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Preface

Mathematicians have studied the moduli problem for vector bundles for a long time.
Even though there are now many results there is still a lot of work to be done. It
is not known in all cases whether moduli spaces of mathematical instanton bundles
are smooth or irreducible. In this thesis I restrict my interest to rank 2 mathematical
instantons on P3. For instanton bundles £ (H*'E(—2) = 0) with fixed second Chern
class < 4 Barth proved the irreducibility and Le Potier verified the smoothness of the
moduli space. But for higher second Chern classes only results for 't Hooft bundles,
i.e.:instanton bundles with at least one linear section, exist so far. Recently M. Skiti
and independently P. Rao proved the smoothness of the moduli space along a stratum,

found by Ch. Peskine, of dimension 6¢; + 2, see [27], [26] and [9].

The first chapter is a joint work with G.Trautmann and already published as T. NufBler
- G. Trautmann, Multiple Koszul Structures on Lines and Instanton Bundles, Int. Jour.
of Math. Vol.5, No 3, 373-388, 1994. This part is almost self contained. The results
of the first chapter are used in the remaining paragraphs of this paper. Furthermore I
have added to the published version a new section which describes the splitting of a 't
Hooft bundle restricted to line in £s.

In this chapter it is proved that the moduli scheme M I(n) of mathematical instanton
bundles over P3 with second Chern class n is smooth at bundles £ with h°E(1) # 0.
By a result in [8] R°E(1) < 2. In case h°E(1) = 2 of special 't Hooft bundles the
smoothness is a result of A. Hirschowitz-M.S. Narasimhan in [17]. This case is included
in my result. In the remaining general situation h°€(1) = 1, the reduced zero scheme
Z,eq of the unique section is a disjoint union of lines, but the scheme Z itself has
nilpotent structure in general. We study these nilpotent structures, which turn out to
have resolutions

0 - nO(-2) - 2nO(—-1) > nO - 0z — 0

given by nice regular matrices, and which are self-dual, see 1.1. T call such structures
of Koszul type or Koszul structures. They are exactly the primitive structures of type
O, in the notation of C. Banica- O. Forster, [6], see Corollary 1.9.

In proposition 1.14 I show that a multiple structure X on a line, which admits a reso-
lution of the above type with unspecified matrices, and which satisfies wxy = Ox(—2),
is already a Koszul structure given by special matrices as in 1.2. It follows from this
that the zero scheme Z of the unique section of £(1) as above is a disjoint union of
Koszul structure. This enables me to prove H'AY(1) = 0 for the conormal sheaf of Z,
which in turn implies Ext*(€,€(—1)) = 0 and Fxt*(€,€) = 0, and hence smoothness
of MI(n) at &.

An additional consideration describes the splitting behavior of an instanton bundle
with a linear section along the support of a Koszul structure. It generalizes a result of
Hartshorne [16], 9.1 and 9.11, for instantons with second Chern class equal to 3.



In chapter 2 T am going to explain an inductive method for the construction of vector
bundles as the cohomology of monads which is used on the computer to produce ex-
plicit monads with the computer algebra systems SINGULAR and Macaulay. The first
applications were Beilinson-I-monads for mathematical instanton bundles. For those
examples the vanishing for the group Ext*(€,E(—1)) and hence Ezt*(€,€) can be
proved with the computer. Thus the isomorphism classes of such bundles are smooth
points of their Maruyama scheme.

In the rest of this paper a certain class of instantons is studied which admits not only
Beilinson type monads but NC-type monads. This means they are the cohomology of

0 — mO(-1) 5 (m+1)&, SN mO(l) — 0

where £, denotes a null correlation bundle.

The chapter “Complements on null correlation bundles” explains why the quadric

tY o J o s defined by
0 - o-1) > & % o1 - 0

where &, is a null correlation bundle, s,¢ € H°E,(1) and J is induced by &, ~ EY ®
det(&,) (see also 3.6 ) corresponds to the exterior product s A ¢t. With this result it is
possible to calculate t¥ o J o s on a computer algebra system which has the structure
of the exterior algebra implemented. Moreover the proof of the result mentioned gives
a nice geometric interpretation of the dependency loci of two sections s,t € HYE,(1).

The concrete examples of NC-type monads suggested a series of propositions on the
dimensions of the cohomology group H°£(1) for instantons of NC-type £ which are
proven in an abstract way.

The situation is well understood for special 't Hooft bundles £ where two independent
linear sections exist. The paper focuses now on special 't Hooft bundles which are
instanton of NC-type. There is a result on this class of bundles concerning the matrices
in the monad. More precisely, if £ is an instanton of NC-type admitting the monad

0 - mO(-1) > (m+1& 5 moO1) - 0

then h°E(1) = 2 is equivalent to the fact that there exist a two dimensional subspace
H, C HE(1) such that the matrix S has entries in this subspace H, only.

It is well known [8] that the condition h°£(1) = 2 implies that the special 't Hooft
bundle £ corresponds to a Poncelet pair (5, C') where C is a conic and S is a Poncelet
curve of degree ¢;(&) with respect to C'. It is now shown in theorem 5.16 and theorem
5.17 that a special 't Hooft bundle admits a monad of NC-type if and only if the curve S
contains the polar line of a as a component. This result leads to the descriptions of the
moduli for special 't Hooft bundles of NC-type, see 5.18. It sets up a correspondence
between such a bundle and a pair (¢, L) where ¢ is the polar line and L is a basepoint
free pencil on £ of degree ¢3(€)/2.



Last but not least there is a normal form given for the NC-type monads with defines
a special 't Hooft bundle, see 5.35 ff.

All prerequisites and definitions frequently used throughout this paper are listed in
the next chapter pp.4.



0.1

Notation and basic prerequisites

A “#7 in a diagram indicates that it is commutative.
k denotes an algebraically closed ground field of characteristic 0.

P, := PV denotes the projective n-space of a fixed n 4+ 1-dimensional k-vector
space V. Furthermore I use the notation P! := PVY where V" is the dual space

of V
V(s) is the zero scheme of a section s of any sheaf.

O(d) denotes the invertible sheaf of degree d on P53, QP the locally free sheaf of
differential p-forms, w = O the dualizing sheaf.

The terms vector bundle and locally free sheaf are used synonymously.
It is well known and easily proved it by looking at the fibres, that the map

AV Hom(PV,0°%(p+ q), % (p))
a (QPti(p + q) = QP(p))

is an isomorphism. The morphism _La is fibrewise defined by
APF(V/(2))Y = AP(V/()Y

where Ja denotes the contraction with the element ¢ € A?V which comes from
the duality pairing.

Therefore there exists the evaluation map

ATV ® Q" (p + q) — O7(p)
For any n-dimensional vector space V' there exists a canonical isomorphism

AV > (AV)V R AV
which corresponds to the canonical pairing

AV @ A"V — AV
If one chooses now an isomorphism
a: AV — &k

then one gets an isomorphism, depending on «,

J(a): AV — (A"V)Y,



which is no longer canonical but uniquely defined up to a non zero scalar. This
morphism translates the contraction above into a wedge product:

(A"PV)V N (An=P=ay )V

J (GJ) # J (ﬂ)

Aa
ApV —_—> A/\p-l—q V

In the sequel I shall use the notation J instead of J(«). The latter notation is
more comfortable in explicit computations

For a vector bundle & of rank r and first Chern class ¢; there exits an analogous
isomorphism:

L/\qg — (L/\T_qg)v ® /\Tg
which is defined by the canonical pairing

NMERANTIE — NE.
If one chooses now an isomorphism
a: NE — Ola)
then we get an isomorphism, depending on «,
Ja): ME o (AIEM(e)

which is no longer canonical but uniquely defined up to a non zero scalar. This
morphism translates now a contraction

(L/\’/’—pg)v — (L/X’I’—p—qg)v
into a wedge product:

(ATPE)Y  —— 5 (ATPTIE)V

J (%) # J (u(v)

Apé'(—cl) _— Ap+qg(—C1)

For A7E 1 shall also use the notation det(£), if no rank of the vector bundle is
specified. As in the case of vector spaces I shall use the notation .J instead of

J(a)

If F is a coherent sheaf on P35 we use the abbreviations F(d) = F ® O(d),

H'F = H(P3,F), hKF=dimH'F, and mF =k™®F,wherefora vector
space FE the symbol £ ® O denotes the sheaf of sections of the trivial vector
bundle with fibre £ and EQ F = (£ ® O) Qo F.



e We use the Euler sequence
0 —- Q1) —» VW0 — 01) — 0
and the derived sequences in its Koszul complex

0 - Q(p) — AVVRO — Q7 lp) — 0

¢ A mathematical instanton bundle £ on P3 is a rank-2 locally free sheaf with
first Chern class ¢;(€) = 0 and vanishing conditions h°€ = 0 and A'E(—2) = 0.
Since ¢;(€) = 0 and rankE = 2 the condition h°E = 0 is the stability condition,
see [4], [25]. It is common to call instantons with at least one linear section
(h°E(1) > 1) as 't Hooft-bundles and those with two linear sections (h°E(1) = 2)
as special 't Hooft-bundles. An instanton bundle with ¢;(€) = 1 is named a null
correlation bundle.
For null correlation bundles the Beilinson-I-monad, see next paragraph, degener-
ates to a short exact sequence:

0 — 933) S5 Q1) - & — 0
/

la d

O(-1)

where a € A’V, ¢’ € A’V and « is a non canonical isomorphism between Q°
and O(—4). In [25] Theorem 4.3.4 it is shown that M (1), the moduli space of

null correlation bundles over P3 ~ P(V'), is isomorphic to the complement
Ps\ G(2,4) ~ P(A*V)\ G(2,4)
where ((2,4) is the Grassmannian of lines in P3, Pliicker embedded in P(A*V)

e An important tool used to study vector bundles are monads which were so
named by Horrocks. A monad M* is a complex of vector bundles

0 - A % B 5 ¢ S 0

which is exact at A and C, but not at B. Furthermore a is supposed to define a
subbundle of B, not only a subsheaf. A monad has a so called display. This is
the induced commutative diagram with exact rows and columns:

0

M.

0
!
E

b
C C
l l
0 0



0 - K - B - A —- 0
will be called the first display sequence and

0 - A - K —- F — 0

the second display sequence.
Here K = Ker(b) and ) = Coker(a)and F is the cohomology bundle.
I will use the term of self dual monad in the sequel if a monad is of type:

0 — A 35 B "% A4 5 0 (0.1.1)

where J is a symplectic or symmetric isomorphism. This implies in addition that
(a¥ o J)V = —a". There is a famous existence theorem due to Beilinson [3]. See
also [25] pp240. This can be used to prove the existence of monads for instanton
bundles [25] pp252 with second Chern class n. There exist in general two types
of monads for an instanton £ on P3 with second Chern class ¢3(€) = n. The
Beilinson-I-monad:

0 - nO(-1) - 2(n+2)0 — nO() — 0
and the Beilinson-II-monad:
0 - 20%3) B 201 & @2-20 - o0
For more details see page 14 and page 17
For any vector bundle of rank n the ’duality’” formula ()
AEY 5 ATIE R detEY

gives us for & = Q¢

Qav :_) Qn—1 ® Qv
Hence Q%(3) ~ O(—1) where the isomorphism is given by the canonical class of
P3. There are now two ways to interpret the left arrow of the Beilinson-II-monad:

SN
nO(—1)

n{?(3) nQ(1)

where n := ¢,(€) and o' corresponds to a under the isomorphism A*VY ~ A2V,

In this paper I shall study instanton bundles possessing not only monads of
Beilinson type I & I which are built from line bundles O(¢) and cotangent bundles
/(4) but also monads containing direct sums of a null correlation bundles. Hence
it is convenient to have the following notation throughout this paper.

I will call an instanton bundle of rank 2 an



¢ instanton of NC-type if it has a monad
0 - (m—1)0(-1) - m& — (m—-1)0(1) — 0

where &, 1s a null correlation bundle

I shall use the notation of NC-type not only for the instanton bundle but also for it’s
monad.



1 Instanton bundles with one linear section

1.1 Multiple extensions and Koszul structures on lines

1.1 By a multiple structure on a line £ in P3 we understand a subscheme X of P3
whose underlying reduced subscheme is the line . An n-fold extension of the line ¢ is
defined by induction as follows. A 1-fold extension is the line £ and an n-fold extension
of £ is a subscheme X which has a subscheme X' C X with exact sequence

OHOKHOX—)OX'—)() (1.1.2)

and s.t. X' is an (n — 1)-fold extension of £. Then X has multiplicity n, i.e. its Hilbert
polynomial is XOx(d) = nd + n, and X is Cohen-Macaulay. By adding resolutions of
O, and Ox: in P35 we obtain a resolution

0 - n0(=2) & 200(-1) 5 nO - Ox — 0. (1.1.3)

It is easy to see by the induction process that the matrices A and A’ can be given the
following triangular block form

z' Z
Ay 7 An 2
Ay e e AL Ap o o Appr 72

where the block matrices are as follows. For any two forms x,y € V'V we define their
Koszul matrices by K(z,y) = (z) and K'(z,y) = (—y,x). We choose a decomposition
VV = HZ,(1)® H with H = H°O,(1). Then Z = K (z3, 23) for a basis 23, 23 € H°Z,(1)
and A, = K(a,,,b,,) for some a,,,b,, € H ,and Z', A}  are the corresponding second
Koszul matrices. In [20], §5, n-fold extension sheaves £ of O(1) had been considered.
If £=0x(1) then L Oy = Oy(1) is locally free and L is generated by two sections,

using Nakayama’s Lemma. From [20], Proposition 5.7. we obtain

Proposition 1.2 Let X be an n-fold extension of {. Then Ox has a resolution

0 — nO(-2) 4 200(~1) 3 00O - Ox > 0 (1.1.4)



where A and A' are given as

A Z
w' z W Z
AL W7 As W 7
A = . i ) A= . )
A AL W7 A, o e Ay W Z

in which Z = K(z9,23) as before, W = K(z,21) for a basis z9, z; € H = H°O,(1)
and A, = K(a,,b,) for some a,,b, € H.

Definition 1.3 @) If X is an n-fold eztension of a line { we also call X or Ox a
Koszul structure of multiplicity n or an n-Koszul structure on /.

b) As in [6] a Cohen—Macaulay multiple structure X on { is called primitive if it
18 locally contained in a smooth surface.

Proposition 1.4 An n-Koszul structure X on { is primitive and has dualizing sheaf
wx = Ox(=2). In particular X is a locally complete intersection (l.c.i.).

Proof: By the resolution type X must be Cohen-Macaulay. Its ideal is the Fitting
ideal of n-minors of the matrix A in 1.2. It contains n-forms of the form

2021 (2073 — z122) + fuv, pt+v=mn-=2
where f,, € I}, where I, is the ideal of £ in the coordinate ring.

If z5 # 0 then the local ideal of X contains

23 — 2122 + fn_20
and if z; # 0 the local ideal of X contains

29 — 2023 + fon-2.

Since both functions define locally a smooth surface, X is primitive. Applying the
functor Home(—,w) to the resolution of Ox, where w is the dualizing sheaf Q? of Pj,
we obtain by wx = £xt}(Ox,w) and Extly(Ox,w) = 0 for 7 # 2 and by the self-duality,
up to a symplectic form, of the resolution that wy = Ox(—2).

Remark 1.5 The matrices A,, i > 2, in the resolution of a Koszul structure yield
moduli for fized n. It 1s easy to see that X is contained in the quadric

2923 — 2122 =0 ifand only of A, =0 for p>2
This is the case if the corresponding n-instanton bundle £ satisfies h°E(1) = 2, see [8],
§3.
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Remark 1.6 For an n-Koszul structure X there are extension sequences
0—-0x, -0x—>0x,, —0

for any 1 < m < n where X,, and X,_,, are again Koszul structures of multiplicity m
and n — m. This follows directly from the shape of the resolution matrices.

1.7 The infinitesimal filtration of an n-Koszul structure

Let £™) denote the m-th infinitesimal neighborhood of ¢ with ideal sheaf Z;"*', m > 0.
We consider the filtration £ = Yy C Y7 C ... C Y,_1 = X of an n-Koszul structure X,
where Y, = X N ¢(m),

Since Zx contains Z}, as follows directly by computing the Fitting ideal of A, we have
X C (=Y, By [6], §2, the Y, are again primitive structures on £ of multiplicity p + 1,
and the embeddings Y,_; — Y, are described by exact sequences

0— LB > Oy, = Oy,_, =0 (1.1.5)
where £ is an invertible sheaf on the reduced line /.

Lemma 1.8 Let X be an n-Koszul structure on {. Then the intersections Y, are again
Koszul structures on £ and L = O,.

Proof: Since X is an n-fold extension there is an exact sequence
0_)O£_>OX_>OX’_)O

where X' is an (n — 1)-Koszul structure, X' C X. Therefore Z}"" C Zxs and hence
Iy, ,=Ix+ I;_l C Zx:. From this we have an exact sequence

0-C—-0y,_,—>0x —0

in which the kernel C must be a 0-dimensional sheaf since both Y,,_, and X’ have
multiplicity n — 1. But since Y,,_ is Cohen-Macaulay, C = 0, i.e. Y,_; = X'. Now we
can finish the proof by induction on n.

Corollary 1.9 1) An n-Koszul structure X has a unique filtration { = X; C ... C
X, = X by u-Koszul structures X, = X N LW+ with ezact sequences

0— 0O, — Ox,,, = Ox, — 0.

pt1

2) The n-Koszul structures on { are exactly the primitive structures of type O, in

the sense of [6],1.12

11



1.10 Conormal sequence

Let X be an n-Koszul structure. By Lemma 1.7 and [6], proposition 1.1.3.3, the
canonical homomorphism NY ® O, — N’ of the conormal sheaves has kernel and
cokernel equal to Oy, i.e. we have an exact sequence

00, - NyR0, - N/ — 0, — 0. (1.1.6)

Since N)Y = 20,(—1) the sheaf Ny ® O, is an extension of O,(—2) by O, on the
reduced line. Since the group Fxt}(O(—2),0,) = H'O,(2) = 0, this extension is
trivial. Therefore

NY{RO, Z0,® O)-2). (1.1.7)
Proposition 1.11 Let X be an n-Koszul structure on {. Then H'NY(1) = 0.

Proof: By induction on n; the statement being trivial for n = 1. For n > 1 we are
given exact sequences

00, —-0x -0y =0 (1.1.8)
and

0—-Ix Iy -0, —0 (1.1.9)

with Y an (n — 1)-Koszul structure. Dualizing (1.1.8) and using
wx = 0x(=2), wy = Oy(—2) and wy = Oy(—2) we also obtain the exact sequence

0 -0y -0x -0, — 0. (1.1.10)

If we tensor (1.1.8) and (1.1.10) by the locally free Ox- module Ny we get the exact
sequences

0Ny R0, - Ny >Ny R0y — 0 (1.1.11)

0Ny R0y > NY{ 5> N{®O,— 0. (1.1.12)

Tensoring (1.1.9) by Oy gives us the exact sequence

TOT‘?(O[, Oy) — ./V} ® Oy — ./V-)\// — 0, = 0. (1.1.13)

12



Using the resolution of Oy as a Koszul structure we easily find

Torf (0, Oy) = 20,(—1). Now we proceed calculating the group H*NY(1). From
(1.1.11) for the Koszul structure ¥ with substructure Z and the induction hypothesis
we get

0=H'NY(1)= H'NY ® Oz(1) (1.1.14)

because Ny ® O, = O, & O)(—2). Hence from (1.1.12) for ¥ we get the surjection

HNY (1) — H'NY @ Oy(1) — 0. (1.1.15)

Now split (1.1.13) into two exact sequences

20,(-1) 2 Ny @0y - A - O (1.1.16)

0-A-NY 50, -0 (L.1.17)

The surjection 7 factors through
Ny Q0= 0,8 0)-2) - Oy,

whose first component o must be nonzero, hence an isomorphism. From (1.1.16) we
get
H'NY ® Oy (1) = H' A(1)

and from (1.1.17) and (1.1.15) the exact diagram

RONY (1) —  H°0O,(1) — H'A(l) — H'WY(1)
! ~/ «a
HO(NY & O4(1))
!
0

By induction hypothesis and the induced isomorphism « we conclude that H' A(1) = 0.

By (1.1.11) again for X we finally have H*NY(1) = H'NY ® Oy (1) = H* A(1) = 0.

13



1.2 The Beilinson resolution

For any coherent sheat F on 3 there is a Beilinson complex
0= CPF)=»C*HF)—>...o5C(F)— ... > C*F) -0

which is exact except at C°(F) and has F as cohomology at C°(F), see [2]. The
sheaves of the complex are given by

C'F) = D H(F o)) e o))

1—j=p

If X is a 1-dimensional subscheme the only nonzero terms for Ox(—1) are

C3 = HE})® O(-3)

C2 = HYE:L)®0(-2) & HY (EY)®O(-3)
C~1 = HYEY)®O0(-1) © H'(EX)®O(-2)
C' = HYEL)®O & HYEL)®O(-1)
cr = HY (E%) @ O

where Ei = 0/(j — 1) ® Ox. The following Lemma is a direct consequence.

Lemma 1.12 Let X be a multiple structure on a line {. Then the following conditions
are equivalent:

(1) Ox has a resolution 0 — nO(—2) 5 2nO(—1) 400 S Ox — 0
(ii) i°E} =0 and h'E% =n, h'E% =2n, h'Ey=n, R'E$ =0

The conditions in 1.12 do not yet imply that Ox is a Koszul structure. The additional
condition needed for that is self duality.

Lemma 1.13 Let a multiple structure X on a line { satisfy the condition of Lemma
1.12. Then the following conditions are equivalent:

(1)  The resolution (B, A), 1s self-dual, 1.e. (B, A) is isomorphic to (A, BY)

(’L’L} wx = Ox(—Z)

Proof: Since X is Cohen-Macaulay of dimension 1 the dual of the above resolution of
Ox with respect to Home(—,w) gives us the resolution

0 = nO(—1) 2 200(-3) & nO(=2) - wy — 0.

14



Therefore (i) implies (ii). If conversely wy = Ox(—2) then the two Beilinson resolutions
(which are determined by the cohomology of the sheaves) must be isomorphic.

Now we can prove

Proposition 1.14 Any multiple structure X on a line { with a resolution
0 - nO(-2) - 2nO(—-1) > nO - Ox — 0
and satisfying wx = Ox(—2) is an n-Koszul structure.

Proof: By Lemma 1.12 the given resolution is the Beilinson resolution. It shows that
Ox is Cohen-Macaulay. Since £ C X we have an exact sequence

0T —-0x—-0,—-0 (1.2.18)

whose dual becomes
0> w —wxy — Ext?,)(j,w) — 0.

Twisting by 2 and using wx (2) = Ox, we get the exact sequence
00, —-0x -0y =0 (1.2.19)

in which Oy is the quotient structure. We proceed now by induction on the multi-
plicity. For this it is enough to show that Y again has a Beilinson resolution

0= (n— 1)O(=2) - (2n — 2)O(=1) = (n — 1)O — Oy — 0 (1.2.20)
and satisfies wy = Oy (—2).

To show that we first remark that Y is again Cohen-Macaulay: The dual of (1.2.19)
becomes
0 - wy(2) = Ox 5 O — Exty(Oy,w) — 0,

and since 7 is the original surjection, the sheaf £xt® is zero, which implies that Oy has
no 0-dimensional torsion. We also have the exact sequence

0 - wy(2) > Ox - O, —0. (1.2.21)

Sequence (1.2.19) yields the exact sequences
0— K] > Ef > E, >0
where as above E? = Q](J —1). Since Q'(1) ® O, = Q}(1) ® 20, we obtain

Oz(_l) 7=0
O)(=2) B 20,(~1) j=1
20,(—2) & Oy(—1) j=2

Ou(—2) j=3

52}
It
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Since R*E) = 0 we get h°Fy = h°Oy(—1) = 0. If z is a linear form, which is not a
zero divisor for Oy we get injections Oy (—d — 1) — Oy (—d) for d > 0, because Oy is
Cohen-Macaulay. Therefore h°QOy(—d) = 0 for d > 0. This implies R°Ej, = 0, using

the standard Koszul resolutions of /. Now we get the exact sequences
0— H'E] > H'E} —» H'E} — 0.

Since h'ES = 0, also R*EY = 0. On the other hand A'E} = 1, h'E} =2, R E} = 1.
Hence h'Ey = n — 1, h'EE = 2n — 2, R'E} = n — 1. By Lemma 1.12 Oy has a
resolution (1.2.20). Dualizing this we get a resolution

0—-(n—1)0(-2) > (2n—2)0(-1) > (n — 1)O - wy(2) — 0.

In order to show that wy = Oy (—2) we let £ denote the torsion free part of wy (2) R O,
such that
u)y(2) ® Og = T@ ,C

L is a vector bundle on ¢ which is generated by global sections coming from wy (2),
hence £ = ©0(a;) with a; > 0. On the other hand sequence (1.2.21) gives us a
surjection Tor1 (O, Oy) — wy(2) ® Oy, hence a surjection 20,(—1) — L. It follows
that £ = Oy(a) is of rank 1. Now let p € £\ Supp(7T). Since O,(a) is globally generated
by induced sections of wy(2), there is one section O — wy(2) which generates Oy(a)
at p under

O - wy(2) = wy(2) @ O — Oyfa).

By Nakayama’s Lemma this section generates wy(2) at p. Therefore O — wy(2) is
generically surjective. It induces a sequence

0—-C" -0y swy(2) >C">0

where C" is 0-dimensional. Since both Oy and wy (2) have the same Hilbert polynomial,
also C' is 0-dimensional, hence C' = 0. We thus have shown that Oy = wy (2), which
completes the proof of proposition 1.14.
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1.3 Instanton bundles with one linear section

A mathematical instanton bundle on 3 is a stable rank 2 vector bundle £ with first
Chern class ¢;(€£) = 0 and vanishing condition 2'E(—2) = 0, see [5]. The stability
condition implies n = ¢3(€) > 0. Here I recall more specificially the properties of the
matrices M and B in the Beilinson-II-monad, see page 7. It is wellknown that £ is the
cohomology of a Beilinson complex

0 - n0*(3) Br0'(1) D 2n—2)0 50 (1.3.22)
in which M and B are induced by linear maps
kn M} kn ® /\2‘/7 kn E} k?n—? ® V

The conditions for M, B to define an instanton bundle are:

(i) M is symmetric
(ii) the induced sequence
oV e AV B g AtV 50
is exact

(i) k*"—2 B k™ ® V satisfies Im(B*) N (k" ® v) = 0 for any nonzero v € V

see [8], section 1. We let M I(n) denote the open subscheme of the Maruyama scheme
M (2;0,n,0) of all semi-stable coherent sheaves on P3 of rank 2 and Chern classes
(c1,¢2,¢3) = (0,n,0) whose closed points are the isomorphism classes of mathematical
instanton bundles. Up to now it is not known whether M (n) is smooth and irreducible
for all n. MI(n) is smooth at £ if Fxt*(£,E) = 0. There are reasons to believe that
the stronger condition Fxt*(€,E(—1)) = 0 holds for any € € MI(n). Indeed this is
true for the so—called special 't Hooft instanton bundles characterized by h°E(1) = 2,
see [8]. This was shown in [17], or can easily be derived from the normal form of B
in [8]. We are going to show that Exzt*(€,E(—1)) = 0 also holds for any £ € MI(n)
satisfying h°E(1) = 1. Note that by [8] h°E(1) < 2 for any € € MI(n). In the following

we assume n > 3, since for n = 2 always h°£(1) = 2.

1.15 By the general Serre construction, see [16] , rank 2 bundles can be constructed
on 3 from l.c.i. intersection curves X s.t. the dualizing sheaf wy is the restriction of
a line bundle on P3. In particular, if X is an n—Koszul structure on a line ¢ with
wx = Ox(—2), we have

H0x(2) = Homoy (Ox(=2),wx) = Euty(Ox(=2),wp,)
= Bzt (Ix(-2),wp,)
= Ext'(Ix(1),0(-1))

17



using Grothendieck isomorphism [1]5.2 and (proof of 5.4.iii). A section s of wx (2) thus
defines an extension F,

0-0(-1)>F—->Ix(l)—0

which is locally free if s defines an isomorphism Ox = wx(2). If not, F will be singular
along the zero scheme Z(s) C X, see [5]. for an example. In our case one easily verifies,
using the resolution of Oy, that

aF=0,cF=n,cF=0, °F=0, h"F(-2)=0

and h°F(1) = 1. Hence, if F is a bundle it belongs to MI(n). We can now prove the

converse:

Proposition 1.16 Let £ be an instanton bundle with second Chern class n — 1 > 3
such that h°E(1) = 1, and let X be the zero scheme of the non—zero section s of £(1).
then

(1) X,ea is a disjoint union of lines {1, ..., 0y,
(11) X is a disjoint union of Koszul structures Xi,...,X,, on {1,...,{,, respectively.
Proof:

(1) Since R°E€ = 0, X is a 1-dimensional l.c.i., and we are given the exact sequence
0—-0(-2) > &(-1) > 0 - 0Ox —0. (1.3.23)
Its dual sequence becomes
00 3E(1) - O2) > wx —0,
where we use £ = €Y, which follows from A?€ = O. Hence wy = Ox(—2).

(2) Statement (i) was proved in [8], 1.3, using the monad description of £ as above.
Therefore, X is a disjoint union of possibly multiple structures X, on ¢,. In order
to prove (ii) we can calculate the dimensions of the cohomology groups of Oy from

(1.3.23) using (1.3.22). By (1.3.22) (for n — 1)

RPE(d) = 0 ford <0
R'E(d) = 0 ford< -2
R*E(d) = 0 ford> -2
RPE(d) = 0 ford> —4
RPE(-3) = R'E(-1)=n -1
RE = 2n—4.
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From (1.3.23) we get H'Ox(—1) = H*Zx(—1) = 0 because H*E(—2) = 0, and similarly
H°Ox(—1) = 0. From this it is easy to see that H'E% = H°Ox ® Q/(j — 1) = 0 for
0 <3 < 3. It remains to calculate hlng. We have the exact sequence from the Euler
sequence

0> HEROQ(-1) > 4H'E(-2) — H'E(-1) - H* ¢ Q'(-1) >0
|
0
and from (1.3.23)
H'Iy @ Q! - HQ' -5 HOxQ — HTx @ Q! — H?*Q!

| | I
H'E QY -1) H*E@ QY (-1) 0

; e

hence h'E% = 1+ (n — 1) = n. Similarly, we obtain
H'E% = H*Tx ® Q*(1) = H*(E ® Q)
with B2(E®@ Q) =2(n—1)+2=2n, and
H'E%
0 — H?*E(-3) > H?Ix <|§|§>Q3(2) — H*Q° — 0.
These data imply by Lemma 1.12 that Ox has a Beilinson resolution
0 - nO(-2) - 2nO(-1) - nO - Ox — 0.

In order to show that each of the X, has a resolution of the same type we proceed as
in the proof of Proposition 2.3. Assume that mult(X;) > 2, say. There is a sequence

0-0, >0x >0y -0

with Y C X satisfying (i), (ii) of Proposition 2.1, and Y = Y} UX,U...UX,,. By
induction over n we may assume that Y7, X,, ..., X,, are Koszul structures. Then also
Xj is a Koszul structure. In particular, the above resolution of Oy can be replaced by
the direct sum of the Beilinson resolutions of Oyx,.

Theorem 1.17 Let £ be an instanton bundle on P3. If h°E(1) > 0 then Ext*(E,E(—1))
= Ext*(€,€) = 0.

Proof:
By [8] R°E(1) < 2. If R°E(1) = 2 this follows from [17]. If A°£(1) = 1 we obtain
an exact sequence (1.3.23) where X = Xj U...U X, is a disjoint union of Koszul
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structures X, on lines £,. By Proposition 1.8 H'NY(1) = ©H'NY (1) = 0, where V¥

denotes the conormal sheaf of X.
The sequence (1.3.23) induces the exact sequence

Ext*(Ix(1),E(-1)) — Ext*(€,E(-1)) —» H*E
|

0
On the other hand, we obtain
Bt (Tx(1),E(~1))
= Ezt*(Ox,E(-2)) since H*E(—-2) = H*E(-2) =0
= HY(Ext*(Ox,E(-2)) by Leray’s spectral sequence
= HY(Ext*(0Ox,0(-2))RE) since & is locally free
= H' (Ext*(Ox(-2),wp,) ®E)
= HY wx(2)®¢&) by Grothendieck duality
= HY(E® Ox) since wx (2) = Ox.

If we tensor sequence (1.3.23) by Ox we get the exact sequence
Ox(—-1) > E®O0x > NY(1) -0

and this implies

HY (E® Ox) = H'NY(1) = 0.
This proves the vanishing of Exzt*(€,&E(—1)). To show that also Fxt*(E,€) = 0 we

consider a plane P C P53 and the restriction sequence
0-&8(-1)>E—-E0p —0.
In the induced exact sequence
Ext*(€,E(-1)) = Ext*(€,€) — Ext*(€,€ ® Op)

also the last group vanishes, because it is Serre-dual to H°(€ ® £ ® Op(—3)) = 0.
Since Ext*(€, &) is the group of obstructions to smoothness of the Maruyama scheme
at stable points, see [19] and [29], MI(n) is smooth at &.
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1.4 Jump phenomena

I determined for the conormal bundle of a Koszul structure its restriction to a line
contained in the support of the Koszul structure. If the Koszul structure is V (s), the
zero locus of a linear section of an instanton bundle &, then the restricted conormal
bundle is isomorphic to &(—1), see 1.1.7, page 12. Hence I know without further
effort the splitting behaviour of this rank-2-instanton bundle £ on a line contained
the support of the multiple Koszul structure V(s), see proposition 1.18. This provides
a generalization of a proposition of Hartshorne [16]9.11, which proves the splitting
behaviour of £ on lines in P3, to 't Hooft bundles with general ¢3(£). The generalization
to the case of special 't Hooft bundles of arbitrary second Chern class ¢;(€) was done
in [8]. For 't Hooft bundles with at most one linear section (h°€(1) = 1) I obtain a
slightly different result. First I present a lemma which is used in the proof of the result.

Proposition 1.18 Let £ be a 't Hooft bundle, hence there is one linear section s €
H°E(1) whose zero locus is denoted by Y := V(s). Then for &, the bundle € restricted

to a line ¢ C P3, we have:

(1) If { does not intersect Y, then

g|g ~0,¢0, or S|g ~ Og(l) D Og(—l) .

(2) If { intersects Y with multiplicity 1, then

EMEOg@Og.

(8) If { intersects Y with multiplicity m > 2, then

EM ~ Og(—m + 1) D Og(m — 1) .

(4) If { C Y; where Y; is a component of V(s) then it follows that

if L=Y;1.eY;is reduced = E,>~0,0 O,
if LY ie. Y, is non reduced = &)~ Ou(—1) & O(1)

Proof:
For any s € H°(£(1)) one has the exact sequence:

0 — 0O(-1) > £ - O(l) - Oy — 0
\ /
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I restrict now this sequence to the line £. i.e.: I tensor the whole sequence with O,:

Torl(Iy(1),0) —» Ou(=1) 5 & = O(1) - Oy — 0
AN /
Tynee(l)

where Y N/ is a finite scheme of multiplicity m. Tor? (Zy (1), O;) vanishes because it is
a sheaf of finite length which can not be mapped to a locally free sheaf O,(—1). Hence
I obtain two short exact sequences:

0 — Tori(Oy,00) — ZIyp(l) — coker — 0

0 —- coker — O, — Oy — 0

Thus coker ~ Oy(—m + 1) and Tor? (Oy,O,) is a sheaf of finite length m. Any exact
sequence

0 - 7 - F —- G — 0

where 7 is a sheaf of finite length and G locally free splits. This follows from the fact
that Ext'(7T,G) ~ H"Hom(T,G) = 0. H'Hom(T,G) vanishes because Hom(7 ,G)
has finite support. Therefore Zyne(1) >~ Oy(—m + 1) @ k™. From this reasoning one
gets now the exact sequence below.

0 — Og(—l) S—M> E|g — Og(—m + 1) k™ — 0
This sequence provides now an exact cohomology sequence of the following kind.
0 — H°O/(-1) - H°%, — H°O(-m+1ek™ — H'OJ(-1) — 0

This proves the isomorphism

HOEM ~ HO(Og(a) & Oy(—a)) ~ HOOg(CL) &) HOOg(—a) ~ Hoog(—m + 1)@ k™

For m > 2 it follows :
H°Oy(a) ~ H°Oy(m — 1) ® k™ ~ k™

therefore @ = m — 1. This proves case (3).

For m = 0,1 both cases &, >~ O, ® O, or &, >~ O(1) @ O(—1) can occur. Hence case
(1) is true. I can exclude in case m = 1 the splitting &, >~ O,(1) @ Of(—1) because the
exact sequence

0 = Of=1) - O(1)@O(=1) — Orok — 0
is impossible. So case (2) is verified.
The case (4) is due to the fact that

& ~ Ny, (=

where Y; is the component of Y supported on £ Now N%(_l)lf can be O, @& O, or
O(1) & Oy(—1) if Y; is reduced or not, see 1.1.7 on page 12 #
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Remark 1.19 For special 't Hooft bundles it is possible to determine the splitting
behaviour for all possible lines with this methods because one uses not only the zero
locus of one section but for a whole pencil of sections. It is shown in [8] that the
pencil of sections defines the bundle uniquely. We see later in chapter 5 the connection
between special 't Hooft bundles and their Poncelet curves which was introduced in [17]
see also [8]. For 't Hooft bundles there exist only one section. The section determines
the bundle only up to an extension class in Exzt'(Zy(1),O(—1)). We shall see later
that, if £ is a special 't Hooft bundle, then the multiple Koszul structure in 1.18
case 2 are the points in PA*VY in which the Poncelet curve S(&) intersects the conic

C(E) = P(E) NG(2,4).
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2 An inductive construction of instanton bundles

2.1 Introduction

In this chapter I shall describe an algorithm constructing explicitly selfdual monads
in the meaning of page 7. This algorithm is applied to two cases: The construction
of Beilinson-I-monads and monads of NC-type. 1 am going to use this algorithm for
two purposes, the construction of examples of instanton bundles with the help of the
computer algebra systems SINGULAR and Macaulay and the abstract determination
of the dimension of the vector spaces of linear section for certain families of instanton

bundles of NC-type.

Always, the natural question arises whether isomorphism classes of bundles are smooth
points of their moduli space. This is the matter for all examples constructed in this
chapter. As already mentioned on page 20 it is shown in [29] that the obstruction
group to the smoothness of the Maruyama scheme at stable points [£] is Ext?*(&, ).
It is verified on page 20 that for the vanishing of Fzt*(€,€) it is enough to prove
that H*End(E)(—1) ~ Ext*(E,E(—1)) = 0. For these examples here it is checked by

explicit computation and in fact they are all smooth points of the Maruyama scheme.

2.2 Remarks on Beilinson-I-monads

Let P3 = P(V). A Beilinson-I-monad for instantons € on P3 is a complex
0 — nO(-1) =N (2n +2)O 2 nO(l) — 0
with the following properties:

(1) Let a be the induced map a : k" — k***?* @ VV then
kn ag) k2n+2
is injective for all v € V
(2) Let b be the induced map b: k*"*? — k" @ VV then

k2n—|—2 b(_v)) kn

is surjective for all v € V
such that & is the cohomology of the complex.

Remark 2.1 The subbundle conditions (1) and (2) can be checked easily by verifying
that the vanishing locus of the Fitting ideal of the maximal minors of A an B looked
upon as forms on P3 is empty.

24



A monad is selfdual if it is of the following kind:
0 - A &% B Y av 5 g

where A and B are vector bundles and .J is a symplectic isomorphism J : B — BY;

(ie: JY =—J).

It is known, that Beilinson-I-monads for instantons can be brought into a selfdual form,

c.f. [25] pp 280.

Lemma 2.2 Let £ be a rank-2 bundle with ¢1(€) = 0 and being the cohomology bundle
of the monad

0 — nO(-1) N (2n +2)O 2 nO(l) — 0

and

j: € — &V

be the duality pairing given by € ~ £V ® det(E) is symplectic. This pairing is in fact
E ~ &Y after a choice of an isomorphism

a: det(§) — O.
and is symplectic. Then there exist morphisms
ad: nO(-1) - (2rn+2)0
v: (2n+2)0 — nO(1)
J: 2n+2)0 - (2rn+2)0

such that
0 > nO(-1) 5 2n+20 5 n0(1) - 0

1s a monad for £ and such that

JV=—Jand b =a"VolJ

2.3 The algorithm

Before I present the algorithm in a more abstract setting [ want to give an easy example
for a Beilinson-I-monad which can still be done by hand. It is an example of a monad
which yields an instanton £ with ¢3(€) = 3 as its cohomology:

0 — 30(-1) > 80 3 30(1) - 0 (%).

After an appropriate base change of 80 J is given by the matrix ( 2 _OI ) Let
(xg, -, x3) be a basis of V¥ ~ H°O(1)
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Step 1 T choose an element so € 8H O(1) randomly. In our example:
S0 := (o, 21,0,0, 22, x3,0,0)
This is the first row of the matrix S in the monad above. Hence:

SVolJ :=sjo0J=(—xq9,—23,0,0,20,21,0,0)"

“v”»

where indicates the transpose. Let Ky be the kernel of sy o J:

0 - K — 80 % o1 - o0
and let K, be defined as K; := H°K; which is the set of syzygies of sy o J.

Step 2 In the second step I repeat the procedure of the first step, but chose now a
tuple s; in K7y, for example

s1:=(0,0,20,21,0,0, 4, 3) .

Then

sy 0oJ =1(0,0,—xq, —3,0,0, 29, 21)"
Therefore we have obtained a monad
0 - 20(-1) % 80 B 2001) - 0

with §' = (zg) and S™VoJ = (syo.J s{olJ).
Now it is time to verify that S is a subbundle, i.e. it has constant rank in all
points of P3. This is done by showing that the scheme defined by all 2 x 2-minors

has codimension 4 in P5. It remains now as before to determine K; := HK,
which is the space of linear relations of S = (sy o J, sy o J) where K; is defined
by:

0 — K, — 80 "5 2001) — 0

Step 3 In a last step completely analogous to the previous one I finish the construction
by concatenating with the element s; € Ky, for example

$g = (—x3,—122,0,0,0,0, —x1, —x0) .

Hence we get a subsheaf S : 30(—1) — 80 given by

o 1 0 0 Ty I3 0 0
S = 0 0 g X1 0 0 9 T3
—x3 x93 0 0 0 0 —x1 o

and a self dual monad. Again one has to check whether S defines a subbundle.

Step 4 Now smoothness of M1(3) at [£] can be checked using the monad (x). We see
later that it is enough to verify that the operator (SY o J ® id | id ® S¥ o J) has
no cokernel, see 2.6.
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It is now the turn to present the algorithm. T use here an algorithmic notation in a
meta-language not showing the details of the computer program, but presenting the
idea of the algorithm. Our goal is to achieve the monad:

A\
J
0 - mA 35 nB ‘S5 mAY > 0

where A and B are bundles.

The Algorithm:

S =0 /* S is the zero matrix */
Ko := nmHom(A, B) ~ nmH°(AY ® B);
1 :=0;
WHILE : <m DO
CHOOSE s; € Ky; /* It may be randomly chosen */
S = (;), /* The new S is the concatenation of S and s; */
/*Hence S is the map (1 + 1)A > nB */
Compute SY o J; /* ¢‘V?’ indicates the transposex/

/*Hence SYo.J is the map nB — i+ 1AY */ y
/*K;y1 is the kernel:0 — K;;; — nB 523/ (t+1)AY — 0 */
Kz’+1 = HOICi+1;
/*Check that S is a subbundle:*/
COMPUTE the F;415:=(i+1) X (¢ 4+ 1) — minors of S;
IF codimension(V(F;415)) # 4 THEN END
/*V(F:11S) is the zero locus of the i+ 1 Fitting ideal*/
i:=i+1;
RETURN
/*Check the smoothness of the moduli space i.e */
coker(SVoJ®ud | td® SVolJ)=0 7
END

Remark 2.3 The crucial point of this algorithm is the computation of the space of
linear relations in the module Hom(mA,nBY) for the matrix S¥ o J. The matrix has
entries in Hom (B, AY). Hence a pairing

Hom(A,BY) x Hom(B,AY) — Hom(A,AY)
must be explained. Moreover the computer algebra system has to be able to handle this

structure. We are here not in the general situation but construct Beilinson-I-monads.
Hence the multiplicative structure is obvious:

0 - nO0(=1) > @2n+2)0 B w0(1) > 0

0| -1

7170 ) Therefore a

where J is the symplectic structure defined by the matrix (

multiplicative structure

H'O(1) @ HO(1) — HO(2) ~ k°
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is the multiplication of two polynomials. In a next step in chapter 4 I am going to
study NC-type monads. For them the multiplication needs more consideration.

Lemma 2.4 The rank-2 vector bundles on Ps constructed inductively as the cohomol-
ogy of Beilinson-I-monads by this algorithm starting with a 4(m + 1)O as a middle
term are instanton bundles 1.e: H'E(—2) = 0.

Proof:

The inductively constructed monad
0 - nO(-1) - (2n+2)0 — nO(l) — 0,

twisted by —2, has the display:

0 - nO(-3) —— K(—2) — &(-2) - 0

0 - nO(-3) —— (2n+2)0(-2) —— Coker — 0

Obviously we have the isomorphisms
H'€(-2) ~ H'K(-2)~ H'O(-2) = 0
because H'Q;(—1) = 0 for all 7 > 0 and j € {0, 1,2}. #

I list now the examples and some of their properties which did occur.

monad type middle term () | dimHE(1) | smooth point of
MI(cy(£))
Beilinson-1 generic 5 0 yes
splits off @; &, 5 0,1 yes
splits off (m + 1)&, 5 1,2 yes

“To split off” a generalized null correlation bundle means, that there exists a splitting
as in proposition 4.5 for the Beilinson-1 monad.
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2.4 How to compute smoothness for a point in the moduli
space ?

As already mentioned on page 20 it is shown in [29] that the obstruction group to the
smoothness of the Maruyama scheme at stable points is Ext*(€,€). Tt is well known
how one can determine the dimension of H?End(€) for vector bundles £ which are
the cohomology of a monad. This result which can be found at many places, see for
instance [25], requires the vanishing of certain cohomology groups. Unfortunately this
is not for all kinds of monads fulfilled. 1 will return to this fact later when I study
NC-type-monads, see page 66. Here I want to recall the result on H*End(E)(—1) which
is valid for Beilinson-I-monads

0 - (2m+1)0(-1) - 4m+1)0 — (2m+1)0O(l) — 0.

Remark 2.5 The vanishing of H?End(E)(—1) is a stronger condition and implies
H?End(€) = 0, see 1.3, bottom.

Lemma 2.6 Let
M: 0 —- mO(-1) 5 nO “’e/ mO(l) — 0
be a selfdual Beilinson-I-monad on P3 with cohomology £. We have for the mapping
do: Hom(mO(—1),n0) x Hom(nO,mO(1)) — Hom(mO(—1),mO(1))
defined by the matriz (id ® a¥ o J|a¥ o J ® id) € Mat(2mn x m? , O(1))
coker(dy) = H*End(€) .
Proof:

First [ remark that End(€) ~ £ ® £ because £ is locally free and selfdual. Let D** the

double complex below

0 0 0

! ! !
0 - mO(-1)®@mO(-1) — mO(-1)®nO — mO(—1) @ mO(1) —

0 — nO @ mO(—1) — nO ® nO — nO @ mO(1) —




The associated total complex K*® is of the form:
0 - K2 - k' 35 KL K o K2 & 0
where

K7 = mO(-1)® mO(-1)

K7 = mO(-1)®n0 @& nO @ mO(-1)
K° = mO(-1)® mO(1) & nO & nO & mO(1) ® mO(—1)
K' = nO®@mO(1) ® mO(1) ® nO
K* = mO(1) ® mO(1)

The complex K*® is exact except at K° where we have
ker(T)/im(S) = End(E)

Fix a k € Z. Consider the first and second spectral sequences of hypercohomology both
abutting in H *(P3, K*(k))

/Eg,q Hp(HQ(E)?”[('(k)))
I/Egﬂz — Hp(HQ(E’?” [(.(k)))

Because H(K*®) ~ H(K") ~ End(€) the first spectral sequence degenerates in the F;
term.

Thus H*End(E) ~ H *(P3, K*).

.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 H°K® HOK*! H°K?

q

The dy-differentials are horizontal and the d;-differentials go two steps to the left and
one step down. H°K?/dy( H°K') maps surjective on H*End(E)

HOK?/do(H°K') — H2End(E) — 0

because H'K', H?*K® and H’K' are zero and GR(H?End(£)) ~ @, -0 B

@ is a

. . . . 27]
Quotient of @, ;-9 H'K’/dy(H'K’~') by a general property of the local-global spec-
tral sequence. Finally I want to determine the operator dy explicitly in terms of the
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matrix a. We have the diagram:

nO ® mO(1)
avVoJ®id

mO(1) @n0 —=1 , 0(1) @ mo(1)
Hence, the map in the double complex is:
mO(1) @ nO & nO ® mO(1) mO(1) ® mO(1)

Therefore the morphism dy is represented by the matrix: (id ® a¥ o J]|a¥ o J ® id)
which is the concatenation of (id ® ¢V o J) and (a" o J ® id).

(id®aV 0J|aY 0 @id)
H

Remark 2.7 As before, let K*® be the total complex of the double complex D®**® as in
the proot of lemma 2.6 and End€ is the cohomology of the complex K*® . In fact it

is only used that sufficiently many cohomology groups of the sheaves of complex K*
vanish such that H2End€ is the cokernel of dy, i.e.:

HOK' % H°K? — H€nds — 0
At the beginning of chapter 2.4 it is mentioned that H?End€E(—1) = 0 is sufficient for
the vanishing of H*EndE. H?*EndE(—1) can be computed analogously to the case of

H?EndE. The only difference occuring is that the operator dy = (aVoJ®idlid®—aVoJ)
is no longer a morphism

mO(1)  nO &nO @ mO(1) — mO(1)  mO(1) ,
but a morphism
mO(1) ® nO(—1) & nO@mO — mO(1) ® mO .

For this situation we obtain the following lemma.

Lemma 2.8 Let

M: 0 - mO(-1) 5 nO "2y mO(1l) — 0 -
be a selfdual Beilinson-I-monad on I3 with cohomology £. We have for the mapping

do: Hom(mO(—1),nO(—1)) x Hom(nO,mQO) — Hom(mO(-1),mO)
defined by the matriz (id ® a¥ o J|a¥ o J ® id) € Mat(2mn x m? O(1))
coker(dy) = H*EndE(—1) .

Sketch of the proof :
EndE(—1) is the cohomology of the complex K®*(—1) and H?EndE(—1) is the cokernel:

HK'Y(-1) 8 H°K2*(—1) — HEndE(-1) — 0

#
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2.5 Examples of Beilinson-I-monads
2.5.1 Program example 1

The instanton bundle £ with ¢;(£) = 5 constructed in this computation is an example
for an instanton bundle of NC-type with h°£(1) = 2. Moreover its monad is selfdual
in the meaning of page 7. I compute not a NC-type monad with cohomology &, but a
Beilinson-I-monad for the instanton €. Hence such a monad splits, see proposition 4.3.

(#)

(AVoJ,gB'VoJ)
0 — 30(-1)@20(-1) = 120 —

30(1)820(1) — 0 ¥

where J is the symplectic form ( _0] é ) and

0 - 30(-1) & 120

4587 30(1) > 0 (%)

defines the direct sum of null correlation bundles, 3&,. In the comments to the
Macaulay program output I will refer to the steps in the explicit explanations of the
algorithm, see 25. The commentaries I entered later in a different font: sans serif.
I skipped parts of the output which are not essential for the understanding of the
computation. z[0],-- -, z[3] are the coordinates of Ps.

1% ring r

| characteristic (if not 31991) ?

! number of variables ? 4

I 4 variables, please 7 x[0]-x[3]
! variable weights (if not all 1) ?

| monomial order (if not rev. lex.) ?
largest degree of a monomial : 512

ker is A of the sequence (). | start the program with the matrix ker but in fact this matrix
is already generated by the Macaulay script, which provides also random matrices. The
same statement is valid for the matrix coker which is A o .J. So the sequence (*x) is now

fixed.

1% type ker

-x[2] -x[3] 0 0 0 0 x[0] x[1] © 0 0 0
0 0 -x[2] -x[3] 0 0 0 0 x[0] x[1] © 0
0 0 0 0 -x[2] -x[3] 0 0 0 0 x[0] x[1]

1% res ker rkernew
computation complete after degree 0
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1% betti rkernew
total: 3 12 18 12 3

1% type coker
x[0] © 0
x[1] © 0
0 x[0] ©
0 x[1] ©

x[2] 0 0
x[3] 0 0
0 x[2] ©
0 x[3] ©
0 0 x[2]
0 0 x[3]

1% mult ker coker result
1% type result
000

000
000
| prove now that ker defines a subbundle. This follows from the fact that the zero locus of

the Fitting ideal of the coker is zero dimensional. But from the explicit ideal, minor below,
we see that the zero locus is the point (0,0,0,0) € €* with multiplicity 4

1% wedge coker 3 minor
1% flatten minor mnrid

1% std mnrid rmnrid
computation complete after degree 4

1% codim rmnrid
component 1:
[4] 1111

codimension : 4

1% copy coker newcoker

res is a random element in Ky chosen, see page 25 step (1) and concatenated with the old
S = coker, it provides the new S = newcoker.
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1% mat rand <try.18
! number of rows 7 18
! number of columns 7 1

F(1,1) 71
1 (2,1) 70
1 (3,1) 70
1 (4,1) 70
1 (5,1) 70
1 (6,1) 70
1 (7,1) 70
1 (8,1) 70
1 (9,1) 70
1 (10,1) 7 0
1 (11,1) 7 0
I (12,1) 7 0
I (13,1) 7 0
I (14,1) 7 0
I (15,1) 7 0
I (16,1) 7 0
1 (17,1) 7 0
I (18,1) 7 1

1% mult rkernew.2 rand res
1% concat newcoker res

1% type newcoker
x[0] © 0  -x[3]
x[1] © 0 x[2]
0 x[0o]l o 0

0 x[1] © 0
0 0 x[0] ©
0 0 x[1] ©
x[2] © 0 0
x[3] © 0 0
0 x[2] © 0

0 x[3] 0 0
0 0 x[2] -x[1]
0 0 x[3] x[0]

| prove now that ker defines a subbundle. This follows from the fact that the zero locus of
the Fitting ideal of the 4 x 4 minors of newcoker is zero dimensional. But from the explicit
ideal, minor below, we see that the zero locus is the point (0,0,0,0) € €* with multiplicity
4.

1% wedge newcoker 4 newminor
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1% flatten newminor inewminor

1% std inewminor sinewminor
computation complete after degree 6
1% codim sinewminor

component 1:

[4] 1111

codimension : 4

The next step contains the computation of the monad arrow S from SY o .J.

1% submat newcoker phinew
! Tows 7 1..6
! columns 7 1..4

1% type phinew

x[0] © 0 -x[3]
x[1] © 0 x[2]
0 x[0] © 0

0 x[1] © 0
0 0 x[0] 0
0 0 x[1] 0

1% submat newcoker psinew
! rows 7 7..12

! columns 7 1..4

1% type psinew

x[2] 0 0 0
x[3] 0 0 0
0 x[2] © 0

0 x[3] 0 0
0 0 x[2] -x[1]
0 0 x[3] x[0]

1% smult psinew -1 npsinew

1% transpose phinew phinewt
1% transpose npsinew npsinewt
1% concat npsinewt phinewt

1% copy npsinewt kernew

1% type kernew

-x[2] -x[3] 0 0 0 0 x[0]
0 0 -x[2] -x[3] 0 0 0
0 0 0 0 -x[2] -x[3] 0

35

0

0 0

x[0] x[1] 0 0

x[1] 0
0
0 0

0

x[0] x[1]



0 0 0 0 x[1] -x[0] -x[3] x[2] © 0 0 0
1% mult kernew newcoker res

1% type res

0000
0000
0000
0000

rkernew.2 is the set of generators for all relations of kernew, where kernew is the transpose
of newcoker with respect to J. elem is the set of generators for all linear relations in
rkernew.2.

1% res kernew rkernew
computation complete after degree 2

1% betti rkernew

total: 4 12 16 12 4
-1 4 12 11 4 1
1 - - 5 8 3

1% submat rkernew.2 elem
! rows 7 1..12

' columns 7 1..11

1% type elem

0 0 0 0 0 0 0 x[0] 0 0 -x[3]
0 0 0 0 0 0 0 x[1] © 0 x[2]
0 0 x[1] 0 x[0] © 0 0 0 -x[3] 0
0 0 0 x[1] 0 x[0] © 0 0 x[2] 0
0 0 0 0 0 0 -x[3] 0 x[0] © 0
0 0 0 0 0 0 x[2] 0 x[1] © 0
0 0 0 0 0 0 -x[1] x[2] © 0 0
0 0 0 0 0 0 x[0] =x[3] 0 0 0
0 -x[1] 0 0 x[2] x[3] © 0 0 0 0
0 x[0] =x[2] x[3] O 0 0 0 0 0 0
-x[1] 0 0 0 0 0 0 0 x[2] © 0
x[0] O 0 0 0 0 0 0 x[3] © 0

res is a random element in elem chosen, see page 25 step (1) and concatenated with the
old S = coker it provides the new S = newcoker.
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1% mat rand <try.11
[252k] ! number of rows ? 11
! number of columns 7 1

F(1,1) 70
1 (2,1) 70
1 (3,1) 70
1 (4,1) 70
1 (5,1) 70
1 (6,1) 70
P (7,1) 71
1 (8,1) 70
1 (9,1) 70
I (10,1) 7 1
1 (11,1) 7 0

1% mult elem rand res
1% copy newcoker newcokerold
1% concat newcoker res

1% type newcoker

x[0] 0 0 -x[3] 0
x[1] O 0 x[2] ©
0 x[0] © 0 -x[3]
0 x[1] 0 0 x[2]
0 0 x[0] 0 -x[3]
0 0 x[1] 0 x[2]
x[2] © 0 0 -x[1]
x[3] 0 0 0 x[0]
0 x[2] © 0 0
x[3] 0 0

0 0
0 0 x[2] -x[1] 0
0 0 x[3] x[0] O

| prove now that coker defines a quotient bundle. This follows from the fact that the zero
locus of the Fitting ideal of the 5 x 5 minors is zero dimensional. But from the explicit
ideal, minor below, we see that the zero locus is the point (0,0,0,0) € k* with multiplicity
4.

1% wedge newcoker 5 newminor
1% flatten newminor inewminor

1% std inewminor sinewminor
computation complete after degree 9

1% codim sinewminor
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component 1:
4] 1111
codimension : 4

1% transpose newcoker newcokert
1% res newcokert rnewcokert

computation complete after degree 7

1% betti rnewcokert

total: 5 12 14 12 5
-1: 5 12 7<-—- - -

0: - - - - -

1: - - - - -

2: - - - - -

3: - - 7 12 5

£ is now an instanton bundle with A°£(1) = 2 because according to the resolution of the
kernel bundle X' has 7 dimensional space of linear sections, this is indicated by the arrow
<— above.

In a last step | check the smoothness of the moduli space M I(5) in the point [£], see 2.8.
The operator dy, which is called B here, is a morphism

k120 — k25 ® VV

Hence B is surjective if and only if ker(B) C k'*° is 20 dimensional. The position of this
dimension of ker(B) in the output of the betti command is indicated by the arrow <—.
These are the constant relations in the betti diagram

1% tensor newcokert newcokert B
[315k]

1% res B Bres 5
computation complete after degree -1

elapsed time : 9 seconds

11% betti Bres

total: 25 120 170 100 25
-3 - - 20<—-- - -
-2 25 120 150 100 25
1% exit
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2.5.2 Program example 2

The instanton bundle £ with ¢;(£) = 5 constructed in this computation is an example
for an instanton bundle of NC-type with h°€(1) = 1. Moreover its monad is selfdual
in the meaning of page 7. I compute not a NC-type monad with cohomology &, but a
Beilinson-I-monad for the instanton £. Hence such a monad splits, see proposition 4.3.

0 — 30(-1)®20(-1) (i) 120 (Arerdel) 30(1)820(1) — 0 ¥

where J is the symplectic form ( 0] é ) and

0 — 30(-1) & 120 “% 30(1) - 0 (%)
defines the direct sum of null correlation bundles &,, © &,, @ &,, In the comments to the
program output I will refer to the steps in the explicit explanations of the algorithm,
see 25. The commentaries | added later are in a different font: sans serif. 1 skipped
parts of the output which are not essential for the understanding of the computation.
z[0],-- -, x[3] are the coordinates of Ps.

1% ring r

| characteristic (if not 31991) ?
! number of variables ? 4
I 4 variables, please 7 x[0]-x[3]
| variable weights (if not all 1) ?
| monomial order (if not rev. lex.) ?
largest degree of a monomial : 512

ker is A of the sequence (). | start the program with the matrix ker but in fact this matrix
is already generated by the Macaulay script, which provides also random matrices. The
same statement is valid for the matrix coker which is A o .J. So the sequence (*x) is now

fixed.

1% type ker

-x[2] -x[3] © 0 0 0 x[0] x[1] ©

0 0 -x[0]+x[2] -x[1]1+x[3] © 0 0 0 x[0]+x[2]
0 0 0 0 -x[0]+x[3] -x[1]+x[2] © 0 0

0 0 0

x[1]+x[3] 0 0

0 x[0]+x[3] x[1]+x[2]

1% res ker rkernew
computation complete after degree 0
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1% betti rkernew
total: 3 12 18 12 3

1% type coker

x[0] 0 0
x[1] © 0
0 x[0]+x[2] ©
0 x[1]+x[3] ©
0 0 x[0]+x[3]
0 0 x[1]+x[2]
x[2] 0 0
x[3] 0 0
0 x[0]-x[2] O
0 x[11-x[3] 0
0 0 x[0]-x[3]
0 0 x[1]-x[2]

1% mult ker coker result

1% type result

O O O
O O O
O O O

| prove now that ker defines a subbundle. This follows from the fact that the zero locus of
the Fitting ideal of the coker is zero dimensional. But from the explicit ideal, minor below,
we see that the zero locus is the point (0,0,0,0) € €* with multiplicity 4

1% wedge coker 3 minor
1% flatten minor mnrid

1% std mnrid rmnrid
computation complete after degree 4

1% codim rmnrid
component 1:
[4] 1111

codimension : 4

1% copy coker newcoker
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res is a random element in Ky chosen, see page 25 step (1) and concatenated with the old
S = coker it provides the new S = newcoker.

1% mat rand <try.18
! number of rows 7 18
! number of columns 7 1

]
]

(1,1 71
1 (2,1) 70
I (3,1) 71
1 (4,1) 70
1 (5,1) 70
1 (6,1) 71
1 (7,1) 70
1 (8,1) 71
1 (9,1) 70
I (10,1) 7 0
P(11,1) 7 1
I (12,1) 7 0
I (13,1) 7 0
I (14,1) 7 0
I (15,1) 7 0
I (16,1) 7 0
1 (17,1) 7 0
I (18,1) 7 1

1% mult rkernew.2 rand res
1% concat newcoker res

1% type newcoker

x[0] 0 0 -x[3]
x[1] 0 0 x[2]

0 x[0]+x[2] © 0

0 x[1]+x[3] © x[0]+x[2]
0 0 x[0]+x[3] 2x[2]

0 0 x[1]+x[2] x[0]-x[3]
x[2] 0 0 -x[1]
x[3] 0 0 x[0]

0 x[0]-x[2] © -2x[3]

0 x[1]-x[3] © x[0]+x[2]
0 0 x[0]-x[3] 0

0 0 x[1]1-x[2] x[0]-x[3]
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| prove now that ker defines a subbundle. This follows from the fact that the zero locus of
the Fitting ideal of the 4 x 4 minors of newcoker is zero dimensional. But from the explicit
ideal, minor below, we see that the zero locus is the point (0,0,0,0) € €* with multiplicity
4.

1% wedge newcoker 4 newminor

1% flatten newminor inewminor
[252k]

1% std inewminor sinewminor
computation complete after degree 6

1% codim sinewminor
component 1:

[4] 1111
codimension : 4

The next step contains the computation of the monad arrow S from SY o J.

1% submat newcoker phinew
! Tows 7 1..6
! columns 7 1..4

1% type phinew

x[0] 0 0 -x[3]
x[1] 0 0 x[2]

0 x[0]+x[2] O 0

0 x[1]+x[3] 0 x[0]+x[2]
0 0 x[0]+x[3] 2x[2]

0 0 x[1]+x[2] x[0]-x[3]

1% submat newcoker psinew
! rows 7 7..12

! columns 7 1..4

1% type psinew

x[2] 0 0 -x[1]
x[3] 0 0 x[0]

0 x[0]-x[2] © -2x[3]

0 x[1]-x[3] © x[0]+x[2]
0 0 x[0]-x[3] 0

0 0 x[1]-x[2] x[0]-x[3]

1% smult psinew -1 npsinew

42



1% transpose phinew phinewt
1% transpose npsinew npsinewt
1% concat npsinewt phinewt

1% copy npsinewt kernew

1% type kernew

-x[2] -x[3] © 0 0 0 x[0] =x[1] ©

0 0 -x[0]+x[2] -x[1]1+x[3] © 0 0 0 x[0]+x[2]
0 0 0 0 -x[0]+x[3] -x[1]+x[2] © 0 0

x[1] -x[0] 2x[3] -x[0]-x[2] © -x[0]+x[3] -x[3] x[2] ©

0 0 0

x[1]+x[3] 0 0

0 x[0]+x[3] x[1]+x[2]

x[0]+x[2] 2x[2] x[0]-x[3]

1% mult kernew newcoker res
[315k]
1% type res

0000
0000
0000
0000

rkernew.2 is the set of generators for all relations of kernew, where kernew is the transpose
of newcoker with respect to J. elem is the set of generators for all linear relations in
rkernew.2.

1% res kernew rkernew
computation complete after degree 1

1% betti rkernew

total: 4 12 16 12 4
-1 4 12 8 - -
0 - - 8 12 4

1% submat rkernew.2 elem
! rows 7 1..12
! columns 7 1..9

1% type elem
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0 0 0 0 -x[3] x[3]

0 0 0 0 x[2] -x[0]-x[2]

0 0 0 x[0]+x[2] © 15995x [1]

0 0 x[0]+x[2] x[1]+x[3] © x[1]1+159956x[2]+x[3]
2x[2] x[0]+x[3] © 0 0 -x[1]1-15995x[2]
x[0]-x[3] x[1]1+x[2] © 0 0 x[0]+x[1]+x[2]+15995x[3]
0 0 0 0 -x[1] -x[3]

0 0 0 0 x[0] o0

0 0 -2x[3] x[0]-x[2] © 15995x [1]

0 0 x[0]+x[2] x[1]-x[3] © x[1]-15995x[2]-x[3]

0 x[0]-x[3] 0 0 0 15995x [2]

x[0]-x[3] x[1]1-x[2] © 0 0 x[11-x[2]1-15995x[3]
x[3] x[0] -2x[2]1x[3]-4x[3]2

-x[0]-x[2] x[1] 2x[2]12-2x[1]1x[3]+4x[2]1x[3]
15995x[1]+15995x[3] © 2x[1]1x[2]+2x[1]1x[3]-x[2]x[3]

x[0]+x[2] 0 x[1]2-6x[1]1x[2]+3x[2]2+x[1]1x[3]-4x[2]x[3]
0 0 2x[2]2-x[2]1x[3]

0 0 -3x[1]1x[2]-3x[2]2+2x[1]1x[3]+x[3]2

-x[3] x[2] O

0 x[3] -2x[3]2

-15995x[1]+15994x[3] 0 2x[1]1x[2]+2x[1]x[3]-x[2]x[3]

x[2] 0 x[1]2-6x[1]x[2]-x[2]2-x[1]x[3]+4x[2]x[3]

0 0 2x[2]2-x[2]x[3]

0 0 -3x[1]x[2]1+3x[2]2+2x[1]x[3]-4x[2]x[3]+x[3]2

res is a random element in elem chosen, see page 25 step (1) and concatenated with the
old S = coker it provides the new S = newcoker.

1% mat rand <try.9
number of rows 79
number of columns 7 1

!

!

F(1,1) 70
1 (2,1) 70
1 (3,1) 70
1 (4,1) 70
1 (5,1) 70
1 (6,1) 70
P (7,1) 71
1 (8,1) 71
1 (9,1) 70

1% mult elem rand res
1% copy newcoker newcokerold
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1% concat newcoker res

1% type newcoker

x[0] 0O 0 -x[3] x[0]+x[3]

x[1] O 0 x[2] -x[0]+x[1]-x[2]

0 x[0]+x[2] © 0 15995x[1]+15995x[3]
0 x[1]+x[3] © x[0]+x[2] x[0]+x[2]

0 0 x[0]+x[3] 2x[2] 0

0 0 x[1]+x[2] x[0]-x[3] ©O

x[2] 0 0 -x[1] x[2]-x[3]

x[3] 0 0 x[0] x[3]

0 x[0]-x[2] © -2x[3] -15995x[1]1+15994x[3]
0 x[1]-x[3] © x[0]+x[2] x[2]

0 0 x[0]-x[3] 0 0

0 0 x[11-x[2] x[0]-x[3] 0

| prove now that coker defines a quotient bundle. This follows from the fact that the zero
locus of the Fitting ideal of the 5 x 5 minors is zero dimensional. But from the explicit
ideal, minor below, we see that the zero locus is the point (0,0,0,0) € k* with multiplicity
4.

1% wedge newcoker 5 newminor
1% flatten newminor inewminor

1% std inewminor sinewminor
computation complete after degree 7

1% codim sinewminor
component 1:

(4] 1111
codimension : 4

1% transpose newcoker newcokert
1% res newcokert rnewcokert
computation complete after degree 9

elapsed time : 1 second

1% betti rnewcokert

total: 5 12 15 13 5
-1 5 12 6<-—- - -
1 - - 5 4 1



& is now an instanton bundle with A°£(1) = 1 because according to the resolution of the
kernel bundle X has 6 dimensional space of linear sections, this is indicated by the arrow
<— above.

In a last step | check the smoothness of the moduli space MI(5) in the point [£], see 2.8.
The operator dy, which is called B here, is a morphism

k120 N k25 ® VV

Hence B is surjective if and only if ker(B) C k'*° is 20 dimensional. The position of this
dimension of ker(B) in the output of the betti command is indicated by the arrow <— .
These are the constant relations in the betti diagram

1% tensor newcokert newcokert B

1% res B Bres 5
computation complete after degree -1
elapsed time : 9 seconds

1% betti Bres

total: 25 120 170 100 25
-3 - - 20<—-- - -
-2 25 120 150 100 25
1% exit
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2.5.3 Program example 3

The instanton bundle £ with ¢;(£) = 5 constructed in this computation is an example
for an instanton bundle of NC-type with A°£(1) = 0. Moreover its monad is selfdual
in the meaning of page 7. I compute not a NC-type monad with cohomology &, but a
Beilinson-I-monad for the instanton £. Hence such a monad splits, see proposition 4.3.

0 — 30(-1)®20(-1) (i) 120 (Arerdel) 30(1)820(1) — 0 ¥

where J is the symplectic form ( 0] é ) and

0 — 30(-1) & 120 “% 30(1) - 0 (%)
defines the direct sum of null correlation bundles &,, © &,, @ &,, In the comments to the
program output I will refer to the steps in the explicit explanations of the algorithm,
see 25. The commentaries | added later are in a different font: sans serif. 1 skipped
parts of the output which are not essential for the understanding of the computation.
z[0],-- -, x[3] are the coordinates of Ps.

1% ring r

| characteristic (if not 31991) ?
! number of variables ? 4
I 4 variables, please 7 x[0]-x[3]
| variable weights (if not all 1) ?
| monomial order (if not rev. lex.) ?
largest degree of a monomial : 512

ker is A of the sequence (). | start the program with the matrix ker but in fact this matrix
is already generated by the Macaulay script, which provides also random matrices. The
same statement is valid for the matrix coker which is A o .J. So the sequence (*x) is now

fixed.

1% type ker

-x[2] -x[3] © 0 0 0 x[0] x[1] ©

0 0 -x[0]+x[2] -x[1]1+x[3] © 0 0 0 x[0]+x[2]
0 0 0 0 -x[0]+x[3] -x[1]+x[2] © 0 0

0 0 0

x[1]+x[3] 0 0

0 x[0]+x[3] x[1]+x[2]

1% res ker rkernew
computation complete after degree 0
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1% betti rkernew
total: 3 12 18 12 3

1% type coker

x[0] 0 0
x[1] © 0
0 x[0]+x[2] ©
0 x[1]+x[3] ©
0 0 x[0]+x[3]
0 0 x[1]+x[2]
x[2] 0 0
x[3] 0 0
0 x[0]-x[2] O
0 x[11-x[3] 0
0 0 x[0]-x[3]
0 0 x[1]-x[2]

1% mult ker coker result

1% type result

O O O
O O O
O O O

| prove now that ker defines a subbundle. This follows from the fact that the zero locus of
the Fitting ideal of the coker is zero dimensional. But from the explicit ideal, minor below,
we see that the zero locus is the point (0,0,0,0) € €* with multiplicity 4

1% wedge coker 3 minor
1% flatten minor mnrid

1% std mnrid rmnrid
computation complete after degree 4

1% codim rmnrid
component 1:
[4] 1111

codimension : 4

1% copy coker newcoker
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res is a random element in Ky chosen, see page 25 step (1) and concatenated with the old
S = coker it provides the new S = newcoker.

1% random 18 1 rand
1% mult rkernew.2 rand res
1% concat newcoker res

1% type newcoker

x[0] 0 0 12060x[0]+12767x[1]+10808x[3]

x[1] © 0 234x[0]+9084x[1]-10808x[2]

0 x[0]+x[2] © -15779x[0]+10988x [1]-15779x[2]-12780x[3]
0 x[1]+x[3] © -1275x[0]-8981x[1]-9498x[2]-8981x [3]

0 0 x[0]+x[3] -14476x[0]+13508x[1]+12503x[2]-14476x[3]
0 0 x[1]+x[2] 2390x[0]+5758x[1]+5758x[2]+3395x[3]

x[2] 0 0 -2749x[1]1+12060x[2] +234x[3]

x[3] 0 0 2749x[0]+12767x[2]+9084x [3]

0 x[0]-x[2] © -15779x[0]+4086x[1]+15779x[2]+14859x [3]
0 x[1]1-x[3] © 5627x[0]-8981x[1]+7419x[2]+8981x[3]

0 0 x[0]-x[3] -14476x[0]-940x[1]-6725x[2]+14476x[3]

0 0 x[1]-x[2] -15153x[0]+5758x[1]-5758x[2]-9173x[3]

| prove now that coker defines a quotient bundle. This follows from the fact that the zero
locus of the Fitting ideal of the 4 x 4 minors is zero dimensional. But from the explicit
ideal, minor below, we see that the zero locus is the point (0,0,0,0) € €* with multiplicity
4.

1% wedge newcoker 4 newminor
1% flatten newminor inewminor

1% std inewminor sinewminor
computation complete after degree 5

1% codim sinewminor
component 1:

4] 1111
codimension : 4

The next step contains the computation of the monad arrow S from SY o .J.

1% submat newcoker phinew
! rows 7 1..6
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! columns 7 1. .4

1% type phinew

x[0] 0 0 12060x[0]+12767x[1]+10808x[3]

x[1] © 0 234x[0]+9084x[1]-10808x[2]

0 x[0]+x[2] © -15779x[0]+10988x [1]-15779x[2]-12780x[3]
0 x[1]+x[3] © -1275x[0]-8981x[1]-9498x[2]-8981x [3]

0 0 x[0]+x[3] -14476x[0]+13508x[1]+12503x[2]-14476x[3]
0 0 x[1]+x[2] 2390x[0]+5758x[1]+5758x[2]+3395x[3]

1% submat newcoker psinew
! rows 7 7..12

! columns 7 1..4

1% type psinew

x[2] 0 0 -2749x[1]1+12060x[2] +234x[3]

x[3] 0 0 2749x[0]+12767x[2]+9084x [3]

0 x[0]-x[2] © -15779x[0]+4086x[1]+15779x[2]+14859x [3]
0 x[1]1-x[3] 0 5627x[0]-8981x[1]+7419x[2]+8981x[3]

0 0 x[0]-x[3] -14476x[0]-940x[1]-6725x[2]+14476x[3]

0 0 x[1]-x[2] -15153x[0]+5758x[1]-5758x[2]-9173x[3]

1% smult psinew -1 npsinew

1% transpose phinew phinewt
1% transpose npsinew npsinewt
1% concat npsinewt phinewt

1% copy npsinewt kernew

1% type kernew

-x[2] -x[3]

0 0

0 0

2749x[1]1-12060x[2]-234x[3] -2749x[0]-12767x[2]-9084x[3]

0 0
-x[0]+x[2] -x[1]+x[3]

0 0
15779x[0]-4086x[1]-15779x[2]-14859x[3] -5627x[0]+8981x[1]-7419x[2]-8981x[3]



-x[0]+x[3] -x[1]+x[2]
14476x[0]+940x [1]1+6725x[2]-14476x[3] 15153x[0]-5758x[1]1+5758x[2]+9173x[3]

x[0] x[1]
0 0
0 0

12060x[0]+12767x[1]1+10808x[3] 234x[0]+9084x[1]-10808x[2]

0 0
x[0]+x[2] x[1]+x[3]
0 0

-15779x[0]+10988x[1]-15779x[2]1-12780x[3] -1275x[0]-8981x[1]1-9498x[2]-8981x[3]

0 0
0 0
x[0]+x[3] x[1]+x[2]

-14476x[0]+13508x[1]+12503x[2]-14476x[3] 2390x[0]+5758x[1]+5758x[2]+3395x[3]
1% mult kernew newcoker res

1% type res

0000
0000
0000
0000

rkernew.2 is the set of generators for all relations of kernew, where kernew is the transpose
of newcoker with respect to J. elem is the set of generators for all linear relations in
rkernew.2.

1% res kernew rkernew
computation complete after degree 1

1% betti rkernew

total: 4 12 16 12 4
-1 4 12 8 - -
0 - - 8 12 4

1% submat rkernew.2 elem
! rows 7 1..12

! columns 7 1..8

1% type elem
8241x[0]-15389x[1]1+13892x[3] 6373x[0]-13062x[1]-8874x[3]



-15387x[0]-4712x[1]1-13892x[2]
9138x[0]+9138x[2]+7358x[3]

15123x[0]-8515x[1]1+7765x[2]-8515x[3]
3559x[0]-2561x[1]+8450x[2] +3559x [3]

x[0]-4579x[1]-4579x[2]-11010x[3]
8241x[2]-15387x[3]
-15389x[2]-4712x[3]
9138x[0]-9138x[2]+9103x [3]

15123x[0]-8515x[1]+7765x[2]+8515x[3]
3559x[0]-2561x[1]+8448x[2]-3559x[3]

x[0]-4579x[1]+4579x[2]-5888x [3]

13978x[0]+2285x[1]-14377x[3]
-1527x[0]+1576x[1]+14377x[2]
347x[0]1-9471x[1]+347x[2]+7762x[3]
x[0]+2932x[1]+14759x[2] +2932x[3]
0

0

13978x[2]-1527x[3]
2285x[2]+1576x[3]
347x[0]-9471x[1]-347x[2]+7760x[3]
x[0]+2932x[1]+1710x[2]-2932x[3]

0

0

-4455x[0]-9874x[1]+8094x [3]
14750x[0]+4304x[1]-8094x[2]
-9333x[1]+267x[3]
3280x[1]-9600x[2]+3280x[3]
-7755x[1]1+10230x[2]
x[0]-14813x[1]-14813x[2]+14007x [3]
-4455x[2]+14750x [3]
-9874x[2]+4304x[3]
-9333x[1]+267x[3]
3280x[1]+9066x[2]-3280x[3]
-7754x[1]1+10229x[2]
-14813x[1]+14813x[2]-2475x[3]

10003x[0]+15400x [1]+8874x[2]
-7727x[0]-14070x[1]-7727x[2]+12737x[3]
-9078x[0]+7037x[1]-3894x[2]+7037x[3]
x[0]+x[3]

x[1]+x[2]

6373x[2]+10003x[3]
-13062x[2]+15400x[3]
-7727x[0]-14070x[1]+7727x[2]-1098x[3]
-9078x[0]+7037x[1]-7745x[2]-7037x[3]
x[0]-x[3]

x[1]-x[2]

-1527x[0] -15062x[0]-1194x[1]-13507x[3]
-1527x[1] 5586x[0]+2486x[1]+13507x[2]
x[0]+x[2] ©

x[1]+x[3] ©

0
0

0
0

-1527x[2] -x[1]-15062x[2]+5586x[3]
-1527x[3] x[0]-1194x[2]+2486x[3]

x[0]-x[2] O
x[1]-x[3] 0
0 0
0 0
5443x[0]-3574x[1]1+14045x[3] x[0]
-10464x[0]-11602x[1]-14045x[2] =x[1]
-9387x[1]-5443x[3] 0
x[0]+4132x[1]-3943x[2]+4132x[3] 0
0 0
0 0
5443x[2]-10464x[3] x[2]
-3574x[2]-11602x[3] x[3]
-9386x[1]-5444x[3] 0
4132x[1]+14830x[2]-4132x[3] 0
0 0
0 0

res is a random element in elem chosen, see page 25 step (1) and concatenated with the
old S = coker it provides the new S = newcoker.

1% random 8 1 rand

1% mult elem rand res



1% copy newcoker newcokerold
1% concat newcoker res

1% type newcoker

x[0] 0 0 12060x[0]+12767x[1]+10808x[3]

x[1] © 0 234x[0]+9084x[1]-10808x[2]

0 x[0]+x[2] © -15779x[0]+10988x [1]-15779x[2]-12780x[3]
0 x[1]+x[3] © -1275x[0]-8981x[1]-9498x[2]-8981x [3]

0 0 x[0]+x[3] -14476x[0]+13508x[1]+12503x[2]-14476x[3]
0 0 x[1]+x[2] 2390x[0]+5758x[1]+5758x[2]+3395x[3]

x[2] 0 0 -2749x[1]1+12060x[2] +234x[3]

x[3] 0 0 2749x[0]+12767x[2]+9084x [3]

0 x[0]-x[2] © -15779x[0]+4086x[1]+15779x[2]+14859x [3]
0 x[1]1-x[3] 0 5627x[0]-8981x[1]+7419x[2]+8981x[3]

0 0 x[0]-x[3] -14476x[0]-940x[1]-6725x[2]+14476x[3]

0 0 x[1]-x[2] -15153x[0]+5758x[1]-5758x[2]-9173x[3]

-5416x[0]+5025x [1]+4981x[3]
5708x[0]-3914x[1]-4981x[2]
-8714x[0]-1337x[1]-8714x[2]+10631x[3]
10697x[0]-429x[1]-1271x[2]-429x[3]
9322x[0]+5730x[1]-5387x[2]+9322x[3]
3457x[0]+15052x[1]+15052x [2] +14574x[3]
11496x[1]-5416x[2]+5708x[3]
-11496x[0]+5025x[2]-3914x[3]
-8714x[0]+10030x[1]1+8714x[2]+604x[3]
-670x[0]-429x[1]-9964x[2]+429x[3]
9322x[0]-15950x[1]-1990x[2]-9322x[3]
-6854x[0]+15052x[1]-15052x[2]-7197x[3]

| prove now that ker defines a subbundle. This follows from the fact that the zero locus of
the Fitting ideal of the 5 X 5 minors of newcoker is zero dimensional. But from the explicit
ideal, minor below, we see that the zero locus is the point (0,0,0,0) € £* with multiplicity
4.

1% wedge newcoker 5 newminor
1% flatten newminor inewminor

1% std inewminor sinewminor
computation complete after degree 6

1% codim sinewminor
component 1:
4] 1111



codimension : 4

1% transpose newcoker newcokert

1% res newcokert rnewcokert
computation complete after degree 7

elapsed time :

1% betti rnewcokert

total: 5 12
-1 5 12

0: - -

1: - -

£ is now an instanton bundle with A°£(1) = 0 because according to the resolution of the
kernel bundle K has only a 5-dimensional space of linear sections, this is indicated by the

arrow j— above.

In a last step | check the smoothness of the moduli space MI(5) in the point [£], see 2.8.
The operator dy, which is called B here, is a morphism

Hence B is surjective if and only if ker(B) C k'*° is 20 dimensional. The position of this
dimension of ker(B) in the output of the betti command is indicated by the arrow j—.
These are the constant relations in the betti diagram

2 seconds

k120

1% tensor newcokert newcokert B

[1259k]
1% transpose B Bt

1% res B Bres 5

N k25 ® VV

computation complete after degree -1

11% betti Bres

total: 25 120
_3: _ _
-2 25 120
1% exit



3 Complements on null correlation bundles

This chapter is preparatory for the next one. Proposition 3.9 I shows that the two
products of two sections s,¢ € HE,(1) defined in 3.6 and 3.8 are isomorphic. This
means the diagram 3.9 commutes and B in this diagram is an isomorphism.

3.1 Digression on conics in the Grassmannian of lines G(2,4),
and reguli in the projective 3-fold

We can describe the relations between conics C' in ((2,4) and quadrics () in P53 in
terms of the incidence diagram:

P

r — s Ge

q ‘
P

where [F' is the incidence variety of points and lines in Ps := P(V) and ¢, p are the
natural projections. If we restrict p to the conic C' C G(2,4) we get:

i — C

Q= qp " (C)

such that @ := ¢p~!(C) is a quadric surface. (p~'(C') — C is a P;-bundle and ¢ is
one-to-one on p~'(('))

Definition 3.1 (associated quadric) The quadric Q := ¢p~*(C) in the incidence
diagram above 1s called the associated quadric to the conic C. One can also say that
the quadric () 1s “swept out” by the linear system L parameterized by the conic C'.

Remark 3.2 Classically the pair (@, L) is called a regulus.

A description including the singular cases is given in [22]. We can restrict ourselves to
the cases A,D and G of the classification in [22] for which the unique plane P C PA*V
containing C' is not contained in (G(2,4) because in our case the plane contains always
the point (a) € PA?*V \ G(2,4), representing the null correlation bundle [£,]. Therefore
C = G(2,4) N P, see 3.4. Hence I list only type A, D and G of the classification of
reguli in [22]:
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A a smooth quadric with ¢ one-to-one on p~(()

P
Q
S
D two planes intersecting in a line
P
K Q
S —_—
G a double plane blown up in one point
P
Q
S
Remark 3.3 (1) Observe that in the general classification given in [22] the conic

is not unique for quadrics but it is for reguli.

(2) It is well known that any smooth quadric in P3 is uniquely determined by
three lines lying on it.

(3) Following the last remark we can construct the quadric associated to a smooth
conic C' by choosing three points on C.

3.2 Equivalence of pairings

In this paragraph I apply now the remark on conics in G(2,4) to the already announced
equivalence of pairings, defined in 3.6 and 3.8. First the geometric meaning of a linear
section of a null correlation bundle is explained. For the following the definitions and
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prerequisites about duality in 0.1. First I want to describe the zero locus of a linear
section of a null correlation bundle. By 0.1 one has the exact diagram:
0 — 9*3) 5 Q1) - & — 0
la d
O(-1)
Thus I obtain the cohomology sequence:
0 — AWY — AVY — HUE(1) =5 0

U no S

E 5 AW
Hence A*V/({a) ~ H°E,(1). Thus a section 5 € H°E,(1) corresponds to a line {a)(s) in

PA%V. where s is a representative of 5. This is visualize in the picture below

Moreover (a) is the point in the moduli space PA?V \ G(2,4) ~ MI(1) corresponding
to £. Summarizing we have:
Lemma 3.4 Let &, be a null correlation bundle, then

(1) a section 5 € HE,(1) defines a line in PA*V through (a) and vice versa.

(2) The zero locus V(s) of s is the union of the two lines in P3 defined by the
points of intersection {1 and {3 in (a){s) N G(2,4).

Remark 3.5 This lemma above is a special case of [8][lemma 1.4]

I want to define now a “pairing” of two sections of £(1) in two different ways and shall
show that they are isomorphic.

Let &, be a null correlation bundle. If we choose an isomorphism a : det(&,(1)) — O(2)
we obtain a morphism J(«)

EM)@EN) D det(E,(1) > OQ2)

where J is the canonical pairing.
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Definition 3.6 (definition 1) Let &, be a null correlation bundle and s, € H°(E,(1))
linear sections. Let tY o J o s be the composition:

0O % &1 S en L 0o
This composition induces a pairing

A: H°E(1)® H°,(1) — H°O(2)
st — tYoJos

Before I can continue with the second definition I recall some facts about the cup
product, see Godement [11]pp.255 . I want to mention only the results for the special
case needed to define the multiplication.

Let € and F locally free sheaves. The cup product in degree 0 is defined as follows

U: HYX, &)@ H'(X,F) — HYX,EQF)
st = (2o s, ®ty)

where s, and t, are the germs of s and ¢ in the stalks £.,and F,. Note that this cup
product is neither surjective nor injective in general.

I fix here the notation for fibres used in the sequel. Let © = (v) € P(V), then:

E, = & /mi&y

O, (=1)/m,O(-1)
O:(1)/m.O(1)
(e~ 0.(2)/m,0)

——
<
=
12

—~
<
~—
<
12

where m, is the maximal ideal in the local ring O,.

Notation 3.7 Let &€ a vector bundle and s € H°E(1) a section. In the sequel I denote
by s(x) the class of the germ s, € &, in &, /m.E,.

Let o : A?£,(1) — O(2) be an isomorphism, hence there is an isomorphism

a(z) : A*E, — k. Then I define the duality pairing on the fibres E, by:

E.QF, — k
(@n = J(@)(E)n) = alz)(EAn)

where a(z) is the restriction of
a: AE(1) — 0O2)

to the fibre £,. I am now prepared to give the second definition.
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Definition 3.8 (definition 2) Let &, be a null correlation bundle, o : det(&,(1)) —
O(2) and s,t € HE,(1), then there ezists a pairing B:

B: HYE,(1)® H°C,(1) — H°0(2)
s®t — B(s®t)

where B is defined as the composition:

HO(E,(1) @ H°,(1)) = HY(&()®E(1) — HOA,(1) S H°0O(2)
s®t — (x> s ®1y) (2> s Aty) = (2> als; Aty))

I denote by coq(s,t) := (x — afs, At;)) where ¢, indicates the scalar factor caused by
the choice of .

The next proposition will justify the third definition of the product which is the most
convenient for explicit calculations.

Proposition 3.9 Under the assumptions made above we obtain :

(1) Both maps A and B as in definition 3.6 and 3.8 factor over A*H°(E,(1)) as
follows:

HOE,(1) ® HE,(1) H°O(2)

N7y
AZHOE,(1)

(2) tYoJos=cyq(s,t)=V(sAl) as in definition 3.8

Proof:
The claim (1) is obvious by the universal property of the wedge product for anticom-
mutative maps.

for (2) it is sufficient to show that ¢(z)Y o J(z) o s(z) = caq(s,t)(z) is valid. The
sequence in 3.6 restricted to the fibres looks as follows:

By twisting with (v)¥ I obtain:
e@)y B Bewy T ey S (0)"e*
Too®! = s@)@) @0 = J@)s)

Note that:



and (v) ® (v)¥ ~ k. Hence the evaluation map yields

J(@)(s(2) (0)t(x) ® v )0 = J(e)(s(2)(0)i(x)0 = a(s(z)(v) At(z)(v))

where V() is the map defined by u(z) o t(z) for u(z) € EY:
¢

Wy 9 g,
N 1 u(z)
k

((s,t) describes the dependency locus of s and ¢:

Lemma 3.10 Let Q)(s,t) be the zero locus of the quadric ¢(s,t) defined by V((z —
sz ANtg)) = V((x > Asp + vty)) ,where A\, v # (0,0), then:

Vis At) = Q(s,1)
Proof: I proceed now showing both inclusions separately

(1) V(s A1) C Qs
Let € V(s At) hence As(z) + vt(z) =0 = s(z) At(z) =0 = ¢(s,t)(z) = 0.
Therefore the first inclusion is valid

(2) V(sa Atz) D Qs,t)
Let @ € Q(s,t) then by 3.4 there exist two lines [; and [ in P3 with x € [; U L.
The two representatives of s and ¢ define a line which intersects the line (l1)(l3)
one in a point As(x) + vt(z) for appropriate A and v. Hence x € V(s + vt)). |

visualize this in the picture below
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3.3 The geometric interpretation of the multiplication

We have already seen in 3.4 that a section of &,(1) defines a line in P(A?V) containing
the point (a) which represents the null correlation bundle. Two sections s and ¢ together
with the point (a) define a plane P C PAV? which is not contained in ((2,4) because
(a) is indecomposable. Therefore the intersection P N G(2,4) is a conic. According to
definition 3.1 we have the associated quadric in #3 which is the dependency quadric of
s and t, and according to lemma 3.10 it is Q(s,1).

/P

<a>

G(2,4)

The next proposition is the key for the pairings defined in 3.6, 3.8 to be isomorphic to
the wedge product.

Proposition 3.11
U: A?HO(E(1) — H0(2)
with
U(sAt)=1t"0Jos=cuq(s,t)

18 an isomorphism

Proof:
It is sufficient to prove that there exist 10 planes in PA*V containing (@) such that the
equations of their associated quadrics form a basis of S?VV.

I fix now a basis €g,---,e3 of V and its dual basis of coordinate functions Zg,---, Z3.
Hence I get a basis {e; A €;}:2; of A*V and the Pliicker coordinates {P;; = Z; A Z;}iz;
forming a basis of (A*V)V. There are several possible orderings for the Pliicker coordi-
nates. I choose once and for all the lexicographical ordering:

(P017P027P037P127P137P23)
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I recall now that the pairing A = B : H°E,(1) ® H°E,(1) — H°O(2) factor not only
over A*H°E,(1) but over the affine cone over the Grassmannian of lines in H°E,(1) ,

G(2,5) C PA*H°E,(1), because the image of
A: HUE(1)® HYE, (1) — A*HYE,(1)

consist of decomposable elements. Hence a vector s At with 0 # s,t € HYE, (1)
represents a line in PA*V/({a) in other words a plane in PA*V which contains the
point (a). I fix now without loss of generality once and for all the point (a) ¢ G(2,4)
to be the point in PA?V with the Pliicker coordinates:

(1:0:0:0:0:1)

Obviously this point is not contained in G(2,4) = V(Po1 Pas — Po2 P13 + P2 Pos). After
this choice of (a) I can list now the 10 planes as follows. I choose 5 points in general
position in PA*V different from (a) given by their Pliicker coordinates.

s (1:0:0:0:0:0)
s (0:1:0:0:0:0)
83 (0:0:1:0:0:0)
S4 (0:0:0:1:0:0)
S5 (0:0:0:0:1:0)

The lines (s;)(a) ¢ € {1,---,5} which intersect only in (a) define as in proposition
3.4 linear independent sections s; i € {1,---,5} € H°E,(1). Hence the 10 vectors
5 Nsjig e {l,---,5}, © # j define 10 planes in PA*V which I shall denote by
Hij v,5 € {1,---,5}. I list now these planes together with their equations in the
Pliicker coordinates of PA%V and their associated quadrics, see 3.1, given as an element
in H°O(2). Obviously the 10 quadrics in the list below are independent.

Plane | Equations of the plane | Quadric in £3

H12 P03:P12:P13:0 ZOZ2
H13 P02:P12:P13:0 Z0Z3
H14 P02:P03:P13:0 Z1Z2
H15 P02:P03:P12:O Z1Z3
H23 P12:P13:P01_P23:0 Z12
H24 P03:P13:P01_P23:0 Zg

H25 P03:P12:P01_P23:0 Z0Z1+Z2Z3
H34 P02:P13:P01_P23:0 ZOZI_ZQZS
HSS P02:P12:P01_P23:0 222
H45 POZZPOSZPOI_PZSZO Zg

It remains now to compute the associated quadric to the planes to finish the proof. It
takes too much time and is not further alluding to do the computation in all 10 cases.
Thus I shall prove this lemma in two exemplaric cases: Hiy and Hss.
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3.12 (Plane 25) A Quadric @) in 3 can be defined by a symmetric 4 x 4 matrix
A(Q) modulo k* via the equation:

a0,0 P a370 go
(Z07 Z17 Z27 ZS) Z: = (lo,oZg R GS,SZ:)? =0
Gpg3 -+ (33 Zs

I determine now the associated quadric to the conic C by taking three points on C
representing 3 lines on () the determine () completely. First I collect the ideals in the
coordinate ring needed.

IP025 = {P037P127P01_P23}
Ic = {Puys, Prz, Por — Pa3, Py — PoaPris}

I choose now three points on C' defined by their ideals in the coordinate ring are:

Ipl:Z(P01,P03,P12,P13,P23) P12(010000)€JID5
IP2:Z(P01,P02,P03,P12,P23) P2:(000010)€E)5
IPS = (P()l—P23,P01—P027P03,P12,P02—P13) P3:(110011)EJID5

The point P; is the vector eg A e3 which represents the line ¢y + Ae; C P3 which has
the coordinates (1,0, A,0).

The fact that the line with the parameterization (1,0, ,0)" lies on the quadric deter-
mined by a matrix A(Q) is equivalent to:

Goo -+ A30

(1,0,),0) = ago + 2Xagz + Nazp =0

1
0
A
0

Gg3 -+ A33

Hence agp = ag2 = az2 = 0. Analogously the point P, gives a17 = a13 = az3 = 0. To
proceed we must compute the coordinate of the line defined by the third point Fs:

Claim 3.13 The incidence diagram for lines and points in P3 is:

ey — C

Q:=qp~'(C)

then it follows for the third point Py € A*V with coordinates (1 :1:0:0:1: 1) the
line (.= pq=(Ps) € P3 C P3 has the ideal T, = (Zo — Z3, Z1 — Z3).

Proof:

This results from the equation below. It is easy to guess what the coordinates of the
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desired line pg~*(P3) if one takes into account that the Piicker coordinates are the 2 x 2

minors of the embedding of P, onto the line in P3
1
0
#

E)l - E)S
1
W = i ()
Therefore ag3 = a13 = 0 and ag; = az3 = 1 by the same reasoning a s for the points
P, and P,. Thus the quadric defined by the plane P3¢ is the smooth hypersurface with
the equation

0 0
11

To = (ZoZh + Z273)

The singular cases (D,G) in the classification 3.1 are easier to handle if one remem-
bers that any line P1 C (G(2,4) is a Schubert cycle o(q, P) of all lines in a plane P
intersecting in a point ¢ € P.

o(¢,P):={l|qelDPCPs}

3.14 (Plane 12)
Cia:=G(2,4) N Hiy = I¢ := {Pos, P2, Pis, Po1 Pas}
Thus 33 is reducible and consists of two lines:
C=0(LUl Ls, = {Fos, P12, Pi3, Pos} Iy, = {Pos, P12, P13, Po1}
which intersect in P and Zp = {Fo1, Pos, P12, P13, P23}
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The line ¢; is now the Schubert cycle (g, P) of all lines in the plane P containing the
point ¢, where Zp = (Zy) and I, = (Zy, Z1, Z2) because all lines parameterized by [
are linear combinations of the lines in 3 defined as aZy+ 6Z; = 0 and ¢Zy + dZ; = 0.
This follows from the fact that

O]’(Anf)/l—ﬁl a Ofl =~ k[P()l,POQ].

Analogously the plane for the Schubert cycle ¢; is defined by Zp = (Z;) and Z, =
(Zo, Z3, Z3). Thus we observe that the desired quadric is given by

Lo = (Zo22)

The remaining eight cases can be solved in a completely analogous way. Hence there
are 10 planes in PA*V containing (a) which give 10 independent quadrics. #

Remark 3.15 As we have seen in the proof above, two conics cut out by two planes
having a point in common can not determine the same quadric in 3. which is not
obvious. For instance a smooth conic in P3 has two rulings.

Remark 3.16 Thus we can compute the syzygies of a morphism
(m+ 1) - nO(1)

in the exterior algebra. This is very helpful if one wants to construct vector bundles
explicitly with the aid of the computer algebra system SINGULAR. [24]. Moreover we
can use this algebra structure to prove conjectures on the dimension of cohomology
groups for certain classes of instanton bundles. This will be done in the next chapter.
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4 Instantons of NC-type

4.1 Summary of chapter 4

In this chapter instantons £ of NC-type are built using the algorithm introduced in
2.3. As already mentioned in the chapter 2 the multiplication in the algorithm need
some further explanations. Most of these preparations were done in the chapter ”Com-
plements on null correlation bundles”.

Unfortunately the criterion used in lemma 2.6 in chapter 2 to validate for instantons
which a defined by Beilinson-I-monads that they are smooth points of the moduli
scheme does not work for NC-type monads. This problem can be solved by a compari-
son theorem between NC-type and Beilinson-I-monads. Hence the smoothness question
for NC-type-monads can be returned to case of Beilinson-I-monads.

The chapter proceeds with three program examples. I determine in these examples the
dimension of H°E(1) for the constructed instanton bundles €. These explicit compu-
tations suggested propositions on the dimensions of H°€(1) not only for the examples
but also for whole families.

4.2 The algorithmic construction of instantons of NC-type

I recall the notion of a selfdual NC-type-monad first, see also p.6.
A selfdual NC-type-monad is a complex

0 - mO(=1) > (m+1)E, gt mO(l) — 0

where &, is a null correlation bundle and J is a symplectic pairing:
J: (m+1)&, 3 (m+ 1)EY
The complex satisfies the following ”subbundle” condition:

Im(a)N (km+1 ® o) =0V nonzero o € AZV/(a> ~ HOEa(l)

Remark 4.1 (1) This subbundle condition is a consequence of lemma 5.2:
If the rank of @ is not constant, then there exist a linear combination t =
(t1,++,tms1) of rows of S such that V(t) # 0. The matrix S factors over the

kernel bundle K:

mO(1) K

NOF o
(m+ 1)&,
Hence, according to lemma 5.2, there exists a ¢ € H°E,(1) and a vector a :=
(a1, @my1) € K™ such that

t=1(a1, ,am41) Q0.
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(2) For the computations with SINGULAR a general linear combination of rows of
the matrix a is represented in a basis sq,---,s5 of HYE, (1), see 4.7, i.e.:

(517"'755)OA: (tlv"'7tm+1)

If there exists such a linear combination as in (1) t = a ® o with a € k7t and
o € H°E,(1), then all 2 x 2-minors of the coefficient matrix A must vanish.

I apply now the results of the chapter ”Complements on null correlation bundles” on
the multiplication to direct sums of a null correlation bundle (m 4 1)&,. Let A be the

pairing
A: HU,(1)® HY,(1) — H°0O(2)
t®u — toJouV
defined in the definition 3.6. This pairing extends linearly to direct sums of H°E,(1).
A @Tr-l-l HO ( )® @m-l-l HOg (1) N HOO(Q)
Sl @ oAy, = Ym0 JouY

Analogously the wedge product
A: HUE(1)® HYE, (1) — A*HOYE,(1)
tRu — tAu

extends to

A @ HOE, (1) @ @7 HOE, (1) —  AZHCE,(1)

YL @ Y g = YR A
It is already known by proposition 3.11 that the pairings A and A are linearly isomor-
phic via W. Therefore A and A are isomorphic too:

@It HOE, (1) ® @It HOE, (1)

HOAE,(1) ~ H°O(2)

ATy
A?HYE,(1)
Proposition 4.2 The pairing
A: @ HYE, (1)@ @t HOE, (1) — H°0O(2)
POHRE AR PHaRRTE - Y rthtioJou

can be computed as
A @MV HOE (1) @ @ HOE, (1) —  A*HYE,(1)
Yt @ T = I A
by the computer algebra SINGULAR.

The algorithm 2.3 introduced in the chapter 2 for Beilinson-I-monads is in fact more
general. It requires only a multiplicative pairing which can be handled by a computer
algebra system. Therefore it is possible to use the algorithm 2.3 for the construction
of NC-type-monads.
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4.3 The correspondence between NC-type monads and Beilinson-
I-monads

For monads of NC-type one cannot apply lemma 2.6 to prove the smoothness of the
moduli space. Nevertheless there exists a correspondence for an instanton £ between
its NC-type monad an the Beilinson-I monad. I shall describe this explicitly, so it is
always possible to use the Beilinson-I monad to prove the smoothness of M1(¢3(€)) in
[€]. This I want to do in this paragraph.

First I recall the display of the Beilinson-I monad

0 — (m+1)O(-1) & 4m+1)0 L (m+1)0(1) - 0
of a direct sum of null correlation bundles (m + 1)&,. This is in principle the “tool”
which connects a Beilinson-1 monad with the corresponding null correlation type monad
for an instanton bundle £.

0 0
! !
0 - (m+1)0(-1) —— Ko — (m+1)& - 0

0 - (m+1)0(-1) —— 4(m+1)0 — Co/;er — 0

(m+1DO(l) ——= (m+1)O(1)
! l
0 0

I start now with a NC-type monad
0 > mO(=1) 5 m+1E& 5 mo(1) - 0

and construct in two steps the associated Beilinson-I monad:
step 1:
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I proceed with the aid of the top row of the monad above.

0 0
! !
(m+ )O(-1) ——  (m+1)O(~1)
A
()
0 - (2m+1)0(-1) —— Ko —— mO(1)
| |
0 -  mO=1) — % (m4DE  —— mO()
! !
0 0

The diagram above is not exact, the middle and the bottom rows only are monads.

The morphisms

é: mO(-1) — (m+1)E&
v (m+ 1) — mO(-1)

lift to morphisms:

¢’ mO(=1) — K(-1)
o Ko - mO(-1)
because the obstruction Exzt!(mO(—1), mO(—1)) vanishes.
0 — Hom(mO(=1),(m + 1)O(=1)) B Hom(mO(-1),Kq) —
— Hom(mO(-1),(m+ 1)&,) — 0
0 — Hom((m + 1), mO(1)) —» Hom (Ko, mO(1)) >
= Hom((m +1)0(~1),mO(1))

step 2:
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The next step is a pullback diagram.

0
¥ !
0 - (2m+1)0(-1) —— Ko — mO(1) - 0

0 - (2m+1)O(-1) L Hm+1)0 —— 2m+1)O(1) — 0

: |

(m + 1HO(1)

(m 4+ 1)O(1)
l
0 0

| | |
|

Again the diagram above is not exact, the middle and the top rows are monads.
¢ mO(—1) — Ko(-1)

' Ko — mO(—1)

lift to morphisms:

qZ)’ : mO(-1) - 4(m+1)0
';/N)’ : Am+1)0 - mO(-1)
because the obstruction Ezt!((2m + 1)O(1), (m + 1)O(1)) vanishes.

0 — Hom((m + 1)O(1),(2m + 1)O(1))) 5 Hom(4(m +1)0,(2m + 1)0O(1)) —

— Hom(Ko,(2m 4+ 1)O(1) - 0 (4.3.26)
A

0 — Hom((2m + 1)O(1),Kq) — Hom((2m + 1)O(1),4(m + 1)O0)) S
A Hom((2m + 1)O(1), (m + 1)O(1))  (4.3.27)
Ko is a pullback.

Thus a Beilinson-I-monad
_ (%) (B4)
0 —- (2m+1)0(-1) = 4(m+1)0 — (2m+1)0(1) — 0
is constructed from a given NC-type-monad

0 — mO(-1) 2 (m+1)&, LA mO(l) — 0.

One should remark that the lifting ¢ and ¥’ are not unique. Moreover both monads
have isomorphic cohomology bundles.
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Proposition 4.3 Let (m+1)&, a direct sum of null correlation bundles defined by the
Beilinson-I-type-monad
0 > (m+1)O(-1) & 4m+1)0 5 (m+1)0O(1) - 0
and £ and instanton of NC-type with monad
0 — mO(-1) 5 (m+1& 5 mol1) — 0
then there exist a Beilinson-I-type monad

()

0 - Em+)o-1) % amino B

2m+1)0(1) — 0

for € and ¢' and ¥’ are liftings of the map v and ¢ in the NC-type-monads to maps in
Hom(mO(-1),4mO) and Hom(4mO,mO(1)) respectively.

The proposition 4.3 shows now how to decide whether an instanton given as the coho-
mology of a monad of NC-type is a smooth point of the moduli space MI(cz(E)).

Proposition 4.4 Let £ be an instanton bundle defined as the cohomology of a monad
of NC-type

0 — mO(-1) 4 (m+1)&, 4 mO(1l) — 0 -

Then [E] € M1(cy(E)) is a smooth point if and only if the cokernel
B o 7,
coker i ®id | id® (B,¥") ] =0

where A, ¢! and ¥’ are defined by the associated Beilinson-I-monad according to propo-
sition 4.3:

?) (59)

0 — (2m+1)0(-1) & 4m+1)0 (2m+1)0(1) — 0

vanishes.

Moreover there exists a lifting of a Beilinson-1 monad which has a splitting in the sense
of proposition 4.5 to a NC-type monad. We have already seen that the monad arrows
of the NC- type-monad lifts properly with respect to f. One sees from the sequence
4.3.24 on page 69 that

P A(m+1)0 - mO(-1)

lifts to morphism

P Ko — mO(-1)
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if and only if ';/N)’ is not in the image of A. This can be attained easily by a simple base
change of (2m + 1)O(1) which keeps the subvector space (m + 1)O(1) invariant.

Analogously
P Ko — mO(-1)

lifts to
v (m+1)& — mO(-1)

iff it is not in the image of BY again a base change of (2m + 1)O(1) remedies the
situation. Hence we have a converse of the proposition 4.3.

Proposition 4.5 Let £ be an instanton bundle being the cohomology of a Beilinson-
I-monad where the left and right monad arrows decompose as follows

(+)

0 (m+ DO(=1) @ mO(-1) % a(m +1)0 )

k)
—

(m+1)O(1) &mO(1) - 0,
where A, ' are subbundles. Then € is the cohomology of a NC-type monad.
0 — mO(-1) 2 (m+1)&, 2 mO(l) — 0

where ¢' and ¥’ are appropriate lifts of ¢ and ¥ respectively.

As I already mentioned before it is much more pleasant to work with self dual monads
in the meaning of page 7. For any instanton &£ the Beilinson-I-monad can be chosen to
be self dual, see lemma 2.2. This cannot be shown for NC-type monads.

Remark 4.6 Albeit only direct sums of null correlation bundles (m + 1)&, are men-
tioned in this chapter 4.3 these result are valid in the more general situation where
(m + 1)&, is replaced by any cohomology bundles of a monad of type:

0 — (m+1)O(-1) 3 4m+1)0 & (m+1)0(1) - 0
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4.4 Examples of NC-type-monads
4.4.1 Program example 4

The instanton bundle &£ constructed in this program output is an example for an
instanton of NC-type. Moreover its monad is selfdual in the meaning of 0.1.1. i.e.: it
has a monad of type

0 - 30(=1) > 4§,

T 30(1) = 0

Its second Chern class ¢2(€) = 7. The null correlation bundle &, is here not specified,
hence I constructed a whole family where the null correlation bundle &, and hence the
x; vary.

The first row of the matrix S consists of 4 independent vectors which is the maximal
possible number. Thus for generic examples h°£(1) = 1 by proposition 4.11. This
result is reproved by explicit computation.

In the comments to the program listing I shall refer to the steps in the explicit explana-
tions of the algorithm, see 25. The commentaries I entered later are in a different font:
sans serif. I skipped parts of the output which are not essential for the understanding
of the computation. The SINGULAR program code is echoed in the lines which start
with ”Versuch.unab.44”.

Versuch.unab.44 1> ring r=101,(s(1..4)),(c,dp);
Versuch.unab.44 2> alternating=1;
Versuch.unab.44 3> option(protocoll);
Versuch.unab.44 4> <"1ib";

Versuch.unab.44 5> ideal m=s(1),s(2),s(3),s(4);

m is the first row of S, all s; are independent.

Versuch.unab.44 6> m;
m[1]=s(1)
m[2]=s(2)
m[3]=s(3)
m[4]=s(4)

Versuch.unab.44 7> //-——=———=——————mm e
ml is the set of generators for the vector space of the linear relations of first row.

Versuch.unab.44 8. module ml=syz(m);
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Versuch.unab.44 9> mi;
mi1[1]1=[0,0,0,s(4)]
m1[2]=[0,0,s(4),s(3)]
m1[3]=[0,0,s(3)]
m1[4]=[0,s(4),0,s(2)]
m1[5]=[0,s(3),s(2)]
m1[6]=[0,s(2)]
mi1[7]=[s(4),0,0,s(1)]

m1[8]=[s(3),0,s(1)]
m1[9]=[s(2),s(1)]
m1[10]=[s(1)]

s(1)=m2 is a random element in K chosen, see page 25 step (2) and after concatenation
with the old S and one obtains the new S =m3.

Versuch.unab.44 10> matrix matl=randmat(ncols(ml),1);
Versuch.unab.44 12. matl;
mat1[1,1]=-16
mat1[2,1]=45

mat1[3,1]=4

mat1[4,1]=10
mat1[5,1]=-42

mat1[6,1]=4

mat1[7,1]=-41
mat1[8,1]=15
mat1[9,1]=-48
mat1[10,1]=41

Versuch.unab.44 13> matrix m2=matrix(mil)*mati;
Versuch.unab.44 15. matrix m3[4][2];
Versuch.unab.44 16> m3[1..4,1]=m2;
Versuch.unab.44 17> m3[1..ncols(m),2]=m;

m4 is the set of all relations of SY o.J =m3t, where m3t is the transpose of m3. m5 is the
set of all linear relations in m4.

Versuch.unab.44 19. matrix m3t=transp(m3);
Versuch.unab.44 20> m3t;
m3t[1,1]=41*s(1)-48*s(2)+15*s(3)-41*s(4)
m3t[1,2]=-48*s(1)+4*s(2)-42*%s(3)+10*s(4)
m3t[1,3]=15%s(1)-42%s(2)+4*s(3)+45*s(4)
m3t[1,4]=-41*s(1)+10*s(2)+45*s(3)-16*s(4)
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m3t[2,1]=s(1)
m3t[2,2]=s(2)
m3t[2,3]=s(3)
m3t[2,4]=s(4)

Versuch.unab.44 25. module m4=syz(module(m3t));
Versuch.unab.44 26> m4=std(m4d);

Versuch.unab.44 29. module null;

Versuch.unab.44 30> module mb=jet(m4,1)+null;

Versuch.unab.44 31> mb;

mb[1]=[s(4),50*s(2)+41*s(3)-29*s(4) ,41*s(2)-9*s(3)-45*s(4),s(1)-29*s(2)-
45%s(3)-23*s(4)]

m5[2]=[s(3)-16*s(4),17*s(2)+14*s(3) ,s(1)+14*s(2)+12*s(3)+4*s(4) ,-16*xs (1) +
4xs(3)+20%s(4)]

m5[3]=[s(2)+27*s(3)+12*s(4),s(1)-42*s(2)+7*s(3)+s(4) ,27*s(1)+7*s(2)
+28%s(3)-35*s(4),12*s(1)+s(2)-35*s(3)-5*s(4)]

mb5[4]=[s(1)-43*s(2)+43*s(3)+41*s(4) ,-43*s(1)-8*s(2)+6*s(3)+40*s(4),
43%s(1)+6*s(2)-9*%s(3)+45%s(4) ,41*s(1)+40%s(2)+45*s(3)-14*s(4)]

5(2)=mb is a random element in K, chosen, see page 25 step (3) and after concatenation
with the old S and one obtains the new S =m7.

Versuch.unab.44 32> matrix mat2=randmat(ncols(matrix(mb5)),1);

Versuch.unab.44 34. mat2;
mat2[1,1]=-30

mat2[2,1]=1

mat2[3,1]=8

mat2[4,1]=-13

Versuch.unab.44 35> matrix m6=matrix(mb5)*mat?2;
Versuch.unab.44 38. matrix m7[4][3];
Versuch.unab.44 39> m7[1..4,1..2]=m3;
Versuch.unab.44 40> m7[1..4,3]=m6;
Versuch.unab.44 42. m7t=transp(m7);
Versuch.unab.44 43> m7t;
m7t[1,1]=41%s(1)-48*s(2)+15*s(3)-41*s(4)
m7t[1,2]=-48*s(1)+4*s(2)-42*%s(3)+10*s(4)
m7t[1,3]=15%s(1)-42%s(2)+4*s(3)+45*s(4)
m7t[1,4]=-41*s(1)+10*s(2)+45*s(3)-16*s(4)
m7t[2,1]=s(1)

m7t[2,2]=s(2)

m7t[2,3]=s(3)
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m7t[2,4]=s(4)
m7t[3,1]1=-13%s(1)-39%s(2)-39%s(3)+22*s(4)
m7t[3,2]=-39%s(1)+2*s(2)-26%s(3)-46%s(4)
m7t[3,3]=-39%s(1)-26*s(2)+17*s(3)-16%*s(4)
m7t[3,4]=22%s(1)-46%s(2)-16%s(3)+44*s(4)

m8 is the set of all relations of SV o.J =m7t, where m7t is the transpose of m7. m9 is the
set of all linear relations in m8. Moreover m9 is a set of generators for HKC(1), where K
is the kernel bundle in the monad display:

0 — 30(—1) 5, K —- &€ — 0

Versuch.unab.44 44> module m8=syz(module(m7t));

Versuch.unab.44 45> m8=std(m8);

Versuch.unab.44 47. //-—-———=——=—=————— -

Versuch.unab.44 48. module m9=jet(m8,1)+null;

Versuch.unab.44 49> m9;

m9[1]=[s(4),50*s(2)+41*s(3)-29*s(4) ,41*s(2)-9*s(3)-45*s(4),s(1)-29*s(2)-
45%s(3)-23*s(4)]

m9[2]=[s(3)-16*s(4),17*s(2)+14*s(3),s(1)+14*s(2)+12*s(3)+4*s(4) ,-16*xs (1) +
4%s(3)+20*s(4)]

m9[3]=[s(2)+27*s(3)+12*s(4),s(1)-42*s(2)+7*s(3)+s(4) ,27*s(1)+7*s(2)
+28%s(3)-35*%s(4),12*s(1)+s(2)-35*s(3)-5*s(4)]

m9[4]=[s(1)-43*s(2)+43*s(3)+41*s(4),-43*s(1)-8*s(2)+6*s(3)+40*s(4),
43%s(1)+6*s(2)-9*%s(3)+45*s(4) ,41*s(1)+40%s(2)+45*s(3)-14*s(4)]

m9 has 4 independent linear relations of SY o.J =mT7t, hence A°K(1) = 4 and R°E(1) must
be 1. K is the kernel bundle in the monad display.

0 — 30(—1) 3, K —- & — 0

In the next step | check that the matrix S=m7 defines a subbundle i.e. there is no linear
combination of rows of S which vanishes see the subbundle condition remark 4.1. along
a subscheme i.e.: there exist o € k* and ¢ € H°E,(1) such that the linear combinations of
rows is & ® t . The vector m10 below is a general linear combination.

Versuch.unab.44 51. int col=nrows(m7);

Versuch.unab.44 52> ring r8=101,(s(1..4),b(1..col)),(c,dp);
Versuch.unab.44 53> map f=r,s(1),s(2),s(3),s(4);
Versuch.unab.44 54> int j;

Versuch.unab.44 55> matrix i[1][coll;

Versuch.unab.44 56> for( j=1;j<=col;j=j+1){
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Versuch.unab.44 57. il1,31=p(3);
Versuch.unab.44 58. }
Versuch.unab.44 59> i;

i[1,11=b(1)

i[1,2]1=b(2)

i[1,31=b(3)

Versuch.unab.44 61. matrix m10[1][1]=i*f(m7);

Versuch.unab.44 62> ml0=transp(m10);

Versuch.unab.44 63> ml0;

mi0[1,1]=41*%s(1)*b(1)-48*s(2)*b(1)+15*s(3)*b(1)-41*s(4)*b(1)+s(1)*b(2)-
13*s (1) *b(3)-39*s(2) *b(3) -39*s(3) *b (3) +22*s(4) *b(3)

mi0[2,1]=-48*s(1)*b(1)+4*s(2)*b(1)-42*s(3)*b(1)+10*s(4)*b(1)+s(2)*b(2)-
39*s(1)*b(3)+2*s(2) *b(3)-26*s(3)*b(3)-46%*s(4) *b(3)

m10[3,1]1=15%s(1)*b(1)-42%s(2)*b (1) +4*s(3)*b(1)+45*s(4)*b(1)+s(3)*b(2)-
39*s(1)*b(3)-26%s(2)*b(3)+17*s(3) *b(3)-16%*s(4) *b(3)

mi0[4,1]=-41*s(1)*b(1)+10*s(2)*b(1)+45*%s(3)*b(1)-16*s(4)*b(1)+s(4)*b(2)+
22%s(1)*b(3)-46*s(2)*b(3)-16*s(3) *b(3)+44*s(4) *b(3)

Versuch.unab.44 64> matrix mli;

Versuch.unab.44 65> matrix ml12;

Versuch.unab.44 66> module m10m=module(m10);

Versuch.unab.44 67> vector v=m1Om[1];

Versuch.unab.44 68> v;

[41%s(1)*b(1)-48*s(2)*b(1)+15*s(3) *b(1)-41*s(4)*b(1)+s(1)*b(2)-
13%s(1)*b(3)-39*s(2) *b(3)-39*s(3)*b(3)+22*s(4)*b(3) ,-48*s (1) *b(1)+
4%s(2)*b(1)-42%s(3)*b(1)+10*s(4)*b (1) +s(2) *b(2)-39*s (1) *b(3) +
2%s(2)*b(3)-26*s(3)*b(3)-46*s(4)*b(3),15*s(1)*b(1)-42*s(2)*b(1)+
4%s(3)*b(1)+45*s(4)*b(1)+s(3)*b(2)-39*s(1)*b(3)-26*s(2) *b(3)+
17*s(3)*b(3)-16*s(4) *b(3) ,-41*s (1) *b(1)+10*s(2) *b(1)+45*s(3) *b(1)
-16*s(4)*b(1)+s(4) *b(2)+22*s (1) *b(3) -46*s(2) *b(3)-16*s(3)*b(3)+
44xs(4)*b(3)]

Versuch.unab.44 69> coef2(v,s(1)*s(2)*s(3)*s(4),m11,m12);
Versuch.unab.44 70> //coefs:

Versuch.unab.44 71. mlil;

m11 is the matrix which represents a vector in k*® H°E,(1) if | work with the representation
introduced in 4.9.

mi1[1,1]1=41%b(1)+b(2)-13*%b(3)
mi11[1,2]=-48*b(1)-39%b(3)
m11[1,3]=15%b(1)-39*b(3)
mi11[1,4]=-41%b(1)+22*b(3)
mi11[2,1]=-48*b(1)-39%b(3)
mi11[2,2]1=4%b(1)+b(2)+2*b(3)
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mi11[2,3]=-42*%b(1)-26*b(3)
mi1[2,4]1=10%b(1)-46*b(3)
m11[3,1]1=15%b(1)-39*b(3)
m11[3,2]=-42*%b(1)-26*b(3)
m11[3,3]=4*%b(1)+b(2)+17*b(3)
m11[3,4]=45%b(1)-16*b(3)
mi11[4,1]=-41%b(1)+22*b(3)
mi11[4,2]=10%b(1)-46*b(3)
m11[4,3]=45%b(1)-16*b(3)
mi1[4,4]=-16*b(1)+b(2)+44*b(3)

Versuch.unab.44 72>
Versuch.unab.44 73.
mi2[1,1]=s(1)
mi2[1,2]=s(2)
mi12[1,3]=s(3)
mi2[1,4]=s(4)
mi2[2,1]=s(1)
mi12[2,2]=s(2)
m12[2,3]=s(3)
mi12[2,4]=s(4)
mi12[3,1]=s(1)
mi12[3,2]=s(2)
m12[3,3]=s(3)
mi12[3,4]=s(4)
mi2[4,1]=s(1)
mi12[4,2]=s(2)
mi12[4,3]=s(3)
mi2[4,4]=s(4)

Versuch.unab.44 74>
Versuch.unab.44 75>
Versuch.unab.44 76>
Versuch.unab.44 77>

Versuch.unab.44 79>
Versuch.unab.44 80>
//Hilbert function:
// 0 1

// 1 3

/] 4
Versuch.unab.44 81>
//dimension 0
//multiplicity 4
Versuch.unab.44 82>

// zu den monomen:
mi2;

ring r3=101,(b(1..col)), (c,dp);
map f1=r8,0,0,0,0,b(1),b(2),b(3);
matrix mi13=wedge(f1(m11),2);
ideal id=m13;

id=std(id);

hilb(id);

degree(id) ;

id=minbase(id);
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According to remark 4.1 it suffices now that the zero locus of the Fitting ideal of 2 x 2
minors is zero dimensional. From the generators of the ideal :d one sees that the zero locus
is the point (0,0,0) € €° with multiplicity 4. But this is the trivial linear combination, so
we are done.

Versuch.unab.44 83> id;
id[1]1=b(1)"2
id[2]1=b(1)*b(2)
id[3]=b(2) "2
id[4]1=b(1)*b(3)
id[5]1=b(2)*b(3)
id[6]1=b(3) "2

Versuch.unab.44 84> quit;
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4.4.2 Program example 5

The instanton bundle £ constructed in this program output is an other example for an
instanton of NC-type. Moreover its monad is selfdual in the meaning of page 7. i.e.:
it has a monad of type

0 — 30(-1) 3 18 = 30(1) - o0
Its second Chern class ¢2(€) = 7. The null correlation bundle &, is here not specified,
hence I constructed a whole family where the null correlation bundle &£, hence the z;
vary.

The first row of the matrix S consists of 3 independent vectors which is one less than
the maximal possible number. Thus for generic examples R°£(1) = 0 by proposition

the remark 4.5.2.

In the comments to the program code I will refer to the steps in the explicit explanations
of the algorithm, see 25. The commentaries I entered later are in a different font: sans
serif. I skipped parts of the output which are not essential for the understanding of
the computation. The SINGULAR program code is echoed in the lines which start with
”Versuch.unab.43”.

Versuch.unab.43 1> ring r=101,(s(1..4)),(c,dp);
Versuch.unab.43 2> alternating=1;
Versuch.unab.43 3>

Versuch.unab.43 4> <"1ib";

Versuch.unab.43 5> ideal m=s(1),s(2),s(3);

m is the first row of S, where s(1),s(2),s(3) are independent vectors.

Versuch.unab.43 6> m;

m[1]=s(1)

m[2]=s(2)

m[3]=s(3)

Versuch.unab.43 7> //-—-——————————— = -

m1l is the set of all linear relations of first row.

Versuch.unab.43 8. module ml=syz(m),s(1)*gen(4),s(2)*gen(4),s(3)*gen(4);
Versuch.unab.43 9> mi;}

m1[1]1=[0,0,s(3)]

mi1[2]=[0,s(3),s(2)]
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m1[3]=[0,s(2)]
mi[4]=[s(3),0,s(1)]
mi[5]=[s(2),s(1)]
mi[6]=[s(1)]
mi[7]1=[0,0,0,s(1)]
m1[8]=[0,0,0,s(2)]
m1[9]1=[0,0,0,s(3)]

s(1) =m2 is a random element in K chosen, see page 25 step (2) and concatenated with
the old S and one obtains the new S =m3.

Versuch.unab.43 10> matrix matl=randmat(ncols(ml),1);
Versuch.unab.43 12. mati;

mat1[1,1]=2

mat1[2,1]=36

mat1[3,1]=-10

mat1[4,1]=48

mat1[5,1]=40

mat1[6,1]=21

mat1[7,1]=-23

mat1[8,1]=-30

mat1[9,1]=14

Versuch.unab.43 13> matrix m2=matrix(mil)*mati;
Versuch.unab.43 14> matrix m3[nrows(m2)][2];
Versuch.unab.43 15> m3[1..nrows(m2),1]=m2;
Versuch.unab.43 16> m3[1..ncols(m),2]=m;
Versuch.unab.43 17> matrix m3t=transp(m3);

m4 is the set of all relations of SY o J =m3t, where m3t is the transpose of m3. mj is
the set of all linear relations in m4.

Versuch.unab.43 18> m3t;
m3t[1,1]1=21%s(1)+40*s(2)+48*s(3)
m3t[1,2]=40%s(1)-10*s(2)+36*s(3)
m3t[1,3]=48%s(1)+36*s(2)+2*s(3)
m3t[1,4]=-23*%s(1)-30*s(2)+14*s(3)
m3t[2,1]=s(1)

m3t[2,2]=s(2)

m3t[2,3]=s(3)

m3t[2,4]=0

Versuch.unab.43 19> module m4=syz(module(m3t));
Versuch.unab.43 20> m4=std(m4d);
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Versuch.unab.43 22. module null;

Versuch.unab.43 23> module mb=jet(m4,1)+null;

Versuch.unab.43 24> mb;

m5[1]1=[0,0,0,s(1)-47*s(2)-5*s(3)]

m5[2]1=[0,s(3),s(2)+46*s(3) ,46%*s(2)-34%*s(3)]

m5[3]=[0,s(2)-16*s(3) ,-16*s(2)+9*s(3) ,43*s(2)-31*s(3)]

m5[4]=[s(3),0,s(1)-26*s(3),-19*s(1)+24*s(3)]

m5[56]=[s(2)+32*s(3),s(1)+44*s(2)+32*s(3) ,32*%s(1)+32*s(2)-20*s(3),
-36*s(1)-49*s(2)+8%*s(3)]

m5[6]=[s(1)+44*s(2)+32*s(3),44*s(1)+17*s(2)-6*s(3),32*s(1)-6*s(2)+14*s(3),
-49%xs5(1)-35*s(2)+48%*s(3)]

5(2) =mb is a random element in K, chosen, see page 25 step (3) and concatenated with
the old S and one obtains the new S =m7.

Versuch.unab.43 25> matrix mat2=randmat(ncols(matrix(mb5)),1);
Versuch.unab.43 27. mat2;

mat2[1,1]=-19

mat2[2,1]=29

mat2[3,1]=-12

mat2[4,1]=-8

mat2[5,1]=8

mat2[6,1]=5

Versuch.unab.43 28> matrix m6=matrix(mb)*mat?2;
Versuch.unab.43 29> matrix m7[nrows(m2)][3];
Versuch.unab.43 30> m7[1..nrows(m2),1..2]=m3;
Versuch.unab.43 31> m7[1..nrows(m2),3]=m6;
Versuch.unab.43 32> m7=transp(m7t);
Versuch.unab.43 33> m7;
m7t[1,1]1=21%s(1)+40*s(2)+48*s(3)
m7t[1,2]=40%s(1)-10*s(2)+36*s(3)
m7t[1,3]=48%s(1)+36*s(2)+2*s(3)
m7t[1,4]=-23*%s(1)-30*s(2)+14*s(3)
m7t[2,1]=s(1)

m7t[2,2]=s(2)

m7t[2,3]=s(3)

m7t[2,4]=0

m7t[3,1]1=5%s(1)+26*s(2)+4*s(3)
m7t[3,2]=26%s(1)+21*s(2)+43*s(3)
m7t[3,3]=4%s(1)+43*s(2)+31*s(3)
m7t[3,4]=4%s(1)+33*s(2)-3*s(3)

m8 is the set of all relations of SV =7t, where m7t is the transpose of m7. m9 is the set
of all linear relations in m. Moreover m9 is a set of generators for H°KC(1), where K is the
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kernel bundle in the monad display:

0—)30(—1)£>K—>5—>0

Versuch.unab.43 34> module m8=syz(module(m7));

Versuch.unab.43 35> m8=std(m8);

Versuch.unab.43 36> //-—-—————————————— -

Versuch.unab.43 37. module m9=jet(m8,1)+null;

Versuch.unab.43 38> m9;

m9[1]=[s(3),-3*s(2)-23*s(3),s(1)-23*s(2)+14*s(3) ,11*s(1)+43*s(2)-43*s(3)]

m9[2]=[s(2)-42*s(3),s(1)-5*s(2)+35*s(3) ,-42*s(1)+35*s(2)-22*s(3),
-44*s(1)-5*s(2)+45*s(3)]

m9[3]=[s(1)-3*s(2)+43*s(3) ,-3*s(1)-38*s(2)-14*s(3) ,43*s(1)-14*s(2)+16*s(3),
27%s(1)-19*%s(2)]

m9 has 3 independent linear relations of SY o.J =mT7t, hence A°K(1) = 3 and R°E(1) must
be 0 K is the kernel bundle in the monad display.

0—)30(—1)£>K—>5—>0

In the next step | check that the matrix S=m7 defines a subbundle i.e. there is now
linear combination of rows of S which vanishes, see the subbundle condition remark
4.1. along a subscheme i.e.: there exist a € k* and ¢t € H°E,(1) such that the linear
combinations of rows is « ® £ . The vector m10 below is a general linear combination

Versuch.unab.43 53. int col=nrows(m7);

Versuch.unab.43 54> ring r8=101,(s(1..4),b(1..col)), (c,dp);

Versuch.unab.43 55> map f=r,s(1),s(2),s(3),s(4);

Versuch.unab.43 56> int j;

Versuch.unab.43 57> matrix i[1] [coll;

Versuch.unab.43 58> for( j=1;j<=col;j=j+1){

Versuch.unab.43 59. il1,31=p(3);

Versuch.unab.43 60. }

Versuch.unab.43 61> i;

i[1,11=b(1)

i[1,2]1=b(2)

i[1,31=b(3)

Versuch.unab.43 62> matrix m10[1][1]=i*f(m7);

Versuch.unab.43 63> ml0O=transp(m10);

Versuch.unab.43 64> ml0;

m10[1,1]1=21%s(1)*b(1)+40*s(2)*b(1)+48*s(3)*b (1) +s(1)*b(2)+5*xs(1)*b(3)+
+26%5(2) *b(3)+4*s(3) *b(3)

m10[2,1]1=40%s(1)*b(1)-10*s(2)*b(1)+36*s(3)*b (1) +s(2)*b(2)+26*s(1)*b(3)+

83



+21%s(2) *b(3)+43*s(3)*b(3)
m10[3,1]1=48*s(1)*b(1)+36*s(2)*b (1) +2*s(3)*b(1)+s(3)*b(2)+4*s(1)*b(3)+
+43%s(2) *b(3)+31*s(3)*b(3)
mi10[4,1]=-23*s(1)*b(1)-30*s(2)*b(1)+14*s(3)*b(1)+4*s(1)*b(3)+33*s(2)*b(3)-
-3*s5(3)*b(3)
Versuch.unab.43 65> matrix mli;
Versuch.unab.43 66> matrix mi12;
Versuch.unab.43 67> module m10m=module(m10);
Versuch.unab.43 68> vector v=m1Om[1];
Versuch.unab.43 69> v;
[21*s(1)*b(1)+40*s(2) *b (1) +48*s(3) *b (1) +s(1) *b(2)+5*s (1) *b(3) +26*s(2) *b(3) +
+4xs(3)*b(3) ,40*s(1)*b(1)-10*s(2)*b(1)+36*s(3)*b(1)+s(2) *b(2)+26*s (1) *b(3) +
+21%s(2)*b(3)+43*s(3)*b(3) ,48*s (1) *b(1)+36*s(2) *b(1)+2*s(3)*b(1)+s(3)*b(2) +
+4xs(1)*b(3)+43*s(2)*b(3)+31*s(3)*b(3),-23*s (1) *b(1)-30*s(2)*b(1)+
+14%s(3)*b (1) +4*s (1) *b(3)+33*s(2)*b(3)-3*s(3) *b(3)]
Versuch.unab.43 70> coef(v,s(1)*s(2)*s(3)*s(4),m11,m12);
Versuch.unab.43 71> //coefs:
Versuch.unab.43 72. mlil;

m11 is the matrix which represents a vector in k*® H°E,(1) if | work with the representation
introduced in 4.9.

mi11[1,1]=21*%b(1)+b(2)+5*b(3)
m11[1,2]=40%b(1)+26*b(3)
m11[1,3]=48*b(1)+4*b(3)
m11[2,1]1=40%b(1)+26*b(3)
mi1[2,2]=-10xb(1)+b(2)+21%b(3)
m11[2,3]=36*b(1)+43*b(3)
m11[3,1]=48*b(1)+4*b(3)
m11[3,2]=36%b(1)+43*b(3)
m11[3,3]=2*b(1)+b(2)+31%b(3)
ml11[4,1]=-23*%b(1)+4*b(3)
m11[4,2]=-30%b(1)+33*b(3)
mi1[4,3]=14*b(1)-3%b(3)
Versuch.unab.43 73> // zu den monomen:
Versuch.unab.43 74. ml2;
mi2[1,1]=s(1)

mi12[1,2]=s(2)

mi12[1,3]=s(3)

mi12[2,1]=s(1)

mi12[2,2]=s(2)

m12[2,3]=s(3)

mi12[3,1]=s(1)

m12[3,2]=s(2)

m12[3,3]=s(3)
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mi2[4,1]=s(1)

mi2[4,2]=s(2)

mi2[4,3]=s(3)

Versuch.unab.43 75> ring r3=101,(b(1..col)),(c,dp);
Versuch.unab.43 76> map £1=r8,0,0,0,0,b(1),b(2),b(3);
Versuch.unab.43 77> matrix mil3=wedge(f1(m11),2);
Versuch.unab.43 78> ideal id=m13;

Versuch.unab.43 79> id=std(id);

Versuch.unab.43 80> hilb(id);

// 1t70
// -6 t°2
// 8 t°3
// -3 t°4
// 1t70
// 3 t°1

// codimension = 3

// degree 4

Versuch.unab.43 81> degree(id);

// codimension = 3

// dimension = 0

// degree =4

Versuch.unab.43 82> id=minbase(id);

According to remark 4.1 it suffices now that the zero locus of the Fitting ideal of 2 x 2
minors is zero dimensional. From the generators of the ideal :d one sees that the zero locus
is the point (0,0,0) € €° with multiplicity 4. But this is the trivial linear combination, so
we are done.

Versuch.unab.43 83> id;
id[1]1=b(1)"2
id[2]1=b(1)*b(2)
id[3]=b(2) "2
id[4]1=b(1)*b(3)
id[5]1=b(2)*b(3)

id[6]=b(3)"2

Versuch.unab.43 84> quit;
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4.4.3 Program example 6

The instanton bundle £ constructed in this program output is an other example for an
instanton of NC-type. Moreover its monad is selfdual in the meaning of page 7. i.e.:
it has a monad of type

0 - 30(=1) > 4§,

T 30(1) = 0

Its second Chern class ¢2(€) = 7. The null correlation bundle &, is here not specified,
hence I constructed a whole family where the null correlation bundle &£, hence the z;
vary.

The first row of the matrix S consists of 2 independent vectors. Hence £ is a special 't

Hooft bundle by proposition 4.31 Thus A°E(1) = 2.

In the comments to the program code I will refer to the steps in the explicit explanations
of the algorithm, see 25. The commentaries I entered later re in a different font: sans
serif. I skipped parts of the output which are not essential for the understanding of
the computation. The SINGULAR program code is echoed in the lines which start with
”Versuch.unab.42”.

Versuch.unab.42 1> ring r=101,(s(1..2)),(c,dp);
Versuch.unab.42 2> alternating=1;
Versuch.unab.42 3>

Versuch.unab.42 4> <"1ib";

Versuch.unab.42 5> ideal m=s(1),s(2);

m is the first row of where s(1) and s(2) are independent in H°E,(1).

Versuch.unab.42 6> m;

m[1]=s(1)

m[2]=s(2)

Versuch.unab.42 7> //-——==————————

ml is the set of generators for the vector space of the linear relations of first row.

Versuch.unab.42 8. module mi=syz(m),s(1)*gen(3),s(2)*gen(3),s(1)*gen(4),
s(2)*gen(4) ;

Versuch.unab.42 9> mi;
mi[1]=[0,s(2)]
mi[2]=[s(2),s(1)]
mi[3]=[s(1)]
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m1[4]=[0,0,s(1)]
m1[5]=[0,0,s(2)]
m1[6]=[0,0,0,s(1)]
m1[7]=[0,0,0,s(2)]

5(1)=m2 is a random element in K chosen, see page 25 step (2) and after concatenation
with the old S and one obtains the new S =m3.

Versuch.unab.42 10> matrix matl=randmat(ncols(ml),1);
Versuch.unab.42 12. mati;

mat1[1,1]=6

mat1[2,1]=15

mat1[3,1]=46

mat1[4,1]=-50

mat1[5,1]=35

mat1[6,1]=-21

mat1[7,1]=43

Versuch.unab.42 13> matrix m2=matrix(mil)*mati;
Versuch.unab.42 15. matrix m3[nrows(m2)][2];
Versuch.unab.42 16> m3[1..nrows(m2),1]=m2;
Versuch.unab.42 17> m3[1..ncols(m),2]=m;

m4 is the set of all relations of SY o.J =m3t, where m3t is the transpose of m3. m5 is the
set of all linear relations in m4.

Versuch.unab.42 19. matrix m3t=transp(m3);
Versuch.unab.42 20> m3t;
m3t[1,1]=46*s(1)+15*s(2)

m3t[1,2]=15*s(1)+6*s(2)
m3t[1,3]=-50*s(1)+35*s(2)
m3t[1,4]=-21*s(1)+43*s(2)

m3t[2,1]=s(1)

m3t[2,2]=s(2)

m3t[2,3]=0

m3t[2,4]=0

Versuch.unab.42 21> module m4=syz(module(m3t));
Versuch.unab.42 22> m4=std(m4d);

Versuch.unab.42 24. //--——==—===———— == -
Versuch.unab.42 25. module null;
Versuch.unab.42 26> module mb=jet(m4,1)+null;
Versuch.unab.42 27> mb;
m5[1]1=[0,0,0,s(1)+22*s(2)]
m5[2]=[0,0,s(2),-27*s(1)]
m5[3]=[0,0,s(1),-29*s(1)]
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m5[4]=[0,s(2),-30%s(2)]
m5[5]=[s(2),s(1)-20%s(2),23*%s(1)+3*s(2) ,-40*s(1)]
m5[6]=[s(1)-20*s(2),-20*s(1)-4*s(2),3*s(1)+41*s(2)]

5(2)=mb is a random element in K, chosen, see page 25 step (3) and after concatenation
with the old S and one obtains the new S =m7

Versuch.unab.42 28> matrix mat2=randmat(ncols(matrix(mb5)),1);
Versuch.unab.42 30. mat2;

mat2[1,1]=-25

mat2[2,1]=-3

mat2[3,1]=30

mat2[4,1]=29

mat2[5,1]=-30

mat2[6,1]=11

Versuch.unab.42 31> matrix m6=matrix(mb)*mat?2;
Versuch.unab.42 32> m6;
m6[1,1]=11*s(1)-48*s(2)
m6[2,1]=-48%s(1)-21*s(2)
m6[3,1]=-21*s(1)-7*s(2)
m6[4,1]=-18%s(1)-45*s(2)
Versuch.unab.42 33> matrix m7[4][3];
Versuch.unab.42 34> m7[1..4,1..2]=m3;
Versuch.unab.42 35> m7[1..4,3]=m6;
Versuch.unab.42 36> m7=transp(m7t);
Versuch.unab.42 37> m7;
m7t[1,1]=46%s(1)+15*s(2)
m7t[1,2]=15%s(1)+6*s(2)
m7t[1,3]=-50*s(1)+35*s(2)
m7t[1,4]=-21*s(1)+43*s(2)
m7t[2,1]=s(1)

m7t[2,2]=s(2)

m7t[2,3]=0

m7t[2,4]=0

m7t[3,1]=11*s(1)-48%s(2)
m7t[3,2]=-48%s(1)-21%s(2)
m7t[3,3]=-21*s(1)-7*s(2)
m7t[3,4]=-18*s(1)-45%s(2)

m8 is the set of all relations of SY o.J =m7t, where m7t is the transpose of m7. m9 is the
set of all linear relations in m8. Moreover m9 is a set of generators for H°K (1), where K
is the kernel bundle in the monad display:

0 — 30(—1) EX K —- &€ — 0
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Versuch.unab.42 38> module m8=syz(module(m7t)) ;

Versuch.unab.42 39> m8=std(m8);

Versuch.unab.42 40> //--——=====——————— -
Versuch.unab.42 41. module m9=jet(m8,1)+null;

Versuch.unab.42 42> m9;

m9[1]1=[0,0,s(2),23*s(1)-11*s(2)]
m9[2]1=[0,0,s(1)+31*s(2),-29*s(1)+32*s(2)]
m9[3]=[0,s(2),-19*%s(2),-31*s(2)]
m9[4]=[s(2),s(1)+43*s(2),23*s(1)+32*s(2) ,-40*s(1)]
m9[6]=[s(1)-20*s(2),-20*s(1)-22%s(2) ,3*s(1)-25*s(2)]

m9 has 5 independent linear relations of S o J =m7t. Hence A°K(1) = 5 and A°E(1)
must be 2. K is the kernel bundle in the monad display.

0 — 30(—1) EX K —- &€ — 0

In the next step | check that the matrix S=m7 defines a subbundle i.e. there is now
linear combination of rows of S which vanishes, see the subbundle condition remark
4.1. along a subscheme i.e.: there exist a € k* and ¢t € H°E,(1) such that the linear
combinations of rows is « ® £ . The vector m10 below is a general linear combination.

Versuch.unab.42 52. int col=nrows(m7);

Versuch.unab.42 53> ring r8=101,(s(1..2),b(1..col)),(c,dp);
Versuch.unab.42 54> map f=r,s(1),s(2);

Versuch.unab.42 55> int j;

Versuch.unab.42 56> matrix i[1] [coll;

Versuch.unab.42 57> for( j=1;j<=col;j=j+1){

Versuch.unab.42 58. il1,31=p(3);

Versuch.unab.42 59. }

Versuch.unab.42 60> i;

i[1,11=b(1)

i[1,2]1=b(2)

i[1,31=b(3)

Versuch.unab.42 62. matrix m10[1][1]=i*f(m7);
Versuch.unab.42 63> m10=transp(m10);

Versuch.unab.42 64> mi0;
mi10[1,1]1=46%s(1)*b(1)+15*s(2)*b(1)+s(1)*b(2)+11*s(1)*b(3)-48*s(2)*b(3)
m10[2,1]1=15%s(1)*b(1)+6*s(2)*b(1)+s(2)*b(2)-48*s (1) *b(3)-21*s(2) *b(3)
m10[3,1]1=-50*s(1)*b(1)+35*s(2)*b(1)-21*s(1)*b(3)-T*s(2)*b(3)
mi0[4,1]=-21*s(1)*b(1)+43*s(2)*b(1)-18*s(1)*b(3)-45*s(2)*b(3)
Versuch.unab.42 65> matrix mii;

Versuch.unab.42 66> matrix ml12;

Versuch.unab.42 67> module m10m=module(m10);

Versuch.unab.42 68> vector v=m1Om[1];
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Versuch.unab.42 69> v;
[46%s(1)*b(1)+15*s(2)*b(1)+s(1)*b(2)+11*s(1)*b(3)-48*s(2)*b(3),
15%s(1)*b(1)+6*s(2)*b(1)+s(2)*b(2)-48*s(1)*b(3)-21*s(2)*b(3),
-50*s(1)*b(1)+35*s(2)*b(1)-21*s(1)*b(3)-7*s(2)*b(3),
-21xs(1)*b(1)+43*s(2)*b(1)-18*s(1)*b(3)-45*s(2)*b(3)]

Versuch.unab.42 70> coef(v,s(1)*s(2),m11,ml12);

Versuch.unab.42 71> //coefs:

Versuch.unab.42 72. mlil;

m11 is the matrix which represents a vector in k*® H°E,(1) if | work with the representation
introduced in 4.9.

mi1[1,1]1=46%b(1)+b(2)+11xb(3)

mi11[1,2]=15%b(1)-48*b(3)

mi11[2,1]1=15%b(1)-48*b(3)

mi11[2,2]=6%b(1)+b(2)-21*b(3)

m11[3,1]=-50*b(1)-21*b(3)

m11[3,2]=35%b(1)-7*b(3)

mi1[4,1]=-21*%b(1)-18*b(3)

mi1[4,2]=43%b(1)-45*%b(3)

Versuch.unab.42 73> // zu den monomen:

Versuch.unab.42 74. ml2;

mi2[1,1]=s(1)

mi2[1,2]=s(2)

mi2[2,1]=s(1)

mi2[2,2]=s(2)

mi2[3,1]=s(1)

mi2[3,2]=s(2)

mi2[4,1]=s(1)

mi2[4,2]=s(2)

Versuch.unab.42 75> ring r3=101,(b(1..col)),(c,dp);
Versuch.unab.42 76> map £1=r8,0,0,b(1),b(2),b(3);
Versuch.unab.42 77> matrix mil3=wedge(f1(m11),2);
Versuch.unab.42 78> ideal id=m13;

Versuch.unab.42 79> id;

id[1]=-50%b (1) "2-49*b(1)*b(2)+b(2) "2+35*b (1) *b(3)-10*b(2)*b(3)-10%b(3) "2
id[2]=-37*b(1) "2-35*b(1)*b(2)+2*b (1) *b(3)+7*b(2) *b(3)-26%b(3) "2
id[3]=-30%b (1) "2+43*b(1)*b(2)-12*b (1) *b(3)-45*b(2) *b(3)-46*b(3) "2
id[4]=-17*b(1) "2-50*b(1)*b(2)-18*b (1) *b(3)-21*b(2) *b(3)+4*b(3) "2
id[6]1=-37*b(1) "2+21*b(1)*b(2)-42*b (1) *b(3)+18*b(2) *b(3)-36*b(3) "2
id[6]1=b(1)"2-12*%b(1)*b(3)-11*b(3)"2

Versuch.unab.42 80> id=std(id);

Versuch.unab.42 81> hilb(id);

// 11t70

// -6 t°2
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// 8 t°3

// -3 t74
// 1170
// 3t°1
// codimension = 3
// degree =4

Versuch.unab.42 82> degree(id);

// codimension = 3

// dimension = 0

// degree =4

Versuch.unab.42 83> id=minbase(id);

According to remark 4.1 it suffices now that the zero locus of the Fitting ideal of 2 x 2
minors is zero dimensional. From the generators of the ideal :d one sees that the zero locus
is the point (0,0,0) € €° with multiplicity 4. But this is the trivial linear combination, so
we are done.

Versuch.unab.42 84> id;
id[1]1=b(1)"2
id[2]1=b(1)*b(2)
id[3]=b(2) "2
id[4]1=b(1)*b(3)
id[5]1=b(2)*b(3)
id[6]1=b(3)"2
Versuch.unab.42 85> quit;
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4.5 The dimensions of HE(1)

In this chapter I shall determine the dimension of the space of linear sections H°£(1)
for several families of instanton bundles £ of NC-type on 3, which are the cohomology

bundles of symmetric monads in the meaning of page 7
0 - mO(-1) > (m+1)E, gt mO(10 — 0

These families are constructed according to the algorithm, see page 25. All these results
were suggested by explicit computations, which are listed in the previous chapter 4.4.
First the pairings

A @ HE() @ @R HE() —»  HOO(E)
POHRE AR PianRTE = Ym0 Jou

and

A @m-}-l HO ( ) ® @m-l-l HOE ( ) N AzHoga(l)
Yt @ Yt g - S A

which are isomorphic are expressed in a basis of H°E,(1):

Notation 4.7 (1) Once and for all in this chapter I fix a basis of H°E,(1) :
817 e 785
(2) Hy C HYE,(1) is the linear subspace spanned by sy,---,s5, 1 <k <5,

(3) Then {sx As;}r; 1 <k < j<5isa basis of A2HE,(1). T work with it for
the rest of the paragraph.

(4) An element t of @' H°E,(1) is a tuple t = (¢1,+ -+ ,t,n11), where
5
= _ajis;
7=1

(5) For future use I fix the notation for two more elements, u = (uy, -+, Um41)
and v = (vy, -, Upg1):

5 5
U, = E b]'iSj, v; = E CjiSj
i=1 i=1

With this notation I can describe the pairings A and A with respect to the given basis.
The operator A is in the basis s1,---,s5 :

A: @t HE (1) © @1 HOS (1) — HOO(2)
uQt = Yicjck<s (Zﬂl(aﬁbki - bﬁ-a,ﬂ-)) sjoJos)
and A is given by:
Ao @It HOE(1) @ @1t HOE (1) — AZHOE, (1)
ut = D i<ick<s (Z?ﬂl(aﬁbki - bﬁ-aki)) sj A Sk
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Remark 4.8 The vanishing condition .74'(a;;by; — bj;ar;) = 0 is bilinear in the
coefficients a;; and by; and hence the kernel

ker(t) — @™ HYE,(1) 25 A2HYE,(1)
for a fixed element ¢ is a linear subspace in @"*' H°E,(1).
4.9 The computation of the dimension of H°E,(1) uses the following decomposition,

with respect to the fixed basis sy, -, s5 for H°E,(1). A general element
ti=(t1,  ytmy1) € K™ @ H°E,(1) ~ k™! ® k°, which is also a morphism

o(-1) 5 (m+1E,,
has a representation as:
t=s1(a1, ,aimer) + -+ 8s5(as1, -+, Gsmt1)
which looks in matrix notation as:
(317...735)014: (th...’th)

where A is the matrix:

ann - dimtl
A=
as1 " Asm+4l
Hence one observes that these elements form the image of (s1,---,s5) under the mor-

phism
H°E,(1) @ Mat(5,m+ 1;k) —  kpy @ HYE,(1)
(s, A) — soA

In the sequel we will study not only the space of all matrices Mat(5,m + 1; k) but also
the action of subvector spaces of Mat(5,m + 1; k).

Note that for m + 1 = 5 the elements of maximal rank in Mat(5,m + 1; k) form the
group GI(5) an the image is the orbit of (s1,---,s5) under the group action. This
decomposition of an element in @74 HOE,(1) is the “tool” to reduce computations to
linear algebra over a field k.

With this convention I compute now H°E(1). 1 want to distinguish three cases which
have different dimensions for H°£(1). These cases differ by the maximal number of
independent vectors of H°E,(1) occuring in the rows of the matrix S in the selfdual
NC-type monad:

0 - mO(=1) > (m+1E, ST mO(l) — 0
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4.5.1 Case 1: The number of independent vectors in a row of S is maximal

This result was suggested by the example 4, page 73.

4.10 Let &€ be an instanton bundle defined by:

SVoJ
H

0 — mO(-1) 5, (m+ 1)&, mO(l) — 0

where the matrix S € Mat(m,m + 1; H°E,(1)) can be chosen as:

§im ()
*

where sy, -+, 5,41 are m+1 < 5 independent elements of the basis chosen once and for
all in 4.7 in HOEa(l). This means there exists at least one row with m + 1 independent
entries in H&,(1). 1 shall denote for a fixed (a) the family of instantons with this
property by Y.

In this paragraph the following proposition will be proven by a sequence of lemmata
and propositions.

Proposition 4.11 Let £ be an instanton bundle of NC-type with monad

SVoJ

0 — mO(-1) 5, (m+1)& "= mO(l) — 0

5= ()
*

then h°E(1) > 1, i.e.: € is a 't Hooft bundle.

where S is the matriz

Remark 4.12 (1) Note that in case 1 always | <m <4

(2) (&) =2m +1

The next proposition is essential for the proof of the proposition 4.11. One can describe
in more detail the structure of the matrices in the representation 4.9 and furthermore
use the result to determine the dimension of H°E(1).

Proposition 4.13 Let A be as in 4.9 and m < 4 Then :

(1) If the matriz A represents an element in ker(s), where
s = (S1,""*,8my1) € K™ @ HE,(1), then A € Mat(m + 1,m + 1;k) is a

symmetric matriz 1.e: A = AY
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(2) If v,u,t € ker(s), v,u € ker(t) and moreover u and v are represented by
invertible matrices with distinct eigenvalues then u € ker(v). In other words in
this situation ker 1s a symmetric, reflezive and transitive relation for all elements
in ker(t)

Proof:

(1) Let
t; = Zajisj' and u; = ZbﬁS]‘ € H°E,(1)
Then by page 92

m+1
tf\u = Z (Z (aﬁb;ﬂ- — bﬂam)) S A Sk (*)

J<k =1
J,ke{l,,5}

If we assume now that ¢ = s the coefficients in t; = 3" a;;s; become ay; = 65;. It
I put this into the equation (%) and thus

m+1
37\u = Z (Z (ajibki — bﬂam)) S]‘ A S = E (bk] — bjk)Sj A S = 0 .
1<j<k<5 \i=1 1<5<k<5

The {s;Asi}i<j<i<cs however form a basis of A2H°E,(1). Hence I obtain 10 linear
equations for all 1 < j < k < 5:

brj = bjx

Therefore the matrix B as in 4.9 is symmetric.

(2) Let now
82'225]'2'8]' < sold=s
ti:Zaﬁsj < soA=t
—

ui = bjis;

vizg cjis; &= so( =w

soB=u

Note that A = AY, B = BY and C = CV by the first part of the proposition 4.13
and 6j; is the Kronecker symbol.
The rest of the proof follows from the two lemmata4.17 and 4.18 presented below.

#

Corollary 4.14 Letm + 1 <5 and € as in 4.10, thent € ker(s), as in the proposition
4.13, has only entries in H, 1, 1.e.: t € k™™ ® H,, .1, where H, .| is generated by

S1y 3 Sm41-
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Proof:
As in the proposition ¢ is represented a (m + 1) X 5 matrix B. j <m + 1 < k, then it
follows from (x):

m+1
87\t = Z (Z (5ﬂbm - bﬂékz)) S]‘ A S =

1<j<k<5 \i=1

= Z (b]—k—bkj)sj/\sk—{— Z bkjS]‘/\Sk =0

1<j<k<m+1 rematining j,k
:>bk]:0V.]<k (.]7k) %{1,,m—l—1}><{1,,m—|—1}
#

Corollary 4.15 Hence the condition in 4.10is equivalent to S € Mat(m, m+1; Hy41).

Remark 4.16 It is very important for the calculations which shall follow to stress the
fact that the 10 equations 7! (a ;b5 — bjiar;) = 0, 1 < j < k <5 in the expression
(%) are the commutator relations for the two matrices A and B. i.e:

[A,B] =0 <= Zaﬁbki — b]'ia]“’ =0V1< J <k<5) (4528)

In the next step I use a lemma on commuting matrices which should be well known.
Nevertheless, I found no reference so I'll put it here.

Lemma 4.17 Let A, B and C be symmetric matrices in GL(m + 1) with scalar entries
and assume A has distinct eigenvalues. If A,B and A,C commute, then C and B are
commuting matrices:

[A,B] = [A,0] =0 = [B,C] =0

[*, %] denotes the commutator of two matrices.

In other words one can say that all such matrices commuting with such an A given,
form a commutative algebra:

{B € GL(m)|[A, B] = 0, A has distinct eigenvalues}

Proof: (of the lemma)
A is symmetric and all eigenvalues are distinct. I can find an invertible orthogonal

matrix P (PY = P7') such that

ay
A= P 'A'P with A’ = and a; #a;, Vi #]

am—l—l
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See for instance [18]§23.9 .

Now define B’ := PBP~! and C':= PCP~.

I remark here that it is necessary to know that B’ and C’ are again symmetric, which
is used in the next lemma. Hence

P'A'B'P =P 'APP'B'P=AB=BA=P 'B'PP'A'P=P'B'AP

Thus A’B' = B'A’ and analogously A'C' = C'A" and C'B' = B'C" because B’ and C'

are diagonal by the next lemma. Hence we are done because
CB=P'C'"PP'B'P=P'C'BP=P'B'C'P=P'B'PP'C'P =BC

is valid. #

Lemma 4.18 We keep now the assumptions and notations of the previous lemma and

assume in addition that all eigenvalues of A hence of A’ are distinct. If AB' = B'A’
then B' is a diagonal matriz.

Proof:
For all j < kK < m + 1 we have the commutator equation:
m+1
=1
! = . N ! / / !
I<:> 1A% ! ! /
) P . : :
Hence B’ is diagonal. #

Eigenvalues can be zero from now on. I treat now the case of matrices with eigen-
values of multiplicity > 1 next. In this case lemma 4.18 does not apply. But there
is still an argument which allows me to compute the dimension of the kernels. The
proof of lemma 4.18 is violated at step 4.5.29. Let a; be an eigenvalue with multiplicity
m; > 1. Here I use again the argument that B’ as in lemma 4.18 is still symmetric if |
apply an orthogonal base change P~1 = PV,

Lemma 4.19 Let E,, be set of all indices with eigenvalue a;. The commutator equa-
tions Y121 (al;bl; — Val;) = 0 for all j < k € E,, V i are trivial. 1.e.: They are
automatically satisfied. Their total number is at least

L (m; —1)my,
K= Z ey

ie{l,.,mt1} U

Notice that distinct eigenvalues do not contribute to k.
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Proof:

I compute now analogously to lemma 4.18 [A’B'], so I obtain:

m+1

T Y| / ;)
Z (ajibki - bjiaki) = (%‘j - akk) ki — 0
=0
[ SR S !l
for a’. = aj,. Hence it is no condition on the b ,’s. #

We can visualize the matrices contained in the normalizer of A’ as :

my

41

am—l—l

Lemma 4.20 Let now B' and C' in the normalizer of A’, A’ as in lemma 4.19. Then
the number of commutator equations is again at most k which is the number in the
previous lemma.

Proof:

This is again a trivial consequence of the equations:
m+1
Z (a;ib;m' - b;'z'“;m') =0V <k
=1

Proof: of the proposition 4.11
Let
0 - mO(-1) - (m+1)& — mO(l) — 0

be the monad for an instanton bundle of NC-type. The second and the first display
sequences for the monad are:

0 - mO(-1) - K —- & — 0

and

0 - K - (m+1)& - mO(l) - 0

It is now sufficient to collect the results from the previous lemmata 4.17, 4.18, 4.19

& 4.20. (m;H) is the maximum number of linear equations which define the kernel of
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an element u € @™ H°E,(1). If lemma 4.18 is valid, the vector space ker(v) with
v € ker(u) and u € ker(s) is isotropic. Hence

1
ROE(L) > (m + 1) —2<m; ) —m=1
If lemma 4.18 is not valid one must add the number of “trivial relations” in lemma

4.19 which is greater than x and subtract the number of additional equations in lemma
4.20 which is less than . Therefore we have the inequality:

m+ 1

RPE(1) > (m +1)* — 2( 5

)—/i—I—/i—m:l

#

Remark 4.21 [ will prove in theorem 5.16 that for instanton bundles of NC-type
R°E(1) = 2 if and only if there are only two independent sections of H°E,(1) in the
matrix S in the monad

SVoJ
H

0 - mO(=1) > (m+1)&, mO(1) — 0

Hence those sheaves constructed from three or more independent sections having
RPE(1) = 2 cannot be locally free.

4.5.2 Case 2: The number of independent vectors in a row of S is at most
the number of columns -1

This result was suggested by the example 5, see 4.4.2.

Let € be an instanton bundle which has a monad of type as follows

0 - mO(=1) > (m+1E, sl mO(l) — 0
where S is the matrix :
317 PEEEY 78m’ 0
oo (e
*
and sq,---, 8, for 3 < m <5 are elements of the basis chosen once an for all in 4.7 for

HOE,(1).

Notation 4.22 [ shall denote the family of instantons with this property above by
Y5

Remark 4.23 Necessarily m + 1 < 6 because H°E,(1) ~ k°. Hence only the cases
1 < m <5 can occur. The cases m = 1,2 have different behaviour and are not treated
here. Actually for m = 1 the NC-type-monad defines a null correlation bundle and
m = 2 is subsumed under case 3.
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One can describe in more detail the structure of the matrices in the representation
4.9 and furthermore use this result to determine the dimension of H°E(1). In this
paragraph the following will be proven by a sequence of lemmata and propositions.

Proposition 4.24 Let £ be an instanton bundle with second Chern class c2(E) = T
(i.e.: m = 3) which is of NC-type with monad

0 — 30(-1) 3> 48 B 30(1) — 0

S — <51782783,0)

*

where S is the matriz :

and sy, sy, 53 are elements of the basis chosen once an for all in 4.7 in H°E,(1), and u
is an element in ker(s) represented, see 4.9 by the matriz B as in lemma 4.25 Then

e if byy =0 then R°E(1) >0
o if byy # 0 then R°E(1) > 1

Lemma 4.25 If s = (s1, -, 5m,0), then for all elements u € ker(s) u is represented,
see 4.9, by the matriz:

bl,m—|—1
B,, :
(317 735) 0 b47m+1 = (uh T 7um+1) =Uu
0 0 bm—}—l,m—}—l
0« 0| bspms
Proof:
Case 1: j,k<m+1
m+1
0= Z (ajibe; — aribji) = brj — bjk
<k

Hence by; = bjs V k,j € {1,---,m}

Therefore the submatrix B, of B is symmetric:
B, =B

Remaining case:
Without any loss of generality choose j and & as follows:
j<m+1land k>m+1

0= > ajibutri — Gnr1,ibji = aj;bms1,j = bjm
=1
J<m+1
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Hence by; = 0V 7 < m+1 and £ > m+1 because agz = 0V k > m+1 and
a;; =1V 7 <m+1 by definition. #

Next is a simple but important corollary to the proof above.

Corollary 4.26 If there exists k > m + 1 such that b, 41 # 0 then there ezist a row
of the matriz S with m + 1 independent vectors and I am back to the first case , see

4.10

Remark 4.27 Hence from now on we can assume that S € Mat(m,m+1; H,,), where
H,, is generated by s1,- -, Sp,.

Second induction step:

Lemma 4.28 Let u,v € ker(s) then v € ker(u) and u € ker(v) iff the following
condition s fulfilled:
Ifj <k<m+1, then X" (a;;by; — a;b;;) = 0. These are (7;) equations.

Proof:

The proof is an easy calculation in terms of the matrix as in the other proofs before.

#

Proof: of the proposition 4.24
Here I discuss results in case m + 1 = 4. | have constructed so far in lemma 4.28 two
families of instanton bundles having a different dimensions of H°E(1):

e For the first family Y,?, which has the property that the matrix S has entries
in Hy, corresponding to case 1, I remark first that the vector space of all linear
relations of s, ker(s), has generically dimension 10 in this case. To verify this I
just count the entries in the matrix 4.25. Lemma 4.28 shows that for each generic
u € ker(s) the kernel ker(u) is generically 4 dimensional and ker(u) is isotropic
with respect to J by lemma 4.13. Thus

RPK(1) > 10 —6 =4

and

RPE(1) >4 -3 =1

In fact the inequalities are equalities, because h°E(1) = 2 if and only if the first
row of S contains only two independent elements of H°E,(1), see theorem 5.16.

e For the other family Y;?, corresponding to case 2 where the matrix S has entries
in Hs the above consideration shows that ker(s) has dimension 9. Part 2 of 4.28
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explains why there are only (g’) linear equations left for the next induction steps,
see lemma 4.28(2). Thus

K1) >9-3-3=3
and
R°E(1) >3 -3=0.

#

Remark 4.29 In fact R°£(1) = 2 is impossible for bundles, because h°E(1) = 2 if
and only if the first row of S contains only two independent elements of H°E, (1), see

theorem 5.16. Therefore H°E(1) =0, 1.

4.5.3 Case 3: Instanton bundles with two independent linear sections

This result was suggested by the example 6, 4.4.3.

Let now H; be the vector space spanned by 1, s3. In contrast to the two cases before
these considerations are valid for any odd second Chern numbers hence arbitrary
m and also for non symmetric monads.

Proposition 4.30 Let £ be an instanton bundle of NC-type with c3(E) = 2m + 1
having a monad

SVoJ

0 — mO(-1) 5 (m+1E& =3 mo@l1) - 0
where S € Mat(m,m+ 1; Hy) and Hy C H°E,(1) as above, then

RPE(1) = 2

Lemma 4.31

RK (1) > 2(m+1)—m=m+2
hPE(L) = hPKn(1) —m > 2

Proof: We know from 4.8 that H°K(1), which is the space of all linear relations of
SY o J is a linear subspace in k™' @ H, ~ k?("+1)  The pairing ”degenerates” to a
simple bilinear form because H, is two dimensional and hence A2H, ~ k. Thus we are
now in the situation of linear algebra over a field k. The matrix S¥oJ isa m by m+1
matrix hence

ROK (1) > 2(m + 1) —m = m + 2
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Let
0 - mO(=1) - (m+1& > mO(1) - 0

be the monad for an instanton bundle of NC-type. The second display sequence for
the monad is:

0 - mO(-1) - K - & — 0
#

Proof of the proposition 4.30
€ is a vector bundle, thus h°E(1) < 2 by [8]2 so the propositions follows immediately.

#

Remark 4.32 In theorem 5.16 the converse of proposition 4.30 will be proven.

4.5.4 Summary

Now | summarize the results of the previous 3 sections: Let £ be an instanton bundle
of NC-type with second Chern class ¢3(€) = 2m + 1, then

The max. numberS ;=5 co =1 ¢ =9
of independent: m+1=3 | m+1=4 | m+1=5
vectors in a row

H°E,(1) - - ROE(1) =1
4 - ROE(L) =1 ?
3 ROE(1) =1 | RUE(1) >0 ?
2 ROE(1) =2 | RPE(1) =2 | RPE(1) =2

For m + 1 > 5 it’s only known, that if the matrix S has entries in a twodimensional
subspace then h°E(1) = 2.

Remark 4.33 If I consider not only bundles constructed by monads with one null
correlation bundle &€, but with the middle term consisting of a direct sum of different
null correlation bundles

0 — mO(-1) —» @r'eé, — mO(l) — 0

then there exist examples of instanton bundles which have no linear section h°€(1) = 0.
Those examples were constructed using a random generator.
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4.6 Moduli problems for NC-type bundles and a question of
irreducibility

This is a remark on the Grassmannian of isotropic vector spaces and the moduli space
of instanton bundles of NC-type. We have seen from the monad

0 - mO(1) > m+D& B mo1) - o

which shows explicitly the duality pairing between (m + 1)€ and (m + 1)€Y, that an
instanton of NC-type is defined by a matrix S or SV which define an m- dimensional
isotropic subspaces in k"' ® H°E,(1) which is isotropic under the pairing

A: @MTHYE, (1) @ @t HOE, (1) — HO(2)
Y ® S u — Yrttuf oot

introduced on page 58. Unfortunately this pairing has its values not in a field k& but
in the vector space H°O(2) ~ S?*VV, which is 10-dimensional. Hence the subscheme
G(m, k™ @ H°E,(1))’ of subvector spaces isotropic according to the above pairing
in the Grassmannian G(m, k™t ® H°E,(1)) is a much more complicated object than
in the case of a normal pairing taking its values in a field. I denote now by Y?° C
G(m, k™1 @ H°E,(1))? the open subset of those isotropic subspaces which determine a
subbundle as their image. This means that I'mage(S)Na®t = 0 for any ¢ € H°E,(1),
see [8] p.326,ii. For a fixed null correlation bundle one has the following sequence of
inclusions:

Y0 € G(m, k™ @ H°E,(1)) C G(m, k™ @ H°E,(1))

In the next step I define now the global object which describes the family of such
subspaces where the null correlation bundle &, varies. Let now MI(1) be the moduli
space of null correlation bundles on P3. This is a fine moduli space of stable bundles.
Hence there exists the universal bundle £ on MI(1) x P3. Let = be the projection

. MI(1)x P; — MI(1)

and let 7, & be the direct image of ¥ with respect to . 7, restricted to the fibre
77 ([&]) is HYE,(1), because base change is valid. One can study now inside the
relative Grassmannian

70 Gim,m (k™ Q E(1)) — MI(1)
the subfamily Y° which is has the fibres Y? = #71([£,]). Thus I obtain the diagram:

Yo — > G(m, 7 (k" @ E(1))
7
UcC MI2m+1) MI(1)

The vertical map at the left hand side of the diagram, is the map which maps any monad
determined by an S € Y? to its cohomology bundle. Not all monads parameterized by

104



Y0 determine non isomorphic instanton bundles. Isomorphic selfdual monads define
the same cohomology bundle. The base change group GL(m) on mO(—1) is already
divided out, because I parameterize with YO the subspaces in k™t @ H°E,(1) generated
by the matrices S. It remains to quotient out the action of those A € Gl(m + 1) which
respect the pairing J

SVoAoJoAYoS=S50J0S
where

0 - mO(l) > m+1& B mo1) — 0

Thus A must commute with J. If 7 is the symplectic pairing, see page 5
Jj &®&E — 02)
J
then J is in a suitable basis the matrix / y The matrix A does not
J
interfere with j, which operates only on Hy, C HYE,(1) therefore A is an element in

the orthotogonal group O(m + 1) preserving J. This group has dimension 7m(7r5+1).

I can compute now for special 't Hooft bundles of NC-type
0 - mO(l) > (m+1E — moO(l) - 0

the dimension of the stratum. It is sufficient to determine the dimension by computing
the dimension of the space of all selfdual monads modulo the O(m + 1) action. The
same method gives only an inequality for more general bundles of NC-type.

(1) The dimension of the moduli space of all null correlation bundles M (1) is 5.

(2) The subspaces H, C H°E,(1) of dimension k, in which the matrix has its entries,
are parameterized by G(k,5) which is (5 — k)k dimensional.

(3) The Grassmannian of all m dimensional subspaces in k"' ® Hy, G(m, k™' ® H})
is m((m + 1)k — m) dimensional.

(4) The dimension of the Grassmannian of all isotropic subspace with respect to the
pairing as on page 93, G*(m, k™! ® H}), is a more delicate number, because the
pairing takes values in a vector space not only in a field. Thus one can not expect
this space to be irreducible. Nevertheless, if the matrix S has its entries in a 2
dimensional subspace Hy C H°E,(1), then A*H, ~ k. Hence the dimension of

G*(m, k™ @ Hy) is dimG*(m, k™ @ Hy) — m(m—1)

2

(5) In a last step I must subtract the dimension of the orthotogonal group O(m + 1)

which is %

I conclude now:
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Lemma 4.34 The dimension of the stratum of all NC-type bundles with monad

SVoJ
H

0 > mO(l) > (m+1)E, mO(1) — 0

such that the matriz S has its entries in a 2 dimensional subspace Hy C Hof,'a(l) has
dimension 2m + 11.

Remark 4.35 This number will be computed in a different way on page 119.

Remark 4.36 Before I start with the question of irreducibility, I want to recall the
situation for instantons of type with ¢;(€) = 7 with monad, see 4.5.2:

0 — 30(-1) > 4& = 30(1) - o0

(1) If S € Mat(3,4; Hy) then h°E(1) = 1. (Y?))
(2) If S € Mat(3,4; Hs) then A°E(1) > 0. (Y?,)
(3) Uf S € Mat(3,4; Hy) then R°E(1) = 2

where Hy, H3, H; denote subvector spaces of H°E,(1) of dimension 4,3, 2.
Proposition 4.37 YO is not irreducible in general.

I claim that in the case of m = 3 all fibres Y;? are reducible. Y,? contains two components
Yy, and Y?, of dimensions > 24 and > 23 respectively, see 4.36, which can only

intersect in those bundles or sheaves in the closure, Y,0,, of Y,?, which have H°E(1) = 1.
Hence for all [£,] the fibres Y,? can not be irreducible. This follows from the fact that a
monad of type Y;?, deforms into monad of type Y?,, if one of the independent vectors
{s1,++,84} chosen in the beginning, see 4.7 specializes to zero. #

0
0
Those bundles or sheaves of Y ,, with h(E(1))=1
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5 Special 't Hooft bundles of NC-type

5.1 Introduction

For special 't Hooft bundles of NC-type the situation is nice and allows a
satisfactory geometrical description and interpretation. I develop a theory of special
't Hooft bundles which have a monad of NC-type

0 — mO(-1) & (m+1)E 4 mO(l) — 0

analogously to the theory of special ’tHooft bundles in general which is presented in [8].
Before I start with the new results of this chapter I am going to recall the “classical”
results on special 't Hooft bundles which were published by G. Trautmann and W.
Bohmer in [8]. From their point of view an instanton is the cohomology bundle of a
Beilinson-II-monad

0 - »33) B 2 B 2i-20 - o0,

where ¢3(€) =: n is the second Chern class of €. In [8] they constructed a normal form
for the Beilinson-II-monad of special 't Hooft bundles. In this normal form the matrix
B is fixed, see page 127 for details. The matrix M € Mat(n,n, A*V') is symmetric and
a product of a persymmetric matrix P and another fixed matrix R, see page 127. The
columns of the matrix R define a basis of H°K(1), the space of linear sections of the
kernel bundle defined by the second display sequence of the monad

0 - K — (2m+D)OY1) - O — 0.

Hence, if a monad is given in normal form with fixed matrices R and B, then & is
defined by the persymmetric matrix P. Moreover they showed that a special 't Hooft
bundle is completely determined by its pencil of linear sections PH°E(1). Actually two
independent linear sections of a special 't Hooft bundle £ define a smooth dependency
quadric @) C Ps3, see [8]2.1. This quadric is attached with a ruling which contains the
zero loci of all linear section s € HYE(1), see [8]2.1 proof 1. A quadric together with
a ruling on it defines a conic in the Grassmannian G/(2,4) which was explained in the
chapter ”Complements on null correlation bundles”, see page 55. In this way PHE(1)
determines a pencil g3,,,,(€) of degree 2m + 2 on C, see page 55.

They give also a nice geometrical interpretation of special 't Hooft bundles in terms of
classical geometry. They proved that there exists a curve S in the plane spanned by
the conic C such that the tangents to the conic C' of every pair of points of a divisor
D € g},,4,(€) intersect on S. This is called a Poncelet situation. This interpretation
gives rise to their classification theorem, c.f. [8]4.7:

There is a bijection between the moduli space of special 't Hooft bundles & on P3
with ¢2(€) = n and the set of pairs (P, L) where P C PA*V is a plane such that
PN G(2,4) = Cis a regular conic and L C PH°O¢(n + 1) is a pencil without base
points.
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Albeit it is still an open problem to characterize instanton bundles of NC-type among
all instantons, it is already possible to determine those special 't Hooft bundles which
are of NC-type, i.e. which are the cohomology of a monad:

TVoJ
H

0 - mO(=1) > (m+1)&, mO(1) — 0

and to describe their moduli.

In a first step special 't Hooft bundles of NC-type are distinguished among all instantons
of NC-type by the matrices of their monads. It turns out that they are precisely those
NC-type monads for which a two dimensional subspace H; in H°E,(1) exists such that
all entries of the matrix S lie in H,.

As for special 't Hooft bundles in general, there is a classification in terms of Poncelet
situations. Special 't Hooft bundles of NC-type can be described geometrically among
all special 't Hooft bundles by a property of their Poncelet curves S. In fact this curve
splits into a line and a curve of degree one less. A further degeneration is possible as the
example 5.12 will show. This gives rise to the following classification: Let P3 = P(V)
and let U in PA*V \ G(2,4) x G(2,5) x G(2,2m + 1) be the open set of all triples
({a), P, L) such that (a) € PA*V \ G(2,4), and P is a plane in PA?V containing (a)
and L C |H°O¢(*%2)| is a basepoint free pencil where C' is the conic C' := PNG(2,4).
Then there exists a finite map, generically 1 to 1, from U to the moduli space of all

instantons of NC-type with h°E(1) = 2 and ¢3(€) = 2m + 1. i.e.:

U — MI(2m +1)
({a), P, L) €]

We see in contrast to [8] that the classification is no longer bijective but a finite map,
generically 1 : 1. The phenomenon is caused by Poncelet curves which split into more
than one line.

Last but not least the normal form problem is treated for the matrices in the NC-
type-monads of special 't Hooft bundles of NC-type. This result is compared with the
normal form found in [8].

5.2 The monad of special ’t Hooft bundles of NC-type and
sections of the kernel bundle

We have already seen in lemma 3.4 that the zero locus V(s) of s € H°E,(1) ~ A*V/{a)
is the union of the two lines in P3 defined by the points of intersection ¢; and ¢, in

(a)(s) N G(2,4) C PA?V.
I want to describe now the zero locus of a linear section of a special 't Hooft bundle of
NC-type.

Notation 5.1 Let £ be an instanton bundle such that A°€(1) = 2. Two independent
sections s,s' € HYE(1) ~ k* define a smooth dependency quadric ) C P, see [§]
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1.4. The zero locus V(s) for arbitrary s € H°E(1) consists of possibly non reduced
“lines” supported on one of the rulings of ). The quadric () together with the ruling
supporting s defines a conic C(£) C P A*V as mentioned on page 55. P(&) is the
plane spanned by C(€) such that P(£) N G(2,4) = C(£). ¢3,,4,(E) is the pencil on
C(€) induced by HE(1).

I describe now in more detail the zero locus of a linear section of a special 't Hooft

bundle of NC-type.

Lemma 5.2 Let € be an instanton bundle with c;(€) = 2m+1 of NC-type with monad
0 - mO(-1) - (m+1)& — mO(l) — 0
Let K be the kernel bundle defined by
0 - K - (m+1)& — mO(1) — 0

and 5 € H°K(1) a section such that V(5) # 0. Then there ezists a section o € H°E,(1)
and a vector o := (a1, ,apy1) € k™! such that

s5=(a1," ", am41) Q0o and V(s) =V(e) =L UL .
Proof: A general 5 € H°K(1) is a vector (o1,...,0,41) with o, € H°E,(1). T assume
now that two o, and o, with 1 < g < v < m + 1 are independent vectors in H°E,(1).
Hence, 0, and o, intersect the conic C(€) in different points. The 4 lines on which
o, and o, vanish are disjoint because all 4 lines are contained in one ruling of the
dependency quadric Q(€) associated to C'(£). But this contradicts the assumption

that 0 # V(5) = Micj<ms1 V(0;). Therefore all o; must be dependent. ie. It 3 a
o€ H°,(1) and «; € k such that o; = ajo. #

The next lemma explains how sections in H°£(1) and H°K (1) are related to each other.
Lemma 5.3 Let £ be an instanton bundle, £ € MI1(2m+ 1) having at least one linear
section, 1.e. h°E(1) > 1, of NC-type with monad
0 - mO(-1) - (m+1)& — mO(l) — 0
and K be the kernel bundle defined by:
0 - K - (m+1)& - mO(l) — 0
If s € H°E(1) and 5 € H°K(1) such that 5 — s by
H°K(1) — H°(1) -»0.
Then following is true:
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(1) supp(V(s)) = Us-s supp(V(s))
(2) (a) € P(E) where P(E) is the plane spanned by C(E).

Proof: Let X be an irreducible component of V(s) and
0 - Iy —- O —- Ox — 0

the associated sequence. One obtains from the second display sequence the short exact
sequence:

0 — mH'O — H°K(l) — H%(1) — 0.

I look now for those sections vanishing on X. If one tensors now the sequence of

bundles
0 - mO - K(1) - &1) - 0

with the sequence of Ox one obtains the diagram below:

0 0 0
! ! !
mHOIX EE— HOK(1)®IX EE— Hog(l ®IX

J
0 - mHO —— HOK(l) N Hog(l) — 0

| |
mHYO —  HK|x(1) —  H%€|x(1)

It is proved now with the help of this diagram that for every s € H°E(1) every irre-
ducible component X of V(s) is an irreducible component of V(s) for an appropriate
s € H°K(1).

One can find by simple diagram chasing for every s € H°€(1) vanishing along X (i.e.
s € H°6(1)® Ix at' € H°K(1) ® Ix. Hence supp(V (s)) C Us_, supp(V(s)). Hence
7C” is valid. For the other inclusion 27 it suffices to show: Let V(s) = (U /. If
¢ C V(s) then ¢! C V(s). This follows easily from the same kind of diagram as above
but for the line ¢' instead of the irreducible component X C V(s). This proves (1) of
the lemma.

It remains to show part (2) of the lemma. Let s be a linear section of the bundle £.
In the first part of the lemma it was shown that there exists a section 5 € H°K(1)
such that s — s and V(s) = (U C V(s). Thus it must be of foorm s = a® o
where 0 € H°E,(1) and a € k™t see lemma 5.3. The bundle £ is special 't Hooft,
therefore both lines ¢, ¢’ C V(s) correspond to points on a conic C'(£) C PA?*V and
P(E) C PA*V is the plane spanned by C'(€), [8]. The section o is a line containing
the point (@) and intersecting C'(£€) in two points or a double point contained in P(£),
see 3.4. Hence, (a) € P(E). #
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Now I am prepared to prove the main result of this paragraph. Let £ again be an
instanton of NC-type with monad

0 - mO(=1) > (m+1)E, iy mO(l) — 0

It is already proved in 4.30 that if the matrix S has entries in a two-dimensional
subspace Hy C H°E,(1) only, then the instanton £ is a special 't Hooft bundle. The
next proposition shows that this is in fact an equivalence

Proposition 5.4 Let € be an instanton bundle of NC-type being the cohomology of the

monad
TVoJ
—

0 > mO(=1) 3 (m+1)E, mO(1) — 0

then the following is equivalent:
(1) There exzists a two-dimensional subspace Hy C HE,(1), such that all entries
of S are in H,.
(2) € is a special 't Hooft bundle. (i.e. h°E(1) = 2)

Proof:

1 = 2 This is the result of proposition 4.30.

2 = 1 One shows first that there exists a two dimensional subspace Hy C HYE,(1)
such that H°K(1) has a basis of elements (aq, -, amy1) ® s where s € Hy and
a; € k. 1 proceed now lifting the first display sequence of the NC-type monad to
the corresponding sequence

0 —- K'(1) - (2m+D)QY1) — 4mO — 0
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of the Beilinson-I1I-monad for the instanton &.

0 0 0

! ! !
0 — (m—l—l)@(—l) — (m—l—l)@(—l)@mﬂl(l) — le(l) — 0

<Cl]m+1 0 )
0 I,

0 — K’ i (m+1) Ql @mﬂl 5 1m0 = 0
0 — K — (m+ 1)& 17t mQ - 0
l l l
0 0 0

The morphism
(m+1)E& =7 mo@)
can be lifted to the morphism

@2m+1)0Y1) & 1m0

because the obstruction groups vanish. Following proposition 2.1 in [8] there
exits a base change such that the matrix B’ is of normal form in the meaning
of 5.6. Therefore H°K (1) has a basis generated by the matrix R, see chapter
5.6 page 127. The entries of R, &,n, u, span the plane P(£), see [8] 3.1. In the
previous lemma 5.2 it was verified that (a) € P(£). Therefore the images ¢, 7 and
g oof €,n and g under the projection through (a), P(€) — P(£)/{a), span a two
dimensional subspace of H°E,(1). The image of the basis of H°K’(1), generated
by R, is a basis of H°K(1) because the sequence

0 — (m+1)H°O(1) 3 HK'(1) - HK(1) — 0

is exact. Hence S has entries in a two dimensional subspace.

5.3 Complements on Poncelet pairs and poles

Poncelet situations are studied for more than hundred years beginning with Poncelet
(Traité des propriétés projectives des figures, 1822) and continuing with Darboux [10],
1917. Bohmer and G. Trautmann related the classical results to special 't Hooft bun-
dles, see [8]. T use for the rest of this paper properties of Poncelet Pairs to classify
special 't Hooft bundles of NC-type. Therefore I recall here the definition and basic
features of Poncelet pairs.
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Definition 5.5 Let C be a conic in Py, PL C PH°Oc(2m+2) a pencil of divisors on
C' of degree 2m + 2. A curve S of degree 2m — 1 in P, is called Poncelet related to C
with respect to P L if and only if for any two points of any of the divisors the tangents
to Cintersect on S. I shall also say (C,S) is a Poncelet pair with respect to L. The
curve S 1s named the Poncelet curve.

I want to study now those Poncelet pairs for which the curve S splits into a line ¢
and a curve S’ (i.e.S = S’ U () Therefore it is necessary to introduce the notion of an
involution and a pole here.

Definition 5.6 Let C be a smooth conic on a projective plane P := Py ~ P(W) and
(a) a point on P not contained in the conic C'. This point (a) defines an involution
ta : C — C as follows. All lines in P through (a) form a line P} C P = P(WV) in the
dual plane of all lines in P. Each line intersects the conic in multiplicity 2 (generically
two points). This gives a covering
7, C 2 Py

The involution ¢, # id is the covering transformation not equal to the identity. This is
wisualized in the picture below.
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<a>

Involution

Definition 5.7 (pole) Let L be a linear system on a conic C C P where P is the
projective plane. I say that the linear system L has pole if there exists a point (a) ¢ C
such that each divisor of L is invariant under the involution ¢, : C — C, defined as

above, (1,(D)= D for all D € L).

Remark 5.8 A conic ' is a quadric, here smooth, in a plane . Hence this conic
induces a quadratic form ¢ of full rank on P such that C' = V(g¢). The line {, := {z €
Plq(a,z) =0} is the polar line with respect to ¢ and the pole (a).

Remark 5.9 [ want to recall here a fact from classical geometry. The polar line is
the locus where two tangents to C' in opposite points P; and P, with respect to (a)
intersect. This is a consequence following from the fact that all three points (a), P,
and P; lie a the line £. Thus in P(WV) one has the dual incidence relations; i.e.: the
lines ¢,, €,, and ¢, associated with (a), P; and P, intersected in the point representing
the line €. This is also true for the polar lines in P(W). The picture below visualizes
the situation.

polar line
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I can prove now:

Lemma 5.10 Let (C,S) be a Poncelet pair with respect to L and let L be a basepoint
free pencil of deg = 2m + 2 with a pole (a) ¢ C. Then the Poncelet curve S splits into
a line { and a curve S’ of degree 2m such that S = S'U{. Moreover ( is the polar line
of the pole (a) with respect to the conic C. All tangents on opposite points with respect
to the involution ,, see definition 5.7, intersect on { and The pencil L defines a linear

system L' on ( with 2deg(L') = deg(L).

Conversely every such pair ({,L') determines a basepoint free pencil L with a pole on
C with deg(L) = 2deg(L') such that { is a component of the Poncelet curve.

Proof: The tangents on two opposite points on C' with respect to the involution ¢,
intersect on the polar line, see definition 5.9. This is clear by the remark 5.22. Obviously
{ is a component of S because it intersects S in infinitely many points.

Conversely the polar line ¢ determines the pole (a). Hence, every point on the polar
line determines a line through the pole {(a). This line intersects the conic C' in two
opposite points. In the way the pair (¢, L') defines a pencil of deg(L) = 2deg(L’) on
C'. Again { must be a component of the Poncelet curve S with respect to L. #

Remark 5.11 The "Satz” 6.4 in [21] shows that the existence of the pencil is necessary.
The splitting S = S’ U £ is not enough. He shows:

Let (C,S) be a Poncelet pair with respect to L and let L be a pencil of deg = 2m + 2
with a pole {(a) & C. If less than m + 1 tangents intersect on ¢ then L is not basepoint
free.

There is one more remark to be made on the uniqueness of poles for a linear system.
First, I present a sufficient and necessary condition for the existence of linear system
of deg 4 on a conic with 3 poles.

Proposition 5.12 Let L C |[H°O¢(4)] be a pencil on C then the following are equiv-
alent:
(1) L has 8 poles: (a), (b) and {c)

2) C =L, Ul UL, where £,,0, and {. are the polar lines attached with the poles
) p p

a, b and c¢. The involutions t,,t;, and ¢. form the Kleinian Group. (hence one

point determines a whole divisor in L.

(8) There exist the following incidence relations:

ﬁaﬂﬁbzc
ﬁbﬂﬁb:a
Nt =b
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For the degree=4 of the linear system is small, the situation can be visualized in a nice

/i

<b>

picture:

I
c

In fact those examples exist. The conic C' is the image of P; under the Veronese
embedding:

P, - P,

(s,t) = (s st,t%)
Let L € H°O¢(4) be a pencil generated by (s* — t*, s*?) and s, are the coordinate
functions on ;. In [28] the equation is the Poncelet curve S is computed directly.
Given coordinates eg, €1, €3 for the plane P and the Conic C' = V(ejeq — €3) then the
Poncelet curve S = V(e1(eg + ie2)(eq — tez)).

5.3.1 Further remarks on Poncelet pairs

The remarks I mention here are partially known since the days of classical algebraic
geometry. They are directly connected with the results in this thesis. These results
are collected and in detail written in [21], and treat reducibility questions of Poncelet
curves.

The general situation is again given by a smooth conic C' in P; a pencil
L C H°Oc(n+1)) on C and a curve S of degree n such that (C,S) is a Poncelet pair
with respect to L, see definition 5.5.
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Remark 5.13 It is obvious that for base point free pencils a pole is possible if and
only if n + 1 is even. In addition to the result for basepoint free pencils on page 114,
is in [21] a description of Poncelet curves of even degree which contain a line /.

Proposition 5.14 ([21]6.3) Let S = S’ U1 be the Poncelet curve for a smooth conic
C C P, and a pencil L of odd degree. Then L has basepoints.

The behaviour of those Poncelet curves which contain a conic was already known to
Darboux:

Proposition 5.15 ([10]pp 625, [21],pp 25) Let (C,S) be a Poncelet pair with re-
spect to a pencil L of degree n, where C C Py is a smooth conic and S s the Poncelet
curve of degree n — 1. If there exits for a divisor D € L an ordering of all points in D,
(p1,- -+, pn), such that Vi € Z, the tangents to C in the points p; and p;1 intersect on
a conic C' and moreover, if C' C S, then S splits into ”2;1 conics if n is odd and into
n—1

"=~ comnics and a line if n 1is even.

In the case of n = 5 this splitting describes Pascal’s theorem in one direction and a
case of the famous Cayley-Bacharach theorem in the other direction. [12]pp 673.

Furthermore a complete classification of Poncelet curves up to degree 4 is contained in

21].

5.4 Main theorems and the moduli for special ’t Hooft bun-
dles of NC-type

In this section the main results on special 't Hooft bundles of NC-type and a description
of their moduli are presented. The question of the normal form of monads for special
't Hooft bundles of NC-type is treated in a section 5.6.

In the next two theorem the intersection of the set of NC-type instantons and the
special 't Hooft bundles in the moduli space MI(cz) is characterized. 1 recall now
theorem 5.4 where the special 't Hooft bundles are described among the instantons of
NC-type by:

Theorem 5.16 Let £ be an instanton bundle of NC-type with c2(€) = 2m + 1. Then
the following conditions are equivalent:

(1) R°E(1) = 2.(i.e. € is a special t Hooft bundle)
(2) € has a monad of NC-type:

TVoJ
H

0 - mo(-1) 3 (m+1)&, mO(1) — 0
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and in addition S € Mat(m,m+ 1; Hy) where Hy C HYE,(1) is a 2-dimensional
subspace.

Proof:

1 = 2 This is proven in lemma 5.4.

2 = 1 This is verified in proposition 4.30.

#

In theorem 5.17 the NC-type instantons are classified among the special 't Hooft bun-
dles:

Theorem 5.17 Let € be a special 't Hooft bundle with c2(E) odd

(1) & is of NC-type:

(2) The basepoint free linear system g3,..,(E), see 5.1, has a pole, which is not
contained in the conic C(€)

(8) The Poncelet curve S(E) splits into a line and a curve, i.e.: S(E) = LU S’
and there is a basepoint free pencil L' on { of deg(L') = m + 1 defined by the
intersection points of the tangents of m + 1 pairs of points of every divisor D of

g%m+2 (5) .
Proof:

2 <= 3 This is verified in lemma 5.10.
1 = 2 This is the content of lemma 5.3(1).

2 => 1 The proof of of this statement uses the normal form for monads of NC-type
and is thus postponed, see proposition 5.32.

#

As a direct consequence of the theorem 5.17 one can describe now the moduli space of
special 't Hooft bundles of NC-type. The moduli space for special 't Hooft bundles in
general was studied in [8] and [18].

In the general case the moduli problem for special 't Hooft bundles with fixed second
Chern class ¢y(€) = n is bijective to the set of all pairs (P, L) where P C PA*V is a
plane with P N G(2,4) = C(C is a regular conic) and L C H°O¢(n + 1) a basepoint
free linear system. For special 't Hooft bundles of NC-type we have:
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Theorem 5.18 Let P; = P(V) and let U open in (PA*V \ G(2,4)) x G(2,5) x
G(2,2m + 1) be the set of all triples ({a), P, L) such that (a) € PA*V \ G(2,4), and P
is a plane in PA*V containing (a) and L C |H°Oc(*%2)| is a basepoint free pencil
where C is the conic C := P N (G(2,4). Then there exists a finite map, generically 1
to 1, from U to the moduli space of all instantons of NC-type with h°E(1) = 2 and
2(E)=2m+ 1. de.:
U — MI(2m+1)
(@, PL) — [

Remark 5.19 (1) The reconstruction of the instanton £ from a triple ({a), P, L)
is done in section 5.6.

(2) One can not expect bijectivity in the theorem 5.18 because lemma 5.12 that
there exist pencils with more than one pole.

It is also possible to compute the dimension of the family of special 't Hooft bundles
which have a monad

0 - mO(-1) - (m+1)& — mO(l) — 0

directly from the geometry as in theorem 5.18. There is a different way computing the
number which is already derived in lemma 4.34. According to theorem 5.18 it remains

to compute the dimension of the space PA*V \ G(2,4) x G(2,A*V/{a)) x G(2,m + 1):
(1) PA*V \ G(2,4) is 5 dimensional.
(2) G(2,A*V/{a)) is 6 dimensional.
(3) G(2,m + 2) has dimension 2m.

Hence the dimension is ¢y + 10 = 2m + 11.

Remark 5.20 The choice of the subspace Hy C HE,(1) is equivalent to the choice of
the pole (a) and a plane P containing the pole (a).

5.5 Linear systems on a conic having a pole

In this section I study properties of linear systems on a smooth conic in P := Py ~
P (W) which shall be applied to the normal form question of monads for special 't Hooft
bundles of NC-type in the sequel. Actually I shall parameterize all pencil on a smooth
conic C' € P, which allow a pole with respect to the conic. The precise definitions
of the involution and of a pole are already given in chapter 4 , see 5.7 and 5.6. The
consideration in the chapter are explicit calculations in coordinates which reflects the
more geometric reasoning in chapter 5.3 "Complements on Poncelet pairs and poles”.
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Remark 5.21 Let P be the projective plane P(W). I choose coordinates zg, 21,29 €
WY such that C' := {2922 — 2§ = 0} then the following is true:

(1) zo29 — 27 = %(20,21722) -2 21
1 Z9

(2) Therefore the conic defines after this choice of coordinates a duality pairing

between W and WV.

w - wY
€o %)
€1 — -2z
€2 <0

€o, €1, €2 is a basis of W and zg, 1, z; the basis of WV. This induces moreover a

pairing between P(W) and P(WV)
(3) This pairing is non degenerate because C' is a smooth conic in Ps.

(4) If the pole in P(W) has coordinates (ag, a1, az) then the polar line

by :={x € P(W)l|g(a,x) = 0} has coordinates (aq, —2a1,ao) in P(WV), i.e.: it is
the line {asz0 — 2a121 + agz2 = 0} C P(W). The polar line is the image of the
line P} in 5.6 under the duality pairing between P(W) and P(WV).

Lemma 5.22 Choose coordinates s,t of IP1, then the Veronese embedding is:

Py
(t,5)

The intersection point of the two tangent lines on C wn the points with coordinates
{t? t;s;,57} 1 = 1,2 has coordinates (1,1, %,5132).

7

Ccph,
(t%,ts,s%)

—
—

Proof:
The tangents at p; € C ¢ = 1,2 are:

{z2(p)z0 + 221(p)21 + 20(p)z2 = 0} =

{s?20 + 2s;iti(p)z1 + tiza =0} i = 1,2

Hence the intersection point of the lines is (12, %, 5182).
The picture below visualizes the situation of the lemma.
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#

With these introductory facts and fixing of conventions we are now able to compute
explicitly the involution in terms of the fixed pole (a). For the rest of the chapter
(a) has the coordinates ag,a,as. The isomorphism C' ~ P, given by the Veronese
embedding reduces the number of coordinates to 2, therefore I shall work for the rest
of this chapter on P;. I describe now the induced involution ¢, on #;.

Lemma 5.23 Let
v: P — C

(t,s) — (1% ts,s?)
be the Veronese map, then the involution ¢, defined by

15 expressed in coordinates as:

Za . E)l — E)l
(tis1) = (ta: SEERE) = (1 1 s)

Proof:

In 5.22 we have proven that the line connecting two opposite points (3,11, s7) and
(tyt252,52) has coordinates (s1sa, —(t281 + t182),t1t2) € Py. It contains the point
(ao, a1, aq). Therefore: we can determine s, as a function of ¢, and vice versa:

0

— SQ(CL()Sl — Clltl) = —a2t1t2 + ClthSl

(—asty + ags1)ts
agsy — aity

s182a0 — (t281 + t1s2)as + aztity

Ifaosl—altl#()and tg#o = S =
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If agsy — aity = 0 then (t3:s5) = (0:1).
If ¢, = 0 then —aqt; + a151 = 0 because sy cannot be zero at the same time. #

Remark 5.24 In particular we have:

o1 — P
(1:0) = (1:39)
(0:1) — (Z—?:l)

5.5.1 The induced action i* on H°O¢(2m + 2)

In this subsection the contravariant action ¢} of 7, on the space

H°Oc(2m + 2) is described. T construct explicitly a basis of the vector space of invari-
ant polynomials in H°O¢(2m + 2)% ~ HOOPl(m + 1). I shall start with an arbitrary
basis of HOOPl(m + 1) and construct m + 2 invariant elements in H°O¢(2m + 2)2;i
which are independent. I can visualize the geometric background in the picture below.
The two points (0 : 1) and (1 : 0) on Py are mapped under the Veronese map to two
points n = (0 : 0 : 1) respectively ¢ = (1 : 0 : 0) on C. For a basis of Py we need
another point. It is convenient to take w := (0: 1 :0) as the intersection point of the
two tangents at  and £.

/P

Lemma 5.25 (1) In the situation above the equation
— = apf + az7

is true in H°E,(1) ~ A?V/{a). @, and & denote the images of w,n and ¢ under
the projection

L/\ZV — L/XQV/<CI/>
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(2)

Proof:

(1) Without any loss of generality I fix (a) = (ao : 1 : a3), hence
a=agf+w+aym .
Thus ag + w + azn = 0 mod a. Remember that <£L> =0¢€ H,(1).
(2) This is obvious from 5.23

Lemma 5.26 The contravariant action i} induced by i, is

HOOE)l(m—}—l) — HOOE)l(m—I—l)
s — (s—apt)
t — (t—ays)

where s,t is a basis of HOOPl(l).

Remark 5.27 In the sequel I shall use for convenience the notation
a = —dag

b:GQ

Next I construct the basis of H°O¢(2m+2)%. Istart with an arbitrary basis {u”v” }v,tv=mt1}

of HOOE)l (m +1). If I multiply each element w*vy, _ ., by its image under i}, then

the result is invariant according to the next lemma.

Lemma 5.28 The i}-invariant basis of HOOPl(ZZm +2) is

{SM(S —|— at)uty(t —|— bS)y}{(u7y)|#+V:m+1}

Proof: Certainly a polynomial pi*(p) is invariant under the involution 7*. The set of
all such monomials consist of 2m + 2 independent ones. #
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Remark 5.29 It is also useful to normalize as follows:

Zaf = (17‘12):Z
lan = (ao,1) =1,(0:1)

This gives us a basis :

{s"(s + at)" 1" (s + bt)" H(uo)lutv=mt1}

The next lemma is not difficult but very technical and it is easier for the reader to
see the ideas in the case of low second Chern classes ¢2(€) = 2m + 1. I present these
matrices after the lemma. The next lemma describes explicitly the embedding in terms
of matrices with respect to the two bases chosen above the embedding

e : HOOE)l(m—I— 1) — HOOC(Zm +2)

Lemma 5.30 The embedding

e: HOOPl(m—I—l) —  H°Oc(2m + 2)
= fef

15 represented by the matrizc :

k
1-— o
Am = (am-l-l—l/—k,l/)yzko_’é"m-i'l = (Z (m - J I/) (j) b(m+1—y)—k+] CZ])
e =0 v=0,... m+1

k=0,...v

if we choose the basis {s"(s + at)"t"(s + bt)”}{u’ymﬂ,:m_l_l} for HOOPl(m + 1) and
{s*(s + at) 4" (s + bt)" M uvjutv=2miay for H'Oc(2m + 2).

Proof: It is enough to compute the coefficients of the polynomials s#t¥(s+at)*(t+bs)”.

(s + at) (t + bs)” = (g: (é‘)su—i(at)i) (; (;)(bs)”‘jtj)

utv
“Cauchy summation” = = Z Z ( )( )tlﬂ Hov=isd gl ppt

k=1 i+j=k

m+1
p+r=m+l= = Ztk mt1-k Z ()() a bt

i+j=k

m k
_ il ok gmt1-k Z (m +1- ) (V) g pmHL—v) =t

k=1 J

= Upmt1-v—k, the coefficient for thgmti—k — gmyv
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What do these matrices look like? T present now A,, for the values -1,0,1 and 2:

(1)

1 a 0
0 6 1

1 2a a? 0 0
0 6 2ab+1 a 0
0 0 b? 26 1
1 3a 3a? a® 0 0 0
0 b 2ab+1 2a+ a®b a’® 0 0
0 0 b? 2b+ab* 2ab+1 a 0
0 0 0 b3 3b? 36 1

There is one more technical detail to mention about these matrices. It is possible to
compute the coefficients of A,, 1 from the coefficients of A,, inductively.

Lemma 5.31 If the matrices A,, are defined as in 4.31 then the following is true:

m—+1 _ m m
(1) CZ (m+1)—k—vyy — aam—k—u—}—l,lz + am—k—lz,lz

(2) an:rjil —k—vy = az—k—u—klu—l + baz—k—u—l,u—l
The upper indez indicates to which matriz A,, the coefficients belong.

Proof:

We already know the meaning of the matrices A,,+1. The image of a basis of monomials
s ™, st L of HOOPJ(m + 1) under A,, 41 is our basis of invariant poly-
nomials. The rows are in our convention the image vectors of a monomial under the
embedding e as before. Hence it is sufficient for the proof to calculate the coefficients

of p(s+at) p e HOOE)l(Zm +2) as p(s + at) = ps + pat:

m-|—1—l/tl/(8 _I_at)m—l—l—u(t_l_ bS)V
= gty (s + at)”"' “(t 4 bs)”(s + at)

by 4.31 = s™TiTvg (Z thgm—k ( ( ) ( )a]bm v) kﬂ)) (s + at)
k=0 J
m k
— Sm—l—l—lztu (Z tk8m+1_k (Z (m l/) ( )a]b m—v)— k-l—])
k=0 7=0 k

m k
,;) ]2 k—g)\J
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m

_ m+1—vyv kE m+1-k m
= S 1 (Zt Ak — v,v
k=0

S )

m+1
_ m—|—1 Vv kE m+1— k kE _(m+1)—k m
- 1 (Z 1"s Ay k— v,V Z 1 S( ) aam—k—u—l,u)

k=0 k=1

This proves (1). The proof of case (2) is completely analogous. #

Example: Let us look at A; and A,:

1 2a a’ 0 0
Ai=10 b 2ab+1 a 0

0 0 b? 26 1
1 3a 3a? a’ 0 0 0
A — 0 b 2ab+1 2a+ a?b a? 0 0
2710 0 b? 20+ ab® 2ab+1 a 0
0 0 0 b 362 36 1

I compute for instance with the formula (1) in lemma 5.31 the entry aj 5 of the matrix

Aj from the entries of the matrix Ay. aj 3 = aaj 5+ ag s ie.: 20+ ab® = ab® + 20.

5.6 A normal form for NC-type-monads

This chapter has several purposes which I am going to outline now. The guideline of
this chapter will be the reconstruction of the special 't Hooft bundle from its pencils
G3m42(E) or gr.1(E) respectively. In the previous chapter 5.4 the preparatory con-
siderations on ¢*-invariant linear systems on P, are made. It turns out that a pencil
admitting a pole defines a NC-type monad. At the same time this pencil defines a
Beilinson-1I-monad according to the constructions described in [8]. In this section a
map between both monad displays will be given.

In a first step an identification is chosen for both pencils g}, ,,(€) and g¢;,,,(€) with
appropriate subspaces of (2m + 2)Q!(2) respectively (m + 1)&,(1). This choice is
suggested by the normal form of the Beilinson-II-monad for general special 't Hooft
bundles presented in [8]. I proceed then with the normal form for the NC-type-monad
for special 't Hooft bundles of NC-type. Next I compare both monad displays. This
means that a map between both monad displays will be given. Finally it is proven
that the instanton bundles reconstructed from both pencils g3, .,(€) on the conic C
and g}, ,,(€) on the polar line are isomorphic

Hence in chapter 5.6 the following proposition will be verified:
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Proposition 5.32 Let (L,C) a Poncelet pair where L is a basepoint free pencil of
degree 2m + 2 on the conic C admitting a pole. Then (L,C') defines a Beilinson-II-
monad and in addition a NC-type-monad and the cohomology bundles of both monads
are isomorphic.

[ recall now W. Bohmer’s and G. Trautmann’s result. For every special 't Hooft bundle
there exists a normal form for the Beilinson-II-monad of special 't Hooft bundles

0 - (2m+1)O(-1) 5 (2m+1)Qp (1) = 4m0 — 0

as follows, [8]:
The matrix B € Mat(4m,2m + 1,V) has the normal form, see [8].3:

z y 0 0 0 0 0 0
oy ox oy 0 0 0
I )
B = 0 0 = Y 00 2m+1
0 0
0 0 0 0 0O Ty
00 0 0 0O 'y

am

where z,2',y,y" is a basis of V. The matrix M € Mat(2m + 1, A\* V) is symmetric and
a product of a persymmetric matrix P and R i.e.: M = P o R, where

&0 01\)
w € 0
n o w :
R := 0 7 0 2m+3
0 0 ¢
Do w
0 0 n

2m+1
Withé =z A, w=aAy —2'Ayand n=y Ay’
Remark 5.33 Let K be the kernel bundle in the display of the Beilinson-1I-monad

and

0 - K — (2m+2)QY(1) — 4mO — 0

the first display sequence, then Im(R) := I'mage(R) is isomorphic to H°K (1) C (2m +
2)HQ(2) Thus every vector ¢ € Im(R) is of the form, see [8]3.1:

t= (01, -, 0umys), 0; = "I 4 2stw + 177), s,t € HOOPl(l)(*)
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Next a vector space W, is constructed which will play for NC-type monads the role of
Im(R) for Beilinson-1I-monads. I choose now:

81 1= 5,32 =7

where £, i) and @ are the images of ¢,w,n under the projection P A\*V — P A\*V/{a)
and (a) has the coordinates (ag : 1 : a3) in the plane P(£), which is spanned by £,w,n
as on page 122 hence —w = ags; + ays;. Therefore the o; project to the s;: (%)

S; = sm_i(s — aot)m_iti(t — ags)i (s(s — aot)sy + t(t — azs)sa) .
These s; define now a m + 2-dimensional subspace W, of (m + 1)H°E,(1) ~ \*V/{a).

It is clear now that s(s — agt)s; + t(t — ays)sy parameterizes the polar line, see 5.8
in P A\?V/{a) which is the image of C(€) through the pole, P A\*V — P A\*V/{a).
Hence the two spaces of sections Im(R) and W, have the same dependency quadric

Q) C P3,see page 55 and 5.3.

Therefore
m+1E — W, 0 — 0Og(2m+2,0) — 0
a Q

follows from the evaluation sequence for in the case of Beilinson-I1I-monads,
0 - KY(1) » W0 — 0g(2m+2,0) — 0.
K. 1s now the kernel defined as follows
0 - KX(1) - W,0 — 0Og(2m+2,0) — 0.
0 - KY(1) — Im(R)V®0O — 0Og(2m+2,0) — 0.

Lemma 5.34 Let K, above then the isomorphism
H°Oc(2m + 2)'= ~ H°K,(1)

15 valid.

Proof: Dualizing and taking global sections of the sequence
0 — K1) —» W,.@0 — 0Op(2m+2,0) — 0
yields
0 — H°Oc(2m+2)-20 — K, (1) — 0g(2,—2m) — 0

Thus the lemma is true, because W, ~ H°Og(2m + 2)«. and H°Q(2, —2m) ~
HOOPl(Z) ® HOOPl(—Zm) by the Kiinneth formula. #

Now I can prove a normal form for monads in analogy to [8]. This normal form is
called a special monad in compliance with [8]p.333
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Definition 5.35 (special monad) Let (M,SY o .J) denote the monad
0 — mO(-1) B (m+1)E, g7 mO(l) — 0

Then (M, SY o J) is special if and only if SV o J is of shape

syod sfoJ 0 0 0
SVolJ = 0 syoJ sfod 0 0 m
0 0 0 syoJ sfolJ
m+1

where s1, sy are two independent sections in HYE(1).
The next proposition gives the desired normal form for monads.

Proposition 5.36 Let £ € MI(n) be an instanton bundle of NC-type with the property
R°E(1) = 2. Then & has a special monad.

Proof:
Let
0 - mO(-1) - (m+1)& — mO(l) — 0

be a NC-type monad defining £. Let K be the kernel bundle in the second display
sequence

0 - mO(-1) » K - & — 0

and () the dependency locus of two independent sections in H°£(1) and we have the
evaluation sequence

0 — K20 — K1) — 0g(2,-2m) — 0

As in [8]3.2 I choose coordinates x,2,y,y" and § = 2 A 2',w = 2 Ay’ — 2’ Ay and
n =y Ay’ such that @) is the regulus defined by

525 + 2stw + t277 =0
If I take now ¢ = s, n = sy and w = agsy + azs; then () is parameterized by
V(s15(s — aot) + sat(t — agzs)) =4, ,

the polar line. Kg is now defined to be the kernel of SY o J as in the definition of a
special monad. Hence we obtain the evaluation sequence below:

0 — K20 — Kol) — 0Og(2,-2m) — 0 (%)
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In the next step we see that there exists always a base change of £™ such that T is of
special form. The evaluation sequence (*) induces an isomorphism between the exten-
sions defined by Ext'(Og(2, —2m), k™**) and the homomorphisms Hom/(k™*? k™+?).
Under this isomorphism Ky corresponds to the identity map and for any map ¢ K is
the pushout of ¢. Thus we have the diagram:

0

!
oo

!

0 —» P20 — K,

&

0 - P20 — K
!

e O
!
0

— o

~—~

1) —— 0g(2,-2m) — 0

’ |

~—~

1) —— 0g(2,-2m) — 0

O — Ty —

where A B are kernel and cokernel respectively. But since Hom(K (1), O) = 0 we must
have that [ = 0 hence ¢ is an isomorphism. Therefore 7V o J can be chosen of special

form. #

Remark 5.37 M is now a matrix with entries only in Hy C H°E,(1), the subset which
is spanned by s1, s3 because M = P oS where P is a persymmetric matrix with entries
in the ground field k& and SV o J has entries in a two dimensional subvector space H) .
Therefore I have proven the converse of proposition 4.31 which I already announced.

Lemma 5.38 Let € be an instanton with a special monad, then h°E(1) = 2

Proof:
Let S be
S1 S92 0 0 0
S — 0 S1  S2 0 0 m
0 0 0 s1 s2
m+1

Obviously the kernel of SV o.J contains the span of S therefore it is of dimension > m+2
thus h°£(1) > 2 which follows from the second display sequence

0 - mO — K, (1) - &1) — 0.
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Remark 5.39 There is also a proof for lemma 5.38 which does not refer to special
monads proposition, see proposition 4.30.

Now I can formulate a comparison proposition between the resolutions of Og(2m+2,0)
given in [8] and the resolution specific for special t Hooft bundles of NC-type.

Proposition 5.40 Let C be a smooth in (G(2,4) with associated quadric ) C P5, SV
1s the matriz defined below and RY, RYis the transpose of the matriz R and B on
page 127 and the A,, are defined in proposition 5.30. then there ezists a commutative
diagram:

SoJ sV
0 —  mO-2 —— )& (<) —— w420 —— Ogem+20 — 0
BY RY
0 —  4mO1) ——  en+)?@) —— @m+3)0 —— Og@emt+20 — 0
sy sy 0 0 0
v 0 sy sy O 0 o
0 0 0 sy s
m+2
Jos, Josy 0 0 . 0
0 Jos; Josy 0 e 0
JoS = . . . m
0 0 e 0 Jos; Josy
m+1

Proof:
of the proposition
The proof consists of the 3 subsequent lemmata.

Lemma 5.41 The dual evaluation sequence, defined as in the proposition 5.40,

0 — mO-2 Tof (m+1)EY (1) 5 m+20 — Ogem+20 — 0

18 ezact.
Proof:

(1) The left hand side is obviously exact by an direct computation, if one takes in to
account that sy o J os; >~ s; A s; see definition 3.9

131



(2) The right hand side is exact, i.e. the base locus of the linear system in generated
by is the quadric @) and the cokernel is Og(2m + 2,0). Remember that:
£ =51, w = (ags1 — azs3), 1 = Ss.
I already know that a general element in the image of SV has the form, see page
128:
S; = sm_i(s — aot)m_iti(t — ags)i (s(s — aot)sy + t(t — azs)sa) .

= 5" (s — aot) " ( — a2s)'(€s(s — aot) + (L — azs))
= "7 (s —apt)" T (t — a23)2(552 — st (aof + azn) —HﬁQ)
N—————’
This is w by 5.25
= Sm_i(S — aot)m_iti(t - CLZS)i (532 — stw + ﬁtQ

This is the projection of the equation of the conic in P to the polar line

Moreover it is clear that the s; together with C' form a regulus, where the s;
define a linear system of degree 2m + 2

#

Now it remains the verify that the squares in the diagram of the proposition commute
which is obvious for the right hand square. Therefore we prove lemma 5.42 and 5.44

Lemma 5.42
RVoA,.1=A,05"
Proof:
The proof is now straightforward linear algebra applying 5.31. Let’s compute A,,_jo0 R
first. Let AY | := (am_|_1_l,_k7l,)(y:o,...,m+1) with v fixed the v** row of A,, and again
_ k=0,...v
E=35Y0lJ, o= (apsyoJ—aysyolJ),7=syodJistrue. So what is the v row of
RYo A, _1?
0 -+ Ofa ax*xal +a 0]0 0 sy
\ _ m—k—v+1,v m—k—uv,v 1
ffod, = ( 0 oo 0] 0] | al s gy Tbxal o, ‘ b ‘ 0 - 0 )(
0 0|a A (m41)—h—vw 0]0 0 sy v
= ’ 0 =A,0S5
( 0 00 ook 1)—k—(41),(441) ‘ b ‘ 0 0 ) ( 53

Definition 5.43 Let K,, be the matriz inductively defined as follows:

z' z!'

0
2, then

If Ko 1s the vector _y;r and C is the matriz: ;‘,z
-y -y —x
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Ky := K; " 4" C where "+" is the concatenation according to the scheme:

The commutativity of the left branch of the diagram of the proposition is due to the
lemma below

Lemma 5.44
BYoK,ANA,_3=A4,,_10J08

Proof: It is straightforward linear algebra applying 5.31 and left to the reader. #

So far I have only studied properties of the right hand monad arrow SY o .J which has
a convenient normal form and is only dependent on the conic C(£) associated to the
dependency quadric of two sections in £(1). The next step shows how a base point free
pencil in H°O(2m +2) or H°O(m + 1) determines an instanton bundle and vice versa.
This is equivalent to the description of the right arrow in the monad. Furthermore a
pencil on C(&) gives isomorphic bundles if we construct them from a Beilinson-I type
monad via g3, ,,(€) or a monad of type

0 - mO(-1) - (m+1)& — mO(l) — 0

via gy 4 (€) it A, maps g}, .1 (E) on ¢3,,,,(E). There now the commutative diagrams
joining the pencils g;,,,(€) and g3,,,,(E) with H°O(2m + 2) and H°O(m + 1) respec-
tively.

0 0
! !
0 — EY — 0,1 (&) ®0 —— 0p(2m+2,0) — 0

0 - KY(-1) —— (2m+3)0 —— Oo2m+2,0) — 0

Cm+1)0 ———  (2m+1)0
! !
0 0
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0 0

!
0 — e — §3u2(E) R0 ——— Og(2m +2,0) — 0

0 — K;’(—l) - (m—I—IZ)O _ OQZm—I—Z 0) — 0

m0 — mO
! !
0 0

Lemma 5.45 If g;,.,(&) maps to g3, ,,(E) under the surjective embedding
Ay H°O(m4+1) — H°O(2m +2)%a

then the vector bundles £ and £ are isomorphic.

Proof:

This is true because the pullback is unique up to isomorphism. #

Let be left column of the last diagram
0 - & - KY(-1) MmO - 0
and
0 - mO(=2) =¥ (m+1E(-1) > KY(-1) - 0
be the resolution of KY(—1) given by 5.40
- mO(=2) — (m+1)E&(-1) - KY(-1) - (2m+3)0 — 0
N\ /
(2m+1)O

Then after dualizing I can tie together both exact sequences to the desired monad of
NC-type monad for the instanton:

0 - mo(-1) % (m+1eE,

SVoJ
H

mO(l) — 0

Lemma 5.46 Let M be JoSY o A and M is symmetric. Hence as in the general case
of [8], A with entries in the field k, is persymmetric, i.e.: A has shape:

\
Gg a1 daz R 79
a; az
Alghn(E) = | 4,
Ay, J
m+1
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Proof:
It is linear algebra analogous to [8]p.333.
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Hiermit versichere ich, dafl ich die vorliegende Arbeit selbstandig verfafit und keine
anderen Hilfsmittel als die angegebenen Quellen verwandt habe.
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