedenen Ionenfallentemperaturen in der Gasphase, zeigen bei 

allen Temperaturen signifikante dichroitische Effekte. Das beweist ein bestimmtes 

magnetisches Moment am zentralen Eisen(II)-Atom. Die Spinmomente und die totalen 

magnetischen Momente sind viel kleiner sind als man es für eine reine high-Spin-Konfiguration 

des Komplexes erwarten würde. Da die Methode nur durchschnittliche Magnetisierungen des 

Ionenensembles liefert, nehmen wir eine Koexistenz von high spin und low spin-Konfiguration 

in der Ionenwolke an. Eine reine Randomisierung der Orientierung der magnetischen 

Momente bei höheren Temperaturen unter der Annahme einer reinen high spin Konfiguration 

ist unwahrscheinlich, da die niedrigste Ionentemperatur aus ähnlichen Experimenten auf etwa 

15 K geschätzt werden kann. In verschiedenen Szenarien zur Auswirkung der Hochfrequenz-

Aufheizung der Ionen berechnen wir den high spin Anteil bei verschiedenen Temperaturen 

unter Verwendung der Spin-/Totalmagnetisierung und simulierten Brillouin-Funktionen. Die 

Ergebnisse deuten auf einen Spin-Crossover Prozess in der Gasphase hin, da der high spin-

Anteil mit der Temperatur zunimmt. Ergänzende Studien einschließlich einer Kalibrierung der 
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Ionentemperatur sind für zuverlässigere Aussagen notwendig. Hierfür würden sich 

beispielsweise Mangan(II)-Komplexe mit einer temperaturunabhängigen d5 high spin 

Konfiguration eignen. 

Es wird weiterhin über eine strukturelle Charakterisierung von (methylierten) Pyrimidin-

basierten Nukleobasen Thymin (T) und Uracil (U) die an dianionisches Tetracyanoplatinat(II) 

gebunden sind berichtet. Diese stellen ein prominentes Modellsystem zur Erforschung 

grundlegender photophysikalischer und photochemischer Prozesse in der photodynamischen 

Therapie (PDT) dar. Durch die verwendeten ein- und zwei-Farben IRMPD-Techniken in 

Kombination mit DFT-basierten Rechnungen in Form von Geometrieoptimierung und 

harmonischen Schwingungsspektren erhielten wir schlüssige Strukturzuordnungen für die 

Aggregate [T · Pt(CN)4]2-, [1-mT · Pt(CN)4]2-, [U · Pt(CN)4]2- und [1-mU · Pt(CN)4]2-. Die 

beobachteten Bindungsmotive der nicht-methylierten und methylierten Nukleobasen, die an 

Tetracyanoplatinat (II) gebunden sind, sind identisch. Es gibt jedoch deutliche Unterschiede in 

der Natur der intermolekularen Wechselwirkungen. Die nicht-methylierten Nukleobasen 

Thymin und Uracil werden primär über eine N1H-Wasserstoffbrückenbindung an ein 

Stickstoffatom eines Cyanidliganden gebunden und durch verschiedene CH – CN 

Wechselwirkungen stabilisiert. Die geometrischen Zuordnungen sind in Übereinstimmung mit 

den Ergebnissen von A. SEN et al. die ausschließlich auf Rechnungen basieren. Die 

methylsubstituierten Nukleobasen zeigen ein abweichendes Bindungsmotiv zum 

Tetracyanoplatinat(II)-dianion. Eine gleichzeitige Stabilisierung über eine starke NH – NC und 

schwächere CH – NC Wechselwirkungen ist durch die Abschirmung der Carbonylgruppen 

neben dem verbleibenden N3H Proton nicht möglich. Lediglich CH – NC Wechselwirkungen 

vermitteln das locker gebundene Nukleobase - Tetracyanoplatinat (II) - Aggregat. Erste 

Experimente zum jeweiligen Bindungsmotiv der Nukleoside Thymidin und Uridin deuten auf 

ein ganz anderes Verhalten hin. In Nukleosiden ist das N1H Proton durch eine cyclische 

Zuckerseitenkette substituiert. Die CH – NC Wechselwirkungen verlieren an Bedeutung und 

die Hydroxygruppen der Pentose bilden mit den Cyanidliganden des Tetracyanoplatinats(II) 

stabile Wasserstoffbrückenbindungen. Die Flexibilität des Zuckerrückgrats und die große 

Anzahl polarer funktioneller Gruppen führen zu einer großen Zahl an möglichen 

Bindungsisomeren. Zuverlässige Zuordnungen werden durch die stark verbreiterten 

Absorptionsbanden im CH/OH/NH-Streckschwingungsbereich erschwert. Zusätzliche 
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Experimente unter Anwendung sog. Messenger-Spektroskopie (z.B. He tagging) in 

tiefgekühlten Ionenfallen könnten dazu beitragen, die Bandenstruktur des CH-

Streckschwingungsbereichs aufzulösen, die mit dem verbreiterten wasserstoffbrücken-

gebundenen OH/NH-Streckschwingungsbereich überlagert ist. Berechnungen zeigen jedoch, 

dass sich das Bindungsmotiv gegenüber den (methylierten) Nukleobasen zugunsten von 

CN – HO Wasserstoffbrücken ändert. 

Die zweite Studie zur Strukturaufklärung mittels IRMPD-Spektroskopie wurde an den drei 

geladenen Formen von Fluorescein (F), 2',7'-Dichlorfluorescein (DCF) und 5-Nitrofluorescein 

(5NF) durchgeführt. Fluoresceinderivate werden aufgrund ihrer hellen Fluoreszenz und der 

leicht zugänglichen Funktionalisierung häufig zur Proteinetikettierung in der medizinischen 

Diagnostik eingesetzt. Die Fluoreszenzeigenschaften sind stark von funktionellen Gruppen und 

dem Ladungszustand abhängig. Es wurden ein- und zwei-Farben IRMPD Experimente in der 

Gasphase in Kombination mit DFT-Rechnungen durchgeführt. Die Rechnungen liefern hierbei 

Minimum-Strukturen, relative freie Energien, Übergangszustände und Rotationsbarrieren. Die 

dianionischen Spezies sind vollständig deprotoniert, was zu einer einzigen möglichen 

Minimum-Struktur führt. Die experimentellen IRMPD-Spektren entsprechen den berechneten 

harmonischen Spektren hinsichtlich der Bandenpositionen und -intensitäten außerordentlich 

gut. Die kationischen Spezies zeigen eine ausgezeichnete Übereinstimmung zwischen den 

zwei-Farben IRMPD-Spektren und den berechneten harmonischen Spektren der 

geometrieoptimierten Minimum-Strukturen. Das Fehlen von signifikanten Unterschieden in 

den berechneten harmonischen Absorptionsspektren macht eine eindeutige Zuordnung von 

Isomeren schwierig. Über die unerwartete Deprotonierungsstelle von monoanionischem 

Fluorescein an der Xantheneinheit wurde erstmals von JOCKUSCH et al. in einer IRMPD Studie 

berichtet. Die vorliegende Studie bestätigt diese Ergebnisse, wobei der Spektralbereich um 

den OH-Streckschwingungsbereich erweitert wurde. Wir konnten zeigen, dass die favorisierte 

Deprotonierungsstelle von monoanionischen Fluoresceinderivaten in der Gasphase und in 

methanolischer Lösung von inhärenten Substituenten abhängig ist und durch DFT-

Rechnungen treffend wiedergegeben wird. Die gezeigten Ergebnisse liefern einen starken 

Hinweis für eine partielle Erhaltung der bevorzugten Struktur in methanolischer Lösung 

während des Transfers in die Gasphase über ESI. Die verwendete zwei-Farben IRMPD-Technik 

hat sich wiederholt als wertvoll erwiesen um einerseits energetische Flaschenhälse (bzgl. der 
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intramolekularen Schwingungsumverteilung) zu überwinden und schwache IRMPD-

Absorptionsbanden von stabilen Molekülen zu verstärken und andererseits einen größeren 

Spektralbereich und eine verbesserte spektrale Auflösung im Vergleich zu Freie Elektronen 

Laser (FEL) Daten zu ermöglichen. Zukünftige Untersuchungen unter Verwendung 

unterschiedlicher Ionisationstechniken, z.B. laserinduzierte Flüssigtropfen-Ionen-Desorption 

(Laserinduced Liquid Bead Ion Desorption, LILBID) in Kombination mit Massenspektrometrie 

und Spektroskopie könnten es ermöglichen, die Eigenschaften definierter Farbstoff-

Lösungsmittel-Cluster-Ionen zu erforschen. 
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9.1 Infrared spectroscopy of N2 adsorption on size selected cobalt cluster 

cations in isolation 

Sebastian Dillinger, Jennifer Mohrbach, Joachim Hewer, Maximilian Gaffga 

and Gereon Niedner-Schatteburg 

Fachbereich Chemie and Forschungszentrum OPTIMAS,  

Technische Universität Kaiserslautern, 

67663 Kaiserslautern, Germany 

 

9.1.1 Preamble 

The following chapter is a reprint of a publication in the journal “Physical Chemistry Chemical 

Physics”.  

A team consisting of Sebastian Dillinger, Jennifer Mohrbach, Maximilian Gaffga and myself 

performed the measurements. Sebastian Dillinger evaluated the experimental data and 

conducted the presented quantum chemical calculations. The manuscript was written by 

Sebastian Dillinger and revised with the help of Gereon Niedner-Schatteburg and Jennifer 

Mohrbach. 

 

Full Reference: 

Infrared spectroscopy of N2 adsorption on size selected cobalt cluster cations in isolation 

S. Dillinger, J. Mohrbach, J. Hewer, M. Gaffga and G. Niedner-Schatteburg, Physical Chemistry 

Chemical Physics, 2015, 17, 10358-10362.  

http://dx.doi.org/10.1039/C5CP00047E 
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9.2 Vibrational Blue Shift of Coordinated N2 in [Fe3O(OAc)6(N2)n]+: “Non 

Classical” Dinitrogen Complexes 

Johannes Lang, Jennifer Mohrbach, Sebastian Dillinger, Joachim M. Hewer 

and Gereon Niedner-Schatteburg 

Fachbereich Chemie and Forschungszentrum OPTIMAS,  

Technische Universität Kaiserslautern, 

67663 Kaiserslautern, Germany 

 

9.2.1 Preamble 

The following chapter is a reprint of a publication in the journal “Chemical Communications”.  

A team consisting of Jennifer Mohrbach, Sebastian Dillinger, Johannes Lang and myself 

performed the measurements. Johannes Lang evaluated the experimental data and 

conducted the presented quantum chemical calculations. The manuscript was written by 

Johannes Lang and revised with the help of Gereon Niedner-Schatteburg and Jennifer 

Mohrbach. 

 

Full Reference: 

Vibrational Blue Shift of coordinated N2 in [Fe3O(OAc)6(N2)n]+:“Non Classical” Dinitrogen 

Complexes 

J. Lang, J. Mohrbach, S. Dillinger, J. M. Hewer and G. Niedner-Schatteburg, Chemical 

Communications, 2017, 53, 420-423.  

http://dx.doi.org/10.1039/C6CC07481B 
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9.3 Doubly Regioselective C-H Hydroarylation of Unsymmetrical Alkynes 

Using Carboxylates as Deciduous Directing Groups 

Agostino Biafora(a), Bilal A. Khan(b,c), Janet Bahri(b), Joachim M. Hewer(a) 

and Lukas J. Goossen(c) 

(a) Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität 

Kaiserslautern, 67663 Kaiserslautern, Germany 

(b) Department of Chemistry, University of Azad Jammu and Kashmir, 13100 

Muzaffarabad, AJK, Pakistan 

(c) Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 

44801 Bochum, Germany 

 

9.3.1 Preamble 

The following chapter is a reprint of a publication in the journal “Organic Letters”.  

The concept was developed by Agostino Biafora, who also performed the screening and 

isolation of reaction products, together with Bilal Khan. The first version of the manuscript 

was written by Bilal Khan and revised by Agostino Biafora and Lukas Goossen. Janet Bahri 

performed the microwave experiments. The ESI-MS control experiments were conducted by 

Agostino Biafora and myself. 

 

Full Reference: 

Doubly Regioselective C-H Hydroarylation of Unsymmetrical Alkynes Using Carboxylates as 

Deciduous Directing Groups 

A. Biafora, B. A. Kahn, J. Bahri, J. M. Hewer and L. J. Goossen, Organic Letters, 2017, 19, 1232-

1235.  

http://dx.doi.org/10.1021/acs.orglett.7b00300 
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