
Conception and First Implementation of Novel Sensory Signal
Conditioning and Digital Conversion Electronics Based on Spiking
Neuron Ensembles for Inherently Robust Processing in Aggressively

Scaled Integration Technologies

Konzeptentwurf und erste Implementierung einer neuartigen Elektronik für

Sensorsignalkonditionierung und Digitalwandlung basierend auf pulsenden
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Abstract

”In contemporary electronics 80% of a chip may perform digital functions but the 20%

of analog functions may take 80% of the development time.” [1]. Aggravating this, the

demands on analog design is increasing with rapid technology scaling. Most designs

have moved away from analog to digital domains, where possible, however, interacting

with the environment will always require analog to digital data conversion. Adding to

this problem, the number of sensors used in consumer and industry related products are

rapidly increasing. Designers of ADCs are dealing with this problem in several ways, the

most important is the migration towards digital designs and time domain techniques.

Time to Digital Converters (TDC) are becoming increasingly popular for robust signal

processing. Biological neurons make use of spikes, which carry spike timing information

and will not be affected by the problems related to technology scaling. Neuromorphic

ADCs still remain exotic with few implementations in sub-micron technologies Table 2.7.

Even among these few designs, the strengths of biological neurons are rarely exploited.

From a previous work [2], LUCOS, a high dynamic range image sensor, the efficiency

of spike processing has been validated. The ideas from this work can be generalized to

make a highly effective sensor signal conditioning system, which carries the promise to

be robust to technology scaling.

The goal of this work is to create a novel spiking neural ADC as a novel form of a

Multi-Sensor Signal Conditioning and Conversion system, which

• Will be able to interface with or be a part of a System on Chip with traditional

analog or advanced digital components.

• Will have a graceful degradation.

• Will be robust to noise and jitter related problems.

• Will be able to learn and adapt to static errors and dynamic errors.

• Will be capable of self-repair, self-monitoring and self-calibration

Sensory systems in humans and other animals analyze the environment using several

techniques. These techniques have been evolved and perfected to help the animal sur-

vive. Different animals specialize in different sense organs, however, the peripheral

neural network architectures remain similar among various animal species with few ex-

ceptions. While there are many biological sensing techniques present, most popularly

used engineering techniques are based on intensity detection, frequency detection, and

edge detection. These techniques are used with traditional analog processing (e.g., color
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sensors using filters), and with biological techniques (e.g. LUCOS chip [2]). The local-

ization capability of animals has never been fully utilized.

One of the most important capabilities for animals, vertebrates or invertebrates, is the

capability for localization. The object of localization can be predator, prey, sources of

water, or food. Since these are basic necessities for survival, they evolve much faster

due to the survival of the fittest. In fact, localization capabilities, even if the sensors

are different, have convergently evolved to have same processing methods (coincidence

detection) in their peripheral neurons (for e.g., forked tongue of a snake, antennae of

a cockroach, acoustic localization in fishes and mammals). This convergent evolution

increases the validity of the technique. In this work, localization concepts based on

acoustic localization and tropotaxis are investigated and employed for creation of novel

ADCs.

Unlike intensity and frequency detection, which are not linear (for e.g. eyes saturate in

bright light, loose color perception in low light), localization is inherently linear. This

is mainly because the accurate localization of predator or prey can be the difference

between life and death for an animal.

Figure 1 visually explains the ADC concept proposed in this work. This has two parts.

(1) Sensor to Spike(time) Conversion (SSC), (2) Spike(time) to Digital Conversion(SDC).

Both of the structures have been designed with models of biological neurons. The

combination of these two structures is called SSDC.

To efficiently implement the proposed concept, a comparison of several biological neural

models is made and two models are shortlisted. Various synapse structures are also

studied. From this study, Leaky Integrate and Fire neuron (LIF) is chosen since it

fulfills all the requirements of the proposed structure. The analog neuron and synapse

designs from Indiveri et. al. [3], [4] were taken, and simulations were conducted using

cadence and the behavioral equivalence with biological counterpart was checked. The

LIF neuron had features, that were not required for the proposed approach. A simple

LIF neuron stripped of these features and was designed to be as fast as allowed by the

technology.

The SDC was designed with the neural building blocks and the delays were designed

using buffer chains. This SDC converts incoming Time Interval Code (TIC) to sparse

place coding using coincidence detection. Coincidence detection is a property of spiking

neurons, which is a time domain equivalent of a Gaussian Kernel. The SDC is designed to

have an online reconfigurable Gaussian kernel width, weight, threshold, and refractory

period. The advantage of sparse place codes, which contain rank order coding was
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Figure 1: ADC as a localization problem (right), Jeffress model of sound localization
visualized (left). The values t1 and t2 indicate the time taken from the source to s1 and

s2 respectively.

described in our work [5]. A time based winner take all circuit with memory was created

based on a previous work [6] for reading out of sparse place codes asynchronously.

The SSC was also initially designed with the same building blocks. Additionally, a

differential synapse was designed for better SSC. The sensor element considered was
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a Wheatstone full bridge AMR sensor AFF755 from Sensitec GmbH. A reconfigurable

version of the synapse was also designed for a more generic sensor interface.

The first prototype chip SSDCα was designed with 257 modules of coincidence detectors

realizing the SDC and the SSC. Since the spike times are the most important information,

the spikes can be treated as digital pulses. This provides the capability for digital

communication between analog modules. This creates a lot of freedom for use of digital

processing between the discussed analog modules. This advantage is fully exploited

in the design of SSDCα. Three SSC modules are multiplexed to the SDC. These SSC

modules also provide outputs from the chip simultaneously. A rising edge detecting fixed

pulse width generation circuit is used to create pulses that are best suited for efficient

performance of the SDC. The delay lines are made reconfigurable to increase robustness

and modify the span of the SDC. The readout technique used in the first prototype is

a relatively slow but safe shift register. It is used to analyze the characteristics of the

core work. This will be replaced by faster alternatives discussed in the work. The area

of the chip is 8.5 mm2. It has a sampling rate from DC to 150 kHz. It has a resolution

from 8-bit to 13-bit. It has 28,200 transistors on the chip. It has been designed in 350

nm CMOS technology from ams. The chip has been manufactured and tested with a

sampling rate of 10 kHz and a theoretical resolution of 8 bits. However, due to the

limitations of our Time-Interval-Generator, we are able to confirm for only 4 bits of

resolution.

The key novel contributions of this work are

• Neuromorphic implementation of AD conversion as a localization problem based

on sound localization and tropotaxis concepts found in nature.

• Coincidence detection with sparse place coding to enhance resolution.

• Graceful degradation without redundant elements, inherent robustness to noise,

which helps in scaling of technologies

• Amenable to local adaptation and self-x features.

Conceptual goals have all been fulfilled, with the exception of adaptation. The feasibility

for local adaptation has been shown with promising results and further investigation is

required for future work. This thesis work acts as a baseline, paving the way for R&D

in a new direction. The chip design has used 350 nm ams hitkit as a vehicle to prove

the functionality of the core concept. The concept can be easily ported to present

aggressively-scaled-technologies and future technologies.



Kurzfassung

”In der gegenwärtigen integrierten Elektronik sind typisch 80 % der Funktionalität eines

Chips digital und nur ca. 20 % analog, aber diese 20 % der analogen Funktionalität

können bis zu 80 % der Entwicklungszeit in Anspruch nehmen.” [1]. Erschwerend kommt

dabei hinzu, dass die Anforderungen an den Analogentwurf mit zunehmender Tech-

nologieskalierung immer höher werden. Die meisten Entwürfe haben, soweit möglich,

analoge zugunsten von digitalen Bereichen ersetzt, jedoch in der Wechselwirkung mit

der Umgebung bleibt u.a. die Erfassung analoger Daten und deren Konvertierung in

digitale Repräsentation unverzichtbar. Darüber hinaus steigt auch die Anzahl der in

Verbraucher- und Industriegütern eingesetzten Sensoren rapide. Entwerfer von ADCs

müssen sich mit diesem Problem in mehrfacher Hinsicht auseinandersetzen. Die wichtig-

ste Problemstellung ist die Umstellung auf dominant digitalen Entwurf und Zeitbere-

ichsverfahren. Zeit-zu-Digital-Wandler (Time-to-Digital-Converter, TDC) werden im-

mer beliebter für eine robuste Signalverarbeitung. Biologische Neuronen nutzen Pulse

oder Spikes, die im spezifischen zeitlichen Auftreten Informationen tragen und nicht

durch die oben angesprochenen Probleme der Technologieskalierung gravierend berührt

werden. Neuromorphe ADCs erscheinen immer noch als exotische Ansätze mit wenigen

Implementierungen in Sub-Mikrometer-Technologien (Tabelle 2.7). Selbst unter diesen

wenigen Entwürfe sind die Stärken von biologischen Neuronen und deren technischer

Modelle kaum erschlossen. Aus einer früheren Arbeit [2] zu einem Bildsensor hohen

Dynamikbereichs konnten wertvolle Erkenntnisse zur technischen Nutzung der Spike-

Verarbeitung in der Sensorik gewonnen werden. Die Ideen aus dieser Arbeit können ve-

rallgemeinert werden, um eine höchst effektive Sensorsignalverarbeitung zu realisieren,

die verspricht, auch robust gegen Technologieskalierung zu sein.

Das Ziel dieser Arbeit ist es, einen neuartigen ’spikenden’ neuronalen ADC als innovative

Form eines Multi-Sensor Signalkonditionierungs- und Wandlungssystems zu erschaffen,

welches

• in der Lage sein wird, mit herkömmlichen analogen oder fortgeschrittenen digi-

talen Komponenten unmittelbar oder als Teil eines Systems-on-Chip zusammen

zu wirken.

• Graceful Degradation aufweist.

• robust gegen Rauschen und Jitter Probleme sein wird.

• in der Lage sein wird, zu lernen und sich im Hinblick auf Kompensation statischer

und dynamischer Fehler zu adaptieren.
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• in der Lage sein wird, Selbstreparatur-, Selbstüberwachungs- und Selbstkalib-

rierungsmechanismen etc. zu implementieren.

Sensorische Systeme bei Menschen und Tieren analysieren die Umwelt mittels ver-

schiedener Techniken. Diese Techniken wurden ent- wickelt und perfektioniert, um

das Überleben des Tieres sicher zustellen. Verschiedene Tiere bzw. Tierarten haben

sich zwar hinsichtlich verschiedener Sinnesorgane spezialisiert , weisen jedoch mit weni-

gen Ausnahmen hinsichtlich der die peripheren neuronalen Netzwerkarchitekturen große

Ähnlichkeiten auf. Während viele biologische Akquisitionstechniken vorliegen, sind die

am häufigsten verwendeten Techniken auf Intensitätsdetektion, Frequenzdetektion, und

Kantenerkennung basierend. Diese Techniken werden mit traditioneller Analogverar-

beitung (z.B. Farbsensoren mit Filtern) und mit biologisch motivierten Techniken (z.B.

LUCOS chip [2]) eingesetzt. Die Lokalisierungsfähigkeit der Tiere wurde bislang noch

nie vollständig technisch ausgenutzt.

Eine der wichtigsten Funktionen für Tiere, Wirbeltiere oder Wirbellose, ist die Fähigkeit

zur Lokalisierung. Die Aufgabe der Lokalisierung kann die Findung von Räubern, Beute,

Quellen von Wasser oder Nahrung sein. Da es sich dabei um Grundfertigkeiten zum

Überleben handelt, entwickeln diese sich viel schneller durch das Prinzip des Überlebens

des Stärkeren. Tatsächlich haben sich Lokalisierungsfunktionen, auch wenn die Sen-

soren unterschiedlich sind, konvergent in Richtung gleicher Verarbeitungsverfahren en-

twickelt, wie Koinzidenzerfassung in ihren peripheren Neuronen (für z.B. die gespaltene

Zunge einer Schlange, die Antennen einer Kakerlake, oder die akustische Lokalisierung

in Fischen und Säugetieren). Diese konvergente Evolution erhöht die Wirksamkeit des

Verfahrens. In dieser Arbeit werden Lokalisierungskonzepte auf Basis von akustischer

Lokalisierung und Tropotaxis untersucht und für die Schaffung von neuartigen ADCs

eingesetzt.

Im Gegensatz zu Intensitäts- und Frequenzerkennung, die nicht linear sind (zum Beispiel

erreichen die Augen in hellem Licht eine Sättigungsgrenze, oder verlieren die Farbwahr-

nehmung bei schwachem Licht), ist die Lokalisierung von Natur aus linear. Dies ist vor

deshalb, da die genaue Lokalisierung von Räuber und Beute den Unterschied zwischen

Leben und Tod für ein Tier kann. Bild 2 veranschaulicht visuell das in dieser Arbeit

vorgeschlagene ADC-Konzept. Dieses hat zwei Teile. (1) Sensor nach Spike (Zeit)

Wandlung (SSC), (2) Spike (Zeit) nach Digital-Wandlung (SDC) . Beide Strukturen

wurden anhand von Modellen biologischer Neuronen entworfen. Die Kombination dieser

beiden Strukturen wird als SSDC bezeichnet.

Zur effizienten Durchführung des vorgeschlagenen Konzepts wird ein Vergleich von meh-

reren biologischen neuronalen Modellen vorgenommen und zwei Modelle in die engere
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Figure 2: ADC als Lokalisierungsproblem (rechts), Jeffress Modell zur akustischen
Lokalisierung (links). Die Werte t1 und t2 repräsentieren die Laufzeit von der Quelle

zu s1 bzw. s2.

Wahl gebracht. Verschiedene Synapsenstrukturen werden ebenfalls untersucht. In dieser

Studie wurde das Leaky Integrate and Fire Neuron (LIF) gewählt, da es alle An-

forderungen der vorgeschlagenen Struktur erfüllt. Die analogen Neuronen und Synapse

von Indiveri et. al. [3], [4] wurden für den Entwurf herangezogen, Simulationen wur-

den mit Cadence durchgeführt und die Verhaltensäquivalenz mit dem biologischen Mo-
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dell überprüft. Die ursprünglichen LIF Neuron hatten Merkmale, die nicht für den

vorgeschlagenen Ansatz erforderlich waren. Ein vereinfaches LIF Neuron wurde ent-

wickelt, und hinsichtlich seiner Verarbeitungsgeschwindigkeit bis an die Grenzen der

konkret verwendeten Technologie optimiert.

Der SDC wurde mit den neuronalen Bausteinen konzipiert und die Verzögerungen wur-

den als Pufferketten ausgelegt. Das SDC konvertiert eingehende Time Interval Code

(TIC) zu spärlichen Ortskodierung mit Koinzidenzerfassung. Koinzidenzerfassung ist

eine Eigenschaft der spikenden Neuronen, die ein Zeitbereichsäquivalent eines Gauß-

Kerns darstellt. Der SDC wurde entworfen, um online rekonfigurierbare Gauß-Kern-

Breite, Gewicht, Schwelle und Refraktärzeit zu haben. Der Vorteil der spärlichen Orts-

kodierung, die Rangordnungskodierung enthalten, wurde in unserer Vorarbeit [5] be-

schrieben. Ein zeitbereichsbasierter Gewinner-nimmt-Alles-Mechanismus mit Speicher

wurde auf der Grundlage einer früheren Arbeit [6] zum asynchronen Auslesen der spärli-

chen Ortskodierung geschaffen .

Der SSC wurde zunächst mit den gleichen Bausteinen entwickelt. Zusätzlich wurde mit

einer Differenzsynapse eine weitere, bessere SSC gestaltet. Das betrachtete Sensorele-

ment war eine Wheatstone-Vollbrücke mit einem AMR-Sensor AFF755 von Sensitec

GmbH. Eine rekonfigurierbare Version der Synapsen wurde ebenfalls in Richtung einer

generischen Sensorschnittstelle entwickelt.

Der erste Prototyp-Chip SSDCα wurde mit 257 Modulen der Koinzidenzdetektoren zur

Realisierung der SDC und des SSC konzipiert. Da das Spike-Timing und nicht die

Pegel die wichtige Informationen beinhalten, können diese Spikes als digitale Impulse

behandelt werden. Dies stellt die Fähigkeit zur digitalen Kommunikation zwischen den

Analogmodulen her. Das schafft viel Freiraum für die Verwendung digitalen Verar-

beitung zwischen den diskutierten Analogmodulen. Dieser Vorteil wurde vollständig in

dem Design des SSDCα ausgenutzt. Drei SSC-Module werden an die SDC gemultiplext.

Diese SSC-Module bieten gleichzeitig auch Ausgänge auf dem Chip. Eine Schaltung

zur Deketion steigender Flanken wird zur Erzeugung fester Impulsbreiten verwendet,

um optimierte Impulse für den SDC zu schaffen. Die Verzögerungsleitungen sind rekon-

figurierbar, um die Robustheit zu erhöhen und die Spanne des SDC anzupassen. Das

Ausleseverfahren in der ersten Prototyp ist über ein relativ langsames, aber sicheres

Schieberegister realisiert. Dieses wird verwendet, um die Eigenschaften der Kernzellen

zu analysieren. Dies wird durch schnellere Alternativen, wie in der Arbeit diskutiert,

ersetzt werden. Die Fläche des Chips beträgt 8,5 mm 2. Er hat eine Abtastrate von DC

bis 150 kHz und eine Auflösung von 8 Bit bis zu 13 Bit. Es sind 28.200 Transistoren

auf dem Chip integriert, welcher in der 350 nm-CMOS-Technologie von ams entwick-

elt wurde. Der Chip wurde hergestellt und getestet, mit einer Abtastrate von 10 kHz
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und einer theoretische Auflösung von 8 Bits. Aufgrund der Einschränkungen unseres

Time-Interval-Generators können wir jedoch nur 4 Bits Auflösung bestätigen.

Die wichtigsten neuen Beiträge dieser Arbeit sind

• Neuromorphische Umsetzung der AD-Wandlung als Lokalisierungsproblem auf der

Grundlage in der Natur zu findender akustischer Lokalisierung und Tropotaxis-

konzepten

• Koinzidenzerfassungs mit spärlicher Ortskodierung zur Auflösungsverbesserung.

• Graceful Degradation ohne redundante Elemente, inhärente Robustheit gegenüber

Rauschen, und den Herausforderungen durch die fortschreitende Technologieska-

lierung

• Zugänglichkeit des Ansatzes für lokale Adaption und Self-x Funktionalität

Die gesteckten konzeptionellen Ziele wurden alle erfüllt, mit Ausnahme der Adaption.

DDie prinzipielle Machbarkeit für lokale Adaption ist mit ersten, vielversprechenden

Ergebnissen jedoch gezeigt worden. Weitere Untersuchungen sind in künftigen Arbeit

erforderlich.Diese Doktorarbeit dient als Ausgangsbasis und Ebnung des Weges für eine

neue Richtung in Forschung und Entwicklung. Das erste Chip-Design dient dabei als

Vehikel, um die Funktionalität des Grundkonzepts beweisen. Das vorgestellte Konzept

verspricht insbesondere eine einfache Übertragbarkeit auf stark skalierte gegenwärtige

und kommende Integrationstechnologien.





Acknowledgements

I would like to thank Prof. Dr.-Ing. Andreas König for suggesting the thesis topic and

his guidance throughout my research work. Our discussions on the thesis and other

scientific topics helped me become the researcher I am today. I am deeply indebted to

him for his interest in my work, his encouragement when results were scarce, providing

crucial suggestions which helped in shaping the work.

I would like to thank my second reviewer Prof. Dr.-Ing. habil. Roland Werthschützky
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Chapter 1

Introduction

1.1 Motivation

Micro and nano technologies have become ubiquitous in the last decade, and we have

been seeing a rapid increase in the growth of sensory technologies. Sensors had an

unpredicted growth of 222% in the period between 2007 and 2012 [61]. The main

reasons for this can be attributed to the introduction of IPhone and Wii. The mobile

market is still growing at a rapid pace and with each device carrying at least six sensors,

the projected growth is not unexpected. In addition to these we have the recent burst

in interest for IoT (Internet of Things), which is basically wirelessly connected sensors

embedded in devices, Driver assistance systems, Driver-less cars etc. While this explains

about the growth of sensors in consumer sector, the industrial sector has also been

moving towards process automation using sensors for the last few decades. The German

government has provided a vision for Industrie 4.0 [62], which encompasses IOT, Cyber-

physical systems, Internet of Services, which could lead to smart manufacturing. United

States of America has a similar initiative called Smart (SMLC) [63]. The Trillion sensors

road map has provided a vision that there will be trillion sensors within the next decade

[61].

The ITRS roadmap 2013 [64] discusses about the various predicted changes for integrated

chips in the next decades. The main focus of this discussion is about the rapid scaling of

technologies, which would reach 5 nm in the next 10 years, This will be the fundamental

limit of 2D scaling. The discussion also focuses on fundamental changes to the transistor

design including the recent introduction of Tri-gate(FinFet) transistors by intel[65]. 3D

design of ICs will be the focus for power scaling. These changes inevitably increase the

vulnerability of the devices to hard and soft defects, which compromise the dependability

and accuracy of the measurement system both statically and dynamically.

1
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The roadmap also discusses about the sensor trends for handheld devices, which would

contain more than 20 sensors embedded in the devices, The article also discusses about

wearable technologies, which are dependent on sensors. These clearly show the rising

importance of robust sensor conditioning systems.

Figure 1.1: ITRS Sensor Trends for Handsets (taken from presentation of P.Gargini
for IEEE March 11, 2014)

1.1.1 Conventional Signal Conditioning Systems

Figure 1.2: Conventional Signal Conditioning Systems

The conventional signal conditioning systems typically make use of instrumentation

amplifiers, which are highly stable signal processing amplifiers. They are capable of

reducing static errors and offset errors using auto zeroing and chopping techniques [66].

There are instrumentation amplifiers, which are capable of self calibration to compensate

the static and dynamic deviations of the system. However, these systems are amplitude

coded and hence more vulnerable to the rapid scaling of technologies [67] [68].
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1.1.2 Self-x Signal Conditioning Systems

Figure 1.3: Self-x Signal Conditioning Systems

Reconfigurable and self-x systems make use of programmable components where compo-

nents can be resized as required to manipulate the supply voltage, resolution and other

specifications of the system, They also have the capability for learning and adaptation.

ICs like PGA309 from Texas instruments, Zooming ADC from Semtech etc have various

features like providing calibration for zero, span, zero drift, span drift, sensor lineariza-

tion errors etc. These methods are relatively less vulnerable, however, they still use

amplitude coded techniques, which are inherently vulnerable.

1.1.3 Problems and Current Solutions

Figure 1.4: Problems in Amplitude Domain Signal Processing

Figure 1.4 shows one of the major problems of working in amplitude domain. The

technology scaling is drastically increasing the signal-to-noise-ratio (SNR). This is one

of the major reasons for the discontinuation of voltage scaling with technology scaling.

As these challenges increase, the designers are moving towards digital design and time
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domain. Figure 1.5 shows the inherent advantages of working with time-delay based

time domain architectures.

Figure 1.5: Advantages of Time Domain Signal Processing

1.1.4 Time Domain Systems

There are many pulse, time and frequency (rate) coded approaches, which are relatively

more robust to noise. Figure 1.6 shows the architecture of a basic delay line TDC. These

simple structures offer more robust solutions at submicron technologies than amplitude

domain techniques. It is not surprising that these approaches have become recently

popular in the industry [69].

Figure 1.6: Basic Architecture of Delay-Line TDCs

1.2 Goals of the Thesis

The Figure 1.7 shows the ISE vision for the design of automated intelligent sensor

systems. This work will focus on providing a novel architecture, which focuses on various

goals described below. This architecture will replace the ”Reconfigurable Electronics”
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Figure 1.7: ISE Ecosystem: Intelligent Sensor System Design

Figure 1.8: Neural Signal Conditioning Systems

with ”Bio-mimetic Neural Information Processing” with signal conditioning in the time

domain rather than analog and digital domains as shown in Figure 1.7 and as described

in page 25 of AMA technology roadmap [70].

Sensory systems in living beings have evolved over a long period of time. These systems

have become robust to various environmental problems. Biological models of neural

networks called spiking neural networks, which use time based codes like rank coding,

place coding, and rate coding. These neurons with the sensory techniques from central

and peripheral nervous systems can be used to create robust signal conditioning systems.

Amplitude domain neural approaches have focused on similar goals, however, they face

the same problems as the systems described above. A detailed analysis will be provided

in the next chapter. Analog sub-micron spiking neural networks have also been explored

significantly in the last decade, however, the main goals of these approaches differ vastly
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from our goals. They mainly focus on understanding the human brain. This is the goal of

human brain project [71], which was the result of two previous projects BrainScaleS [72]

and Facets [38]. Our research group, ISE, has worked on spike based LUCOS [2], which

is a high dynamic range, high resolution pixel sensor. This work focuses on developing

signal conditioning systems, which can replace or interface with the current systems.

The vision of this thesis work is to create a novel way of sensing, conditioning and

conversion by taking cues from biological processes. To achieve this, this work will focus

on researching concepts based on such processes, exploring various neural architectures,

developing behavioral and physical implementations and assessing the viability of this

approach and its efficacy against conventional competition and the problems predicted

by ITRS. These results will then be optimized to deliver the best results as a physical

demonstrator. This thesis work would fall under ”More than Moore” design as a separate

chip, however, the design will be beneficial to ”More Moore” designs.

The goal is to create a novel ADC, a Multi-Sensor Signal Conditioning and Conversion

system, which

• Will be able to interface with or be a part of a System on Chip with traditional

analog or advanced digital components.

• Will be able to learn and adapt to static errors and dynamic errors.

• Will have a graceful degradation.

• Will be robust to noise and jitter related problems.

• Will be capable of self-repair, self-monitoring and self-calibration

1.3 Document Structure

The thesis is organized as follows

Chapter 2 will provide a comprehensive history of amplitude based neural ADCs. Then

spiking neural models and networks will be introduced. This is followed by state of the

art ADCs, which use spiking neurons and time coded ADCs.

Chapter 3 will provide an engineering perspective to biological sensory systems and

introduce the proposed architecture

Chapter 4 will provide an introduction to biological neural networks, their electronic

counterparts and also discuss the state of the art spiking neuromorphic systems, which

make use of these electronic structures.
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Chapter 5 will show the design and implementation of the building blocks of the archi-

tecture. The simulations will also show that these models are behaviorally similar to

their biological counterparts.

Chapter 6 will introduce the spike to digital conversion concept, its design and imple-

mentation.

Chapter 7 will introduce the sensor to spike conversion concept, its design and imple-

mentation.

Chapter 8 will show the complete physical design, discuss its features, advantages and

improvements that could be made.

Chapter 9 will discuss the testing and characterization methods used for the planned

chip

Chapter 10 will provide a summary of the work, the novelties of the present work and

the vision for the future work.





Chapter 2

State-of-the-Art Analog to

Digital Conversion Techniques

This chapter will give a brief overview of conventional, reconfigurable, and Time-to-

Digital Converter (TDC) architectures. Evolution of amplitude-based neural ADCs will

be discussed and then the state-of-the-art spiking ADCs will be reviewed.

Table 2.1: ADC Types and Differences

9
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Figure 2.1: Architecture of a Flash ADC

2.1 Conventional ADCs

2.1.1 Flash ADC

Flash ADCs make use of resistive ladders in combination with comparators to convert

analog signals to digital. While this technique (as shown in Figure 2.1) is extremely

fast, it consumes a large area and is extremely power hungry. The input voltage passes

through the set of resistors and is later compared to reference voltages using comparators.

The number of comparators increases greatly with the number of bits required. An n

bit Flash ADC will require 2n − 1 comparators. One of the main problems generally

not mentioned with this ADC is the accuracy of reference voltages. The importance

of accuracy for voltage references is described here [73]. Even if the initial accuracy is

acceptable, the voltage references may degrade/drift due to aging or temperature effects.

The noise in voltage references is also generally overlooked.
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Figure 2.2: Architecture of a SAR ADC

2.1.2 Successive Approximation Register ADC

The Successive Approximation Register ADC works by performing a binary search on

the input signal. In every step of the ADC, bits beginning from the MSB are identified

one bit at a time. The MSB is first set to 1. An internal DAC generates the voltage for

Vref/2, which is then compared with the input signal. the MSB is changed according to

the output of the comparator and then moves to the next bit. This is performed n times

where n is the number of bits required. Since it requires N periods to perform an n bit

comparison, there is a relationship between maximum resolution one can obtain for a

given sampling rate. This is the best choice for low to medium resolution applications.

As technology scales, it is possible to use this architecture for higher resolutions.

2.1.3 Pipeline ADC

Figure 2.3: Architecture of a Pipeline ADC [11]
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Pipeline ADC is primarily used in places where SAR cannot be used due to speed

requirements. It uses more space than SAR, but nowhere as much as a Flash ADC

for the same resolution. Its working can be explained based on the Figure 2.3. The

incoming analog signal is converted by a coarse n bit ADC where n is usually 1 or 2 bits

of resolution, this value is sent to the output. A DAC converts the output of this ADC

and the analog output is subtracted from the original signal. The resultant signal is

amplified and sent to the next stage of the pipeline where the process is repeated. The

output bits are sent through a correction logic before going to the output.

2.1.4 Sigma Delta ADCs

Figure 2.4: Block Diagram of Sigma Delta Modulator

Figure 2.5: Architecture of an Sigma Delta ADC (adapted from [12])

Figure 2.6: (a)Typical Output Spectrum of a Normal ADC with Quantization Noise,
(b) Output Spectrum of an Oversampled ADC,(c) Typical Output after Noise Shaping

Delta-Sigma or Sigma-Delta ADCs have become the ADCs of choice for applications

requiring high resolutions. One of the main advantages of this ADC is that most of the

design is digital. The analog part of the design consists of the sigma delta modulator
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shown in Figure 2.4. The working of this ADC can be explained by the Figure 2.6. It has

been observed that oversampling, i.e., sampling at a rate much higher than the Nyquist

rate, reduces the noise floor. This can be used to extract more bits of data from the ADC.

When combined with noise shaping, as shown in Figure 2.6c and a digital decimation

filter, more bits can be extracted from the ADC. There is an interesting similarity

between sigma delta modulator and a biological neuron, which can be observed in the

later sections.

2.1.5 28 nm ADC

Since we deal with technology scaling, here, we look at the various ADCs designed with

28 nm technology. The ADCs here are clearly moving towards SAR architecture, for

e.g., Synopsys [51], which used a pipeline architecture in the previous technology step

has completely moved to SAR architecture, while others are moving towards hybrid

architectures with SAR, as seen in the table above. Another observation is the gradual

removal of amplifiers from the ADC structures. Most of the ADCs in the Table 2.2

and Table 2.3 are moving towards such structures. Comparators are becoming the most

important part of the ”detection” in scaled ADC structures.
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2.2 Reconfigurable ADCs

Reconfigurable ADCs have been popular in the last decade with since they are able to

provide more flexibility to the signal conditioning process. These structures are capable

of changing their resolution, sampling rate etc depending on the requirements. There

have been reconfigurable versions of ADCs for all the structures that have been discussed

in the previous chapter. A list of such ADCs has been shown in Table 2.4. There has

not been a detailed investigation of using reconfiguration to improve robustness of an

ADC. The two works, which deal with this are described below. a detailed discussion

about self-calibrating ADCs can also be found in [74].
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2.2.1 Fault Tolerant Reconfigurable ADC Circuit

Figure 2.7: Reconfiguration for Fault Tolerance [13]

In the structure shown in Figure 2.7 form [13] the order of stages in the pipeline can be

changed. This capability allows the users to put more accurate stages in front and the

others at the back. The differences in accuracy occur due to process variations during

manufacturing and degradation of the components over time.

2.2.2 Reconfigurable Time-to-Digital Converter with Online Background

Calibration

Figure 2.8: Online Calibration Scheme [14]

In this work, a background self-calibration has been set up using a Fractional N PLL

setup shown in the Figure 2.8. In this structure, there exists a relationship between the

frequency emitted by the PLL and the input time. Using this relationship the error can

be calculated and the TDC can be calibrated effectively.
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2.2.3 Summary

Figure 2.9: Comparison of Different Conventional ADC Structures [15]

From Figure 2.9 we can see the places, where the different ADC structures are being used.

An important point to notice is the presence of sigma-delta ADC for high resolutions,

where the sampling rates are sacrificed. This shows the role of noise in amplitude-based

techniques. While the noise is combated by various schemes in reconfigurable methods,

it is much better to completely drastically reduce the effect of such noise by using time

domain based techniques. These techniques are described in the next section 2.3.

2.3 Time to Digital Converters (TDCs)

Since the Spiking Neural Networks work in time domain, It would also be essential to

look at the progress in conventional TDCs.
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2.3.1 First Generation TDCs

The first generation of TDCs make use of analog techniques to convert time interval

to digital signal. The main examples are the single slope and dual slope converters.

However, the main goals of the TDCs is to make use of scaled CMOS technologies

and become generic mixed signal building blocks for various architectures. As long as

TDCs use analog techniques, the above mentioned goals will not be reachable since they

cannot make use of robustness provided by digital technologies. So, we move to the

second generation TDCs [16].

2.3.2 Second Generation TDCs

The second generation TDCs are fully digital [16]. They do not have the disadvantages

of the first generation TDCs. The main problem they face is the problem of speed, which

is limited by the clock frequency. For faster TDCs they have to make use of specialized

oscillators. However, if they create relative clocks by making use of delay elements,

then the speed of the TDC is only limited by the delay element. An example of such a

delay line TDC is shown in Figure 2.11. In this example, the start signal moves through

the delay line producing delayed signals, which are then compared to the stop signal.

This creates a thermometer code, which can be sent to a digital processor for further

processing. There are various modifications to this basic structure, which reduces the

delay (Inverter delay line TDC), Extended Loop TDC, where the delay structure is

reused in a loop, Hierarchical ADC etc.

Figure 2.11: Implementation of Basic Delay-Line based TDC [16]
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2.3.3 Third Generation TDCs

The third Generation of TDCs focus on being much faster than their predecessors, i.e.,

their limit is not the speed of the delay element. They make use of parallel scaled delay

elements to obtain resolutions less than the delay of one gate (Inverter). This is called

Sub Gate Delay Resolution [16]. One of the basic examples of this type is a Vernier

Delay TDC shown in Figure 2.12. This works similar to a Vernier calipers. There are

two delays td1 and td2. One of the delays is slightly less than the other. The start and

stop signals move through these different delays providing an output that would be more

accurate, than a simple inverter delay line TDC. There are many other techniques like

pulse shrinking TDC, Local Passive Interpolation TDC, Gated Ring Oscillator TDC.

The Gated Ring Oscillator TDC is used by acam messtechnik GmbH. [69].

Figure 2.12: Implementation of Vernier Delay-Line based TDC [16]

2.3.4 Problems with TDCs

The following problems are the main focus of the TDC community

• The speed limit of the TDCs. The second generation TDCs were limited by the

speed of the delay element. However, this problem is partially solved by the third

generation TDCs.

• Typical TDCs will have problems, if the stop signal arrives before the start signal.

Bipolar TDCs are used to solve this issue by using a reverse TDC along with the

forward TDC.

• High dynamic range requires a much larger area, however, looped TDC solves this

issue by looping over the start signal until the stop signal arrives.
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• The basic linear TDC has good linearity for a small dynamic range. For larger

dynamic range with good linearity linearly extended TDCs are used.

To summarize, there are many TDCs, however, according to [16] each TDC is optimized

to its requirement. Further it is stated in [16] that no single TDC can solve all these

issues.

2.3.5 Self-Calibrated Stochastic TDC Architecture [7]

While there are a few TDC architectures, which focus on self-calibration, this is one of

the more interesting examples. It consists of an encoder, which ensures the monotonicity

of the TDC. There is a self-calibration module, when activated, calculates the DNL and

INL errors and stores them in memory. In normal operation mode the inverse function

of INL is used to correct and produce linear output characteristics. The presence of

this self-calibration module creates an interesting advantage. Since the TDC can be

self-calibrated using this technique, the delay elements need not be an inverter or buffer.

They can be replaced by process variations in flip flop circuits. This delay due to process

variations are much finer than those of any delay elements. This helps in obtaining sub

picosecond resolution for the structure.

2.4 Amplitude Based Neural ADCs

2.4.1 Hopfield ADC and Modifications

Neural architectures are fundamentally different from the traditional digital architec-

tures. Most problems in real life can be described as the search for best solutions. The

most prominent problems among these are pattern recognition or classification problems

and the ADC problem is one of them. In the 1980s neural networks became popular

with the introduction of backpropogation and Hopfield networks. Hopfield found that

a symmetric feedback from the output to the inputs of a neural network created an en-

ergy function, which generally moved towards the minimum value [92]. These are highly

parallel and can be optimized to solve many problems.

Hopfield in his work [17] discusses about using analog VLSI neural networks to solve such

problems. He begins this with the problem of AD conversion. He makes use of analog

amplifiers as neurons. These structures have feedback and high inter connectivity. The

resistors act as weights.
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Figure 2.13: (a) Hopfield 4-bit ADC neural network [17]. X is the analog input,
V3V2V1V0 is the digital output with each value being 0 or 1. (b) Hopfield ADC modified
for removing local minima by Sheu et. al. [18] (c) Lower Triangular Matrix to remove

local optima by Manetti et. al.,[19][20]

The Hopfield 4-bit ADC is shown in the Figure 2.13. It consists of four inverting am-

plifiers (One per bit). The amplifiers are assumed to have insignificant time constants,

however, the inputs are connected to a resistor leading to a reference ground and a ca-

pacitor. The integrative analog summation of input currents coming from other parts

of the network. The network has attractor states (energy surface), which will reach

the required states after an ideal start. The authors have found that the convergence

is pretty quick, however, it required perfect starting conditions or it got stuck at local

minima. Regardless of these disadvantages, this neural ADC was completely parallel so

all bits of the digital word are obtained at the same time. The ADC is also capable of

adaptivity, since the conductances (resistances) of the device can be changed. This can

be used for compensation of device mismatches and compensation of long term drifts

[18]. This structure was the first popular neural ADC, which was later improved by

various other researchers.

Sheu et. al., [18] added a correction logic to the Hopfield ADC so that the local minima

are removed from the ADC. This correction logic used simple digital logic gates fed back

to the inputs. The circuit can be seen in Figure 2.13b. The improvement cause by the

addition of these gates can be seen in Figure 2.14.
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Figure 2.14: Transfer Characteristics of Hopfield ADC vs. Sheu ADC [18]

Manetti et. al., in [19][20] found that a lower triangular matrix (Non symmetrical

network) also is capable of removing the local optima. This also removes the problem of

bad initial conditions. They found that the resistances in the network can be replaced

by R/2R ladder. This provides a lot of advantages for the resistance spread of the entire

network. Changing the Vref as shown in Figure 2.13c changes the code obtained to

BCD. Similarly it is also possible to obtain Gray codes. This method is very useful to

create n-bit ADC. The information can be made to cycle through the ADC and a shift

register to store the values. This will create a cyclical cascade to extract any number

of bits. This method would, however, loose the advantage of parallelism provided by

neural networks.

Newcomb et. al., modified Sheu et. al’s [18] work in [93] by using multi-level neurons

i.e. neurons which could have more than two states. With this they were able to use

just 3 neurons and 6 weights for a 6 bit ADC, while former required 6 neurons and 30

weights to accomplish the same. They also make use of transistors as weights since they

consume less area than resistors. This method, however, produces higher nonlinearities

than other techniques described above. Tanaka et. al., [94] modified Hopfield neural

ADC by making use of inverters for both neurons and weights and implemented the

complete circuit in conventional digital CMOS process.

2.4.1.1 Summary

While Hopfield’s ADC was the first ADC using neural approach to become popular, its

recurrent structure created a lot of problems because of local minima. The ADC requires

proper initial conditions to reach the right attractor states. While these problems have
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been circumvented in the modified circuits, they are more complex, have low resolution,

are non linear, and in some cases loose the parallelism, which has been the strength of

the structure. The strength of these structures like the capability for adaptivity and

compensation of manufacturing and drift related issues makes the approach relevant for

our work.

2.4.2 Synthesis of Neural ADCs

Perfetti et. al., studied about different ways of synthesizing neural ADCs in [8]. They

use three established techniques to synthesis neural ADCs. These are

2.4.2.1 ”Synthesis by Superposition of Sigmoidal Functions” [8]

The ADC problem can be considered as a classification problem, hence a multi-layer

perceptron can be trained as an ADC. Due to the problems with traditional perceptron

training using backpropogation techniques, here the authors use the superposition of

sigmoidal functions to model the ADC. Each function will model one state of the ADC,

which is trained using an optimization algorithm. In their first attempt they synthesize

a 3 bit ADC using this approach. The result can be seen in Figure 2.15. This structure

appears to be very similar to Flash ADC. It also requires the same number of compara-

tors, however, the decoding circuit can be realized easily in this structure as compared

to a Flash ADC.

Figure 2.15: Binary Coded ADC Generated by Synthesis (superposition of sigmoidal
functions) [8]
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2.4.2.2 ”Synthesis by N-layer Perceptrons”

In this approach, the weighted nature of the code is exploited to synthesize the ADC. The

digits of the output can be determines in descending order from MSB to LSB. Several

techniques have been used to synthesize using this type of a weighted code structure. The

authors show that these techniques synthesize structures similar to different conventional

ADCs like equilibrium encoder, algorithm ADC and Successive Approximation ADC

shown in Figure 2.16

Figure 2.16: Binary Coded ADC Generated by Synthesis (N layer Perceptron)[8]

2.4.2.3 ”Synthesis using Neural Nets with Lower Triangular Interconnect-

ing Structure” [8]

This technique works on Hopfield networks. It makes use of the network connections and

the transition states for each connection matrix with different threshold. The weights

and thresholds are modified until the required transition states are reached. One of the

obtained outputs, while synthesizing a 4 bit ADC is shown in the Figure 2.17

2.4.2.4 Summary

Three types of synthesis are described in the work. This comparison is shown in Ta-

ble 2.5. This table describes the different structures that they were able to synthesize.

These structures appeared to be roughly equivalent to the analog structures mentioned

in Table 2.5. Other than these structures, some more novel structures have been iden-

tified by the authors. This analysis of synthesis techniques shows that neural networks

can be used to create new novel high-level architectures.
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Figure 2.17: Binary Coded ADC generated by synthesis (lower triangular intercon-
nect) [8]

Scheme No. comp. No. of conn. Conv. tim. Analog eqv.

Sigmoid Superposition 2(N -1) 2(N+1)-N-2 tau Flash
N-layer perceptron v1 N 2N-3 Ntau SAR
N-layer perceptron v2 N N(N-1)/2 <tau >Ntau SAR

Lower triangular matrix 2(N-1)+ N -1 2N -N -1 2 tau 2 step flash

Table 2.5: Comparison between Neural and Traditional Analog A/D Structures by
Perfetti et. al., [8]

2.4.3 A Neural ADC similar to Pipeline ADC Architecture

Grimaldi et. al., have worked on various works related to the neural AD converters.

In their first work [95], as shown in Figure 2.18 they designed a neural AD converter,

which makes use of a comparator and subtracting amplifier for each stage. Each stage

measures the difference between a reference signal and the input value and propagates

the difference. They have modified this system in [21] and [96] to create cascadable

analog blocks (Neurons), which increase the resolution.

2.4.4 Other Approaches

In [22] Grimaldi et. al. propose methods for ADC neural modeling as shown in the

Figure 2.19. Here a precise ADC is used as a reference from, which the network would

learn. The network obtained could have the same precision, but it might be able to

operate at much higher speeds.
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Figure 2.18: Block Diagram of a Neural Pipeline ADC [21]

Figure 2.19: ADC Neural Modeling by Grimaldi et. al. [22].

Chanal et. al. [23] proposed a method to correct errors in an ADC using neural networks

shown in Figure 2.20 based on the ADC neural modeling approach in Figure 2.19

Pearce et. al., describe an ADC [97] designed by making use of noise. It makes use of

a technique called Suprathreshold Stochastic Resonance (SSR). where a population of

comparators with different noise levels are used to obtain an ADC. The area of such a

circuit is much larger than a regular flash ADC, however, the design is simple according

to the authors.

Figure 2.20: ADC Correction by Neural Networks proposed by Chanal et. al. [23]
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2.4.5 Summary

From the amplitude based neural ADCs we can clearly see the advantages of neural

approaches especially, when it comes to design of novel architectures, which are adaptive

in nature. These qualities, when used with time domain neural networks, can be used

to create robust ADCs.
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2.5 Spiking Neural Networks

Figure 2.21: Properties of a Spiking Neuron

Spiking Neural Networks are closer to biological neurons than perceptrons and other

artificial neurons. They have more properties to control and the outputs are spikes.

There are various coding techniques that can be used with spikes, however, the most

prominent natural techniques are ”Time to first spike” and Rate Coding.

The working of a spiking neuron can be seen in the Figure 2.21. The neuron has a

threshold similar to artificial neurons. The time constant of the neuron can be controlled.

If the time constant is low, then the input spikes have to be closer to each other to create

an output spike. Normally the membrane potential (V) of the neuron returns to the

”Resting Potential”, if it does not spike. If there is a spike, then the membrane potential

goes to a much lower value called ”Reset Potential”. Until it recovers and reaches the

resting potential it will not respond to any inputs. The time taken to reach the resting

potential from reset is called the refractory period of the neuron. Increasing this will

prevent immediate bursts of spikes in the output.

The spiking neurons have been studied a lot with analog implementations in the past

decade. One of the main advantages is, that the code is in time domain, which is much

more robust than amplitude domain. There have been a few implementations of ADCs

making use of these neurons.
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2.5.1 Spiking Neural ADCs

2.5.1.1 A Bio-Inspired Low Power ADC

The earliest spiking neural ADC approach is the Ultra-Energy efficient Spiking ADC

by Sarpeshkar et. al. [24].This work is similar to a conventional sequential pipeline

converter. The incoming voltage charges a capacitor and the discharge time is calculated.

This calculation provides the MSB of the ADC. The residual output is then converted

from time to voltage and amplified by a factor of 2 and fed back to the inputs. This is

able to create a design, where the resolution is linearly dependent on time. They also

make use of synchronizing clocks to provide more accuracy and compensate errors. An 8

bit design with layout is presented, which consumes 950 nW of power with 1.2 V voltage

source. It runs at a speed (sampling rate) of 45 kHz with an area of 0.021 mm2 with an

ENOB of 7.4 (SNR 47dB). The focus of this work is on bio-medical applications, which

require very low power.

Figure 2.22: Working of Spiking ADC by Sarpeshkar et. al.[24]

2.5.1.2 Time Interval Mapping based Spiking Neural ADC

The next work is by Torikai et. al. [25], where they create an ADC by making use of

spike interval times. Each analog input has a unique spike pattern in this approach. It

requires an operating time of (l+1) to obtain l bits of digital information. There are

two methods of obtaining the pattern, by mapping of spike positions and by mapping

of spike intervals. In this work, the authors experimentally show that Spike Interval

Maps are more useful than Spike Position Maps. A simple circuit model of their work

is shown in Figure 2.22. Here U(t) and B1(t) are two voltage sources synchronized with
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a clock signal. A complete circuit has been mentioned as part of future work, however,

no related work has been found.

Figure 2.23: Spiking ADC [25], MM is the Monostable Multivibrator

2.5.1.3 A Spiking Neural Network ADC Concept in C++

Cios et. al., introduce a population-based spiking ADC system [26] to decipher images.

Each neuron consists of a circuit, which makes it sensitive to one particular intensity,

by making use of several sub-circuits of such neurons for different intensities an ADC

can be created. This is mainly done using a combination of inhibitory and excitatory

neurons as shown in the Figure 2.24. This works based on a population of neurons

where several neurons detecting the same intensity are present. This redundancy helps

in increasing the accuracy. This ADC has been simulated in C++ with VSSN (Very

Simple Spiking Neurons). No chip implementation was found. The problem with this

approach is that precision and drift of the intensity detection neuron. While this can

be reduced by using a population of neurons (redundancy), it will greatly increase the

circuit area. The circuit can be trained only after manufacturing.

2.5.1.4 A Parallel Spiking ADC Architecture

In this work [27], a proof of concept Spiking ADC is discussed. It makes use of ”on” and

”off” spikes as shown in the Figure 2.25. Each of these pathways makes use of lateral

inhibition to inhibit the other neurons from spiking. The spike frequency, and phase

codes are used in this work. The spike rate increases linearly with intensity of the input

signal. An implementation is created with off-the-shelf components to prove that it can

work as an ADC.



Chapter 2. State of the Art 35

Figure 2.24: (a) Spiking ADC concept by Cios et. al., [26] (b) Rows show recorded
potentials at the locations in (a). The columns show different inputs. Inhibition switch

neuron is disabled in column d and enabled in column e.

2.5.1.5 Reconfigurable ADC using NEF

Mayr et. al. make use of the Neural Engineering Framework (NEF) as the base for

creating their ADC. NEF is a generic method for implementation of different algorithms

using biological spiking neurons [98]. They make use of the variations in frequency

with respect to the input signal. The variations in the property of the neurons create
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Figure 2.25: Spiking ADC [27]

Figure 2.26: Spiking ADC based on NEF Neuron [28]

changes to the frequency output curve. In this work, these changes are called ”Encoder

weights”. A related set of linear decoder weights should be found to return the required

output value. An exponential kernel is applied to the weighted spike summation for each

time step. In the implementation the parameter variation is accomplished through the

manufacturing process, however, this creates the need for individual decoder weights for

each ADC that is manufactured.
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Table 2.7: Comparison of Neuromorphic Spiking ADCs

2.6 Discussion

ADCs have applications in various essential fields from sensor signal conditioning to soft-

ware defined radios. The ADC problem has been tackled by various methods on different

fronts. The present conventional ADCs still work in the amplitude domain, however,

this path is moving towards a dead end. The main reason for this is the effect of tech-

nology scaling on the signal-to-noise ratio of the circuits. This also affects the dynamic

range of the ADCs. The effect of technology scaling can be clearly observed in 28 nm

ADC structures 2.1.5 where the amplifiers are noticeable by their relative absence, and

the clear movement towards SAR ADCs. These ADCs also have reconfigurable struc-

tures present to combat the problems with manufacturing. One of the major problems

faced by these approaches is that the properties of the ADCs will become worse with

technology scaling.

TDCs unlike ADCs have taken advantage of technology scaling with circuits becoming

better with the scaling and not vice versa. The second and third generation TDCs

have also moved towards digital technology for their designs, which are more robust.

The dynamic range of time domain signal processing will not be affected by technology

scaling. With these advantages TDCs are set to capture the market of conventional

ADCs. However, these TDCs work with pulse width modulated signals as inputs and

do not explore other possibilities. The TDCs also face problems due to manufacturing
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as they depend on accurate delays. These problems reduce the robustness of these

architectures.

The sensory system in animals is extremely important for the survival of the species.

The natural process of evolution has tuned these sensory systems of both predator and

prey to survive. This provides a huge knowledge base of ideas and inspirations for

us to exploit. Although there have been numerous neural architectures described in

the previous sections, they focus on inspirations from central nervous system. These

structures working both in amplitude and spike domain have been discussed in the

previous sections. Peripheral nervous systems have several features, which will become

more and more important in the near future like, multi-sensor fusion, local and global

adaptation, low power consumption, robust signal processing etc. The structure of these

sensory systems must be studied in detail and can be used to design ADCs or signal

conditioning systems, which can compete with living organisms.

Refining the goals of this work, described in section 1.2

• A thorough analysis of biological sensory systems from an ADC perspective

• Selection of the most suitable sensory model for an ADC, which can be imple-

mented.

• Study of various neural models to find the most viable model.

• Study of state-of-the-art analog VLSI spiking neural models to find the most suited

model to implement the concept

• Modifying the selected neuron models to have the advantages of the biological

counterparts, while removing their disadvantages (for e.g., not limiting our-self to

the speed of biological neurons).

• Study of various coding schemes, and comparing the selected coded schemes with

conventional schemes.

• Design of electronic equivalent of the selected biological concept and testing it on

a schematic level

• Physical design of the corresponding architecture

• Manufacturing and testing of the first chip in CMOS technology.
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Biological Sensory Systems

Sensory systems in living beings perform tasks identical to signal conditioning systems

discussed in the last chapter. There have been several adaptations of parts of sensory

systems in various real life problems. We will have a look at various transduction

processes that occur in human body and some special cases in other living beings.

3.1 Human Sensory System

Human Sensory System (HSS) acts as a nice starting point to understand the sensory

systems in living beings. In Figure 3.1 a simple description of the sensory units are

provided as a mind map. Here, it can be observed that each sensing unit preforms

multiple tasks. The nervous system including the spinal cord and the brain process the

information, which includes sensor fusion (for e.g., effect of smell on the taste of the

food, Pavlovian reflex etc.). The transduction of signals in each of these systems and

the signal processing by the nervous system are both essential, when designing a signal

conditioning system. Let us take a look at each of the sensory units and their unique

properties from an engineering perspective before going into the transduction and signal

conditioning methods.

Eyes

The eyes are the primary sensory units of the human vision system. Their structure is

very similar to that of a camera. It has a huge array of several types of sensing units

which are capable of performing different tasks. In humans there are three types of

cones and one type of rods, which help in color and night vision, respectively. [99]

39
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Figure 3.1: A Mind Map of Human Sensory System

Skin

The skin has a large area of ”sensors” which can detect touch, pressure and tempera-

ture. The sensitivity and density of these ”sensors” vary at different parts of the body

depending on their importance.

Tongue

The tongue is a modification of skin, which is able to sense different chemical signatures

and classify them. It consists of several detectors, which are tuned to detect specific

chemical structures. Tongue is used for other purposes in a few reptiles (For e.g., Snakes

use their forked tongue to detect vibrations and locate prey).

Nose

The nose is similar to the tongue, since it detects chemical signatures too, although it

uses ”non-contacting” principle. It is a multi sensor system similar to other sensory

units described above.
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Ears

The ears consist of bones, membranes, liquids, haircells etc., which detect vibrations.

In humans they are placed on the sides of the head and are almost impossible to move

independently. These bones are also used to maintain the balance of the body. Unlike

the previous sensory units, the ear has the least number of ”sensors” which is similar to

many sensing units we use practically.

Others

The sensory systems in other living beings are also extremely interesting like the infrared

sensors in snakes, magnetic sensors in pigeons, foxes, antennae of insects, whiskers of

mice etc. A few of these will also be discussed later in this chapter.

3.1.1 Intensity Detection

Figure 3.2: A Simplified Illustration Light Intensity Detection in Human Eye [29].

Every one of the sensory units described above can detect the intensity of their respective

signals [29]. Each ”detector” unit is sensitive to the signal, however, this sensitivity is

non-linear. The intensity detection can be represented by different codes in engineering,

for e.g., increase in voltage with respect to an increase in input signal, increase in pulse
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width with respect to increase in the input signal etc. In the biological neural networks

two codes are considered to be the most common, (1) Rate Code where the frequency

of the spikes is proportional to the input signal and (2) Time to First Spike, where the

time to spike is inversely proportional to the input signal [33]. These codes can be seen

in the Figure 3.2. A detailed comparison of the various codes will be presented in later

chapters.

The pulse width encoding is the expected encoding technique in conventional TDCS

[16]. The spiking neural techniques mentioned in the previous chapter mostly make use

of these transduction techniques.

3.1.2 Edge Detection

Figure 3.3: Edge Detection Ganglion Cells of Human Eye [30].

Edge detection makes use of receptive fields with both on- and off-centers to detect the

edges of objects [100]. This helps in fast movement detection. The use of on- and off-

center receptive fields is very effective. Schaik et. al. [27] use a similar structure in their

ADC, however, they do not mention an inspiration from this structure.
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3.1.3 Wavelength Detection

Figure 3.4: (a) Ideal Sensitivity (b) Actual Sensitivity to Wavelengths in Human Eye
[31]

Wavelength or spectral detection is performed in eyes for color vision [101] and ears (In

the nose, tongue, and skin it would be similar to chemical and texture detection). It

is commonly performed by having a set of detectors sensitive to different wavelengths.

The region, where this ”detector” is able to bond to the signal is its receptive field.

Receptive fields on their own are not very interesting from an engineering perspective

since they would be similar to a flip-flop or a latch. The resolution of such a sensory

unit would be equal to the number of receptive fields that are present. When there is

an overlap between these receptive fields, then these coarse ”detectors” can be used to

detect much finer changes in the signal. Figure 3.4 (a) shows an ideal representation

of receptive fields, while Figure 3.4 (b) shows the sensitivity of cones in the human eye

responsible for color vision.

3.1.4 Localization

Figure 3.5: Pain Localization in Skin

Localization of different signals or the answer to the question ”where?” is one of the

most important senses for any predator or prey. Every sensory unit has the capability

for localization. The use of place coding to find the location of pain is shown in the
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Figure 3.5. It can be observed that multiple ”detectors” are required for this type of

localization [102]. A similar technique is used for object recognition in the human eye

using Rank Order Coding / Place Coding [103]. These techniques make use of data

from several sensors, the density of sensors is directly proportional to the precision of

localization, for e.g., hand has higher density of mechanoreceptors than a less important

region like the arm. Although the use of several sensors and sensor fusion is becoming

more common in conventional signal processing systems, typically data from a single

sensor is used. Many animals from insects to mammals have paired sensory units, which

use data from only two sensors which are paired with each other for localization and

Tropotaxis. These use the minimum number of sensors (i.e., two sensors) for localization.

These paired sensors seem to have unique advantages in localization of objects. ADC as

a localization problem has not been studied in the past, this might be a good starting

point to study in detail in the next section.

3.1.5 Signal Processing in Central Nervous System

Figure 3.6: A Simple Recurrent Neural Network [32]

Signal processing in the central nervous system is still not completely understood, how-

ever, there are many types of neural information processing techniques that have been

proposed. The most popular methods are forward networks, convolutional neural net-

works, recurrent neural networks, Deep Learning, Hebbian learning, Kohonen SOM ,

RBF neural networks etc. While RBF neural networks are based on frequency detection

schemes using receptive fields described above, most other networks are based on the

working of neurons in central nervous system. Hopfield networks, which are now cate-

gorized under recurrent networks have been used extensively in the design of amplitude

domain neural ADCs as described in the previous chapter.
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3.1.6 Summary

In this section, an engineering perspective of human peripheral and central nervous

system and their uses in signal conditioning have been discussed. Many neural ADC

approaches tend to make use of the concepts inspired from central nervous system like

the Hopfield ADC and its derivatives. The concepts like multi-sensor fusion are inherent

to neural networks, the advantages of this is not yet completely tapped. Although

localization seems to be a promising approach, it requires multiple sensors, however,

paired sensory units for localization might provide a good starting point to study this

approach.

3.2 Localization using Paired Sensory Units

3.2.1 Tropotaxis

Figure 3.7: Forked Tongue of a Snake used for Smell Localization

The presence of paired sensory units is almost ubiquitous among animals. The best

example to show the advantage of paired sensory units is the forked tongue of a snake.

Snakes use their forked tongue in combination with the Jacobson’s organ located at the

top of their mouth for smell localization Figure 3.7. The forked tongue collects the data,

while the Jacobson’s organ acts as the sensory element. This ”feature” is not present

in humans and other mammals. The evolution of a forked tongue for such localization

shows the importance of paired sensors. Accurate localization is impossible with the

presence of one sensory unit. Binocular vision for better depth perception also requires

paired sensory units. Most predators have binocular vision for accurate targeting, while

prey have peripheral vision for easily locating a predator. There is significant research
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in the use of antennae of cockroaches for tactile localization, among many other sensory

purposes [104]

3.3 Jeffress Model for Sound Localization

Figure 3.8: Jeffress Model of Sound Localization

The main example of paired sensors in humans are the ears. Sound localization in human

ears was theorized by Jeffress in 1948 [105] as shown in the Figure 3.8. The time delay

between different branches are used as the base for localization. The signals ”meeting”

each other through these time delayed paths are checked for coincidence. Depending

on the paths that are active for coincidence, the localization can be achieved. Each of

these coincidence detectors act as virtual sensors, thus creating the effect of a population

of sensors. The output from these is very similar to the output from skin localization

shown in Figure 3.5. It is important to note that these coincidence detectors act as

receptive fields based in time instead of frequency as described in frequency detection.

These detectors produce a place code instead of a 1-of-n code. The advantages of place

codes will be described in detail in the following chapters.
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3.4 ADC as a Localization Problem

Figure 3.9: ADC as a Localization Problem (right), Jeffress Model of Sound Local-
ization Visualized (left). (The values t1 and t2 indicate the time taken from the source

to s1 and s2 respectively.)

Localization is an inherently linear problem, unlike, intensity detection for instance,

where an exponential transduction has more advantages. This makes it a natural in-

spiration for an ADC. Figure 3.9 describes the concept of an ADC based on auditory
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localization described in the previous section, where s1 and s2 are the two paired sensors.

If we construct an ADC based on Figure 3.8, we would get the structure shown in Fig-

ure 3.10. The inputs and outputs here are in spike codes, converting spike time intervals

to spatial codes. This structure can be constructed in any technology and tested to see

if it can function as theorized. The amplitude to spike conversion also can be performed

by neurons similar to the neurons used as coincidence detectors. The second architec-

ture is based on ”Tropotaxis” found in many insects and reptiles, including snakes [106].

It has been observed, that the animals using Tropotaxis move their heads or bodies in

the direction of the source until the signals from the paired receptors coincide. This

phenomenon has many advantages since it is capable of self-calibration. We can sim-

ulate the movement of the head by several methods. One of the methods is described

in Figure 3.11. Here the head movement is ”controlled” by changing the delays of the

delay elements. The degree of change of the delay elements provides the required digital

output. Figure 3.12 shows another way of implementing Tropotaxis based ADC.

Figure 3.10: Architecture 1: ADC based on Jeffress Model

3.4.1 TDC and SDC Architecture

A comparison between Figure 3.13 with Figure 3.10, and Figure 3.11 shows the simi-

larities and differences between the conventional TDC architectures and the presented

architecture (which will be referred to as Spike to Digital Converter or SDC from now

on.). The following advantages can be clearly observed.

• The TDCs use pulse width modulation as the input, while this structure uses spike

interval codes. This means that the TDC inputs can work only in one half of the

span, i.e., the start signal should always be before the stop signal. This is not
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Figure 3.11: Architecture 2: ADC based on Tropotaxis

Figure 3.12: Architecture 3: ADC based on Tropotaxis v 2.0

Figure 3.13: Simple TDC Architecture

the case with spike interval coding so twice the amount of information can be

represented by this code as compared to pulse width modulation.
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• The SDC architecture produces a set of spikes for zero input. This information is

crucial for self-calibration of the structure.

• The symmetrical structure of the SDC provides an advantage, that the mismatch

in manufactured components can be detected inherently.

• Coincidence detection offers more information than a flip-flop/latch. This will be

discussed in detail in Chapter 6.

3.5 Time Interval Code vs. Pulse Width vs. Time to first

Spike vs. Rate Coding

Figure 3.14 shows four different popular time domain coding schemes. Time to first

spike coding scheme is found in the nervous system of animals, mainly proven to be

used for object recognition by the eyes [103]. The main advantage of this scheme is

the speed of processing, unlike rate coding where a window of spikes is checked for the

frequency. On the other hand, rate coding is robust. Pulse width modulation is the

standard coding technique used in TDCs. In terms of advantages, it is similar to rate

coding for processing, however, its robustness when compared to rate coding must be

studied. Time Interval Coding has the advantage of at least having twice the range of

pulse width modulation in the same time scale. It also has two pulses, which are active

for a ”zero” input. This is different from the other codes discussed here. Since two pulses

carry the information, it can be considered quite robust compared to other schemes, as

any spurious spike can be easily avoided during decoding.
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Figure 3.14: Visualization of Four Major Time Domain Coding Schemes

3.6 Discussion

Sensory System and the peripheral nervous system have a significant evolutionary history

of sensor signal conditioning and processing. There are several interesting concepts here

that can be used in various electronic systems for, e.g., cold blooded animals can be

studied for sensors with energy harvesting and low power. While vision in humans and

other animals has been explored in research, the other sensory systems are not in the

forefront of research yet. In this chapter, an abstract study of the sensory system from

an engineer’s perspective has been presented. Since most of the sensory units use a

population of sensors, human auditory system and other sensory systems with paired
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sensors were selected as the first step to design an ADC. Two architectures based on

sound localization and Tropotaxis have been presented and compared to conventional

works. The similarity with TDC structures show, that these concepts can be easily

converted to manufacturable electronics. It can also be observed that these structures

are inherently robust, and capable of self-calibration. Local adaptation by making use

of hybrid architectures will be discussed in Chapter 8.
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Neuromorphic Computing

Figure 4.1: Biological Neurons

While Neuromorphic Computing is still not technically mainstream, people are slowly

becoming aware of its advantages. The dream of parallel computing with noisy adaptive

modular silicon neurons, which are naturally capable of powerful pattern recognition,

has been a part of research for more than three decades. There are several reasons why

neurons are being modeled in silicon.

Some of them are

• Software neural models do not run efficiently on von-Neuman systems.

• Parallel computing with noisy neurons

• Understanding the human brain to imitate or to cure diseases.[72] [38]

• Interacting with biological neurons [107]
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• Replacing traditional analog with neural modules.

• Create autonomous robots which can learn like children [55]

4.1 Biological Neuron Dynamics

Understanding the functioning of the nervous system was an integral part of the cre-

ation of the initial biological models. The models have various abstraction levels from

extremely complex and realistic models to point neuron models. Regardless of the ab-

straction level of the neural model, the basic neuron dynamics works as shown in the

Figure 4.2. It should be noted that artificial neural models like multi-layer perceptrons

do not posses such dynamics.

Figure 4.2: Neural Dynamics [33]

The neuron has several properties as shown in Figure 2.21

• Threshold: The neuron spikes, when the membrane potential is greater than this

value.

• Resting Potential: The resting state membrane potential

• Reset Potential: The neuron moves to the reset potential after the spike and

gradually returns to resting potential
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• Time Constant (τ): The rate of discharge of membrane potential to resting poten-

tial.

• Refractory period: The time taken for the neuron to return to resting state from

the reset state.

In Figure 4.2 A we can see a single pre-synaptic spike moving towards the target neuron.

In the corresponding plot we can observe the characteristics of the neuron. This spike is

not able to provide enough charge to create a post-synaptic spike. In Figure 4.2 B there

are two pres-synaptic spikes from two different neurons, however, a post synaptic spike

is still not created. In Figure 4.2 C we can see the presence of the post-synaptic spike.

From this series of images we can also derive an interesting effect. The total amount of

charge going into the target neuron is inversely proportional to the time taken for the

spike (Time-to-First-Spike Coding). It is also completely valid to say that this charge is

also proportional to the frequency or rate of the output spikes (Rate Coding). In this

work, we will focus on Time-to-First-Spike codes since they are much faster than rate

codes, and rate codes have been proven biologically-impossible in many scenarios [103].

4.1.1 Coincidence Detection

Figure 4.3 and Figure 4.4 show how the neuron dynamics described in Figure 4.2 are

capable of producing temporal Gaussian kernels. These kernels are the main modules,

which work in both Jeffress Model and Tropotaxis described in Chapter 3. The time

constant of the neuron described by u(t) in the figures above plays a major role in

manipulating the width of the Gaussian kernel. Amplitude based Gaussian kernels, a

part of RBF networks are extremely popular in pattern recognition and artificial neural

networks.
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Figure 4.3: Neuron Dynamics Creating the Gaussian Kernel

Figure 4.4: Coincidence Detection Creating Time Domain Gaussian Kernel based on
Neural Dynamics from Figure 4.3

4.2 Biological Neuron Models

There are several biological models of neurons beginning from the simple integrate and

fire model in 1907 to custom neural models developed by IBM for its True North Chip.

A comparison of various neural models taken from [34] is shown in the Figure 4.5 and in

Table 4.2. In Table 4.2 we can see several properties each model is capable of, while it
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Figure 4.5: Comparison of Neural Models [34]

is optimal to find the model with most properties and the least relative implementation

cost we should also look at the features required for our proposed circuit.

In our proposed work, we require

• Time-to-first-spike inversely proportional to the incoming charge.

• Coincidence Detection

• To act as a time delay neural network

These basic properties can be implemented with any spiking model described in Sec-

tion 4.3. From the Table 4.2 and the Figure 4.5, we can shortlist Integrate and Fire

based models and Izhikevich models to look for their integrated counterparts.

Table 4.1: Comparison between Neuron Models [34]
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4.3 Izhikevich Spiking Neuron Model

From our analysis, Izhikevich model is chosen as one of the shortlisted structures. Izhike-

vich in his work [34] was able to simplify complex multidimensional neural models like

the Hodgkin Huxley model to two differential equations using bifurcation methodologies

as shown in the equations 4.1, 4.2, and 4.3 below.

v′ = 0.04v2 + 5v + 140− u+ I (4.1)

u′ = a(bv − u) (4.2)

with the spike resets

if v >= 30 mV, then v ←− c, u←− u+ d (4.3)

Here v represents the membrane potential (dimensionless), u represents the membrane

recovery after a spike (also dimensionless). The model has the max spike potential set

at 30 mV, resting potential between -60 and -70 mV and threshold varying between

-55 mV to -40 mV. These parameters are only considered in functionality for the analog

models.

The parameter a describes the refractory period, b describes the sensitivity of u , c

describes the reset value, d describes the reset of the variable u. Different choices of these

parameters will result in different types of firing patterns found in biological neurons

like regular spiking, bursting, chattering, fast spiking, cortical spiking etc.

4.3.1 Analog Model

Figure 4.6: Izhikevich Neuron [35]

One example of the Izhikevich model has been implemented by Wijekoon et. al. [35].

The circuit is shown in the Figure 4.6. The proposed circuit functionally replicates the
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mathematical model. It has 14 transistors and 2 capacitors with configurable threshold,

bias, c, and d values.

Figure 4.7: Izhikevich Neuron Sub Circuits (a) Membrane Circuit (b) “u” Circuit (c)
Comparator Circuit [35]

The working of the circuit can be explained by its three sub-circuits as shown in the

Figure 4.7.

Membrane Circuit: The current mirror with M2 and M3 act as a positive feedback

loop for the incoming spikes. M4 is the leakage transistor controlled by the variable

“u”. The sum of these currents are integrated by the capacitor CV . When the spike

is generated by the comparator circuit (described below), it is fed back to M5, which

discharges the membrane potential, thus, resetting the spike.

“u” Circuit: This circuit is similar to the previous one, but it is relatively slower. The

transistor M7 discharges smaller current than its counterpart M3 and the capacitor Cu

is larger than CV . The transistor M8 acts as the discharge transistor, however, the tran-

sistor does not completely discharge the “u” after the spike. The residual voltage keeps

increasing with output spikes, creating “Spike Frequency Adaptation” effect present in

biological neurons.

Comparator Circuit: The circuit compares the membrane potential V with the thresh-

old potential Vth to create the spike. When a spike is created, it sends the spike to VA

and VB (VB is an inverted spike). M14 increases the comparator current during the

spike.

4.4 Leaky Integrate-and-Fire Model

Since the working of integrate-and-fire model is explained in Figure 4.2 and in Fig-

ure 2.21, the VLSI models are directly considered.
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4.4.1 Analog Model

Figure 4.8: Integrate and Fire Neuron [4]

An implementation of Leaky Integrate-and-Fire neuron by Indiveri et. al. [4]. This is

a modified model with several other properties similar to quadratic integrate-and-fire

model. The circuit consists of 21 transistors and one capacitor. The working of the

circuit is described below

Membrane Circuit: This circuit consists of the transistors M1,M14, inverters M4,M5

andM12,M13 and the membrane capacitor CMEM . The current from the synapse charges

the capacitor CMEM . This goes through the threshold control circuit to the inverter.

When the voltage is greater than the crossing point of the inverter, then it activates the

second inverter. The same circuit also activates the refractory period control circuit,

which discharges the membrane potential through M13. Meanwhile the transistor M1 is

leaking the membrane potential based on VLEAK .

Threshold Control: It is a simple voltage follower circuit, which gives more options

to control the threshold of the neuron.

Refractory Period Control: This circuit controls the transistor M13 to discharge the

membrane potential, and continue doing it as long as it is required by the voltage Vrfr.

Positive Feedback: This circuit is designed for low power consumption. The positive

feedback from the first inverter increases the membrane potential faster.

Spike Frequency Adaptation: The output spike is fed back to M18, which controls

IADAPT based on VADAPT . It reduces the spike rate for continuous inputs. This is a

biological property of neurons to adapt to environmental noise.
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Figure 4.9: Digital Leaky Integrate and Fire Neuron [36]

4.4.2 Digital Model

The Leaky Integrate-and-Fire model is the most commonly used neural model, The

digital version of the circuit is shown in Figure 4.9. This circuit is simple, It has counters

(7-bit) to replicate the increase of membrane potential and the leakage. A comparator,

which compares, if the membrane potential is greater than the threshold to reset and

create the spike. The synapse consists of a pulse generator with configurable weight. It

is also possible to make the synapse excitatory or inhibitory.

4.4.3 Optical Model

Figure 4.10: Optical Integrate and Fire Neuron based on Saturable Absorber (SA)
Laser to be Implemented in Vertical Cavity Surface Emitting Laser (VCSEL) [37]

A laser integrate-and-fire neuron has been proposed by Nahmias et.al. [37]. It is based on

saturable absorber laser shown in Figure 4.10. This structure has a gain medium, which

can be selectively perturbed by inputs either electrically or optically. A network of such
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lasers implemented in VCSEL technology can act similar to network of leaky integrate-

and-fire neurons, which are billion times faster than their biological counterparts.

4.5 The aVLSI Synapse

While the digital and optical neurons has synapses built in to their neuron bodies, the

analog models discussed above require synapse circuits for processing. The synapse plays

an important role in the circuit by providing weight to the incoming spike. However,

this is not the only task for the synapse. It must produce enough current to charge

the neuron, and must be linear to mimic various biological circuits. the design of the

synapse and its evolution are shown in Figure 4.11 and Figure 4.12 [3].

Figure 4.11: Evolution of Synapse - Part I [3]
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Figure 4.12: Evolution of Synapse - Part II [3]

4.6 Brain Scale Neuromorphic Chips

While the long time research of ISE group has been towards applications of neural ap-

proaches in sensor signal conditioning systems, understanding of large scale neuromor-

phic chips built recently might provide an overview and comparison with the approach

used in this thesis work. The essence of neuromorphic computing was started by Carver

Mead in the early 80s, now there are more than a few architectures that are working

towards brain scale computing like IBM, DARPA, HRL and universities like Heidelberg,

Manchester, Stanford etc. The main goals of these structures are to mimic brain like
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capabilities to create solutions to a variety of problems, which do not include signal

conditioning and processing.

Figure 4.13: (a) Arrangement of HICANN Chips on Wafer (b) Main Functional
Blocks of the HICANN chip (c) Main Elements of the ANNCORE [38]

These large scale architectures make use of various technologies to achieve their goals,

which include mems, digital and analog circuits. The neuromorphic chips from HRL

(Huge Research Labs) make use of memristors on CMOS to provide synaptic connections

with re-configurable weights [56] . Since the memristors occupy a large area, the spiking

neurons are designed to be 10,000 times faster and time-division-multiplexing is used to

modify the synaptic connections as required. This creates a much larger set of virtual

synapses. The goal of the work is in autonomous robotics where the robot can learn and

mature over time. They create large neural networks by connecting all the chips on a

wafer and creating interconnecting wafers.

Another group that integrates several wafers is from Uni-Heidelberg on their HICANN

chip [38]. This is shown in detail in Fig. 4.13. The neuron core is made of two “chips”,

eight of these analog cores together form one HICANN chip. The chips are then con-

nected by post processing on the wafer. At present 6 wafers have been connected to

create the large scale neural network. This was a part of the FACETS project, which

has now been extended to BrainScaleS project [72]. The neurons on these chips are also
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several times faster than their biological counterparts. The goal is to create a brain,

which can simulate a day of human learning in a few minutes. This can help in learning

a lot about plasticity and learning in humans.

Figure 4.14: Neurogrid Platform.( The cortical neurons shown on the left are func-
tionally mapped on to the chips as shown in the right.[39])

Kwabena Boahen et.al. from Mead’s lab have created the neurogrid project [57], which

is capable of simulating 65,536 neurons per chip with 500 million synapses. The neurons

are modeled based on Hodgkin Huxley models, which increases the complexity of each

neuron by several orders more than the other approaches here. This project was built to

mimic brain and is now focused on connecting such chips to human body for providing

bionic extensions to challenged people. The power consumption of this structure can

only be beaten by the True North chip of IBM.

The True North chip was created by IBM as part of DARPA’s SyNAPSE project. This

makes use of a custom digital neuron model, which is comparable to the Izhikevich

neuron model discussed in the previous section [58]. This model has one million neurons

with 256 million synapses and is the largest neural chip available today. While there is

no wafer integration, 16 chips are integrated to create a large scale neural network. The

goal is to make neural structures available for mobile sensors and cloud computing.

SpiNNaker is designed by Uni. Manchester as part of the Human Brain project [59]. The

interesting part of the chip is the neuron model. They make use of ARM cores to create

several different neural models, which can be selected by the user. Each chip can contain

up to 16,000 neural models depending on users choice. The present implementation has

1,152 chips connected to form a large scale neural model. The main focus of the project

is to understand, simulate and learn more about diseases in human brain.
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Table 4.2: Comparison between Brain-Like Neuromorphic Chips
[55][39][56][57][58][59]

4.7 Neuromorphic Architectures for Sensing

As discussed in Chapter 3, neuromorphic architectures would provide several advantages

in sensing and signal processing. The goal of this work is to make a generic ADC, which

can replace traditional ADCs without any changes to the overall architecture of the

systems. The generic ADC should be capable of working with any type of sensor. Many

groups are focused on creating sensors mimicking human senses. A few examples are

shown below.

4.7.1 Silicon Retinae [9]

There are a few groups working on creating silicon retinae. Research has shown that

human eyes are extremely fast at detecting faces [103]. This has led to the creation of

Dynamic Vision Sensor, which became a part of the Robotic Goalie project. The robot

was able to accurately predict and stop most of the balls going towards the goal. They

also make use of stereopsis mentioned in the previous chapter to attain depth perception.
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Figure 4.15: CAVIAR Multi-Chip Vision System [9]

CAVIAR is a much larger project with several universities working to create massively

parallel hardware for high speed object recognition and tracking, capable of handling 2

million events per second. The architecture of the system is shown in Figure 4.15. Each

chip performs one step of the process and the chips are connected to each other using

address event representation, which will be discussed in the next section. It contains

about 45,000 spiking neurons and five million synapses with spike and rate based learn-

ing combined with recurrent learning techniques. The connections to the synapses are

implemented using convolutional chips. The goal of the work is to create complex real

time real world artificial neural systems.

4.7.2 Silicon Cochlea [10]

Figure 4.16: AER EAR2 Silicon Cochlea

AER-EAR project works on silicon cochlea. They create circuits, that model mammalian

cochlea, hair, and the initial neural system. They make use of address event represen-

tation (Hence the name AER-EAR) to create the system with several communicating

chips. They work with spike frequency processing instead of spike timing. They are able

to simulate the sound localization discussed in the previous chapter by cross correlation

of frequencies from two microphones. They do not try to emulate biological neurons in

terms of speed, their system works at a maximum rate of 50 kHz. The architecture of
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the system is shown in Figure 4.16. The future goal is to try and emulate biological

models in a more realistic manner.

4.8 Inter-Chip Communication in Neuromorphic Circuits

In the previous sections we have seen various multi-chip and multi-wafer circuits. This

seems to be common in neuromorphic systems. Is this required for a relatively simple

single chip or a shared chip ADC ? In the proposed concept, coincidence detection has

been discussed and the proposed architecture implemented for a 16 bit system will have

several hundred neurons. A regular chip cannot support outputs on a large scale, so it

must be converted to more appropriate digital format. The most popular approach as

seen in the previous section is Address-Event-Representation (AER). The working has

been discussed in more detail below.

4.8.1 Address Event Representation

Figure 4.17: Address Event Representation [40]

Figure 4.17 shows a very concise description of AER. The goal of the encoder is to encode

the address of the neuron that arrives. This system is perfect for our task. However,

the implementations of this technique have been only in rates conforming to biological

neurons. The system was also designed for chips working on populations of neurons so in

many situations the accurate time or position of the spike is statistically unimportant.

Many systems make use of arbiters to decide the order of spikes, which occur at the

same time. Typically, these arbiters arbitrate for two neurons and are designed in a tree

like structure [39]. The result of these arbiters are sent to address encoders. The system

is usually designed in a two dimensional fashion with rows and columns to increase the

speed of encoding.
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4.9 Summary

In this chapter, neural building blocks and larger neuromorphic chips and architectures

have been discussed. Based on the analysis in the first section on neural models, the

advantage of the Integrate-and-Fire model is clearly observed. The model has been

implemented in several technologies as discussed above. Additionally, there are also

quantum implementations of the model. The architecture proposed in Chapter 3 is

viable in all of these technologies. The technologies accessible for this thesis work are

analog and digital. Which technology should be pursued ? This is answered by Joubert

et. al. [36]. In their work they study and compare the analog and digital versions

of the neuron. While the digital neuron is relatively easier to implement, the power

consumption and area is much higher. The digital version can beat the analog version

only if the technology is smaller by several orders of magnitude. In their analysis they

state that the analog version would have power advantage until the digital version reaches

the 22 nm technology node. They implemented both the analog and digital neurons in

ST Microelectronics CMOS 65 nm technology. This work can probably achieve more by

using simpler neuron design among many other design considerations.

In the second part of the chapter, several large scale neuromorphic architectures have

been discussed. While various groups focus on mimicking mammalian senses or human

brain, this thesis work and the scope of ISE research will pragmatically examine the

building blocks and architectures best suited for creating a practical and viable ADC,

which can compete with commercial ADCs and TDCs.

.





Chapter 5

Building Blocks of the SSDC

This chapter focuses on the building blocks of the architecture discussed in Chapter 3.

The main goal of this chapter is to show that the analog models work behaviorally similar

to their biological counterparts. While the sizing of the structures in this chapter has

been found by investigation of sensitive components by simulation of worst case corners,

temperature corners, Monte-Carlo analysis, and reducing the sensitivities, these sizes

are not universal and will be modified in the following chapters for application specific

purposes. The investigation methodology of this thesis work is described at the end of

this chapter.

5.1 Leaky Integrate and Fire Neuron

The working of this Leaky Integrate and Fire model has been discussed in detail in

the previous chapter (Section 4.3). In this section, the results of the simulations are

shown and discussed. The sizing of the transistors is shown in Table 5.1. The sizes

are optimized for producing the spiking neural properties with highest variability for

various programmable voltages. These values can be further optimized depending on

the application scenario with more specific goals.

In the simulations shown below we make use of the parameters shown in Table 5.2

with variations of the parameters explicitly mentioned in the simulation result. The

simulations are performed for various pulse width values of input current pulses. The

goal of these simulations is to show the properties of the neuron, which can be used in

the present and future works.

In Figure 5.1 and Figure 5.2 , we can see that the spikes occur regardless of the frequency

of the pulsed input. The main advantage of this is, that the spikes will not vary a lot for

71
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Table 5.1: Final Component Sizing

Table 5.2: Component Parameters used in the Following Experiments. (Variations
are mentioned wherever used. These parameters were identified by combinatorial para-

metric analysis.)

noisy sources for the sensing elements. The neurons will also work for spiking sources.

While the speed of the first spike occurrence shown in the simulations is in the order

of 500 ns, this can be easily modified and made to work much faster. These are shown

later in this chapter.

Figure 5.3 1 shows how the time for first spike varies with the amplitude of the input

current. This shows that the current can be directly converted to spike time data. We

1ISY NAPSE and ISY N are used alternatively throughout the text



Chapter 5. Building Blocks of the SSDC 73

Figure 5.1: Simulation of Spikes with 500 ns Input Pulse Showing the Change in
Membrane Potential

Figure 5.2: Simulation of Spikes with 5 ns Input Pulse Showing the Change in Mem-
brane Potential

can also see that the frequency of spikes are proportional to the amplitude of the input

current. However, the advantage of using time to first spike codes over frequency codes

in terms of speed and power have been discussed in [103] and [5].

Figure 5.4 shows the change in the refractory period of the neuron. The transistor M10

is meant to work in sub-threshold region. This feature is extremely useful since the

number of spikes in a fixed time period can be easily controlled. Figure 5.5 shows the

change of spiking with the change in the threshold voltage of the neuron. While this
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Figure 5.3: Simulation of Spikes with Different Input Currents ISY NAPSE

Figure 5.4: Simulation of Changes to Spikes with Change in Voltage Controlling the
Refractory Period

might be useful for many applications, In this work, the threshold provided by CMOS

transistors might get the required results.

Figure 5.6 shows the effect of short term potentiation. The frequency of the spikes

gradually reduces over time for the same signal as shown in Figure 5.7. This memory is

removed, when the input signal changes. This can be very useful for creating sensors,

which will stop reacting to environmental noise. However, this feature will not be a part

of this thesis work as it increases complexity. This feature will be pursued in future

research work.
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Figure 5.5: Simulation of Changes to Spikes with Change in Voltage Controlling the
Threshold

Figure 5.6: Simulation of Spike Frequency Adaptation

5.1.1 Discussion

In this section, the properties of analog LIF neuron shortlisted from the previous chapter

have been shown. While the neuron seems to be extremely flexible, the focus of this

design was to imitate a biological neuron [4]. This results in slower operating speed.

Since this work is not bound to the limitations of biological nervous system, but the

limits of the technology, this neuron has to be simplified and made to perform as fast as

the technology allows. In the first step a simple LIF neuron without biological adaptation

methods would be useful to create the foundation for the planned SSDC.
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Figure 5.7: Spike Frequency Adaptation Curve (showing the change in spike frequency
over time, if there is no change to the inputs. This ”memory” is lost, when there is a

change to the input values.)

5.2 Simplified Leaky Integrate and Fire Neuron

Figure 5.8: Leaky Integrate and Fire Neuron (Simplified from Indiveri’s neuron)

In Figure 5.8, a simplified LIF neuron is presented, which has been deprived of many

components unnecessary for the target of this work. Another goal is to make the neu-

ron reach the speed limits of the technology. The modified structure has a membrane

capacitor with M1 leaking a fixed current depending on VLEAK voltage. As the mem-

brane capacitance increases above the crossing point of the first inverter, the inverter

output changes. The output of this inverter is sent to two components. One is an in-

verter constituting of transistors M11 and M12, which produces the output value. The

other component is a current starved inverter, which discharges the membrane potential

VMEM by controlling the transistor M13 to reduce the membrane Voltage and effectively

producing the spike. Depending on the Voltage VRFR, this transistor keeps discharging
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the membrane potential for a proportional period of time. The initial experiments shown

here will use the same component sizes as the previous neuron to show the properties.

The other parameters will also remain the same as Table 5.2 unless specified in the

simulation figures present in this section. These values will then be optimized depend-

ing on the specific application (for, e.g., Coincidence Detection requires a membrane

capacitance CMEM of negligible size, while SSC requires a much larger CMEM ).

Figure 5.9: Simulation of Spikes for Different Input Currents.

Figure 5.9 shows the spikes for ISY NAPSE currents in the range mentioned. The non-

linearity of the spike response is the result of leakage by the transistor M1.

Figure 5.10: Simulation of the Effect of VRFR on Spikes in the Simplified Integrate
and Fire neuron
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Figure 5.10 shows the change in the refractory period of the neuron, depending on the

voltage VRFR. The most effective span is between 400 and 600 mV.

Figure 5.11: Effect of Vleak Voltage on Simplified Integrate and Fire Neuron

Figure 5.11 shows the simulation of VLEAK voltages for two different current inputs.

Figure 5.12: Effect of Temperature on the Neuron

Figure 5.12 shows the effect of temperature on the neuron. The transistor discharging

the membrane potential M13 and the refractory period control circuit seem to be the

most sensitive part of this design. This can be observed by the fact that the time to

first spike did not vary at different temperatures. As discussed before, since we focus

on the time to first spike rather than the frequency of spiking, the effect of temperature

seemed to be negligible for this circuit. However, this is only true if the current feeding

the circuit is ideal. Its behavior will be different, when it is fed by the non-ideal synapse
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circuit. It can be concluded that the neuron is behaving as required and the focus should

move to the synapse to provide close to ideal inputs.

5.2.1 Discussion

This simplified neuron is capable of the tasks required by our proposed architecture. It

is also much faster than the original circuit. The sizing of the capacitors in the circuit

can be further modified as required by the application at hand (for, e.g., Coincidence

Detection requires a membrane capacitance CMEM of negligible size, while SSC requires

a much larger CMEM ).

5.3 Differential Pair Integrator Synapse

While the neuron model provides the required behavior, it performs only the task of the

neuron body. The current fed to the neuron should be generated ideally by one or more

synapses. Each neuron can be connected to several other neurons, and also have inputs

from several other neurons. The synapses make these connections with the weights,

thresholds, and time constants required for each input value. We have discussed various

synapses in the previous chapter.

Figure 5.13: Differential Pair Integrator Synapse

Figure 5.13 shows the Differential Pair Integrator synapse. The working of this synapse

is based on the capacitor Csyn and the PMOS transistor Msyn. The capacitor Csyn is

charged by the transistor Mτ . The charging speed depends on Vτ . The other transistors
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play a role in discharge the synapse current. When a pulse arrives, the transistor Mpre

starts discharging the synapse current depending on the voltages Vw and Vthr. Depending

on the size of Csyn and Vτ there is a slowly reducing current at the output. This replicates

the required neuron dynamics.

Figure 5.14: Controlling Capabilities of each Voltage Exemplified by the Radius of
the Knob. (It visualizes the effect of change in voltage to the change in ISY NAPSE)

From the point of view of analog design, Figure 5.14 shows the effectiveness of different

voltages in control of the output current. These have the additional capability of cor-

recting for process, manufacturing, and temperature related deviations. The effect of

these changes can be seen in the simulations below.

Figure 5.15: Output Current ISY NAPSE from the DPI Synapse

In Figure 5.15 and Figure 5.16, the effect of the pulse width and period (normally there

is only one input pulse in our application), for the configured parameters, on the output

current ISY NAPSE can be observed. The current is negative because the direction of the

current measured is moving out of the transistor Msyn.

Figure 5.17 shows the control of time constant of the neuron by changing the voltage Vτ .

When Vτ is high (3.3 V), the synapse converts the neuron into a simple delay element

and looses all the characteristics of a neuron.
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Figure 5.16: Output Current ISY NAPSE from the DPI Synapse for 5ns Pulse

Figure 5.17: Effect of Changes to Vτ on DPI Synapse

Figure 5.18 shows the effect of the threshold voltage. The linearity of the change in

output current to the change in threshold can be observed. This is different from Fig-

ure 5.19, where the changes in output current with respect to the changes in Vw is not

linear. This observation is very useful, when adding adaptation to these neural circuits.

Figure 5.20 and Figure 5.21, show that the change in output current with respect to

the change in input pulse is linear. This is very important for replication of coincidence

detection properties of the neuron.



Chapter 5. Building Blocks of the SSDC 82

Figure 5.18: Effect of Changes to Threshold (Vthr) to Current Output of DPI Synapse

Figure 5.19: Effect of Changes to Weight (Vw) to Current Output of DPI Synapse

5.3.1 Discussion

This section showed the structure of the synapse, which has 3 different control volt-

ages. These control voltages can be used to modify the behaviors of the neuron or for

adaptation of the analog structure to deviations due to process, temperature, and aging.
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Figure 5.20: Current Output ISY NAPSE Change for Different Vin Values at Vτ of
1.5 V

Figure 5.21: Current Output ISY NAPSE Change for Different Vin values at Vτ of
2.0 V

5.4 Implementation Methodology

One of the advantages of the biological approach is the presence of only a few building

blocks, in our case only the neuron and the synapse. This provides an incentive for

complete checking and design of the basic building blocks. The first steps of the design

is to find the ”hot spots” in the circuit and size them to more robust values. This first

order checking of the sizing provides a good baseline for the circuit. This structure is

then checked using Monte-Carlo analysis described below.
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In this example, the DPI synapse module is chosen since (1) it will be the most used

module in the final design, (2) it has fewer elements so it is easier to explain the design

methodology, (3) it is the most sensitive part of the design. The Table 5.3 shows the

sizing of the DPI synapse for the coincidence detection module described in the next

chapter. The size of Csyn of the working of coincidence detection was found to range

from 74 pF to 108 pF, so 90 pF has been chosen as the final design value. The siz-

ing of the transistors was made to be the minimum working for the technology, and

then each transistor size was increased to check if there were lesser deviations in the

important characteristics in Monte-Carlo analysis of 100 runs. Coincidence Detection

has been described in Section 4.1.1. The most important aspect of this module is the

rate of discharge as this is essential in maintaining the width of the Gaussian kernel.

The amplitude of the current ISY NAPSE plays a comparatively minor role. Here, we

will look at glimpses of the search for optimum values to show the process behind the

implementation methodology, which has been used for all the modules in this work.

Table 5.3: DPI Synapse Sizing

Figure 5.22: Monte-Carlo Analysis of 100 Runs (with all sizings as per Table 5.3)

Figure 5.22 shows the results of Monte-Carlo analysis of 100 runs for the values in

Table 5.3. In Figure 5.23 the values of the differential pair of the DPI synapse, the

transistors Mthr, Mdif have been changed to another working value. We can observe,

that there is a higher deviation in the rate of discharge of the module. This effect is

repeated, when we change the sizing of the other transistors MW and Msyn to different

degrees. By repetition of this approach for different working sizings of the transistors,
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Figure 5.23: Monte-Carlo Analysis of 100 Runs (with all sizings according to Table 5.3
except Mdif and Mthr transistors, which have size w/l 3/9 µm/µm)

Figure 5.24: Monte-Carlo Analysis of 100 Runs (with all sizings according to Table
5.3 except Mw transistor with size w/l 9/4.5 µm/µm)

Figure 5.25: Monte-Carlo Analysis of 100 Runs (with all sizes according to Table 5.3
except Msyn transistor with size w/l 11/2 µm/µm)

we are able to find the sizes, which (1) work as intended (2) Minimum deviations in the

most important properties required by the module. The Monte-Carlo analysis of 100

runs is simulated for process, mismatch and temperature settings.
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5.5 Summary

This chapter provides the overview for the basic structures, which will be used in the

following chapters. The simplified neuron spikes, when the membrane voltage crosses

the crossing point of the inverter. The DPI synapse is able to provide the required

current proportional to the input pulse. We have voltages VLEAK , VRFR as controlling

voltages in the neuron body, Vτ , Vthr and Vw as controlling voltages in the synapse.

These control voltages are easily able to move the neuron into working region after

changes due to process, temperature, and aging. The previous section describes the

implementation strategy used for the design of cells used in this work. The advantage

of this approach is that it can be easily optimized automatically by synthesis tools like

ABSYNTH [108], which is an analog block synthesis tool developed at ISE.
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SDC - Spike to Digital Converter

using Coincidence Detection

The operating principle of coincidence detection has been described in chapter 4.1.1.

This can now be implemented with the building blocks from the previous chapter. The

resulting structure is shown in the Figure 6.1. It has two DPI synapses for the two

inputs and their outputs are connected to the input of the neuron body.

Figure 6.1: Coincidence Detection Setup

Figure 6.2 shows the test bench with the input pulses. The transistor present is a reset

transistor used to drain the membrane capacitance after every run. The structure of

neurons and synapses with reset transistors will be shown later in this chapter.

87
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Figure 6.2: Coincidence Detection Test Bench

6.1 Sensitivity of Coincidence Detection

The sensitivity of coincidence detection depends on the width of the temporal Gaussian

kernel that can be created with the building blocks. Since the time constant of the neuron

plays a major role in the creation of the kernel, Vτ is the main controlling voltage in this

scenario. Table 6.1 shows the different values of Gaussian kernel widths (CDRANGE)

that are possible with the configurations. At higher Vτ the Gaussian kernel becomes

rectangular or flat. Rectangular kernels can be useful for robust design, however, we

loose the advantage of place coding.

Table 6.1: Configuration Table

Figure 6.3 shows how the place coding looks, if input pulses arrive at the same time,

under the assumption that one branch of the input is delayed by 5 ns compared to the

previous coincidence detector. As the difference between the input pulses increases the
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Figure 6.3: Simulation showing Coincidence Detection with Configuration 2

delay makes the input pulses at the other branch take priority since they will appear at

the same time at the next branch. It is possible to modify the width of the Gaussian

kernel using Vtc. This is shown in the following figures from Fig. 6.4 to 6.7

Figure 6.4: Simulation showing Coincidence Detection (with minimum Gaussian ker-
nel width) (left), A Sketch of the corresponding Gaussian Kernel (right)

Figure 6.5: Simulation showing Coincidence Detection (with small Gaussian kernel
width) (left), A Sketch of the corresponding Gaussian Kernel (right)
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Figure 6.6: Simulation showing Coincidence Detection (with medium Gaussian kernel
width (left)), A Sketch of the corresponding Gaussian Kernel (right)

Figure 6.7: Simulation showing Coincidence Detection (with large Gaussian kernel
width) (left), A Sketch of the corresponding Gaussian Kernel (right)

6.2 Place Coding

Figure 6.8: Place Coding - pulses for time difference of 0 ns of incoming pulses

Figure 6.8 to Figure 6.14 show the simulations of Place Coding for time differences 0 ns

to 30 ns. The understanding of Place Coding is not as intuitive as simple coincidence

detection with the width of the Gaussian close to 0. In simple coincidence detection,
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Figure 6.9: Place Coding - pulses for time difference of 5 ns of incoming pulses

Figure 6.10: Place Coding - pulses for time difference of 10 ns of incoming pulses

there is one spike exactly as the delay is programmed similar to a flip flop. However,

in place coding there is a time shift, that occurs because some of the detectors are

active earlier than the others. This effect reduces the span of the coincidence detection,

however, increases the resolution. The effect is enhanced, if the delay between the

coincidence detectors is high, and, it is almost negligible at very low delays. Example

of place coding enhancing the resolution can be found in earlier works [109], and [110].
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Figure 6.11: Place Coding - pulses for time difference of 15 ns of incoming pulses

Figure 6.12: Place Coding - pulses for time difference of 20 ns of incoming pulses
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Figure 6.13: Place Coding - pulses for time difference of 25 ns of incoming pulses

Figure 6.14: Place Coding - pulses for time difference of 30 ns of incoming pulses
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6.3 Delay Circuits

There are quite a few different methods for creating delays from traditional RC circuits

to buffer chains. Circuits of two different delay structures are shown in the Figure 6.15,

and Figure 6.16. The third structure is a simple buffer chain, DEL42 cell taken from

CORELIBD library of ams hitkit 4.10. A comparison between different delay structures

is shown in the Figure 6.17, Figure 6.18, and Figure 6.19. From the first comparisons,

we can see that buffer chain is the most robust among these choices, because,

• Current starved inverter has changes in both delay and pulse-width,

• Neural delay varies in delay, pulse-width, and amplitude, while,

• Buffer delay only has small changes to its delay.

The advantage of current starved inverter is the possibility to modify the delay with

the voltage Vdel. However, in the first implementation for simplicity, a buffer chain is

considered. The other structures have to be studied further in future work.

Figure 6.15: Current Starved Inverter Chain
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Figure 6.16: Neural Delay Element, Simple LIF shown in Figure 5.8

Figure 6.17: Current Starved Inverter Simulation with Temperature Corners

Figure 6.18: Neural Delay Circuit Simulation with Temperature Corners
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Figure 6.19: Buffer Chain Delay Simulation with Temperature Corners
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6.4 Sparse Place Coding to Digital

The output of the coincidence detection layer are sparse rank coded spikes. If the

number of lines is small, then they can be read out from a simple integrated chip directly.

However, this is not the case in this work. To have a viable ADC application, we would

need a lot of output lines from coincidence detectors, much more than are viable for a

simple chip. While there are techniques like Address Event Encoding, they are designed

for speeds of biological neurons and are mostly not viable for identifying the neurons,

which spike close to each other in the range of 1-2 ns. While this can be read by making

use of a priority encoder, which scans the output lines of the coincidence detectors at high

data rates of at least 500 MHz, this approach will consume a lot of power and moves

towards clock rates at radio frequency. This creates additional complexity in design,

which deviates from the main goal of having a simple fool-proof proof-of-principle-chip.

6.4.1 Time Domain Winner Take All with Memory

Figure 6.20: Time Domain Winner-Take-All with Memory Module (left), Three Mod-
ule Circuit for Three Input Lines (right)

The Figure 6.20 shows the schematic of the time domain winner take all circuit with

memory. This circuit uses a wired OR circuit technique for the enable signal similar to

[6]. This signal can be drained to ”0” by the NMOS transistor M1, disabling all the

other lines. When there is an input from the coincidence detector and the enable signal

is ”1”, then the negative output of the D Latch passes to the NMOS transistor M1. In

the initial state, the negative output of the D Latch is ”1”, so ”1” passes through the

DFF. This brings the enable signal down to zero. The output of the DFF goes to the D

Latch, which requires an inverted enable signal. This is also provided by the output of

DFF, bringing the latch value to 1. Now regardless of the input values the output of the

this DFF will not change until it is reset. Even then the DFF will not switch on until
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the latch is cleared. It is capable of identifying spikes occurring with a time difference

of 200ps.

The described readout mechanism has been inspired [111] by the implementation of

part of the ARAMYS-II chips [6] functionality. This neural chip was conceived to carry

out massively parallel distance metric computation and winner(loser)-takes-all deter-

mination. In the winner(loser)-takes-all circuit, also wired-or by open-collector (drain)

technique can be found. To implement a multiple winner or k-nearest-neighbor compu-

tation ability, the ARAMYS-II chip includes an inhibit memory in each neuron, which is

reset in the beginning. In case a neuron is the winner of a competition, this inhibit latch

can be set, preventing the participation of this neuron in the next competition round.

Effectively, one neighbor after the other can thus be sequentially be determined. In case

of multiple detected neighbors of the same distance, the order in the array is employed as

tie breaking rule. This mechanism has been abstracted and employed for the successive

determination of one pulse after the other in repeated read-outs of the sensor, which,

of course, makes mild assumptions on the stationarity of the sensory stimulation during

the test chip application.

It is possible to unfold this into one larger converter similar to an approach shown in

[112] although that approach requires much larger area. The output of this circuit can

be read by a set priority encoders to obtain a dense digital code. In this work, for

the physical realization, we will use a simple shift register to read out the code. This

structure is easier to read, occupies much smaller area, however, it requires repeated

sensor read-out, which assumes stationarity of the measurand.
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Figure 6.21: Simulation of Time Domain WTA with Memory.( This uses three lines,
and so three copies of the structures shown in Figure 6.20)

6.5 Physical Design of SDC Coincidence Detector Module

The physical design of one module for the SDC has 4 components, the neuron, synapse,

delay, the time domain winner-take-all circuits. The delay and the time domain WTA

circuits use components from ams hitkit core libraries and the layouts are taken from

these libraries. The most important part is the coincidence detection module. This

module requires reset capability. The modified circuits with additional reset transistors

are found in Figure 6.22, and Figure 6.23. The final sizes of these components are

found in the Table 6.2, and Table 6.3. These values have been found by a search for

best coincidence detection properties. It should be noted, that these sizes are not the

best sizes, but the most robust sizes, where there is a compromise between area and

sensitivity to deviations due to process, temperature, aging etc. have been considered.

The physical design uses matched capacitors for the two synapses, which are protected

using Faraday shields (Capacitors placed in n-wells connected to V dd). The most sen-

sitive path between the synapses and neuron is also designed to be least affected by

parasitics. The final layout of the module can be seen in Figure 6.24. The post layout

simulations show negligible differences to the schematic simulations.
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Figure 6.22: Simple LIF Neuron with Reset

Table 6.2: Final sizing of Simple LIF Neuron with Reset

Table 6.3: Final Sizing of DPI Synapse with Reset
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Figure 6.23: DPI Synapse with Reset

Figure 6.24: SDC Coincidence Detection Layout

Figure 6.25: Post-Layout Simulation (showing coincidence detection with minimum
Gaussian kernel width. It is the counterpart of the Figure 6.4)
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Figure 6.26: Post-layout Simulation (showing coincidence detection with minimum
Gaussian kernel width. It is the counterpart of the Figure 6.6)



Chapter 6. SDC 103

6.6 Inherent Robustness of SDC

There are several advantages inherently found in this architecture. The most important

one is that the architecture provides an output for pulses occurring at the same time.

This is extremely useful for calibration of the SDC. Another advantage of this archi-

tecture is graceful degradation. This is shown in Figure 6.27 with the faulty detector

coloured red. Detectors that do not work, (stuck at zero, stuck at one, spike at fixed

(wrong) time, erroneous spikes that cannot be fixed by changing control voltages of DPI

synapse etc.) can be easily identified because of the neighborhood effect of place coding.

Every spike’s location can be linked to the location of one of its neighborhood spikes.

This helps in predicting static and dynamic errors at the coincident detectors. This

effect can also be drastically reduced by input reversal described in section 6.6.1

Any spurious spikes at input will not produce any spikes at the output as shown in the

Figure 6.28 unless they occur almost simultaneously in both the input lines.

Figure 6.27: Graceful Degradation of the SDC

6.6.1 Input Reversal

The inputs to the SDC can be swapped (In1 to In2 and vice versa) to get the same output

at the other branch of the SDC. This is possible because the coincidence detectors are

mirrored around a central coincidence detector (”zero” detector). This technique can
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Figure 6.28: Spurious Spikes having No Effect on Outputs

also be used to reduce problems due to mismatch and process variations, effectively

reducing the INL and DNL errors.

6.6.2 Comparison of Comparators, Latches, and Coincidence Detec-

tors

From Figure 3.10, it can be observed, that coincidence detectors are doing tasks similar

to a Flip-Flop or Latch in TDCs. These components can be compared to comparators in

ADCs. A comparison between these three ”detector” elements is shown in Figure 6.29.
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Figure 6.29: Comparison Between ”Detector” Units

6.7 Decoding of Place Codes

The creation of place codes and their relationship with the Gaussian kernel width has

already been discussed. If the Gaussian kernel width is minimum, then simple 1-of-N

codes can be used for decoding. However, the decoding of place codes and how they can

enhance the simple 1-of-N codes requires more explanation.

Figure 6.30 shows, how 4 values can be extracted by place coding, where, 1-of-N codes

extract one value. A simple decoding algorithm can be used to decode these place codes

as shown in Algorithm 1. As the width of the Gaussian kernel is increased, the number

of bits will also be increased. However, the effect of time shift for higher number of place

codes has to be studied. The time shift effect is greatly reduced, if the delay between

two detectors is minimum.

6.7.1 Time Shift Effect

Figure 6.31 shows the time shift problem with place coding. This occurs because some

coincidence detectors are evaluated earlier than the others. in Figure 6.31a the bottom

detector (output E) gets evaluated first, the next detector starts evaluation 5 ns later

and so on. This means that the output at E occurs 5 ns earlier than in ideal case. This
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Figure 6.30: Example showing 2 bit Increase by Place Coding. ( Here 4 values are
obtained instead of 1 value. This is using a smaller Gaussian kernel width, which can

be increased to much higher values.)

creates a limitation on place coding, if the delays between the detector are higher. In

Figure 6.31 the time shifts would cause a reduction of resolution by one bit. This will

not change with increase in the width of the Gaussian kernel, i.e., with increase in spike

pairs used for place coding ( in Figure 6.31 two pairs of spikes are used to get 2-bit

increase as discussed in Figure 6.30). The effect reduces with the reduction in delays

between the detectors, mainly because the Gaussian slope does not change. Since this

is a predicted effect, it can be compensated during post-processing of the code or by a

local adaptation scheme. This post-processing possibility is not available in our current

readout implementation as the time information is removed by the time domain Winner-

Take-All circuit, however, local adaptation will make it feasible and will be studied as

part of the future research.
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Algorithm 1: Decoding for Place Codes based on Figure 6.30.

Input: Place Codes with A,B,C,D,E
Output: Place Coded output

1 Find instance of the coincidence detector providing MSB(most significant byte) (In our
example, ”G”)

2 lsb is the least significant bit
3 if D earlier than B then
4 if E earlier than B then
5 output = MSB − lsb⊕ 11 (”G1” in our example)
6 else
7 output = MSB ⊕ 00 (”G2” in our example)

8 else
9 if A earlier than D then

10 output = MSB ⊕ 10 (”G4” in our example)
11 else
12 output = MSB ⊕ 01 (”G3” in our example)

13 return output
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Figure 6.31: Time Shift Effect Visualized
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6.8 Analysis of the SDC

Figure 6.32: Worst Case Delay for the Buffer Chain

Figure 6.33: Worst Case Delay for the Coincidence Detector.

Figure 6.32 and Figure 6.33 show the worst case delays of the buffer delay and the

coincidence detector respectively. It can be observed from these figures that the worst

case delay for the buffer chain is 1.2ns and the worst case delay for the coincidence

detector is 9ns. How will these values affect the quality of the SDC in terms of INL and

DNL ?

The delay variations of the coincidence detectors do not affect the quality of the SDC

to a significant extent. This is mainly because of place coding. The neighborhood spike

times can be predicted for a given Gaussian kernel width. This problem is similar to
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the missing spike problem explained in section 6.6. The effect of delay variation of each

spike is reduced by the population of spikes by place coding effect.

The delay variations of the buffer chain have a larger effect in the INL and DNL of the

SDC. If the delay variation is uniform throughout the design, then it will not have any

effect on the INL and DNL, although, it will increase or decrease the span of the SDC.

The worst case situation is if few of the buffer chains have the worst case delay, while

the others remain nominal, as the delay is propagated to the rest of the chain.

A Monte-Carlo analysis can provide deviations that can be used to find the worst-case

INL and DNL values by simulation. However, the digital models used in the layout,

taken from the ams core libraries (standard cells from PDK) do not work with Monte-

Carlo analysis at present, so a python based alternative was used in this scenario.

There are two ways to reduce this issue. (1) Delay calibration by using configurable

delay chains. This is explained later in this work in section 8.4.2. (2) Reversing the

input nodes to make use of the other branch of the SDC chain as discussed in section

6.6.1. This is possible with the current planned physical design as discussed later in

chapter 8. Further, it should be noted that the delays can also be corrected using the

various control voltages of the synapse.

6.9 Discussion

In this chapter, the Spike-to-Digital conversion using coincidence detection has been

elaborated. The differences occurring due to the change in the width of the Gaus-

sian kernels adds another dimension of reconfigurability to the SDC. Since this can be

controlled by the voltage Vτ , there is immense freedom in adapting the SDC to vari-

ous configurations, as described in section 6.1. The time domain winner-take-all with

memory needs repeated measurements to get the place code values in the present proof-

of-principle design. This can be unfolded to remove the need for repeated measurements,

in future, in more generous chip designs. This is not required for the first prototype since

the goal is to analyze the place coding and its properties on chip. An initial part of this

work was presented at [113]
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SSC - Sensor to Spike Conversion

In this chapter, the focus is on conversion of signals from the sensors to time interval

signals required by the SDC. There are several ways to approach this problem. For the

first physical realization we focus on the Wheatstone full bridge based AMR sensor.

7.1 AMR sensor

Figure 7.1: Wheatstone Full Bridge (AMR sensor)

There are various sensor concepts, which are single ended and differential. Wheatstone

full bridge is a differential sensing concept, which is commonly used in many sensors.

Our department ISE has a magnetic localization demonstrator shown in Figure 7.2

and described in [42]. This demonstrator is used to localize sensor nodes in industrial

containers and related indoor scenarios. It makes use of a 3D AMR sensor module

developed in our group shown in the Figure 7.3. The reasons described above make the

AMR sensor very attractive as the test-bed, for our first prototype SSC as described in

[114]. The properties of the AMR sensor are shown in the Table 7.1.

111
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Figure 7.2: (left) Planned Industrial Setup of the Localization System (right) Ex-
perimental Demonstrator Exhibited at Hannover Messe 2013. (The images have been

taken from [41])

Figure 7.3: 3D AMR Sensor Module based on Conventional PCB Node with AFF755B
(left) and Advanced AML Technology Node with AFF756 (right). (image taken from

[42])

Table 7.1: Properties of AFF755B AMR Sensor from Sensitec GmbH [60]
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7.2 Time Interval Coding

In Chapter 3, various sensory mechanisms, that exist in humans and animals have been

discussed. The first architecture, that was shortlisted was Jeffress model of sound local-

ization. The analogon for the type of code, that is required for this technique, effectively,

the SDC described in the earlier chapter is Time Interval Coding. Time interval coding

is shown in the Figure 7.8. In later simulations, we will calculate the time difference

and check for linearity over a range of values using the Wheatstone full-bridge. This is

accomplished using cadence ocean scripts and python, mainly because this simulation

cannot yet be automated by cadence. The ocean scripts are exported from cadence, then

using an interface between python and ocean complex simulations can be performed and

the related plots can be easily generated.

Figure 7.4: Time Interval Coding

7.3 Investigation with AMR Model, Simple LIF, and DPI

Synapse

Figure 7.5 shows the sensor to spike conversion module with two synapses and two

neurons. Each pair connects to different pins of the diagonal voltage Vd of the bridge.

The Wheatstone full bridge uses the bridge resistance of the AMR sensor described in

section 7.1. In Figure 7.8, a simulation of the setup for a range of -255 Ω to 245 Ω is

shown. This is much higher than the linear range of the AMR sensor, which is 12 Ω, if

the Vsensor is 3.3 V. The component sizes used for the synapse are shown in the Table 7.7.

The size of the components for the neuron remain unchanged from the previous chapter

with the membrane capacitance as an exception.
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Figure 7.5: The SSC Setup

Figure 7.6: SSC Test Bench with AMR Sensor

7.3.1 Membrane Capacitor Sizing

While the simulation in Figure 7.8 shows the different aspects of time interval coding,

the span, that can be achieved for the linear range of AMR sensor seems to be extremely

small. It is around 20 ns. The SDC designed in the previous chapter can only provide

4-bits of information for such a small span. Our goal is to increase the variance of this

output to a much higher value. This can be achieved by increasing the capacitance size
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Figure 7.7: Component Sizes for DPI Synapse

Figure 7.8: Time Interval Coding and Linearity

to a certain extent, as described below. This parametric simulation has been shown in

the Figure 7.9. This has also been studied in detail in our earlier work [115]

In Figure 7.9 we can see that the the highest variance occurs at 5 to 6 pF. Two of

these values are chosen and checked for linearity in Figure 7.10 and Figure 7.11. We can

see that 6 pF membrane capacitance provides a linear output over the complete tested

range. This will be useful for various sensing elements, however, the AMR sensor will

still see only a variation of 50 ns, which is not sufficient for obtaining high resolution by

the SDC.
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Figure 7.9: Time Delay Plot for Different Capacitances to find the Highest Variance

Figure 7.10: Checking the Linearity of SSC for a Membrane Capacitance of 5.5 pF
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Figure 7.11: Checking the Linearity of SSC for Membrane Capacitance of 6 pF
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7.4 Differential Synapse

Table 7.2: New SSC Circuit

Figure 7.12: Differential Synapse for SSC

Since the previous approach was insufficient, a differential current source with tail current

controlled by a voltage source was suggested [116]. After testing the basic suggested

circuit, it was found that a diode-connected transistor produced better linearity than

the tail current source and this was then used as shown in the Figure 7.12. All the

transistors are sized in the w/l of 1/1 µm/µm.

The first test to be performed was for linearity of the current output from the new

synapse. This is shown in the Figure 7.13. In addition to the simple linearity test,

the figure also shows the drift due to temperature. The interesting part is that the

difference between the currents remain equal, which means that the time interval will

not be affected by the temperature related drifts.

Figure 7.14 shows the time interval outputs for the same range as the previous test set

up. One of the main observations, is that it is non-linear. However, this non-linearity
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Figure 7.13: Drift Due to Temperature in the Differential Synapse. (The difference
in current is not affected.)

Figure 7.14: Simulation to Find the Best Membrane Capacitance Using the Differ-
ential Synapse

is attributed to the neuron and not to the synapse. Although this output is non-linear

in the range pictured, it is linear in the range of the AMR sensor. This also increases

the variance from 50 ns of the previous setup, upto 2 µs. This can be seen in the
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Figure 7.15. This massive amplification provides the freedom required for the SDC to

work. Figure 7.16 shoes a comparison the linearity for different transistor sizes with the

membrane capacitance showing maximum variance. While the worst-case analysis shows

deviations, the size of the capacitance is robust enough that, it never fails or becomes

non-linear in these conditions.

Figure 7.15: Comparison of the Curves for the DPI Synapse and the Differential
Synapse
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Figure 7.16: Comparison of the Membrane Capacitance with highest variance for
different transistor sizes. The most linear plot with highest variance is 8.5 pF, when all

transistors are sized for W/L of 1/1 µm/µm.

7.5 Physical Design

The general simulations of the SSC with the differential synapses were performed in the

previous section. In Table 7.4 the final sizes that are used for physical design are shown.

The goal of the sizing is to bring the linear range of the AMR sensor to the full range

possible by the intended physical design of the SDC. This is approximately +/-500 ns.

This is reflected in the component sizes. The size of membrane capacitance is chosen to

be 5 pF. Compared to the size of the planned SDC and the 5 pF membrane capacitance,

the sizes of the transistors are negligible. So, more freedom with area is taken. Since the

dynamic range does not play a major role in the first prototype, the diode connected

transistor is scaled to a higher size, increasing its tolerance.

Figure 7.17 shows the layout of the differential synapse. All considerations for matching

using interleaved structures has been used. Figure 7.18 shows the layout of the two

neurons. The neurons are matched so that they could drift without affecting the time

interval outputs.
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Table 7.3: Component Sizes of the Differential Synapse

Figure 7.17: Layout of the Differential Synapse of Figure 7.12

Figure 7.19 shows the design of the complete SSC. The capacitors are designed with

Faraday shielding again. Figure 7.20 shows the comparison between schematic and

post-layout simulations for the considered sizes. They are identical for all requirements

of the application.

A reconfigurable version of the differential synapse has been designed to increase the

flexibility of the SSC for different sensor elements. This uses 8 bit scalable NMOS
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Figure 7.18: Layout of the Neuron Pair as shown in Figure 7.5. (The transistor names
represent both neurons as they are mostly matched.)

Table 7.4: Component sizes of the Reconfigurable Differential Synapse

transistors, which have been designed by Freier in [41]. 8 bit scalable PMOS transistors

have been designed based on this scalable NMOS design. The shift register to store the

programmed bit pattern has been adapted from [41]. This reconfigurable synapse has

all transistors except diode connected transistors M3 as scalable elements. This provides

flexibility to control the span of the SSC and to remove deviations due to process and

manufacturing, and drifts due to temperature.
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Figure 7.19: Layout of the SSC
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Figure 7.20: Comparing the Schematic and Post Layout Simulations for the Final
Design
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Figure 7.21: Layout of the SSC with Reconfigurable Synapse, with Shift Register to
Program the Scalable PMOS and NMOS Transistors. (The shift register and scalable

NMOS transistors were taken from [41])



Chapter 7. SSC 127

7.6 Analysis of the SSC

Figure 7.22: Schematic, Post Layout Plot shown in Figure 7.20 Compared with Worst
Case Speed and Worst Case Power.

Figure 7.22 shows the worst case scenarios for the time interval codes at outputs of the

SSCs. As discussed in section 7.4, the deviations due to manufacturing do not affect

the linearity, only create a drift in the values. This can also bee seen from this figure.

Although there is a deviation from the nominal value, which increases or reduces the

total span required from the SDC, there is no problem with the linearity.

The effect of changes to span can be easily counteracted by reducing the supply voltage

to the sensor. A better way to do it is to reconfigure the transduction element according

to the required span. This can be done easily with the reconfigurable version of the

synapse discussed earlier.

From this analysis, we can conclude that the adaptation is mainly required at the SDC

outputs to reduce the deviations due to delay elements. The linearity of the SSDC is

not majorly affected by the SSC module.
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7.7 Discussion

In this chapter, one sensor to spike conversion method has been studied and discussed.

Since the capability of the DPI synapse was not able to represent the sensitivity of the

AMR sensor, so a new synapse was introduced and implemented. While this differ-

ential synapse was implemented specifically targeting the AMR sensor, a more generic

reconfigurable synapse was also designed. This synapse can be programmed for any

Wheatstone bridge based sensor interface. It can also be used for single-ended sensors

by having the other one at voltage equal to half of the sensor range. The use of multiple

SSC techniques feeding one SDC without loosing information will be part of the next

chapter.
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SSDCα - Sensor to Spike to

Digital Converter

Figure 8.1: Layout of the First SSDCα for 8-13 bit A/D Conversion in 350 nm AMS
Technology.

129
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Figure 8.1 shows the final design of the chip with the modules highlighted. Each module

has features and choices, which have not been discussed in earlier chapters.

8.1 Analog Processing & Digital Communication

The most important and interesting feature of the spike processing is that the shape

of the spike is not very important for the processing method. While this is true with

biological neurons and the models used in the work, these features can be improved to

suit the task at hand. In this work, all the communication between modules is treated

as digital. This can be implemented mainly because the time of the spikes is the only

relevant information that is required, the spike amplitude, spike width etc. are not part

of the processing.

From the explanation above, it can be deduced that only analog communication and

processing occurs within the two main modules (1) SSC, (2) Coincidence Detection

module. All communication between these modules are digital. This gives us the freedom

to perform digital processing between these modules.

The following features were a direct consequence of this advantage.

• Multiplexing several SSC units as input to the SDC.

• Providing the SSC outputs as outputs from chip.

• Providing inputs to the SDC from outside the chip.

• Using a fixed pulse-width generator based on rising edge of input spikes to make

the coincidence detection predictable.

• Multiplexing different delays, so that the span of the SDC can be changed, creating

a zooming effect.

• Using the flip-flop based readout circuit for SDC described in Chapter 6.

8.2 Spike to Digital Converter

The SDC module is designed with 128 ∗ 2 + 1 individual modules as shown in the

Figure 6.24. Each of these modules is connected to a reconfigurable buffer chain and the

readout circuit described in Chapter 6, Section 6.4.1.



Chapter 8. SSDCα 131

Figure 8.2: Reconfigurable Buffer Delay

Figure 8.3: Span Change by Reconfigurable Delay

8.2.1 Reconfigurable Delay - Zooming Effect

A reconfigurable delay using a multiplexer could be created by having delays in series

or in parallel. Having delays in series will reduce the area since multiple delays can be

combined to form a larger delay. In this work, parallel delays have been chosen.

The buffer chain is the most important part of the SDC. Failure of one buffer will disable

all the buffers after it, making the SDC fail. By having delays in parallel, this problem

is resolved by reducing the probability of failure. One buffer in each line has to fail to

make the SDC fail completely. Thus a parallel set of delays might be safer than delays

in series in this scenario. The multiplexer is still one point of failure, however, these

layouts have been taken from ams hitkit libraries, which have been tested and proven

after several manufacturing runs [117], so the possibility of failure is still much less than

for unproven designs.
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8.2.2 Priority Encoder vs. Shift Register Readout

The 257 output lines from the SDC could be read out in two simple ways (not considering

the use of packages like BGA to reduce costs) (1) 2 Priority Encoders with opposing

priorities reducing the 257 output lines to 18. (2) Parallel in Serial Out Shift Register.

The use of priority encoders have several advantages like speed and power consumption,

since only one clock cycle is required to read out the data. However, in the first test chip

we can efficiently make use of the chip area, if we use DIL48 package. Any larger package

might result in a lot of empty area on the chip. To reduce the pads and to efficiently

study the output codes, the shift register was chosen for this work. This reduces the

pads required from 18 to 2 for the readout. This will not be the case for future works.

Another advantage of using the shift register is the recording of every spike that is trig-

gered at the same time. The time domain winner take all circuit that was designed has

a sensitivity of 150 ps, all spikes arriving within this time will be triggered. The priority

encoders can only read the two edges of the spikes in the scenario, while a shift register

can be used to get every spike triggered. This helps in analyzing the first prototype in

detail. Table 8.1 provides a comparison between three different readout methods. The

Table 8.1: Comparing different Readout Techniques

most interesting is the unfolded WTA, which required larger area, however, it needs only

a single sensor measurement unlike our present moderate chip implementation effort. As

mentioned before, the present technique is only used to analyze the behavior of the first

prototype chip.

8.3 SSC

There are three SSC modules designed for the chip. They are

• SSC tuned for AMR sensor node
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• Reconfigurable SSC for various sensor nodes

• Capacitive Sensing Prototype SSC

8.3.1 Multiplexing several SSC Units

The output of the SSC units are spikes with spike timing information. These spikes can

be treated as digital pulses and sent through several digital multiplexers without loosing

any information. Although analog multiplexers can also be used in a similar way with

general sensor conditioning techniques, there could be a loss of information, when the

sensitive sensor data passes through transmission gates. This problem does not exist

with spike processing. The simple structure used is described in Figure 8.4

8.3.2 Fixed Pulse Width Generation

The Spike-to-Sensor-Converter circuits produce spikes of varying pulse widths. These

circuits model biological neurons, which make use of both intensity information (as pulse

widths or rates) and spike timing information. In this work, we do not use the pulse

width information. The coincidence detection capability of the SDC varies with the

pulse width, it can be tuned to be more efficient a certain pulse widths. When the pulse

width is high, it usually reduces the efficiency of coincidence detection, as the width of

the pulse will effect the spike timing information at the synapse.

A simple flip flop triggered by the rising edge of the spike and reset after a fixed time

delay is used to create pulses at approximately 5 ns, as shown in the Figure 8.6. This

was also the pulse width used during the experiments shown in Chapter 6.
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Figure 8.4: SSC to SDC Connection

Figure 8.5: Fixed Pulse Width Generation
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8.4 Adaptation

Adaptation is one of the biggest motivations for approaching biological techniques. The

sensory system must be extremely adaptive for an organism to survive. In this work,

the synapses have been designed with several control voltages, which can be used for

adaptation like VW , Vthr, Vτ . However, for the first prototype these voltages have been

made common to all the detectors except for Vτ . The SDC has been divided into 8

blocks based on the location on chip to have 8 different Vτ inputs. This gives us some

room to adapt the neurons to deviations during manufacturing.

There are different ways in which these can be designed for every neuron to be pro-

grammable.

• Analog Capacitor Memory: A capacitor for every programmable voltage, which

is charged by a DAC (internal or external). The DAC charges every capacitor

in a cyclic scheme where every capacitor is recharged to the programmed voltage

before it deviates from the programmed value.

• Floating Gates: Analog floating gates can be used to store the programmed values

for each control voltage in the neuron and synapse. This is more area efficient and

has been used in synaptic structures before.

• Memristors: In HRL [56] neuromorphic chips memristors have been used for storing

the synaptic weights. Many neurons share these weights in a time multiplexed

approach.

8.4.1 Hybrid Adaptation

Although the current physical design of does SSDC does not have traditional neural

adaptation methods like STDP (Spike Time Dependent Plasticity) yet, it has the fol-

lowing means of adaptation.

• Reconfigurable SSC for intrinsic optimization using tools like ABSYNTH

• Reconfigurable span, by reconfiguration of delays.

• Adaptation of SDC using the control voltages. Although many control voltages

are common to all coincidence detectors, they can be programmed for the best

performance of the SDC.
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Figure 8.6: Proposed Adaptation

8.4.2 Feasibility for Local Adaptation

Local adaptation and self calibration are extremely important to solve the issues with

technology scaling and produce more working chips per run. Figure 3.11 in Chapter

3 showed a tropotaxis based ADC architecture. This architecture can be used for self

calibration of the SSDC.

The SSDC produces output for zero input, i.e., when both the pulses arrive at the same

time to the SDC. Another interesting aspect is that, increasing the Gaussian kernel

width to maximum, i.e., increasing the Vτ to 3.3V converts the coincidence detectors to

constant delay elements. All the detectors produce outputs corresponding to the delays

at this configuration. This property can be used for the adaptation of the delay chain

for deviations.

The working of this concept is shown in Figure 8.6. The self-calibration starts at the

center and the delays get adapted from their neighbor as the calibration moves from the
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center outwards, similar to the blooming of a flower. The first calibration is controlled

by an external clock as shown in the Figure 8.6.

This concept has been implemented on cadence and tested by a student [118].

8.5 Speed of SSDCα

Figure 8.7: Image Visualizing the Time Taken by Different SSDC Modules

The SSDCα chip has a speed from DC to 150 kHz. This value might not give a clear view

of the speed of its internals. The shift register, which is specific to this implementation

takes 50% of the time. The speed of SSC is at 350kHz range. This is the time required

to process the signal. The SDC starts processing at the first spike and finishes its

processing at the second spike. It is running at a speed of 200 MHz in the chip. Since

it is also possible to feed inputs directly to the SDC, this speed should be considered

important. This provides a clear view of the capability of each module to obtain a better

understanding of the SSDCα.

8.6 Area of SDC Module

From the Figure 8.1, we can observe that the SDC module occupies a very large area.

This area can be reduced a lot by integrating the shift register or any readout circuit
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as part of the SDC coincidence detector module, thereby reducing the interconnect

area, which is currently 40% of the total area of the SDC module. However, the major

advantage of the SDC module is that it scales with the technology and improves in

resolution. The 350 nm ams hitkit technology is used just as a vehicle to demonstrate

the basic functionality of the SSDC concept. The SDC should theoretically work better

at smaller technology nodes like 28 nm and with new transistor types like 3D finfets

from intel. This will be one of the goals of the future research on this topic.

8.7 Properties of SSDCα

Figure 8.8: Properties of SSDCα Chip

8.8 Discussion

This chapter discussed the design and features of the SSDCα chip. It was sent for

manufacturing on Nov.16 2015 to Europractice and arrived in the first week of March

2016. The first prototype chip has many features, that make the information processing

unique, robust, adaptive, and evolvable. The next steps would be the addition of local

adaptation mechanisms, which can self calibrate as described in the subsection 8.4.2.



Chapter 9

Testing and Characterization of

SSDCα

This chapter deals with testing of the SSDC chip that has been manufactured in AMS

350 nm technology. The bonding diagram and chip are shown in Figure 9.1 and Fig-

ure 9.2 respectively. Four of forty manufactured chips were tested and their results are

discussed in this chapter

Figure 9.1: Bonding Diagram of SSDCα

139
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Figure 9.2: Symbol of the SSDCα Chip with Pin Information

Figure 9.3: SSDCα Chip Image
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9.1 Test Setup

Figure 9.4: Arduino Duo with Shield for SSDCα Chip. Test Bench V1 (left), Test
Bench V2 (right)

As discussed in the earlier chapters, SSDC has two important components. The SSC is

the transduction element, which converts the incoming differential voltage into Time-

Interval Code. This code is then used by the SSDC to convert it into I-of-N or Place

Code. It is then vital to test these to modules separately to clearly understand how they

perform, and their respective weaknesses to better develop the next generation of SSDC

chips. In the first step of testing, one of the three SSC modules and the SSDC module

will be used, so that the full flow can be tested. The first SSC module to be tested will

be the SSC designed for resistive bridges, without the capability for reconfiguration.

Figure 9.2 shows the inputs required to run the SSDC. These inputs are control voltages

that have to be generated by a DAC. There are 15 Analog voltages required to control

the neurons and synapses. A shield was designed [119] for Arduino Due with required

DACs. Among the 15 voltages, there are 3 that require voltages outside the range of

the DAC. A Control-Voltage-Converter was used in the shield with an op-amp. Details

of the shield design are provided in Appendix B. The shield plugged to the Arduino and

the chip can be seen in Figure 9.4. The manufactured chip can be seen in Figure 9.3.

9.2 SSC Testing

9.2.1 Potentiometer

The SSC is tested with a setup shown in Figure 9.5. The two potentiometers are set to

the desired diagonal voltages and the output is observed and measured in an oscilloscope.
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Figure 9.5: SSC Testing Setup

Figure 9.6: SSC Transduction Outputs at Oscilloscope with Explanations

The Figure 9.6 shows an example of time interval outputs taken from the oscilloscope.

The crosstalk plays a major role in the outputs, as seen in the measurement results.

There is also a large negative voltage that is being generated at the spikes. These

problems have to be reduced in the next design. However, the time interval generation

of the spikes works as intended.

A set of diagonal voltages were varied between 1.6 V and 1.7 V with ∆V of 0.02 V per

step. The common mode is maintained at 1.65 V in this scenario. The results for this

test are shown in Figure 9.7. All the oscilloscope outputs can be found in Appendix A.

The results obtained from the chip deviate a little from the ideal expectations, but it is

well within the expected range.
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Figure 9.7: SSC Transduction Outputs, Ideal vs. Obtained (with ideal common mode
voltage of 1.65 V)

Figure 9.8: AMR Sensor PCB

9.2.2 AMR Sensor

In a second test the SSC was tested with an AMR sensor shown in Figure 9.8. The

setup for the test is shown in Figure 9.9. A very basic test result with spike for presence

and absence of a permanent magnet within the AMR’s detection range is shown in

Figure 9.10 and Figure 9.11. This test provides qualitative results of the SSC working

with AMR sensors.
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Figure 9.9: AMR Sensor Test Setup

9.2.3 Sensitivity to Common Mode

Another issue that is important for the SSC is the sensitivity to common mode. During

the design the differential synapse was used to remove most of the common mode effects,

however, there is still a small effect with a change in common mode in Figure 9.12.

This has to be studied and improved in the next design phase. Figure 9.13 shows the

comparison between ideal and chip test results for this scenario. All the measurement

results by oscilloscope for these experiments can also be found in Appendix A.

9.2.4 Discussion

From the tests above, we can see that the SSC works as intended, although the problems

with crosstalk and the high negative voltages has to be reduced. The reduction of

common mode in these time based designs should also be improved in the next design.
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Figure 9.10: Output with No Field Applied to AMR Sensor
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Figure 9.11: Output with Magnetic Field applied to AMR Sensor
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Figure 9.12: Common Mode Sensitivity

Figure 9.13: SSC Transduction Outputs, Ideal vs. Obtained with a Common Mode
Voltage of 1.75 V
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9.3 SDC Testing

Figure 9.14: Quartus II Schematic of Time Interval Generator

Figure 9.15: Timing Diagram of Time Interval Generator

The SDC is tested by using an FPGA with 50 MHz clock generating our time intervals.

However, since frequency division is used to generate the intervals, it does not give the

required resolution. Since this is the best available solution, it was used in this testing

process. Figure 9.14 and Figure 9.15 show the schematic and timing diagram for the

time interval generator. The outputs are recorder by the Arduino and plotted as shown

in Figure 9.16. Figure 9.16 shows the spike outputs of the SDC. Here the SDC does not

seem to work as intended, since there are at least 50 coincidence detectors spiking at the

same time. This could be due to reduced sensitivity of the Time-Domain-WTA circuit,

which was used only as a cost effective approach in the first design. Another problem

is because the neurons are not self-adaptive or externally reconfigurable (individually)

in the current chip. The reduced reconfigurability was a naive approach to reduce the

manufacturing costs. This reduced the capability to control the coincidence detectors
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Figure 9.16: SDC Outputs Explanation

as needed. Although the capability of control voltages of individual neurons was absent,

the available control voltages were tuned using particle swarm optimization [120], where

the cost function was defined to increase the sensitivity of the SDC. Although these

results are not as expected, using place coding is still effective for making the chip work.

Figure 9.17, Figure 9.18, and Figure 9.19 show the SDC outputs for the inputs generated

by the FPGA. Although several neurons spike instead of a few as expected, the place code

algorithm 1 can still be used by considering each group of spikes as a single spike. This

simple heuristic can theoretically get at least 8 bits from the SDC outputs, although more

complex heuristics with group sizes can be used to obtain more bits of information. Using

the time interval generator, only 16 time intervals spaced unequally can be generated.

So, this can only show the 4 bits of unequally spaced outputs for the 16 inputs. This

also does not resolve to our required criteria, so it is impossible to obtain INL and DNL

characteristics from these experiments.

9.3.1 Discussion

Although the SDC did not work as intended, an acceptable resolution was achieved using

place coding. The place coding reduces the sampling rate with our current cost effective

implementation as each ”position” for the group of spikes requires one run, so to get 8

bits of data, the sampling rate would be 10 kHz. This proves that gradual degradation

is a feature of this architecture. It also shows the importance of self adaptation in such
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Figure 9.17: SDC Outputs

neural designs. Adaptation techniques should be implemented as described in previous

chapters and more in the next design, to exploit all of the advantages of this architecture.
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Figure 9.18: SDC Outputs
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Figure 9.19: SDC Outputs
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9.4 Summary

In this chapter, the fundamental flow of the SSDC concept has been tested. Four

out of forty chips were used for testing. The first chip (SSDC001) did not work due to

manufacturing defects. The other chips (SSDC002, SSDC003, SSDC 007) worked similar

to the results shown earlier in the chapter. As described earlier, One of the three SSC

modules on the Chip was thoroughly tested. The SSC measurement results fall in line

with the expectations, while the SDC results were not as expected. While the results

of the SDC were not as intended, using place coding techniques mentioned earlier, the

working of the SDC for at least 4 bits was confirmed. The coincidence detection sub-

circuit of the SDC was analyzed with Monte-Carlo simulations, however the complete

SDC was not amenable to comprehensive statistical analysis, due to its rapidly increasing

simulation time with the number of coincidence detection units. Although most of these

variations, found in testing, are in the predicted range, they could and shall be reduced

by reconfiguration or adaptation.

During the design phase, the neurons and synapses were designed to be individually

reconfigurable, however, for the final design all the neurons were connected to the same

control voltages, to reduce manufacturing costs. This reduced the capability for correct-

ing for manufacturing variations to a large extent. This can be avoided by the addition

of self adaptation to future designs.

As the first proof-of-principle chip, it is more than able to provide the base for future

research. As discussed earlier, the issues with SSC and SDC have to be reduced and

the focus should also be placed in designing the components in more aggressively scaled

technologies.





Chapter 10

Conclusion

Rapid scaling of technologies is creating more demands from analog designs.This is

pushing the designs towards digital domain, wherever possible. The recent rise of all-

digital TDCs, which work with pulse width modulation techniques, is just one such

example. The past research work of the ISE group, with spiking image sensor chips

like LUCOS [2], which is a high dynamic range, highly resolving sensor has shown the

effectiveness of spike processing. This motivated the direction of this work, which was

to create a highly effective sensor signal conditioning system, which carries the promise

to be robust to technology scaling.

This research work started with an overview of the various standard ADC structures

including the ADCs designed in the latest 28 nm technology. This discussion was followed

by an overview of reconfigurable ADCs in the amplitude domain. An overview of state-

of-the-art TDC structures was provided and their advantages were discussed. This was

then followed by an overview of neural ADC structures beginning from the amplitude

domain neural ADCs to the neuromorphic spiking ADC structure.

A detailed study of the biological sensory systems, from an engineering perspective

provided the baseline for the bio-mimetic ADC concept implemented in this work and

several viable concepts for future research. Sensor concepts in humans and animals,

which use intensity, frequency, edge detection, and localization are presented. Localiza-

tion based on tropotaxis and acoustic localization in animals are shortlisted for the work,

with 3 different architectures presented and the first architecture is the focus of the first

prototype physical design, while the other architectures will be part of the future work.

The proposed ADC consisted of two parts (1) Spike to Digital Conversion (SDC), (2)

Sensor to Spike Conversion (SSC), which use spiking neurons as their building blocks.

155
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The biological spiking neurons, the neural concepts, the state-of-the-art behavioral mod-

els, and the state-of-the-art neuromorphic electronics, which make use of these models

has been presented. The shortlisted neuron and synapse were checked for behavioral

similarity to the biological counterparts using cadence simulations. These modules were

modified pragmatically to work at the limits of the technology, while having the min-

imum features required for the concept. These modules were carefully sized with the

help of several runs of Monte-Carlo analysis to find the most robust sizes. The SDC and

SSC were designed using these building blocks. Additionally a differential synapse was

introduced in this work to improve the results of the SSC. A reconfigurable SSC was

also designed in the process of moving towards a generic sensor interface.

The first prototype chip, SSDCα was designed as a proof of concept and hence the focus

was on making a safe and inexpensive chip, where many features of the concept cannot

be fully exploited yet. This experimental chip has several features, which include

• Three SSC modules

– SSC tuned for AMR sensor module.

– Reconfigurable SSC.

– Experimental capacitive SSC.

• SSC outputs simultaneously to SDC and to output pins.

• Direct input pins to SDC.

• Reconfigurable delays to change the span of the SDC.

This prototype chip SSDCα was designed in 350 nm ams technology. This technology

is used as a research vehicle for this thesis work. The chip has an area of 8.5 mm2. It

has a sampling rate from DC to 150 kHz. It has a resolution from 8-bit to 13-bit. It has

28,200 transistors on the chip.

The features which are not present in the present prototype are discussed, implemented

and checked on simulation level. These include the local adaptation for delay correction,

priority encoding techniques described in chapter 8. Many advantages of the concept

will be observable in much smaller technologies, where conventional systems might fail.

The testing and characterization of the SSDC was shown in Chapter 9. The results are

promising and also show the importance of adaptation in future designs. The complete

implementation with additional techniques using Tropotaxis have been filed as a patent

[121]. The current proof-of-principle chip is able to theoretically achieve at least 8 bits
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at a sampling rate of 10 kHz. However, due to the limitations of our Time-Interval-

Generator, we are able to confirm for only 4 bits of resolution.

Conceptual goals have all been fulfilled, with the exception of adaptation. The feasibility

for local adaptation has been shown with promising results and further investigation is

required for future work. This thesis work acts as a baseline, paving the way for R&D

in a new direction. The chip design has used 350 nm ams hitkit as a vehicle to prove

the functionality of the core concept. The concept can be easily ported to present

aggressively-scaled-technologies and future technologies.

10.1 Novel Contributions of this Work

The key novelties of this work can be listed as follows

• Neuromorphic implementation of AD conversion as a localization problem based

on sound localization and tropotaxis concepts found in nature.

• Coincidence detection with sparse place coding to enhance resolution.

• Graceful degradation without redundant elements, inherent robustness to noise,

apt to perform in aggressively scaled technologies.

• Amenable to local adaptation and self-x features

• Technology agnostic architecture.

10.2 Comparison with State-of-the-Art

Figure 10.1: Positioning the Present and Future Work in Comparison to State-of-
the-Art Conventional ADCs
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Table 10.1: Comparison with Neuromorphic ADCs

Figure 10.1 shows the position of SSDCα, when compared to the state-of-the-art conven-

tional ADCs. It also shows the projected positioning of the next version of the SSDC,

SSDCß, and the projected capability of the SSDC. Table 10.1 shows the comparison

between neuromorphic ADCs and the SSDCα.

10.3 Future Work

• At present the SSDC is capable of handling differential and single-ended inputs,

capacitive sensing, however, the SSDC can be developed as a universal generic

sensor interface similar to [41].

• Investigation and implementation of local adaptation.

• Exploration of self-calibration, self-monitoring and self-repair capabilities of the

concept.

• While the present application ”magnetic localization” is chosen as the vehicle for

proof of working of the SSDC, future work will focus on bringing these concepts

to fields like IoT, Industrie 4.0, and Cyber Physical Systems.



Abbreviations

IoT Internet of Things

LIF Leaky Integrate (and) Fire

DPI Differential Pair (and) Integrater

ISE Integrated SEnsor Systems

AER Address Event Representation

RBF Radial Basis Functions

ADC Analog (to) Digital Converter

SSDC Sensor (to) Spike (to) Digital Converter

SDC Spike (to) Digital Converter

SSC Sensor (to) Spike Converter

STDP Spike Time Dependent Plasticity

WTA Winner Take All

BGA Ball Grid Array

TDC Time (to) Digital Converter
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Symbols

ISY N or ISY NAPSE Synapse Current

VMEM Membrane Potential

VSPIKE Spike

VRFR Control Voltage: Refractory Period

VTHR or VTHRESHOLD Threshold Voltage

VADAPT Control Voltage: Spike Frequency Adaptation

CMEM Membrane Capacitance

VLEAK Membrane Potential

VW Control Voltage: Synapse Weight

VTC or Vτ Membrane Potential

CSY N Synapse Capacitance

VIN Input Voltage

VPRE Pre-Synaptic Voltage
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A. SSC Measurement Results

The figures below show the measurement results of the SSC which can be understood

based on Figure 9.6. These measurement results form the basis for Figure 9.7 and Fig-

ure 9.13
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B. SSDC Shield Eagle Schematics
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