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Abstract

It is well-known that for the integral group ring of a polycyclic group several
decision problems are decidable. In this paper a technique to solve the membership
problem for right ideals originating from Baumslag, Cannonito and Miller and studied
by Sims is outlined. We want to analyze, how these decision methods are related to
Grobner bases. Therefore, we define effective reduction for group rings over Abelian
groups, nilpotent groups and more general polycyclic groups. Using these reductions
we present generalizations of Buchberger’s Grobner basis method by giving an appro-
priate definition of “Grébner bases” in the respective setting and by characterizing
them using concepts of saturation and s-polynomials.

Keywords: Grobner bases, polycyclic group rings, rewriting

1 Introduction

By introducing the theory of Grobner bases for polynomial ideals in commutative polyno-
mial rings over fields, Buchberger established a rewriting approach to the theory of polyno-
mial ideals (see [Bu65]). He used polynomials as rules by giving an admissible term ordering
on the terms and using the largest monomial according to this ordering as a left hand side
of a rule. “Reduction” defined in this way can be compared to division of one polynomial
by a set of finitely many polynomials. A Grobner basis now is a set of polynomials G such
that every polynomial in the polynomial ring has a unique normal form with respect to
reduction using the polynomials in G as rules (especially the polynomials in the ideal gen-
erated by G reduce to zero using G). Hence in case they can be computed such bases enable

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG).



to solve many problems related to ideals. For the polynomial ring Buchberger developed
a terminating procedure to transform a finite generating set of a polynomial ideal into a
finite Grobner basis of the same ideal.

Since the theory of Grobner bases turned out to be of outstanding importance for polynomial
rings, extensions of Buchberger’s ideas to other algebras followed, for example to free alge-
bras ([Mo85, Mo94]), Weyl algebras ([La85]), enveloping fields of Lie algebras ([ApLa88]),
solvable rings ([KaWe90, Kr93]), skew polynomial rings ([We92]), free group rings ([R093])
and monoid and group rings ([MaRe93b]).

Especially group rings are subject of extensive studies in mathematics. In 1981 Baumslag,
Cannonito and Miller showed that for the integral group ring of a polycyclic group sev-
eral decision problems including the membership problem for submodules are computable
[BaCaMi81]. In [Si94] Sims studies these ideas and shows connections between special sub-
module bases which allow to solve the membership problem and Grobner bases.

In this paper we want to present our results on generalizing reduction and Grobner bases
to polycyclic group rings and especially to the subclasses of Abelian groups and nilpotent
groups. We want to point out that instead of using the fact that every group ring over
a polycyclic group is Noetherian, we give a rewriting oriented approach which leads to a
syntactical characterization of Grobner bases in terms of s-polynomials and a completion
based algorithm to compute them. In order to do this we have to give conditions when
a polynomial can be used to reduce another polynomial. Due to the presentation of the
group elements by ordered group words we can define a concept of “syntactical divisors”
or “commutative prefixes” on the group elements which captures the known fact that in
the commutative polynomial ring a divisor of a term is also a commutative prefix of this
term. But we will see that this property alone in general will not be sufficient to ensure
that reduction based on commutative prefixes is Noetherian. Hence additional conditions
concerning the presentation chosen for the group and whether left or right multiples are
used for reduction will be important. This leads to different instances of reduction for groups
depending on their presentation. Notice that, since for finitely generated groups we have
that Abelian implies nilpotent which again implies polycyclic, reduction in polycyclic group
rings will also work for nilpotent group rings and again reduction specialized for nilpotent
group rings can be used for Abelian group rings. We will also see why the reverse does not
hold.

In section 2 the basic notions of this paper are presented. It is well known that a poly-
cyclic group G can be presented by a confluent semi-Thue system of a special form. Such
presentations are given and both - the vocabulary of Wiimann in [Wi89] and of Sims in
[Si94] - are presented. In order to keep the paper self-contained, section 3 cites the results
on the Baumslag, Cannonito, Miller approach to solve the submodule problem in polycyclic
group rings as given in chapter 10 of Sims’ book [Si94]. It also includes a possible way of
deducing reduction in this setting, and problems related to this reduction. Furthermore,
we sketch Sims’ generalization of Grobner bases to finitely generated free Abelian group
rings — so called rings of Laurent polynomials. Section 4 relates special Grébner bases to
solutions of the subgroup problem by rewriting techniques. It is outlined how Wifimann’s
approach [Wi89] to the subgroup problem in nilpotent and polycyclic groups can be seen in
our setting. Section 5 states how Grobner bases can be generalized for right and two-sided
ideals in finitely generated nilpotent group rings. A comparison with Sims’ approach for



Laurent polynomials is done for the special case of free Abelian groups. Finally section 6
outlines how a generalization for left and two-sided ideals works for arbitrary polycyclic
groups (hence especially for finitely generated nilpotent groups) and which problems arise
for right ideals.

2 Basic Definitions

Let G be a group with binary operation o and identity A. The elements of a group ring K[G]
over a field K can be presented as polynomials f = > ge6 @ - g Where only finitely many
coefficients are non-zero. Addition and multiplication for two polynomials f =) 9e6 %" 9
and h =3 _; 0, g are defined as f+h =3 s(ag+ ) -gand fxh=>3" ;7 g with
Yo = D woy=geg O By- Polynomials will be written as finite sums Zle o; - t; with o € K
and t; € G.

For a subset F' of K[G] we can specify special subsets of K[G] as follows: We call the
set ideal, (F) = {d ;- fixw; | n € N,o; € K, f; € F,w; € G} the right ideal,
ideal,(F) = {J 0 -wi = f; | n € Nyoy € K, f; € Fyw; € G} the left ideal, and
ideal(F) = {> " | a; - ui * fixw; | n € Nyoy € K, f; € F,u;,w; € G} the two-sided ideal
generated by F'.

As we are interested in constructing Grobner bases for ideals in K[G], we need an appropriate
presentation of the group G in order to do computations. Structures which can be used to
present groups are semi-Thue systems (also called string-rewriting systems). Let us
start with some basic definitions. For a finite alphabet X, ¥* will denote the set of all
words over the alphabet ¥ where A presents the empty word, i.e., the word of length
zero. = will denote the identity on ¥X*. A semi-Thue system 7T over X is a subset of
¥* x 3*. The elements (/,r) of T are called rules and will often be written as | —» r.
The single-step reduction relation on >* induced by a semi-Thue system 7" is defined
as follows: For any u,v in ¥*, u —¢ v if and only if there exist z,y in ¥* and (I,r)
in T such that u = zly and v = zry. The reduction relation on ¥* induced by T is
the reflexive transitive closure of —7 and is denoted by —,. The reflexive transitive
symmetric closure is denoted by 5. If u ——,v holds then one says that u reduces to
v. In case u has no descendant except itself it is called irreducible. The reduction is called
Noetherian if and only if there is no infinite chain v —;v; —>;vo —; .... We speak
of confluence if for all u,v,w in ¥*, u ——; and u ——,w imply the existence of z in ¥*
such that v =,z and w —, 2. A semi-Thue system is called convergent if it is both,
Noetherian and confluent, i.e., unique normal forms exist for the irreducible elements.

Definition 1

Let ¥ be an alphabet. A mapping ¢ : ¥ — ¥ is called an involution if 2(2(a)) = a for all
a € ¥. A semi-Thue system is called a group system if there exists an involution 2 such
that for all a € X the rules (z(a)a, A) and (az(a), \) are included in 7. o

Note that sometimes we will assume that 3 = TUT ! where I'"! = {a! | a € '} contains

Notice that the linear combinations in these definitions of ideals in fact describe elements of K[G].
Since the elements a; € K and w; € G can be interpreted as elements of K[G] the multiplication f; * w; is
well-defined and gives us an element say h; in K[G], as does again the multiplcation «; - h;.



the formal inverses of I' and 7" contains the rules corresponding to the trivial relations in a
group, namely {(aa"!, ), (a ta,\) |a € T'}.

An equivalence relation on ¥* is said to be a congruence relation in case it is admissible,
i.e., compatible with concatenation. Since this is obviously true for the reduction relation
induced by a semi-Thue system 7', the reflexive transitive symmetric closure <, is a
congruence relation on the set ¥*, the Thue congruence. The congruence classes are
denoted by [w]y = {v € * | v« w} and we can set My = {[w]y | w € ¥*}. In fact
M7 is the factor monoid of the free monoid ¥* modulo the congruence induced by 7" as the
following lemma establishes.

Lemma 1
Let (X,T) be a semi-Thue system.

1. The set My together with the binary operation o : My x My — My defined by
[u]r o [v]r = [uv]r and the identity [A|r is a monoid, called the factor monoid of X*
and .

2. In case T is a group system, the set My together with o, [A]r and inv is a group,
where inv([w]r) = [inv(w)|r, and inv(A\) = A, inv(wa) = 1(a)inv(w) for all w € ¥*,
a € X.

Hence, semi-Thue systems are means for presenting monoids and groups. The following
definitions are closely related to describing monoids and groups in terms of generators
and defining relations. We call a pair (X,7) a presentation of a monoid (group) M if
M = My. Note that every monoid can be presented by a (even convergent) semi-Thue
system. Just let 3 be the (possibly infinite) set of all elements and 7 the multiplication
table. The problem is that this presentation in general is neither finite nor recursive. We call
a monoid (group) M finitely generated, if M has a presentation (X,7) such that 3 is
finite. M is said to be finitely presented, if additionally 7' is finite. In order to do effective
computations in our monoid or group we have to be able to compute representatives for
the congruence classes of the elements. A very nice solution occurs in case we are able to
give convergent finite semi-Thue systems as presentations, since then every congruence class
has a unique representative and many problems, e.g. the word problem, are algorithmically
solvable. The class of polycyclic groups, which include the Abelian and nilpotent groups,
allow convergent presentations?. The following notations are taken from [Wig9].

Let ¥ = {a1,a;",...,a,,a;'} be a finite alphabet and for 1 < k < n we define the subsets
Y = {as,a; ' |k <i<n}, Y, = 0. We first distinguish several particular classes of rules
over X.

Definition 2
Let i, € {1,...,n}, j >iand 6,0' € {1,—1}.

1. A rule alal — af'a? is called a CAB-rule (Abelian).

2. A rule agaf' = af’aﬁz, z € X7, is called a CNI-rule (nilpotent).

2A survey on groups allowing convergent presentations can be found in [MaOt89).



3. Arule alal — af'z, z € 57, is called a CP-rule (polycyclic). o

Definition 3
For X € {AB, NI, P} a subset C of ¥* x ¥* is called a commutation system if

1. C contains only CX-rules, and

2. forall 1 <i < j < nand forall §,6' € {1,—1} there is exactly one rule alal — r in

C. o

Definition 4

For 1 <4 <n arule a* — r where m > 1, r € X7, is called a positive P-rule and a
rule a;' — uv where u € {a;}* and v € ¥}, is called a negative P-rule. Then a subset
P of ¥* x ¥* is called a power system if

1. P contains only positive and negative P-rules.

2. For all 1 < ¢ < n there is a negative P-rule a; ' — wv in P if and only if there also
is a positive P-rule of the form aj* — r with m > 1 in P.

3. For all 1 < ¢ < n there is at most one negative P-rule a, ' wv and at most one
positive P-rule ¢ — r in P. o

In combining these rule systems we can characterize special group presentations. For X
in {AB, NI, P}, a presentation (X,7") is called a CX-string-rewriting system (CX-
system) if 7' = C UI where C is a commutation system and I contains the trivial rules, i.e.,
I ={aa;' — X\, a;'a; — A1 <4 < n}. It is called a PCX-string-rewriting system
(PCX-system) if "= C U P U I where T additionally includes a power system P. The
motivation for such presentations stems from the fact that they can be used to characterize
special classes of groups.

Theorem 1 (Theorem 2.5.1. in [Wi89])
For a finitely presented group G the following statements hold:

1. G is Abelian if and only if there is a PCAB-system presenting G.
2. G is nilpotent if and only if there is a PCNI-system presenting G.

3. G is polycyclic if and only if there is a PCP-system presenting G.

Notice that this theorem is a syntactical illustration of the fact that for finitely generated
groups Abelian implies nilpotent which again implies polycyclic.

Using a syllable ordering Wiimann has shown that a PCX-system (X,7) is a Noethe-
rian string-rewriting system and he gave a completion procedure for such systems which
terminates with an output that is again a PCX-system of the same type.



Definition 5
Let ¥ be an alphabet and > a partial ordering on YX*. We define an ordering ='** on tuples
over X* as follows:

(Uoy -+« + s Um) =" (Voy - -+, V)
if and only if
there exists 0 < k < m such that u; = v; for all 0 < ¢ < k and uy = vy.

Let a € ¥. Then every w € ¥* can be uniquely decomposed with respect to a as w =
woawy - .. awy, where |w|, = k > 0 and w; € (X\{a})*. Given a total precedence® > on ¥
we can define a syllable ordering with status left by

U >gyl(s) U
if and only if

lulg > |v], or

lu|s = |v]q and (ug, - - -, Um) >;ey’f1(2\{a}) (Voy -« -5 Um)
where « is the largest letter in 3 according to > and (ug, ..., Um), (vo,...,vy) are the
decompositions of u and v with respect to a in case |ul, = |v]|, = m. o

The total precedence used on an alphabet ¥ = {a;,a;' | 1 < 4 < n} in our setting is
a;' = ay = ...a;' = a; = ... = a;' = a,. Using the syllable ordering induced by this
precedence we can give a characterization of the elements of our group as a subset of the
set of ordered group words ORD(X) = ORD(X,), where we define ORD(%;) recursively
by ORD(X,41) = {A\}, and ORD(Z;) = {w € &} | w = uv for some u € {a;}* U {a;'}*,v €
ORD(X;11)}. Further with respect to 7' we define the constants ey(i) for 1 < i < n by
setting

. 00 if T' contains no P-rules for a;
er(i) =

m if T' contains a P-rule a]* — r for some unique m > 0.

One can show that using the syllable ordering for orienting 7" we get
IRR(T) = {a’* ...a" |is, ..., i, € Z, and if €g(j) # oo then 0 < i; < er(4)}-

For example the semi-Thue system (,T) where T = CUI such that we have C = {aJa} —
af’ag |1 <i<j<ndd €{l,-1}}and I = {a;a; ' — Na;'a; — A |1 <i<n}
is a presentation of the free commutative group generated by {ai,...,a,} and we have
IRR(T) = ORD(Y).

In restricting the syllable ordering introduced in definition 5 to ordered group words this
gives us a’' . ..ar >en @' ...al if and only if for some 1 < d < n we have i, = j; for
all1 <1 <d-1and iy >z jg with @ >z g if and only if 5 = 0 or (sgn(a) = —1 and
sgn(B3) = 1) or (sgn(a) = sgn(B) and || > |B|). where > is the usual ordering® on Z and
for € Z, sgn(a) = 0if &« = 0, sgn(a) = 1 if @ > 0 and sgn(a) = —1 if @ < 0. We then call
ag the distinguishing letter between the two ordered group words.

The next two technical lemmata are related to some properties of the wellfounded ordering
>z and will be useful in the proofs later on.

3By a precedence on an alphabet we mean a partial ordering on its letters.
4By the usual ordering on Z we mean ... —3< -2<-1<0<1<2<3<....



Lemma 2
Let a,b,c € Z. Then a >z b and a-c > 0 imply a+c¢ >z b+ c.

Proof :
In case a > 0 we find b > 0 (since a >z b) and ¢ > 0 (as a-c¢ > 0). This immediately implies
a+c>b+c¢c>0and hence a+c>zb+ec.
On the other hand, a < 0 gives us ¢ < 0 (since a - ¢ > 0) and depending on b either
a+c<b+c<0ora+c<0<Lb+c, again implying a +c >z b+ c.

q.e.d.

Lemma 3

Let a,b,c € Z. Then a >z b, a >z ¢, and the existence of an element x € Z such that
a+r<gb+zxzandc+zx <gb+zximplyb—a >z c—a. In case c+ x <z b+ x holds we
get b—a >z c—a.

Proof :
First let us look at the case b— a = ¢ — a. This implies b = ¢ and hence b+ y = c+ y for all
y € Z. Therefore the existence of an x € Z such that ¢+ z <z b+ z implies b — a #z ¢ — a.
Now it remains to prove that the case b — a <z ¢ — a is not possible.
First suppose ¢ —a < 0. Let us distinguish the two possible cases: If a > 0 we get a > ¢ > 0
(asa >z c)and a>b>0 (as a >z b). Since then b — a > 0 is not possible, b —a <z c—a
implies that we have ¢ — a < b — a < 0 and hence a > b > ¢ > 0 must hold. We now show
that in this case no = as described in the lemma can be found. For a > b > 0 we get that
for all y > —b we have b+ y <z a+ y and for all y < —b we have b+ y >z a + y. Similarly,
for b > ¢ > 0 we find that for all 2z > —c we have ¢ + z <z b+ z and for all z < —c,
¢+ z >z b+ z holds. Hence for x such that a + x <z b+ z and ¢+ x <z b+ z to hold, we
must have x < —b and x > —c¢, contradicting —b < —c. On the other hand, a < 0 leads to
a contradiction ¢ — a > 0 as a >z c either implies c > 0 or a < ¢ < 0.
Hence let us suppose ¢ —a > 0 and therefore ¢ —a > b — a > 0 implying ¢ > b > a (and
hence a >z ¢ must hold as a # ¢). Furthermore, a >z b implies a < 0. Let us analyze
the remaining cases. If ¢ < 0 we find b < 0 as well (since ¢ > b > a). Since the equation
a+x <z b+zxholdsforx > —a >0onlyand c+z <gb+zfor0 <z < —-b< —a
only, no = as required can exist. Hence suppose ¢ > 0. Then depending on b the equation
¢+ <z b+ x holds either for 0 < z < —b < —a (in case b < 0) only or for z < —b < 0 (in
case b > 0), and as further z > —a > 0 must hold again no such z can exist.

q.e.d.

The following lemma is an easy observation on the results of multiplying a letter by special
ordered group words.

Lemma 4

1. Let G be a nilpotent group with a convergent PCNI-presentation (3,7T). Further
for some 1 < j < i < n let w; € ORD(E\E;), wy € ORD(X;41). Then we have
a; 0wy = wia;2z; and wy © a; = a;z3 for some z1, zo € ORD(X;41).



2. Let G be a polycyclic group with a convergent PCP-presentation (X,T). Further
for some 1 < i < n let w € ORD(X;;1). Then we have w o a; = a;z for some
z € ORD(EH_l)

Proof :
This follows immediately from the rules given in the respective presentations.
q.e.d.

We now define a new ordering on G called a tuple ordering, which will be crucial in our
definitions of reduction.

Definition 6 _

For two elements w = a!'...a%,v = al'...a}» € ORD(X), we define w >, v if for each
1 <1 < n we have either j, = 0 or sgn(3;) = sgn(j;) and |i;| > |j;| where sgn(7) is the sign
of the non-zero integer i. Further we define w >y, v if w >y, v and |4 > |j;| for some
1 <l <nandw >up Afor all w € G. According to this ordering we call v a syntactic
divisor or commutative prefix of w if w >, v. o

Notice that this ordering captures the fact that a divisor of a term in the ordinary poly-
nomial ring is also a commutative prefix of the term. The tuple ordering is not total on
G but we find that w >,, v implies w > v, where > is the ordering on G induced by
the syllable ordering used as completion ordering for the respective PCX-presentation of
G. Given a non-zero polynomial p in K[G], the so called head term HT(p) is the largest
term in p with respect to >, HC(p) is the coefficient of this term and the head monomial is
HM(p) = HC(p) - HT(p). T(p) is the set of terms occurring in p. The total ordering > on G
can be extended to a partial ordering on K[G] by setting p > ¢ if and only if HT (p) = HT(q)
or (HM(p) = HM(g) and p — HM(p) > ¢ — HM(q)).

The tuple ordering can be used to specify special representations of right and left ideal
elements and special bases of them.

Definition 7
Let F be a set of polynomials and p a non-zero polynomial in K[G].

1. A representation

n

p:Zai-fi*wi, with o; € K*, f; € F,w; € G

=1

is called a right commutative prefix standard representation in case for the
respective head terms we have HT(p) = HT(f;) o w; = HT(f; * w;) and HT(f; *
w;) >up HT(f;) for all 1 < ¢ < n. In our previous work this was also called a quasi-
commutative (qc-) standard representation.

2. A representation

n
p:Zai-wi*fi, with o; e K*, f; € F,w; € G

i=1



is called a left commutative prefix standard representation in case for the
respective head terms we have HT (p) > w;oHT(f;) = HT (w; * f;) and HT (w;* f;) >tup
HT(f;) for all 1 <4 < n. Again for historical reasons this is sometimes called a left
polycyclic (Ipc-) standard representation.

A set F' C K|G] is called a right commutative prefix respectively left commutative pre-
fix standard basis if every non-zero polynomial in ideal, (F) respectively ideal,(F’) has a
right commutative prefix respectively left commutative prefix standard representation with
respect to F'. o

Notice that in case G is Abelian these representations coincide and are called commutative
standard representations. We will later on see how such representations are related to
different reductions, which will be Noetherian because of the following statements, which
heavily depend on the presentation of the group.

Lemma 5

Let G be a nilpotent group with a convergent PCNI-presentation, w,v,0 € G with w >, v
and v > v. Then for v € G such that w = v o u, we get w > ¥ o u. Notice that since G is a
group, u always exists and is unique, namely u = inv(v) o w.

Proof :
Let aq be the distinguishing letter between v and 9, i.e., v = zay,, 0 = :cagdyﬁ with
xz € ORD(X\X4), ¥v,ys € ORD(X441) and vgy >z 04. Then for v = al*...al" we get

n

u1 Uq __ W1 Wq—1 uqg+vg+Ssq Sd+1 s I ~ u1 Uqg

voay ...a;t =ayt...ay%] oay o (az -..ay oy,) and similarly ¥ o af'...ay" =
w1 Wd—1 Ug+vq+84 Sd+1 s B : Sd+1 s Sd+1 s ~

ai’ .. a2t oay o(agy ...ay» oyy) and since (a7 ... ap o yy),(a ) .. a oys) €

ORD(X4+1) and the exponents of the letter a4 are different, in order to decide whether
w > vou we only have to compare the exponents of a4 in the normal forms of the respective
products. Now, w >, v gives us, for the exponent wy of the letter a4 in w, wy >z v,
sgn(wg) = sgn(vg) and ug + vg + sq¢ = wq or (ug + vg + sq) mod my = wy in case aq4 is
bounded by my.

To show that w > vowu we now have to distinguish two cases. If the letter a, has unbounded
exponents, we can apply lemma 2 since vy >z 74 and vg - (ug + s4) > 0 hold (the latter
follows as w >4 v). Hence let us assume the letter a,4 is bounded, i.e., we know 0 < 9 <
vg < wg < mg, and since 0 < uy < mg must also hold we get 0 < 04 + ug < vg + uqg
and (vg + ug + sq) mod my = wy. Now in case vy + ug + sS4 = wy we are done, as then
Ug + Sq > 0 implies vg + ug + Sq > Vg + ug + Sq. Else, as vg < wy, for y = wy — vy we
know ug + s4 = L -mg +y with 0 < y < my and hence 0 < (34 + ug + Sq) mod my =
(Dg+1-mg+y) mod mg=104+1y <vg+y=wyg and we are done.

q.e.d.

However, the next example shows that for PCP-presentations of groups this in general no
longer holds.

Example 1
Let ¥ = {a,a7' 00,05 a3,a35'} and T = {asa1 — ajasa3,a30] —



-1 -1 -1 -1 -1 -1 -1 -1 -1 5,6 &0 6,0 )
9,0' € {1,—1}} U Ty be a polycyclic presentation of the free nilpotent group with two
generators. Then for w = a?as, v = ajap and ¥ = a;a3 we have w >tup U, v > 0. Now for
u = a; we find vou = ajas 0a; = aag, but You = ajazoa; = alasaz and hence tou = w.

o

This example stresses the importance of the presentation chosen for the group, as
the group is nilpotent. Note that lemma 5 holds when using the presentation ¥ =
{a1,a7t,a9,05",a3,a03'} and T = {asa; — aia0a3,a5 a]" — a]'a;'as,a;'a; —
aaytazt,asart — arlagazt,alad — afal,ajal — afaf | 6,6’ € {1,—1}}. Then
for w = a%ag, v =aia9 and U = ajaz we get u = a1a3_1 and ¥ ou = aia3 o alagl = a% < w.

Still for groups with convergent PCP-presentations a similar stability property holds for
left multiples.

Lemma 6

Let G be a polycyclic group with a convergent PCP-presentation, w,v,? € G with w >, v
and v > v. Then for u € G such that w = u o v, we get w > u o ¥. Notice that since G is a
group, u always exists and is unique, namely u = w o inv(v).

Proof :
Let aq be the distinguishing letter between v and 9, i.e., v = zafy,, U = zay'y; with
z € ORD(X\X4), Yv,¥s € ORD(X441) and vy >z 04. Then for u = af*...al" we get
wow = aj'...a oxay, = ait .. .4y od'at Ty, = 2" 0 @tV oy with 2!, 2" €
ORD(2\Z4), %/, 4" € ORD(Z4.1) and similarly u o & = 2" o aT™%* o ¢ with y? €
ORD(X41). Furthermore, w >,, v gives us, for the exponent w, of the letter ay in w,
Wy >7 Vg, sgn(wq) = sgn(vq) and ug + vg + 29 = wy or (ug + vg + 22) mod my = wy in case
aq is bounded by myg. To show that w > u o v we can proceed as in lemma 5.

q.e.d.

Let us close this section by summarizing Sims’ notions for presenting polycyclic groups as
given in chapter 9 of [Si94]. Let

G=G1 >G> ...>Gp1 ={\}

be a polycyclic series for G. For 1 < i < n let a; be an element of G; whose image in G;/G;+
generates that group. The letters a4, ..., a, are called a polycyclic generating sequence
and we have G; = (a;, ..., ay), i.e., G; is the subgroup of G generated by a;, ..., a,. Further
let I = {i | Gi/Gi1 is finite} and for ¢ € I set m; = |G; : G;y1|. It is assumed that the
generating sequence is not redundant in the sense that no a; is in G;;;. Every element of
G can be expressed in the form azf ...al», where iy,...,4, € Z, and such a presentation
is called a collected word, if 0 < 7; < m; for j € I. Now G gives rise to a unique
presentation called the standard polycyclic presentation with respect to the letters

ai, ..., a,, namely



Qi (it1) Qjjn

a;a; = 00 oant, g >,

a;lai = aiaffl(”l) LI B 1,
aja;t = a7l @, > g,
aja;t = a;lafﬂ"“) ai i>dd el
al = ity ..k iel,

ait = ol V. atn i€l

a,-a;l = A, 1 €1,

a;lai = A, 1 €1,

where the right sides are collected words. Every presentation which has this form defines
a polycyclic group, but there might be a; such that |G; : G;11| = m although there is no
relation of the form a;® = ... or only a relation of the form ai = ... with n > m. If this is
not true, the presentation is called consistent, which then is a synonym for confluent.

The relations of such a presentation can be interpreted as rewriting rules over the alphabet
{ai,...,a,} with respect to the syllable ordering - here called wreath ordering - induced
by the precedence a;! = a; > ... = a;' = a,. Then a consistent polycyclic presentation
gives rise to a convergent PCP presentation.

3 Solving the Submodule Problem in Polycyclic
Group Rings

In [Si94] Sims gives the following discussion for handling finitely generated right modules
over the integral group ring of any polycyclic group G, which is based on the work of
Baumslag, Cannonito and Miller [BaCaMi81].

Let a4, ..., a, be a polycyclic generating sequence for G together with a consistent polycyclic
presentation for G.

In case n =1, G is cyclic and this case is well known.

Hence let us assume that n > 1 and set H = (as, ..., a,). Then A is normal in G and G/H
is a cyclic group generated by the image of a;. By induction on n we may assume that
we know how to describe submodules in the modules Z[#]*, s € N. In order to show how
this information can be lifted to Z[G]* we have to distinguish whether 1 € I or not. In the
following we abbreviate a; by a.

First suppose 1 € I, i.e., G/#H is finite and w.l.o.g. let m = |G : H|. Then Z[G]® is isomorphic
(as a Z[H]-module) to Z[H]*™, as if by, ..., b, is a Z[G]-basis for Z[G]*, then the set {b;a’ |
1 <i<s,0<j < m}isa Z[H]-basis of Z[G]*. Now, a Z[H]-submodule M of Z[G]® is
a Z[G]-submodule if and only if M is closed under multiplication by a from the right. If
T C Z[G]’ is a generating set for M as a Z[H]-module, then M is closed under multiplication
by a if and only if f % a is in M for all f € T. Suppose the products f * a do belong to
M. A typical element g of M has the form Y., o; - fi x hi, o; € Z,f; € T, h; € H. Then
gxa=Y, a-fix(hioa)=> - fix(aca toh;oa), and since a toh;oa € H
and each f;xa € M, we get gxa € M. If some f *a is not in M, then we can add it to T’
and recompute the Z[H|-submodule generated by 7'. Because the ascending chain condition
holds, this process will terminate®. Since we can describe submodules of Z[H]*™ effectively,

5This can also be seen, since for m we have a™ € H.



we can describe submodules of Z[G]*.

Now let us suppose that G/#H is infinite. Then Z[G]* is still a free Z[H]-module, but with
an infinite basis U = {b;a’ | 1 <14 < s,j € Z}. Any element g € G can be written uniquely
in the form a’h, where h € H. In this way, b; o ¢ can be expressed as b;a’h. Thus elements
of Z[G]® can easily be described as Z[#]-linear combinations of the elements of U. However,
it is also useful to write ¢ in the form la’ where | = a/ o hoa™/ € H. When this is done,
every element of Z[G]* can be described as

-1
cpxal +cpor ka4 g xal

where p,q € Z, p > q and ¢; € Z[H]*, p < i < ¢. In case ¢ > 0 the element is called a
polynomial and p is called the degree and ¢y the constant term of the polynomial.
Let T be a finite subset of Z[G]° and let M be the Z[G]-submodule generated by T'. Since
a is a unit in Z[G] we can multiply each element in 7" by some power of ¢ such that the
resulting element is a polynomial, i.e., it has positive exponents in @ only, and additionally
we assume it has nonzero constant term cy. Given k € N, let My, be the set of polynomials in
M with degree at most k, and let C}, be the set of coefficients of the term a* occurring in the
polynomials in Mj,. Let Zf:o ¢, ¥a' € My and h € ‘H. Then since also [ =a*ohod* € H,
we get Sr jcixall =3F cix(@oaFohodt) =3F c¢ix(@Fohodt) =" ¢
(@ ko hoaf) xa' = Zf:o ¢; * h;a® with h; € H. Therefore, ¢, x h € C), for h € H, i.e., Cy
is a Z[H]-submodule of Z[#H]*. Furthermore, Cj C Cy1 holds.

Let d be the maximal degree of the polynomials in 7" (assuming that 7" has been modified
to contain only polynomials as described above). Then one can show that Cy, = Cy for
k > d. Moreover, knowing M, alone allows to solve the membership problem in M, as we
can multiply every element g € Z[G] by a power of a in order to turn it into a polynomial,
say of degree k. Then in case k > d we check whether ¢, € Cj. If not we are done, since then
g € M. Else there exists an element h € M, with leading coefficient ¢, and we can reduce
g by subtracting ha* . Thus we may assume that & < d which leaves us with the decision
whether g € My. How do we get to know My? Let A be the Z[H]-module generated by T,
B respectively C the elements in A with degree at most d — 1 respectively constant term
0. Then we have A C M, and, moreover, A = M, if and only if Ba C A and Ca ! C A.

Sims outlines how these membership problems can be treated using matrix methods. In
example 8.3. he states how to compute such a basis in the group ring of the free nilpotent
group (see example 1 for a presentation of this group on the letters ai, as, and agz). Then
for the right ideal M of Z[G] generated by the set 7' = {a; + a2, a1 + a3}, the membership
problem can be solved using the Z[H]-basis {a; + 1,as — 1,a," — 1,a3 — 1,a3' — 1} for
M. In the next section we will see that a Grobner basis in our sense will contain one more
polynomial, namely a;* + 1.

Notice that the constructive discussion cited above states how a solution for the membership
problem for modules in Z[G]* can be given using a solution for the membership problem
for Z[H]*. Assuming that the solution is given by reduction methods — say given M, a
Z|H]-module, we can compute a basis B of the module such that g in M iff g :*>B 0— we
can the lift reduction similar to the case of polynomial rings over reduction rings. However,
since elements of Z[G]° in order to decide membership have to be turned into polynomials,
i.e., occurrences of a with negative exponents have to be made positive by multiplication
with an appropriate power of a, for such a lifted reduction the translation lemma no longer
holds.



Example 2

Let Z[G] be a group ring with G presented by ¥ = {a,a '} and T = {aa™! — \,a 'a —
A}. Further let p = 3-a? + 1, then p is a basis of the right Z[G]-module as described by
Sims. The polynomials f = —2-a and g = a+a~! both do not belong to this right module.
Now we have g — f = 3-a+a~! and we find that the “polynomial” (g — f)*a =3-a?+1is
“reducible” to 0 using p, while neither of the “polynomials” f nor g x a are reducible with
respect to p.

Hence we have the situation that g and f are congruent with respect to the Z[G]-module
generated by p, but do not have the same “normal form”. o

Hence we cannot expect the resulting bases to be Grobner bases in the strong sense that
every element in Z[G]* has a unique normal form with respect to the module. In the following
sections we show how for special cases Grobner bases can be computed when using other
definitions of reduction.

Let us close this section by sketching how Sims introduces Grobner bases for the special
case of finitely generated free Abelian groups in section 10.7 of [Si94]. The group ring then
is also called the ring of Laurent polynomials.

Let the free Abelian group G be generated by {a;,a;’,..., an,a; '} and let the Laurent
monomials U = {af" ...a2" | o; € Z}, be ordered by a reverse lexicographic ordering (i.e.
a lexicographic ordering comparing from the right to the left) in which the exponents are
compared with respect to the ordering 0 < 1 < —1 < 2 < —2 < .. .5 The elements in U
represent the group elements. Two elements ai" ...a%" and a'f L...aP" are called aligned,
if a; - B3; > 0 for all 1 < ¢ < n. Then, although the ordering on the monomials is not
consistent with multiplication, one can specify certain multiples for which multiplication is

stable which is done in corollary 7.6.

Suppose that u,v, and x € U such that v > v. If £ and u are aligned, then
TU > TV.

This corollary is in fact comparable to the lemmata 5 and 6 specialized for free Abelian
groups. The property ensures that multiplying a polynomial with a monomial whose term
is aligned to the head term leaves the head term in head position. Hence defining reduction
based on this property remains stable, but in general will not capture the ideal congruence.
This can be repaired because of theorem 7.9.

Let f be a nonzero element of Z[G]. There is a unique subset 7 (f) of Z[G] such
that the following hold:

1. Each element of 7 (f) has the form y * f with y € U.

2. If z is in U, then z x f = y x g for a unique pair (y, g) such that g is in
T(f), yisin U, and y is aligned with the leading monomial of g.

The cardinality of 7(f) is at most 2™.

1 1 —2
bE.g. we get a1 < a; " < alax < a1a3 < a; "a% < ara;y”.



Then for a finite set 7 C Z[G] one can define the symmetrized set S(7') as the union of the
sets 7(f), f € T, additionally assuming that all polynomials have positive leading coeffi-
cient. This in some sense corresponds to the fact that in the above proof of the Baumslag,
Cannonito, Miller approach additionally to the condition Ba C A one also has to ensure
Ca~! C A. Symmetrized sets can be computed as follows:

Function SyMM

Given: A finite subset T of Z[G].
Find: S(T), the symmetrized set for 7.

Begin
S:=T-{0}
For ¢ := m down to 1 do begin
T = 0;
For f in & do begin
Let u be the leading monomial of f;
Let a and (3 be the algebraically largest and smallest exponents, respectively, on
a; occurring in any monomial v of f for which the exponents on a;,1,...,a,
in v agree with the corresponding exponents in u;;
If « = B then T :=T U{a;x f}
Else begin
Let v be the greatest integer in”(a + 3 —1)/2;
T:=TU{a"* f.a;" " * f}
End
End;
S=T
End;
For f in § do
If f has negative leading coefficient then replace f by —f in §;
S(T):=S8
End
For example the symmetrized set® of the polynomial g = 2-a; %a3 —4-d2?a3 — a1a2 +ayas is
S(g) = {2-a[%a2—4-a%a%—ajas+a1,4-a}a3—2-a7 a2 +a?ay—a?, ay  +2-a7 *ay—4-a1a0—1}.
Now reduction using sets which are their own symmetrized sets is specified by the following
procedure:

Function REDUCE

Given: A finite subset T of Z[G] which is its own symmetrized set.
A non-zero polynomial f in Z[G].

Find: An element g of I + f is returned, where I is the ideal of Z[G] generated by 7.
The element g is irreducible with respect to the set of products y * h, where A is

Te.v=(a+8-1)/2].
8see [Si94] page 503 for the concrete computation.




in T, y is in U, and y is aligned with the leading monomial of h.

Begin
1:=1;9g:=f; % At all times g =¢1 - u1 + ... + ¢5s - us. If g = 0 then s = 0.
While 7 < s do
If there is an element A in T such that the leading term b - v of h satisfies b <z ¢;
and u; = y ov, where y is in U and y and v are aligned, then begin
Let ¢; = q- b+ r, where g and r are integers and 0 < r < b;
g:=9g—q-y*h; % Recompute s and the terms c; - u; with j > 4.
End
Else i := 1+ 1;
End

Hence reduction of a polynomial p at a monomial c-¢ by a polynomial f can be defined in case
there exists v in U such that HT(f) and u are aligned, t = uo HT(f), and b = HC(f) <z c.
Then for ¢ = g - b+ r, where ¢ and r are integers and 0 < r < b we get p—>fp—q-u>|<f.
Now critical pairs can be specified with respect to this reduction:

Let f and g be elements of S(T') with leading term u and v, respectively, and
assume that u and v are aligned. Let w = LCM(u,v), £ = w o inv(u), and
y = woinv(v). The leading monomial of z* f and y* g is w. Suppose zx f < y*g.
Then (z * f,y * g) is a critical pair.

For a critical pair (f,g) let HC(g) > HC(f) and HC(g) = ¢ - HC(f) + r where ¢ and r are
integers and 0 < r < b. Then we set t(f,g) =g—q- f.

Now Grobner bases can be computed as follows:

Function GROBNER

Given: A finite subset 7" of Z[G].
Find: A Grdbner basis for the ideal of Z[G] generated by 7.

Begin
B := Symm(7T);
Let C be the set of critical pairs obtained from B;
While C is not empty do begin
Remove a critical pair (f, g) from C;
h := REDUCE(B, t(f, 9));
If h # 0 then begin
S :=SymmMm({h});
Form all critical pairs obtainable from an element of S and an element of B
and add these pairs to C';
B:=BUS
End
End
End



The output of this function will be a set which is both — a symmetrized set and a Grobner
basis.

4 On the Relations between Grobner bases and the
Subgroup Problem

In this section we want to demonstrate the connection between Grobner bases in certain
group rings and solutions of the subgroup problem by rewriting techniques.

Definition 8

Given a subset U of a group G, let (U) = {ujo...ou, | n € Nyu; € UUU '} denote
the subgroup generated by U. The generalized word problem or subgroup problem
is then to determine, given w € G, whether w € (U). o

The following theorem links this group theoretic problem to right respectively left ideals in
the respective group ring.

Theorem 2 (see 5.1.2 in [Re95])

Let U be a finite subset of G and K[G] the group ring corresponding to G. Further let
Py ={s—1|s € U} be aset of polynomials associated to U. Then the following statements
are equivalent:

1. we ({U).
2. w—1 € ideal (Py).

3. w—1 € ideal,(Py).

Proof :

l=2:Let w =ujo...ou; € (U), ie., u,...,u € UU {inv(u)lu € U}. We show
w — 1 € ideal,(Py) by induction on k. In the base case k£ = 0 there is nothing to show, as
w =\ € (U) and 0 € ideal, (Py). Hence, suppose w =uj0...0ugy; and ujo...ou, —1 €
ideal (Py). Then (ujo...our — 1) *ugyi € ideal, (Py) and, since ug1 — 1 € ideal . (Py)?, we
get (ugo...oup — 1) *upr + (ugr1 — 1) = w — 1 € ideal (Py).

2 = 1: We have to show that w — 1 € ideal (Py) implies w € (U). We know w — 1 =
> i1 @ (uj — 1) x 2, where a; € K*, u; € U U {inv(u)|u € U}, z; € G. Therefore, by
showing the following stronger result we are done: A representation w—1 = Z;nzl pj where
p; = aj - (w; —wj), a; € K*w; # wj and w; o inv(w)) € (U) implies w € (U). Now, let
w—1= Z;”Zl p; be such a representation and > be an arbitrary total well-founded ordering
on G. Depending on this representation and = we define ¢ = max{w;,wj | j = 1,...m}
and K is the number of polynomials p; containing ¢ as a term. We will show our claim
by induction on (m, K), where (m', K') < (m, K) if and only if m' < m or (m' = m and
K'< K).In case m =0, w — 1 = 0 implies w = 1 and hence w € (U). Thus let us assume

9We either have ugy1 — 1 € Py or inv(ugy1) € U, ie., (inv(ugt1) — 1) * upp1 = ugp1 — 1 € ideal (Py).



m > 0.

In case K = 1, let py be the polynomial containing ¢. As we either have py = oy - (t —wj},) or
Pk = oy - (wi —1t), where oy, € {1, —1}, without loss of generality we can assume pj, = t —wy,.
Using py we can decrease m by subtracting py from w — 1 giving us wj, — 1 = Z;":L#k Dj-
Since ¢ o inv(w},) € (U) and our induction hypothesis yields w, € (U), we can conclude
w=t=(toinv(w})) owj, € (U).

In case K > 1 there are two polynomials pg, p; in the corresponding representation and
without loss of generality we can assume pp = a4 - (t — w}) and p; = o - (t — wj). If
then wj = w; we can immediately decrease m by substituting the occurrence of py + p; by
(o + y) - pr. Otherwise we can proceed as follows:

P +Di = pk:ak'afl'pl+04k'04f1'p5+pl

~~
=0

= (—ak - wj + o - wp) +(o - ot + 1) p

~”

Pl

where p|, = oy - (W) — w},), wj, # w; and wy, oinv(w;) € (U), since wj, oinv(t), toinv(w;) € (U)
and w} o inv(w)) = w} oinv(t) ot oinv(w)). In case ag - a; ' + 1 =0, i.e., ap = —y, m is
decreased. On the other hand pj does not contain ¢, i.e., if m is not decreased K is.

1 = 3 and 3 = 1 can be shown analogously.
q.e.d.

As in Buchberger’s case on can try to describe these right and left ideals using appropriate
definitions of reduction. Then, in case the group ring allows to compute finite Grébner bases
for finitely generated right respectively left ideals, the subgroup problem can be solved using
reduction methods. In [Re95] we have studied how such a solution in the free group ring
compares to the concept of Nielsen reduction and showed that in fact the appropriate
Grobner bases!® give rise to so called Nielsen reduced bases of the respective subgroups.
Here in the setting of nilpotent and polycyclic groups we want to point out connections to
Wiimann’s approach given in [Wi89].

The subgroup problem can be described using rewriting techniques as follows: Let U be a
generating set of a subgroup of a group presented by (X,7"). We assume that U is closed
under inverses, i.e., if u € U so is inv(u). Then we can define a right congruence on ¥* by
w ~y v if and only if there exists € (U) such that w +—,zv. Now the key idea is to
express this right congruence by a restricted reduction relation. This can for example be
done by introducing a reduction w ==y v for w,v € G if and only if there exists u € UUU !
such that v = u o w and w > v. Moreover, since (U) is the coset of A, a A-confluent basis
B of (U) for this reduction then is sufficient to decide the subgroup problem.

We now want to demonstrate how strong reduction!! in group rings is related to Wilmann’s
reduction. Strong reduction in a group ring is defined as follows: For p, f € KJ[G], let
HT(f *w) =t for some t € T(p), w € G, then p—%p — - f *w = g, where o € K such
that t € T(q). First we take a closer look at the outcome of using only restricted polynomials

10Prefix reduction was used to treat right ideals in free group rings.
1A thorough study of the properties of strong reduction can be found in [Re95].



of the form = —y for reduction where z, y in G. Then reducing a polynomial of the form w € ¢
by such a polynomial gives us either w —;_, y o (inv(z) o w) in case w = z oinv(z) o w >
yoinv(z)ow or w—,_, x o (inv(y) ow) in case w =y oinv(y) ow > z oinv(y) o w. Thus
such a reduction step corresponds directly to a step or the form w == ysinv(z) ¥ 0 inv(z) 0w
respectively W = jinv(y) Z0inv(y)ow in Wimann’s context. On the other hand, a reduction
step w =, v o w can be restated as strongly reducing a polynomial w by a polynomial
u — 1 and, since we know that w > u o w, we get w—_; uow.

More general we can show that the right ideal generated by a set of polynomials Py =
{u—1 | u € U} has a Grobner basis of the form G = {z — y | z,y € G} and the set
B = {zoinv(y),yoinv(z) | z—y € G} then is a confluent basis with respect to =>-reduction
for the subgroup in Wifimann’s sense. The proof is done using the following lemmata. The
first one stresses that for a polynomial in ideal,(Py) there exist special representations
in terms of polynomials containing only two monomials and involving only terms of the
polynomial itself.

Lemma 7
Let g be a polynomial in the non-trivial right ideal generated by Py = {u — 1 | u € U}.
Then g has a representation of the form

g = Zai : (iEz _yi)
i=1
where «; € K, z;,y; € T(g), x; — y; € ideal,.(Py).

Proof :

Remember that g € ideal, (Py)\{0} implies g = > ", 3; - f; * w; where o; € K, f; € Py,
and w; € G. Hence we show our claim by induction on m. In the base case m = 1 we find
g=p (uow—w), and as uow # w for u # A we are done. Now let us assume m > 1 and

m—1
9= B fixwj+B-(uow—w).

=1

h

Then by our induction hypothesis we know h = > """ | o;-(z;—y;) where o; € K, z;,y; € T(h),
x; — y; € ideal,.(Py). We have to distinguish the following cases: If u o w,w ¢ T(h) we are
done at once. In case uow € T(h) and w ¢ T(h) (the case uow ¢ T(h) and w € T(h)
is similar) without loss of generality let + = wow = z; for 1 < j < s. Then in case
> i-1B; # —P the representation g = Y1 ;- (z; — yi) + B - (uow — w) already has the
desired form. Else we show that such a representation can be achieved by induction on the
number s + 1 of terms = occurring in this representation. In the base case s = 1 we get
a1 = — 3 and hence

g = Zai-(xi—yi)—i-oq-(:E—yl)—l—ﬁ-(x—w)

= Zaz"(%—i‘/z’)—ﬂ'(x—%)"'ﬁ'(m—w)



= Zai'(xi_yi)+ﬁ'(yl_w)

and we are done. Now let s > 1 and

9= ;%"(xi—yi>+:2§ai-<x—w>+as-(x—ys)w-(x-w)
B Z.ZZ:I‘” +Z% (g +B) (@ —ys) = B (& —ys) + - (z — w)
- iglai'(xi_yi)Jr;ai'(“f—yz‘)+(0¢s+ﬁ)'(w—ys)+ﬁ-(ys—w)
B 2:1‘” (@ =y + 8- (s —w +Z% + (0t B) - (- )

and since x occurs at most s times in this finial representation, we can assume that g has a
representation of the desired form. It remains to check the case where vow,w € T(h). Then
we can proceed as in the previous case to first incorporate v ow into the representation and
later on do the same for w.

q.e.d.

Notice that in general for strong reduction p —% and ¢ —?% g2 need not imply p — )
Hence interreducing a strong Grébner basis need not result in a strong Grobner basis (see
[Re95] for some examples in this context). Still in case ¢, ¢; and ¢, are related in a special
way, we can “interreduce” a basis without losing the property of being a Grobner basis,
due to the following fact:

Lemma 8
Let p,q,q1,92 be some polynomials in K[G] such that p—, ¢—% 2, ¢ = @ - q1 + ¢,
a € K and T(q) = T(q1) U T(gz). Then we can conclude p—, ..

Proof :

In case ¢ reduces p at a term ¢ € T(p) we know that there exists an element u in G such

that HT (g*u) = t. Since ¢ = a-q1 + ¢ and T(g) = T(q1) UT(g2) only two cases are possible,

namely HT(¢; xu) =t or HT (g2 * u) = t, i.e., ¢; or g3 can be used to strongly reduce p at t.
q.e.d.

Now remember that a set G is a strong Grobner basis if and only if for all g € ideal (G)
we have g ——% 0, i.e., every g € ideal (G)\{0} is top-reducible using a polynomial in G.
Suppose G contains polynomials ¢ and ¢; as described in the lemma. Then for the set
G' = (G\{q}) U{q2} we know that ideal, (G) = ideal .(G") and still every polynomial in this
right ideal is top-reducible by a polynomial in G'. Hence G’ is again a strong Grobner basis.

Now it is straightforward to see that there exists a strong Grobner basis of the right ideal
generated by Py of the desired form. Let us assume that G is an arbitrary strong Grobner



basis of ideal, (Py). Every polynomial g in G has a representation as described in lemma 7,
say g =31 ol - (219 — 4. Then the set ' = GU {2 —y@ | g =31 ol (29 —
ygg)), g € G} is a strong Grobner basis which can be reduced to the set {xz(g) - yz(g) | g =
S (:vgg) - yz(g)), g € G} which by our previous remark is also a strong Grobner basis
of the right ideal generated by Py .

Hence if a group ring allows the computation of finite strong Grébner bases for finitely
generated right respectively left ideals, the subgroup problem of the corresponding group can
be solved using rewriting methods. Additionally, since for strong reduction the translation
lemma holds, unique representatives of the cosets then can be computed. As shown in
[Re95], in special cases strong Grébner bases can be computed using appropriate weakenings
of strong reduction. For nilpotent groups presented by convergent PCNI-systems, quasi-
commutative reduction as introduced in the next section is such a weakening. The following
example!? shall illustrate how in this case the subgroup problem is embedded. It shows that
in this special case, due to the representation of the group elements by ordered group words
and the use of the syllable ordering we can even more restrict the from of the polynomials
occurring: For every letter a; in X there are at most two polynomials in the reduced monic
Grébner basis and they are of the form a® — w respectively a; ' — a2z with m,n € N
and w, z € ORD(Z;41).

Example 3

Let G be presented by the convergent reduced PCNI-system X =
{ay, a7, ag,05" a3, 035", ag, a7, as,a05'}, T = {03 — ay,a3 — as,a} — aqa5,03 —
Nai — Nayt — d?a? 0yt — a2a? ey — d2ala?, ]t — a2a5' — a2 a0 —
01020403, 0307 —F G103,0407 — Q104,0507 — G105,0309 — Q903G3,a409 —
ao04,0403 — Q304,0502 —> G205,05043 — 3045,0504 — a4a5}. Then we can
compute a Grobner basis with respect to quasi-commutative reduction of the right
ideal generated by the set {ajazas — 1,a2a3 — 1,a4a2 — 1,a5 — 1} using the tech-
niques which will be described in detail in the next section. We get that the set
{a1 — a3dlas,a} — azasas,ay — a3aial, a — azagas,as — as,af — 2,a5 — 1,02 — 1} is a
Grobner basis'. Interreducing this set using qe-reduction at head terms only we get
the set {a; — a3a3as,as — a2a2a?,as — as, a5 — 1} which is the set specified in example
3.3.8 in [WiB9]. Further interreduction yields a reduced Grdbner basis of the form
{a; — a3,a — a3, a4 — 1,a5 — 1}. o

Our result for nilpotent groups presented by convergent PCNI-systems corresponds to the
fact that in this case canonical bases for subgroups exist which enable confluence for Wif}-
mann’s reduction. On the other hand, if the group is presented by a convergent PCP-system
for =-reduction finite confluent bases need no longer exist (c.f. Theorem 3.6.9 in [Wi89]).

Example 4
Let G be presented by the convergent PCP-system ¥ = {a;,a; ", as,a;",a3,a;'}, T =
{alal_1 — )\,al_lal — )\,agagl — )\,aglag — A, agagl — A, aglag — A\, aza; —

12The example can also be found to illustrate Wiimann’s method. See example 3.3.8 in [Wi89].

13This set is the union of the qc-saturating sets SAT,.(aiaszas — 1) = {a1 — a}aias,a} — azasas},
SAT,(asaz — 1) = {ax — a2a3a?,a? — asasas}, SAT,(asa2 — 1) = {as — as,a3 — 2}, SAT (a5 — 1) =
{as — 1,a2 — 1} and it is a Grobner basis as all s-polynomials reduce to zero.
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adad,aad — aSad | 5,8 € {1,—1}}. Then the set U = {ay,as} is a A-confluent ba-
sis of the subgroup it generates, but while a; and a; Lo agoay lie in the same left coset their

normal forms a; and ajas are not joinable with respect to =y. o

The fact that Wiimann does provide a solution for convergent PCP-systems in form of
A-confluent subgroup bases can be related to the results given in section 6 as follows: We
will introduce left polycyclic reduction to treat left ideals in group rings where the group is
given by a convergent PCP-system. Then the subgroup problem can be solved using a finite
Grobner basis now of the left ideal generated by the set Py. Moreover, we will see how in
fact the problem outlined in example 4 can be overcome when changing the presentation
of the group.

5 Reduction in Nilpotent Group Rings

Let G be a nilpotent group given by a convergent PCNI-presentation as described in section
2. The next example illustrates that no total, well-founded admissible ordering can exist
for a non-trivial group due to the existence of inverses.

Example 5

Let ¥ = {a,a”'} and T = {aa™! — X\,a"'a — A} be a presentation of a group G. Let
Q denote the rational numbers. Suppose we simply require divisibility of the head term to
allow reduction. Then we could reduce the polynomial a* + 1 € Q[G] at the monomial a?
by the polynomial a ! + a as a? = a ! o a®. This would give

a2+1—>a_1+aa2+1— (' +a)xa®=—a*+1

and the polynomial —a* + 1 likewise would be reducible by ¢! + a at the monomial —a*
causing an infinite reduction sequence. o

Hence we will give additional restrictions on the divisibility property required to allow
reduction in order to prevent that a monomial is replaced by something larger. Since G in
general is not commutative, we will at first restrict ourselves to right multiples to define
reduction. How reduction using left multiples can be done is outlined in section 6 for the
more general case that G is given as a convergent PCP-presentation.

Definition 9
Let p, f be two non-zero polynomials in K[G]. We say that f quasi-commutatively (qc-)
reduces p to ¢ at a monomial « - ¢ of p in one step, denoted by p —7" g, if

(a) t >¢up HT(f), and
(b) ¢g=p—a-HC(f) - fx (inv(HT(f)) o t).

Quasi-commutative reduction by a set F' C K|[G] is denoted by p —% ¢ and abbreviates
p— gq for some f € F. o



Notice that if f qgc-reduces p at a -t to ¢, then ¢ no longer is a term in ¢ and by lemma
5, p > q holds. This reduction is effective, as it is possible to decide, whether we have
t >tup HT(f). Further it is Noetherian and the translation lemma holds.

Lemma 9
Let F' be a set of polynomials in K[G| and p, q, h € K[G] some polynomials.

1. Let p — ¢ —% h. Then there are p',q' € K[G] such that p—>%p',q—% ¢ and
h=p —¢.

2. Let 0 be a normal form of p— q with respect to —% . Then there exists a polynomial
g € K[G] such that p—>% g and ¢ —% g.

Proof :

l.Let p—qg—Fh=p—q—a-fxw, wherea € K*, f € F;w € G and HT(f) ow =
t >tup HT(f), i.e. - HC(f) is the coefficient of ¢ in p — g. We have to distinguish three
cases:

(a) t € T(p) and t € T(g): Then we can eliminate the term ¢ in the polynomials
p respectively ¢ by qc-reduction. We then get p—)}cp —a;- f+xw = p and
q—>%cq —ay - frxw=(, with oy — ap = a, where «a; - HC(f) and ay - HC(f)
are the coefficients of ¢ in p respectively gq.

(b) t € T(p) and t & T(q): Then we can eliminate the term ¢ in the polynomial p by
qc-reduction and get p —>‘}Cp —a-fxsw=p and ¢=¢.

(c) t € T(gq) and t & T(p): Then we can eliminate the term ¢ in the polynomial ¢ by
qc-reduction and get g —>31f g+a-fxw=¢ and p=7p.

In all cases we have p' — ¢ =p—qg—a - fxw = h.

2. We show our claim by induction on k, where p — qiflff 0. In the base case k =
0 there is nothing to show. Hence, let p — q—)}chiﬁf 0. Then by (1) there are
polynomials p/,¢' € K[G] such that p——%p/,¢—%¢ and h = p' — ¢'. Now the
induction hypothesis for p’ — ¢’ i>?f 0 yields the existence of a polynomial g € K[G]
such that p ——% p' =% g and ¢ —% ¢/ —%¥ g.

q.e.d.

In case G is a free Abelian group, qc-reduction coincides with Sims’ reduction for Laurent
polynomials, as the condition ¢ >, HT(f) implies that u = inv(HT(f)) o ¢ is aligned with
HT(f). Notice that in the general nilpotent case u and HT(f) no longer need to be aligned.
Furthermore the following example shows that even if they are aligned, Sims’ definition of
reduction cannot be carried over to nilpotent groups.



Example 6
Let ¥ = {ai,a7", a9,05" ;'Y and T = { — a7t —
= 1,1 ;02,09 ,03,053 an = Iazal ’ CL1]&2&3, a2/ aq

artaytas, ayta; — ajaytazt, aalt — aytagaz’t, afad — afad,alad — afad | 5,8 €
{1,—1}} be a convergent PCNI-presentation of the free nilpotent group on two gener-
ators. Then for a;as and ajaz due to Sims’ ordering we get ajas > aiay, but for the
aligned elements a; and a;a3 we find a,a3 0 a; = a%ag, while aja9 0 a; = CL%CLQCL,?,, and hence
a1a3 © ag = a%ag < a%@ag = a109 ©ai. o

Grobner bases as defined by Buchberger can now be specified for right ideals in this setting
as follows.

Definition 10
A set G C K[G] is said to be a right Grébner basis, if «+—§ = =il (¢), and —¢ is
confluent. o

Since Buchberger’s reduction always captures the ideal congruence, in order to characterize
Grobner bases he only has to give a confluence criteria. Now we find that in our setting
we have to be more careful, as for gc-reduction é%c =  =igeal,(q) in general will not
hold. One reason for this phenomenon is that a reduction step is not preserved under right
multiplication with elements of G.

Example 7

Let Q[G] be the group ring given in example 5. Then for the polynomials p = a® + a and
f = a+ X\ we find that p is qc-reducible by f. This is no longer true for the multiple
pxa? = (a*> +a)*a? = X+ a'. Notice that, since a='! + A € ideal (p), we have
a b4+ A\ =ideal, (p) 0, but a4\ <L>p 0 does not hold. o

We will now introduce how we can extend the expressiveness of qc-reduction. We start by
enabling the reducibility of special monomial multiples of a polynomial by allowing to use
not only the polynomial itself but a special set of polynomial multiples for qc-reduction.
First let us take a look at what multiples are appropriate to later on enable an effective
characterization of a right Grobner basis. As our example shows, we have to pay attention
to the problem that different terms of a polynomial can come to head position by right
multiplication with group elements. The next lemma states how right multiples which bring
other terms to head position can be constructed in case they exist.

Lemma 10

Let p be a non-zero polynomial in K[G]. In case there exists an element w € G such that
HT (pxw) = tow for somet € T(p), let aq be the distinguishing letter between t and HT (p).
Then one can construct an element v € ORD(X;) such that HT (p x v) =t owv.

In particular, given p and t € T(p) it is decidable whether there exists an element w € G
such that HT (p x w) = t.

Proof :

We show that for all polynomials ¢ € {p*u | u € G} the following holds: In case HT (¢xw) =
t; ow for some w € G, t; € T(q) then one can construct an element v € ORD(3;) where aq
is the distinguishing letter between ¢; and HT(g), and HT (¢ x v) = ¢; o v.



This will be done by induction on k£ where d =n — k.

In the base case let £k = 0, i.e., a, is the distinguishing letter between HT(q) = ¢; =
1n

ail...an andtiza?...af;’”.Hence lj=14foralll <j<n-—1and 1, >z i,.

By our assumption there exists w € G such that HT (¢ x w) = ¢; o w, with w = w'a,",
w' € ORD(X\X,), and there exist ki, ..., ky_1,2 € Z such that t, ow = a;'...a" ow =

n

1o 1o ki
ai'...a," owoalr = (ap'...a 7 ow')oartm =¥ a4 oalt and tiow =
1 1 1o ; 1 ko

ai'...a," 3 ar ow = ayt...a, " owoa™ = (art...a," ' ow)o af{‘J’w"—a’fI...a Lot

Thus 1, + <z i, + = or, in case a, is bounded by m, € N, (1, + ) mod m, <gz
(in, + ) mod m, must hold. First let us assume that the letter a, is not bounded. Then
let us set v = a,'". We show that for all ¢; € T'(¢)\{t;} we have ¢;0v > t;0v. Note that for
all t; with prefix a?' ...a’" "} <al*...a}"! we have t; 0 v < t; o, as right multiplication
with v = a, ' only changes the exponent of a, in the respective term. It remains to look

e J1 Jn—1 — ln—1
at those terms ¢; with ay" ... @, = =a'...a"7

. Then we can apply lemma 3 as we have
1, >z iy, 1, >z j, and as seen above there exists an element z such that 1, + 2z <z i, + =
and j, + = <z i, + x. Therefore i,, — 1,, >z j, — 1, and our claim must hold. In case the
letter a, is bounded by m,,, we set v = a»~"»~1. As before, for all ¢; which have a prefix
al'...al" < al'...a;"5 we have tj ov < t; o v. Tor those t; with prefix al*...a,"7 we
know that the exponent of a, in t;o0v cannot be m,, —1 unless ¢; = ¢;, and hence t;o0v < ¢;0v
must hold.
In the induction step let us assume that for all polynomials ¢ € {p x ulu € G} and w € G
with HT (¢ * w) = t; o w, if the distinguishing letter a, between HT(¢) and ¢; has index
d > n — (k— 1) there exists an element v' € ORD(3;) such that HT (g * v") = ¢; o v'. Now
for g € {p*xulu € G}, w € G with HT (¢ * w) = ¢; o w let us assume that the distinguishing
letter between HT(q) and t; has index d = n — k.
Since HT (g * w) = t; o w, for w = w'aj’w" with w' € ORD(X\%;), w” € ORD(X441),
we know that there exist ki,...,kq 1,2 € Z and z1,2;,21 € ORD(X441) such that ¢; o
11 11 1 kq—1 g+

1 g =
w=a'...aq ow = a;'...a/ ow oayt oz =a'... a7 oa,

k . )
tiow = a’fl coagt oa“”ozi. As 14 # i4 then 14412 <z ig+x or, in case a, is bounded by

o z; and similarly

my, € N, (1,+z) mod m, <z (i,+z) mod m, must hold. In case a4 is not bounded we can
then set vy = a,,'*. We have to show that for all ¢; € T(q)\{t;} there exists v G ORD(XZ,)
such that we have ¢; ov > t; o v. Note that for all ¢; with preﬁx all. aff - <a. a(lf 7
we have t;0vg < t; 004, as right multiplication with vq = a,, !4 has no mﬂuence on the prefix
in ORD(E\Ed).

Therefore, it remains to look at those terms ?; with al' .. aff - =a.. .a}f_‘f and 14 >z jq-
Since there further exists x € Z such that 14+ 2z <z ig + 2 and j; + = <z iy + x we can
again apply lemma 3 to show our claim. In case iq — 14 >z jq — 14 we are done. Else we
get 14 = jq and can apply the induction hypothesis since the distinguishing letter between
ti o vq and t;o will be of index greater than d, yielding an element v’ € ORD(X44;) and we
can set v = vgv'.

Now it remains to look at the case that a4 is bounded by m,4. Then we can set vg = ;" ~ia—1
and proceed to construct v as above.

q.e.d.



Notice that the proof of this lemma shows that there is an algorithm which computes some
v € ORD(X,) as desired in case it exists and that the element w need not be known for this
computation. Hence we can enrich a polynomial by the set of those multiples which bring
other terms of the polynomial to head position. But still there remain cases of multiples
which are not gc-reducible by this set of polynomials due to the fact that the “divisibility”
criteria for the head term does not hold. Just take a look at the polynomial p = a? + a in
our example. Then the head term of the multiple p * a™' = a + )\ results from the head
term a? of p, but still a + A is not gc-reducible by p, since a? is no commutative prefix of
a. Therefore, let us consider some further special multiples. For a polynomial p and a term
t € T(p) we call a term s in a multiple p *x w a t-term if s = ¢t o w. The following lemma
states that if in two right multiples of a polynomial the head terms result from the same
term ¢, then there is also a right multiple of the polynomial with a ¢-term as head term
which is in some sense a common commutative prefix of the head terms of the original two
multiples. In example 7 for px A = a®+a and pxa~! = a + )\, both head terms result from
the same term a? and the head term a of p * a™! is a commutative prefix of the head term
a’ of p x \.

Lemma 11
Foru,v € G, let pxu and pxv be two right multiples of a non-zero polynomial p € K[g] such
that for some term t € T(p) the head terms are t-terms, i.e., HT (p*u) = tou=a}' ...a"

: . - n
and HT(pxv) =towv =al" ...alr. Then there exists a term t <g, af* ... a" where

_ J sgn(u) -min{[3 ], [5[}  sgn(i) = sgn(s)
Pr 0 otherwise

and an element ? € G such that HT(p * 2) = t o Z = t. In particular, we have p x u —

. p*Z
and p*x v — 0.

p*Z

Proof :

Let p, pxu and p v be as described in the lemma and let the letters corresponding to our
presentation be ¥ = {ay,...,an, a7, ..., a, "

We show the existence of Z by constructing a sequence 21, ..., 2, € G,such that for1 <[ <n

we have HT(p* 2) =toz = af'...q)'r, with r, € ORD(E;44) and af* ... a;" <gup al*...a]".
Then for Z = z, our claim holds.

Let us start by constructing an element z; € G such that HT(p x 21) = t o 2y = aj'ry,
r1 € ORD(X;) and af' <gyp af*.

In case i; = j; or j; = 0 we can set 2y = v and s; = j; = p; since HT(pxv) = to
v = a{l . ..a%". Similarly in case 4y = 0 we can set z; = u and sy = 7y = 0 = p; since
HT(p*u) = tou = a?...a"» € ORD(X;). Hence let us assume i; # j; and both are
non-zero.

First suppose that sgn(i;) = sgn(j1). Notice that the construction in this case does not
depend on whether a; is bounded or not. Then if |i;| > |j;| we again set z; = v since for
$1 = j1 = p1 our claim holds. In case |j;| > |i1| we set z; = u because for s; = i; = p; our
claim holds.

Now let us proceed with the case sgn(i;) # sgn(j1), i-e., a; cannot be bounded. We construct

z1 € G such that HT(p* 2;) =t o 21 € ORD(X;) as p; = 0. We claim that the letter a; has



the same exponent for all terms in T(p), say b. In case this holds, no term in the polynomial
p * a;’ will contain the letter a; and the distinguishing letter between HT(p * a;®) and
the term ¢ o a;® is at least of index 2. Furthermore we know HT((p * a;°) * (a® o)) =
HT(p x v) = t o v. Thus by lemma 14 there exists an element » € ORD(3;) such that
HT((p*a;®) *r) =toa;’ or € ORD(X,) and thus we can set z; = a;’r and s; =0 = p;.

Hence it remains to prove our initial claim. Suppose we have the representatives s’ = a?s'xsr,
by € Z, x4 € ORD(X,) for the terms s’ € T(p) and HT(p) = s = a’*z,. Then we know
bs >z b, since t € T(p).

Hence in showing that the case b; >z b; is not possible we find that the exponents of a; in
s and t are equal. To see this, let us study the possible cases. If by, > 0 we have by, > b, > 0
and hence there exists no x € Z such that b; + x > by, + © > 0. On the other hand b; < 0
either implies by > 0 or (by < 0 and |bs| > |b;|). In both cases there exists no x € Z such
that b, + x < 0 and |b; + x| > |bs + x|. Hence b, = b, must hold as we know that ¢ can be
brought to head position by u respectively v such that the exponents of a; in HT(p * u)
respectively HT (p * v) have different sign.

It remains to show that there cannot exist a term s’ € T(p) with by <z bs = b;. Let us
assume such an s exists. Since HT (pxu) = tou = a® ... a’ and HT (p*v) = tov = al* ... alr
there then must exist 1, x9 € Z such that by +x1 <z by4+2x1 =41 and by +2x2 <z bi+z2 = 7.
Without loss of generality let us assume 4; > 0 and j; < 0 (the other case is symmetric). In
case by < 0 we get that b,+x; = 4; > 0 implies z; > |b;| > 0. Now, as by <z b; either implies
by > 0or (by <0 and |by| < |by|), we find by +21 > b+, contradicting by +x; <z b+ .
On the other hand, in case b; > 0 we know b; > by > 0. Furthermore, b; + 2o = j; < 0
implies zo < 0 and |xo| > b;. Hence we get by +x9 < 0 and |by + xa| > |by+ 22| contradicting
by + x5 <z by + 9.

Thus let us assume that for the letter a;_; we have constructed z; 1 € G such that HT (p %
Zp—1) =tozg_1 =ait...a) ' = aft .. .azk_’fa%r’ with r;_; € ORD(Xy), 7' € ORD(Z 1)
and ai'...a;"] <wp @i ...a;"'. We now show that we can find 2y = 24— o w € G such
that HT(p x ;) = to 2 = af' ... a*ry with r, € ORD(Zg41) and af' ... 4" <gup af' ... ak".
This will be done in two steps. First we show that for the polynomials p * v and p * z;_1
with head terms azf .. .aﬁ{” respectively aj' .. .azk_‘f afck r’ we can find an element w; € G such
that HT(p * 21 x wq1) = tozx_1 ow; = aj' ... aZ’ffai’“f, 7 € ORD(X3k41) and a,‘i’“ Ztup ai’“
with

. [ sgn(ig) - minflixl, L]} sgn(ix) = sgn(lx)
Pk 0 otherwise.

Then in case aZ’“ <tup ai’“ we are done and set z;, = 2zx_; o w; and s, = Sy. Else'we can
similarly proceed for the~ polynomials p *x v and p * z;_1 * wy with head terms af'...a/"
respectively a}' ...a;*7'a;*7 and find an element wy € G such that for 2, = z;_; o w; o wy

we have HT(p* z,) = to 2z, = ai' ... a; 1y, 1, € ORD(Z441) and aj* <iy a’* with
1 k + k p O

5 = sgn(jx) - min{|jx|, [3x|} sgn(jx) = sgn(5x)
k 0 otherwise.

Then we can conclude a;* <y, at* as in case s; = 0 we are immediately done and otherwise
we get sgn(jx) = sgn(8x) = sgn(px) = sgn(ix) and min{|ig[, |3k, [jk} < min{[eg[, [jk[}-



Let us hence show how to construct w;. Remember that HT(pxu) = tou = @’ ...a™ and

HT(p*z2x_1) =tozp_1 =aj' ... azk_‘llaﬁc’“r’ for some 7 € ORD(Xy1)- Incase iy =l or Iy, =0

~ ~ _ Sk—1 1
we can set w; = X and §; =l = pr as HT(p*x 25—1) =toz—1 = af' ... a,* 'a)fr'. Hence let

ik 7é lk and lk 750

First let us assume that sgn(ix) = sgn(lx). Then in case |ix| > |lx| we are done by setting
w; = A as again HT(p* 2, 1) = toz, 1 = aj' .. .a,sck_‘llaﬁc’“r’ will do with &, = I, = pg.
Therefore, let us assume that |l;| > |ig|. Without loss of generality let us assume that ay

lk+’ik’ i'e" the exponent of the

. —lp 41 . . —l 41 —l 44
letter ay in the term toz,_;oay Bt will be ig. If HT (p* 25—y xa; ) =tozp_joa; " T we

—lp+ip Sk—1 G ~ ~
are done because then toz,_j0a, B = S .a," ' ajk 7y, for some 7, € ORD(X, 1) and we

can set wy = a;, * "% and 5 = i = py. Otherwise we show that the t-term # o z;,_; o aj ¥ %
in this multiple can be brought to head position using an element r € ORD(X;, ;) thus

allowing to set S, = i = px and w; = a,;l’“Li’“r as then we have HT(p * z5_1 * wy) =

81 Sk—1 g .1 —lp+ig — .85 Sk—1 ik~ I 1 —li+ig — T~
tozk,lowl—al...ak_lakr oak r_al...ak_lakTWhereakT Oa,k T_ak'r.

(Note that the product of two elements in ORD(X;) is again an element in ORD(;)) This
follows immediately if we can prove that the exponent of ay, in the term HT (pxzj_4 *a,:l’““k)
lp+ig

is not bounded'*. Then we consider the multiple p  zj,_1 * a,

is also 7;. Then we can apply lemma 14 to the polynomial p * z;_; * a; and the term

tozr_1 oa "% Note that HT P*Zp_1 xa, * %) and tozk_loa_l”ik have then distinguishing
k k k

letter of at least index k 4 1 and further HT((p* zx_1 * a; * %) % a, " T%) = HT (p* 2p_1) =

t o z;_1. Therefore, we show that the exponent of ay in the term HT(p x 2z 1 % a,:l’“”’“) is
also 7. Let af'.. .a,i’“_‘fasz” with 77 € ORD(X,;1) be the term in p * z;_; that became

head term (note that a candidate in T(p* z,_;) for the head term in p* z,_; * a; * " must

s1 Sk—1 ¢ — 81 Sk—1 R . . —lg+ig

have prefix ai' ... a7 since HT (p*zx_1) = a7 ... a," ' 7¢—1 and multiplication with a,
: : S1 Sk—1 _br .1 —lp+iy — 81 Sk—1 Ck s1 Sk—1 0k, —
only involves 74_1), i.e., ai' ..., 7 ' a;fr" o q, =0y ... 0 0T = A ay afy =

toz,io0 a,;l”i’“ for some z,y € ORD(X3,;1) and therefore ¢; >z ix. Then by lemma
4 there exist z; € ORD(X\Zx_1) and 2o € ORD(X) such that af'...a, 'a}y oz =

all . ..afckjll o a*** o 2 for some z € ORD(X}41) and ajft/* 0 20 2, = a}c’“az’“jll co.ai e,
2y = a; 7 0 2} for some 2z, € ORD(41). Note that the t-term is brought to head position by
this multiplication. Now multiplying HT (p* zj_1 * a,;l”““) by 2122 we find ai' ...a;" ' afFz o

2z = al .. .aZk_‘faZ’“Lf’“f’”:E for some Z € ORD(X3,;1). This gives us ¢x <z i and thus
ik Sz Cr yields Cr = ik.

Finally, we have to check the case that sgn(ix) # sgn(lx), i-e., ax is not bounded in this case,
and [, # 0. Let us take a look at the polynomial p * z; 1 * a,:l’“, i.e., the exponent of the
letter a; in the term toz,_; 0 a,:l’“ will be 0. Suppose HT (p * z;_1 * a,;l’“) =af'...a) 7 afkx,
for some term s = aj'. ..azk_‘llazsxs € T(p*2k_1), x,z5 € ORD(Xg41), i-e., ¢ = bs — l.
In case this head term is already the corresponding ¢-term ¢ o 24 o a,:l’“, we are done

% and S = 0 = pg. Now if we can show ¢, = 0, by lemma 14 the

and we set w; = a
t-term to zp_1 0 a,;l’“ can be brought to head position using an element in ORD(31) since

the distinguishing letter between HT(p * 251 * a,:l’“) and the term to 2z, ;o a,;l’“ then has

141n case ay, is bounded we can still use negative powers of aj in the computations, as from the point of
view of the collection process it does not matter, at what time the power rules for a;, are applied. We only
have to take into account that in the definition of w; = a,;l’““’“ the normal form looks different in case
—lp + i < 0.



at least index k + 1 and we know HT((p * zp_1 * a,*) * alf) = HT(p * z4_1) = t o z_1.
Hence, in showing that ¢, = 0 we are done. As before there exist z; € ORD(X\X;_;) and
2y € ORD(Zk) such that ¢t o zy_; o ay, oy = alf ) a;f lla,’:’“z for some z € ORD(Xy41) and
aﬁ’”z 02y = ajf...alr, ie., 2o = q Ttk ! for some 25 € ORD(Z)1). Remember that this
multiplication brings the ¢-term to head posmon Hence multiplying HT (p * z;_1 * a,;l’“)
by 2129 we find af'...a}" 'af* T 0 2129 = @l . ajc’“ faZ’”“’“x for some & € ORD(3,1). Thus
we know ¢ + 1 <z 1. To see that this 1mp11es ¢y = 0 we have to distinguish three
cases. Remember that ¢, = b, — I and since our head term is an s-term s o a,;lk for some
s € T(p* zx_1) we know b; <z li. In case i = 0, we have ¢; <z 0 implying ¢, = 0. In
case i, > 0 then ¢, + iy = by — I}, + i, <gz 1, implies 0 < b, — I, + i;, < i;. Furthermore, as
lr < 0 we have —lj + i, > i implying b; < 0 and hence |bs| < |l|. But then bs — I, > 0 and
0 < by — I +ix < i yields ¢ = by — I = 0. On the other hand, i, < 0 and I > 0 imply
0 < by <l and hence by — Iy + i < 0 yielding |bs — Iy + 7| < |igx|. Since by — I < 0 this
inequation can only hold in case ¢, = b, — I = 0. q.e.d.

These two lemmata now state that given a polynomial, we can construct additional poly-
nomials, which are in fact right multiples of the original polynomial, such that every right
multiple of the polynomial is gqc-reducible to zero in one step by one of them. Such a prop-
erty of a set of polynomials is called qc-saturation. In example 7 the multiples pxa~' = a+ A\

and p*a~? = a~! + )\ give us a qc-saturating set for p = a? + a.

Definition 11

Aset S C{p*xw | w € G} is called a qc-saturating set for a non-zero polynomial p in
K[G], if for all w € G, pxw —F 0. A set of polynomials F C K[G] is called gc-saturated,
if for all f € F and for all w € G, f xw—% 0. o

A further consequence of the previous lemmata is that finite qc-saturating sets exist and
that they can be computed.

Procedure QUASI-COMMUTATIVE SATURATION

Given: A non-zero polynomial p € K[G].
Find: SAT,.(p), a qc-saturating set for p.

for all t € T(p) do
Sy = 0;
if ¢ can be brought to head position
then compute ¢ =p*w with HT(p*w) =tow
Hy:={se€ G |HT(q) >wp s};
% These are candidates for “smaller” polynomials with ¢-head terms
q = min{p* (inv(t) o s) | s € H,, HT(p * (inv(t) 0 5)) = s};
Sy == {aq};
endif
endfor
SAT.(p) := UtET(p) S; % S contains at most | T(p)| polynomials



Notice that more structural information can be used to rule out unnecessary candidates
from the set H; to make this procedure more efficient.

While in the free Abelian group case symmetrized sets and qc-saturation are successfully
used to repair the same deficiency such sets in general will not coincide. One reason is
that Sims uses a different ordering on his elements. For example a qc-saturating set for the

polynomial g = 2 - a;”a3 — 4 - a2a3 — a1a2 + ayas on page 14 is SAT,(g) = {g * m1a;' =
2-a; a2 —4-ada2 —ad?ay+a?, gxaay’ = —4-ata?—adas+ a3 +2-a%} while the symmetrized

set consisted of the polynomials S(g) = {g *ay', —g * a1a, ', g * a; *a;*}.

Lemma 12
For a saturated set F of polynomials in K[G], +—% = =ideal, () holds.

Proof :
<L>?; C =igeal, () is an immediate consequence of the definition of qc-reduction. To show
that the converse also holds, let p — ¢ € ideal, (F). Then p=q+ Y v, ;- fixu;, € K, f; €
G, u; € G and we show that p@‘éf by induction on m. Without loss of generality we can
assume that for every multiple f; % u;, HT(f; * u;) = HT(f;) o u; >up HT(f;) holds. In case
m = 0 we are done as then p = ¢. Hence let p = g+ > " | ;- fi* Ui+ Qni1+ fnt1*Umt1. Then
the induction hypothesis yields p <L>%C G+ Qmi1 frme1 *Umi1- Now let ¢ = HT(frng1 * Uma1)
and t >y, HT(fn+1). Furthermore, let 3; respectively (. be the coefficient of ¢ in ¢ respec-
tively ¢+ quni1 - frne1 * U1 Then in case t & T(q) we get ¢+ i1 - frnt1 * Umat —ﬁ;H .
In case t & T(p) we similarly get p— i1+ frna1 *Umi1 —ﬁfnﬂ q- ASp—umit1- frng1 ¥ U1 =
g+ >0 ;- fj * uj the induction hypothesis yields p — i1 * frni1 * Umpa +—%q and
hence we are done. Otherwise let 3; # 0 be the coefficient of ¢ in ¢ + i1 - frna1 * Umi
and [y # 0 the coefficient of ¢ in q.
This gives us a qc-reduction step

4+ Q1 - g1 * Umta —>(}fn+1

¢+ i1 - gt * Umgr — B HC(frg1) ™" - it * Ug1 =

g = (B - HC(frns1) ™" = @mt1) - frntt * Ui
eliminating the occurrence of ¢t in ¢ + a1 * frne1 * Umr1-
Then obviously B = (81 - HC(fims1) ' — @my1) - HC(fimy1) and, therefore, we have
q _>}:1+1 q—(br- Hc(fm+1)_1 — Q1) * ft1 *¥ U, 1€y g and ¢ + Qg < o * U are
joinable.

q.e.d.

Let us now proceed to characterize right Grobner bases by so-called s-polynomials corre-
sponding to qc-reduction.

Definition 12 . _
For py, po € K[G] such that HT(p;)=al ...a'» and HT(py) =al* ... a’" with either ;- 5, = 0
or sgn(i;) = sgn(yj;) for 1 <1 < n we can define an s-polynomial, and setting

_fseG) =0
P sgn(1;) otherwise



the situation gf* ™ b} - gprmax{iinblinl} — W (p ) owy = HT(py) 0w, for some wy, wsy €
G gives us
spol (p1,p2) = HC(p1) " - p1 * wy — HC(p2) ™" - pa * wy.

<

Notice that HT(p;) <gup afl'max{”l"'jl'} ) ..afb"'max{‘i“"j"l} for 7 € {1,2} holds in case such
an s-polynomial exists. Furthermore, if there exists a term ¢ such that ¢ >y, HT(p) =
ail...al» and ¢t >y, HT(p2) = al'...al", an s-polynomial always exists since then the

condition for the existence of an s-polynomial is fulfilled as the tuple-ordering requires that

the exponent of a letter a; in the tuple-smaller term is either zero or has the same sign as the

exponent of a; in the tuple-larger term. We even have ¢ >, a’l’l'maxﬂil"‘jl'} . aﬁ"'max{‘in"‘j"‘}.

Again for the case of free Abelian groups this definition corresponds to the definition of
critical pairs for Laurent polynomials and the resulting t-polynomials are a specialization
of these s-polynomials for the integer group ring.

We now can give a characterization of a right Grobner basis in a familiar way using the
concept of qc-saturation.

Theorem 3
For a qc-saturated set G C K[G] the following statements are equivalent:

1. For all polynomials g € ideal,(G) we have g — 0.

2. For all polynomials fy, fi € G we have spol (f, fi) —& 0.

Proof :
1 = 2 : By definition 12 in case for fi, f; € G the s-polynomial exists we get

spol (f, fi) = HC(f&) ™" - fi * w1 — HC(fy) ™" fi x wy € ideal, (G),

and then spol(f, fi) — 0.

2 = 1: We have to show that every non-zero element g € ideal, (G) is —¢ -reducible to
zero. Without loss of generality we assume that G' contains no constant polynomials, as then
we are done at once. Remember that for h € ideal (G), h —& A’ implies ' € ideal,(GQ).
Thus as —¢ is Noetherian it suffices to show that every g € ideal, (G)\{0} is —¢ -
reducible. Let g = Z;n:l «; - fj * w; be a representation of a non-zero polynomial g such
that o; € K*, f; € F,w; € G. Since G is qc-saturated we can assume g = Z;"Zl Q; -
gj * vj, where o; € K*,g; € G,v; € G and HT(g; * v;) = HT(g;) o v; >¢p HT(gj)-
Depending on this representation of g and our well-founded total ordering on G we define
t = max{HT(g;)ov; | j € {1,...m}} and K is the number of polynomials g; *v; containing
t as a term. Then t » HT(g) and in case HT(g) = t this immediately implies that g
is —¢ -reducible. Otherwise we show that g has a special representation (a standard
representation corresponding to qc-reduction which is a right commutative prefix standard
representation) where all terms are bounded by HT(g), as this implies that g is top-reducible

5compare page 15.



using G. This will be done by induction on (¢, K), where (¢, K’) < (¢, K) if and only if
t" < tor (f =tand K' < K). Note that this ordering is well-founded since >4 is
and K € N. In case t > HT(g) there are two (not necessarily different) polynomials
gk, g1 in the corresponding representation such that ¢ = HT(gx) o vy = HT(g;) o v; and
we have ¢t >y, HT(gx),t >tup HT(g:). Hence by definition 12 there exists an s-polynomial
spol (gr, g1) = HC(gx) ™" - gx * 21 — HC(g;) ™" - g1 * 22 and HT (g}) ovp = HT(g;) ov; = HT(gz) 0
zrow = HT(g;)0zg0w >tup HT(gk) 021 = HT(g;) 0 22 for some z1, 29, w € N. Let us assume
spol(gx, g;) # 0 since in case spol(gx, g;) = 0, we can just substitute 0 for Y ., &; - h; * v}
in the equations below. Hence, spol(gx, g;) —¢& 0 implies spol(gk, 1) = S, &; - hi ¥ v}, 6; €
K*, h; € G,v, € G, where the h; are due to the qc-reduction of the s-polynomial and
all terms occurring in the sum are bounded by HT(spol(gk, ¢;)). By lemma 5, since ¢ =
HT (gx) 0 21 0w >4up HT(gk) © 21 and HT(gx) o 21 > HT(spol(gk, 1)), we can conclude that ¢
is a proper bound for all terms occurring in the sum Y, §; - h; v} xw. Since w € G and G
is qc-saturated, without loss of generality, we can assume that the representation has the
the required form. We now have:

Qg - gk * Vg + Qq - gp * U

! ! !
= Oék'gk*vk-i-gél'@c'gk*vk—Oél'ﬂlc'gk*%'i‘al'ﬁz'gz*vl

=0

= (Oék‘i‘a;'ﬂk)'gk*?)k—a;'(ﬂk'gk*vk—ﬂl'gl*vll

-

-~

= spol(gg,gi)*w

= (ak‘i'a;'ﬂk)'gk*vk_a;'(Zéi'hi*vz{*w) (1)

=1

where 3, = HC(gx) ™", 5, = HC(g;) ™" and o] - B, = oy. By substituting (1) in our represen-
tation of g either ¢ disappears or in case ¢ remains maximal among the terms occurring in
the new representation of g, K is decreased. g.e.d.

It is also possible to give a characterization of right Grobner bases in terms of standard
representations.

Corollary 1
For a set G C K|[G] the following statements are equivalent:

1. For all polynomials g € ideal (G) we have g ——% 0.
2. Every g € ideal (G) has a right commutative prefix standard representation.
3. G is a right commutative prefix standard basis.

4. G is a right Grobner basis.

Now, using the characterization given in theorem 3 we can state a procedure which enu-
merates right Grobner bases in nilpotent group rings:



Procedure RicHT GROBNER BASES IN NILPOTENT GROUP RINGS

Given: A finite set of polynomials F' C K[G].
Find: GB,(F), a right Grobner basis of ideal, (F).

G := U,eq SAT4(9); % G is qe-saturated and ideal, (F) = ideal,(G)
B:={(q1,0) | 01,02 € G,q1 # @2};
while B # () do % Test if statement 2 of theorem 3 is valid
(¢1, @) := remove(B); % Remove an element using a fair strategy
if h := spol(q1, ¢2) exists
then A’ := normalform(h, —¢ ); % Compute a normal form
if A" #0 % The s-polynomial does not reduce to zero
then G := GUSAT,(I); % G is qc-saturated and ideal,(F) = ideal,.(G)
B= BU{(£9) | f € G.g € Saro()}:
endif
endif
endwhile
GB,(F) =G

The set G enumerated by this procedure fulfills the requirements of theorem 3, i.e., the set
G at each stage generates ideal, (F') and is qc-saturated. Using a fair strategy to remove ele-
ments from the test set B ensures that for all polynomials entered into G the s-polynomials
are considered in case they exist. Hence, in case the procedure terminates, it computes a
right Grobner basis. Later on we will see that every right Grobner basis contains a finite
one and hence this procedure must terminate.

To see how this procedure works let us review example 8.3. given by Sims in [Si94] (see also
page 12).

Example 8

Let G be the free nilpotent group on two generators with a convergent PCNI-presentation
Y = {a1,a7}, as,a5",a3,a3'} and T = {apa; — ayaza3, a5 a7’ — ajta;'as, ayta; —
a0y az ', aga;t — aytagag ', adad — af af, afad — al'ad | 6,0' € {1,—1}}.

We want to compute a right Grobner basis of the ideal generated by the polynomials a; + as
and a;+az. We get SAT (a1 +a2) = {a1+as,a; ' +a; '} and SAT,(a1+a3) = {a1+az, a; '+
az'}. From the pairs of polynomials in B only (a; +ag, a; +a3) and (a7 +a; "', a7 +asaz ')
result in two s-polynomials, namely spol (a1 + a2, a1 +a3) = as — a3 adding the set SAT,.(as—
az) = {ag—as,a; " —az '} to G and spol(a; ' +ay ', a1t +agaz!) = ay ' —azay’
asaz’ + a3’ —%_, a3' — 1 adding the set SAT,(a5' — 1) = {a3' —1,a3 — 1} to G. Then
for G = {a) +az, a7 +ayt, a1 +as, a7 +azt, a0y —as, a5t — a3t a3t —1,a3 — 1} there are
no more critical pairs left and this is in fact a right Grobner basis. Notice that in reducing
the set G we get the set {a; +1,a;' +1,a2 — 1,a, " — 1,a3 — 1,a5 ' — 1} which is again an
interreduced right Grobner basis!® of the right ideal generated by {a1+ a9, a1 + a3} and this
set contains one polynomial more than the result given by Sims (see again page 12) due

6While interreduction in group rings can destroy the property of being a Grdbner basis for certain
reductions, qc-reduction allows to incorporate this idea into Grobner basis computations and produces
unique monic reduced Grébner bases.



to the fact that his basis is only sufficient to prove ideal membership of polynomials with
positive exponents of the letter a;, which in his context can be achieved my multiplication
by an appropriate potency of a;. o

For free Abelian groups the procedure of course computes Grobner bases of ideals and is
a similar generalization of Buchberger’s algorithm as Sims’ function GROBNER on page
15. The resemblance of the ideas used in Sims’ approach to Laurent polynomials and our
approach restricted to free Abelian groups suggests that this is a natural way to treat these
classes of group rings. The possible generalizations of our reduction to nilpotent and later
on polycyclic groups stress this impression.

Let us now continue to show how similar to the case of solvable polynomial rings or skew
polynomial rings ([Kr93, We92]), Grébner bases of two-sided ideals in nilpotent group rings
can be characterized by right Grobner bases which have additional properties. We will call
a set of polynomials a Grobner basis of the two-sided ideal it generates, if it fulfills one
of the equivalent statements in the next theorem.

Theorem 4
For a set of polynomials G C K[G], assuming that G is presented by (3,T) as described
above, the following properties are equivalent:

1. G is a right Grobner basis and ideal, (G) = ideal (G).
2. For all g € ideal(G) we have g ——¥ 0.
3. G is a right Grébner basis and for allw € G, g € G we have w * g € ideal, (G).

4. G is a right Grébner basis and for all a € ¥, g € G we have a x g € ideal .(G).

Proof :
1 = 2: Since g € ideal(G) = ideal .(G) and G is a right Gr6bner basis, we are done.

2 = 3: To show that G is a right Grobner basis we have to prove <L>‘éc = =ideal,(G) and
for all g € ideal (G), g —>% 0. The latter follows immediately since ideal (G) C ideal(G)
and hence for all g € ideal,.(G) we have g—*%c 0. The inclusion é)‘éc C  =igeal (q) I8
obvious. Hence let f =igear () 9, i-€., f — g € ideal, (G). But then we have f — g ——& 0 and
hence by lemma 9 there exists a polynomial A € K[G] such that f ——& h and g ——& h,
yielding f <& g. Finally, w * f € ideal(G) and w * f ==& 0 implies w * f € ideal, (G).

3 = 4 : This follows immediately.

4 = 1 : Since it is obvious that ideal,(G) C ideal(G) it remains to show that ideal(G) C
ideal,(G) holds. Let g € ideal(G), i.e., g =Y | ;- u; * g; * w; for some o; € K, g; € G and
u;, w; € G. We will show by induction on |u;| that for u; € G, g; € G, u; * g; € ideal,.(G)
holds. Then ¢ also has a representation in terms of right multiples and hence lies in the
right ideal generated by G as well. In case |u;| = 0 we are immediately done. Hence let us
assume u; = ua for some ¢ € ¥ and by our assumption we know a * g; € ideal (G). Let
ax*g; = Z;"Zl Bj - g;*v; for some §; € K, g; € G and v; € G. Then we get u; * g; = ua*g; =
ux (axg;) =ux (35, Bj-gj*v;) =7, Bj- (uxg;) *v; and by our induction hypothesis



u* g; € ideal, (G) holds for every 1 < j < m. Therefore, we can conclude u; * g; € ideal,.(G).
q.e.d.

Statement 4 enables a constructive approach to use procedure RIGHT GROBNER BASES IN
NILPOTENT GROUP RINGS in order to compute Grobner bases of two-sided ideals and item
2 states that such bases can be used to decide the membership problem for the two-sided
ideal by using qc-reduction. The following corollary of the previous two theorems can then
be the foundation of a procedure to compute two-sided Grobner bases.

Corollary 2
For a qc-saturated set G C K|[G]| the following statements are equivalent:

1. For all polynomials g € ideal (F) we have g —& 0.

2. (a) For all polynomials fy, fi € G we have spol(fx, fi) —& 0.

(b) For alla € %3, g € G we have a x g — 0.

The termination of enumerating procedures for right respectively two-sided ideals is ensured
by the following result.

Theorem 5
Every (right) Grébner basis contains a finite one.

Proof :

Let F be a subset of K[G] and G a Grobner basis (the proof for the existence of a finite
right Grobner basis for ideal,. (F) is similar) of ideal (F), i.e., ideal (F') = ideal (G) = ideal,.(G)
and for all g € ideal (F) we have g —@& 0. We can assume that G is infinite as otherwise we
are done. Further let H = {HT(g) | ¢ € G} C G. Then for every polynomial f € ideal(F)
there exists a term ¢t € H such that HT(f) >, ¢

Each element u € H then can be viewed as an n-tuple over Z as it is presented by an ordered
group word. But we can also view it as a 2n-tuple over N by representing each element
u € G by an extended ordered group word u = a;"al"...a alr, where i;, j; € N and the
representing 2n-tuple is (i1, j1, . - -, in, Jn). Notice that at most one of the two exponents i;
and j; is non-zero. Now only considering the ordered group word parts of the terms, each
set H can be seen as a (possibly infinite) subset of a free commutative monoid 73, with
2 - n generators. Thus by Dickson’s lemma there exists a finite subset B of H such that
for every w € H there is a b € B with w >, b. Now we can use the set B to distinguish
a finite Grobner basis in G as follows. To each term ¢ € B we can assign a polynomial
g+ € G such that HT(g;) = ¢. Then the set Gg = {g; | t € B} is again a Grobner basis since
for every polynomial f € ideal(F') there still exists a polynomial g; now in Gz such that
HT(f) >tup HT(9:) = t. Hence all polynomials in ideal (F') are qc-reducible to zero using
Gp.

g.e.d.



Notice that so far our theorems only characterize special Grobner bases which are addition-
ally qc-saturated'”. Of course there also exist Grobner bases which are not gc-saturated.
It is even possible to introduce interreduction for gc-reduction and to compute reduced
Grobner bases which are unique in case we demand that the polynomials are monic, i.e.,
they have head coefficient 1.

Definition 13
We call a set of polynomials F' C K[G| interreduced or reduced with respect to —%°,
if no polynomial f in F'is qc-reducible by the other polynomials in F\{f}. o

Theorem 6
Every (right) ideal in K[G] contains a unique monic finite reduced right Grébner basis.

Proof :

The proof can be done as for the ordinary polynomial ring. Let G be a finite Grobner
basis of the ideal + which must exist by theorem 5 (the proof for the existence of a unique
reduced right Grobner basis for ideal, (F') is similar). Then similar to a characterization of
Buchberger’s Grobner bases by head terms the following equation holds:

{t€ G|t > HT(g9),9 € G} = HT(2\{0}).

The sets HT(G) and HT(¢\{0}) of course depend on the presentation of M chosen, especially
on the ordering induced on M. As the set HT(G) is finite, there exists a subset H C HT(G)
such that

(a) for all m € HT(G) there exists an element m’ € H such that m >y, m/,
(b) for all m € H there exists no element m' € H\{m} such that m' <y,, m, and

(¢) {t€G |t>up HT(9),g € H} = {t € G |t >4p HT(g), g € G} = HT(2\{0}).

Since for each term t € H there exists at least one polynomial in G with head term ¢ we
can choose one of them, say g;, for every ¢ € H. Then the set G' = {¢g; | t € H} is a
Grobner basis as we still have that for every g € 7, ¢ L%’f 0 holds. Further all polynomials
in G' have different head terms and no head term is Ipc-reducible by the other polynomials
in G'. Hence, if we lpc-interreduce G’ giving us another set of polynomials G”, we know
HT(G') = HT(G") and this set is a Grdobner basis of ¢ as well since still for every g € 1,
g L)Eﬁ 0 holds.

It remains to show the uniqueness of the reduced Grobner basis if we restrict ourselves to
sets of monic polynomials.

Let us assume S is another monic reduced Grébner basis of ¢. Further let f € S A G" =
(S\G")U(G"\S) be a polynomial such that HT(f) is minimal in the set of terms HT(SAG").
Without loss of generality we can assume that f € S\G”. As G" is a Grébner basis and
f € @ there exists a polynomial g € G” such that HT(f) >, HT(g). We can even state

1"Tn Sims’ approach he also computes Grébner bases which are additionally symmetrized (see page 15).



that g € G"\S as otherwise S would not be Ipc-interreduced. Since f was chosen such that
HT(f) was minimal in HT(S A G”), we get HT(f) = HT(g). Otherwise HT(f) > HT(g)
would contradict our assumption. As we assume f # g this gives us f —g # 0, HT(f —g) <
HT(f) = HT(g) and HT(f — g) € T(f) UT(g). But f — g € 1 implies the existence of a
polynomial A € S such that HT(f — g) >t HT(R), implying that f is not lpc-reduced.
Hence we get that S is not Ipc-interreduced, contradicting our assumption.

q.e.d.

Such reduced Grobner bases can be computed by incorporating interreduction in to pro-
cedure RIGHT GROBNER BASES IN NILPOTENT GROUP RINGS. For more details on the
subject of incorporating interreduction see [Re95], where reduced Grébner bases are con-
structed with respect to prefix respectively commutative reduction.

6 Reduction in Polycyclic Group Rings

Let G be a polycyclic group given by a convergent PCP-presentation. As we have seen in
section 2, due to the more general form of the commutation rules, lemma 5 no longer holds
for right multiples. But using lemma 6 , we can define a reduction based on commutative
prefixes now using left multiples which enables us to study left ideal congruences, and later
on even ideal congruences.

Definition 14
Let p, f be two non-zero polynomials in K[G]. We say that f left polycyclic (Ipc-)reduces
p to ¢ at a monomial « - t of p in one step, denoted by p —>f q, if

(a) 3 Ztup HT(f), and
(b) g=p—a-HC(f)™'- (toinv(HT(f))) = f.

Lpc-reduction by a set F© C K[G] is denoted by p—)l}’cq and abbreviates p—)lfpcq for
some f € F'. o

Notice that if f lpc-reduces p at « -t to ¢, then ¢ no longer is a term in ¢ and by lemma
6, p > ¢ holds. This reduction is effective, as it is possible to decide, whether we have
t >tup HT(f). Further it is Noetherian and the translation lemma holds.

Lemma 13
Let F be a set of polynomials in K[G| and p, q, h € K[G] some polynomials.

Ipc

1. Let p — q— 4 h. Then there are polynomials p',q € KI[G| such that
Ipc

p—>F v, q—)ﬁcq’ and h=p —¢.

2. Let 0 be a normal form of p—q with respect to —>1p° Then there exists a polynomial

g € K[G] such that p == g and ¢ —=%°g.



Proof :
This can be shown as lemma 9.
q.e.d.

Grobner bases as defined by Buchberger can now be specified for left ideals in this setting
as before.

Definition 15
A set G C K[G] is said to be a left Grébner basis, if <L>I£C = =ideal,(¢), and —%’c is
confluent. o

Again we find that in our setting we have to be more careful, as for Ipc-reduction <L>IC‘,’° =

Zigeal,(G) In general does not hold. One reason for this phenomenon is that a reduction step
is not preserved under left multiplication with elements of G.

Example 9

Let Q[G] be the group ring given in example 5. Then similar to example 7 for the polynomials
p=a’+aand f = a+ \ we find that p is Ipc-reducible by f. This is no longer true for the
multiple a™2 x p = a2 * (a® + a) = A + a~'. Notice that, since a™* + )\ € ideal,(p) we have
a4+ Zideal, (p) 0, but = + A <L>;}’° 0 does not hold. o

We will now introduce how we can extend the expressiveness of Ipc-reduction. We start by
enabling the reducibility of special monomial multiples of a polynomial by allowing to use
not only the polynomial itself but a special set of polynomial multiples for Ipc-reduction.
First let us take a look at what multiples are appropriate to later on enable an effective
characterization of a left Grobner basis. We proceed similar to the case of qc-reduction for
nilpotent groups rings.

Lemma 14
Let p be a non-zero polynomial in K[G]. Then it is decidable for t € T(p) whether there
exists an element w € G such that HT(w * p) = wo t.

Proof :

We show that for a finite set of terms 7' = {t1,...,ts}, where without loss of generality
t; is the greatest term, the following holds: In case there exists w € G such that for some
t; € T\{t:} we have wot; > wot; for all t; € T\{t;}, then we can effectively construct
v € G such that vot; > vot; for all t; € T\{t;} also holds without knowing w.

This will be done by induction on £ where 7' C ORD(%,,_).

In the base case k = 0 we get T C ORD(X,,), hence t; = al, t; = aﬁl“ and 1, >z 1,. By our
assumption there exists w € G with w = w'al’», w' € ORD(X\,) such that wot; > wot;
must hold for all ¢; € T\{t;}. We have to consider two cases. First let us assume that the
letter a,, is not bounded. Then let us set v = a,,'». We have to show that for all ¢; € T\{¢t;}
we have —1, + i, >z —1, + j,. The case t; = ¢, is trivial and for each ¢; € T\ {¢1,¢;} the
equation is a consequence of lemma 3 as we have 1,, >z i,, 1, >z j, and as seen above
there exists an element x, namely w,, such that 1, +z <z i, + z and j, + ¢ <z i, + x.
Now in case a, is bounded by m, € N we can set v = anm"_i"_l. We find that since for



all t; € T\{t;}, we have i, # j, and vot; = a™ !, for all other multiples v o t; = ay’,
xj < my — 1 must hold.

In the induction step let us assume k£ > 0 and again without loss of generality ¢; is
the largest term in 77 C ORD(X, k). By our assumption there exists w € G such
that w o ti > wot; for all t; € T\{t;}. Let aq be the distinguishing letter between
t = an o..al and t; = a;"_,’; ...air, and let w = w'w”a)w" with w' € ORD(X\X, ),

w" € ORD({@n—k+1s---,04-1}), w" € ORD(X441). As before let us first consider the case
that the letter aq is not bounded. Then there exist l,_x,...,lq_1,7 € Z, z1,2; € ORD(X441)

_ " _wq, ln—k ln — ln k la—1, wg+lg+z —

SUC}ll thatqluotl = w'w'ay*w" o a7 . lay = wal g af” 1% z1, wotl =
1 Ik d—1  wqtig+z _ (nln lg—1 1q 1n lg—1
war g ...a) ay ;. Now let us set vg = (a," 7" ... a,;" 1) a; ¢ oinv(a," 5" .. a7).

Lok la—1 ; Lok la—1 Lok 1, —
oinv(a," " .. adl)oa L = a, L al

Slncevdotl—(ank. ca ) oay .

and vgot; = an . aclid Tay Latidy with v,y € ORD(X441), vg o t; > vg 0ty holds. It
remains to study vy o t; for all t; € T\{t1,%;}. In case the distinguishing letter between ¢,
and t; has index s < d we must have t; < t;, as t; < ¢, and therefore j;, <z i, = 1, respec-

tively jq <z iq <z 14 must hold. Then t; = z;a%y; and t; = z;al*y; with z; € ORD(X\X;),

L o

— ln—k ld 1 —14 . 1, 1g-1 ; -
yi,lyj € OITD( s+1) and vgo t; = (a5 ..., ) 0oay % o |n\1/(an ko .07 o mialry; =
— —1 . 7 —
(0, - agy') © ag ¢ o '"V(assfll- a’dd ) o agt ey = (a1 a’dd 1) o a gy =
ln_ &k 1, is—is+] _ 1n_ g 1s— j
a," . altal T g =g M a LaleZ; with z;,Z; € ORD(X,;1) and and similarly

1 1 1 s : )
vgot; = anE .. ar itk et g = gl k’“ .. a7 alz; with Z; € ORD(X,41) thus implying

v 0 t; = vgot;. Otherwise let T = {y; | t; € T,t; = a~}...a%y;,y; € ORD(Zqp1)}-
Then 7" C ORD(X441) C ORD(X,_) and still for w € G from above we can conclude
(woal™ =k ... a8 oy; = (woa™ ... ait)oy; for the terms y; € T"\{y;}. Hence by our induction
hypothesis v411 € G can be constructed such that vy, 0y; > vay1 oy] Now we can combine
vg and v441 in order to construct v as follows: let us set v = v40 (a:1 6 - ad ] )oafi" 0VUgy1 ©

adZdo'”V(ai - lazlid 1) = (ai" ¥ a;d 11)0%11 ldo'”"(avlz k- a;d 11)0((%1: iy o aid‘f)oaff
var10ay toinv(a, 5 . ayS)) = (0,5 . a5 ) oay lerzdovdﬂoad oinv(a, .. ag).
Then we get vot; > vot; for all t; € T\{t;} since vot; = (a;"_k’“. aclid “Noa o

as1 0 oinv(al" ¢ ..alf 1) ol ...alt ey = (a7 a0 0 ag 4 o v 0 =
aiﬁ‘k’c ) a(ljd Jay 1"‘“"’2’ and similarly vdot, = an o ai‘i Jay —latia . with 2j,2; € ORD(Xg41)
and by the definition of v4;; we also know v441 0y; = 2; < z; = vg41 0 ¥y; proving our claim.
Now it remains to check the case where a4 is bounded by m,;. We can set v; =
(a;’fk’“ . atlld Hoalaa! omv(aln o .a;‘i’f), and as above an element v can be constucted
such that vot; > vot; for all t; € T\{t;}.

g.e.d.

Notice that the proof of this lemma shows that there is an algorithm which computes some
v € G as desired in case it exists and that the element w need not be known for this
computation. Hence we can enrich a polynomial by the set of those multiples which bring
other terms of the polynomial to head position. But still there remain cases of multiples
which are not Ipc-reducible. Just take a look at the polynomial p = a? + a in our example.
Then the head term of the multiple ¢ *x p = a + X results from the head term a? of p,
but still @ + X is not Ipc-reducible by p, as a? is no commutative prefix of a. Therefore, let
us consider some further special multiples. For a polynomial p and a term ¢ € T(p) we call
a term s in a multiple w x p a t-term if s = w o t. The following lemma states that if in



two left-multiples of a polynomial the head terms result from the same term ¢, then there
is also a left multiple of the polynomial with a ¢-term as head term which is in some sense
a common commutative prefix of the head terms of the original two multiples. In example
9for \xp=a?+aand a! *p = a+ )\, both head terms result from the same term a? and
the head term a of a=! % p is a commutative prefix of the head term a? of \ x p.

Lemma 15

Foru,v € G, let uxp and v*p be two left multiples of a non-zero polynomial p € K[G]| such
that for some term t € T(p) the head terms are t-terms, i.e., HT(uxp) =uot =a} ...ar
and HT(v*p) =vot =al ...al». Then there exists a term t <y, af* ...a’» where

_ J sgn(i) - min{[3 ], [7[}  sgn(i) = sgn(5)
P 0 otherwise
and an element 7 € G such that HT(Z * p) = Z ot = £. In particular, we have u * p —)Lﬂ; 0

and v x p—° 0.

ZXP

Proof :

Let p, pxu and p* v be as described in the lemma and let the letters corresponding to our
presentation be ¥ = {ay,...,a,,a7",...,a; "

We show the existence of Z by constructing a sequence z1,...,2, € G,such thatfor1 <[ <n

we have HT(z,%p) = z 0t = ai' ... a;'r, with 7, € ORD(Z,41) and a7' ... )" <gyp af'...a}".
Then for Z = z, our claim holds.

Let us start by constructing an element z; € G such that HT(2; x p) = 2, ot = af'ry,
r1 € ORD(X;) and af' <yyp af*.

In case iy = j; or j; = 0 we can set z; = v and s; = j; = p; since HT(v x p) = v o
t = 31. aJ" Slmllarly in case 17 = 0 we can set z; = u and s; = ¢; = 0 = p; since
HT(u*p) = uot = a?...a"» € ORD(X;). Hence let us assume 4; # j; and both are
NON-Zero.

First suppose that sgn(i;) = sgn(j1). Notice that the proof does not depend on whether a;
is bounded or not. Then if |i;| > |j;| we again set z; = v since for s; = j; = p; our claim
holds. In case |ji| > |i1| we set z; = u because for s; = i; = p; our claim holds.

Now let us proceed with the case sgn(i;) # sgn(ji1), hence a; cannot be bounded. We
construct z; € G such that HT(z; * p) = z; 0t € ORD(X;) as p; = 0. We claim that
the letter a; has the same exponent for all terms in T(p), say b. In case this holds, no
term in the polynomial a[® * p will contain the letter a; and the distinguishing letter
between HT(a;® * p) and the term a7’ ot is at least of index 2. Furthermore we know
HT ((voab)*(a;’+p)) = HT (vxp) = vot. Thus by the construction given in the proof of lemma,
14 there exists an element 7 € ORD(X3) such that HT (r x (a;° *p)) = roa;*ot € ORD(X,)
and thus we can set z; = ro al_b and s; =0 = p.

Hence it remains to prove that the exponents of a; have the desired property. Suppose we
have the representatives s = al 'Ty, by € Z, xy € ORD(X,) for the terms s’ € T(p) and
HT(p) = s = abz,. Then we know b, >z b; since t € T(p).

Hence in showing that the case b; >z b; is not possible we find that the exponents of a; in



s and t are equal. To see this, let us study the possible cases. If by > 0 we have by > b; > 0
and hence there exists no x € Z such that b; + x > by + x > 0. On the other hand b, < 0
either implies by > 0 or (by < 0 and |bs| > |b;|). In both cases there exists no x € Z such
that by + 2 < 0 and |b; + | > |bs + z|. Hence by = by must hold as we know that ¢ can be
brought to head position by u respectively v such that the exponents of a; in HT (u * p)
respectively HT (v * p) have different sign.
It remains to show that there cannot exist a term s’ € T(p) with by <z bs = b;. Let us
assume such an s exists. Since HT (usp) = uot = @' ... air and HT (v¥p) = vot = o' ... alr
there then must exist x1, x9 € Z such that by +x1 <z by+2x1 =41 and by +2x9 <z bi+12 = 71.
Without loss of generality let us assume i; > 0 and j; < 0 (the other case is symmetric). In
case by < 0 we get that b,+x1 = 4; > 0 implies z; > |b;] > 0. Now, as by <z b; either implies
by > 0or (by <0 and |by| < |b|), we find by +x1 > b+ contradicting by +x1 <z b+ 1.
On the other hand, in case b; > 0 we know b; > by > 0. Furthermore, b; + 2o = j; < 0
implies £ < 0 and |z > b;. Hence we get by +x9 < 0 and |by + x5| > |by+ 22| contradicting
by + 12 <z by + 9.
Thus let us assume that for the letter ax_; we have constructed zx_1 € G such that HT (z;_1 %
p) =z 10t=al...a) e 1 = ait .. .a,‘i’i‘llafc’”r' with 7,1 € ORD(X), ' € ORD(Xg41)
and af'...a" ) <up af'...a}* . We now show that we can find z; = @ o 2;,_; € G such
that HT (2 % p) = zg ot = ai' ... a}"ry, with 7, € ORD(Zg41) and a7 ... aF <gup af ... a5".
This will be done in two steps. First we show that for the polynomials u % p and zx_1 * p
with head terms a' ... air respectively ai' ... a;* a7’ we can find an element w; € G such
that HT (wy % zg—1 *p) = wy 0 zg_1 ot = af* ... azk_’faikf, 7 € ORD(3k41) and a,ik <tup ag’“
with

- _{ sgn(ix) - min{lix|, [ls|}  sgn(ix) = sgn(lx)

Pr = 0 otherwise.

Then in case a}* <y, aff we are done and set zx = wy 0 zx—; and s = Sj. Else we can
similarly proceed for the polynomials v * p and w; * 251 * p with head terms af'...alr

. Sk — S ~
respectively ai'...a; 7'a;*7 and find an element wy € G such that for z;, = wy 0wy © 23

we have HT (2 * p) = 2z ot = af' ... a rg, 1y € ORD(Zg41) and af <iyp ai;“ with
5 = sgn(jx) - min{[jk|,[Sk]}  sgn(jx) = sgn(3k)
k 0 otherwise.

Then we can conclude a;* <y, at* as in case s; = 0 we are immediately done and otherwise

we get sgn(ji) = sgn(5x) = sgn(pr) = sgn(ix) and min{ [z, |Se[, x|} < min{]ix|, |jk[}-
Let us hence show how to construct w;. Remember that HT (u* p) =uot =a} ...a" and

HT(zx_1%p) = zx_10t = aj' .. .a,sc’fllafckr' for some 7' € ORD(Xg1). In case iy, =l or [, =0

we can set w1 = X and 5, =l = pr as HT (zp_1 % p) = zx_1 *xt = a' .. .a,i’“_‘fafc’“r’. Hence let
ik 75 lk and lk 75 0.
First let us assume that sgn(ix) = sgn(lx). Without loss of generality we can assume that

ay is not bounded'®. Then in case |i;| > |lx| we are done by setting w; = )\ as again

18In case ay, is bounded we can still use negative powers of ay in the computations, as from the point of
view of the collection process it does not matter, at what time the power rules for a are applied.



HT(zx_1 *p) = zx_1 0t = aj! ...a,sc’“_‘fafc’“T’ will do with 8§, = I, = p;. Therefore, let us

assume that |lx| > |ix|. Then we consider the multiple y z;_1 *p, where y = (aj' ... a.*7') 0
a,:l’“J’i’“oinv(af1 ...a*), i.e., the exponent of the letter a in the term yoz;_; ot will be iy. If
HT (y*2x_1%p) = yozy_ 10t we are done because then yoz, 10t = aj' .. .azk_‘fazkfk for some
7, € ORD(Xg41) and we can set wy = y and § = i = pg. Otherwise we show that the t-term
yo 2,10t in this multiple can be brought to head position using an element r € G such that
we have HT((roy)* 2,1 #p) =royoz ot =royoai...aF takr' = al' ... a;* | al¥F,
where 7 € ORD(X,1), thus allowing to set §; = iy = pr and w; = r o y. This follows
immediately if we can prove that the exponent of aj in the term HT(y x zx_1 x p) is also
1. Then we can apply lemma 14 to the polynomial y * 21 * p and the term y o 2, ; ot.
Note that HT(y * zx_1 * p) and y o zx_1 o t have then distinguishing letter of at least index
k + 1 and further HT (inv(y) * (y * zx_1 * p)) = HT(2x_1 * p) = 21 o t. Therefore, we show
that the exponent of ay in the term HT(y x 25 1 * p) is also i;. Let ai'...a.*7 azkr” with
r" € ORD(3k41) be the term in z;_; x p that became head term (note that a candidate in

T(2x_1#p) for the head term in y* z;_1 *p must have prefix aj* ...a,* ' since HT (z5_1 *p) =

al' ... a;*'ry_1) and multiplication with y gives us yoas' ... a" ol = @' ... a4y aSkx >

ait...a) afw =yozy, ot for some z,w € ORD(Z;41) and we have c¢; >z ix. Then there
: S1 Sk—1 Gk, — i1 ih—1 ig+[k

exist 21,29 € G such that z;0al" ..., @y =af" .. g a2 for some z € ORD(ZHl)

] Th—1 1 i i ; T — . ] Tg—
and 2, 0al ... a) ta iy = @ i and 2 = (a .. a0} ) o a, T o 2y oinv(al .. ah)

for some 2z, € ORD(X,1). Note that the ¢-term in y * z;_; * p is brought to head position
by multiplication with 2, o z;. Now multiplying HT (y * zx_1 * p) by 22 0 21 we find 23 0 2, 0
alt. .ol afr = dlt . a e g = gBt g 1aE for some & € ORD(Sjy1). This
gives us Cg SZ ik and thus ik Sz Ck yields Cr = ik.

Finally, we have to check the case that sgn(ix) # sgn(lx) and I, # 0. Notice that in this
case the letter a; is not bounded. Let us take a look at the polynomial y * 2 _; * p where

y = (a5 ...aq;"}) o a* oinv(alt...a;*}), i.e., the exponent of the letter a; in the term
y o zg—1 ot will be 0. Suppose HT(y * zx—1 * p) = ai'...a," ] af*z, for some term s =

aj .. .a,‘z’i‘llazsxs € T(zk_1 *p), ,2s € ORD(Xk41), ie., ¢x = bs — lg. In case this head

term is already the corresponding t-term y o 2 _; o ¢, we are done and we set w; = y and
5k = 0 = pg. Now if we can show ¢y = 0, by lemma 14 the ¢-term y o z;_; ot can be brought
to head position using an element as constructed in lemma 14 since the distinguishing letter
between HT(y * zx_1 * p) and the term y o zx_; ot then has at least index k£ + 1 and we
know HT(inv(y) * (y * zx_1 *p)) = HT(2x_1 * p) = 2,1 o t. Hence, in showing that ¢, = 0

we are done. As before there exist z1,2y € G such that zj oyoz,_10t =ai ... a?_‘fai’“z

i Tp— i i . i Tp—
for some z € ORD(Xgy1) and 25 0 a¥ ... a4 lalfz = a' .. ain e, 2 = (a¥...a}*7)) o

.apr,
a2 oinv(a ...}t }!) for some 2z, € ORD(Zg ;). Remember that this multiplication
brings the ¢-term in y * z;_1 * p to head position. Hence multiplying HT (y * zx_1 * p) by
7902 we find 250 2y 0 ajt ... ) afr = azf . ..ai’”_‘fai’“”’“i for some z € ORD(Zk11)-
Thus we know ¢ + 1, <z 2. To see that this implies ¢, = 0 we have to distinguish three
cases. Remember that ¢, = by — [, and since our head term is an s-term y o s for some
s € T(zg_1 * p) we know b; <z li. In case i = 0, we have ¢; <z 0 implying ¢; = 0. In
case 1 > 0 then ¢ + i = by — I, + 1 <z 1}, implies 0 < by — I, + i} < 1. Furthermore, as

Iy < 0 we have —lj + iy > i implying b; < 0 and hence |bs| < |l|. But then b; — I, > 0 and



0 < bs — Il + 1, < i yields ¢ = by — [, = 0. On the other hand, 7 < 0 and I, > 0 imply
0 < by < Iy and hence by — Iy + 1, < 0 yielding |bs — Iy + ix| < |ix|. Since by — I < 0 this
inequation can only hold in case ¢, = b, — Iy = 0.

q.e.d.

These two lemmata now state that given a polynomial, we can construct additional polyno-
mials, which are in fact left multiples of the original polynomial, such that every left multiple
of the polynomial is Ipc-reducible to zero in one step by one of them. Such a property of a
set of polynomials is called (Ipc-) saturation. In example 9 the multiples a™ *p = a + )
and a=2xp=a~! + ) give us a Ipc-saturating set for p = a® + a.

Definition 16

Aset S C{wx*p | w € G} is called a (lpc-) saturating set for a non-zero polynomial
p in K[G], if for all w € G, w *p—>1§’° 0. A set of polynomials I’ C K[G] is called (Ipc-)
saturated, if for all f € F and for all w € G, w * f —2°0. o

A further consequence of the previous lemmata is that finite Ipc-saturating sets exist and
that they can be computed.

Procedure LEFT-POLYCYCLIC SATURATION

Given: A non-zero polynomial p € K[G].
Find: SAT(p), a lpc-saturating set for p.

for all t € T(p) do
Sy = 0;
if ¢ can be brought to head position
then compute ¢ = w*p with HT(wxp) =wot
H;:={s € G|HT(q) >tup s};
% These are candidates for “smaller” polynomials with ¢-head terms
g :=min{(soinv(t)) xp| s € H, HT((soinv(t)) *x p)) = s};
Sy == {aq};
endif
endfor
SAT(p) = Ute-r(p) Sy % S contains at most |T(p)| polynomials

Notice that this is only a naive procedure and more structural information should be used,
e.g. to rule out unnecessary candidates from the sets H;.

Lemma 16
For a Ipc-saturated set F' of polynomials in K[G], <L>1§’C = =igea,(r) holds.
Proof :

This can be shown as in the proof of lemma 12.
q.e.d.

Let us now proceed to characterize left Grobner bases by so-called s-polynomials corre-
sponding to Ipc-reduction.



Definition 17 . '
For pi, pp € K[G] such that HT(p;)=a}' ...al» and HT(ps)=al' ...al" with either 4, - j, = 0
or sgn(7;) = sgn(j;) for 1 <1 <n we can define an s-polynomial, and setting

_ [ sen(n)  a=0
P sgn(1;) otherwise

the situation afl'maxﬂil"‘jl‘} . .aﬁ"'max{‘inl’u”'} = w; o HT(p1) = wy o HT (py) for some wy, wy
in G gives us

SP0|(P1;P2) = HC(Pl)_l Wy kP — Hc(pz)_l - W2 * Pa.

o

Notice that HT (p;) <tup afl'max{‘“"'jl‘} .. gprmadiinllind} for 4 € {1,2} holds in case such

n
an s-polynomial exists. Furthermore, if there exists a term ¢ such that ¢ >y, HT(p;) =

aff co.airand t >4, HT (D) = a{l ...al*, an s-polynomial always exists since then the

condition for its existence is fulfilled as the tuple ordering requires that the exponent of a

letter a; in the tuple-smaller term is either zero or has the same sign as the exponent of a;

in the tuple-larger term. We even have ¢ >, a’fl'max{”l"‘m} .. .aﬁ”'max{‘i”"j”'}.

We now can give a characterization of a left Grobner basis in a familiar way using the
concept of Ipc-saturation.

Theorem 7
For a Ipc-saturated set G C K[G] the following statements are equivalent:

1. For all polynomials g € ideal,(G) we have g i%’c 0.

2. For all polynomials fy, f; € G we have spol(fy, f;) ==& 0.

Proof :
Again we can follow the lines of the proof given for the similar theorem 3 for nilpotent
groups and qc-reduction.

q.e.d.

It is also possible to give a characterization of left Grobner bases in terms of standard
representations.

Corollary 3
For a set G C K|[G] the following statements are equivalent:

1. For all polynomials g € ideal,(G) we have g L)Efc 0.

2. Every g € ideal,(G) has a left commutative prefix standard representation.
3. G is a left commutative prefix standard basis.

4. (G is a left Grobner basis.



Now, using the characterization given in theorem 7 we can state a procedure which enu-
merates left Grobner bases in polycyclic group rings.

Procedure LEFT GROBNER BASEs IN Porycycric GRourP RINGS

Given: A finite set of polynomials F' C K[G].
Find: GB(F), a left Grobner basis of ideal,(F).

G := U,eq SAT(9); % G is Ipc-saturated and ideal,(F) = ideal,(G)
B :={(q1,¢) | 01,0 € G, q # ¢};
while B # () do % Test if statement 2 of theorem 7 is valid
(g1, g2) := remove(B); % Remove an element using a fair strategy
if h := spol(qi, ¢2) exists
then /' := normalform(h, —{°); % Compute a normal form
if h'#0 % The s-polynomial does not reduce to zero
then G := G USAT(A); % G is Ipc-saturated and ideal;(F) = ideal,(GQ)
B:=BU{(f,9)| f€G,geSar(h)};
endif
endif
endwhile
GBl(F) =G

The set G enumerated by this naive procedure fulfills the requirements of theorem 7, i.e.,
the set G at each stage generates ideal,(F') and is Ipc-saturated. Using a fair strategy to
remove elements from the test set B ensures that for all polynomials entered into G the
s-polynomials are considered in case they exist. Hence, in case the procedure terminates,
it computes a left Grobner basis. The next theorem states that every left Grobner basis
contains a finite one and hence this procedure must terminate.

Theorem 8
Every left Grobner basis contains a finite one.

Proof :
Since lpc-reduction is based on commutative prefixes this can be shown using Dickson’s
lemma as in the proof of theorem 5.

q.e.d.

Let us now continue to show how again Grobner bases of two-sided ideals can be char-
acterized by left Grobner bases which have additional properties. We will call a set of
polynomials a Grobner basis of the two-sided ideal it generates, if it fulfills one of the
equivalent statements in the next theorem.

Theorem 9
For a set of polynomials G C K[G], assuming that G is presented by (3,T) as described
above, the following properties are equivalent:

1. G is a left Grébner basis and ideal;(G) = ideal (G).



) * 1
2. For all g € ideal(G) we have g —£° 0.

3. G is a left Grobner basis and for allw € G, g € G we have g x w € ideal,(G).

4. G is a left Grobner basis and for all a € ¥, g € G we have g x a € ideal,(G).

Proof :
This can be shown as in the proof of theorem 4.
q.e.d.

Statement 4 enables a constructive approach to use procedure LEFT GROBNER BASES IN
PovLycycrLic GROUP RINGS in order to compute Grobner bases of two-sided ideals and
item 2 states that such bases can be used to decide the membership problem for the two-
sided ideal by using lpc-reduction. The following corollary similar to theorem 7 can be used
as the foundation of a procedure to compute two-sided Grobner bases.

Corollary 4
For a Ipc-saturated set G C K[G] the following statements are equivalent:

1. For all polynomials g € ideal(G) we have g L)Efc 0.
2. (a) For all polynomials f, f; € G we have spol(fi, f1) L)SC 0.

* Ipc
(b) For alla € ¥, g € G we have g xa—%°0.

Again the existence of finite Grobner bases is a consequence of Dickson’s Lemma.

Corollary 5
Every Grobner basis contains a finite one.

Notice that so far we only have characterized lpc-saturated Grobner bases. Of course there
also exist Grobner bases which are not Ipc-saturated. It is even possible to introduce in-
terreduction for Ipc-reduction and to compute reduced Grobner bases which are unique in
case we demand that the polynomials are monic, i.e., they have head coeffient 1.

Definition 18
We call a set of polynomials F' C K[G] interreduced or reduced with respect to —P¢
if no polynomial f in F' is lpc-reducible by the other polynomials in F'\{f}. o

Theorem 10
Every (left) ideal in K[G]| contains a unique monic finite reduced (left) Grébner basis.

Proof :
The proof again can be done using standard techniques as in the case of ordinary polynomial
rings.

q.e.d.



Such reduced Grobner bases can be computed by incorporating interreduction into the
respective procedures.

Let us close this section by sketching a possible approach to treat right ideals in polycyclic
group rings. As seen in section 2 a stability property for right multiples need not hold
when using the idea of commutative prefixes for reduction if G is given by a convergent
PCP-presentation. Furthermore, Wifimann’s result given in section 4 for the existence of
only A-confluent bases in case the group is given by a convergent PCP-system, states that
in general no finite Grobner bases will exist when using weakenings of strong reduction
and every reduction based on commutative prefixes and using right multiples is such a
weakening. Anyhow, a similar approach is possible in case we change the presentation of
our polycyclic group. Let (£,7T) be a convergent PCP-presentation of a polycyclic group.
Then the presentation (3, p(T")), where p(T) = {p(l) — p(r) | | — 7 € T'} and p(\) = A,
p(wa) = ap(w), is again a polycyclic power presentation which is convergent!® with respect
to the syllable ordering now with status right, i.e., the syllables are compared from the right
to the left. Such a presentation will be called a reversed polycyclic power commutation
presentation (with status right). The irreducible elements now are reversed ordered words
of the form a»...a%', i.e., REVORD(X) = REVORD(Y,), where we define REVORD(Y;)
recursively by REVORD(X,, ;1) = {A}, and REVORD(Y;) = {w € ¥} | w = vu for some u €
{a;}* U {a;'}*,v € REVORD(X;;1)}. We can show similar properties as in the case of
Wilmann’s PCP-presentations.

Lemma 17

Let G be a polycyclic group with (3,T') a convergent reversed polycyclic power commutation
presentation with status right. Further for some 1 < i < n let w € REVORD(X;;;). Then
we have a; o w = za; for some z € REVORD(X;;1).

Based on the form of the rules occurring in the presentation of G we can again prove stability
for certain right multiples. From now on we will always assume that G is presented by a
convergent reversed polycyclic power commutation system with status right.

Lemma 18

Let G be a group presented by a convergent reversed polycyclic power commutation system
with status right and w,v,v € G with w >4, v and v > 0. Then for u € G such that
w =vou, we get w > ¥ owu. Notice that since G is a group, u always exists and is unique,
namely u = inv(v) o w.

The proof of this lemma and the ones follwing in the remaining part of this section follow the
lines of the proofs given for the comparable facts for lpc-reduction due to the symmetrical
situation provided by the form of the reversed presentation of G. We now proceed to study
an appropriate reduction based on commutative prefixes for this setting.

Definition 19
Let p, f be two non-zero polynomials in K[G]. We say that f right polycyclic (rpc-)
reduces p to ¢ at a monomial « - ¢ of p in one step, denoted by p —7 g, if

(a) t >up HT(f), and

YFor a proof of this see section 8.



(b) ¢=p—a-HC(f)™" - f* (inv(HT(f)) o t).

Rpc-reduction by a set F' C K[G] is denoted by p —¢ and abbreviates p —'7“g for
some f € F. o

Notice that if f rpc-reduces p at « -t to ¢, then ¢ no longer is a term in ¢ and by lemma
18, p > ¢ holds. This reduction is effective, as it is possible to decide, whether we have
t >tup HT(f). Further it is Noetherian and the translation lemma holds.

Lemma 19
Let F be a set of polynomials in K[G] and p, ¢, h € K[G] some polynomials.

1. Let p — ¢—F°h. Then there are p',q' € K|[G] such that p—2°p',q —%°q' and
h=p —¢.
2. Let 0 be a normal form of p— q with respect to —}° . Then there exists a polynomial
*  rpc rpc

g € K[G] such that p—>F°g and ¢ —%° g.

Grobner bases as defined by Buchberger can now be specified for right ideals in this setting
as follows.

Definition 20
A set G C K[G] is said to be a Grobner basis with respect to rpc-reduction, if

8 = Zideal, (@), and —¢° is confluent. o
As before, in general we do not have the property <L>‘g,’c = =igeal (g), but it can be

restored by saturation due to the following lemmata:

Lemma 20
Let p be a non-zero polynomial in K[G]. Then it is decidable whether for t € T(p) there
exists an element w € G such that HT (p x w) = t o w.

Lemma 21

Foru,v € G, let pxu and pxv be two right multiples of a non-zero polynomial p € K[G] such
that for some term t € T(p) the head terms are t-terms, i.e., HT(p*u) =tou=air...a}
and HT(pxv) =towv =al»...al'. Then there exists a term t <y, al ...a}" where

_ [ sgn(iy) - min{[z], |51} sgn(i) = sgn(4)
P 0 otherwise

and an element z € G such that HT(p x Z) = t o Z = 1. In particular, we have p x u — 450
and px v — 722 0.

Definition 21

Aset S C{p*w | w € G} is called an (rpc-) saturating set for a non-zero polynomial
pin K[G], if for all w € G, px w —30. A set of polynomials F' C K[G] is called (rpc-)
saturated, if for all f € F and for all w € G, f x w —F°0. o



Lemma 22
For a rpc-saturated set F' of polynomials in K[G], <L>g’° = =ideal,(r) holds.

Now it remains to give a confluence criteria which can be done using s-polynomials a usual.

Definition 22
For p1, p; €K[G] such that HT(py)=ai» ... d"" and HT (py) =af* ... al" with either i;-j; = 0
or sgn(i;) = sgn(j;) for 1 <1 < n, we can deﬁne an s-polynomial, and setting

_ sgn (]l) il =0
P sgn(i;) otherwise

pn-max{|in|, |]n|} ‘ agn max{|i1],|71]} _ HT(pl)owl

the situation ah, HT (py) ows for some wy, wy €

G gives us
spol (p1, p2) = HC(p1) ™" - p1 * w1 — HC(p2) ™" - po * w.

Theorem 11
For a saturated set G C K|[G| the following statements are equivalent:

1. For all polynomials g € ideal,(G) we have g ——&° 0.

2. For all polynomials fy, f; € G we have spol(fy, fi) —&° 0.

Procedures to compute rpc-saturating sets and Grobner bases with respect to rpc-reduction
can be given as in the case of Ipc-reduction before. Again the concept of interreduction can
be supplied to yield unique monic reduced Grobner bases, and it is possible to characterize
two-sided ideals by right ideals using the same ideas as cited before.

Let us close this section by showing how in fact reversed polycyclic power commutation
presentations and rpc-reduction yield a solution to the subgroup problem in polycylic groups
giving rise to confluent bases of the subgroup.

Example 10

Let G be the group specified on page 20 now presented by a convergent reversed poly-
cyclic power commutation presentation assuming a syllable ordering with precedence
a;' = a; = ay' = ay = a3’ = az and status right, ¥ = {al,afl,ag,agl,ag,agl}, T =
{alal_1 —> )\,al_lal — )\,agagl — )\,aglaQ — A, agagl — A, a; ag — A\, a1a3 —
agagal,af a3 — agaglal_l,alagl — a;laglal,aflagl — a3 aga1 ,a‘{agl —
adal,adal — adad | 8,8 € {1,—1}}. Then for the right ideal generated by Py =
{ag — 1,a3 — 1} the set G = {as — 1,a5"' — 1,a3 — 1,a3" — 1} is a Grébner basis cor-
responding to the subgroup generated by U. While in the setting of example 4 the ele-
ments a, o a3 o a; and a have no common descendant with respect to =y, now we find
that the normal form agag a; of the element a, 16 a3 o ay is reducible by G as follows:

a3a, ta; — e Gy Ya; —™% a;. Hence now aza,'a; and a, are clearly joinable. o

_1 1



7 Concluding Remarks

In this paper we have shown how Grobner basis methods can be successfully introduced
to nilpotent respectively polycyclic group rings. We have illustrated how depending on
the respective group presentations commutative divisors can be used to define Noetherian
reductions. Left ideals can be handled by so called Ipc-reduction using convergent PCNI- as
well as PCP-systems for presenting the group. For right ideals we have to be more careful.
While the collecting process induced by convergent PCNI-presentations allows to define a
Noetherian reduction using right multiples, this cannot be generalized for convergent PCP-
systems. Hence we have introduced reversed PCP-systems with status right and in this
setting again reduction can be specified. The results can be summarized as follws:

Group presentation left GBs | right GBs | two-sided GBs
PCNI-system —lpe —_ac N
N
PCP-system ——lpe none2° __lpe
reversed PCP-system none —TPC —_yrpe

In [Re95] we have shown how the theory of Grobner bases in monoid and group rings over
fields can be lifted to monoid and group rings over reduction rings fulfilling special axioms,
e.g., allowing to compute finite Grobner bases for ideals in the coefficient domain. Hence
the results of this paper also hold for nilpotent respectively polycyclic group rings over
reduction rings, e.g., the integers Z.

Finally we want to sketch how the results of this report can be lifted to group rings over
nilpotent-by-finite respectively polycyclic-by-finite groups. Essential in this approach is the
use of semi-Thue systems related to extensions of groups as introduced for context-free
groups by Cremanns and Otto in [CrOt94]. Details of the lifting process for respective
group rings can be found in [Re95] and [MaRe96|. The key idea is to combine a convergent
presentation (Xg,T¢) of a finite group £ with a convergent PCNI-presentation respecitively
PCP-presentation of a nilpotent respectively polycyclic group N presented by (Zpr, Tx).
Assuming Xe N Xy =0, let ¥ = X U Xy and let T consist of the set of rules Ty, and the
following additional rules:

[ — Tw, for all | — r € T¢, where w, € X3, N IRR(Ty),
Ta — awg for all a € X¢, for all z € Xy, where w, € 33, NIRR(Ty).

Then in case (3, T) is convergent it is called the extension presentation of G as an extension
of N by & (see e.g. [Cr95]). Every element in G has a representative of the form eu where
e € £ and u € N. We can specify a total well-founded ordering = on our group by
combining a total well-founded ordering >¢ on £ and the syllable ordering >4 on N: For
e1uy, ey € G we define ejuy > equy if and only if e; ¢ es or (€1 = ey and uy >gy us).
Furthermore, we can lift the tuple ordering to G as follows: For two elements eu, ev, we

20“none” in this context means that no reduction based on commutative divisors and using right multiples

exists.



define eu >, ev if u >4, v and we define eu >, A. According to this ordering we call
ev a (commutative) prefix of eu if v <i,, u and introducing the concept of £-closure as
in [Re95] or [MaRe96] we can proceed to prove lemmata and theorems similar to those in

section 5 and 6.
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8 Appendix

In this section we show that polycyclic groups have reversed polycyclic power commutation
presentations which are convergent with respect to a syllable ordering with status right.

Let G be a polycyclic group with (3, 7)) a convergent PCP-system as described in section
2. For the set of rules T" we define p(T) = {p(l) — p(r) | | — r € T} and p(\) = A,
p(wa) = ap(w), a € &, w € ¥*. It is easily seen that this rewriting system is terminating
with respect to the syllable ordering with status right induced by the precedence a;' >
ay > ... > a;' > a,. In order to show (local) confluence we will need the following fact:

If azf ...a» is the normal form of x with respect to T, then ai» . .. azf is a normal
form of p(z) with respect to p(T).

This is due to the fact that in case £ — ). y then there exists a rule (p(l), p(r)) in p(T)
such that p(z) — ) ) P(Y)-

Now to see that our system (X, p(7)) is confluent we take a closer look at possible critical
pairs. Such pairs are due to the following two possible overlaps of rules (p(l1), p(r1)) and

(p(l2), p(re)): In case we have z,y in ¥* such that zp(l;) = p(la)y this corresponds to
an overlap l1p(xz) = p(y)ls respectively if we have zp(l1)y = p(l2) this corresponds to an



overlap p(y)lip(z) = Iy of the rules (I1,71) and (ly,72) in T. Now since the critical pairs for
T are confluent and the overlaps for p(T") are just reversed instances of these systems, we
know that they reduce to the same common descendant which is a reverse instance of the
common descendant in the 7-case. Hence the rewriting system is confluent and obviously
it has similar properties as the original system and gives us normal forms of the desired
form.
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