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Motivation and Outline

Level set methods are used to solve front propagating problems like crystal
growth, multi-phase flow, and motion of soap bubbles where a moving boundary
must be determined. The main characteristic of front propagating problems is
that the location of the moving boundary does essentially influence the evolution
of the process. Therefore, it is an important task to know the position of the
boundary. The level set method is one approach for this task. In contrast to
front tracking methods, which are based on a Lagrangian formulation, the level
set method represents the moving boundary as the zero level set of a so-called
level set function, which is given on an Eulerian co-ordinate system. Thus, the
moving front is ‘captured’ implicitly by the level set function. This approach
avoids some complex problems, such as numerical instabilities or complicated
bookkeeping techniques, which occur usually using front tracking methods.

But it turns out that the level set function becomes ‘irregular’ during the compu-
tation. Therefore, it needs to be updated in order to stay ‘regular’. This process
is called reinitialization of the level set function and needs to be done after a
small number of evolution time steps. Hence, reinitialization is applied many
times during the entire computation.

Since the zero level set represents a moving boundary, which may be an interface
of e.g. two different fluids, it must not move during reinitialization. In fact, in
numerical computations it does. Hence, it introduces an error to the areas sepa-
rated by the zero level set. Moreover, the error is not qualitatively arbitrary but
tends always to one direction. In particular, the area enclosed by the zero level
set shrinks, i.e. area loss is introduced by reinitialization, which may accumulate
from application to application.

The goal of this thesis is to discover why area loss occurs during reinitialization
in numerical computations in order to be able to apply numerical schemes that
reduces area loss. Furthermore, different modifications of the reinitialization pro-
cedure, which have been proposed in literature and are aimed to reduce area
loss, should be analysed and compared to each other. Moreover, new modifica-
tions could be found, which further improve the results obtained by the methods
taken from literature. The analysis and comparisons should primarily concen-
trate on area loss, in addition to that, their effect on the level set’s local curvature
should also be taken into account because the level set method is often applied
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to curvature-dependent problems.

The outline of this thesis is as follows:

In the first chapter an introduction to the level set method is given concerning
mainly its historical development and its broad field of applications. In particular,
the basic model for incompressible two-phase flow is explained.

The second chapter deals with different approaches for modelling the moving
interface. The essential properties of a Lagrangian and an Eulerian formulation
are compared, which motivate the use of the level set method.

In chapter three the level set method is described in detail and problems arising
in practical computations are mentioned. Thus, the need for reinitialization is
motivated and different approaches for reinitialization are discussed, which are
based on the desired properties of the level set function.

The fourth chapter gives a brief overview of the main properties of Hamilton-
Jacobi equations because Hamilton-Jacobi equations appear several times through-
out the level set method.

Furthermore, chapter five is concerned with a discretization of the resulting
partial differential equation (PDE), which is motivated by the properties of
Hamilton-Jacobi equations mentioned in the previous chapter. In addition to
that, a numerical method for the evaluation of curvature is explained.

While chapter six investigates the effect of area loss during numerical compu-
tations, different solution procedures aimed to avoid area loss are compared in
chapter seven.

In chapter eight numerical results confirm the observations made in the previous
chapters and single out the most convenient methods and schemes as far as area
loss and computation of curvature are concerned.

Finally, chapter nine gives a short summary of the main results, which lead to
the final conclusion concerning reinitialization of level set methods without area
loss.
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Chapter 1

Introduction

1.1 Level Set Methods

Originally, level set methods have been developed for front propagating problems
by Osher and Sethian [17]. Mathematically, the propagating front plays the role
of a free boundary in the sense of free boundary value problems. Thus, level set
methods have been applied to many kind of problems involving moving bound-
aries such as crystal growth ([21] p.145), flame propagation [20], multi-phase flow
[23], motion of soap bubbles [12], and motion of multiple junctions [15]. Addi-
tional difficulties are introduced because the speed of the moving boundary often
depends on its local curvature [17]. Therefore, it is necessary to find an accurate
approximation for the location and for the shape of the moving fronts. Besides
applications such as mentioned above, of which the level set’s interpretation is
rather straight forward, level set methods are also involved in subjects of which
its interpretation is not that obvious. For instance level sets are also used in
image processing ([25] p.33).

In general, the basic idea of the level set method is to describe a (n — 1)-
dimensional hypersurface (representing the moving front) by the zero level set
of a n-dimensional function, which is called the level set function. A more de-
tailed discussion of the level set method and its major advantages as well as
arising problems are respectively given in section 2.2 and chapter 3.

An important application for the level set method is two-phase flow. It is rather
easy to investigate the arising problems having this kind of application in mind.
Hence, the method and the arising problems will be introduced by a two-phase
flow application.
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1.2 Two-Phase Flow

Consider the motion of two immiscible, incompressible fluids in a domain 2. The
fluids are respectively described by their densities p; and po and their dynamic
viscosities p1 and ps. The interface I between the two fluids divides the domain €2
into two disjoint subdomains €2; and 25. Assume that I" describes a closed curve

Q

2

Figure 1.1: Computational domain €2.

in € (see figure 1.1). According to that, the subdomain €2, will be referred to as
‘fluid bubble’. Since the fluids are assumed to be immiscible and incompressible,
p and p are functions on €2, which are constant on each subdomain but with a
jump at the interface I'. The fluid bubble (i.e. Q3) moves with the flow according
to its velocity field. Conversely, the bubble influences the velocity field by its
shape.

For simplicity, assume that Q C R2. But in general, the methods discussed below
shall also apply to the three-dimensional case.

1.3 The Mathematical Model

The motion of incompressible fluids is described by the incompressible Navier-
Stokes equations (see [8] p.17):

divu = 0
p(ur+ (u-Viu) = =Vp+ pg+div(2uD)
where the following notations are used:
u:  Velocity field of the flow
p:  Pressure of the fluid
g :  Gravitational constant
D:  Deformation tensor = 2(Du + (Du)")
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The meaning of the incompressibility condition (div u =0 < V-u = 0) is
expressed in [7] p.301 as follows:

In the case that V - u =0, [...], which means that the area occupied by a given
set of particles is constant in time. For this reason a velocity field u satisfying
V -u =0 is said to be incompressible.
In particular, this means that the area (or volume in the three-dimensional case)
of the fluid bubble {2, remains constant throughout the calculation. However, in
numerical computations this property is not fulfilled in general. Therefore, this
thesis is mainly concerned with area conserving methods.

Since the fluids are immiscible, the densities and viscosities remain constant along
trajectories of fluid particles:

pr +div(pu) =0
-+ div(u) = 0 (1)

This means that the trajectories never cross the interface I'. Since there are two
different fluids separated by I' into §2; and €25, there will respectively be a jump
at the interface in p and u. The effect of surface tension is to balance the jump
in the normal stresses along the interface, which is proportional to the curvature
x and known as the Laplace-Young condition [9]:

[Tijnj] |I‘ = lmn,-

where 7 is the stress tensor, k is the surface tension coefficient, and n is the
outer normal to the interface. This leads to a free boundary condition for the
discontinuity in the normal stresses along the interface [3]. Therefore, the free
boundary must be determined because it will change its position in time.

In order to compute the fluid’s velocity u the location of the interface I'(¢) and its
local curvature x must be determined (see equation (3.2) on page 18 for particular
dependencies). Conversely, the underlying flow will change the position and shape
of the interface, which again affects the fluid velocity. Thus, a description of the
interface ['(¢) for all ¢ > 0 becomes necessary.
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Chapter 2

Description of the Interface

It is very crucial how the interface is modelled mathematically because it will
essentially determine the numerical methods that can be applied. In literature
different approaches for the description of the interface can be found. All have
their specific advantages and disadvantages. Hence, a short overview of the most
important methods and their main properties is given below, which will motivate
the use of the level set method.

2.1 Lagrangian Formulation - Front Tracking

The idea of a Lagrangian formulation is to describe the interface by a (closed)
curve, which is given by a parameter representation. Hence, the physical co-
ordinate system moves with the interface which is the reason for its name — La-
grangian formulation. The explicitly given curve is discretized by marker points
that move through a fixed grid, which is used to compute the velocity field wu.
Since marker points are tracked on their way through the fixed grid, these meth-
ods are called front tracking methods. Boundary integral methods are of that
kind, too [3]. This approach gives high-order accurate approximations to the
moving interface without differentiating across the front [9]. Hence, it avoids
introducing numerical diffusion, which smoothes out the front.

But this method has some serious drawbacks that lead to complicated numerical
methods:

e Explicitly tracking the front is difficult for a complex geometry of the in-
terface because it may be complicated to find a parameter representation.

e In addition to the grid for computing the velocity field u, numerical elements
(marker points) for the discretization of the interface are necessary.

e It is difficult to continue tracking the front beyond some singularities in the
interface (i.e. in the parametrization), which may occur in time [3].
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e The numerical scheme becomes unstable since the grid points of the inter-
face (marker points) may move so that the distance between neighbouring
marker points decreases, i.e. that the mesh width Ax decreases. Conclu-
sively, the time step At must be fit to the mesh width according to the CFL
condition®, which may become very small then [20]. Attacking this problem
by a regridding technique will introduce diffusion, which will dominate the
effects of curvature under consideration [17].

e The topological structure may change, e.g. when two bubbles merge. In
that case corresponding marker points must be removed because the inter-
face has vanished [2]. Further, if two bubbles are rather close together, the
problem is to label the marker points to the correct bubble.

e These problems will be amplified if this method is implemented in three
space dimensions [9].

2.2 Eulerian Formulation - Front Capturing

A method that avoids the main problems such as described above consists in de-
scribing the interface by means of a fized co-ordinate system. Instead of tracking
the interface through the computational domain explicitly, it will be implicitly
captured on a fixed grid. Thus, methods based on an Eulerian formulation are
called front capturing methods.

Volume of Fluid Methods

Volume of fluid methods differ significantly from the other methods discussed in
this thesis because they do not describe the interface itself. They track the motion
of the interior region by assigning to each cell on the computational grid a ‘volume
fraction’ of the interior fluid instead. Hence, for each cell the size of the cell’s
part belonging to the bubble under consideration is known. Consequently, the
volume of fluid method has two major advantages, which are named below [17]:

e In contrast to the parametrization no additional computational elements
are needed. The grid, which is used to compute the velocity field u, may
be used instead.

e Complicated topological boundaries are easily handled.

However, a serious drawback is the fact that it is very difficult to calculate the
curvature of the interface from this kind of formulation. Therefore, it is difficult
to apply this approach to curvature-dependent problems.

1See [14] p.100 for details concerning the CFL condition.
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The Level Set Method

Another possibility to model the moving front, avoiding the problems of the
Lagrangian formulation as well as taking curvature-dependencies into account,
consists in describing the interface by the zero level set of a level set function, de-
noted as ®. This means that the zero level set of the function is defined according
to the position of the interface {x € Q : ®(x) = 0} :=T. At one side of the inter-
face the level set function is defined larger than zero (Q; =: {x € Q: ®(z) > 0})
and less than zero at the other side (2, =: {z € Q : ®(z) < 0})%. Typically, the
level set function is a Lipschitz-continuous function [23]. Motivated by the use
of a level set as a description of the interface, this approach is known as the level
set method.

On the one hand the level set method has some major advantages:

e In contrast to the Lagrangian formulation and coinciding with the volume
of fluid method, no additional computational elements are used.

e Moreover, no explicit description (parametrization) of the interface is needed
any more because it is implicitly captured on the Eulerian grid by the zero
level set. This implies that the geometric characteristics of the interface are
completely determined by the level set function.

e Therefore, complex interface structure and topological changes can be cap-
tured quite naturally because the interface is viewed as a level set [17].
Hence, it avoids the complex bookkeeping techniques, which plague front
tracking methods.

e In addition to that, an extension to three space dimensions can be done
rather easily.

e But the central advantage is that fixed-grid finite difference approximations
may be used since no moving grid points are involved. Thus, no instability
problems occur compared to front tracking methods.

e Finally, special properties of the interface such as local curvature or outer
normal can be calculated easily from the level set function.

2Tn fact, the level set method is independent of the way of initialization the level set func-
tion. Alternatively, the role of the interior and exterior regions can be turned around, i.e.
QY ={zeQ:®x) <0}and Q =: {z € Q: &(z) > 0}
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On the other hand it is necessary to be aware of the disadvantages of the level
set approach in order to find methods that reduce them as far as possible:

e High-order accuracy at the front - especially for incompressible two-phase
flow with surface tension - is lost compared to front tracking methods [9].

e Furthermore, special care is needed in order to keep the thickness of the
interface finite in time (see section 3.2 or [23]).

e The area of the fluid bubble must be conserved (see sections 1.3 and 3.3),
which is not guaranteed in advance in numerical computations [23].

e Another important drawback is that computational expense is introduced
additionally caused by the extension of one more space dimension. Recall
that a (n — 1)-dimensional curve (representing the interface) is described
by the zero level set of a n-dimensional function (see section 3.6).

However, the disadvantages of the level set method does not seem to be as serious
as the disadvantages introduced by the Lagrangian formulation, which can be
avoided by the use of the level set method. In particular, the most important
drawback of front tracking methods, which is finding the front, can be avoided.
This is emphasized in [21] at p.68 by the following statement:

Nonetheless, finding the front is something that the level set scheme tries to
avoid at all costs, since it introduces considerable complication to the technique.

In addition to that, attempts to solve the problems introduced by an Eulerian
formulation, at least partly, motivate to use the level set method instead of front
tracking methods, which are based on a Lagrangian formulation.
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Chapter 3
The Level Set Method

On the one hand the level set approach avoids some complex problems compared
to front tracking methods as mentioned in the previous chapter. On the other
hand the evolution of the level set function and in particular the evolution of the
zero level set must be established according to the underlying flow. In addition
to that, newly arising problems must be considered, which lead to the need of
reinitialization of the level set function. Finally, different approaches for reini-
tialization, which are based on the desired properties of the level set function,
are discussed in the proceeding chapter.

3.1 Level Set Formulation of the Problem

Using a level set approach as a description of the interface implies the existence
of a mathematical relation between the evolution of the interface and the un-
derlying flow field. The stipulation that the level sets always move according to
the velocity field means that ® does not change along any trajectory z(t) (i.e.
®(¢,x(t)) = constant). Thus, the following result is easily obtained by chain rule:

d
S(@(ta(1) =

0
= ®, 4+ i(t)- VO = 0 (3.1)
This is a first-order partial differential equation of Hamilton-Jacobi type (see
chapter 4). It moves the zero level set exactly as the interface moves with the
flow, which is given by its velocity field v = #(¢). Therefore, equation (3.1)
will be referred to as ‘evolution equation for the interface’. Since the gradient
V& must be computed, a smooth function ® is necessary. There is no prob-
lem to solve equation (3.1) numerically for ® instead of using the discontinu-
ous functions (1.1) for p and pu. This is true because p(®P) can be expressed as

p(®) = p1 + (p2 — p1)H(®) where H is the Heaviside function.
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Modelling the effect of surface tension in terms of a singular source function
modifies the Navier-Stokes equations as follows [23]:

divu = 0
u+ (u-Viu = g+ %(—Vp + div(2uD) + okd(d)n) (3.2)
where o denotes the surface tension, d the normal distance to the interface and ¢
the Dirac delta function. Hence, the correlation between the interface’s position
and shape on the one hand and the flow on the other hand, which was mentioned
in the first chapter, becomes obvious.

Remark. Let F' be the speed function of the interface in its outer normal direc-
tion. Thus,

F=i-n (3.3)

where the outer normal is given by n = V®/|V®|. Substituting (3.3) into (3.1)
yields

&, + F|V®| =0

which is the level set equation introduced by Osher and Sethian in [17]. As
already mentioned in chapter 1, some aspects of image processing are related to
curve evolution. In particular, dilation and erosion belong to the class of the level
set equations (see [25] p.35).

3.2 Properties of the Level Set Function

The first property is already mentioned above: ® shall be a smooth function so
that the gradient V® can be computed. Moreover, curvature has to be calculated
from the level set data, which implies the use of second-order derivatives (see
section 3.7). Therefore, ‘smoothness’ of the level set function is very crucial for
the process.

Another important feature will be the saving of computational expenses if the
level set function is computed only in a small neighbourhood around the zero
level set. This is sufficient because only the position of the interface, which is
given by the zero level set, and some of its properties such as local curvature,
outer normal, and its gradient field need to be known. Therefore, this property
will be called “ocality’ (see section 3.6).

Furthermore, it is important to keep the absolute value of the gradient of the level
set function within reasonable bounds, i.e. the gradient should neither be too flat
nor too steep. On the one hand computation of surface tension is difficult near a
steep gradient [23]. On the other hand flat gradients may increase the width of
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the interface because in numerical schemes grid points z;; are assumed to belong
to the interface if ®(z;;) ~ 0. But this condition may be true for a rather thick
layer of grid points around the zero level set if the gradients are too flat. This
property will be referred to as ‘bounded gradients’.

Since the normal distance from the interface is used in the Navier-Stokes equa-
tions (3.2), it would be desirable that @ is close to the distance function at least
in a small neighbourhood of the interface, i.e. where §(®) # 0.

Summary of the Properties

e The interface I' is described as the zero level set {z € Q: ®(x) = 0} of a
level set function.

Let ®(z) > 0 if z € ; and let ®(z) < 0 if x € Qy (or vice versa).

Smoothness.

Locality.

Bounded gradients.

Distance function.

3.3 Reinitialization

Even if @, is initialized as a distance function, the evolution equation (3.1) will
destroy this property while moving it at the correct velocity u. Therefore, it may
become ‘irregular’ in finite time.

e For example, steep gradients may occur when two bubbles merge, which
affects the computation of surface tension, or flat gradients may occur, which
lead to increasing width of the interface (see section 3.2).

e Moreover, the curvature of the level sets computed from an irregular level
set function will be rather rough.

e Since it is desirable to compute the level set function only in a small neigh-
bourhood around the zero level set (see section 3.2), there is a discontinuity
along the boundary of the neighbourhood. The level set method will break
down if the interface is close enough to this discontinuity (see section 3.6).

e Another important observation is that mass® of the fluid bubble is lost in
time while applying equation (3.1) to the level set function. This obviously
depends on its irregularity mentioned above [23].

In fact, not mass is lost but the area of the fluid bubble shrinks (see section 6.2).
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In order to avoid these problems, it is necessary to reconstruct the level set
function so that it satisfies the properties mentioned above (section 3.2). The
process that does the reconstruction is called reinitialization of the level set
function. It turns out that reinitialization needs to be applied after a small
number of evolution time steps.

3.4 Reconstruction of the Level Set Function

In order to find a convenient method to reinitialize the level set function, different
approaches for reinitialization are compared. The desired properties of the level
set function that will be fulfilled are mentioned, but the desired properties that
will be violated are also taken into account.

Harmonic Approach

Since it is important to generate a smooth level set function, it is rather straight
forward to solve the potential equation

Ad(z) =0, Vo € Q
with homogeneous Dirichlet boundary condition ®(z) =0, Vz € T.

Although this approach creates a smooth function, it does not take into account
locality property, which causes a lot of computational expenses. Moreover, it does
not care about limits in the gradients. Therefore, it is quite inefficient to use this
approach and may lead to rather thick interfaces due to flat gradients. In addition
to that, an explicit description of the interface I' is needed in order to impose
boundary conditions at the interface, which contradicts the major advantage of
the Eulerian formulation.

Eikonal Equation Approach

In [19] an iteration method based on the level set method was used to solve the
following equation:

V®| = Az), VzeQ; and Vze,
® = 0, Ve el
Existence and uniqueness results for this equation are established in [19] and it

is shown in [6] that monotone, stable, and consistent schemes converge to the
viscosity solution?. This method was presented originally for shape from shading

2See chapter 4 for details concerning the notion of viscosity solutions.
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applications, but if A = 1 it will be the Eikonal equation, which can be used for
finding the distance function to the zero level set on one side on the interface.
However, the distance function is needed on both sides of the interface. Conclu-

sively, the Eikonal equation must be applied two times (first for €; and then for
Q).

Distance Function Approach

Consider the following partial differential equation, which appeared first in [23]:
P, = sign(Po)(1 — [VP|) (3-4)

with initial condition ®(z,0) = ®y(z) where &, defines the interface implicitly
by I' =: {x € Q: ®y(z) = 0}.

This is a non-linear hyperbolic PDE, which belongs to the class of Hamilton-
Jacobi equations (see chapter 4 for details). The idea using this equation is
that a steady-state solution of (3.4) will be a distance function for the zero level
set (i.e. |V®| =1; see [3]) with the same zero level set as the initial function ®.
Hence, the distance function may be computed for any given zero level set without
changing its position. In contrast to the Eikonal equation one has to solve this
PDE only once to obtain a solution on both sides of the interface and one need
not to impose boundary conditions on I'. This is exactly what is desirable for
reinitialization: an equation that finds the distance function from the zero level
set, without moving the zero level set itself and without knowing explicitly the
position of the zero level set.

Equation (3.4) can be rewritten as follows:

O, +w - VO = sign(P) (3.5)
where
. Vo
w = Slgn(@o)w

is a unit normal always pointing outward from the zero level set. Moreover, the
characteristics are given by w since equation (3.5) has the form of a convection
equation with velocity w. Hence, the characteristics are propagating away from
the interface with speed one. But this means that corrections of the level set
function (which are introduced at the zero level set) are propagating away from
the interface in normal direction. If this equation is solved only for small times t,
the distance function will be generated only in a small neighbourhood around the
interface. More precisely, if the distance function needs to be computed within
a neighbourhood around the interface of width aAz where o > 0, it is sufficient
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to solve equation (3.4) up to time ¢ = 0..aAz [22]. Thus, the extension of one
additional space dimension is compensated by computing the distance function
only locally, i.e. around its zero level set.

Besides, a valid time step obeying the CFL condition is given by At = Az/2
because the characteristics are propagating away from the interface with speed
one.

The solution of (3.4) can be computed analytically by the method of character-
istics, at least for small ¢ and for smooth initial data @, (see [22] for details).

Remark. The method presented above leads to an iterative scheme for finding
the distance function to the interface. Besides, direct methods exists (see [22]
or [21] p.68) for finding the distance function, but the advantage of iterative
methods is expressed in [22] as follows:

The advantage of an iterative scheme is the fact that if the interface moves a
little, one can effectively use information from the previous value of distance
to update the new values.

In other words, the fact that @ is already a good guess for the distance function
is effectively used by an iterative scheme to obtain convergence after a ‘small’
number of iterations.

3.5 Initialization

So far the evolution of the level set function and methods to maintain its desired
properties have been discussed. But it is not clear how to generate a smooth
initial function ®4 to be able to start the computation. Since the interface [' may
be a quite complicated curve in the computational domain © C R?, this is not a
trivial task.

Recall that it is possible to construct the distance function for any given zero level
set by equation (3.4). Therefore, the problem is reduced to a construction of the
zero level set itself. A straight forward approach is to initialize the computational
domain €2 by a kind of ‘characteristic function’ ®,:

1, z€Q
o(2) ::{ -1; xEQ;

Using @, defined above as initial data for equation (3.4) existence and uniqueness
of the resulting solution cannot be expected because ® is not continuous (see [5]).
Moreover, if a uniform mesh is considered for a discretization of {2 with initial
data above an ill-posed problem will develop because the resulting zero level set
may be anywhere between two neighbouring grid points that have been initialized
by -1 and 1, respectively. In particular, no explicit zero level set is present at all,
i.e. gridpoints z;; satisfying ®(z;;) = 0. To make sure that the resulting zero
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grid points X ;
10 o o o +l

Figure 3.1: Possible positions of the zero level set after initialization.

level set lies somewhere between those neighbouring grid points that enclose the
initial discontinuity, the grid points are manually forced to keep their sign (see
section 7.1). However, numerical experiments show rather good results (figure
8.1). Since initialization is needed only once at the beginning of the computation,
errors in accuracy will not too much influence the results.

3.6 Narrow Band Approach

It is sufficient to compute the level set function only in a small neighbourhood
around its zero level set because only the zero level set is physically meaningful
(representing the interface). Even if some properties of the interface need to be
computed, it can be done from the level set function within the neighbourhood.
Hence, locality is satisfied as it is put in section 3.2. The main reason to restrict
the computations to such a narrow band around the zero level set is that much
computational expenses can be saved. Thus, the additional afford introduced
by the extension of one more space dimension by the level set method can be
compensated at least partly. Let N be the number of grid points along one
side of a quadratic computational grid and let £ be the number of grid points
within the narrow band. Then, computational expense® reduces from O(N?) to

O(kN) [1].

The narrow band approach works as follows: Only the values of the level set
function at grid points within the band are updated by equation (3.1) to move
the interface with the flow. Values of the boundary of the band are frozen.
When the front moves near the boundary of the narrow band, this band must be
redetermined according to the new position of the interface. In order to find the
distance function within the new band reinitialization is performed as already
indicated in section 3.3. Typically, the width of the band is approximately 12 to
24 grid points wide. For a more detailed explanation see [21] p.65 and [1].

Since the update during reinitialization of the level set function is performed
from the zero level set and propagates in outer normal direction, it is possible to
stop reinitialization if the corrections have reached a sufficiently large distance

3For two-dimensional computations.
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from the interface. Furthermore, the distance function property of the level set
function can be used to define the narrow band in a trivial way. Namely, the
narrow band may be defined by the values of the level set function itself, i.e. grid
points that have an absolute value less than some bandwidth > 0 are assumed to
belong to the narrow band.

3.7 Calculation of Local Curvature

Since curvature-dependent evolution processes are considered, the ability to cal-
culate the zero level set’s local curvature is very important. This is achieved by
the following equation:

k=V-n (3.6)
where k denotes the level set’s curvature and n the outer normal, which is given
by n = %. A derivation of this equation can be found in [2]. The curvature

can be expressed by ® and its derivatives as follows [3]:

(@) = 02D, — 20,8,8,, + ¥20,,
(@2 + 32)3/2

Since k involves second-order derivatives, it is more sensitive to numerical errors
in the level set function (see [11], [2] and figure 8.13). Therefore, it is very
important to generate a very accurate and smooth level set function.
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Chapter 4

Hamilton-Jacobi Equations

The level set method consists in solving Hamilton-Jacobi equations in two! es-
sential parts. Therefore, it is necessary to discuss briefly their main properties.
In particular, their close relation to hyperbolic conservation laws is considered.

4.1 Definition

Consider the so-called Cauchy problem for first-order partial differential equations
of Hamilton-Jacobi type (see [5] and [6]), which are shortly called Hamilton-
Jacobi equations (H-J equations).

u + H(Vu) =0, in R" x (0,00)
u(z,0) = ug(x), in R"

Basically, all H-J equations considered in this thesis are of that kind. Therefore,
it seems to be convenient to summarize briefly its main properties and some
basic numerical approaches to compute approximate solutions. A more detailed
and general discussion including existence, uniqueness, and stability proofs for
smooth Hamiltonian H and smooth initial data wug is given by Crandall, Lions,
and Evans in [5], [6], and [4].

4.2 Mathematical Properties

It is well-known that H-J equations do not have classical solutions [11]. There-
fore, only weak solutions can be expected. Unfortunately, weak solutions are
not uniquely defined in general. Therefore, the notion of wiscosity solutions is
introduced in [5], which is a weak solution satisfying some entropy conditions
(compare [14] p.36) aimed to single out the physically relevant solution among

!Evolution of the level set function according to the underlying flow field by equation (3.1)
and reinitialization by equation (3.4).
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all weak solutions. Thus, viscosity solutions are uniquely defined. Moreover,
viscosity solutions are proven to be stable with respect to small perturbations in
the computational data. The name, viscosity solution, refers to the ‘vanishing
viscosity’ approach, where the limiting solution of the viscous equation? for the
viscous term tending to zero® is determined ([14] p.26). Although the formal
definition of a viscosity solution for H-J equations is different, it is proven by
Crandall and Lions [5] to be this limit (see also [21] p.84).

Typically, solutions of H-J equations are continuous but with discontinuous deriv-
atives even for smooth initial data uy. This is similar to the analysis of hyperbolic
conservation laws, where even discontinuities (shocks) may develop from a C*®
function as an initial condition. In addition to that, an analytical relation exists
between H-J equations and hyperbolic conservation laws. In case of one space
dimension the H-J equation (u; + H(Vu) = 0) can be regarded as the ‘once
integrated’ conservation law (@, + (H (%)), = 0) with respect to x putting @ = u,
if the solution w is twice continuously differentiable.

i+ (H(@)y = 0, / - da

/um de + H(ug) = 0
us+ H(ug) = 0

Although such a relation does not exist in the multi-dimensional case, it empha-
sizes the close connection between these kind of partial differential equations.

4.3 Basic Ideas for Numerical Methods

The first approaches solving H-J equations are done in [4]. The authors show that
monotone schemes converge to the viscosity solution. Unfortunately, monotone
schemes are at most first-order accurate ([14] p.170). Furthermore, traditional
high-order methods introduce oscillations in the presence of discontinuous deriva-
tives [18]. However, based on the relation above between hyperbolic conservation
laws and H-J equations, high-order numerical methods, which are originally de-
signed for hyperbolic conservation laws, have been adapted to H-J equations.
Two high-order methods are presented in the following chapter.

2Adding a viscous right-hand side (i.e. RHS= eAu, € > 0) to the partial differential equation.
3Thus, € = 0.
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Chapter 5

Discretization

Based on the observations from the previous chapter a discretization technique
of various order of accuracy, designed originally for hyperbolic conservation laws,
is adapted to H-J equations in this chapter. In particular, the discretization of
the basic initial value problem (3.4) for reinitialization is explained. Moreover, a
numerical method for computing the level set’s local curvature is mentioned.

5.1 Semi-Discrete Methods

The resulting partial differential equation (3.4) that will be used for reinitializa-
tion should be applicable for two and three space dimensional problems. More-
over, the solution should be obtained by a high-order method. Therefore, the
discretization process is split into two parts. Firstly, only the space derivatives
are discretized while the time dependency is left continuous. Thus, an ordinary
differential equation (ODE) is obtained, which is called ‘semi-discrete equation’.
Finally, any high-order ODE solver may be applied to discretize the temporal
derivative.

Since the space and time dependencies are decoupled, it is much easier to obtain
high-order accuracy. Moreover, this approach, which is sometimes also called
‘method of lines’, will be useful if two or more space dimensions are under con-
sideration (for more details see [14] p.193).

5.2 Discretization in Space

ENO Schemes

In order to avoid oscillations in the presence of non-smooth data using higher-
order schemes, so-called essentially non-oscillatory (ENO) schemes have been
constructed by Harten, Osher, and Shu. Originally, they have been designed for
hyperbolic conservation laws. Motivated by the close relation (see chapter 4)
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between H-J equations and hyperbolic conservation laws, Osher and Sethian [17]
extended ENO schemes in order to apply them to H-J equations achieving very
good numerical results. In [18], Osher and Shu provided a more general ENO
scheme construction procedure, which is explained in this section by an applica-
tion to equation (3.4) and (7.1)*.

The main idea for approximating the partial derivatives ®,(z;;) and ®,(x;;) (for
simplicity in notation only one space dimension will be considered from now on) is
to construct stencil interpolating polynomials P®"(x;) of degree r as an approx-
imation of the function ®. Hence, the derivative %P‘I”T (x;) of this polynomial is
used as an approximation of the partial derivative of the level set function, ®,(x).
In particular, a forward and a backward approximation is computed for each grid
point z;. For the forward approximation at x; a stencil interpolating polynomial

P;ﬂ /o(x) valid on the interval [z, z;11] is computed and @, is approximated by

O (z;) = d‘fCPZiI/Q( ;). Analogously, P ~1/2(@i) is computed on [z;_1, z;] for the

backward approximation & (z;) := & P‘I> 1 jo(@i)-
P

®,3
Pz+1/2

‘ Substencil 1 ‘
o o @ o @ o — I
Ti—2 Ti-1 Z; Tit1 Ti+2  Tit3
\ : ! o
Substencil 2 Substencil 0

Figure 5.1: Stencil interpolating polynomial P®3  used for the forward approximation

i+1 /2
of the partial derivative ®; (z) at z = x;. Substencil 2 is selected by the stencil choosing

process out of three possible substencils.

The freedom in choosing the additional stencil points for the forward and back-
ward approximations (if the degree of the polynomial is bigger than one) is used
to obtain information always from the locally smoothest region of the function.
This is achieved by selecting this grid point as an additional stencil point of which
the approximated derivative has the smallest absolute value. See [18] and [11] for
further details.

The construction works as follows: Define undivided differences ¢(j, k) for each
space direction.

(15(],0) = (I)(xj)
qb(],k) = ¢(j+1,k—1)—¢(j,k—1), k=1,...,r

!Details are given only for equation (3.4), but equation (7.1) works in a similar way.
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Hence, ¢(j,0) approximate the function ® and ¢(j, k) its kth derivative in [z, z;1x].
The stencil choosing process for the forward approximation of the partial deriva-
tive @ (x;), according to the smoothness property mentioned above, works in
the following way.

(5.1)

i(j) = 4, V stencil points j
i

() = i) =1 if |e(i(h), k)| > |o(i(5) — 1, k)]

for k = 2,...,r, where i(j) is the leftmost point in the stencil for P+1/2(a:)

Corresponding to figure 5.1 substencil 0 is selected by default (since i(j) := j). If
the absolute value of the second derivative? at grid point z; ; is smaller than the
one® at x; (i.e. |4(i(5),2)| > |#(i(j) — 1,2)]), then substencil 1 will be selected
(1(j) :==i(j) — 1). This process continues until & = r.

Finally, the derivative of the stencil interpolating polynomial is given by

@5 (r) = 5= D2 elils) ~ 5, )B(), B

k=1

where

m+k—1m+k—1

c(m, k) kaH

l#s

Note that the matrix (c), is independent of ®. Hence, it has to be computed
only once and may be stored for later use. The computation of the backward
approximation is done in a similar way.

In this thesis, ENO schemes of second, third, and fourth order are used as an
approximation of the partial space derivatives. Only equal mesh widths Az = Ay
are considered.

Weighted ENO Schemes

A further extension of ENO schemes are weighted ENO (WENO) schemes ini-
tiated by Liu et al. and improved by Jiang and Shu, who both approximated
hyperbolic conservation laws, too. Jiang and Peng [11] applied them to H-J
equations.

In contrast to the ENO scheme above, which selects one (the smoothest) sub-
stencil to construct the interpolating polynomial, does the WENO scheme take
use of all possible substencils and weights them according to the local smooth-
ness of the function. In other words, r different polynomials (for each substencil

2¢(] — 1,2) which is valid on [xi_1,$i+1].
3¢(j,2) which is valid on [z;, Zi12].



CHAPTER 5. DISCRETIZATION 30

one polynomial) are computed for each grid point and a convex combination or
weighted average of all polynomials is used. Therefore, WENO schemes may be
considered as ‘central’ schemes in regions where the solution is smooth. Thus, it
is much more accurate as the original ENO scheme. As shown in [11]:

[This WENO scheme| which is the 5th order approzimation to ®y(z;) [the
partial derivative| and is known to provide the smallest truncation error on
such a sizpoint stencil.

If there are singularities of the solution, the WENO scheme will adapt its basic
ENO scheme to avoid oscillations. In order to achieve these features the weights
are defined according to the following two principles (see [11] for details):

e If & is smooth on the whole stencil, information from all possible substencils
will be used to approximate the derivative.

o If the stencil contains a singularity of ®, the weights adaptively approach the
ENO ‘1-0-weights’ to avoid oscillations.

5.3 Approximation of the Hamiltonian
Consider the H-J equation:

®, + H(®,,®,) =0, in R? x (0, 00)
<I>(:L',y,0) = (I)()(l',y), in R2

The semi-discrete equation is obtained by approximating the Hamiltonian H
by a Lipschitz-continuous monotone flux function H(®}, @, ®F, @), which is
consistent with H, i.e. ﬁ(u, u,v,v) = H(u,v). Monotonicity means that H is
non-increasing in its first and third argument and non-decreasing in its other
arguments [17]. A variety of monotone flux functions is given in [17]. As pointed
out in [11] the Godunov flux H¢ is rather simple for equation (3.4), namely:

76 . S\/(max{(q’;f)’, (®;)*})? + (max{(®F)~, (2,)*})? =1 ;8 >0
sy ma (@)% (@) 1) + (max{(@5)7, (@)} ~1 ;9 <0
(5.2)
where s = sign(®y), (a)* = max{a, 0}, and (a)~ = —min{a, 0}.

However, in [22] another approach is applied to choose the appropriate approxi-
mation of the partial derivative. The authors used the upwind method because
equation (3.4) can be written in the form of a convection equation with character-
istics propagating outward from the zero level set (see section 3.4). LeVeque ([14]
p.112) explained the method and its name in the following way:
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This method is usually called [..] upwind method, since the one-sided stencil
points in the ‘upwind’ or ‘upstream’ direction, the correct direction from which
characteristic information propagates. If we think of the advection equation as
modelling the advection of a concentration profile in a fluid stream, then this
is literally the upwind direction.

Roughly speaking, the upwind method ‘differentiates’ always towards the charac-
teristics’ direction. Hence, the upwind method uses backward approximations if
the characteristics are propagating from below to the point under consideration,
while it uses forward approximations if the characteristics are propagating from
above. The method works as follows [22]:

OF dfsign(Pp) <0 and (D, + . )sign(Pg) < 0
O, < @ ;P sign(Pp) >0 and (P, + P )sign(Py) >0 (5.3)

0 ;P sign(Py) <0 and DFsign(Py) >0

®, is approximated in a similar way. Conclusively, the Hamiltonian is approxi-
mated by using the corresponding forward and backward approximations. More-
over, it is possible to show that H“ is equivalent to the upwind method (5.3):

Theorem. Consider the initial value problem (3.4).
Then the Godunov method (5.2) is equivalent to the upwind method (5.3).

Proof. For simplicity, consider only the partial derivatives with respect to z.
Godunov’s method (5.2) can be rewritten as follows:

max{— min{®}, 0}, max{®,,0}} ;Py>0
P, ~ .
max{max{®;, 0}, — min{®;,0}} ;P <0

1. Let the Godunov method choose ®; # 0.
(a) Let &y >0: = &} <0 and (%} >, or P, <0)
= &lsign(®y) <0 and @, + P <0
Thus, the upwind method chooses also ®; . v
(b) Let & < 0: = &f >0 and (P, <P or @, >0)
= &fsign(®y) <0 and @, +PF >0
Thus, the upwind method chooses also ®; . v
2. Let the Godunov scheme choose &, # 0:
(a) Let & >0: = &, >0 and (-®f <P, or ¥ >0)
= &_sign(Py) >0 and P, +PF >0
Thus, the upwind method chooses also @ . v
(b) Let &9 < 0: = &, <0 and (=P, > P or & <0)
= &_sign(®y) >0 and ¢, + P <0
Thus, the upwind method chooses also @ . v
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3. Let the Godunov scheme choose zero:
(a) Let & >0: = P& >0 and P, <0
= ®Fsign(®y) >0 and P, sign(Py) <0
Thus, the upwind method chooses also zero. v
(b) Let &9 <0: = dFf <0 and P, >0
= Ofsign(Py) >0 and P, sign(Py) < 0
Thus, the upwind method chooses also zero. v

1. Conversely, let the upwind method choose ®; # 0.
(a) Let &9 >0: = &/ <0 and P, +P} <0
But this implies that ®, < —®;.
Thus, Godunov’s method chooses also @ . v
(b) Let & < 0: = &f >0 and &, +PF >0
But this implies that —®, < ®.
Thus, Godunov’s method chooses also @7 . v
2. Let the upwind method choose ®, # 0.
(a) Let &9 >0: = &, >0 and &, +P} >0
But this implies that —®} < @ .
Thus, Godunov’s method chooses also @ . v
(b) Let < 0: = &, <0 and &, + P} <0
But this implies that &} < —® .
Thus, Godunov’s method chooses also @ . v

3. Let the upwind method choose zero.
(a) Let & >0: = &, <0 and P} >0
= max{®,,0} =0 and min{®;,0}=0
Thus, Godunov’s method chooses also zero. v
(b) Let &g <0: = &, >0 and ¥ <0
= max{®!,0} =0 and min{®;,0}=0
Thus, Godunov’s method chooses also zero. v

O

Remark. The same analysis applies for the partial derivative with respect to y.
Moreover, the case where ®; = 0 is trivial because the Hamiltonian H will be
zero for equation (3.4).
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5.4 Discretization in Time

Runge-Kutta type procedures for the time-discretization are used to obtain ®"*!
from ®", which means proceeding one time step. Define
LY = —AtH(®},8;, 0}, ;) (5.4)
0
o) = ap

where H := sign(®,)(1 — /(®F)2 + (®)2) and compute
z y

k-1
ol = Z(aqu’g? + ﬁng-)), k=1,....r (5.5)

J
=0

Finally, obtain (IDZ-“Ll = <I>Z(-§) where r denotes the level of the Runge-Kutta method
and ay; and [, are defined as shown in figure 5.2 for different order of accuracy.
Up to order 4 the level of the Runge-Kutta method may be equal to the desired
order of approximation using the schemes below.

Order (9% ﬂkl
1 1

2 1 1 1
7 2 0 3
1 1
3 1 1

3 11 0 3
1 2 2
3 0 3 00 3
1 >
11 11
2 2 4 2

4 12 2 11 g
9 9 3 9 3
03 3 3 0 303

Figure 5.2: Three TVD Runge-Kutta schemes.

The following statement taken from [18] gives that the Runge-Kutta method (5.5)
is total variation diminishing (TVD)*:

The method (5.5) can be proven TVD under the CFL condition A = At/Ax <
cXg if the Euler forward version of (5.4) is TVD under the CFL condition
A= At/Az < X.
Where ¢ = 1 for the 2nd and 3rd order version and ¢ = 2/3 for the 4th order
version.

4See [14] p.165 for a more detailed investigation of TVD methods.
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5.5 Discretization of Curvature

Central differences are used to compute local curvature since the level set function
is assumed to be smooth at least in the neighbourhood of the zero level set. In
literature ([3], [2]) two slightly different approximation methods can be found.
But the results do not differ very much. The scheme found in [3] works as follows:

Tiq =
me ((DR0y)2 + (Dy )22

where the forward, backward, and centred differences are defined as follows:

Dydy; = (D(2ig1) — (2i5))/h
Dy ®; = (®(zij) — ®(xiz1,5))/h
DY®;; = (D(wiyry) — P(wi1;))/(2h)

5.6 Smoothing of Discontinuous Functions

Smoothed out approximations for the sign-, Heaviside-, and Dirac delta func-
tion are used in order to prevent the schemes from unwanted instabilities at the
interface (see [3] and [22]):

0 T < —€
H(z) = “:2—";64—% Dzl <e
1 ;T > €
L(1+cos(™2)) ;lz| <€
= 2e € ’
Oclz) = { 0 ; otherwise

Signe(x) = Q(HE(‘T) - 1/2)

This definition implies a prescribed thickness of the interface of order e¢ and
satisfies the conditions £ H.(z) = 6.(z) and [°_6.(z)dz = 1. In fact, only the
smoothed out sign function® is used during reinitialization. The other functions
are given for completeness, too.

5The Dirac delta function is used only in the constraint of equation (7.2).
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Chapter 6

Analysis of Area Loss during
Reinitialization

A serious problem of the level set method occurring in numerical computations is
area loss during reinitialization (see [23] or [3]). Therefore, the numerical scheme
that is used for reinitialization is analysed more detailed in order to find reasons
for area loss.

6.1 Preliminary Remarks

Since incompressible fluids are under consideration, the area (or volume in the 3d
case) enclosed by the zero level set is equivalent to the fluid’s mass. Therefore,
it is justified to speak about mass conservation instead of area conservation and
both expressions are equivalently used throughout this context, as it was already
done in earlier publications (e.g. [23] or [3]).

Theoretically, equation (3.4) used for reinitialization conserves the area of the do-
main bounded by the curve defined implicitly by ®o(x,y) = 0 because (3.4) does
not change the position of the boundary (i.e. the zero level set, since sign(0) = 0).
But unfortunately, in numerical computations this is not true any more because
there are hardly any grid points z;; satisfying ®(z;;) = 0.

In fact, numerical experiments show that a considerable amount of mass is always
lost during reinitialization, i.e. that the area enclosed by the zero level set shrinks
(see [23], [3] and figure 8.4). Since reinitialization is applied periodically and the
error tends always to one direction qualitatively (area loss), it does accumulate
from application to application. Hence, it is very important to find numerical
schemes that reduce area loss as much as possible or to find methods that preserve
area conservation during reinitialization.

Note that area loss during reinitialization is another kind of area loss occurring
in the level set method. It is important not to mix up area loss by reinitialization
(i.e. introduced by equation (3.4)) and area loss mentioned in section 3.3 that
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is introduced by the evolution of the fluid bubble in time using equation (3.1).
Recall that the latter kind of area loss was one of the main reasons to reinitialize
the level set function. Qualitatively, the problem is only transferred from equa-
tion (3.1) to equation (3.4). However, a quantitative improvement is achieved as
far as area conservation is concerned (see [23]). Moreover, the other difficulties
that require reinitialization can be handled. Thus, reinitialization quantitatively
improves the numerical results.

6.2 Area Computation on a Discrete Grid

In order to be able to find methods that conserve area it is important to know how
the area of the fluid bubble is computed on a discrete grid. Consider a quadratic
grid cell ¢;; of area (Az)?, which is assigned to each grid point z;; so that z;; is
the grid point in the lower left corner of the cell ¢;;. Assume that the interface
divides the cell ¢;; into two parts so that ®(z;;) < 0 and the values of the other
grid points are larger than zero, i.e. that z;; belongs to the fluid bubble and the
other grid points belong to the outer fluid as it is illustrated in figure 6.1.

y P
cell /edge ®(zij41)
Tij+1 Tit1,5+1
pzlj‘ “i
interface
/ : : : Y
Tij / Dij Ti,j+1
x
i} Tis
Tij \ Py Titi (i)

Figure 6.1: LEFT: Quadratic grid cell ¢;;. RIGHT: Zero determination of the level set
function at the left edge of the grid cell ¢;; by linear interpolation.

All other possible situations are handled in a similar way as far as the position of
the interface is concerned. These positions, denoted by p}j and pfj, are computed
from (linear) interpolation of the corresponding grid points by a determination
of its zero. The position of the interface at the cell itself may be computed by
spline or polynomial interpolation of desired order. But the effect of area loss
during reinitialization depends only on the computed position of the interface on
cell edges pfj, k = 1,2 and is independent' of the reconstruction of the interface
across the cell. Thus, area loss is reflected in the movement of the interface’s
position pfj, k = 1,2 at cell edges. This movement is introduced by the evolution

1Since the reconstruction of the interface across the cell depends only on the stencil points
that are the zeros of the level set function determined at cell edges.
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of ®(x;;) and ®(z; j41) during reinitialization, which may be so that the positions
pfj, k = 1,2 change.

Remark. Alternatively, the volume fraction of the bubble at one cell may be
computed by bilinear reconstruction of ® at the cell, which is more sophisticated.
However, the method that will develop by the analysis above yields also good
results if it is applied to methods using bilinear reconstruction.

6.3 Geometric Dependencies of Area Loss

In order to identify the reasons for area loss it seems convenient to consider a one-
dimensional problem first. But it turns out that no area loss occurs. Moreover,
it is possible to show that area loss does not occur in the one-dimensional case
even if the very basic first-order scheme is used.

Theorem. Consider the first-order (i.e. forward and backward finite differences)
upwind method (5.3) and the forward Euler discretization in time. Suppose that
the space dimension is one, that the level set function is symmetric around its zero
and monotonously increasing. Then no area loss occurs during reinitialization by
equation (3.4) if the zero is computed by linear interpolation.

Proof. 1t is sufficient to show that symmetry is preserved. Assume that the zero
of the level set function lies between the grid points z; and z;4; (i-e.
®(zi11) = —P(z;) > 0). Define Az := x;,; —x; > 0. Remember the definitions
of the forward and backward finite differences:

Q(zi1) — P(x:) >0 O (1541) :=

Q(zi11) — @(24) >0
Ax -

Azx -

O (z;) :=

The upwind method (5.3) chooses @} at z; and ®, at x;;1 because it ‘differen-
tiates towards the zero level set’. Thus, the values changes during one time step
(from ®" to ®" 1) as follows:

" (z;) = O"(xy) — At(1 — |®F (2)])
= ®"(z;) — MAz — (®"(2it1) — 2" (1))
= (1—=XN)®"(z;) — NAz + XD (z41)

" (zip1) = (i) + AU — @7 (zir1)])
= O"(zit1) + AMAz — (@™ (zi41) — "(24)))
= (1=XN)P"(z541) + ANz + AP ()
where \ = ﬁ—; denotes the grid ratio, which is assumed to be less than 0.5 ac-
cording to the CFL condition. Since |®"(x;)| = |®"(x;11)| is assumed, symmetry
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is preserved. Moreover, since ®"(x;;;) = —P"(z;), it follows that
o (x;) = (1 — 20)®"(z;) — AAzx, which implies that ®"(z;) - —Ax/2 for
n — 0o. Analogously, it follows that ®"(x;;,) — Az/2 for n — oc. O

However, area loss is observed in two-dimensional computations. Therefore, the
next step to be considered will be a two-dimensional example. In particular, a
straight line representing the interface is reinitialized. Again area is conserved.
Hence, area loss must depend on the bends of the interface. In order to investigate
its influence consider an interface with one single bend. Numerical computations
always show the same results: The corners are smoothed out so that the bends
become smooth, convex curves of which the local curvature decreases during the
iteration. Thus, the interface always moves into the convex part of the domain
(see figure 8.2). Tests show that this movement is independent of initializing ® to
be larger or less than zero inside the bubble. The reason for that is given below.

6.4 Approximation of the Gradient

Even if the exact distance function (which can be determined analytically — for
a circle at least) is reinitialized by equation (3.4) area is lost in time. Therefore,
the effect of area loss must have to do with the accuracy of the approximation of
the absolute value of the gradient |V®]|.

<

(L
T/

Figure 6.2: Contour plot of the level set function and labelled line y = y, for the conic

section.

In order to analyse this effect consider the distance function for a unit circle of
radius one centred at (0,0) with ® < 0 inside and ® > 0 outside the circle.
The level set function reads then: ®(z,y) = y/2? + y? — 1, which already is the
desired steady-state solution of equation (3.4). Thus, the iteration should stop
immediately. Now, fix y = yo (see figure 6.2) and consider the conic section

for a particular yg, i.e. consider ® as a function of = only, which reads then
®(z;y0) = /22 + y2 — 1 and is shown in figure 6.3 for different y.
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Yo =

Yo =

Figure 6.3: Three conic sections ®(z;yo) for yp = 0,1, 2.

From figure 6.3 the following observations can be done concerning the conic sec-
tions of the level set function:

1.

2.

3.

Large |z| leads to small deviation from a straight line, i.e. it leads to small
curvature? of the conic section. This observation holds for all .

For yo = 0 the conic section consists of two straight lines.

Moreover, a minimum in the conic section at x = 0 is observed for all .

Compare the standard forward (@ (z;yp)) and backward (@ (z;y0)) finite dif-
ferences with the exact partial derivative @, (see figure 6.4). The following ob-
servations can be done:

1.

D (z590)| > |Pu(x;90)| > |®, (2590)] if © > 0 (and vice versa if z < 0)3 |
i.e. that the backward difference underestimates and the forward difference
overestimates the absolute value of the partial derivative (if > 0).

Quantitatively, the approximation error of the partial derivative is increasing
with increasing curvature of the conic section because the curvature measures
the deviation of a curve from a straight line, for which the finite difference is
an exact estimate.

Furthermore, the accuracy of the approximation depends on 7y because yg = 0
implies zero curvature (®,, = 0, for z # 0 and see figure 6.3) and, thus, no
approximation error of @, is introduced by the finite differences.

© . . . . . 2
2The curvature of the conic section is given by x = (H‘gﬁ with &, = ﬁm
T 0
3In general, this case distinction respectively corresponds to a monotonously increasing and

decreasing level set function.
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Figure 6.4: Comparison among forward and backward finite differences (®; (z) and
& (z)) and the partial derivative (®,(z)) at z = 1.

The relationship between straight lines and curvature used in the second obser-
vation from figure 6.4 is expressed in [13] p.47 as follows*:

So mifit also k [die Kriimmung] gewissermafen die Abweichung der Kur-
ve vom geradlinigen Verlauf an der betreffenden Stelle. Die Bezeichnung
LKrimmung® ist demnach gerechtfertigt.

Thus, k [curvature] measures the deviation of the curve from its straight way
at the corresponding place. Therefore, the notion ‘curvature’ is justified.

The first and essential observation from figure 6.4 holds for all monotone, convex
functions and will be proven below:

Theorem. Let a < ;-1 < ; < Tz < b, Ax = 2,01 — x; = x; — T4—1, and
let @ : [a,b] — R be a convex function that is differentiable in (a,b) and strictly
monotonously increasing. Then

@7 ()| > [@"(2i)| > |@7 ()]

where ®/~ denote the standard forward and backward finite differences, respec-
tively. ® denotes the first derivative of ®.

Proof. The definition of the standard backward finite difference gives

f(xz) - f(xi—l)
Azx

O (z;) == = ®'(¢7)

using the mean value theorem where £~ € (z;_1,;). By the same analysis it

follows that ®*(z;) = ®'(£1) where €T € (x;,2;11). Since @ is convex, which

implies that the derivative is monotonously increasing, and ® > 0 (® is strictly

monotonously increasing) the statement follows from the fact that £~ < z; < 7.
O

“The translation is done by myself and shall at least semantically return the statement’s
meaning
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If @' is assumed to be negative, i.e that ® is strictly monotonously decreasing the
result will be the following achieved by the same analysis:

|7 ()| < [@"(wi)| < |@7 ()]

These are exactly the same results, which have been claimed above.

The following conclusions can be drawn by the observations above:

The accuracy of the finite differences is improved with increasing |z|. In particular
forward differences are more accurate than backward differences if z > 0 and vice
versa otherwise.

Fix 2 = o and consider ®(y; o) as a function of y only. The same analysis leads
to analogous results for the approximation of the partial derivative with respect
to y. Therefore, if the error that is introduced by differentiation with respect to
y is considered additionally, the result will qualitatively remain unchanged, but
it will be amplified in magnitude.

Since the upwind method (see section 5.3) ‘differentiates’ always towards the zero
level set, the essential result of this section is that this approximation always over-
estimates the absolute value of the gradient inside and underestimates it outside
the unit circle. Thus, a systematic error is introduced during reinitialization.

According to the second observation from figure 6.3, ®, will be computed exactly
if yo = 0. Moreover, if y is equal to zero, no forward or backward approximation of
®, will be used, but the partial derivative with respect to y will be approximated
by zero according to the upwind method. This will also be an exact solution,
which can be seen by the third observation of figure 6.3. Thus, no error will be
introduced at all if the gradient is approximated at y = 0. Exchanging the role
of z and y leads to the same result at x = 0.

Remark. Although the observations that have been done above are based on
a finite difference approximation of first order, they are qualitatively equivalent
for ENO and WENO approximations in numerical computations. However, this
remains to be proven in general. Nevertheless, some heuristics for this relation
are given below for the second-order ENO interpolation.

Transference to ENO schemes

Assume that the level set function is already close to the distance function and
consider the conic section at yo = 0.5 of a unit circle around (0,0). Then, the
conic section reads: ®(z,y) = /22 + 32 — 1

In figure 6.5 the partial derivatives with respect to x of various order are plotted
together with the zero of the conic section (which is labelled by a black circle).
Obviously, the absolute value of the partial derivative (of order two or higher)
is decreasing in the neighbourhood of the zero (black circle). Thus, the stencil
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Figure 6.5: Derivatives of the conic section of various order and the zero of the
conic section (labelled by a black circle).

choosing process (see equation 5.1 p. 29) will select the rightmost substencil to
construct the stencil interpolating polynomial. Hence, the polynomials used for
the forward and backward approximation® differ only in one stencil point. In
particular, the leftmost stencil point in the forward and backward approximation
at x; will respectively be z; and z;_;. For simplicity, consider a polynomial of
degree two and a constant grid width Az. The polynomials read then:

Piiipp(z) = [l + flzi, zipl(@ — 23) + [0, g1, Tigo] (2 — 23) (2 — is1)
Pi_ipp(z) = flrima] + flriy, @](2 — xim1) + fl@ict, T, Tipa | (x — 2im1) (2 — 24)

where f[z;_1,...,%;i1x] denote the usual Newton’s kth divided difference. Con-
clusively, the approximations for the partial derivatives read:

(Piyrpe)' (i) = flo, mipa] + flwi, Tigr, Tigo] (70 — Tiga) (6.1)
(Pic12)'(ws) = flwiot, @] + flwizt, @i, Tiga](xi — 1) .

As already mentioned in chapter 5 the kth divided difference approximates the

kth derivative. Therefore, it may be possible to conclude from figure 6.5 the
following relations:

at = flri, zi] > a” = flrig, 3] >0

6.2
0 <" = flog, Tig1, Tigo] < b7 := flzi1, Ti, Tiya] (6:2)

Substituting these conclusions into equation (6.1) leads to the following result:

(Pi+1/2)'(33z‘) = at — Azb*

(Pii1j2)'(z;) = a4+ Azxb™ (6.3)

5Coinciding with chapter 5 the polynomials for the forward and backward approximation at
x; are respectively denoted by P/ and P;_y .
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Recall that the following relation holds by definition of the divided differences
using the definitions above:

— (6.4)

Consider the following calculations using equation (6.4) in the last step:

s(at+a) = S(at+a)
& at -1t —a") = a+3(a"—a)
& at —Azb- = a + Axb™

Substituting the relation between b* and b~ from equation (6.2) into the equation
above yields:

at — Azbt > at—Azb- = a + Azxb”
& (L) (@) > [(Picay2) ()]

which is similar to the result obtained for the first-order finite difference ap-
proximation in the previous section. Moreover, it is possible to conclude from
equation (6.3) that the gap in the absolute value between the forward and back-
ward approximations using the first-order scheme is larger than the gap using
the second-order ENO scheme. Thus, the systematic error remains qualitatively
equivalent but it is quantitatively damped.

6.5 Area Loss by Error in the Gradient

Consider the influence of the systematic error above on the evolution of the zero

level set by the following analysis. Without loss of generality, assume that x > 0
and define:

1D (z;90)| — |®a] = €& >0
@, — D, (z390)| = ¢ >0

According to the observation above ¢ must be defined vice versa for x < 0 in
order to get € > 0, i.e. € = |D,| — |PF (z;y0)|-

Consider two grid points that enclose the interface, i.e. consider ®(x;) < 0 and
®(z;41) > 0. Assume that ® is initialized as the correct signed distance from the
interface (figure 6.6), i.e. that |[V®| = 1. Consider the error that is introduced
by the finite difference approximation of the partial derivative with respect to x
and compute the first time step of reinitialization using the first-order scheme in
space and time mentioned above:

) (z;) = M (z;) + At sign(®©(z;))(1 — (|®;/~ (2:)]))



CHAPTER 6. ANALYSIS OF AREA LOSS 44

W (z;) = dO(z) — At(1 - (|9])) = —d+ Ate
OO (zi41) = OO(zi1) +ALA - (|10,])) = d+Ate,

where d and d respectively denote the distance of x; and x;,; to the interface.
Since @} (z;) = @, (z;41) it follows that € = e, =: e. Hence, from figure 6.6
follows how the shift ‘upwards’ of the level set function leads to a movement of
the interface (i.e. the zero) towards the centre® of the circle.

P
d+ Ate T
d+
new interface
Z; K Tit1

1 1 T

—d+Ate T
—d L old interface

Figure 6.6: Area loss introduced by the systematic error in the approximation of the
partial derivative.

This means that it moves into the ‘convex part’ of the domain as it is put above.
Quantitatively, area loss increases with increasing approximation error € of the
gradient. But this error is not uniformly distributed. Recall that the error will
be zero along the lines x = 0 and y = 0. Conclusively, area loss should not occur
along those lines (see figure 8.3, page 55). Thus, there should be regions of the
circle where area loss is worse than elsewhere.

Since every boundary can be approximated locally by a circle, these results apply
for arbitrary fronts. Moreover, area is always lost during reinitialization because
every closed curve is more convex than concave.

Concerning the observations about area conservation in case of a straight line
representing the interface in two space dimensions’, the following argumentation
applies: The distance function consists of two half planes, which are not curved,
i.e. that the curvature is zero. Thus, no approximation error of the gradient will
be introduced. This may explain that no area loss occurs in such a case.

As far as initialization of the level set function is concerned, the same results
are obtained in numerical experiments, independently of initializing & > 0 or
® < 0 inside the circle. Therefore, assume the level set function to be initialized

6Since the level set function is assumed to be initialized less than zero inside the circle (see
page 38).
"As well as for the one-dimensional case (both mentioned in section 6.3).
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conversely, i.e. larger than zero inside and less than zero outside the circle. Since
sign(®y) is conversely defined inside and outside the bubble, the shift of the level
set function will be turned around (moving ‘downwards’). However, the effect of
area loss will be maintained because the level set function is turned around, too.

All together, the essential result of this section is that area is always lost if the
domain is more convex than concave, independently of the way of initialization.

Remark. A straight forward approach to attack this problem works as follows:
Since forward approximations always overestimate® the absolute value of the par-
tial derivative while backward approximations always underestimate it, it seems
convenient to use central schemes instead. Indeed, central schemes (WENO
schemes) work much more accurate than the purely upwinded forward/ back-
ward schemes (see section 8.2).

6.6 Area Gain by Large Corrections

The observations above may lead to the conclusion that total area can be con-
served if the partial derivatives can be computed exactly. Since the distance
function for a unit circle centred at (0,0) is known analytically
(®(z,y) = +/(22 + y?) — 1), it is possible to proceed one time step using the ex-
act partial derivatives’. But the numerical computation shows that area is not
conserved, either. Assume that the level set function is initialized by the doubled
distance from the interface. Thus, the absolute value of the gradient is equal to
two. Following the calculations above we get the following results in the first
time step:

WD (z) = dO(z)—At(1-2) = —d+At
W (1) = OO (z) +At(1-2) = d—At

Again, d and d denote the distance to the interface of the corresponding grid
points.

The large deviation of the gradient compared to the desired gradient introduces
a large correction! of the level set function, which may'! lead to a movement of
the interface, that will increase the area. This situation is illustrated in figure 6.7.
Obviously, these two kinds of errors superpose each other. Therefore, ‘area gain’
is sometimes observed at the beginning of the computation if the gradients are
steep (or flat) enough to dominate the effects of the approximation error of the

81f & is monotonously increasing.

9The partial derivative with respect to z of the distance function for the unit circle around
(0,0) reads: (}z = \/z+Ty2

10T herefore, the approximation error € of the gradient may be neglected.

" Obviously, area gain and area loss depend on whether d > d or vice versa.
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Figure 6.7: Area gain introduced by large corrections of the level set function.

partial derivatives. Moreover, if the corrections are sufficiently large, it is possible
that the value of the level set function will change its sign at grid points adjacent
to the interface. Consequently, this will lead to a decreasing or increasing area
enclosed by the zero level set.

However, the influence of large corrections decreases as the steady-state is ap-
proached (because the gradients will tend to one). Therefore, it is clear that area
is always lost in the end because the error introduced by the approximation of
the partial derivatives still affects the computations.
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Chapter 7

Methods Preserving Area
Conservation

While reasons and effects influencing area conservation have been established
in the previous chapter, different methods that are designed to preserve area
conservation are now compared. Moreover, a new method designed to reduce are
loss is proposed, which is based on the observations in section 6.2.

7.1 Reset Procedure

One possibility that is commonly used to prevent area loss is to fix lowest bounds
for |®(x)| in advance, i.e. that no grid point must change its sign. This will be
referred to as reset procedure because it checks whether a grid point has changed
its sign. In that case the value of the grid point is reset to the correct sign
(e.g. if ®(x;;) = 0.5 has changed its sign from minus to plus, it will be put to
®(z;5) := —€, € > 0 and small) manually. Therefore, the loss of mass is limited
to a maximum amount, which depends on the mesh width Az. But this is not
accurate enough. Alternatively, the value can be reset to half the value of its
previous value, which seems to be slightly more sophisticated because it takes its
previous value into account instead of putting it to a constant regardless of its
original value. However, the method is still very rough.

7.2 Area Conserving PDE Approach

Another way to overcome this problem is to solve the following perturbed Hamilton-
Jacobi equation to steady-state, which was introduced by Hou in [3]:

O, = —(vg —v(t))(—P + k)| V| (7.1)

where v(t) denotes the volume of the bubble at time ¢ > 0 and v, at time ¢ = 0,
k denotes the curvature of the level sets, and P is a stability constant. The idea
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of using this equation is that a steady-state solution will have the property that
vo = v(t) or that the curvature is equal to P. But at least the latter property
will be difficult to obtain for geometries that do not have constant curvature.
This procedure would not only prevent area loss during reinitialization but it
would also correct area loss introduced by the evolution of the level set function
according to the underlying flow using equation (3.1).

As far as solvability, motivation, and well-posedness of this equation are con-
cerned, Chang and Hou noticed the following in [3]:

Motivated by the observation that numerical diffusion introduces a normal mo-
tion proportional to the interface’s local curvature (see e.g. [15]), he [Hou] in-
troduced a re-initialization procedure to remedy this effect [area loss|. [...] The
above perturbed Hamilton-Jacobi equation may look ill-posed by itself. But
since we solve the perturbed Hamilton-Jacobi equation with the governing level
set equation and the solution procedure of the governing level set equation in-
troduces numerical viscosity, the combined fractional step method can be shown
to be stable.

The discretization of (7.1) is done similarly to the discretization of equation
(3.4), but with a more general flux function'. For details about these general flux
functions see [18].

7.3 Constrained Distance Function Approach

Recently Sussman [22] proposed a constraint for equation (3.4) used for reinitial-
ization in order to conserve the volume enclosed by the zero level set during the
computation. This is achieved by requiring that

%/QH(@):O

where H denotes the Heaviside function and Q is any fixed domain. Equation
(3.4) is modified as follows:

O, = sign(P)(1 — |VO|) + Af (D) (7.2)

where f is any function and A is a function of ¢ only determined by requiring that

6 ! !
o [ H®) = [ H@)8 = [ H@)L0.0)+ /@) =0
ot Ja ) )
where L is defined to be L(®g, ) := sign(Py)(1—|V®|). Therefore, A is calculated
to be
\_ ~Ja H'(@)L(20,9)
Jo H'(®)f(®)

!Recall that the upwind method presented in section 5.3 fits only to equation (3.4).
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where f is chosen as follows:
f(@) = H'(9)|VY|

which insures that the correction is applied only at the interface without disturb-
ing the distance function property distant from the interface. Note that if (7.2)
is solved exactly, then A\ will be zero [22]:

This is because L(®g, ®) as it appears in (7.2) will be zero in regions where
H'(®) is not zero (the zero level set of ® ).

Following the discretization in [22], the constraint is applied only once per time-
step. Thus, for high-order Runge-Kutta methods ®"*! is obtained as a solution
of the unconstrained equation (3.4) from ®". Compute ®"*! from ®"*! by

O™ = " 4 At Ny Hi, (D) [V
where )\ is discretized as follows

— Ja, Haa(®0) 2572
Jo, (Hag (2))°[ V|

The numerical integration over the domain

/\ij =

Qij = {(@,y) : 2imajp <2 <@ivap and Yy <y < yYjiap}
is computed using a nine point stencil

B2 11
/Q g~ ﬂ(wgzj + Z Z Gitm,j+n)
i

m=—1n=-—1
m#0 n#0
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7.4 Extrapolation Method for the Interface

A straight forward way to preserve area conservation during reinitialization by
applying equation (3.4) is motivated by the analysis of area loss in section 6.2.
In order to avoid unwanted movements of the zeros (i.e. of the zero level set),
linear extrapolation of the adjacent grid points is used to keep the zeros fixed.

The algorithm works as follows and is illustrated in figure 7.1:

e Firstly, reinitialization is applied only on grid points that are negative (i.e.
that are inside the fluid bubble). Thus, ®*!(z;) is obtained from ®*(z;), for
all (Dk(.fz) < 0.

e Secondly, the corresponding grid point outside that is adjacent to the interface
(®F*1(z;11) in figure 7.1) is extrapolated so that the position of the interface
does not change.

e Finally, the remaining outer grid points are updated according to the resulting
gradient field of the level set function.

P
B* (241) + old interface
P (z1) | K
t t x
T; \\ Tit1
OFL () + new interface
Ok (z;) +

Figure 7.1: Extrapolated value ®*+1(z;,1).

However, some difficulties occur for curved interfaces. If the interface is not
parallel to the grid, some exterior grid points adjacent to the interface may be
determined by two corresponding interior grid points. In figure 7.2 this situation
is labelled by ‘filled circular’ grid points, which have extrapolated values that
are determined by two ‘filled quadratic’ grid points. Hence, this may lead to
two different extrapolated values for the same grid point. In that case, the zeros
will be moved so that the volume of the corresponding grid cells ¢;; and ¢;_; ;1
remains constant®. But in general the volume of the neighbouring grid cell ¢;_1 ;
cannot be conserved. Thus, total conservation of the area enclosed by the zero
level set is not possible. But the error will be small and by turning around the

2The reconstruction of the interface across the grid cell is done by piecewise linear interpo-
lation of the corresponding zeros of the level set function at the edges of the grid cell.
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role of interior and exterior grid points® in the next time step the grid cells that
have not been conserved yet (c;_; ;) will be conserved in the following time step
and vice versa.

Xi+1,j+2
y Cijur | — | —
C. ..
1,
i-1,j Cij
— I
X;i
j
Cigj-1
X

-

Figure 7.2: Computational grid including grid cells where area is conserved and where
area is not conserved during one iteration step. Grid points that are twice determined
by two quadratic grid points are labelled by a filled circle. The unfilled circle labels a
grid point that is adjacent to a twice determined grid point but is not twice determined
itself. Extrapolation is not applied at such a grid point.

In addition to that, a grid point that is adjacent to such a twice determined
extrapolated grid point and is not twice determined itself will not be extrapo-
lated because numerical experiments show better results as far as smoothness of
curvature is concerned. In figure 7.2 such a grid point (x;11 j42) is labelled by
an ‘unfilled’ circle. This effect may be explained by the freedom, which is given
to the interface at grid cells where the curvature may change (grid cell ¢; j41 in
figure 7.2).

This approach uses three essential properties of equation (3.4), which is used for
reinitialization:

1. The corrections of the level set function will decrease as the solution approaches
the steady-state. Hence, the corrections introduced by the extrapolation pro-
cedure will become smaller, too.

2. The corrections by the extrapolation method of the level set function are in-
troduced at the zero level set. However, the corrections by the iteration of
equation (3.4) are also introduced at the zero level set.

3. The characteristics of equation (3.4) will transport the ‘noise’ introduced by
the extrapolation method away from the interface (see section 3.4).

3 Apply reinitialization to all exterior grid points and extrapolate the values at interior grid
points adjacent to the interface.
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These facts together give hope to obtain an area conserving and smooth steady-
state solution, which is very important for computation of the gradient and even
more for computation of curvature. Although total conservation of area is not
always possible in general, the error that remains will be very small. Moreover,
the error becomes even smaller during the computation (see figure 8.11 and 8.12)
by the fact mentioned above. Crucial to this process is to determine the zeros of
the level set function always from the initial data ®; and not from the solution of
the previous time step of reinitialization, ®* !, because the area of the initial data
should be conserved. In addition to that, it is of prime importance to prevent
a grid point from changing its sign, as described in section 7.1, because the
interpolation method will break down in such a case. Therefore, reset procedure
is applied additionally. In particular, the corresponding level set value will not
be put to a fixed value € of the desired sign, but it will be put to half the value
of its previous value.
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Chapter 8

Numerical Results

The schemes and methods discussed in the previous chapters have been imple-
mented and their effects on reinitialization are compared to each other. The
comparisons are done with respect to area loss and smoothness of the computed
solution, which is visualized by the smoothness of the level set’s local curvature.
In order to get a first impression of a level set function, figure 8.1 shows the level
set function for a circle, which is generated by equation (3.4) with a first-order
numerical scheme. At first sight it looks rather smooth and accurate. On second
thoughts the results of the proceeding chapter will show that this solution is not
regular enough.

AR N
SRR
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Figure 8.1: Level set function after reinitialization by equation (3.4).
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8.1 Analysis of Area Loss
The basic equation used for reinitialization is equation (3.4):

Py = sign(Q)(1 - [VP)
@(w,y,O) = @0($’y)

Therefore, numerical experiments are done by an application to the initial value
problem above. Later on, when different methods that are designed to avoid area
loss will be compared, equation (3.4) will be referred to as ‘conventional’ equation
for reinitialization in order to avoid misapprehensions.

The main observations done in chapter 6 will be confirmed in this section. To
start with, the influence of the bends of the interface on area loss is considered.
Therefore, the development of an interface with one single bend is shown in
figure 8.2. The movement into the ‘convex part’ of the domain, which has already
been mentioned in section 6.3 at p. 37, is clearly visible. This movement may
also be considered as smoothing out of the bend. Moreover, it is obvious that
the deviation from the initial interface is introduced at the bend and propagates
further. This shows that area loss depends on the bends of the interface not on
its straight parts.

Figure 8.2: Influence of a single bend on the interface during reinitialization. (a)
LEFT: Area enclosed by the zero level set before reinitialization. (b) RIGHT: Area
after reinitialization.

The next point to be considered is a quantitative aspect of area loss. Recall
that no error is introduced in the approximation of the gradient of the level set
function along the lines z = 0 and y = 0 (see section 6.4, p. 41 and section 6.5,
p. 44). Area loss is clearly getting worse ‘between’ the axis of the computational
grid while it is almost not visible along the axis (see figure 8.3).
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Conclusively, the curvature of the zero level set increases at locations where it
does not move while it decreases elsewhere. This may explain the ‘oscillations’
in the curvature, which are observed using equation (3.4) for reinitialization (see
figure 8.5). In order to emphasize this effect, no volume conserving method (reset
procedure) is applied. Moreover, the first-order scheme is used because the effect
would hardly be visible otherwise.

Figure 8.3: Local differences in area conservation. Contour plot of the zero level set
before reinitialization (outer circle) and contour plot of the level set function’s threshold

after reinitialization (black area).
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8.2 Different Numerical Schemes

The basic tests for a comparison of different schemes and methods are performed
on a 50 x 50 grid, which discretizes a physical domain (0,20) x (0,20). Hence
the grid width is chosen to be Az := 0.4. Although the CFL condition (see
section 3.4) allows larger time steps, At := 0.04 is used. This is done because
the influence of area conserving methods, in particular the reset procedure, shall
be kept low as long as only different numerical schemes are compared. Later
A = At/Az := 0.5 will be used because it reduces the number of time steps,
which is very important in practical applications due to computational expense.
The level set function is initialized (®q(z,y)) with the double distance from the
zero level set, which is defined to be the circle around (10, 10) of radius 5.1. 300
iterations of equation (3.4) are applied for reinitialization. As already indicated
above, reset procedure is applied by default unless stated otherwise.

In order to find the most convenient numerical scheme, which will be used for
further tests, the results obtained by different schemes are compared with respect
to area conservation and smoothness of curvature.

1.005 I I
1st order
ENO 2nd order ------
1 ENO 3rd order i
ENO 4th order «-----
0.995 |- N e
o999 - 0~ T
0.985 -
0.98
0975 | | | | |
0 50 100 150 200 250 300

Figure 8.4: Evolution of area enclosed by the zero level set during reinitialization.
Comparison of numerical schemes of different order of accuracy.

In figure 8.4 the area of the fluid bubble, which is enclosed by the zero level set,
is plotted over the number of iterations. The area of the fluid bubble is given in
fractions of the initial data’s area. In general, ENO schemes are working better
with increasing order of accuracy as far as area conservation and accuracy is
concerned (see figures 8.4 and 8.5).

Since WENO schemes are of higher order, they work even better in smooth
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regions. Moreover, area gain at the beginning of the iteration is well visible for
the first-order scheme as well as for the WENO scheme. The oscillations that
occur within the first ten iterations of the other schemes are introduced by the
reset procedure. An improvement with increasing order of the numerical scheme
is clearly observed.

0'* \\\\

D \
‘\\‘\\\\‘\\\\\\n

Figure 8.5: Curvature of the level sets after reinitialization. LEFT: Reinitialization by
the first-order scheme. CENTRE: ENO scheme of order three. RIGHT: WENO scheme.

The results observed above concerning area loss coincide with the results con-
cerning computation of curvature. An improvement in smoothness is observed
with increasing order of the numerical method. In figure 8.5 the curvature of the
level sets computed from the data obtained by ENO schemes of first- and third-
order as well as by the WENO scheme is shown. Even if the WENO scheme
is the most accurate one and the other schemes create even worse results, the
curvature looks not very satisfactory, although the level set data itself shown in
figure 8.1 looks rather smooth. Therefore, it would be desirable to find methods
that smooth the level set function so that a significant improvement is achieved
as far as smoothness of curvature is concerned.

Note that the main effect,which is a significantly higher curvature along the axes
crossing the centre of the initial circle, coincides very well with the observations
in figure 8.3, which shows the quantitative distribution of area loss. Moreover,
this main effect is qualitatively equivalent in all pictures of figure 8.5.

The main qualitative difference between ENO and WENO schemes can be seen
by considering the computation of curvature based on the smoothed level set
function that has been disturbed initially!. Corresponding to [11], from figure 8.6
can be recognized that reinitialization smoothes the level set function so that the
resulting curvature is much improved. But there is a distinguishable difference
between ENO and WENO schemes, which Peng already expressed in [11] as
follows:

!The perturbation of the initial level set function is done as described in [11]:
Do(z,y) := d+ €/(167) sin(dnd/ 7 sin 50) if |d| < € and ®o(z,y) := d otherwise, where d denotes
the distance from the zero level set, § = tan~'(y/z), and € = 10Ax.



CHAPTER 8. NUMERICAL RESULTS 28
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Figure 8.6: Contour plot of the level set’s curvature. (a) ToP LEFT: ENO scheme (of
order three) after 64 iterations. (b) Top CENTRE: ENO scheme after 128 iterations. (c)
Top RIGHT: ENO scheme after 256 iterations. (d) BorTroM LEFT: WENO scheme
after 64 iterations. (e) BorToM CENTRE: WENO scheme after 128 iterations. (f)
BorToMm RiGHT: WENO scheme after 256 iterations.

The curvature computed from the reinitialized data of ® by the WENO scheme
is less noisy than that by the ENO scheme. Moreover, the WENQO scheme
does not deteriorate the level curves [of curvature], which happens to the ENO
scheme, as we continue the iteration further. We believe this is due to the fact
that WENQO smoothly weights the candidates stencil in contrast to the ENO
scheme, which jumps from one stencil to another abruptly even in the smooth
part of the solution.

All together, it seems convenient to use the WENO scheme, which is up to fifth-
order accurate in smooth regions, together with a TVD Runge-Kutta time dis-
cretization of order three for the further computation. In addition to the numer-
ical results above, this choice is justified by the mathematical analysis of area
loss in section 6.5 where central schemes turned out to be more convenient for
reinitialization.
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8.3 Methods Preserving Area Conservation

From figure 8.4 it follows that a considerable amount of area vanishes with respect
to the area of the initial data @y even if the WENO scheme is used. Therefore, it
is desirable to find out how the methods designed to avoid area loss (see chapter 7)
improve this result.

Reset Procedure

In order to emphasize the effect of the reset procedure, which forces the grid
points to keep their sign, the following comparison is done by the first-order
scheme.

From figure 8.7 can be seen that area loss will appear to be fairly linear with
respect to the number of iterations if the reset procedure is not applied. Obvi-
ously, area loss is limited to a maximum amount by the reset procedure. This is
true because the interface may move closer to adjacent grid points but it cannot
move further since the grid points are forced to keep their sign. But this is only a
quite rough method and may introduce disturbances in the data around the zero
level set, which will be reflected in the computation of the interface’s curvature
as shown in the first picture of figure 8.5.

1.005 | |
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Figure 8.7: Area loss conventional reinitialization using equation (3.4) with and with-
out reset procedure for the first-order scheme.

These additional oscillations in curvature around the zero level set that are visible
compared to the other schemes are probably introduced by reset procedure, which
applies almost after each iteration step using the first-order scheme.



CHAPTER 8. NUMERICAL RESULTS 60

Since the WENO scheme turned out to be the most convenient scheme for reini-
tialization, the following methods designed to avoid area loss are compared with
the results produced by the WENO scheme (including reset procedure). More-
over, the grid ratio A = At/Axz is put to 0.5, which implies a time step of At = 0.2,
in order to reduce the number of iterations. Conclusively, the process terminates
after 100 iterations.

Volume Conserving PDE Approach

Applying equation (7.1) after conventional reinitialization (i.e. 80 iterations using
equation (3.4) and 20 additional iterations using equation (7.1)) corrects the level
set function in order to avoid any area loss.

1.002 |

I
WENO 100 ——
volume cons pde - -----
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0.996

0.994
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0.99

0.988 ' ' ' '
0 20 40 60 80 100

Figure 8.8: Area loss by reinitialization using equation (3.4) with and without applying
equation (7.1).

However, one has to take into account that this approach causes flat gradients
in the level set function as shown in figure 8.9. This plot shows the absolute
value of the gradient field over the number of iterations. In contrast to the basic
tests, the initial condition is chosen to be the theoretical distance function (i.e.
|V®,| =1). Firstly, equation (3.4) is applied for 200 iterations. Secondly, 45
iterations of equation (7.1) are additionally applied in order to emphasize the
evolution of flat gradients by equation (7.1).

Therefore, a ‘mixture’ of equation (7.1) and (3.4) would be necessary to preserve
area conservation without getting flat gradients. Another drawback of this ap-
proach is the fact that the stability constant P is very sensitive to changes in the
discretization, e.g. it does depend on the mesh width Az. Moreover, it is very
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Figure 8.9: Average gradient of the distance function produced by 200 iterations of
equation (3.4) and 45 additional iterations of equation (7.1).

difficult to determine this constant for complex geometries. In addition to that,
area loss is compensated globally, i.e. it is not at all clear that the interface is
corrected at those places where area has been lost before. This is the main reason
that it seems not convenient to use equation (7.1) for reinitialization.
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Constrained Distance Function Approach

The next method mentioned in chapter 7 is the constraint, which applies along
the zero level set during the iteration of the conventional equation (3.4).

®, = sign(®o)(1 — [VR]) + Af(P)

The result looks rather encouraging. Figure 8.10 shows that using the constrained
equation (7.2) for reinitialization does conserve area better than without the
modification. A clear improvement is obtained compared to the conventional
reinitialization using equation (3.4). Moreover, the constraint works locally, i.e.
the correction applies at those cells where area has been lost before. This is a big
advantage compared to the volume conserving PDE approach considered above.
However, some area loss still remains.

I
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Figure 8.10: Area loss by conventional reinitialization using equation (3.4) and by the
constrained equation (7.2).
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Extrapolation Method for the Interface

Finally, the extrapolation method for the interface even improves the result ob-
tained by the constraint. From figure 8.11 it is obvious that area is almost totally
conserved. At the beginning of the iteration some oscillations occur that are in-
troduced by the fact that area cannot be conserved in general (see section 7.1).
But since the corrections become smaller and smaller, the oscillations decrease
as well.
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Figure 8.11: Area loss by conventional reinitialization using equation (3.4) and the
new extrapolation method for the interface.

Only a very small error remains, which cannot be reduced further (see figure 8.12).
Therefore, small perturbations are introduced because the role of exterior and in-
terior grid points changes all the time. Hence, the fluid cells that are respectively
conserved or not change as well. This leads to a permanent correction of the
interface’s position, which prevents that a steady-state solution can be obtained.
Stopping this ‘changing process’ when the oscillations are sufficiently small (e.g.
after 60 iterations) will avoid such a permanent perturbation so that a steady-
state solution can be obtained.

Note that in figure 8.12 the same data file is plotted as in figure 8.11. Only the
plot range in ‘y’-direction (i.e. the area fraction) is much smaller in the former
plot. This simply means that figure 8.12 is a zoom of figure 8.11. The plot range
of the area fraction in figure 8.12 goes from 0.999998 to 1.000002.
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Figure 8.12: Remaining error in the area enclosed by the zero level set using the
extrapolation method for the interface. The plot range goes from 0.999998 to 1.000002.
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8.4 Curvature of Area Conserving Methods

While the effect of methods designed to avoid area loss on area conservation has
been considered above, their effect on smoothness of the obtained solution is
taken into account in this section. As already mentioned earlier, the smoothness
of the solutions are visualized by the computed curvature because there are no
distinguishable differences visible in the level set function itself. Moreover, the
curvature is used in the level set formulation of the Navier-Stokes equations (3.2),
which implies the need of sufficiently smooth curvature in order to get reasonable
results.
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Figure 8.13: Curvature of the level sets after reinitialization. (a) ToP LEFT: First
order scheme applied to the conventional equation (3.4). (b) Top CENTRE: WENO
scheme applied to the conventional equation (3.4). (c) Torp RigHT: WENO scheme
applied to the constrained equation (7.2). (d) BorTom LEFT: Additional smoothing of
(b) by equation (7.1). (¢) BorTtoM CENTRE: Extrapolation method for the interface.
(f) BorToM RIGHT: Curvature of the level sets computed from the theoretical distance
function.

Distance Function Approach

Using the conventional equation (3.4) to generate the distance function creates a
rather smooth level set function @ (see figure 8.1). But as far as computation of
curvature is concerned it is not smooth enough, i.e. that the computed curvature
k is still too rough (figure 8.13 (a), (b) and 8.5). The main effect, which can
be seen in figure 8.5, is that curvature is significantly higher along the axis of
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the co-ordinate system (x = 0 and y = 0). As already mentioned above, this
observation coincides with the observations in section 6.5, which was that no
area loss occurs along * = 0 and y = 0 and which leads to high curvature along
these axes. A numerical confirmation of this result is given by figure 8.3.

Volume Conserving PDE Approach

As can be seen from figure 8.13, the volume conserving PDE approach (d) does
not only reduce area loss totally but it even improves smoothness of curvature
very much. Even if area is totally conserved, this observation can be used to
improve further smoothness of curvature by manually reducing area. Therefore,
equation (7.1) can be applied as long as necessary (to obtain smooth curvature).
This approach is used in figure 8.14 to improve curvature obtained by ENO and
WENO schemes from initially disturbed level set function as described in [11]
and already mentioned above. The improvement is well visible in figure 8.14.
The result of figure 8.14 is obtained by additional iterations of the results shown
in figure 8.6 (for 64 iterations) using equation (7.1).

However, the disadvantages of this approach mentioned above still apply.

me\

oo

Figure 8.14: Curvature of the level sets (see figure 8.6) smoothed additionally by equa-
tion (7.1). From left to right: (a) FIRST PICTURE: ENO scheme after 64 iterations
of equation (3.4). (b) SECOND PICTURE: WENO scheme after 64 iterations of equa-
tion (3.4). (c) THIRD PICTURE: (a) with additional smoothing by equation (7.1). (d)
LAsT PIcTURE: (b) with additional smoothing by equation (7.1).

Constrained Distance Function Approach

Unfortunately, the constraint that is applied at the interface leads to worse re-
sults as far as accuracy of the interface’s curvature is concerned. The result is
shown in figure 8.13 (c) and is rather disappointing. Obviously, the perturba-
tions in curvature come from the corrections of the interface introduced by the
constraint. Therefore, the constrained distance function approach seems not to
be a very convenient method as long as curvature-dependent problems are under
consideration.
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Extrapolation Method for the Interface

In addition to the good results as far as area conservation is concerned, it turns
out that the level set function will be further smoothed so that the computed
curvature is significantly improved as well. Figure 8.13 (e) shows this improve-
ment. No significant difference is visible any more between curvature obtained
by the extrapolation method and curvature obtained by the theoretical distance
function (f).

Unfortunately, the extrapolation method seems to falsify curvature slightly as
illustrated in figure 8.15 where the curvature of an ellipse is considered.
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Figure 8.15: The level set’s curvature of an ellipse. From left to right: (a) LEFT: After
conventional reinitialization by equation (3.4). (b) CENTRE: After reinitialization by
the extrapolation method for the interface. (c) RiGHT: Curvature computed before
reinitialization.

However, the results appear to be still useful because the oscillations that are
observed using the conventional iteration by purely applying equation (3.4) (a)
are almost totally reduced. This is important because such oscillations affects
curvature-dependent computations.

Remark. The computations have been performed on a PC under Linux Red
Hat 4.2. The code has been implemented mainly by myself in ANSI C using the
GNU C compiler (gec). Only the implementation of the basic WENO interpola-
tion procedure has been given to me by my supervisor Dr. Zemitis, who works
at the ‘Institut fiir Techno- und Wirtschaftmathematik (ITWM)’ in Kaiserslau-
tern. The numerical results have been visualized using the commercial software
package Mathematica® for Students, version 3.0 by WOLFRAM Research and
GNUPLOT by the Free Software Foundation under GNU General Public License.



68

Chapter 9

Summary and Conclusion

In this thesis an introduction to the level set method has been given, which has
been motivated by a discussion on different approaches for solving problems with
moving boundaries. Namely the Lagrangian formulation, the volume of fluid
method, and the level set method (both based on an Eulerian formulation) have
been compared. While the volume of fluid technique is difficult to apply on
curvature-dependent problems, the Lagrangian formulation has been used suc-
cessfully on various applications. However, using the level set method instead
avoids serious drawbacks of the Lagrangian formulation. In particular, no ex-
plicit description of the interface is necessary, complex interface geometries are
handled naturally, fixed-grid finite difference approximations may be used, and
an extension to three space-dimensions can be done rather easily (see chapter 2).

The arising problems of the level set method, which lead to the need of reini-
tialization of the level set function, have been discussed. Based on a discussion
of the desired properties of the level set function, different approaches for reini-
tialization have been proposed and the most convenient one has been singled out
(see chapter 3).

The main problem of reinitialization, which is area loss, has been analysed in
detail. The result of this analysis is that a systematic error is introduced when
the partial space derivatives are approximated. The systematic error is caused by
the upwind method, which chooses either forward or backward approximations
according to the characteristics of the equation (see section 6.4). Consequently,
the absolute value of the gradient is overestimated inside and underestimated
outside the fluid bubble, which introduces a movement of the interface towards its
interior region. In contrast to the basic ENO approximation, the WENO scheme
avoids this error partly because it may be considered as a ‘central’ scheme in
smooth regions. Therefore, one may explain the observation that WENO schemes
produce less area loss than the corresponding ENO scheme. Furthermore, the
systematic error is independent of the level set function’s initialization, i.e. either
® < 0 inside and ® > 0 outside the fluid bubble or vice versa (see section 6.2).
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Above all, the analysis of the systematic error gives an explanation for area
loss, which was mentioned in almost all previous publications about the level
set method. In addition to that general result, an explanation for area gain
has been given, which is sometimes observed at the beginning of the iteration
(see section 6.6). Moreover, a rough qualitative distribution of area loss on the
computational domain has been presented, which may explain the main effect of
the oscillations in curvature observed in numerical computations (see section 6.4
and 8.1).

Several numerical methods for solving the resulting partial differential equations
have been compared. In fact, the WENO scheme gives the best results as far as
area conservation and computation of curvature is concerned (see section 8.2),
which coincides with the analysis of the systematic error (see section 6.2).

Since the most serious problem concerning the level set method seems to be area
loss during reinitialization, several different approaches to solve this problem were
proposed in literature. A comparison among those has been performed in this
thesis. Primarily, their effect on area loss has been considered (see section 8.3),
but in addition to that the influence on the level set’s local curvature has also
been taken into account (see section 8.4). In particular, the reset procedure
has turned out not to be accurate enough and to introduce additional numerical
‘noise’, which affects computation of curvature. The volume conserving PDE
approach does not only correct area loss but it smoothes very much the computed
curvature. However, it is difficult to determine its stability constant P, and what
is even more serious, it is not clear that the position of the interface is corrected
at those places where area has been vanished during the computation. The
constrained distance function approach further improves area loss, but it also
introduces numerical ‘noise’ to the computed curvature.

Motivated by the analysis of area loss a modification of the conventional reini-
tialization procedure has been presented and implemented (see section 7.4). It is
designed to avoid any area loss during reinitialization and the results are indeed
rather good. Moreover, a significant improvement concerning the computation of
curvature is achieved. Although there is still a deviation from the exact curvature
visible, the oscillations that occur typically using the conventional reinitialization
procedure are almost totally reduced.

In conclusion, I recommend the use of the extrapolation method using high-order
WENO schemes for an approximation of the space derivatives and high-order
TVD Runge-Kutta methods for the approximation of the temporal derivative.
Thus, area loss during reinitialization can be avoided and smooth curvature can
be computed from the level set data.
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Appendix A

Names and Symbols

¢ta q):w (I)y:

.
x? x *

Interface separating two fluids.

Dirac delta function.

Mesh width in t-,x- and y-direction, respectively.

Curvature of the level sets.

Mesh ratio or grid ratio A = ﬁ—fv.

Dynamic viscosity function p: Q — R

Dynamic viscosity of the outer and the interior fluid (fluid bubble),
respectively.

Density function p: Q — R

Density of the outer and interior fluid, respectively.

Surface tension.

Stress tensor.

Undivided differences for the ENO polynomial construction.
Level set function.

First derivative of ® (assuming ® : R — R).

Partial derivatives of ® with respect to ¢, x and y, respectively.
Forward and backward approximations of the partial derivative
(with respect to x), respectively.

Computational domain.

Outer part and interior part of the computational domain,
respectively.

Nabla operator.

Laplace operator.

Euclidean norm of a vector.

Scalar product of the vectors x and y.

Fluid cell at the grid point z;;.
Jacobi matrix of the vector field u.
Transposed matrix of the Jacobi matrix of the vector field u.
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.
—
<o

Deformation tensor.

Speed function for the interface in outer normal direction.
Gravitational constant.

Leftmost point in the stencil for the interpolating polynomial at z;.
Surface tension coefficient.

Outer unit normal vector of the level sets.

Pressure of the fluid.

Position of the interface at the edges of the fluid cell ¢;;, i.e. zeros
of the level set function at the edges of the fluid cell.

Right-hand side of an equation.

Velocity field of the fluid.

Time-/ and space variables in x-/ and y-direction, respectively.
Partial derivative of x (trajectory) with respect to time t.

Grid point at (z,y)=(zo + 1Az,yo + jAy) where (xq,yo) is the
leftmost lowest corner of the (rectangular) computational domain.
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