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Abstract
The thesis studies change points in absolute time for censored survival data

with some contributions to the more common analysis of change points with re-

spect to survival time. We first introduce the notions and estimates of survival

analysis, in particular the hazard function and censoring mechanisms. Then, we

discuss change point models for survival data. In the literature, usually change

points with respect to survival time are studied. Typical examples are piece-

wise constant and piecewise linear hazard functions. For that kind of models,

we propose a new algorithm for numerical calculation of maximum likelihood

estimates based on a cross entropy approach which in our simulations outper-

forms the common Nelder-Mead algorithm.

Our original motivation was the study of censored survival data (e.g., after

diagnosis of breast cancer) over several decades. We wanted to investigate if

the hazard functions differ between various time periods due, e.g., to progress

in cancer treatment. This is a change point problem in the spirit of classical

change point analysis. Horváth (1998) proposed a suitable change point test

based on estimates of the cumulative hazard function. As an alternative, we

propose similar tests based on nonparametric estimates of the hazard function.

For one class of tests related to kernel probability density estimates, we develop

fully the asymptotic theory for the change point tests. For the other class of

estimates, which are versions of the Watson-Leadbetter estimate with censor-

ing taken into account and which are related to the Nelson-Aalen estimate, we

discuss some steps towards developing the full asymptotic theory. We close by

applying the change point tests to simulated and real data, in particular to the

breast cancer survival data from the SEER study.
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Abstract

In dieser Arbeit werden Changepoints in absoluter Zeit für zensierte Überlebensdaten

betrachtet und zusätzlich Changepoints relativ zur Überlebenszeit. Wir betrachten

zuerst die Begriffe und Schätzverfahren aus der Survivalanalysis, insbesondere die

Hazardfunktion und Zensierungsmechanismen. In der Literatur werden in erster Linie

Changepoints bzgl. der Überlebenszeit studiert. Typische Beispiele sind stückweise

konstante bzw. stückweise lineare Hazardfunktionen. Für diese Art von Modellen

schlagen wir einen neuen Algorithmus zur numerischen Berechnung der Maximum

Likelihood-Schätzer vor, der auf einem Kreuzentropieansatz beruht und der in Simu-

lationen bessere Ergebnisse als der übliche Nelder-Mead-Algorithmus liefert.

Unsere urspüngliche Motivation war die Untersuchung von zensierten Überlebensdaten

(z.B. nach einer Brustkrebsdiagnose) über mehrere Jahrzehnte. Wir wollten unter-

suchen, ob die Hazardfunktionen in unterschiedlichen Zeitperioden verschieden sind,

z.B. auf Grund von Fortschritten in der Krebstherapie. Dies ist ein Testproblem

im Sinn der klassischen Changepointanalyse. Horváth (1998) hat einen passenden

Changepointtest vorgeschlagen, der auf der kumulativen Hazardfunktion aufbaut.

Als Alternative schlagen wir ähnliche Tests vor, die stattdessen nichtparametrische

Schätzer der Hazardfunktion benutzen. Für eine Klasse von Tests, die Bezüge zu

Kernschätzern von Wahrscheinlichkeitsdichten aufweisen, leiten wir eine vollständige

asymptotische Theorie her. Für eine andere Klasse von Schätzern, die Versionen

des Watson-Leadbetter-Schätzers unter Berücksichtung der Zensierung der Daten be-

nutzt und die mit den Nelson-Aalen-Schätzern verwandt sind, diskutieren wir Ansätze

zur Herleitung einer vollständigen asymptotischen Theorie. Zum Abschluss wenden

wir unsere Changepointtests auf simulierte und reale Daten, insbesondere auf die

Brustkrebsüberlebensdaten der SEER-Studie, an.
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Chapter 1: Introduction

1.1 Problem Overview

Several critical diseases like cancer, tuberculosis, diabetes, HIV/AIDS, brain stroke

and heart disease cause heavy strain on scanty health-care resources and are major

causes of mortality worldwide. So achieving medical advancement against these dis-

eases remains the prime public health interest. Medical community exerts continuous

endeavor and deploys significant amount of resources in different clinical trials on

these diseases to assess impact on survival experience. Measuring and understand-

ing the true impact of such medical breakthroughs, treatments, interventions and

initiatives are possible through analyzing the survival trend of patient population as

a whole. To explore the complete and accurate picture of survival trend we need

to estimate the hazard function. Such an analysis is immensely valuable as it has

implication in health-care policy and resource allocation decisions.

The hazard function is an important component of survival analysis as it describes

the instantaneous risk of failure at a given time point. Survival analysis contains

time-to-event data, which typically comprise an initiating event, say onset of a dis-

ease, and a terminating event, say death. Typical study interest of survival analysis

revolves around the risk of failure to understand the true impact of newly developed

medical breakthroughs and treatments, therefore, a careful study of the hazard func-

tion can be more helpful. This function is also known as ‘failure rate function’ in

Engineering and as ‘force of mortality function’ in Demography. The hazard function

may increase, decrease, remain constant, or indicate a more complicated structure.

Figure 1.1 exhibits different kinds of hazard function for the risk of dying of human

population at various stages. The yellow line in Figure 1.1 indicates, for instance, a

complicated structure of hazard function, where an increasing and then decreasing

hazard function is observed for patients with tuberculosis who have risks that in-

crease initially then decrease after taking the treatment. Hence, the change in hazard
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function reveals the significant impact of the treatment for tuberculosis, which is also

true for any other critical diseases.

 

𝝀
(𝒕
) 

Observed Human Life Hazard 

Function 

Hazard Function for Healthy 

Individuals 

Initial Infant 
Mortality 
Hazard 

Function 

Old Age 
 Mortality Hazard 

Functions 

Decreasing  𝝀(𝒕) Increasing  𝝀(𝒕) Constant  𝝀(𝒕) 

 𝒕 

Hazard 
Function for 
Tuberculosis 

Patients 

Figure 1.1: Examples of Hazard Functions: the bathtub curve describes the process
of human life in the blue line, a decreasing shape indicates the risk of infant mortality
in the red line, the constant hazard function is the risk of healthy individuals between
18 and 40 years of age in the green line, an increasing hazard function observes the
risk of cancer patients or old age individuals in the garnet red line, and an increasing
and then decreasing hazard function is described by patients with tuberculosis after
taking treatment in the yellow line.

Although study of the hazard function provides a refined insight into the structural

change of the risk pattern of diseases duration, common survival models are more

concerned with the effects of the covariates on the hazard function and do not require

explicit estimation of the hazard function, for instance, the Cox proportional hazards

model. There are also several models where explicit estimation of the hazard function

is required, for instance, change point models for hazard functions. These models as-

sume a function with different hazard rates that change at a few time points. These

time points are often referred to as the change points, and are unknown and need to

be first detected and then estimated.

Change point models for hazard functions usually occur in medical follow-up studies

after a major operation, treatments, and/or interventions, which is also known as

change point hazard function models. Matthews and Farewell [93] first introduced

this type of models to study data obtained in the treatment of leukaemia patients.
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They considered the following type of model, also known as a piecewise constant

hazard model, for the independent and identically distributed (i.i.d.) survival times

T1, T2, . . . , Tn,

λ(t) =

{
λ1, 0 ≤ t < τ

λ2, τ ≤ t,
(1.1)

where τ is the change point and (λ1, λ2 ≥ 0) are the value of the hazard functions

before and after the change point τ . Chapter 2 is devoted to describing and discussing

this type of models with their testing and estimation procedures for more detailed

understanding of change point in the hazard functions. In such medical studies, there

is usually a high initial risk and then the risk settles down to a lower constant long

term risk, which indicates a change in the hazard functions. However, due to im-

provement in medical breakthroughs, treatments or diagnosis, there may be two or

more changes in the hazard functions.

Furthermore, inevitable characteristic of survival analysis is censoring, which dis-

tinguishes survival analysis from other areas in statistics. Censoring occurs when

incomplete information is observed about the survival time of some individuals in

the study. Typically, survival data comprises an initiating event and a terminating

event. Because of scanty health-care resources, a study generally recruits subjects

who have experienced their initiating event, the so-called prevalent case, then the

recruited samples are followed to a terminating event or censoring. Therefore, the

survival time of recruited subjects is left truncated and will be right censoring in

further followed-up.

Estimation of the change point in the hazard functions is insufficient without pre-

vious testing of the existence of this change along with inevitable censoring. Testing

and estimation of change point in the hazard functions has been investigated in differ-

ent settings. Most of the early work of testing and model fitting of one change point

for the hazard functions in a piecewise constant hazard model focused on parametric

setting, for instance, Matthews and Farewell [93], Nguyen et al. [104], Matthews et al.

[94], Yao [150], Worsley [148], Henderson [59], and Loader [89], even without consid-

ering censoring. The semi-parametric approach was recently taken by Pons [114],

Kosorok and Song [78], and Zhao et al. [153] with considering censoring, but only

focused on estimation. Gijbels and Gürler [50] also investigated only the estimation

of change point for the hazard functions based on the estimated cumulative hazard

combines the least squared principle with the martingale approach with censoring,
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but no theoretical results are available. Dupuy [42] used an exponential regression

model with covariates based on right-censoring in testing the existence of a change

in the parameters of hazard function as well as regressions, and proposed likelihood

ratio type tests and constructed non-asymptotic bounds for the type II probability.

More recently Goodman et al. [54, 55] and Qian and Zhang [117] contributed in

multiple change points hazard problems, the latter proposed an algorithm to fit both

susceptible and long-term survivors with observed covariates through a grid search

weighted least squares method assuming that all potential change points lie in a cer-

tain known interval, while the former developed sequential testing procedures with

likelihood ratio test and Wald type test statistics in the piecewise constant hazard

model and piecewise linear hazard model. Goodman et al. [54, 55] estimated multiple

change points hazard using the Nelder-Mead Simplex algorithm. Those works are

mainly based on simulations without adequate theoretical information.

In nonparametric setting, Antoniadis et al. [12] and Müller and Wang [98] studied

the change point problem when observations are right censoring. Antoniadis et al.

[12] used wavelets while Müller and Wang [98] developed a nonparametric alternative

approach known as ‘smooth approximation model’ to approximate the piecewise con-

stant hazard model by kernel smoothing estimator under right censoring. Authors

proposed to detect the point of most rapid change in the smooth hazard function by

finding the zero of the estimator of the second derivative hazard function.

Furthermore, despite the lack of evidence, the use of nonparametric classical change

point methods in hazard problem is rather rare. In such circumstances, nonparametric

classical change point methods are only observed in testing the change in distribution

with censored data by Stute [136], Ferger [45], Horváth [62], Aly [2], Gombay and

Liu [52], Hušková and Neuhaus [65], and Komárková [77].

1.2 Motivation

Early works on a change point in the hazard functions did not consider censored data,

as they claimed that dropping those data did not affect significantly the outcome of

the likelihood ratio test. In most of the subsequent work develops theory, hereafter,

either by discarding censored data and only considering the observable survival time
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variable or by modifying the likelihood function for censored data. Thereafter, many

subsequent works though considered censoring but have some limitations. For in-

stance, the most usable recent work, proposed by Goodman et al. [54, 55], testing

and estimating multiple change points in the hazard functions in the piecewise con-

stant hazard model and the piecewise linear hazard model, are capable of handling an

unlimited number of covariates but restricted to an additive nature only and suffers

for the number of censored observations. When censoring occurs near the change

points, valid estimation of these points is not possible. Moreover, to avoid drawback

issues surrounding the likelihood ratio test authors proposed a Wald type statistic,

which requires to calculate the variance of the estimates by differentiating the likeli-

hood in the denominator of the test statistic and is the biggest pitfall of this testing

procedure. Additionally, the estimation procedure depends on an optimization tech-

nique which can only produce better results with significant technical insights.

Change point hazard models have been extensively investigated by many authors,

however the literature on nonparametric classical change point problems is rather

limited. In some instances, it is important to know the complete distribution pattern

of the hazard function for an entire population, which allows researchers and clin-

icians a better understanding of how changing medical practice affects the survival

experience for a patient population. Moreover, all the existing methods in the context

of change point for the hazard functions are based on some models, which may face

model misspecification errors. These change point models of the hazard functions

also take into account the entire data set at a time, which is technically not that

much convenient.

Hence, we are motivated to develop a nonparametric classical change point method

to detect the change point in the hazard distribution. Such methodology has three

types of benefits. Firstly, since this approach does not consider any model, so we

do not need to take into account model misspecification errors. Secondly, this ap-

proach allows practitioners to divide the entire data into some homogeneous segments

based on the significant change points of the hazard functions. Then we can estimate

the hazard functions using either any nonparametric hazard estimator or any sim-

ple model, for instance, the Cox proportional hazard models. Thirdly, this approach

allows any percentage of censored data to identify the significant change points of

hazard distribution.
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This research is also motivated by two real studies, the first is an interest in examining

the breast cancer mortality rates among the recruited patients in the United States

during 1973 to 2012. The second is examining the cell stimulus response rates among

the sampled animal cells observed in an animal physiology study at the University of

Kaiserslautern.

1.3 State of the Art

There are only a few classical change point papers dealing with detection of changes

when only censored observations are available. In this section, we briefly summarize

those works, as we are interested to develop a nonparametric classical change point

method for identifying change point in hazard function with censored data. Typically,

T1, T2, . . . , Tn is a sequence of independent non-negative survival times with distribu-

tion function F . The patient can be withdrawn from the study, hence committed

censoring, due to an accidental death, a migration of human population, limited time

of the study, etc. Therefore, the censoring random variables C1, C2, . . . , Cn, which

are assumed to be independent of Ti, have the distribution functions G. The ob-

served right censored data are denoted by the pairs (Xi, δi), i = 1, 2, . . . , n, where

Xi = min{Ti, Ci} and δi = I{Ti ≤ Ci}. Here, I is an indicator function and δi is

a censoring indicator variable. The observed data has a pdf h(x) and a distribution

function H defined by 1−H = (1− F )(1−G).

Stute [136] considered an estimator of the change point based on U-statistics for

randomly censored data. He suggested some estimators of the change point τ ∈ [0, 1],

with F1 6= F2, where Tj ∼ F1 for 1 ≤ j ≤ bτnc and Tj ∼ F2 for bτnc + 1 ≤ j ≤ n,

based on U-statistics using antisymmetric kernels.

rn(bτnc) =
bτnc(n− bτnc)

n2

∫ V

−∞

∫ V

−∞

K(x, y)dH̃bτnc(x)dH̃∗bτnc(y)

(1−Hn(x−)) (1−Hn(y−))
,

where V satisfying F (V ) < 1 and G(V ) < 1, and after dividing the entire sample into

two subsamples up to and after the bτncth observation, the sub-distribution functions

are

H̃bτnc(x) =
1

bτnc
∑

1≤i≤bτnc

I {Xi ≤ x, δi = 1} ,

H̃∗bτnc(x) =
1

n− bτnc
∑

bτnc<i≤n

I {Xi ≤ x, δi = 1} ,
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Hbτnc(x) =
1

bτnc
∑

1≤i≤bτnc

I {Xi ≤ x} , and

H∗bτnc(x) =
1

n− bτnc
∑

bτnc<i≤n

I {Xi ≤ x} ,

and K : R2 → R is a measurable mapping with the antisymmetry property K(x, y) =

−K(y, x). He proved that under the alternative hypothesis and as n→∞, rn(bτnc)−
τ = O (n−1 log n) almost surely by assuming τ ∈ [0, 1] and equal censorship. His

results were extended by Ferger [45] for antisymmetric kernel and Horváth [62] for

antisymmetric as well as symmetric kernels. Ferger [45] considered a independent

random sample ξ1 = (X1, δ1), . . . , ξn = (Xn, δn) and assumed any change in the

distribution function of the Ti usually results in a change in the distribution L (ξi)

of ξi. Using the two sub-samples ξ1, . . . , ξbτnc and ξbτnc+1, . . . , ξn he proposed an

estimator based on U-type statistic

θ̂n =
1

n
arg max

0≤bτnc≤n−1
ω

(
bτnc
n

) ∣∣∣∣∣∣
n∑

i=bτnc+1

bτnc∑
j=1

K (ξi, ξj)

∣∣∣∣∣∣ ,
where ω : (0, 1) → (0,∞) is a weight function of the type ω(t) = t−a(1 − t)−b,

0 ≤ a, b ≤ 1 and K is antisymmetric kernel, for instance, K(x, y) = x − y. He also

showed that for K(x, y) = x − y and ω(t) = t−1(1 − t)−1 the estimator takes the

following form

θ̂n =
1

n
arg max

0≤bτnc≤n−1

∣∣∣∣∣∣ 1

bτnc

bτnc∑
i=1

ξi −
1

n− bτnc

n∑
i=bτnc+1

ξi

∣∣∣∣∣∣ ,
which means a successive comparison of the sub-sample means. And for K(x, y) =

x− y and ω(t) = t−1/2(1− t)−1/2 the estimator becomes

θ̂n =
1

n
arg max

0≤bτnc≤n−1

∣∣∣∣∣∣ 1√
1
bτnc + 1

n−bτnc

 1

bτnc

bτnc∑
i=1

ξi −
1

n− bτnc

n∑
i=bτnc+1

ξi

∣∣∣∣∣∣ ,
which is the well-known Gaussian test-statistic for the hypothesis of equality of

the means between the two sub-sample observations. Ferger [45] also proved that

under alternative hypothesis and the assumption of equal censorship as n → ∞,

|θ̂n − τ | = O(1/n) almost surely.
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Horváth [62] studied test procedures based on U-statistics for antisymmetric as well

as symmetric kernels using the following functional of

Qn(bτnc) =
bτnc (n− bτnc)

n3/2

(
θ̂(3)(bτnc)− θ

)
, 1 ≤ bτnc < n,

where

θ̂(bτnc) =

∫ V

−∞

∫ V

−∞
K(x, y)

dH̃bτnc(x)

1−Hbτnc(x−)

dH̃∗bτnc(y)

1−H∗bτnc(y−)
,

and the true parameter is

θ =

∫ V

−∞

∫ V

−∞
K(x, y)

dH(x)

1−H(x−)

dH(y)

1−H(y−)
.

He developed the asymptotic distributions of different test statistics under null hy-

pothesis to test the change in distribution with censored data, which are asymptoti-

cally distributed as Gumbel distribution, a sequence of Gaussian process, or a func-

tion of Brownian bridge. He also showed that his estimator θ̂(bτnc) is asymptotically

equivalent under null hypothesis, and hence constructed the asymptotic distribution

of test statistics for antisymmetric kernels. The developed procedures of Horváth [62]

will be elaborated in Chapter 4.

Gombay and Liu [52] proposed and investigated limit properties of a nonparametric

test based on ranks related to the Gehan-Wilcoxon statistic that can be expressed as

a U-statistic. Authors developed the following limit distribution under the no-change

null hypothesis and assuming G1 = G2 as n→∞,

max
1≤k<n

|
∑k

i=1 Ui|
(
∑n

i=1 U
2
i )

2

D−→ sup
1<t<1

|B(t)|,

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge, i.e., mean zero Gaussian process with

covariance function EB(s)B(t) = min(t, s)− ts when 0 ≤ t, s ≤ 1. The critical values

are obtained from the well-known identity

P

{
sup

0<t<1
|B(t)| > b

}
= 2

∞∑
j=1

(−1)j−1e−2j2b2 , b > 0,

which yields 1.63, 1.36 and 1.22 for α = 0.01, 0.05 and 0.10, respectively. The gener-

alized rank of (Xi, δi) is defined as

Ui =
n∑
j=1

{I (Xi > Xj, δj = 1)− I (Xi < Xj, δj = 1)} , i = 1, . . . , n.
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They used the theory of exchangeable variables to investigate its properties. Under

the alternative hypothesis they proved |τ̂n − τ | = Op(1) as n→∞ and proposed the

change point estimator as

τ̂n = ˆbτnc = arg max
1≤k<n

|
∑k

i=1 Ui|
(
∑n

i=1 U
2
i )

2 .

Extensive studies for such procedures with its weighted type forms were conducted

in the doctoral thesis of Liu [87].

Aly [2] developed test based on quantile functions, first used by Csörgo and Horváth

[35] in change point tests for uncensored data, and studied their limit behavior under

the null hypothesis for right censored data. He separated the entire data into the un-

censored X1
1 , . . . , X

1
N1,k

and the censored X2
1 , . . . , X

2
N2,k

observations, where the total

number of uncensored observation is N1,k with the empirical process F̂1k(x) and the

quantile process Q̂1k(y), and in the case of censored data that are N2,k, F̂2k(x), and

Q̂2k(y), respectively. The empirical and quantile processes was defined by

F̂ik(x) =
1

Ni,k

Ni,k∑
j=1

I
(
X i
j < x

)
, i = 1, 2,

Q̂ik(y) = sup
{
x : F̂ik(x) ≤ y

}
, i = 1, 2.

He used the following process to develop different kind of tests

Y i
n(s, t) =

1√
Ni,n

Ni,[ns]∑
j=1

Ψt

(
X i
j − Q̂in(t)

)
, s, t ∈ (0, 1), i = 1, 2,

where

Ψt(x) =

{
−(1− t) x < 0,

t x ≥ 0.

[2] developed nine kinds of test statistics using the process Y i
n(s, t) and assuming

G1(t) = G2(t) to detect the change in distribution with censored random obser-

vations and also derived their asymptotic distributions under the null hypothesis,

which follows either a Brownian bridge, or a two-parameter Gaussian process, or the

standard normal distribution. Another nonparametric rank change point test was

proposed by Buhamra et al. [25] using the modified ranks of Albers and Akritas [1]

and the modified ranks of Gehan, Gilbert and Mantel.

All these papers considered censoring variables to be independent and identically
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distributed (i.i.d.), but Hušková and Neuhaus [65] developed a test procedure as a

generalization of two-sample rank tests under random censoring, where censoring

variables were assumed to be independent but not necessarily identically distributed.

They assume that the censoring variables Ci’s can change at some unknown time

point that need not coincide with an eventual change point of censored observations.

In this circumstance, Komárková [77] also proposed various rank test statistics as

two-sample, max-type and MOSUM-type statistics along the lines of the developed

tests of Hušková and Neuhaus [65], and developed the change point estimator corre-

sponding to max-type test statistics.

All of the aforementioned tests focus on a change only in the distribution, but not

for the change in the hazard functions when the variables of interest are subject to

censoring. Hence, we are motivated to develop a nonparametric classical change point

test to detect the change in hazard distribution under the right censoring. Since any

change in the distribution function F results in a change in the distribution function

H by assuming i.i.d. censoring variables, which is a reasonable assumption with a

practical point of view. Hence, we are not considering the change in the censoring

variable’s distribution, i.e., G1 6= G2. More precisely, we are interested to extend

the methodology developed by Horváth [62] in the context of hazard distribution for

symmetric and antisymmetric kernels under the variables of interest are subject to

right censoring.

1.4 Outline of the Thesis

Let us conclude this introduction with an outline of the rest of the topics covered

in this thesis. Starting with the classical nonparametric change point analysis with

missing data, we have extended our effort on the change point in the hazard functions

with censored data and then finally, develop different types of classical nonparametric

change point tests to detect change point in the hazard distribution for censored data

based on U-statistics using symmetric and antisymmetric kernels.

In Chapter 2, we review various estimators of the hazard function along with dif-

ferent change point models for the hazard functions in the case of i.i.d. data as well

as censored data. We also define the concept and meaning of censoring, which is a

nearly universal feature of survival data. Existing testing and estimation procedures
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of the change point models for the hazard functions are discussed comprehensively

in this chapter to get a deeper understanding of this long-standing problem of sur-

vival analysis. Subsequently, we develop and use the Cross-Entropy (CE) algorithm

in Goodman et al. [54, 55] methodology to estimate multiple change points in the

hazard functions after detecting those by Wald type test. The performance of the

CE algorithm along with existing counterpart is evaluated by simulation and two real

data examples; breast cancer mortality, and cell stimulus responses. The first data

set is a well-known survival data set and the later one is a cognitive data set. The

cell stimulus response data set is collected from the animal physiology group at the

University of Kaiserslautern and the breast cancer mortality data is taken from the

1973-2010 Surveillance, Epidemiology, and End Results (SEER) program data (for

details see Appendix A).

Chapter 3 reveals different classical nonparametric change point procedures for de-

tecting and estimating change point(s) in the location and regression models, along

with different missing data mechanisms and various imputation methods. Thereafter,

we apply our understanding to analyze the Cell Stimulus Response data set, which

contains 15 censored observations out of 3000 observations, but we considered those

as missing to illustrate multiple change point models in mean and regression struc-

tures with missing data feature. Additionally, we present a brief introduction and a

demonstration to the change point methods for detecting a change in the distribution

of the observations under either missingness or random censorship in Section 3.4.3.

Therefore, this review attempts to raise the awareness of the missing data problem

in change point analysis. Nevertheless, all missing observations suppress as censored

in survival analysis.

Chapter 4 is devoted to developing the necessary theory for our proposed tests based

on U-statistic process to detect the change point in the hazard distribution. First, we

focus our efforts to find an equivalent estimator of θ̂(k) in Horváth [62], afterwards,

to develop the limit distribution of four types of unweighted as well as another four

types of weighted test statistics under the null hypothesis to detect the change in the

hazard functions using a symmetric kernel function. We further show that our pro-

cedure has an asymptotic power of 1. We also derive the asymptotic distributions of

some weighted and unweighted test statistics under the null hypothesis of no change

in the hazard functions for an antisymmetric kernel.
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Chapter 5 illustrates all the simulation results based on Monte Carlo experiments

to describe the asymptotic behavior of our developed tests in Chapter 4 with their

corresponding power performances. We demonstrate the usefulness of our proposed

approach on two real data examples; breast cancer mortality with 78.9% of censored

observations, and cell stimulus responses with 0.5% of censored observations. Hence,

we investigate the performances of our developed methodologies with very high as

well as with very low percentages of censored scenarios. Finally, Chapter 6 summa-

rizes all of our findings and also pointing out some directions for future research.
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Chapter 2: Change Point in Haz-
ard Functions with Cen-
sored Data

The hazard function is an important component of survival analysis as it describes

the instantaneous risk of failure at a given time point. Although common survival

methods such as the Cox proportional hazards model do not require explicit estima-

tion of the hazard function but there are several situations where explicit estimation

of the hazard function is useful. One such case is change point hazard rate models.

These models assume a function with different hazard rates that change at a few

time points. These time points are often referred to as the change points, and are

unknown and need to be estimated. To explore the complete and accurate picture of

survival trend we need to estimate the change point in the hazard functions. Such an

analysis is immensely valuable as it has implication in health-care policy and resource

allocation decisions.

The goal of this chapter is to make a short review of different hazard estimators along

with various existing methodologies for testing and estimation of change point(s) in

the hazard functions. Although the emphasis of this chapter is on the hazard func-

tion and its change point analysis, one cannot describe this topic without considering

censoring characteristic. We pay considerable attention to describing and discussing

hazard function estimators and change point in the hazard functions with i.i.d. and

censored data features. Moreover, we also develop and utilize an optimization al-

gorithm using the Cross-Entropy method for estimating multiple change points in

hazard analysis.

The rest of this chapter is structured as follows. Section 2.1 explains the censor-

ing mechanism to understand different kinds of censored data in survival analysis.

A brief review of different types of parametric and nonparametric hazard estimators
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in the case of both i.i.d. and censored data are discussed in Section 2.2. Extensive

literature on change points in hazard functions is summarized in Section 2.3. In that

section, we also propose an algorithm using the Cross-Entropy (CE) method to es-

timate multiple change points in hazard functions. Section 2.4 illustrates simulation

results along with real data application to evaluate the performance of CE method

along with existing counterpart. Finally, we conclude with a general discussion in

Section 2.5.

2.1 Censored Data

Time-to-event is a common feature in survival analysis, which introduces censoring.

The term ’lifetime’, ’survival time’ or ’time-to-event’ denotes the time until the oc-

currence of an event of interest, e.g., recurrence of a disease event, discharge from

hospital, time to complete a task (such as PhD thesis), patients being followed to

a cancer event, etc. The survival time can be defined by two time points: the time

of origin, i.e., the time at which an original event, such as an infection, occurs and

the time of failure, i.e., the time at which the final event, such as death, occurs. A

subject is said to be at risk if the original event has occurred, but the final event has

not.

Censoring occurs when incomplete information is available due to random cause about

the survival time of some individuals. Point censoring (implies right censoring and

left censoring) and interval censoring are the common types of censoring. In right

censoring, a sample has been followed for some time (study starting to ending time),

but we don’t know the exact time of occurrence of the event rather the time is known

as greater than the study ending time. In left censoring, the time of origin is reported

as less than the study starting time, but it is not known exactly when it occurred.

Whereas, the exact time of event occurs is not known precisely in interval censoring,

but an interval bounding this time is known. Figure 2.1 illustrates these three types

of censoring situations.

Censoring also can be classified based on reasons or levels of censoring as Type I

censoring and Type II censoring. When a study is conducted over a specified period

of time, then Type I censoring is concerned. Type II censoring arises when a study

progresses until the failure of the first r individuals (number of individuals are fixed

in advance), which is frequently done in industrial quality assessment. A sample is
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randomly censored when both the number of censored observations and the censor-

ing levels are random outcomes. This type of censoring commonly arises in medical

time-to-event studies. For a good discussion on censoring with various examples and

different types of censoring mechanisms, we refer to Leung et al. [83].

 

(a)

 

(b)

 

(c)

Figure 2.1: (a) Right censoring with fixed censoring time, (b) Left censoring due to
late study onset, and (c) Interval censoring due to discrete observation times.

Truncation is another feature of time-to-event data, which makes researcher confused

with censoring. Truncated values are those that are not reported if the value exceeds

some limit. To illustrate truncation, consider an analytical laboratory reporting the

concentration of atrazine in a ground water sample and the laboratory equipment

can detect the presence of atrazine if it is reported equal or greater than 0.05 ppb.

Suppose, { 0.02 ppb, 5 ppb, 2 ppb} is our data set. Our example data set would

become: { <0.05 ppb, 5 ppb, 2 ppb} in censoring and { 5 ppb, 2 ppb} in truncation.

The practical difference between censored and truncated data is that the number of

censored values is known, but the number of truncated values is not. Observed and

censored survival data are much more common than truncated data.

For giving a more detailed information regarding right and left censoring, we con-

structed Figure 2.2 from Leung et al. [83].Figure 2.2 represents a study which begins

at time T0 and ends at T1, and observing seven subjects (A, B, C, D, E, F and G).

Each subject’s follow-up time ended with either by ’X’ or by ’red dot’, where ’X’

indicates that event of interest occurs at that point and ’red dot’ indicates that due

to other reasons subject become loss-to-follow-up or early termination of a study.
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Figure 2.2: Types of Point-Censored Observations

For Subject A, the entire risk period falls within the observation period and the time

of occurrence of the event is known, hence there is no censoring for A. The risk period

starts during the observation period for Subject B and the event occurs after follow-

up is terminated at T1. The observation of Subject B is therefore right censored due

to study termination at T1, also known as end-of-study censoring. Subject C also

represents a case with right censoring, specially known as loss-to-follow-up censoring

as it is lost due to other reasons. A left truncation case is observed for Subject D,

where the event starts before at time T0 and ends within follow-up time. Subject E

represents a special case of censoring known as doubly censored, in which the obser-

vation is both left and right censored. Completely right censored and completely left

censored is observed in Figure 2.2 for Subjects F and G, respectively.

2.2 Review of Hazard Functions Estimation

Estimation of hazard functions have been studied extensively in many fields, for in-

stance, reliability theory, engineering, geophysics, actuarial science, medical statistics

or broadly speaking survival analysis, etc. The hazard function is also known as ’fail-

ure rate function’ in engineering and ’force of mortality’ in demography . The hazard

function can be estimated based on independent and identically distributed (i.i.d.)

data or censored data. Censored data frequently observed in survival studies, and

this feature makes the estimation of hazard function an attractive and challenging

topic in survival analysis. Nonparametric methods are more common in estimating

hazard function due to their flexible, model-free and data-driven features. Different
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nonparametric approaches are available to estimate hazard functions for grouped life-

time data observed at certain time interval and for continuously observed lifetime

data, for details confer Wang [143], which was first published in Wang [142].

This thesis concerns with continuously distributed data to estimate hazard func-

tions, which estimation procedure is conceptually close to density estimation. Kernel

estimators, spline estimators, local smooth estimators, and ratio-type estimators are

usually discussed in nonparametric estimation of the hazard function. As we are in-

terested in the ratio-type hazard and the kernel type hazard estimators, so a brief

review of these two types of estimators based on i.i.d. and censored data will be given

in this section.

Case 1: i.i.d. Data

Suppose, T1, T2, . . . , TN be i.i.d. survival times with probability density function (pdf)

f(t) and distribution function F (t). Therefore, the survival function can be defined

as S(t) = P (Ti ≥ t) = 1− F (t), which implies the probability of being alive at time

t; and the hazard function, which specifies the instantaneous rate of death or failure

at time t, given that the individual survives until time t is defined by

λ(t) = lim
∆t→0

P (t ≤ Ti < t+ ∆t | Ti ≥ t)

∆t
=
f(t)

S(t)
=

f(t)

1− F (t)
. (2.1)

In particular, λ(t)∆t is the approximate probability of death in [t, t + ∆t) for those

individuals who survive until time t. The corresponding cumulative hazard func-

tion is Λ(t) =
∫ t

0
λ(y)dy and also can be defined in terms of survival function as

Λ(t) = − log (S(t)). Hence, λ(t) for a continuous lifetime distribution possesses the

properties: λ(t) ≥ 0 and
∫∞

0
λ(t)dt = ∞. The hazard λ(t) must be non-negative

but does not necessarily have an upper bound. The cumulative hazard function Λ(t)

must be non-negative, nondecreasing, and unbounded.

We can elaborate the property λ(t) ≥ 0 of hazard functions with an example. For

instance, we are studying the time until a patient gets the flu (influenza), and we mea-

sured time in months and we got a hazard rate of .10, that is, a person is expected

to get the flu .10 times per month assuming the hazard remains constant during

that month. We could just as well measure the time in years (12 months), and we

would get a hazard rate of 1.20, i.e., a person is expected to get flu 1.20 times per year.

17



In parametric hazard function estimation, using the relationship (2.1) one can cal-

culate various types of hazard functions: the hazard function is a constant function

in t for the exponential distribution; for the extreme value, logistic and the Weibull

distributions hazard functions are strictly increasing and continuous in t; for more

details confer Kalbfleisch and Prentice [71].

The nonparametric estimation of the cumulative hazard function leads to the Product-

Limit estimator or, sometimes, Kaplan-Meier estimator [73] of the survival function

Ŝ(t) =
∏

i:T(i)≤t

(
1− di

ni

)
, (2.2)

where di is the number of deaths at T(i), ni is the number of alive just before time

T(i), and T(i)’s are ordered and have no ties, i.e., T(1) < T(2) < · · · < T(n). Hence,

n is the number of different values in T1, T2, . . . , TN . Hereafter, we can estimate the

cumulative hazard function by Λ̂(t) = − log
(
Ŝ(t)

)
.

The Nelson-Aalen estimator [103] estimates Λ(t) directly by

Λ̂n(t) =
i∑

j=1

dj
nj
, T(i−1) < t ≤ T(i). (2.3)

Note that (2.2) and (2.3) cover the general case, where survival times do not neces-

sarily have a density. In case of a density, di = 1, i = 1, . . . , n, with probability 1,

and ni = n− i+ 1.

The kernel density estimation of hazard function has been discussed by many authors.

Asymptotic properties of kernel estimators of the hazard function were investigated by

Watson and Leadbetter [144, 145], Murthy [101], Rice and Rosenblatt [120], Singpur-

walla and Wong [132], Ramlau-Hansen [118], Burke and Horváth [26] and Patil [109]

for i.i.d. data. Watson and Leadbetter [144, 145] studied three estimators (2.5),

(2.8) and (2.9) of the hazard function and Rice and Rosenblatt [120] reviewed those

estimators in finding the bias and covariance properties, by considering a bounded,

bandlimited, symmetric sequence of smooth functions Wn(u) = 1
bn
W
(
u
bn

)
approach-

ing the Dirac delta-function for large n. This delta-sequence method is quite general

and covers various types of smoothing methods, including the kernel method with

Wn(u) =
1

bn
K

(
u

bn

)
,
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with
∫
Wn(u)du = 1 and by assuming

bn → 0, with nbn →∞ as n→∞. (2.4)

Hence, they defined the ratio-type hazard estimator as

λ̂1,n(t) =
fn(t)

1− Fn(t)
, (2.5)

where fn(t) is an estimate of the density f(t) by assuming (2.4), and defined by

fn(t) =

∫
Wn (t− u) dF̂n(u), (2.6)

and F̂n(t) is the usual empirical distribution function

F̂n(t) =
1

N

N∑
j=1

1[0,t](Tj) =
1

N

n∑
i=1

di1[0,t](T(i)),

where N =
∑n

i=1 di is the total number of deaths in the sample. Moreover, let Fn(t)

be the smoothed empirical distribution function as an estimate of F (t), defined as

Fn(t) =

∫ t

0

fn(u)du. (2.7)

Another two estimators of the hazard functions based on the delta-sequence smooth-

ing introduced by Watson and Leadbetter [144, 145] and Rice and Rosenblatt [120]

are

λ̂2,n(t) =

∫
Wn (t− u)

dFn(u)

1− Fn(u)
=

n∑
i=1

Wn

(
t− T(i)

) 1

(n− i+ 1)
, (2.8)

λ̂3,n(t) =

∫
Wn (t− u) dΛ̂n(u) =

n∑
i=1

Wn

(
t− T(i)

)
log

[
1 +

1

(n− i+ 1)

]
, (2.9)

where Λ̂n(u) is an estimate of the cumulative hazard function, i.e., Λ̂n(u) = − log(1−
F̂n(u)). It was shown in Rice and Rosenblatt [120] that λ̂2,n(t)−λ̂3,n(t) = Op(n

−1), all

estimators λ̂1,n(t), λ̂2,n(t), and λ̂3,n(t) have the same asymptotic variance, but λ̂1,n(t)

has a different asymptotic bias.

Case 2: Censored Data

For a sample of n independent individuals, let T1, T2, . . . , Tn be the i.i.d. survival

times with probability density function (pdf) f(t), which are rightly censored by the
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i.i.d. censoring random variables, C1, C2, . . . , Cn, assumed to be independent of Ti.

Let F and G be the distribution functions of Ti and Ci, respectively. The observed

right censored data are denoted by the pairs (Xi, δi), i = 1, 2, . . . , n, where

Xi = min{Ti, Ci}, δi = I{Ti ≤ Ci} = I{Ti = Xi}.

Here, I is an indicator function and δi is a censoring indicator variable. The observed

data has a distribution function H defined by 1−H = (1− F )(1−G). Hn(x) is the

empirical distribution function of the random variables Xi. For censored variables it

is defined as

Hn(x) =
1

n

n∑
i=1

I {Xi ≤ x, δi = 1} .

In the censored case, the Kaplan-Meier estimator of the survival function becomes

Ŝ(x) =
∏

i:X(i)≤x

(
1− 1

n− i+ 1

)δ(i)
, (2.10)

where we assume that T1, T2, . . . , Tn are all different survival times which, in case of

a density, holds with probability 1. Then, the Xi with δi = 1 are also all different,

and the probability that a Xi with δi = 1 coincides with a censored Xi, δi = 0, is 0

too. X(1) ≤ X(2) ≤ · · · ≤ X(n) again denote the ordered values, where ties can only

occur between censored observations, and δ(i) is the indicator of X(i). Hereafter, we

can estimate the cumulative hazard function by Λ̂(x) = − log
(
Ŝ(x)

)
.

The Nelson-Aalen estimator Λ̂n(x) for the cumulative hazard function Λ(x), which is

instrumental in survival analysis for censored data, is defined by

Λ̂n(x) =

∫ x

−∞

dHn(u)

1− Ĥn(u)
=

∑
i:X(i)≤x

δ(i)

n− i+ 1
, (2.11)

where

Ĥn(x) =
1

n

n∑
i=1

I {Xi ≤ x} ,

is the usual empirical distribution function of X1, . . . , Xn. Smoothing the increments

of the random step function Λ̂n(x) and differentiation are used to obtain hazard esti-

mators. Properties of Λ̂n(x) have been studied extensively, for details confer Section

IV.1 in Andersen et al. [3].

For censored data Yandell [149], Tanner and Wong [137], Schafer [125], Diehl and
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Stute [41], Lo et al. [88], Müller and Wang [99], and Müller and Wang [100] have

discussed the kernel hazard estimators with their properties. Tanner and Wong [137]

proposed a kernel hazard function estimator for censored data

λ̂4,n(x) =
n∑
i=1

Kb

(
x−X(i)

) δ(i)

(n− i+ 1)
, (2.12)

where K is a symmetric nonnegative kernel, K(t) = o(t−1) as t→∞,
∫
K(t)dt = 1,

Kb(u) = b−1K(u/b). The point of interest x is assumed fixed throughout the study

and satisfying 0 < H(x) < 1.

Lo et al. [88] studied an estimator of the hazard function given by

λ̂5,n(x) =
fn(x)

Γ̄n(x)
, (2.13)

where the density estimate is defined as fn(x) = 1
bn

∫
K
(
x−u
bn

)
dΓn(u), assuming K

is symmetric, compactly supported, continuous and having bounded variation kernel

and the bandwidth sequence {bn} follows Assumption (2.4) along with Assumptions

(b2), (b3) and (b4) in [88], and Γ̄n(x) = 1 − Γn(x), Γn(x) is the modified version of

the Kaplan-Meier estimator defined as

Γn(x) =

{
1−

∏n
X(i)≤x

(
n−i+1
n−i+2

)δ(i) , if x ≤ X(n);

Γn
(
X(n)

)
, if x > X(n) and the largest observation is uncensored.

Müller and Wang [99] investigated the properties of kernel based hazard estimator

with local bandwidth choice by using the convolution of the Nelson [103] estimator

with a kernel function, and considered the following general type of estimate

λ̂(ν)
n (x) =

1

b(ν+1)

∫
Kν

(
x− u
b

)
dΛn(u) =

1

b(ν+1)

n∑
i=1

Kν

(
x−X(i)

b

)
δ(i)

(n− i+ 1)
,

(2.14)

where b = b(n) is a sequence of bandwidths for which

b→ 0, nb2ν+1 →∞, nb

(log n)2
→∞, as n→∞. (2.15)

Further, Kν is a kernel function of bounded variation and is of order (ν, k) with sup-

port [−1, 1], where k ≥ ν and ν ≥ 0. Assuming that the ν’th derivative of λ is k

times continuously differentiable on [0, T ] with H(T ) < 1, λ̂
(ν)
n (x) estimates λ(ν)(x)

with a rate depending on k.
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In hazard estimation, symmetric kernel functions are commonly used such as Uniform,

Epanechnikov, Biweight and Gaussian, with the following expressions

Uniform Kernel: K(x) =
1

2
1{|x|≤1}, −1 ≤ x ≤ 1, (2.16)

Epanechnikov Kernel: K(x) =
3

4
(1− x2)1{|x|≤1}, −1 ≤ x ≤ 1, (2.17)

Gaussian Kernel: K(x) =
1√
(2π)

e−x
2/2, −∞ < x <∞, (2.18)

Biweight Kernel: K(x) =
15

16
(1− x2)21{|x|≤1}, −1 ≤ x ≤ 1. (2.19)

Wang [143] recommended to use either the Epanechnikov kernel or the Gaussian

kernel, moreover, Müller [96] found that the Epanechnikov kernel has certain optimal

properties.

2.3 Change Point in Hazard Functions

The hazard function is a frequently used function for modeling and evaluating the

time related events. Therefore, this function may have one or more change points, or

it remains constant. Testing for the existence of a change point(s) and its estimation

is the prime concern of change point analysis in hazard functions. There are different

hazard models in change point methodology, for instance, parametric change point

model, nonparametric change point model, smooth approximation model etc. Good

discussion about different methodologies of the change point in hazard functions can

be found in the Monograph paper of Müller and Wang [97], and few recent papers

Qian and Zhang [117], Bhore and Huque [19] and Anis [6].

Note that a change point in this context has a different meaning than in classical

change point analysis. There, a sequence of observations is considered, and at some

times their distribution changes. Here, we consider an individual observation of a

survival time where the hazard changes after some time more or less suddenly. In

this chapter, we are talking about the latter type of change point.

2.3.1 Change Point Models and Methods for Hazard Func-
tion

Estimation and testing in a piecewise constant model with one change point have been

extensively investigated by many authors (see for example, Matthews and Farewell
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[93], Nguyen et al. [104], Matthews et al. [94], Yao [150], Worsley [148], Henderson

[59], Loader [89], Pons [114], Gijbels and Gürler [50], and Zhao et al. [153]) in para-

metric and semi-parametric approaches using likelihood-ratio type tests, score test

and Bayesian test. Matthews and Farewell [93] first noted the existence of the change

point for the hazard functions in a parametric piecewise constant model when ana-

lyzing the failure times of nonlymphoblastic leukemia patients. They considered the

following model for the i.i.d. survival times Ti,

λ(t) =

{
α1, 0 ≤ t < τ,

α2, τ ≤ t,
(2.20)

where τ is the change point and (α1, α2) are the values of the hazard functions. They

used likelihood ratio type tests for detecting τ . Nevertheless, nonlymphoblastic pa-

tients’ data had 24 censored observations at 182 days, Matthews and Farewell [93]

did not consider those censored data in their analysis. They claimed that dropping

those data did not affect significantly the outcome of the likelihood ratio test. Here-

after, most of the subsequent work develops theory either by discarding censored

data and only considering the observable survival time variable, or by modifying the

likelihood function for censored data. The unboundedness feature of the likelihood

function when the change point approaches the maximum observation of the failure

times is discussed by Nguyen et al. [104]. Matthews et al. [94] considered tests based

on the maximal score statistic and showed that the asymptotic limiting process of

the normalized score process is related to the OrnsteinUhlenbeck process and the

standard Brownian bridge. Yao [150] assumed T(n−1) is the second largest observa-

tion and suggested to maximize the log-likelihood function in the change point over[
0, T(n−1)

]
and gave the asymptotic properties of the estimators for both the change

point and the piecewise hazard functions. Worsley [148] derived the exact critical

values of the maximum likelihood estimator over three intervals: (i)
[
0, T(n−1)

]
, (ii)

[pth sample quantile, (1− p)th sample quantile], and artificially censored the largest

observation so that the likelihood function in the change point is finite. Loader [89]

explored the model (2.20) with and without censoring for the i.i.d. event times to

derive a likelihood-ratio test and gave with the approximate confidence regions and

joint confidence regions for the change point and the size of change over another in-

terval.

Müller and Wang [98] developed a nonparametric alternative approach known as

’smooth approximation model’ to approximate model (2.20) by a kernel smoothing
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estimator (2.14). They proposed to detect the point of most rapid change in the

smooth hazard function by finding the zero of the estimator (2.14) with ν = 2 of the

second derivative hazard function.

A semiparametric extension of the model (2.20) proposed by Liang et al. [84] in-

corporates covariates and was defined as

λ (t; Z,x) =

{
λ0(t) exp

(
(β + θ)Z + γ

′
x
)
, t ≤ τ,

λ0(t) exp
(
βZ + γ

′
x
)
, t > τ,

(2.21)

where the change point τ is within a known range [a, b], Z is a scalar and expressing

the risk factor by 0 and 1 to the early and late onset of data, and x is a p× 1 vector

of covariates that vary from subject to subject. The authors proposed an extension

of the score test [94] for the change point for testing H0 : θ = 0, however, they gave

more effort to construct the confidence intervals for parameters in (2.21).

Another semi-parametric approach is studied by Chang et al. [29] and Gijbels and

Gürler [50] assuming that the unknown change point τ belongs to a certain known

interval [0, B], which is a hybrid martingale based method. [29] combines the score

function with the martingale approach, while [50] combines the least squared princi-

ple with the martingale approach. Gijbels and Gürler [50] considered the following

function

Y (x) =
Λ(x)

x
. (2.22)

The empirical average hazard rate process Yn(x) can be found by replacing Λ(x) with

its Nelson-Aalen estimator (2.11). Again, they have considered a simple structure for

the average hazard function and defined as

Y
′
(x) = β + θ

(
1− τ

x

)
I{τ<x}, (2.23)

it remains constant up to time τ and from τ on starts increasing (in case θ > 0) or

decreasing (in case θ < 0) as a function of 1/x. Then the splitting point which gives

the best least square fit between Yn(x) and Y
′
(x) over a set of prefixed grid points is

defined as the estimator of τ .

Dupuy [42] used an exponential regression model with covariates based on right-

censoring in testing the existence of a change in the parameters, and proposed like-

lihood ratio type tests. He also constructed non-asymptotic bounds for the type II
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probability. He considered the following exponential regression model

fX|Z (ti | zi;µ, β) =

{
µ1 exp (−µ1ti exp(β1zi) + β1zi) , i = 1, . . . , τ1 − 1,

µ2 exp (−µ2ti exp(β2zi) + β2zi) , i = τ1, . . . , n,
(2.24)

where zi is a measured covariate and τ1 is the unknown change point, θ = (µ1, β1) and

φ = (µ2, β2) are the parameters before and after the change, respectively. Precisely, he

considered testing of existence of a change in both hazard and regression parameters

of the model (2.24). Most of the previously cited literature on change point problems

in the exponential survival model focuses only on the baseline hazard function, and

consider the regression parameter as fixed, i.e., θ = (µ1, 0) and φ = (µ2, 0).

There is extensive literature on single change point hazard problem but the liter-

ature on multiple change point problems is rather small. So far our knowledge there

are only two published works by Goodman et al. [54, 55] and Qian and Zhang [117] in

multiple change points hazard problems. Qian and Zhang [117] proposed an algorithm

to fit both susceptibles and long-term survivors with observed covariates through a

grid search weighted least squared method assuming that all potential change points

lie in a certain known interval [B1, B2] for detecting the number of change point in

the hazard functions and estimating those. This is a simulation study without any

theoretical contents, moreover, assuming known interval for change points makes the

application even more impractical.

Goodman et al. [54, 55] proposed a methodology for estimation of multiple change

points using the Nelder-Mead Simplex algorithm and a model selection approach us-

ing sequential testing with likelihood ratio test and Wald type test statistics in the

piecewise constant hazard model and piecewise linear hazard model. The latter model

will easily accommodate the addition of covariates. The estimation of multiple change

points using the Nelder-Mead Simplex algorithm is capable of handling an unlimited

number of covariates but restricted to an additive nature only. This method also

suffers from the number of censored observations. When censoring occurs near the

change points valid estimation of these points is not possible.

Goodman et al. [54, 55] considered the random right censored data (Xi, δi), which is
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described in Section 2.1, in the piecewise constant hazard model

λ(x) =


α1, 0 ≤ x < τ1,

α2, τ1 ≤ x < τ2,
...

αk+1, τk ≤ x,

(2.25)

where αi are the hazard values, τi are the change points with 0 < τ1 < · · · < τk.

When αk−1 6= αk, the log-likelihood function is

logL ≡ logL (α1, . . . , αk, τ1, . . . , τk−1)

= D(τ1) logα1 + [D(τ2)−D(τ1)] logα2 + · · ·+ [nu −D(τk−1)] logαk

− α1

n∑
i=1

(Xi ∧ τ1)− α2

n∑
i=1

(Xi ∧ τ2 − τ1)I (Xi > τ1)− · · ·

− αk
n∑
i=1

(Xi − τk−1)I (Xi > τk−1) , (2.26)

where nu is the total number of non-censored events, and D(x) =
∑n

i=1 I (Xi < x) δi

denotes the number of deaths observed up to time x. For fixed τj’s, the maximum

likelihood estimates (MLE’s) of the parameters α1, . . . , αk are given by

α̂1 =
D(τ1)∑n

i=1 (Xi ∧ τ1)

α̂2 =
D(τ2)−D(τ1)∑n

i=1 (Xi ∧ τ2 − τ1) I(Xi > τ1)
, . . . ,

α̂k−1 =
D(τk−1)−D(τk−2)∑n

i=1 (Xi ∧ τk−1 − τk−2) I(Xi > τk−2)

α̂k =
nu −D(τk−1)∑n

i=1 (Xi − τk−1) I(Xi > τk−1)
. (2.27)

Estimates of the parameters in the model (2.25) are calculated by minimizing the

negative log-likelihood function (2.26) using the optimization function Nelder-Mead

Simplex algorithm evaluated at the maximum likelihood estimates of the αj (2.27)

and finding those values of the τj that minimize the function. The maximum likeli-

hood estimates of the τj are those values returned by the optimization function that

minimize the negative log-likelihood (2.26).

Goodman et al. [54, 55] used a sequential analysis problem in testing for the number

of change points, where they performed a hypothesis test and if the null hypothesis

is rejected they will continue on to the next hypothesis test. If they failed to reject
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the null hypothesis, they stop and conclude that they have found the final model.

Although their proposed method is a multiple testing procedure, this is a stepwise

process. Therefore, they only need to test one hypothesis at a time.

H0 : αk−1 − αk = 0, against

H1 : αk−1 − αk 6= 0.

They used a Wald type test statistic of the form

W =
(α̂k−1 − α̂k)2

V ar (α̂k−1 − α̂k)
∼ χ2

1. (2.28)

To approximate the variance of estimates in the denominator of the above test

statistic they used a partitioned Hessian matrix containing only those parameters

of θ
′
= (α1, . . . , αk, τ1, . . . , τk−1) which are available in the test statistic (2.28).

The piecewise linear hazard model considers η = log λ, where η is a piecewise lin-

ear spline function with knots at τ1, . . . , τk, and defined as

η(x) =


α0 + α1x+ Z

′
β, 0 ≤ x < τ1,

α0 + α1x+ α2(x− τ1)+ + Z
′
β, τ1 ≤ x < τ2,

...

α0 + α1x+ α2(x− τ1)+ + · · ·+ αk+1(x− τk)+ + Z
′
β, τk ≤ x,

(2.29)

for fixed k, where x+ ≡ max(0, x), Z is the covariate vector and β is a vector of the

parameters for the effects of the covariates ( cf. Cai et al. [27]). The log-likelihood is

logL ≡ logL (α0, α1, . . . , αk+1, τ1, . . . , τk, β) =
n∑
i=1

{
δiη(Xi)−

∫ X1

0

eη(u)du

}
.

(2.30)

The Wald test for testing H0 : αk+1 = 0 versus H1 : αk+1 6= 0 to verify the existence

of change point τk, takes the form

W
′
=

α̂2
k+1

V ar (α̂k+1)
∼ χ2

1. (2.31)

Estimation in the piecewise linear hazard model (2.29) was conducted by minimizing

the negative log-likelihood function (2.30) using the optimization function Nelder-

Mead Simplex algorithm and find those values of αj, τj and βj which optimize the

likelihood function. They assumed that the changes only affect parameters of the
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baseline hazard function and regression coefficients βj’s are fixed. Properties of the

suggested test and estimators of the change points are investigated via only simula-

tions, but no theoretical results are available.

We are interested in testing and estimation of multiple change points in the haz-

ard distributions. Such methodology has twofold benefits: since this approach does

not consider any model so we do not need to concern about model misspecification

errors; and after getting some significant change points in the hazard functions, this

approach allows practitioners to use a homogeneous segment of data to estimate the

hazard function rather using the entire data set. There is extensive literature on

changes in parameter for hazard functions. However, as far our knowledge, there

is no literature for a change point in the hazard distribution with standard change

point analysis technique. We will develop theoretical content for detecting and es-

timating a change point in the hazard distribution using a standard change point

analysis technique, i.e., U-statistic process, in Chapter 4. Before doing that we are

also interested to simulate the multiple change point in the hazard functions with an-

other optimization procedure, and hence compare that results with the Nelder-Mead

Simplex algorithm’s results. In the next section, we develop an algorithm to estimate

multiple change points in the hazard function using an optimization technique named

the Cross-Entropy (CE) method.

2.3.2 Change Point in Hazard using the Cross-Entropy (CE)
Method

In this section, we propose to use the Cross-Entropy (CE) method, which is devel-

oped by Rubinstein [122] and Rubinstein and Kroese [123], for estimating the multiple

change points in the piecewise constant hazard model as well as piecewise linear hazard

model to handle the additive covariates with any number of censored observations.

More specifically, this is an extension of Goodman et al. [54, 55] work.

The cross-entropy (CE) method is a new generic approach to combinatorial and multi-

extremal optimization and rare event simulation based on a Kullback-Leibler (also

called cross-entropy) minimization technique. This method has proven to be very

successful in solving wide range of difficult optimization and estimation problems.

Good discussions of this method can be found in the CE monograph by Rubinstein
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and Kroese [123] and a gentle tutorial by De Boer et al. [40]. The CE method is an

iterative optimization method that involves the following two phases:

1. Generation of a set of random samples (trajectories, vectors, etc.) according to

a specified random mechanism.

2. Updating the parameters of the random mechanism based on the best samples

generated in the previous phase. This phase involves the Kullback-Leibler (or

the cross-entropy) minimization.

We are interested in developing an algorithm based on the CE method in estimating

the multiple change points in the hazard functions for the piecewise constant hazard

model as well as the piecewise linear hazard model by minimizing the negative log-

likelihood functions (2.26) and (2.30), respectively. Before presenting our algorithm,

we provide some necessary concepts of the usual CE method from Rubinstein and

Kroese [124] and Benham et al. [18]. Let X be a set of states and S be a real-valued

performance function on X . The goal is to find the minimum of S over X , say γ∗,

and the state(s), minimizer say x∗, corresponding to this value. Thus

S (x∗) = γ∗ = min
x∈X

S (x) . (2.32)

The first step of the CE method is to turn the optimization problem (2.32) into a

meaningful estimation problem of the probability ` = P (S(X) ≤ γ), where X has

some probability density f (x; u) on X depending on a parameter u and a level

γ. Hence, for optimization problems randomness is purposely introduced in order

to make the model stochastic. If γ is chosen close to the unknown γ∗, then ` is

typically a rare-event probability. One of the most effective ways to estimate rare-

event probabilities is to use importance sampling. Hence, the importance sampling

estimator of ` = P (S(X) ≤ γ) is

ˆ̀=
1

M

M∑
i=1

f(Xi)

g(Xi)
I {S(Xi) ≤ γ} ,

where X1, . . . ,XM is an i.i.d. sample from a well-chosen importance sampling density

g. The optimal importance sampling density is in this case g∗(x) = f(x)I {S(x) ≤ γ} /`,
which gives a zero-variance estimator, but depends on the unknown quantity `. Ben-

ham et al. [18] summarized that the main idea behind the CE method for estimation

is to adaptively determine an importance sampling pdf f (x; v∗) - hence within the

same family as the original distribution - that is close to g∗ in the Kullback-Leibler
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sense, where the Kullback-Leibler ’distance’ (divergence) or the cross-entropy distance

between two densities g and h is defined as

D (g, h) = Eg
[
log

g(X)

h (X)

]
=

∫
g(x) log g(x)dx−

∫
g(x) log h (x) dx.

Notice that D (g, h) is not a ’distance’ between g and h, since in general D (g, h) 6=
D (h, g). Nevertheless, it is often useful to think of D (g, h) as a distance as D (g, h) ≥
0 and D (g, h) = 0 if and only if g(x) = h(x) a.e.

In the CE method, specifically, a parameter v∗ is sought that minimizes the cross-

entropy distance

D (g∗, f (.; v)) = Eg∗
[
log

g∗(X)

f (X; v)

]
=

∫
g∗(x) log g∗(x)dx−

∫
g∗(x) log f (x; v) dx,

which is equivalent to maximizing, with respect to v∫
f (x; u) I {S(x) ≤ γ} log f (x,v) dx = Eu [I {S(X) ≤ γ} log f (X; v)] ,

which can be estimated by maximizing the sample average

1

M

M∑
i=1

[I {S(Xi) ≤ γ} log f (Xi,v)] , (2.33)

where X1, . . . ,XM is an i.i.d. sample from f (x; u). Especially, maximizing (2.33)

gives the maximum likelihood estimator of v based on only the samples X1, . . . ,XM

that have a function value less than or equal to γ. These are so-called elite samples.

The elite sample is defined as the proportion of the sample based on the performance

function S and using a predefined rarity parameter ρ, which is a real number between

0 and 1. For a random sample X1, . . . ,XM let S(1) ≤ · · · ≤ S(M) be the performances

of {S(Xi)} ordered from smallest to largest. Thus, S(j) is the j-th order statistic of

the sequence S(X1), . . . , S(XM). Hence, the elite sample is chosen using γt = S(dρMe)

for each iteration, where t is the counter in this iterative approach.

The relevance to optimization is that when γ is close to the (usually unknown) min-

imum γ∗, then the importance sampling density g∗ concentrates most of its mass in

the vicinity of the minimizer x∗. Sampling from such a distribution thus produces

a sequence of levels (γt)
T
t=1 and reference parameters (vt)

T
t=1 determined from (2.33)

such that the former tends to the optimal γ∗ and the latter to the optimal reference

vector v∗, where f (x; v∗) corresponds to the point mass at x∗ (cf. Rubinstein and
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Kroese [124], Page 251).

The algorithm for estimating multiple change points in the hazard functions for the

piecewise constant hazard model and the piecewise linear hazard model by respectively

minimizing the negative log-likelihood functions (2.26) and (2.30) with censored data

is illustrated in Algorithm 1. Here, we assume that we fit the piecewise constant haz-

ard model (2.25) or the piecewise linear hazard model (2.29) to the data resulting in

a density f (x; v) of X. However, we allow for misspecification, i.e., the true density

does not have to be of the form f (.; v).

Algorithm 1 CE Algorithm for estimating the change point in the hazard functions

1: Initialize parameter vectors ṽ0 = (α0, τ 0,β0). Set sample size M , rarity param-
eter ρ, smoothing parameter c and t = 1.

2: Generate the observed survival times X1, . . . ,XM , where Xm = (Xm1, . . . , Xmn)
for m = 1, . . . ,M , from the the density f (.; vt−1), which can be done by gen-
erating the survival times T1, . . . ,TM from the density (2.35) and (2.41), and
the censoring times C1, . . . ,CM from (2.38) and Exp(b) for some b, respectively,
for the models (2.25) and (2.29). Hence, we get Xm,i = min(Tm,i,Cm,i) and
δm,i = I{Tm,i≤Cm,i} for m = 1, . . . ,M and i = 1, . . . , n.

3: Calculate the negative log-likelihood functions (2.26) and (2.30) respectively for
the models (2.25) and (2.29) as S(Xi) = − logL for all i, and order them from
the smallest to the largest, i.e., S(1) ≤ · · · ≤ S(M). Let γt be the sample ρ-quantile
of performances, i.e., the number of elite samples γt = S(dρMe).

4: Use the same sample X1, . . . ,XM and solve the stochastic program

v̂t = max
v

M∑
k=1

I{S(Xk) ≤ γt} log f (Xk,v) .

5: Smooth, ṽt = cv̂t + (1− c) ṽt−1, where c is a smoothing parameter.
6: If for some t ≥ k, say k = 5, γt = γt−1 = . . . = γt−k then stop. Otherwise set
t = t+ 1 and go to Step 2.

For the piecewise constant hazard model, the initialize parameter vectors ṽ0 = (α0, τ0).

To run the algorithm, we need to provide the class of sampling densities {f (.; v)},
the initial vector ṽ0, the sample size M , rarity parameter ρ, smoothing parameter c

and the stopping criterion.

Although we are using the CE method as an optimization technique to estimate
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multiple change points in the hazard functions and compare the accuracy of the esti-

mates along with the Nelder-Mead Simplex algorithm, it can be used as a detecting

method for identifying multiple change points in the hazard functions, for related

works confer Evans et al. [44], Priyadarshana et al. [116] and Polushina and Sofronov

[113].

2.4 Simulations and Applications

2.4.1 Simulations

Monte Carlo simulations were carried out to compare the accuracy of estimates of

multiple change points in the hazard functions using the CE method along with

the Nelder-Mead Simplex algorithm. The classic Nelder-Mead method, developed

by Nelder and Mead [102], evaluates the function at the vertices of a simplex and

then iteratively shrinks the simplex as better points are found until some desired

bound is obtained. This algorithm requires the user to provide initial starting values

for the parameter estimates. Moreover, this method is formulated for unconstrained

optimization problems only. We performed 5,000 replications to estimate multiple

change points in the hazard functions in the piecewise constant model (2.25) as well

as the piecewise linear model (2.29) and present the results in Tables 2.1 and 2.2, re-

spectively. In each model, we have estimated the average estimated parameter value

and the standard error (which is the standard deviation of these estimates) from all

5,000 simulation iterations for all parameters.

Piecewise Constant Multiple Change Point Hazard Model

A simulation in the piecewise constant model for two change points (τ1, τ2) haz-

ard functions was conducted for n = 500 with various values of the parameters

(α1, α2, α3, τ1, τ2) and different percentages of censoring in Table 2.1. For two change

points in the hazard functions the model (2.25) can be defined as

λ(t) =


α1, 0 ≤ t < τ1,

α2, τ1 ≤ t < τ2,

α3, τ2 ≤ t,

(2.34)

having the probability density function (pdf)

f(t) =


α1 exp (−α1t) , 0 ≤ t < τ1,

α2 exp (−α1τ1 − α2(t− τ1)) , τ1 ≤ t < τ2,

α3 exp (−α1τ1 − α2(τ2 − τ1)− α3(t− τ2)) , τ2 ≤ t.

(2.35)
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Survival times Ti from the model (2.34) can be simulated either by the inversion

of the cumulative hazard, which is called the inverse transformation method (or so-

called inverse cumulative distribution function (CDF)) method or by the composition

method. Here, we used the inverse CDF method. Since

F (t) = 1− exp (−Λ(t))

U = 1− exp (−Λ(T )) ,

where U ∼ U(0, 1) and hence,

T = Λ−1 (− log(1− U)) .

As − log(1 − U) ∼ Exp(1), we can apply the inverse cumulative hazard to an expo-

nential random variable. The cumulative hazard of the model (2.34) becomes

Λ(t) =


α1t, 0 ≤ t < τ1,

α1τ1 + α2(t− τ1), τ1 ≤ t < τ2,

α1τ1 + α2(τ2 − τ1) + α3(t− τ2), τ2 ≤ t.

(2.36)

Therefore, the inverse of the cumulative hazard takes the form

Λ−1(u) =


u
α1
, 0 ≤ u < α1τ1,

τ1 + (u−α1τ1)
α2

, α1τ1 ≤ u < α1τ1 + α2(τ2 − τ1),

τ2 + (u−α1τ1−α2(τ2−τ1))
α3

, u > α1τ1 + α2(τ2 − τ1).

(2.37)

Now, generate an exponential random variable with rate 1, and plug it into Λ−1 in

(2.37). Censoring times Ci are generated by using the uniform distribution on [0, τ1],

[τ1, τ2], and [τ2,max(Ti)], respectively for the corresponding ranges of survival times

in (2.37). Thus

C =


U1, 0 ≤ Y < α1τ1,

U2, α1τ1 ≤ Y < α1τ1 + α2(τ2 − τ1),

U3, Y > α1τ1 + α2(τ2 − τ1),

(2.38)

where U1 ∼ U(0, τ1), U2 ∼ U(τ1, τ2), U3 ∼ U(τ2,max(Ti)) and Y ∼ Exp(1). Gener-

ated censoring times’ censoring proportion can be specified by rearranging the interval

of the generated uniform variate, e.g., generate U1, U2, and U3 on [0, τ1 +5], [τ1, τ2 +5],

and [τ2,max(Ti)] respectively in (2.38) to generate 15% censored observations. Then,

we calculated observed data Xi = min(Ti, Ci) and also identified δi.

To run our proposed Algorithm 1, at first we need to initialize input parameter’s
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value. Hence, we used the initial vector ṽ0 as τ0 = (1.0, 3.0), the rarity parame-

ter ρ = 0.20, the smoothing parameter c = 0.98, and the sample size M = 100

for conducting simulation with the CE method. We performed CEoptim function

from the CEoptim package in R to estimate the change points in the hazard function

based on our proposed Algorithm 1, where we specified the arguments mean=c(1,

3), sd=c(10,10), and a linear constrains on the change points using the conMat and

conVec arguments as conMat = rbind(diag(2),-diag(2)) and conVec = c(3,5,0,-3). To

implement the Nelder-Mead Simplex algorithm in this context, we used optim func-

tion in R. Although the classic Nelder-Mead method is formulated for unconstrained

optimization problems only, we applied the initial value of the change points τ1 = 1.0

and τ2 = 3.0 with the bound [0.01, 3.0] and [3.0, 5.0], respectively. After estimat-

ing the change points τ1 and τ2 using the CE method or the Nelder-Mead Simplex

algorithm, we estimated the parameters α1, α2 and α3 using (2.27).

Table 2.1: Piecewise Constant Model with Two Change Points based on 5,000 Simulations
(n = 500)

Censor Parameters Parameter
value

Nelder-Mean Simplex Cross Entropy

Estimated
Value

Standard
Error

Estimated
Value

Standard
Error

α1 0.10 0.1239 0.0295 0.0993 0.0106
α2 0.30 0.3614 0.0963 0.3010 0.0227

0% α3 0.75 0.7443 0.0897 0.7585 0.0515
τ1 2.00 2.4140 0.5191 2.0075 0.0519
τ2 4.00 4.3268 0.6241 4.0066 0.0536

α1 0.15 0.1608 0.0284 0.1321 0.0142
α2 0.25 0.2856 0.0480 0.2214 0.0182

15% α3 0.80 0.7825 0.1091 0.8087 0.0625
τ1 1.50 2.1703 0.5996 1.5112 0.1284
τ2 4.00 4.3285 0.3972 4.0106 0.0270

α1 0.15 0.1015 0.0266 0.1001 0.0006
α2 0.45 0.2551 0.0388 0.3003 0.0017

50% α3 0.95 0.9572 0.1241 0.9483 0.0586
τ1 2.00 2.3745 0.3743 2.0095 0.0138
τ2 4.00 4.4300 0.1862 4.0211 0.0331

Table 2.1 reveals the mean estimated values of parameters (α1, α2, α3, τ1, τ2) with their

standard errors (SE) using the CE method along with the Nelder-Mean Simplex al-

gorithm for estimating multiple change points in the hazard functions in model (2.25)
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for n = 500 and censoring percentages 0%, 15% and 50%. When there is no censor-

ing (0%) we observed that parameter estimation using the CE optimization method

is more accurate than that of the Nelder-Mean Simplex algorithm. For instance,

simulated estimates of baseline hazard α1 = 0.10 is 0.0993 in the CE method with

SE 0.0106 and is 0.1239 using the Nelder-Mean Simplex algorithm with SE 0.0295.

In case of moderate (15%) and higher (50%) censoring percentages the CE method

performed better than the Nelder-Mean Simplex algorithm, specially for the change

points (τ1, τ2). For example, for the change point τ2 = 4.00 we found the closer one

τ̂2 = 4.0211 using the CE method whereas τ̂2 = 4.4300 is observed in the Nelder-Mean

Simplex algorithm for the case of (50%) censoring proportion. The standard error

is always minimum in all cases for the CE method, which implies a more consistent

estimator.

Piecewise Linear Multiple Change Point Hazard Model

Simulation in the piecewise linear model was also conducted for 5,000 iterations in

a similar manner to that of the piecewise constant model. We generated survival

times Ti using the inverse CDF method for the piecewise linear model (2.29) with

two change points (τ1, τ2) and two covariates, one dichotomous and one continuous.

Using λ(t) = exp(η(t)) the hazard function of (2.29) is defined as

λ(t) =


exp

(
α0 + α1t+ Z

′
β
)
, 0 ≤ t < τ1,

exp
(
α0 + α1t+ α2(t− τ1) + Z

′
β
)
, τ1 ≤ t < τ2,

exp
(
α0 + α1t+ α2(t− τ1) + α3(t− τ2) + Z

′
β
)
, τ2 ≤ t.

(2.39)

Hence, the cumulative hazard function is

Λ(t) =



1
α1

[
exp

(
α0 + α1t+ Z

′
β
)
− exp

(
α0 + Z

′
β
)]
, 0 ≤ t < τ1,

A+ 1
a1

[
exp

(
α0 − α2τ1 + a1t+ Z

′
β
)]

− 1
a1

[
exp

(
α0 + α1τ1 + Z

′
β
)]
, τ1 ≤ t < τ2,

A+B + 1
a2

[
exp

(
α0 − α2τ1 − α3τ2 + a2t+ Z

′
β
)]

− 1
a2

[
exp

(
α0 − α2τ1 + a1τ2 + Z

′
β
)]
, τ2 ≤ t.

(2.40)

where

a1 = α1 + α2,

a2 = α1 + α2 + α3,

A =
1

α1

[
exp

(
α0 + α1τ1 + Z

′
β
)
− exp

(
α0 + Z

′
β
)]
,

B =
1

α1 + α2

[
exp

(
α0 − α2τ1 + α1τ2 + α2τ2 + Z

′
β
)
− exp

(
α0 + α1τ1 + Z

′
β
)]
.
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Therefore, the inverse of the cumulative hazard function becomes

Λ−1(u) =



1
α1

[
log
(
α1u+ exp

(
α0 + Z

′
β
))
− α0 − Z

′
β
]
, 0 ≤ u < A,

1
a1

[
log
(
a1(u− A) + exp

(
α0 + α1t+ Z

′
β
))]

+ 1
a1

[
−α0 + α2τ1 − Z

′
β
]
, A ≤ u < A+B,

1
a2

log
[
a2(u− A−B) + exp

(
α0 − α2τ1 + a1τ2 + Z

′
β
)]

+ 1
a2

[
−α0 + α2τ1 + α3τ2 − Z

′
β
]
, A+B ≤ u.

(2.41)

Hence, survival times Ti are generated for the piecewise linear model (2.29) using an

exponential random variable with rate 1 and then plug it into Λ−1 in (2.41). Censoring

times Ci are generated by using the exponential distribution with rate b. Generated

censoring times’ censoring proportion can be specified by redefining the rate of the

generated exponential variate, e.g., using Ci ∼ Exp(0.45) we generated 15% censored

observations for the piecewise linear model (2.29). Then, we calculated observed data

Xi = min(Ti, Ci) and also identified corresponding non-censoring indicator δi. We

generated the dichotomous covariate by using the binomial random variable with pa-

rameters n = 1 and p = 0.7. The continuous covariate was generated by using the

uniform distribution on [0, 1].

To run our proposed Algorithm 1 for the piecewise linear model (2.29), at first we

need to initialize input parameter’s value. Hence, we initialized the input vector

ṽ0 with α0 = (0.5, 0.5, 0.5, 0.5), τ0 = (0.5, 1.0), and β0 = (0.5, 0.5), and used the

rarity parameter ρ = 0.20, the smoothing parameter c = 0.98 and the sample size

M = 100 for conducting simulation with the CE method. We performed CEop-

tim function from the CEoptim package in R to estimate the change points in the

hazard function based on our proposed Algorithm 1, where we specified the argu-

ments mean=c(0.5,1,0.5,0.5,0.5,0.5,0.5,0.5), sd=c(.5,1,.5,.5,.5,.5,.5,.5), and a linear

constrains on the change points using the conMat and conVec arguments as con-

Mat = rbind(diag(8),-diag(8)) and conVec = c(.8,1.8,.2,.3,.5,.8,1,1,0,0,0,0,0,0,0,0).

To implement the Nelder-Mead Simplex algorithm in this context, we used optim

function in R, where we considered the starting value of the parameters in the par

argument as α0 = (0.5, 0.5, 0.5, 0.5), τ0 = (0.5, 1.0), and β0 = (0.5, 0.5). Although the

classic Nelder-Mead method is formulated for unconstrained optimization problems

only, we applied the bound arguments with lower=c(0.01,0.5,0,0.05,0.1,0.2,0,0) and

upper=c(0.8,1.8,.2,.3,.5,.8,1,1). All the parameters were directly estimated by these

two algorithms and are presented in Table 2.2.
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Table 2.2: Piecewise Linear Model with Two Change Points based on 5,000 Simulations
(n = 1000)

Censor Parameters Parameter
value

Nelder Mean Simplex Cross Entropy

Estimated
Value

Standard
Error

Estimated
Value

Standard
Error

α0 0.05 0.0572 0.0633 0.0524 0.0478
α1 0.08 0.0624 0.0301 0.0735 0.0465
α2 0.10 0.1253 0.0480 0.1247 0.0737

0% α3 0.50 0.4718 0.2358 0.4976 0.2095
τ1 0.50 0.5190 0.2299 0.5057 0.2403
τ2 1.50 1.2655 0.3216 1.3999 0.2857
β1 0.50 0.4971 0.0660 0.4921 0.0628
β2 0.75 0.7417 0.0998 0.7260 0.0893

α0 0.10 0.0987 0.0715 0.1042 0.0543
α1 0.15 0.1033 0.0750 0.1144 0.0666
α2 0.20 0.1917 0.1140 0.2180 0.1144

15% α3 0.50 0.4515 0.2496 0.5077 0.2649
τ1 0.50 0.4171 0.2038 0.4405 0.2381
τ2 1.50 1.0648 0.3099 1.3054 0.3542
β1 0.50 0.5029 0.0726 0.5006 0.0688
β2 0.75 0.7557 0.1061 0.7470 0.0963

Table 2.2 illustrates the mean estimated values of hazard parameters (α0, α1, α2, α3),

change points (τ1, τ2), and regression parameters (β1, β2) with their standard errors

(SE) using the CE method as well as the Nelder-Mean Simplex algorithm for esti-

mating multiple change points in the hazard functions in the piecewise linear model

(2.29) for n = 1000 and censoring percentages 0%, and 15%. In case of no censoring

(0%) we observed that hazard and change points estimates are more accurate using

the CE optimization method than the Nelder-Mean Simplex algorithm, but regression

parameters are more accurate in the Nelder-Mean Simplex algorithm. Nevertheless,

only estimates of baseline hazard α0 and 2nd segment hazard α2 functions are giving

closer result for the Nelder-Mean Simplex algorithm when the data contains 15% cen-

soring percentages. Moreover, change points estimates are more precise with the CE

optimization method than that of the Nelder-Mean Simplex algorithm, for instance,

when τ1 = 0.50 and τ2 = 1.50 we observed τ̂1 = 0.5057 and τ̂2 = 1.3999 in the CE

method, and τ̂1 = 0.5190 and τ̂2 = 1.2655 in the Nelder-Mean Simplex algorithm for

the case of (15%) censoring proportion.
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2.4.2 Real Data Applications

We apply the CE method and Goodman et al. [54, 55]’s methodology to two data

examples: Cell Stimulus Response data and Breast Cancer mortality data. The Cell

Stimulus Response data described in Section 3.4 of Chapter 3 and the Breast Cancer

mortality data will be explained in the following paragraphs and in Appendix A. To

avoid ties, we restrict the change points to be larger than the first survival time and

smaller than the second to last survival time, assuming these are non-censored time

points, i.e., T(1) < τ1 < . . . < τk < T(n−1), (cf. Yao [150] and Müller and Wang [97]).

Application 1: Breast Cancer Mortality Data

We use the Surveillance, Epidemiology, and End Results (SEER) Program Public-Use

Data (1973-2010), National Cancer Institute, DCCPS, Surveillance Research Pro-

gram, Cancer Statistics Branch, released April 2013, based on the November 2012

submission. This data contains cancer incidence and survival for cases diagnosed

from 1973 to 2010, follow-up continued until December 31, 2012. Our focus is on the

breast cancer mortality data only. Calculation of hazard rate will be based on the

breast cancer patient’s risk of death.

For the purpose of analysis we excluded patients with unknown follow-up time and

not a case of first tumor. We define an event as death from breast cancer. If a patient

dies from another cause they are censored at the time of their death. We found that

there are 576250 observations among them 455196 are censored, hence, 78.9% of the

observations being censored. Table A.1 in Appendix A shows all the necessary vari-

ables information in a summarized structure for the Breast Cancer data to complete

our analysis.

It appears from Figure 2.3 that estimated hazard functions using the Product-Limit

estimator and the Nelson-Aalen estimator are nearly coinciding for the breast cancer

SEER data, whereas a smooth exponential decreasing curve is observed due to the

kernel hazard estimator. To calculate the hazard rates we convert monthly survival

times (SurvM ) into yearly survival times and use DeathCause variable as the censor-

ing indicator variable.

Figure 2.3 represents the estimated hazard functions for the entire Breast Cancer

Patients of SEER data. Now, we consider only those patients who are diagnosed with

the first tumor. Therefore, the second tumor cases or any other cases are discarded
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from the data set. For conducting the test to identify change point in hazard functions

we need to use the Wald statistic (2.31), accordingly, ˆV ar(α̂2), ˆV ar(α̂3), . . . , ˆV ar(α̂k)

are required to estimate. This is actually the biggest pitfall of this testing proce-

dure. Nevertheless, we can approximate these variances using the R software package

numDeriv with the function hessian. Hence, ˆV ar(α̂2), ˆV ar(α̂3), and ˆV ar(α̂4) are

estimated as 2.088586e−04, 3.460357e−05, 3.315643e−11, respectively.
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Figure 2.3: The estimated hazard functions of the Breast Cancer Patients using SEER
Data estimated by Nelson-Aalen estimator (blue line), Product-Limit estimator (red
line, overlapped by the blue line), and kernel hazard estimator (black line) from 1973
to 2010.

Table 2.3: Change points in the hazard functions detection using the Wald statistic (2.31)
for the model (2.29) of the Breast Cancer Patients (SEER Data) diagnosed
with the first tumor.

Hypotheses Wald Statistic Critical Value Decision

H0 : α2 = 0 vs. H1 : α2 6= 0 253.2810 3.8415 Significant τ1

H0 : α3 = 0 vs. H1 : α3 6= 0 184.9520 3.8415 Significant τ2

H0 : α4 = 0 vs. H1 : α4 6= 0 0.7540 3.8415 Insignificant τ3
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Table 2.3 recognizes two change points in the model (2.29) for the Breast Cancer

Patients (SEER Data) diagnosed with the first tumor. Figure 2.4 displays those esti-

mated change points in the hazard functions, where the black line is an estimate of the

hazard function using the product-limit method of muhaz package in R. The red line

is the estimated hazard function using the Nelder-Mead algorithm used by [54, 55]

and the blue line is the estimated hazard using CE method. The hazard function

diagnosed with breast cancer between 1973 and 1976 increases until the first change

point, and then begins to decrease sharply until the second change point, followed by

a exponential decline until the end of the follow-up period.

 

Figure 2.4: The estimated change points in the hazard functions for the model (2.29)
of the Breast Cancer Patients diagnosed with the first tumor using SEER Data 1973-
2010.

The estimated log hazard function using CE method has two change points (namely,

at 1.67 and 3.87), which is shown in equation (2.43). Using Nelder-Mead algorithm

we also found two change points in log hazard function at 1.47 and at 5.12, which

is defined in (2.42). In a previous study of recovery from breast cancer, it has been

observed by Langlands et al. [81] that the maximum mortality occurs after about
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three years of diagnosis and then it decreases slowly over a fixed period of time,

which also reflected on the findings of the CE method, i.e., significant change points

of the hazard function are found at 1.67 and 3.87 years after diagnosis.

η(t)NM = −3.65 + 0.1t− 0.31(t− 1.47)+ + 0.08(t− 5.12)+, t ≥ 0, (2.42)

η(t)CE = −3.52 + 0.1t− 0.23(t− 1.67)+ + 0.08(t− 3.87)+, t ≥ 0. (2.43)

Application 2: Cell Stimulus Response Data

Cell Stimulus Response data explained in the Chapter 3 contains 0.5% censored data.

We have calculated the hazard functions for this data using three different methods

and explored in Figure 2.5, where red line indicates hazard estimated by Product-

Limit estimator, blue line indicates the Nelson-Aalen estimator and black line implies

kernel hazard estimator.
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Figure 2.5: The estimated hazard functions for Cell Stimulus Response Data.

Using the hessian function in the R software package numDeriv we can approximate
ˆV ar(α̂1), ˆV ar(α̂2), ˆV ar(α̂3), and ˆV ar(α̂4) by 9.517272e−08, 1.334135e−05, 8.157135e−02,

and 1.603287e−01, respectively. Therefore, to find out the significant change points in

the model (2.25) we calculate the Wald statistic (2.28) and summarize the hypothesis

tests in Table 2.4.
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Table 2.4: Change points in the hazard functions testing using the Wald statistic (2.28)
for the model (2.25) of Cell Stimulus Responses under H0 : α(k−1)−αk = 0 vs.
H1 : α(k−1) − αk 6= 0.

Hypotheses Wald Statistic Critical Value Decision

H0 : α1 − α2 = 0 7.0963 3.8415 Significant τ1

H0 : α2 − α3 = 0 7.8823 3.8415 Significant τ2

H0 : α3 − α4 = 0 0.0003 3.8415 Insignificant τ3

Table 2.4 reveals inevitable two change points in the hazard functions in the model(2.25)

for the Cell Stimulus Responses. These two change points have observed at 1.999 and

2.698 using the CE method and defined in (2.44), and using the Nelder-Mead Simplex

algorithm in (2.45). Estimated multiple change points in the hazard functions are

plotted in Figure 2.6.

λ(t) =


0.00069, 0 ≤ t < 1.999,

0.01408, 1.999 ≤ t < 2.698,

0.81140, 2.698 ≤ t,

(2.44)

λ(t) =


0.00052, 0 ≤ t < 1.899,

0.01029, 1.899 ≤ t < 2.699,

0.81221, 2.699 ≤ t.

(2.45)
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Figure 2.6: Estimated change points in the hazard functions for the Cell Stimulus Re-
sponse using the model (2.25) with the CE method in (a), and Nelder-Mead Simplex
Algorithm in (b).
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2.5 Discussion

As there are some public health examples that suggest that, due to improvement in

treatments or diagnosis, there may be two or more changes in the hazard rate and

censoring may also be occurred near these change points. In this context, we have

reviewed different hazard estimators in Section 2.2 and different existing methodolo-

gies for testing and estimating change points in the hazard functions in Section 2.3.

Moreover, we developed an algorithm to estimate multiple change points for the haz-

ard functions in the piecewise constant model (2.25) as well as the piecewise linear

model (2.29) using the Cross-Entropy method and methodology from [54, 55], and

its performances illustrated by simulations and real data application. In most of the

cases, the CE method performed better than the existing counterpart Nelder-Mead

Simplex algorithm with minimum SE. Although we have used the CE method as an

optimization technique in estimating multiple change points in the hazard functions

and found this method performed more reasonably than its existing counterpart, it

can be used as a detecting method for identifying multiple change points in the haz-

ard functions in further research.
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Chapter 3: Change Point Analysis
with Missing Data

A change point causes heterogeneity or abrupt changes in data. This heterogeneity of

data should be properly checked before estimation of parameters of statistical models

and decision making procedures. Therefore, statistical models with change points are

highly relevant in both theory and practice of many fields. Change points analysis

has its origins in quality control Page [106, 107] but has since become an integral

part of a wide variety of fields, among them economics [110], finance [4], climatology

[119], engineering [135], signal processing [15], time series of counts [47], biological

sequences [116] and epidemiology [133]. There is extensive literature on change point

problems for references Brodsky and Darkhovsky [23], Basseville and Nikiforov [15],

Carlstein et al. [28], Csörgö and Horváth [37], and Chen and Gupta [30, 31]. The

change point problem can be considered as one of the central problems of statistical

inference, linking together statistical control theory, the theory of estimation and test-

ing hypotheses, classical and Bayesian approaches, and fixed sample and sequential

procedures [23].

Application of change points increases as more data sets are collected. Based on

the method of data acquisition, there are two main types of change point problems:

posteriori (retrospective, offline) and sequential (quickest, online) change point prob-

lems. The posteriori problems arise when all observations have been already received,

whereas, the sequential problems include situations when the data have been observed

sequentially and the future observations are unknown. Change point analysis can also

be categorized by the contrast of parametric versus nonparametric and frequentist ver-

sus Bayesian detection. In all the situations, it is of interest to know where, when

and how many changes arise in the model. There could be a single or many change

points in the data set. The change point methods greatly depend on the data nature;

whether independent or not, missing or complete, censored or fully observed, etc. In

this chapter, we focus our efforts on review different offline nonparametric change
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point tests for independent observations with missing data features.

Different means with same variances

Different variances with same means

Different correlation coefficients with same means and variances

Different PDFs (Gaussian, Exponential, Uniform)

t[0,n] t[1,n] t[2,n] … … t[q−1,n] t[q,n] t[q+1,n]

(a)

Changes only in the intercept coefficients

Changes only in the slope coefficients

Changes in both the intercept and the slope coefficients

t[0,n] t[1,n] … t[q−1,n] t[q,n] t[q+1,n]

(b)

Figure 3.1: Change point problems description in different cases. Multiple change
points in means, variances, correlation strengths and probability distributions are
displayed in (a) and changes in linear regression model exhibits in (b).

Figure 3.1 represents various change point problems in multiple change points cases.

In the 1st plane of Figure 3.1(a), only mean values of the different segments are

changed but variances are unchanged, whereas, variances are changed with the same

means in the 2nd plane. In the 3rd plane only the correlation strengths are changed

and the 4th plane expresses when the whole shape of their probability distribu-

tion functions (PDFs) have been changed. Multiple change points in linear re-

gression model are exhibited in Figure 3.1(b): different intercept coefficients with

the same slope coefficients are presented in the 1st plane, different slope coefficients

with the same intercept coefficients are in the 2nd plane, and the 3rd plane shows

changes in both the intercept and slope coefficients. The multiple change points,

t[1,n], t[2,n], . . . t[q,n], are indicated by dotted vertical red lines.

The chapter is structured as follows. Section 3.1 contains different offline nonpara-

metric tests procedure for detecting and estimating single change point problem in

the location and regression models. In Section 3.2, we explain multiple change point

models in mean and regression structures with illustration of hypothesis testing and

estimation of those multiple change points. A review of different missing data mech-

anisms with various imputation methods is presented in Section 3.3. For real data
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analysis we consider the cell stimulus response data. Section 3.4 illustrates the ap-

plication of change point analysis to this data set with imputed missing values for

multiple structural changes in mean and linear regression models, and for multiple

change points in the distribution. Finally, the chapter concludes with a discussion in

Section 3.5.

3.1 Single Change Point Models

The problem of abrupt changes in general arises in quite a variety of models within

time-ordered observations, for instance, changes in mean with known or unknown

starting value and variance, changes in variance, changes in mean and variance,

changes in location and/or scale, changes in correlation coefficient, changes in re-

gression coefficient. This section deals with At-Most-One-Change (AMOC) mean

and regression models with independent observations in offline inference with missing

data feature.

3.1.1 Single Change Point in Mean

Model and Assumptions

The classical change point model with single change in mean is defined by

Xi =

{
µ+ ei, 1 ≤ i ≤ m,

µ+ δ + ei, m < i ≤ n,
(3.1)

where µ, δ and m ≤ n are unknown, n is the total number of observations and

known, and m is called the change point. In the nonparametric settings, we assume

that the errors {ei : i = 1, . . . , n} are i.i.d. (independent and identically distributed)

but non-observable with

E(ei) = 0, 0 < E(e2
i ) = σ2 <∞, E|ei|ν <∞ for some ν > 2. (3.2)

Most of the statistics were originally developed for independent normal errors, but it

can be shown that the statistics work for all non-degenerate sequences of i.i.d. errors

as long as the νth moment (ν > 2) exists. Nevertheless, for details confer Csörgö

and Horváth [37]. Moreover, Antoch et al. [8] and Horváth [61] described that the

statistics also work for dependent errors that follow a linear process.

After specifying the model of interest in a change point analysis, then we focus on

the detection of the change point, while the change point is estimated in the next
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step. In the detection or testing of change point, we decide whether the sequence of

observations is homogeneous or not with the following test hypothesis

H0 : µ1 = · · · = µn = µ, against

H1 : µ1 = · · · = µm = µ; µm+1 = · · · = µn = µ+ δ,
(3.3)

where m = 1, . . . , n− 1 is an unknown index of change point, the initial value µ and

δ ( either δ > 0 or δ 6= 0 ) are also unknown.

As mentioned, the decision whether the sequence of observations is stationary or

not is based on the test statistics. In this subsection, we want to make a brief review

on different types of test statistics in offline nonparametric inferences to detect change

in the AMOC mean model.

Test Statistics

The most common statistics usually applied for the location model in nonparamet-

ric inferences are the pseudo maximum-likelihood method and the pseudo-Bayesian

method, which are the base types for the max-type statistics and the sum-type statis-

tics, respectively. To derive pseudo maximum-likelihood statistics, a common practice

is to consider i.i.d. standard normal errors first and then prove that the statistic de-

rived under Assumption 3.2 still gives valid results for different distribution. This

is reasonable owing to the central limit theorem. Whereas, the pioneering work of

change point detection in offline inferences within a pseudo-Bayesian framework by

Chernoff and Zacks [32] and Kander and Zacks [72], is based on the assumption that

the unknown mean µ and unknown change point m are independent random variables

such that the prior distribution of m is uniform and µ is distributed as normal with

mean zero and constant variance. In particular, we are interested in the well known

cumulative sum (CUSUM) and moving sum (MOSUM) statistics to apply to testing

change in the AMOC mean model with missing data. As outliers are also likely to

appear, we give a short introduction of CUSUM and MOSUM statistics along with

their robust counterparts.

Weighted CUSUM Statistic

The CUSUM test statistic was initially proposed by Page [106, 107, 108] in the context

of quality control. Hereafter, various authors used that statistic in different contexts

with different types. We focus on the weighted CUSUM for details confer [37], [7],

[11] and [74]. To detect the change point in the AMOC mean model (3.1) with the
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hypothesis (3.3), at first we assume that the errors are independent and normally

distributed with N(0, σ2) and m is known. For calculating the likelihood ratio test

statistic, suppose m = k, a = µ under H0 and b = µ + δ under H1. Hence, the log

likelihood ratio with the density function φ(x) and the distribution function Φ(x) is

log λk = sup
a,b

log

∏k
i=1 φ(Xi − a)

∏n
i=k+1 φ(Xi − b)∏n

i=1 φ(Xi − a)

= log

∏k
i=1 φ(Xi − X̄k)

∏n
i=k+1 φ(Xi − X̄∗k)∏n

i=1 φ(Xi − X̄n)
,

where X̄k = 1
k

∑k
j=1 Xj, X̄∗k = 1

n−k
∑n

i=k+1Xi.

log λk =
1

2σ2

(
n∑
i=1

(Xi − X̄n)2 −
k∑
i=1

(Xi − X̄k)
2 −

n∑
i=k+1

(Xi − X̄∗k)2

)

=
1

2σ2

1

k

(
k∑
i=1

Xi

)2

+
1

n− k

(
n∑

i=k+1

Xi

)2

− 1

n

(
n∑
i=1

Xi

)2


=
1

2σ2


(∑k

i=1Xi

)2

k
+

(∑n
i=1 Xi −

∑k
i=1Xi

)2

(n− k)
− (
∑n

i=1 Xi)
2

n


=

1

2σ2

1

nk(n− k)

n2

(
k∑
i=1

Xi

)2

+ 2nk
n∑
i=1

Xi

k∑
i=1

Xi − k2

(
n∑
i=1

Xi

)2


=
1

2σ2

n

k(n− k)

(
k∑
i=1

Xi −
k

n

n∑
i=1

Xi

)2

=
1

2σ2

n

k(n− k)

(
k∑
i=1

(Xi − X̄n)

)2

.

Since, k is unknown, so the maximally selected likelihood ratio is natural to use,

which leads to the test statistic

T (1)
n = max

1≤k<n

{
1

σ

∣∣∣∣∣
√

n

k(n− k)

k∑
i=1

(Xi − X̄n)

∣∣∣∣∣
}
. (3.4)

Test statistic (3.4) is used for the two-sided alternative with δ 6= 0, while for the

one-sided alternative with δ > 0 is,

T (1)
n = max

1≤k<n

{
1

σ

√
n

k(n− k)

k∑
i=1

(Xi − X̄n)

}
. (3.5)
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The error variance can be estimated by using any of the following forms:

σ̂2 =
1

n

n∑
i=1

(Xi − X̄n)2, (3.6)

σ̂2 =
1

n− 2

(
k∑
i=1

(Xi − X̄k)
2 +

n∑
i=k+1

(Xi − X̄∗k)2

)
. (3.7)

One will get a more powerful test by using the estimated variance (3.7) than (3.6) in

the max-type statistic (3.4) or (3.5). For large n and normally distributed random

variables, approximate critical values of statistic (3.4) with estimated variance (3.7)

were suggested by James et al. [68].

In order to use this test in testing for a change point, we need to find the criti-

cal value of this test statistic. That means, we need to know the distribution of the

test statistic under H0. The exact distribution of the test statistic depends on the

distribution of errors, and in practice it is so complex and not known even for known

error distribution with small n. Therefore, we need to know either the limit distri-

bution of the test statistic under H0 or approximate the critical values for further

testing purpose. Using Bonferroni inequality one can approximate an upper estimate

of the critical value at the significance level α, which is good enough for small sample

but too conservative for large n, confer Worsley [146, 147]. The approximate critical

values can be calculated for large n from the asymptotic behavior of the probabilities

under H0 in (3.3) using Darling et al. [38]

P
(
T (1)
n A(log n) ≤ t+D(log n)

)
≈ exp(−2e−t), (3.8)

for t ∈ R1, and where A(x) =
√

2 log x, D(x) = 2 log x+ 1
2

log log x− 1
2

log π, and T
(1)
n

is defined in (3.4), also suitable for (3.5) as well. It is assumed that max
1≤k<n

|σ̂2− σ2| =
op ((log log n)−n), for proofs and details confer Theorems 1.3.1 and 1.4.2 in Csörgö

and Horváth [37]. Hence, the asymptotic critical value at α level is

cα =
1

A(log n)

(
− log

(
− log(1− α)

2

)
+D(log n)

)
. (3.9)

Moreover, it is a known fact that the convergence of extreme-value-type statistics is

rather slow. Another approach to get the asymptotic distribution of the test statistic

under H0, convergence in distribution for large sample sizes is appealed to, i.e.,

sup
0<t<1

1

σ

Tn(t)

q(t)
D→ sup

0<t<1

B(t)

q(t)
, (3.10)

50



where q(t) is a general weight function, replacing
√
t(1− t) at t = k

n
in (3.4), which is

positive on (0, 1), and {B(t), 0 ≤ t ≤ 1} is a Brownian bridge, i.e., B is a continuous

Gaussian process with EB(t) = 0 and EB(t)B(s) = min(t, s) − ts, for proof confer

Chapter 2 of Csörgö and Horváth [37]. Csörgö and Horváth [37] illustrated through

a simulation study that an asymptotic critical value coming from (3.8) is giving a

conservative rejection region, since the rate of convergence to extreme value distri-

butions is slow, and not performing better than the asymptotic critical value coming

from (3.10). In recent years the trimmed max-type test statistic became popular,

since they do not suffer so much from the convergence problems for extreme values.

For two-sided alternative the test statistic is

T̃ (1)
n = max

bβnc≤k≤b(1−β)nc

{
1

σ

∣∣∣∣∣
√

n

k(n− k)

k∑
i=1

(Xi − X̄n)

∣∣∣∣∣
}
, (3.11)

where β is a small positive constant less than one, typically, β ∈ [0.01, 0.1], and btc
denotes the integer part of t. However, one should reasonably be sure that no change

occurred in the stretch X1, . . . , Xbβnc and Xbn−βnc, . . . , Xn.

After having a positive decision about the existence of the change point in detection

procedures, then the next concern is to estimate the location of the change point. Of

course, other parameters of the model also have to be estimated. Approximations to

the distributions of change point estimators and the construction of the interval esti-

mators for the change points are also interesting topics in the change point analysis,

but we limit our discussion to the estimation of the change point.

Suppose that the observations X1, . . . , Xn are observed at the ordered time moments

t1 < · · · < tn in the model (3.1). After rejecting the null hypothesis (3.3), the AMOC

model (3.1) indicates that there is just one change after the mth observation, and the

corresponding time moment is known as the change point. Moreover, our focus is to

estimate the integer valued tm. We assume that the change point m can occur neither

at the beginning nor at the very end of the observational period and satisfies

m = bnγc, γ ∈ (0, 1), (3.12)

where bnγc denotes the integer part of nγ. To estimate the unknown parameters

m, µ and δ, one can use some general estimation methods, for instance, maximum

likelihood estimation(MLE) or least square (LS) method. LS gives simple solutions,

whereas, MLE requires the distribution of errors to be known in the model (3.1).
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The LS estimators m̂LS, µ̂LS and δ̂LS of the parameters m, µ and δ, respectively, are

estimated in such way that the sum of squared residuals is minimal, while, the change

point estimators m̂LS can be obtained from the maximization problem

max

{√
n

k(n− k)

∣∣∣∣∣
k∑
i=1

(
Xi − X̄n

)∣∣∣∣∣ ; k ∈ {1, . . . , n− 1}

}
.

Since, the solution of the maximization problem needs not to be unique. Using a

convention, proposed by Antoch et al. [7, 11], the estimator for mLS is

m̂LS = arg max

{√
n

k(n− k)

∣∣∣∣∣
k∑
i=1

(
Xi − X̄n

)∣∣∣∣∣ ; k ∈ {1, . . . , n− 1}

}
. (3.13)

CUSUM R-type Statistic

Handling of missing data may introduce outliers and as a result, robust-type of statis-

tics would be a good choice in this context. Among robust methods the M -procedure,

rank-type R-procedure, U -statistics and Kolmogorov-Smirnov type test statistics are

the most common procedures for detection of changes in location models as well as

regression models. Antoch and Hušková [9], Antoch et al. [7], and Antoch et al. [11]

deal with various robust-types of change point tests and estimators. So far we have

focused on the rank-type R-procedure, more specifically, CUSUM R-type statistic,

for testing changes in mean, which is based on the simple linear rank statistics. The

CUSUM R-type statistic is defined by

T (2)
n = max

1≤k≤n−1

{
1

σn,R

∣∣∣∣∣
√

n

k(n− k)

k∑
i=1

(an (Ri)− ān)

∣∣∣∣∣
}
, (3.14)

where (R1, . . . , Rn) is the vector of ranks corresponding to the observationsX1, . . . , Xn;

the scores an(1), . . . , an(n) are typically defined either by Wilcoxon scores or van der

Waerden scores with ān = 1
n

∑n
i=1 an(i), here Wilcoxon scores (an(i) = i/(n+ 1), i = 1, . . . , n)

are used to define an(i); and the scale σn,R is defined by

σ2
n,R =

1

(n− 1)

n∑
i=1

(an(i)− ān)2 . (3.15)

Under H0 the approximate critical values can be calculated for large n from

P
(
T (2)
n A(log n) ≤ t+D(log n)

)
≈ exp(−2e−t), (3.16)

52



for t ∈ R1, and where A(x) =
√

2 log x, D(x) = 2 log x+ 1
2

log log x− 1
2

log π. And the

estimator for mLS by

m̂LS = arg max

{∣∣∣∣∣
√

n

k(n− k)

k∑
i=1

(an (Ri)− ān)

∣∣∣∣∣ ; k ∈ {1, . . . , n− 1}

}
. (3.17)

MOSUM Statistic

There is another important type of test statistic based on moving sums, which is

known as MOSUM statistic. The MOSUM statistic was first proposed but not ana-

lyzed mathematically by Antoch et al. [7]. Many authors have already investigated

MOSUM statistics in the context of testing, most influential are Bauer and Hack

[16], Chu et al. [33], Hušková [63], Hušková and Slabỳ [67], and Preuss et al. [115],

and in the context of estimation of number and location of change points, Kirch and

Muhsal [75] have investigated asymptotic properties of change point estimators based

on MOSUM statistic. The performance of MOSUM statistic crucially depends on a

bandwidth choice, which ideally should be chosen as the minimum distance between

two neighboring change points. However, this method does not require to fix an upper

bound for the number of changes, is not computationally expensive and the overall

significance level is controlled [75]. The MOSUM statistic is defined by

T (3)
n (G) = max

G<k≤n

1√
G

1

σ̂n
|Sk − Sk−G| , (3.18)

where Sk =
∑k

i=1(Xi − X̄n) and G < n. We assume that G/n is small, typically,

G/n ∼ 0.05 or 0.10 (this is meant as a rule of thumb not in the correct asymptotic

mathematical sense). Another MOSUM type statistic, which is especially suitable

for more than one change and as a diagnostic tool (confer Antoch et al. [7], Chapter

4.1.3), uses the second order difference of Sk’s. Whereas, MOSUM statistic (3.18) is

the first order difference of Sk’s.

T̃ (3)
n (G) = max

G≤k≤n−G

1√
2G

1

σ̂n
|Sk+G − 2Sk + Sk−G| , (3.19)

which also can be written as

T̃ (3)
n (G) = max

G≤k≤n−G

1√
2G

1

σ̂n

∣∣∣∣∣
k+G∑
i=k+1

Xi −
k∑

i=k−G+1

Xi

∣∣∣∣∣ . (3.20)

For large n and small G/n we can use the following approximation to the distribution

of (3.18) and (3.19) under null hypothesis, i.e.,

P
(
An,GT

(3)
n (G) > t+Bn,G(G)

)
≈ 1− exp

(
−2e−t

)
, (3.21)
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P

(
An,GT̃

(3)
n (G) > t+Bn,G(G)− log(

2

3
)

)
≈ 1− exp

(
−2e−t

)
, (3.22)

where t ∈ R1, An,G =
√

2 log n
G

and Bn,G = 2 log n
G

+ 1
2

log log n
G
− 1

2
log π. Based on

the MOSUM the estimator m̂LS(G) is defined as

m̂LS(G) = arg max {|Sk+G − 2Sk + Sk−G| ; k ∈ {G, . . . , n−G}} . (3.23)

MOSUM R-type Statistic

The MOSUM type M - and R-estimators are also most usable statistics in robust case.

The rank based MOSUM R-type statistic is defined analogously by

T (4)
n (G) = max

G≤k≤n−G

1√
2G

1

ˆσn,G

∣∣∣∣∣
k+G∑
i=k+1

an(Ri)−
k∑

i=k−G+1

an(Ri)

∣∣∣∣∣ . (3.24)

where (R1, . . . , Rn) is the vector of ranks corresponding to the observationsX1, . . . , Xn;

the scores an(1), . . . , an(n) are Wilcoxon scores (an(i) = i/(n+ 1), i = 1, . . . , n); and

the scale σn,R is defined in (3.15). Under H0 the approximate critical values can be

calculated for large n from

P

(
An,GT

(4)
n (G) > t+Bn,G(G)− log(

2

3
)

)
≈ 1− exp

(
−2e−t

)
, (3.25)

where t ∈ R1, An,G =
√

2 log n
G

and Bn,G = 2 log n
G

+ 1
2

log log n
G
− 1

2
log π. Based on

the MOSUM R-type statistic (3.24) the estimator m̂LS(G) is defined as

m̂LS(G) = arg max

{
1√
2G

∣∣∣∣∣
k+G∑
i=k+1

an(Ri)−
k∑

i=k−G+1

an(Ri)

∣∣∣∣∣ ;G ≤ k ≤ n−G

}
.

(3.26)

Bootstrapping

Finding good approximations to the critical values is one of the leading problems in

hypothesis testing. In change point literature, the distributions of test statistics are

very complex even in those cases where the assumption of normal errors is fulfilled,

so that they can be determined explicitly only for small sample sizes. Hence, critical

values based on limit distributions of the test statistics under null hypothesis are

mostly recommended. However, in some cases the convergence is rather slow, for

instance, if the limit distribution belongs to the extreme value type (see e.g., Antoch

and Hušková [10], Hušková and Picek [66] and Kirch [74]), or its explicit form is un-

known or it depends on unknown parameters. Consequently, the asymptotic critical
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values are only good approximations for large sample sizes, otherwise they fail (see

Kirch [74]).

Therefore, resampling becomes one of the reasonable possibilities to approximate

the critical values. In change point context this approach was first suggested by

Antoch and Hušková [10] and later pursued by others (see e.g., Hušková and Picek

[66], Hušková [64], Kirch and Steinebach [76] and Kirch [74], etc.). Permutation and

bootstrap tests have been developed in such approximations. This section focuses on

bootstrap approach.

The bootstrap procedure simply resamples from the empirical distribution defined

by one sample. If the original sample size is n, then the sampling is done at random

and with replacement and resamples are all of size n. Whereas, bootstrap without

replacement is coinciding with permutation principles. There are many types of boot-

strap, e.g., percent bootstrap, naive bootstrap, block bootstrap, residual bootstrap

etc. A good discussion of such resampling procedures can be found in the books by

Efron and Tibshirani [43], Davison and Hinkley [39], and Good [53].

Bootstrap Critical Value

An algorithm for finding bootstrap critical values in the weighted CUSUM test (3.4)

is illustrated in Algorithm 2.

Algorithm 2 Algorithm for approximating bootstrap critical value

1: Draw a bootstrap sample X∗j = (x∗1, . . . , x
∗
n) from (x1, . . . , xn) with replacement.

2: Calculate the test statistic T
(1)∗
ni .

3: Repeat step 1. and step 2. for i = 1, . . . , B, where B = 10, 000 (or 1000 times).
4: Calculate the empirical critical value, α-quantile = c, such that

1

B

B∑
i=1

1{
T

(1)∗
ni ≤c

} ≥ (1− α).

5: Reject the null hypothesis if T
(1)
n > c.

Algorithm 2 can be carried out for finding the bootstrap critical values using CUSUM

R-type test (3.14), MOSUM test (3.20) and MOSUM R-type test (3.24).
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3.1.2 Single Change Point in Linear Regression

A common phenomenon in time-series regression models is parameter instability, as it

is more likely for underlying data-generating mechanism to be disturbed over a longer

horizon by various factors that fostered the changes in relationship among some vari-

ables. Even such changes are present in the simple linear regression model, where

only the relationship between two variables is studied with explained variable de-

pending linearly on the explanatory one. There are many terminologies to describe a

change point regression, such as: segmented [82], broken-line [138], structural change,

structural break or smoothing transition [13], in which the relationship between the

response and explanatory variable is linear. The change point detection problem in

the simple linear regression arises with many features, e.g., either one or both param-

eters (intercept, slope) can change, the starting parameters before the change point

are either known or unknown, either the continuity of the regression function at the

change point is assumed or there can be discontinuity etc., [7]. In this section, we

concentrate on reviewing single change point detection in both the parameters of the

simple linear regression model with unknown starting values.

Model and Assumptions

Yi =

{
x′
iβ + ei, 1 ≤ i ≤ m,

x′
i(β + δ) + ei, m < i ≤ n,

(3.27)

where β, δ and m are unknown, xi = (1, x2i, . . . , xki)
′, β = (β1, . . . , βk)

′, δ =

(δ1, δ2, . . . , δk)
′. The model is called either a random or a fixed design depending

on xi values being random or deterministic, respectively. Moreover, assume that er-

rors {ei} are independent of explanatory variables and i.i.d. random variables with

E(ei) = 0, 0 < E(e2
i ) = σ2 <∞, E|ei|ν <∞ for some ν > 2. (3.28)

The variance, σ2, is supposed to be known. If it is unknown, it can be replaced by

its usual estimator

σ̂2 =
1

n− k

n∑
i=1

(
Yi − xi′β̂

)2

, (3.29)

where k is the number of regressors, n is the number of observations, and β̂ is the

least squares estimators of the parameters of regression coefficients under the null

hypothesis and can be estimated by using the data vector Y = (Y1, . . . , Yn)′ and the
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design matrix X = (X1, . . . , Xn)′ as

β̂ = (X ′X)
−1
X ′Y , (3.30)

which is also the maximum-likelihood estimator (MLE) for normal errors. The values

of independent variables has an important role in finding the limit behavior of test

statistics. The design points xi are either may random, e.g., they represent a realiza-

tion of a sequence of independent random variables, or may generally be a realization

of a stationary time series, or equally spaced, i.e., xi = i/n, i = 1, . . . , n. Here, we

consider a fixed design for the model (3.27) with assumptions

XX ′ is invertible, (3.31)

i.e., the vectors (1, x2i, . . . , xki) are linearly independent. And∥∥∥∥ 1

n
XX ′ −C

∥∥∥∥
∞

= O
(
n−1/2

)
, (3.32)

for some positive definite matrix C. At this moment, we are interested to test the

model (3.27) with equally spaced design points for changes in both intercept and

slope coefficients using the following test hypothesis

H0 : m = n, against,

H1 : m < n, δ 6= 0.
(3.33)

Test Statistics

Change points detection in linear regression model is such a large area of research,

which in itself attests the importance of the problem. Therefore, different types of

test procedure have been suggested in this literature, among them the generalized

fluctuation test framework Kuan and Hornik [80] (which includes different types of

CUSUM and MOSUM type tests), F-type test statistics (Andrews and Ploberger [5],

Bai and Perron [14]), and Bayesian sum-type tests (Stephens [134], Green [56]) are

most common to use. Within this framework, starting from the Recursive CUSUM

test (Brown et al. [24]), a variety of fluctuation type tests has been introduced, for

instance, OLS-CUSUM test (based on ordinary least squares residuals) of Ploberger

and Krämer [111], OLS-MOSUM test of Chu et al. [33] and Recursive MOSUM test

(based on recursive residuals) by Bauer and Hackl [17], Recursive-estimates test of

Ploberger et al. [112], Moving-estimates test of Chu et al. [34], and more recently

generalized M-type test procedures by Marušiaková and Hušková [92] based on func-

tionals of weighted M-residuals. Zeileis et al. [151, 152] also discuss several tests with
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implementation in R package strucchange based on independent errors. Within this

section we discuss OLS-CUSUM, Recursive CUSUM, OLS-MOSUM and Recursive-

MOSUM tests which will be applied to detect change points in the linear regression

model with missing data.

All of these four tests are based on the sums of estimated residuals, which are esti-

mated either by ordinary least squares (OLS) residuals or by recursive residuals. The

OLS residuals can be estimated by

êi = Y i − xi
′β̂, (3.34)

where β̂ is estimated from (3.30) and the estimated error variance σ̂2
n can be estimated

by (3.29). The recursive residuals are the standardized residuals from the regression of

each observation. Let Xr = (x1, x2, . . . , xr)
′ be a matrix of dimension r×k and Y r =

(Y1, Y2, . . . , Yr)
′ be a matrix of dimension r×1. Also, suppose β̂r = (X ′rXr)

−1
X ′rY r

be the ordinary least squares estimator at time r and then the rth recursive residual

has the form

ẽr =
Y r − xr

′β̂r−1√
1 + xr

′(X ′r−1Xr−1)−1xr

, r = k + 1, . . . , n. (3.35)

Under the null hypothesis the recursive residuals are uncorrelated with zero mean and

constant variance and are therefore independent under the normality assumption. The

corresponding variance estimate is

σ̃2 =
1

n− k

n∑
i=k+1

(ẽi − ¯̃e)
2
. (3.36)

OLS-CUSUM Test Statistic

The OLS-CUSUM test suggested by Ploberger and Krämer [111] is based on the

estimated OLS residuals (3.34) and using the test statistic

W o
n = max

1≤t≤n

1

σ̂
√
n

∣∣∣∣∣
t∑
i=1

êi

∣∣∣∣∣ . (3.37)

In real field applications such as finance, quality control, econometrics, etc., one is

primarily interested in the mean change in a particular direction. In these cases, it

is more expected to use the one-sided tests. Hence, the one-sided OLS-CUSUM test

statistic is

W o
n = max

1≤t≤n

1

σ̂
√
n

t∑
i=1

êi. (3.38)
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Ploberger and Krämer [111] showed that the asymptotic distribution of W o
n is de-

termined by the probability of a Brownian bridge B(t), crossing a pair of constant

boundaries.

OLS-MOSUM Test Statistic

Chu et al. [33] introduced OLS-MOSUM test statistic in the light of Bauer and Hackl

[17], and Ploberger and Krämer [111], where the test statistic does not contain the

sum of all residuals for the entire data but the sum of fixed number of residuals in a

data window moving across the whole sample and the size of the data window is de-

termined by the bandwidth parameter h ∈ (0, 1). Hence, the two-sided OLS-MOSUM

test statistic is

M o
n,h = max

0≤j≤n−bnhc

1

σ̂bnhc 12

∣∣∣∣∣∣
j+bnhc∑
i=j+1

êi

∣∣∣∣∣∣ , 0 < h < 1, (3.39)

where bnhc denotes the integer part of nh. The performance of moving sum statistics

depends on the choice of bandwidth h. Moving sums with large h are not very

sensitive to parameter variation, since each moving sum includes ’too many’ residuals

and only a few moving sums are available to detect possible parameter changes. On

the other hand, if h is small, the sample variation in the moving sums is likely to be

large, and the limit distribution may not be a good approximation [33]. In practice,

one-sided OLS-MOSUM test statistic is also applicable and defined as

M o
n,h = max

0≤j≤n−bnhc

1

σ̂bnhc 12

j+bnhc∑
i=j+1

êi, (0 < h < 1). (3.40)

As the representations (3.39) and (3.40) indicate, the limit process for the OLS-

MOSUM processes are the increments of a Brownian bridge, for more details see [33].

Recursive CUSUM Test Statistic

Brown et al. [24] suggested to consider cumulative sums of recursive residuals in

construction of the recursive CUSUM test Statistic, i.e.,

W r
n = max

k+1≤t≤n

1

σ̃
√
τ

∣∣∣∣∣
t∑

i=k+1

ẽi

∣∣∣∣∣ , (3.41)

where τ = n − k is the number of recursive residuals. One-sided recursive-CUSUM

test statistic can be defined by

W r
n = max

k+1≤t≤n

1

σ̃
√
τ

t∑
i=k+1

ẽi. (3.42)
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The asymptotic distribution of the test statistic (3.41) or (3.42) is determined by the

probability of a Wiener Process (or a Standard Brownian Motion). Krämer et al. [79]

showed that the main properties of the CUSUM test remain the same even under

weaker assumptions and also extended the test to detect the change in a dynamic

model.

Recursive MOSUM Test Statistic

The recursive-MOSUM test statistic, introduced by Bauer and Hackl [17], also consid-

ers the recursive residuals (3.35). This test is differs from the CUSUM test in that a

fixed number, bτhc, of residuals are available in each moving sum, whereas cumulated

sum incorporate more and more residuals. Two-sided statistic has the form

M r
n,h = max

0≤j≤τ−bτhc

1

σ̃bτhc 12

∣∣∣∣∣∣
k+j+bτhc∑
r=k+j+1

ẽi

∣∣∣∣∣∣ , (0 < h < 1). (3.43)

Accordingly, the one-sided test statistic is

M r
n,h = max

0≤j≤τ−bτhc

1

σ̃bτhc 12

k+j+bτhc∑
r=k+j+1

ẽi, (0 < h < 1). (3.44)

Bauer and Hackl [17] determined the critical values by incorrectly ignoring correla-

tions of moving sums, which was corrected by Chu et al. [33] who characterised the

limiting process of moving sums of recursive residuals in terms of the increments of

a standard Wiener Process. As this limiting process has a constant variance, the

asymptotic critical values are determined by the probability that this process crosses

a pair of constant boundaries [33].

When the null hypothesis is rejected and there is an evidence of change point in

the regression model (3.27), then we need to estimate the change point m. We as-

sume that the change point m fulfills (3.12). Hence, the estimator of m is based on

OLS-CUSUM is defined as

m̂ = arg max

{
1

σ̂
√
n

∣∣∣∣∣
k∑
i=1

êi

∣∣∣∣∣ ; k ∈ {1, . . . , n}
}
. (3.45)

The estimator is consistent under H0 as well as H1 and the arguments of the maxima

of recursive CUSUM process, OLS-MOSUM process and recursive MOSUM process

are the estimates of the change points in respective tests.
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3.2 Multiple Change Points Models

Several authors identified multiple change points in sequence of observations from

time series, which is related to different fields, for instance, finance, climatology, ge-

nomics, epidemiology, and model validation, etc. Therefore, methods for identifying

and estimating those change points are highly required for both methodological and

practical reasons. There is considerable literature regarding multiple changes in the

location and the regression models. The very first article, to the best of our knowl-

edge, on multiple changes was by Vostrikova [141]. She proposed Binary Segmentation

methods in a stochastic process setting and showed consistency of this method for the

number and locations of change points for a finite sample size. Initially, Binary Seg-

mentation method uses the entire data via any test designed for AMOC, particularly

CUSUM type test, for detecting a single change point (in a sequence of independent

observations). Once a change point is estimated if the test is significant, the data are

split into two segments defined by the detected change point, and then the procedure

is repeated for each segment until it is no longer significant. Having advantages of

simplicity and computer efficiency, one drawback of this method is the inability to

control the overall significance level. Specially, the power can suffer greatly in case

of multiple changes, which can be overcome by introducing an extra randomization

step in selection of the segment to be tested, proposed by Fryzlewicz et al. [48]. In

this section, multiple changes in structure of mean and regression model is discussed

with their offline nonparametric detection and estimation aspects.

3.2.1 Multiple Change Points in Mean

Model and Assumptions

The model with multiple change points in mean, assuming an observed sequence of

independent random variables X1, . . . , Xn, is defined by

Xi = µi + ei, bnϑj−1c < i ≤ bnϑjc, j = 1, . . . , q + 1, (3.46)

where 0 = ϑ0 < ϑ1 ≤ . . . ≤ ϑq ≤ ϑq+1 = 1, and the change points bnϑ1c, . . . , bnϑqc,
the number of change points q ∈ N as well as the expected values µ1, . . . , µq+1 ∈ R
with µj 6= µj+1, j = 1, . . . , q, are unknown. The errors e1, . . . , en are i.i.d. random
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variables with assumptions (3.2). For testing the model (3.46) concerned hypothesis

is
H0 : µ1 = · · · = µq+1, against

H1 : µj 6= µj+1, j = 1, . . . , q; q ≥ 1.
(3.47)

Test Statistics

Among all nonparametric test statistics our focus is on the CUSUM type statistics

considering Binary Segmentation procedure and MOSUM type statistics to identify

the multiple changes in the mean model with independent errors. We apply weighted

CUSUM test (3.4) and CUSUM R-type test (3.14) in Binary segmentation procedure

to find out significant multiple changes in the model (3.46) under the assumptions

(3.2). Usually, the most popular tests in the context of multiple change situation are

MOSUM type statistics, e.g., the MOSUM test statistic (3.20) and MOSUM R-type

test (3.24) introduced in Section 3.1.1.

Weighted CUSUM Statistics

Binary Segmentation procedure uses directly any type of CUSUM test statistic (3.4)

in multiple change situation and is still consistent. Details on the consistency of this

approach for estimating the true change point locations under various conditions are

found in [141, 140]. Binary segmentation procedure can be used to extend any single

change point method to multiple change points. The stepwise algorithm for weighted

CUSUM statistic (3.4) is illustrated in Algorithm 3.

Algorithm 3 The generic Binary Segmentation algorithm to detect multiple change
points using the Weighted CUSUM test (3.4).

1: Set the data for testing X1, . . . , Xn.
2: Calculate the test statistic T

(1)
n and critical value cα (3.9) at α level of significance;

if T
(1)
n > cα then select m̃

(1)
1 := arg max |T (1)

n |.
3: Split the data into two segments, i.e., X1, . . . , Xm̃1 and Xm̃1+1, . . . , Xn and repeat

step 1 and 2 for each segment until no significant change points are detected.
4: Obtain m̃

(1)
1 , . . . , m̃

(1)
q .

Using the binary segmentation procedure it is difficult to obtain an appropriate vari-

ance estimator which is necessary for the test. Since the number of change points q

is unknown, so the variance estimator becomes larger if changes are not taken into

account, which returns smaller test statistic. As a result, we loose power for small
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samples. The overall significance level can become quite large, which is not control-

lable.

CUSUM R-type Statistics

As this chapter deals with the missing data feature of cell stimulus response data in

change point analysis, so our data set may also have outliers. A robust type test

seems more appropriate in this situation. Hence, Binary Segmentation Algorithm 3

with CUSUM R-type Statistic (3.14) and estimator (3.17) can also be used in multi-

ple change points cases.

MOSUM Statistics

MOSUM test (3.20) and the estimator (3.23) can be applied directly to the entire data

without using the binary segmentation procedure to test and estimate the multiple

change points in the location model with the critical value from (3.22). The steps of

MOSUM procedure is explained in Algorithm 4.

Algorithm 4 MOSUM procedure using test statistic (3.20).

1: Find all pairs of indices νj, ωj, j = 1, . . . , q, such that ωj − νj ≥ τ0G for τ0 > 0
arbitrary but fixed.

2: Calculate the test statistic T̃
(3)
n,k(G) in (3.20) for νj < k < ωj and compare that

with the critical value cα(G) from (3.22) at α level of significance.

3: Select m̂LS(G) using (3.23) for those segments, where T̃
(3)
n,k(G) > cα(G).

4: Obtain m̃1(G), . . . , m̃q(G).

MOSUM R-type Statistics

The robust test, MOSUM R-type test (3.24), and the estimator (3.26) can also be

used to test hypothesis (3.47) for the model (3.46) and estimate significance multiple

change points with the approximate critical value from (3.25).
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3.2.2 Multiple Change Points in Linear Regression

Model and Assumptions

Linear regression models with multiple changes in coefficients can be considered as

Yi =


xi
′β1 + ei, 1 ≤ i ≤ m1,

xi
′β2 + ei, m1 < i ≤ m2,

· · ·
xi
′βq+1 + ei, mq < i ≤ n,

(3.48)

where regression coefficients β1, . . . ,βq and change points m1, . . . ,mq are unknown,

xi = (1, x2i, . . . , xki)
′, β1 = (β11, . . . , βk1)′, and Y is a n × 1 response variable. The

model is called either a random or a fixed design depending on xi values whether

random or deterministic, respectively. Moreover, assume that errors {ei} are inde-

pendent of explanatory variables and i.i.d. random variables with the assumptions

(3.28), (3.31), and (3.32). In testing multiple change points in regression coefficients

of the model (3.48), test hypothesis is

H0 : β1 = · · · = βq+1, against

H1 : βj 6= βj+1, q ≥ 1, j = 1, . . . , q.
(3.49)

Test Statistics

OLS-CUSUM test (3.37) and recursive CUSUM test (3.41) can be used incorporating

Binary Segmentation method described in section 3.2.1 for identifying significant

multiple changes in the model (3.48), whereas, OLS-MOSUM test (3.39) and recursive

MOSUM test (3.43) can be directly used to the entire data for detecting the multiple

changes in the regression model (3.48). When we reject the null hypothesis, estimate

the number of changes and their locations is the prime concerned at this stage of

change point analysis.

3.3 Missing Data Imputation

Missing data (or missing values) is defined as the data values that are not available

or stored for a variable in the observation of interest. The necessity of missing data

analysis naturally emerged from the applied work conducted by researchers in vari-

ous fields. Reasons for such concern with missing data include: data are difficult to

collect so better to account all collected data; failing to adequately address issues of

missing data can lead to biased estimates, incorrect standard errors, imprecise con-

fidence intervals, distorted statistical power, and invalid conclusions. Therefore, it is
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required to use the optimum strategy for handling missing data. Good discussions

of such procedures can be found in the books by Little and Rubin [86, 85], Schafer

[126], and Schafer and Graham [127].

Appropriately dealing with missing data can be challenging as it requires a careful

examination of the data to identify the type and pattern of missingness. Little and

Rubin [86] distinguished the missing-data pattern and the missing-data mechanism

from each another; the missing-data pattern describes which values are observed in

the data matrix and which values are missing, whereas, the missing-data mechanism

(or mechanisms) concerns the relationship between missingness and the values of vari-

ables in the data matrix. As a result, the impact of the missing data analysis depends

on the missing-data mechanism. Correspondingly, a clear understanding of how the

different imputation methods works also another important consideration in missing

data analysis. In this section, a brief discussion about the missing-data mechanism

and some imputation methods are presented to identify the best imputation method

for the cell stimulus response data.

3.3.1 Missing-Data Mechanism

To decide how to handle missing data, it is helpful to know why they are missing.

More formally, Rubin [121] defines the missing-data mechanism in three distinct types:

missing completely at random (MCAR), missing at random (MAR), and missing not

at random (MNAR). Each term refers to the probability of missing values, given in-

formation about (1) the variable(s) with the missing data, (2) associated variables

(including covariates), and (3) a hypothetical mechanism underlying the missing data.

Adopting a generic notation to characterize the missing-data mechanism, let us de-

note the complete data matrix as Y = (yij), where yij is the value of the jth variable

for individual i, which contains the observed data as Yobs and missing data as Ymis,

i.e., Y = (Yobs, Ymis); the missing-data indicator matrix as M = (mij) which defines

the pattern of missing data, such that mij = 1 if observation yij is missing and 0

otherwise; and φ denotes unknown parameters. Hence, the missing-data mechanism

is defined as the conditional distribution of M given Y , say P (M |Y, φ).

Missing completely at random (MCAR)
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If missingness does not depend on the values of the data set, i.e.,

P (M | Y, φ) = P (M | φ) for all Yobs, φ, (3.50)

then the data are MCAR. Therefore, this assumption does not mean that the pat-

tern itself is random, but rather missingness does not depend on either the observed

(Yobs) or the unobserved (Ymis) values of data matrix Y . For instance, n individu-

als had their blood pressure measured and a random sample of size ñ < n also had

their Body Mass Index (BMI). That illustrates, if the probability that BMI is miss-

ing is the same for all individuals, regardless of their measured blood pressure or BMI.

Missing at random (MAR)

A more realistic assumption under these circumstances is MAR mechanism, which

specifies missingness depends only on the components Yobs of Y , and not on the

components that are missing. Hence, MAR is defined as

P (M | Y, φ) = P (M | Yobs, φ) for all Ymis, φ. (3.51)

For example, n individuals had their blood pressure measured and only those indi-

viduals with high blood pressure also had their BMI. This implies, if the probability

of measured BMI is missing varies according to the high measured blood pressure of

the respondent but does not vary according to the BMI of respondents.

Missing Not at Random (MNAR)

In situations, when missingness depends on the unobserved values of the data set,

the data are MNAR. Mathematically, this can be expressed as

P (M | Y, φ) = P (M | Ymis, φ) for all Yobs, φ. (3.52)

For example, n individuals had their blood pressure measured but only overweight

BMI individuals also had their BMI. Which indicates, if the probability that BMI is

recorded varies according to overweight BMI individuals but does not vary according

to the measured blood pressure of the respondent. Under these circumstances, the

nonresponse is said to be informative. However, the analysis based on the responding

subsample is generally biased for the parameters of the distribution of Y if the data

are MNAR.

The MCAR assumption may be more plausible if the missing data are missing by

design, whereas, according to mechanism characteristics MAR is called ignorable
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nonresponse, and MNAR is called nonignorable. Another important feature of data,

which is censoring and more likely to appear in the time-to-event data, also can be

illustrated as a missing data mechanism, e.g., non-informative censoring can reveal

as ignorable missing which implies that a suitable assumption is either MCAR or

MAR mechanism, and informative censoring can be expressed as nonignorable miss-

ing where MNAR is more plausible. Particularly, left censoring or right censoring

always is related with the MNAR mechanism.

The missing data mechanisms are not characteristics of an entire data set, but the

mechanisms are merely assumptions which apply to specific analysis methods. Any

attempt to identify the missing data mechanism and correct for selective nonresponse

will typically represent an improvement in the accuracy of results over making no at-

tempt at all. Nevertheless, the significance of MCAR, MAR and MNAR assumptions

about the missing data mechanism also depends somewhat on the objective of the

analysis.

3.3.2 Imputation Methods

The practice of filling in missing values with plausible values is known as imputation.

Imputation is a general and desired analysis for handling missing-data problems rather

than discard the unit entirely. This method helps to prevent loss of power resulting

from a diminished sample size, also can make use of imputed information and main-

tain high precision. However, it has pitfalls, particularly in multivariate settings,

since it may distort data distributions and relationships

There are many different imputation methods among them single imputation, multi-

ple imputation (MI), Expectation Maximization (EM) Algorithm and full-maximum

likelihood methods. Single imputation uses to fill in one value for each missing item,

multiple imputation imputes more than one value for each missing item and incor-

porates the uncertainty. EM technique iteratively goes through the data to impute

a value (Expectation) then checks whether that is the value most likely (Maximiza-

tion) while still preserving the covariance structure of the data. Maximum likelihood

method does not replace or impute missing values rather the missing data is handled

within the analysis model, which model is estimated by a full information maximum

likelihood method, that way all available information is used to estimate the model.
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As the rate of missing data in cell stimulus response data is 0.5%, which is very small,

so we focus on different single imputation methods only.

Table 3.1: Single Imputation Producers

General Procedure Specific Procedure Type of Data

Constant Mean substitution Continuous normal
ML mean substitution Continuous normal
Median substitution Continuous
Zero imputation Categorical or

continuous
Random
Data-based Hot Deck Any

Cold Deck Any
Model-based Bayesian (MCMC) Any

ML Continuous normal

Nonrandom
One condition Group mean Continuous with groups

Group median Continuous with groups
Last observation carried forward
(LOCF)

Longitudinal

Next observation carried backward
(NOCB)

Longitudinal

Multiple condition Mean previous observations Longitudinal
Mean subsequent observations Longitudinal
Last and next average Longitudinal
Regression Multivariate continuous
Regression with error Multivariate continuous

NOTE: ML = maximum likelihood, MCMC = Markov chain Monte Carlo.

Table 3.1 outlines the single imputation procedures that replace the missing value

with either (1) a constant, (2) a randomly selected value, or (3) a nonrandomly de-

rived value discussed by McKnight et al. [95]. In brief summary of these methods,

the general method of constant replacement involves replacing a constant to fill in the

missing value according to their data types, e.g., imputing for continuous normal data

either by mean (known as mean substitution) or by the estimated population mean

(known as ML mean), and for continuous data by median substitution and zero impu-

tation in case of continuous and categorical data. Randomly derived values can come

from either data-based procedures which includes Hot Deck and Cold Deck methods,

or model-based procedures that involves Bayesian (MCMC) and ML methods. All
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the methods can be applied to any type of data except ML requires continuous nor-

mal. Finally, nonrandomly obtained values can be assigned using Group mean and

Group median; LOCF, NOCB, Mean previous, Mean subsequent and Last and next

average; and Regression imputation methods depending on continuous with groups,

longitudinal, and multivariate continuous data types, respectively.

In mean substitution, missing values are replaced by the average of the observed

values for that item. The problem with this is that it reduces the variance and the

absolute value of the covariance. Hot Deck imputation method fills in missing value

by a random draw from the observed values. It has no parametric model and solves

the problem of understanding uncertainty. The method still distorts correlations and

other measures of association. Last and next average imputes the average of last

observed and next observed values of missing item. It provides nonrandom replacing

values for the missing values but not constant. Regression imputation replaces pre-

dicted values from a regression of the missing items on items observed for the unit,

usually it uses only the observed set of data for calculation. This method is also

called conditional mean imputation. This method is not recommended for analyses

of covariances or correlations. If there is no association between two variables then

the method reduces to ordinary mean substitution [127].

3.3.3 Imputation in Cell Stimulus Response Data

The brain is a stimulus-based system. When the brain comes to functioning in the

real world, it does provide itself with certain intense stimuli. The brain responds to

different stimuli in different ways. Neurons send signals to other cells as electrochem-

ical waves traveling along thin fibers (called axons), which cause chemicals (called

neurotransmitters) to be released at junctions (called synapses). Excited synapses,

inhibited synapses, or otherwise modulated synapses are different kind of reactions

or signals that a cell receives from a neuron. In this study, one brain cell’s reaction

or response to a stimulus is observed at 50 Hz, i.e., 50 dta per second. This data set

contains only one variable, i.e., cell stimulus response, which is observed for 1 minute,

i.e., the total sample size is 60 × 50 = 3000. Therefore, the data has time-series

feature. According to different data types mentioned in the Table 3.1, we can classify

the cell stimulus response data as longitudinal data.
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Figure 3.2: (a) Scatter Plot of the Cell Stimulus Response Data with missing observa-
tions in red dot. (b) Matrix Plot of the Cell Stimulus Response variable with missing
values are highlighted by red, where each 25 cells of the data matrix is visualized by
a blue rectangle.

The distribution of the missing values in the data is very important to identify the

missing data mechanism and desirable imputation method for the analysis. Figure

3.2 reveals this important feature using scatter plot and matrix plot. Timewise cell

stimulus response are explored in Figure 3.2(a) using a scatter plot with missing val-

ues in red, which emphasizes that missing values are not constant and have negligible

correlation between two variables. Consequently, this implies a MCAR mechanism

as the occurrence of missing values does not depend on the time (observed variable)

and not even on cell stimulus response (missing variable). It appears from Figure

3.2(b) that there is not large amount of accumulation points of missing values in a

certain value interval of cell stimulus response, for instance, maximum two missing

values are observed in a rectangle interval (which contains 25 data points). Hence,

missing data distribution shows an almost arbitrary pattern except in the 4th to 8th

rectangle intervals. Moreover, notice that missing responses to the cell stimulus arises

at time 84, 109, 131, 143, 163, 179, 340, 346, 390, 402, 521, 608, 2736, 2746, and 2814

seconds. Hence, there is 15 missing values out of 3000 data values. As a result, only

0.5% of the data values are missing.

Having MCAR mechanism and longitudinal data features in the cell stimulus re-

sponse data set, we prefer to impute certain nonrandom values. Accordingly, Last

and next average seems more reasonable for our data structure. Last and next average
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imputation method is considered as the appropriate one to apply in the cell stimulus

response data along with Mean Substitution, Hot Deck and Regression Imputation

methods to make an evaluation on their performances.

Table 3.2: Performance of Single Imputation Methods for Parameter Estimates with
MCAR mechanism

Parameters Mean Hot Deck Last and next Regression
Substitution Average Imputation

µ 2.15719 2.15713 2.15695 2.15701
(0.16064) (0.16126) (0.16101) (0.89722)

βY |X 0.14477 0.14661 0.14731 0.14626

(0.00981) (0.00984) (0.00982) (0.00981)

βX|Y 0.46769 0.46998 0.47371 0.47217

(0.03170) (0.03155) (0.03159) (0.03166)

Note: Estimate’s standard errors are in parentheses and boldface type indicates smallest two standard errors.

In Figure 3.3, Mean substitution causes all the imputed values of cell stimulus response

to fall on a horizontal line, whereas Regression imputation causes them to fall on

a regression line. Hot Deck produces a random cloud with too little correlation

and Last and next average method produces a reasonable point cloud with slightly

better correlation. As per our expectation, nonrandom values are imputed only by

Hot Deck and Last and next average methods. Table 3.2 shows estimated values

with their standard errors for the parameters mean, regression coefficients Y (cell

stimulus response) on X (response time) and regression coefficients X on Y using

four imputation methods. Last and next average performs consistently better than

all other counterparts in all parameters cases.
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Figure 3.3: Scatter Plots of Cell Stimulus Response data with MCAR mechanism,
using four single imputation methods missing values imputed and highlighted in or-
ange colour; Mean Substitution in (a), Hot Deck in (b), Last and next average in (c),
and Regression Imputation in (d).
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Figure 3.4: Boxplot for different imputation methods of cell stimulus response data.
Observed data in (1) and imputed data using Mean substitution in (2), Hot Deck in
(3), Last and next average in (4) and Regression imputation in (5).

It appears from Figure 3.4 that all imputation methods are not imputed missing values

correctly, hence their boxplots behave as the same as the observed data when deleted

the missing values, whereas Last and next average method respond differently as it

includes imputed missing values correctly. It is also evident the presence of outliers,

as shown in Figure 3.4.

3.4 Real Data Analysis

In this section, we apply all of the aforementioned tests to the cell stimulus response

data for detecting change points in the mean and regression structures. The cell stim-

ulus response data were provided by the animal physiology group of the University

of Kaiserslautern. The data contains the reaction of one brain cell, related to the

processing of acoustic signals, to repeated electrical stimuli. In this experiment, the

stimulus was applied 50 times per second (frequency 50 Hz) over a period of 1 minute,

i.e., 3000 times in total. We only use the delays, i.e., the waiting times between stim-

ulus and the onset of the response. A change point analysis of the complete response

modelled as functional data, has been done by Nyarige [105]. The delay already con-

tains important information on the cell’s reaction to the stimulus. In particular, it

would be plausible if the delays become larger over time as the cell becomes accus-

tomed to always the same stimulus and/or there is onsetting ‘fatigue’ over the course

of the experiment which, with such a high frequency, puts considerable stress onto

the cell.
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The data have a sample size of 3000 with two variables: Cell Stimulus Response,

exhibited by the delay, and Time. As a time unit we use observation number, i.e., the

unit time is 1
50

second. The data contains 15, i.e., few, missing values which is rather

good for such delicate physiological experiments on the individual all level. The 15

missing values are imputed by the Last and next average method, which is the most

appropriate method according to missing data mechanism and distribution described

in the Section 3.3.3.
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Figure 3.5: The Cell Stimulus Response Data.

There is no consistent trend (upward or downward) over the entire time span and the

data sequence appears on a first glance stationary with constant variance, as shown

in Figure 3.5. The Shapiro-Wilk normality test, for details see [129], gives 0.92363

with p-value < 2.2e − 16 and suggests that the data is non-Gaussian. An offline

nonparametric change detector hence seems an appropriate tool to use for analysis.

3.4.1 Changes in Mean

The classical change point model (3.46) with multiple change points in mean, assumes

an observed sequence of independent random variables X1, . . . , Xn. In cell stimulus

response data, considerXi as the Cell Stimulus Response variable. Therefore, multiple

change points in mean can be detected by the CUSUM test (3.4) and CUSUM R-type

test (3.14) integrated within the binary segmentation method, MOSUM test (3.20),

and MOSUM R-type test (3.24).
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Figure 3.6: CUSUM statistic process (3.4) for detecting multiple change points in
the model (3.46) with the asymptotic (red) and bootstrap (blue) critical values are
presented by horizontal lines, and location of change points are indicated by dotted
vertical red lines in (a); and the estimated means are located in (b).
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Figure 3.7: CUSUM R-type statistics process (3.14) for detecting multiple change
points in the model (3.46) with the asymptotic (red) and bootstrap (blue) critical
values are presented by horizontal lines, and location of change points are indicated
by dotted vertical red lines in (a); and the estimated means are located in (b).

Figure 3.6 represents four change points using the CUSUM test statistic (3.4) and

binary segmentation. The first change point is located at 2653, hereafter, the de-

tected change points are observed at 266, 1481 and 391 data points, respectively. On
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the other hand, Figure 3.7 shows the sequence of observations along with the time at

which three change points are detected by the robust test CUSUM R-type statistic

(3.14). The first detected change in mean at 2653, the second change detected in

mean at 266 and the third change at 1481 data points. Hence, the CUSUM test

overestimates changes in mean for the model (3.46).
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Figure 3.8: MOSUM process (3.20) for detecting multiple change points in the model

(3.46) using bandwidth G = 150 and σ̂2 in (3.6) with the asymptotic (red) and
bootstrap (blue) critical values are presented by horizontal lines, and location of
change points are indicated by dotted vertical red lines in (a); and the estimated
means are located in (b).

Deploying the MOSUM test (3.20) on the sequence of cell stimulus response, the

sequence of random variables which undergoes a change in mean after the 266th and

2680th observations, as shown in Figure 3.8. Figure 3.9 illustrates three types of

change in structure of mean with the associated two change points identified by using

MOSUM R-type statistic (3.24). The first identified change point is at 2665, here-

after, at 266.
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Figure 3.9: MOSUM R-type statistics process (3.24) for detecting multiple change

points in the model (3.46) using bandwidth G = 150 and σ̂2 in (3.6) with the asymp-
totic (red) and bootstrap (blue) critical values are presented by horizontal lines, and
location of change points are indicated by dotted vertical red lines in (a); and the
estimated means are located in (b).
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Figure 3.10: Boxplot for different segments of cell stimulus response data and five
segments are observed using CUSUM process (3.4) in (a), and three segments are
observed using MOSUM process (3.20) in (b).

From Figure 3.10, it is apparent that there is more heterogeneity in structure of means

using the MOSUM test than that of the CUSUM test. Finally, the analysis reveals

that two change points {266, 2665} detected by the MOSUM R-type statistic (3.24)
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for the model (3.46) are the best identified change points according to the resulting

segments characteristics. Hence, the estimated model is,

X̂i =


2.0468, 1 ≤ i ≤ 266,

2.1528, 266 < i ≤ 2665,

2.2740, 2665 < i ≤ n.

(3.53)

This result is quite in line with a careful visual inspection of the data which implies

a rather constant level over the major part of the time series with lower values at

the beginning and higher values at the end. A biological explanation for the changes

would be that after a starting phase, the cell becomes accustomed to the repeated

stimuli and does not react so fast. At the end, fatigue sets in, which leads to another

increase in delay.

3.4.2 Changes in Regression Coefficients

It is evident to apply model adequacy checking before using any model for inference

and prediction purposes. Therefore, we look at regression diagnostics of the model

(3.48) prior to use any test for detecting change points in that model.

Figure 3.11 exhibits the diagnostics for regression model (3.48). Figure 3.11(a) shows

residuals are independent and it is also apparent from Figure 3.11(b) that there is no

significant spike in the ACF plot. Linearity and homoscedasticity assumptions can be

diagnosed by a plot of residuals versus fitted values, which is shown in Figure 3.11(c),

where the points are distributed around horizontal line with a roughly constant vari-

ance. Therefore, assumptions of the linearity relationship between dependent and

independent variables, and homoscedasticity (constant variance) of the errors are ful-

filled. In Figure 3.11(d), notice the points fall along a line in the middle of the Normal

Q-Q plots but curve off in the extremities, which indicates a heavy-tailed residuals

distribution, i.e., significant non-normality. As a result, an offline nonparametric test

seems appropriate in this case.

Therefore, we are motivated to use nonparametric classical change point methods

OLS-CUSUM (3.37), OLS-MOSUM (3.39), Recursive CUSUM (3.41) and Recursive

MOSUM (3.43) tests to identify the change point in the regression model (3.48).
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Figure 3.11: Model Adequacy Checking for the model (3.48): for Independency, cur-
rent residuals versus lagged residuals are plotted in (a) and autocorrelation function
(ACF) of residuals at different lags are in (b); Homoscedasticity assumption is verified
by plotting residuals against predicted values in (c); and Normality assumption in
(d).

In Figure 3.12, the nonparametric test processes illustrate the significance of change

points in the model (3.48) with the asymptotic (red horizontal line) and bootstrap

(blue horizontal line) critical values, the significant change points are also indicated

by dotted vertical red lines. In all the cases bootstrap critical values yield small

values than the asymptotic critical values, for instance, the asymptotic critical value

for the OLS-CUSUM (3.37) test is 1.358 and the bootstrap one is 1.196. The best

estimate of the change point location is the maximum value of test statistic. OLS-

CUSUM (3.37) provides two significant change points at m̂1 = 2653 and m̂2 = 266 (in

order of significance), OLS-MOSUM (3.39) test also indicates two change points with
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bandwidth h = 0.3 but in different locations, i.e., 267 and 1753. Recursive CUSUM

(3.41) unable to detect a reasonable number of change points, it detects more than

28 changes, e.g., at 2649, 2451, 2447, 2445, 2441, etc., and Recursive MOSUM (3.43)

identifies two changes at 532 and 1147 data location. According to the significance

of estimated regression coefficients in each segments, the OLS-CUSUM (3.37) test

seems more reasonable in identifying the changes. In particulars, it results in similar

change points as in (3.53).
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Figure 3.12: Detection of change points in the model (3.48) using (a) OLS-CUSUM
test statistic (3.37), (b) OLS-MOSUM test statistic (3.39) with bandwidth h = 0.3,
(c) Recursive CUSUM test statistic (3.41), and (d) Recursive MOSUM test statistic
(3.43) with bandwidth h = 0.3, and the location of change points are indicated by
dotted vertical red lines.
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Figure 3.13: Detection of change points in the model (3.48)

Figure 3.13 visualizes three fitted regression lines in red colour due to two estimated

change points at m̂1 = 2653 and m̂2 = 266 (in order of significance) using the OLS-

CUSUM (3.37) test. The intercept and slope coefficients are estimated as β̂11 = 2.018

and β̂21 = 0.643 before the change point m̂2 = 266, in the 2nd segment the estimates

are β̂12 = 2.131 and β̂22 = 0.044, and finally after the change point m̂1 = 2653 es-

timated coefficients are β̂13 = 2.438 and β̂23 = −0.176. All the coefficients in each

segments are significant with p-value less than 0.01 except coefficient β̂23 is insignifi-

cant.

From the analysis of the more complicated model (3.48), we get, at least with some

methods, a similar result as far the simple change-in-the-mean setting. In the central

part of the data, the mean is rather constant (note that β̂22 ≈ 0), whereas we have

a different behaviour at the start and end of the experiment. This corresponds to

the visual impression presented by the data. The positive slope β̂21 = 0.643 at the

start may indicate that the effect of the cell getting accustomed to the stimuli seems

to be gradual and not sudden as implied by a pure change-in-the-mean model. After

the initial phase a state of saturation is achieved, which only is left at the end of the

experiment. Whether the negative slope in that part of the data is reliable seems

doubtful. It may be an effect of a few very large observations soon after the second

change point. As a next step, we also have tried to find the changes in the first
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difference regression model (3.48).

Yi − Yi−1 = β0 + β1xi + ei − β0 − β1xi−1 − ei−1

(Yi − Yi−1) = β1(xi − xi−1) + (ei − ei−1)

∆Yi = β1∆xi + ∆ei.

Here, ∆ei = ei−ei−1 is a moving average process of order 1, i.e., MA(1). Therefore, it

may have dependency structure. Since the error ei is unobserved, so we can consider

their differences also as a new unobservable error ui = ∆ei. At first, we assume

that new errors ui are also independent of explanatory variables and i.i.d. random

variables with assumption (3.28) in the model (3.54).

∆Yi =

{
β1∆xi + ui, 1 ≤ i ≤ m,

β∗1∆xi + ui, m < i ≤ (n− 1).
(3.54)
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Figure 3.14: Model Adequacy Checking for the model (3.54): for Independency, cur-
rent residuals versus lagged residuals are plotted in (a) and autocorrelation function
(ACF) of residuals at different lags are in (b); Homoscedasticity assumption is verified
by plotting residuals against fitted values in (c); and Normality assumption in (d).

It is apparent from Figure 3.14 that autocorrelation arises in the residuals of the model

(3.54) with homoscedastic and non normality characteristics. One significant spike

of ACF is observed in Figure 3.14(b). Hence, there is a violation of the assumption

(3.28). At this stage nonparametric change point tests mentioned in Section 3.1.2 are

no longer feasible for dependent error structure. Figure 3.15 reflects that infeasible

conditions of those tests for the model (3.54).
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Figure 3.15: Detection of change points in the model (3.54) using (a) OLS-CUSUM
test statistic (3.37), (b) OLS-MOSUM test statistic (3.39), (c) Recursive CUSUM
test statistic (3.41), and (d) Recursive MOSUM test statistic (3.43).

Therefore, we are motivated to use a CUSUM test for dependent errors proposed

by Gombay [51]. She assumes {ui} are dependent errors in the model (3.54) and

described by the linear relationship,

ui =
∞∑
j=0

aiηi−j, i = 1, 2, . . . , n, (3.55)
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where ηj are independent identically random variables with mean zero, variance σ2
η,

0 < σ2
η < ∞, and for some ν > 2 satisfying the condition E|η|ν < ∞; and for the

{aj} sequence of constants satisfying aj = O(γj), j →∞ for some γ, 0 < γ < 1.

She proposed the following CUSUM test statistic

Zn = max
1<k≤n

∣∣∣∣∣
(

n

k(n− k)

)−1/2 k∑
i=1

(
yi − ȳi − β̂n(xi − x̄n)

)∣∣∣∣∣ , (3.56)

with the limit distribution of (3.56) is

lim
n→∞

P

{
1

σn
a(log n)Zn ≤ t+ b(log n)

}
= exp

(
−2e−t

)
, (3.57)

for some σn > 0, where t ∈ R1, a(x) = (2 log t)1/2 and b(x) = 2 log t + 1
2

log log t −
1
2

log π, for more details see [51]. The estimation of σ2
n in (3.57) can be explained by

the long-run variance estimation concept. A long-run variance is a measure of the

standard error of the sample mean when there is serial dependence. The long-run

variance of a time series measures its total serial dependence and heterogenity, and it

typically enters into the limiting distribution of a statistic in many testing procedures.

Gombay [51] proposed a long run variance estimator of σn for the error process ap-

proximated by a moving average of order q MA(q) by,

σ̂2
n = var

(
n∑
i=1

ûi

)
∼=

n∑
i=1

γ̂0 + 2
n∑
i=1

(i+q)
∧
n∑

j=i+1

γ̂i−j, (3.58)

where γ̂h covariances are estimated by the usual formula for h = 0, . . . , q as

γ̂h =
1

n

n−h∑
k=1

(ûk − ¯̂un)(ûk+h − ¯̂un), ¯̂un =
1

n

n∑
k=1

ûk.

The estimator (3.58) is very close to Bartlett’s estimator with uniform weights. How-

ever, the long run variance estimator (3.58) gives negative value, e.g., -4.99, for the

model (3.54) using cell stimulus response data. Hence, we are interested to express

the long-run variance in the context of spectral density.

The spectral density can be used to represent {γ(j) : j = 0, 1, . . .}, the sequence of

autocovariances, of a covariance stationary process. The spectral density is defined
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as

f(λ) =
1

2π

∞∑
j=−∞

γ(j)e−iλj

=
1

2π

∞∑
j=−∞

γ(j) cos(λj),

where i =
√
−1. The spectral density is real valued, since γ(j) = γ(−j). The spectral

density is symmetric around zero, since cos(λj) = cos(−λj). Furthermore, since cos

is a periodic function with the period 2π, the range of values of the spectral density

is determined by the values of f(λ) for 0 ≤ λ ≤ π.

An autocovariance function with
∑∞

h=−∞ |γ(h)| < ∞ can be expressed by means

of the spectral density,

γ(j) =

∫ π

−π
f(λ)eiλjdλ.

Hence,

γ(0) =

∫ π

−π
f(λ)dλ.

Thus, the area under the spectral density function of Xt between −π and π gives the

variance of Xt. The argument λ of f(λ) is called the angular frequency. Notice, if

{Xt} is covariance stationary with absolutely summable autocovariances, the long-run

variance is determined by the spectral density at the zero frequency.

ωX = lim
n→∞

V ar

(∑n
t=1Xt√
n

)
=

∞∑
h=−∞

γ(h)

= 2πf(0).

In the following, we usually exclude the degenerate situation of
∑∞

h=−∞ γX(h) = 0,

without mentioning it explicitly. Theorem 3.4.1 (confer Theorem 2 of Marmer [91])

illustrates how linear (MA) transformations of a covariance stationary process affect

the spectral density and long-run variance.

Theorem 3.4.1. Let {Xt} be a covariance stationary process with the autocovari-

ance function γX such that
∑∞

j=−∞ |γX(j)| < ∞. Define Yt =
∑∞

j=0 cjXt−j, where∑∞
j=0 c

2
j <∞. Then {Yt} is covariance stationary and its density is given by fY (λ) =∣∣∣∑∞j=0 cje
−iλj
∣∣∣2 fX(λ), where fX is the spectral density of {Xt}.
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Proof of Theorem 3.4.1 is available in [91], here we only give a sketch of the proof. At

first, we need to show that cov(Yt, Yt−h) is independent of t. Then this covariance can

be shown as bounded using the assumptions
∑∞

j=0 c
2
j < ∞ and

∑∞
j=0 |γX(j)| < ∞.

Therefore, {Yt} is covariance stationary. Now, using the value of
∑∞

j=0 cje
−iλj and its

complex conjugate, we get
(∑∞

j=0 cje
−iλj
)(∑∞

j=0 cje
iλj
)

=
∣∣∣∑∞j=0 cje

−iλj
∣∣∣2. Hence,

we can establish fY (λ) =
∣∣∣∑∞j=0 cje

−iλj
∣∣∣2 fX(λ).

Suppose that {Xt} is covariance stationary and purely in-deterministic. Then it

has the MA(∞) representation

Xt =
∞∑
t=0

ajεt−j,

where {εt} is white noise, and
∑∞

t=0 a
2
j < ∞. Let Var(εt) = σ2. Since the spectrum

of a white noise process is flat

f(λ) =
σ2

2π
for all λ.

Using Theorem 3.4.1, the spectral density of {Xt} exists and satisfies

fX(λ) =
σ2

2π

∣∣∣∣∣
∞∑
j=0

aje
−iλj

∣∣∣∣∣
2

,

and the long-run variance of {Xt} is,

ωX = 2πfX(0)

= σ2

(
∞∑
j=0

aj

)2

. (3.59)

Now, for the MA(1) process,

Xt = εt − εt−1, (3.60)

we have a0 = 1 and a1 = −1. Hence, the long run variance from (3.59) is

ωX = σ2(1− 1)2

= 0.
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This corresponds to the degenerate case mentioned above as we have γx(0) = 2σ2,

γx(1) = cov(εt − εt−1, εt−1 − εt−2) = −σ2 = γx(−1) and γx(j) = 0, |j| ≥ 2. The

long-run variance is plausibly 0 as
n∑
t=1

Xt = (εn − εn−1) + (εn−1 − εn−2) + · · ·+ ε1 − ε0

= εn − ε0,

which has the variance 2σ2 independently of n. Due to Brockwell and Davis [22] the

spectral density for MA(1) process, Xt = εt + θεt−1, is

f(λ) =
σ2

2π
(1 + 2θ cosλ+ θ2). (3.61)

Using (3.61) the spectral density for the MA(1) process (3.60) with θ = −1 satisfies

also f(0) = 0.

Gombay [51] also introduced a smoothing of the process when the time series is

dominated by high frequencies, using a moving average filter. In this smoothing yi,

i = 1, . . . , n is replaced by (yi+yi−1 +yi−2 +yi−3)/4, i = 4, . . . , n. This transformation

has no effect on the linear regression parameters [51].
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Figure 3.16: Change point detection in the model (3.54) deploying Gombay’s CUSUM
test (3.56) for dependent errors without smoothing the data in (a) and with smoothing
the data in (b).

Figure 3.16(a) represents a process with high frequencies and the result is far too many
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rejections, also in this case the long run variance (3.58) does not exist, so only the

critical value is calculated using least squares variance from (3.57) and shown in the

red line. Figure 3.16(b) shows that smoothing reduces high frequencies and the long

run variance (3.58) produces critical value 10.8189 from (3.57), which is illustrated in

the blue line. There is evident of significant change points, as shown in Figure 3.16(b).
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Figure 3.17: Detection of change points in the model (3.54) with the smoothed cell
stimulus response data.

Five fitted regression lines are presented by red lines in Figure 3.17, which are es-

timated from the five segments of the smoothed cell stimulus response data due to

detected four significant change points at m̂1 = 2439, m̂2 = 1822, m̂3 = 1078 and

m̂4 = 757 (in order of significance). The slope coefficients are estimated for the

model (3.54) with the smoothed data as β̂1 = −4.324e− 14, β̂2 = 1.869, β̂3 = 0.403,

β̂4 = −0.851, and β̂5 = 1.077, respectively, in each segment. However, all the coeffi-

cients are insignificant.

3.4.3 Changes in Distribution

Testing whether a change in the distribution occurs within the sample is analyt-

ically beneficial, as this procedure does not consider any model. Therefore, this

testing procedure is free from the model misspecification problem. Once we detect a

change occurs in the distribution, then we need to estimate the change point instant

after which the distribution of the observations switches from one distribution to an-

other different distribution. Wilcoxon-type statistics and process based on U-statistics
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are commonly used to identify the change in distribution in nonparametric context.

Csörgo and Horváth [35] developed a nonparametric test based on Wilcoxon-type

statistics using quantile score statistic to detect a change in distribution. They con-

sidered X1, X2, . . . , Xn as independent observations and defined the test hypothesis

as

H0 : X1, . . . , Xn are i.i.d. random variable with a continuous distribution function

against the alternative

H1 : there is an unknown integer k∗, 1 ≤ k∗ < n, such that P {X1 ≤ t} = · · · = P {Xk∗ ≤ t}

and P {Xk∗+1 ≤ t} = · · · = P {Xn ≤ t} for all t, and P {Xk∗ ≤ t0} 6= P {Xk∗+1 ≤ t0}

for some t0.
(3.62)

They used quantile score function to develop the test statistic for detecting change

in distribution, where the empirical quantile function was defined by

Qn(y) = inf {t : Fn(t) ≥ y} , 0 < y < 1,

using the empirical distribution function

Fn(t) =
1

n

n∑
i=1

I (Xi ≤ t) , −∞ < t <∞.

They also defined

Ψt(x) =

{
−(1− t) x ≤ 0,

t x > 0,

and then used the following process to develop different kind of tests

Yn(s, t) =
1√
n

[ns]∑
i=1

Ψt (Xi −Qn(t)) , 0 < s, t < 1.

Csörgo and Horváth [35] developed eight kinds of test statistics using the process

Yn(s, t) to detect the change in distribution with i.i.d. observations and also de-

rived their asymptotic distributions under the null hypothesis, which follows either a

Brownian bridge, or a two-parameter Gaussian process, or the standard normal dis-

tribution. In this section, we use the following test statistic among eight developed

tests of [35].

(t0(1− t0))−1/2 sup
0<s<1

|Yn(s, t0)| D−→ sup
0<s<1

|B(s)|, (3.63)
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where {B(s), 0 ≤ s ≤ 1} is a Brownian bridge and we assume t0 = 0.5. The critical

values are obtained from the well-known identity

P

{
sup

0<s<1
|B(s)| > b

}
= 2

∞∑
j=1

(−1)j−1e−2j2b2 , b > 0,

which yields 1.63, 1.36 and 1.22 for α = 0.01, 0.05 and 0.10, respectively. When the

null hypothesis of (3.62) is rejected then we need to estimate the significant change

point by

k̂

n
= inf

{
s : sup

0<s<1
|Yn(s, t)| = sup

0<u<1
sup

0<t<1
|Yn(u, t)|

}
,

where k̂ is the estimate of the change point k∗. Now, we are in such a position to use

the Wilcoxon-type rank test of [35] for detecting change point in the distribution of

observations with missing data. Multiple change points can also be detected using

Binary Segmentation Algorithm 3 for the test statistic (3.63).
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Figure 3.18: Wilcoxon-type rank test process (3.63) is proposed by Csörgo and
Horváth [35] for detecting change point in the distribution for i.i.d. data with the
asymptotic critical value, and the significant change point’s locations are indicated by
dotted vertical red lines in (a); and the estimated multiple change points are shown
in (b).

Figure 3.18 illustrates that two significant change points are observed at 1479 and
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2685 seconds for the cell stimulus responses at the 5% level of significance when we

consider the missing data feature. Note that the procedure detects the change at the

end of the signal, but not the one at the start. Instead, a change in the center is

detected. We believe that this is an artificial and a weakness of binary segmentation.

Recall that we had also a change point around 1500 in the change-in-the-mean model

(confer Figure 3.7), but there the power of the test against a simple change-in-the-

mean alternative at least enables the procedure to detect the change around 260,

whereas the test of this section with broad change-in-distribution alternative has a

too small power to achieve this. We conclude that the simultaneous multiple change

point detection procedures like MOSUM in Figure 3.8 are preferable, at least for this

particular data set.

Censored Data

As censoring is the inevitable characteristic of survival analysis, which is our main

concern. Hence, we wish to test the change point in the distribution under censorship

for the cell stimulus response data by considering all the missing data as censored.

In this context, Gombay and Liu [52] developed a Wilcoxon-type rank test using the

score function of Gehan [49] and Mantel [90] to detect the change in distribution

for censored data, which we have discussed along with other tests in Section 1.3 of

Chapter 1. Gombay and Liu [52] considered the test statistic as

max
1≤k<n

|
∑k

i=1 Ui|
(
∑n

i=1 U
2
i )

2

D−→ sup
1<t<1

|B(t)|, (3.64)

where the generalized rank of (Xi, δi) is defined as

Ui =
n∑
j=1

{I (Xi > Xj, δj = 1)− I (Xi < Xj, δj = 1)} , i = 1, . . . , n.

They defined the estimator of the change point k∗ as

τ̂n = k̂∗ = arg max
1≤k<n

|
∑k

i=1 Ui|
(
∑n

i=1 U
2
i )

2 .

The limiting distribution of the test statistic (3.64) follows a Brownian bridge, so the

critical values are 1.63, 1.36 and 1.22 for α = 0.01, 0.05 and 0.10, respectively, similar

to the test (3.63). At this moment, we are interested for testing the significant change

point in the distribution of the cell stimulus responses by considering the missing ob-

servations as censored using the test (3.64).
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Figure 3.19: Gombay and Liu [52] proposed Wilcoxon-type rank test process (3.64)
for detecting change point in the distribution for censored data with the asymptotic
critical value, and the significant change point is indicated by a dotted vertical red
line in (a); and the estimated change point is shown in (b).

We conducted the test (3.64) at the 5% level of significance and found the significant

change point at 521 seconds of the cell stimulus responses. Though we have utilized

this test with the Binary Segmentation Algorithm 3 for detecting multiple change

points, but found only one significant change point. Figure 3.19 deploys this testing

procedure with the significant change point at 521 seconds.

3.5 Discussion

We have reviewed a number of offline nonparametric procedures for detecting change

points with their application in presence of missing data feature in the mean and

regression models. The cell stimulus response data have MCAR mechanism with

time series pattern, so the most appropriate imputation method is Last and next

average which was justified in Section 3.3.3. In the application of multiple change

points detection in mean, we found that the CUSUM test (3.4) overestimated change

points compared to the MOSUM test (3.20), whereas robust counterparts of those

tests provide reasonable significant change points. In all cases the asymptotic critical

values are bigger than the residuals bootstrap critical values. Similar results found

in OLS-CUSUM, recursive CUSUM, OLS-MOSUM and recursive MOSUM tests for
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multiple changes in linear regression models in case of independent errors. However,

these tests were unable to identify the changes in first difference regression model

(3.54) due to dependent errors. Using Gombay’s CUSUM test (3.56) with smoothing

technique we have observed four significant change points in the regression model

(3.54). In Section 3.4.3, we also investigated change in the distribution for missing

and censored data feature with the Wilcoxon-type rank test (3.63) and (3.64), respec-

tively. Two significant change points are observed for missing data feature whereas

only one significant change point is found with censored data feature. Hence, this

is important to know and use the right data feature for investigating change point

correctly. Therefore, this chapter provides a framework how to identify change points

in mean, regression coefficients and distribution with missing data.
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Chapter 4: Change Point in Haz-
ard Function using U-
statistic for Censored Data

Change point hazard models have been extensively investigated by many authors,

but the literature on nonparametric classical change point problems with censoring

is rather small. There are only a few classical change point papers dealing with

detection of changes when only censored observations are available. Stute [136] con-

sidered an estimator of the change point based on U-statistics. Horváth [62] studied

test procedures based on U-statistics too. Gombay and Liu [52] proposed and in-

vestigated limit properties of a nonparametric test based on ranks related to the

Gehan-Wilcoxon statistic that can be expressed as a U-statistic. Aly [2] developed

tests based on quantile functions and studied their limit behavior under the null hy-

pothesis. All these papers considered censoring variables to be i.i.d. Hušková and

Neuhaus [65] developed a test procedure as a generalization of two-sample rank tests

under random censoring, where censoring variables were assumed to be independent

but not necessarily identically distributed. A MOSUM type test was proposed by

Komárková [77] considering i.i.d. censoring variables. All of the aforementioned tests

focus on the change in distribution only, but not on the change in the hazard functions.

In Chapter 2, we considered changes of the hazard functions in individual survival

time, i.e., all test purposes or objects have the same hazard function, but this shows

some change at certain points after the time of origin. This is a suitable framework for

data collected over moderate time span. The change points here represent different

phases in, e.g., a disease with, e.g., initial high risk, then moderate risk in the later

stages of the disease and finally remains small risk after recovery from the disease.

However, there may be a different kind of changes in the hazard function, in par-

ticular in data from long-term studies like the Breast Cancer data. Here, a change in
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the survival chances may happen due to medical progress, e.g., due to a new drug.

This would simultaneously affect all patients in the study independently of how much

time has passed since their individual times of origin. This study is in line with clas-

sical change point analysis outside of survival analysis. We call such changes change

points in absolute time, in contrast, to change points in survival time, which

correspond to the setting of Chapter 2.

We are interested in testing and estimation of change points in absolute time of

the hazard functions. There are few papers studying such a problem with censored

data, and, as far our knowledge, all of them are based on specific parametric models.

Therefore, we are motivated to develop a test based on U-statistics to detect change

points in the hazard distribution which does not require any model, hence, is not

affected by model misspecification errors.

The chapter is organized as follows. Section 4.1 structures the test hypothesis to

detect change point in the hazard functions in absolute time with a brief introduction

of Horváth [62]’s test for changes in distribution based on censored data. For finding

an equivalent estimator of Horváth [62]’s estimator all the efforts are summarized in

Section 4.2. Section 4.3 illustrates the asymptotic distributions of our test statistics

under H0 using symmetric kernels, where we also derive the weighted asymptotic of

our test statistics in Section 4.3.2. In Section 4.4, we explain the asymptotic behavior

of the proposed test statistics under H1. Section 4.5 contains information regarding

the limit distributions of our test statistics under H0 for antisymmetric kernels. All

of our developed test statistics are based on the estimator λ̂2 for symmetric and an-

tisymmetric kernels, although we have found estimators λ̂1 and λ̂2 as the equivalent

estimators of Horváth’s estimator. Therefore, some remarks are made on a change

point test using λ̂1 in Section 4.6. Finally, the chapter concludes with some discus-

sions in Section 4.7.

4.1 Test Hypothesis

For a sample of n independent individuals, let T1, T2, . . . , Tn be the independent and

identically distributed (i.i.d.) survival times with probability density function (pdf)

f(t), which are right censored by the i.i.d. censoring random variables, C1, C2, . . . , Cn,

which are assumed to be independent of Ti. Let F and G be the distribution functions
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of Ti and Ci, respectively. The observed right censored data are denoted by the pairs

(Xi, δi), i = 1, 2, . . . , n, where

Xi = min{Ti, Ci}, δi = I{Ti ≤ Ci} = I{Ti = Xi}. (4.1)

Here, I is an indicator function and δi is a non-censoring indicator variable. The

observed data has a pdf h(x) and a distribution function H given by 1 − H =

(1− F )(1−G).

Now we assume that the individuals enter the study successively, i.e., the correspond-

ing times of origin ti, i = 1, . . . , n, are ordered t1 ≤ t2 ≤ · · · ≤ tn. We are interested in

testing if the survival times Ti are really identically distributed or if there is a change

at some tk∗ . We want to construct a test which is based on estimates of the hazard

function.

We are aware of the work of Stute [136], Horváth [62], Aly [2], and Gombay and

Liu [52] only, where the authors investigated the change point in censored data by

considering any change in the distribution function F which results in a change in the

distribution function H and also incorporated the information contained in the δ’s

for censored observations. One might argue that a method designed for detecting a

change from a sequence of completely observable data could be applied to the X’s as

well to detect a change in the F ’s. This is true in principle. On the other hand, such

a procedure would necessarily not incorporate the information contained in the δ’s

and therefore lead to an inefficient procedure. However, they developed the procedure

for detecting the change point in survival times distribution’s but not in the hazard

functions.

In survival analysis, it is more plausible to look for a change in hazard functions

based on the survival times as well as censoring times. Nevertheless, most of the

developed tests for change point in the hazard function considered theory either by

discarding censored data and only considering the observable survival times or by

modifying the likelihood function for censored data. Hence, we are interested to the

following hypothesis for change in hazard functions

H0 : λ1(t) = λ2(t) = · · · = λn(t), for all t; against

H1 : there exist an unknown k∗, 1 ≤ k∗ < n, such that λ1(t) = · · · = λk∗(t),

λk∗+1(t) = · · · = λn(t), for all t, and λk∗(t) 6= λk∗+1(t) for some t.

(4.2)
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4.1.1 Horváth’s Test for Changes based on Censored Data

Horváth [62] developed a test for detecting change in distribution of survival variables

which is focused on the cumulative hazard function Λ(x). We like to modify this

test by using estimates for the hazard function λ(x) directly. In this situation we

first describe Horváth’s approach. In contrast to Horváth, who considers arbitrary

random variables, here T1, . . . , Tn are survival times, and hence Ti ≥ 0. Therefore, all

integrals should start at 0, not −∞. He considered the following functional of Λ(x)

with a notation h(t−) = lims↑c h(s) which denotes the limit from the left-hand side

θ =

∫ V

0

∫ V

0

K̃(x, y)dΛ(x)dΛ(y) =

∫ V

0

∫ V

0

K̃(x, y)
dF (x)

1− F (x−)

dF (y)

1− F (y−)
, (4.3)

where he assume that K̃(x, y) = K̃(y, x) is a symmetric kernel function uniformly

bounded on [0, V ]2, and 1−H(t) = (1− F (t)) (1−G(t)), for some V satisfying

F (V ) < 1 and G(V ) < 1. (4.4)

To test for a change in distribution, Horváth considered for all 1 ≤ k < nth statistic

θ̂(k) =

∫ V

0

∫ V

0

K̃(x, y)dΛ̂k(x)dΛ̂∗k∗(y)

=

∫ V

0

∫ V

0

K̃(x, y)
dHk(x)

1− Ĥk(x−)

dH∗k(y)

1− Ĥ∗k(y−)
, (4.5)

where Hk and Ĥk are the empirical distribution functions of respectively the censored

and uncensored observations for all X1, . . . , Xk, and, H∗k and Ĥ∗k are the corresponding

quantities based on the second subsample Xk+1, . . . , Xn, which are defined as

Hk(x) =
1

k

∑
1≤i≤k

I {Xi ≤ x, δi = 1} ,

H∗k(x) =
1

n− k
∑
k<i≤n

I {Xi ≤ x, δi = 1} ,

Ĥk(x) =
1

k

∑
1≤i≤k

I {Xi ≤ x} , and

Ĥ∗k(x) =
1

n− k
∑
k<i≤n

I {Xi ≤ x} .

Under H0, θ̂(k) estimates θ for all 1 ≤ k < n. Note that

Λ̂k(x) =

∫ x

0

dHk(t)

1− Ĥk(t−)
, (4.6)
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is the Nelson-Aalen estimator for the cumulative hazard function

Λ(x) =

∫ x

0

dF (t)

1− F (t−)
=

∫ x

0

f(t)

1− F (t−)
dt =

∫ x

0

λ(t)dt, (4.7)

based on X1, . . . , Xk, and analogously Λ̂∗k(x) for Xk+1, . . . , Xn.

We intend to modify Horváth’s test by using estimates of the hazard function λ(x)

instead of the Nelson-Aalen estimate for Λ(x). In the next section, we first study the

one-sample analogue of θ and θ̂(k).

4.2 A Hazard-Function based Statistic

In this section, we only consider one sample X1, . . . , Xn of i.i.d. censored data. We

define analogously to (4.3) and (4.5) respectively as

β =

∫ V

0

K̃(x)
dH(x)

1−H(x−)
(4.8)

β̂(1)
n =

∫ V

0

K̃(x)
dHn(x)

1− Ĥn(x−)
(4.9)

with the kernel K̃(x) satisfying

sup
0<x≤V

|K̃(x)| <∞, (4.10)

where V is defined in (4.4). We want to replace β̂
(1)
n using the following two kernel

type estimators β̂
(2)
n and β̂

(3)
n .

β̂(2)
n =

∫ V

0

K̃(x)λ̂1(x)dx

=

∫ V

0

K̃(x)
1

b

n∑
i=1

K

(
x−X(i)

b

)
δ(i)

n− i+ 1
dx, (4.11)

where the kernel hazard estimator λ̂1(x) is defined by

λ̂1(x) =
1

b

∫
K

(
x− u
b

)
dHn(u)

1− Ĥn(u−)
=

1

b

n∑
i=1

K

(
x−X(i)

b

)
δ(i)

n− i+ 1
, (4.12)
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where X(i) are the ordered observed observations, and Hn(x), Ĥn(x) are empirical

distribution functions based on X1, . . . , Xn defined as

Hn(x) =
1

n

n∑
i=1

I (Xi ≤ x, δi = 1) , and Ĥn(x) =
1

n

n∑
i=1

I (Xi ≤ x) . (4.13)

The second kernel type estimator is defined as

β̂(3)
n =

∫ V

0

K̃(x)λ̂2(x)dx =

∫ V

0

K̃(x)
hn(x)

1− Ĥn(x−)
dx, (4.14)

where the kernel hazard estimator λ̂2(x) is defined as

λ̂2(x) =
hn(x)

1− Ĥn(x−)
, (4.15)

with the empirical distribution function Ĥn(x), which is defined in (4.13), and the

kernel density estimator hn(x) is defined as

hn(x) =
1

nb

n∑
i=1

K

(
x−Xi

b

)
δi. (4.16)

The bandwidths b satisfy

b→ 0, nb→∞, as n→∞. (4.17)

We assume that the kernel K satisfies the following common assumptions

(K) K is bounded, symmetric probability density with support [−1,+1].

Examples are the Uniform, Epanechnikov, and Biweight kernel functions described

in Section 2.2 of Chapter 2. The finiteness of the support of K is only assumed for

convenience. The results will also hold for sufficiently fast decreasing kernels like the

Gaussian.

4.2.1 Convergence of β̂
(1)
n to β

In this section, we focus to establish the convergence of β̂
(1)
n to β, which contain the

Nelson-Aalen estimator for the cumulative hazard function Λ̂n(x) and the cumulative
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hazard function Λ(x), respectively. Therefore, we need the asymptotic representation

of the convergence of the Nelson-Aalen estimator for the cumulative hazard function.

Using martingale and counting process concept many authors proved that Λ̂n(x) con-

verges uniformly to Λ(x). We summarize the asymptotically uniformly convergence

of Λ̂n(x) and Λ(x) in Theorem 4.2.1 due to Hobbs [60]. For details and notations,

compare the proof given by Hobbs [60].

Let the counting process N.(t) and at-risk process Y.(t) be defined as

N.(t) =
n∑
i=1

Ni(t) =
n∑
i=1

I (Xi ≤ t, δi = 1) , Y.(t) =
n∑
i=1

Yi(t) =
n∑
i=1

I (Xi ≥ t) .

where

Theorem 4.2.1. Under the conditions inft∈(0,τ ] Y.(t)→∞ in probability as n→∞,

and Λ(τ) <∞, for continuous F (t),

sup
0≤t≤τ

∣∣∣Λ̂n(t)− Λ(t)
∣∣∣ P−→ 0.

Proof. The Nelson-Aalen estimator Λ̂n(t) in (4.6), which is the instrumental in sur-

vival analysis for censored data, is in terms of N.(t) and Y.(t)

Λ̂n(t) =

∫ t

0

I (Y.(s) > 0)

Y.(s)
dN.(s), 0 ≤ t ≤ τ, (4.18)

and the hazard function can be defined as

λ(t) =
−d [logS(t)]

dt
, (4.19)

where the survival function is S(t) = 1 − F (t) and distribution function is F (t) =

P (Ti ≤ t). By using I (Y.(s) > 0) and defining 0
0

= 0, we can avoid mathematical

clumsier situation for the integrand when Y.(s) = 0 (confer the convention in Fleming

and Harrington [46] and Andersen et al. [3]). The corresponding compensator process

A.(t) =
n∑
i=1

Ai(t) =

∫ t

0

I (X ≥ s)λ(s)ds.
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Let G(c) = P (C > c) and G(c−) = lims↑cG(s) for the limit from the left-hand side.

Therefore,

E (N.(t)) = P (T ≤ t, T ≤ C) =

∫ t

0

G(c−)dF (c)

=

∫ t

0

G(c−)S(c)
dF (c)

S(c)
=

∫ t

0

P (X ≥ c)λ(c)dc

= E

∫ t

0

I (X ≥ c)λ(c)dc = E (A.(t)) .

Suppose, a martingale M.(.) is define as

M.(t) = N.(t)− A.(t) =
n∑
i=1

I (Xi ≤ t, δi = 1)−
∫ t

0

I (X ≥ s)λ(s)ds.

Furthermore, suppose that Fs = σ {N(c), I(X ≤ c, δ = 0) : 0 ≤ c ≤ s} is the filtration

for the process M.(t) and Fs− is the information in N(c) and I(X ≤ c, δ = 0) up to,

but not including time s. Both {X < s} and {X ≥ s} are Fs−-measurable since

{X < s} =
⋃∞
n=1

{
X ≤ s− 1

n

}
. Furthermore, dN(s) is a Bernoulli random variable

such that

E [dN.(s) | Fs−] = I (X ≥ s)λ(s)ds = dA.(s).

When we have independent censoring it follows that

P {s ≤ T < s+ ds | T ≥ s} = P {s ≤ T < s+ ds | T ≥ s, C ≥ s} ,

and

E [dA.(s) | Fs−] = E [I (X ≥ s)λ(s)ds | Fs−]

= I (X ≥ s)λ(s)ds = dA.(s).

Therefore, the change in M.(t) = N.(t)−A.(t) over an infinitesimal interval (s−ds, s],
dM.(s) = dN.(s)− dA.(s) has expectation 0 given Fs−. Hence, M.(t) is a martingale

with respect to Fs.

Suppose, L(s) = I(Y.(s)>0)
Y.(s)

and define a martingale Q(.) with E (Q(t)) = 0, since
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dM.(s) has expectation 0, by

Q(t) =

∫ t

0

L(s)dM.(s)

=

∫ t

0

L(s)d (N.(s)− A.(s))

=

∫ t

0

L(s)dN.(s)−
∫ t

0

L(s)dA.(s)

= Λ̂n(t)−
∫ t

0

L(s)Y.(s)λ(s)ds

= Λ̂n(t)−
∫ t

0

I (Y.(s) > 0)λ(s)ds

Q(t) = Λ̂n(t)−
∫ t

0

[1− 1 + I (Y.(s) > 0)]λ(s)ds

= Λ̂n(t)−
∫ t

0

λ(s)ds+

∫ t

0

λ(s) [1− I (Y.(s) > 0)] ds

= Λ̂n(t)− Λ(t) +

∫ t

0

λ(s) [1− I (Y.(s) > 0)] ds

= Λ̂n(t)− Λ(t) +D(t), (4.20)

where

D(t) :=

∫ t

0

λ(s) [1− I (Y.(s) > 0)] ds,

is a non-negative and nondecreasing integral for 0 ≤ t ≤ τ . Now, to show that D(t)

converges to zero in probability, we need to examine this as n → ∞. Note that the

bracketed term in the integrand of D(t) is just I (Y.(s) = 0) and suppose there exist

ε ∈ (0, 1) such that

P [I (Y.(s) = 0) > ε] = P [Y.(s) = 0]

= P [Y1(s) = 0, Y2(s) = 0, . . . , Yn(s) = 0]

=
n∏
i=1

P (Yi(s) = 0)

=
n∏
i=1

(1− P (Yi(s) = 1))

=
n∏
i=1

{1− (1− F (s)) (1−G(s))}

= {1− (1− F (s)) (1−G(s))}n . (4.21)
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Here, we assume that τ lies in the interior of the support of F (.) and G(.), such that

1− F (t) > 0 and 1−G(t) > 0 for 0 ≤ t ≤ τ. (4.22)

Hence, (4.21) is strictly less than one, and goes to zero as n → ∞. Since, λ(t) is

continuous on the compact interval [0, τ ], so bounded there. Therefore, the integrand

in D(t) converges in probability to zero. At this stage, we need Theorem 4.2.2 and

4.2.3 due to the Proposition II.5.2 and II.5.3 of Andersen et al. [3], respectively.

Theorem 4.2.2. Consider a sequence Xn(.) of stochastic process such that

lim
C↑∞

sup
n
E [|Xn(t)|I (|Xn(t)| ≥ C)] = 0

for all t, i.e., the sequence Xn(t) is uniformly integrable, and

E|Xn(t)| ≤ k(t)

for all t and n with
∫ τ
o
k(t)dt <∞. Suppose that

Xn(t)
P−→ h(t) as n

P−→∞

for every t ∈ [0, τ ]. Then it follows that

E

(
sup
t∈[0,τ ]

∣∣∣∣∫ t

0

Xn(s)ds−
∫ t

0

h(s)ds

∣∣∣∣
)

P−→ 0. (4.23)

Theorem 4.2.3. Consider a sequence Xn(.) of stochastic process and such that for

all δ > 0 there exists kδ with
∫ τ

0
kδ <∞ such that

lim
n→∞

inf P (|Xn(t)| ≤ kδ(t) for all t) ≥ 1− δ.

Suppose that

Xn(t)
P−→ h(t) as n→∞

for every t ∈ [0, τ ] and suppose that∫ t

0

|h(t)| dt <∞.

Then it follows that

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

Xn(s)ds−
∫ t

0

h(s)ds

∣∣∣∣ P−→ 0. (4.24)

104



As the integrand in D(t) converges in probability to zero, so it follows from Theorem

4.2.2 that

E (D(t))
P−→ 0, (4.25)

and from Theorem 4.2.2

D(t)
P−→ 0. (4.26)

Thus, from (4.20) we have

E
(

Λ̂n(t)
)
→ Λ(t) as n→∞. (4.27)

Since, E (Q(t)) = 0 and

Var (Q(t)) = E

∫ t

0

H2(s)dA.(s)

= E

∫ t

0

I (Y.(s) > 0)λ(s)

Y.(s)
ds. (4.28)

As we are assuming that (4.22) holds, so (4.21) goes to zero as n→∞. Also, λ(t) is

continuous on the compact interval [0, τ ], so bounded there. Therefore, the integrand

in (4.28) converges in probability to zero. Again, following Theorem 4.2.2 we have as

n→∞

Var (Q(t)) = E

∫ t

0

I (Y.(s) > 0)λ(s)

Y.(s)
ds→ 0. (4.29)

So, Q(t)
P−→ 0. Also, we have D(t)

P−→ 0. Thus, (4.20) guarantees that

Λ̂n(t)
P−→ Λ(t). (4.30)

Therefore, Λ̂n(t) is consistent provided (4.22) holds. The above result shows the

pointwise consistency of Λ(t). Since, D(t) is non-negative and nondecreasing for

0 ≤ t ≤ τ , so considering

sup
0≤t≤τ

|D(t)| = D(τ),

so that for any ε > 0

P

(
sup

0≤t≤τ
|D(t)| > ε

)
= P (D(τ) > ε)→ 0.
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Thus, D(.)
P−→ 0 over [0, τ ]. Due to the corollary of Lenglart’s inequality (see Fleming

and Harrington [46], p. 113) for any ε > 0 and large n

P

(
sup
t∈[0,τ ]

|Q(t)− 0| > ε

)
< ε.

So, Q(.)
P−→ 0. Therefore, using Slutsky’s lemma for random variables we have

sup
0≤t≤τ

∣∣∣Λ̂n(t)− Λ(t)
∣∣∣ ≤ sup

0≤t≤τ
|Q(t)|+ sup

0≤t≤τ
|D(t)| P−→ 0. (4.31)

Hence, Λ̂n(t) converges uniformly to Λ(t) as n→∞.

Now, using Theorem 4.2.1 of the asymptotically uniformly convergence of Λ̂n(t) to

Λ(t), we get

Corollary 4.2.4. Under the assumptions of Theorem 4.2.1, let K̃(x) be continuous.

Then

β̂(1)
n

P−→ β as n→∞. (4.32)

Proof. Recall that dΛ(x) = 1
1−F (x)

dF (x). Hence, Λ defines a finite measure on [0, V ]

as, due to monotonicity of F∫ V

0

dΛ(x) ≤ 1

1− F (V )

∫ V

0

dF (x) =
F (V )

1− F (V )
<∞,

by our choice of V . From Theorem 4.2.1, we have

sup
0<x≤V

∣∣∣Λ̂n(x)− Λ(x)
∣∣∣ P−→ 0,

i.e., the measure on [0, V ] characterized by Λ̂n converges weakly to the measure char-

acterized by Λ. We can even make them to probability measures on [0, V ] by setting

µ̂n(B) =
1

Λ̂n(V )

∫
B

dΛ̂n(x), µ(x) =
1

Λ(V )

∫
B

dΛ(x),

and as Λ̂n(V )→ Λ(V ), we also have convergence in distribution of µ̂n to µ. Then, by

standard results of probability theory (e.g., Proposition 8.12 of Breiman [21]), using

continuity of K̃ ∫ V

0

K̃(x)dµ̂n(x)→
∫ V

0

K̃(x)dµ(x),

which, together with Λ̂n(V )→ Λ(V ) implies

β̂(1)
n − β =

∫ V

0

K̃(x)dΛ̂n(x)−
∫ V

0

K̃(x)dΛ(x)
P−→ 0.
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4.2.2 Convergence of β̂
(2)
n to β

In this section, we first discuss convergence of

λ̂1(x) =
1

b

n∑
i=1

K

(
x−X(i)

b

)
δ(i)

n− i+ 1
,

to the hazard rate λ(x). We need the following notation

λ̄1(x) =
1

b

∫
K

(
x− u
b

)
λ(u)du.

The asymptotic behaviour of λ̂1(x) has been investigated, in particular in view of

uniform convergence, by Diehl and Stute [41]. They decompose the estimation error

λ̂1(x)−λ(x) into a random part λ̂1(x)−λ̄1(x) and a basic part λ̄1(x)−λ(x). Then, they

show that λ̂1(x)− λ̄1(x) behaves like a sum of independent terms which essentially is

hn(x) =
1

b

∫
K

(
x− u
b

)
dHn(u) =

1

nb

n∑
i=1

K

(
x−Xi

b

)
δi,

which is the basis of our estimate λ̂2(x). More precisely, Theorem 2 of Diehl and

Stute [41] state in our terminology.

Theorem 4.2.5. Let the kernel K satisfy (K) and, additionally, be continuously

differentiable on [−1,+1]. Let F and G have bounded densities f and g on [0, V + ∆]

for some ∆ > 0, where V satisfies F (V ) < 1 and G(V ) < 1. Then

sup
0≤x≤V

√
nb

∣∣∣∣λ̂1(x)− λ̄1(x)− hn(x)− Ehn(x)

1−H(x)

∣∣∣∣ = Oa.s.

(
log log n√

nb
+
√
b log log n

)
.

If we only are interested in convergences in probability, then, from the same Theorem

of Diehl and Stute [41] we would have a rate Op

(
1√
nb

)
+ Op

(√
b
)

. As in Corollary

2 of Diehl and Stute [41], we conclude

Corollary 4.2.6. Under the assumptions of Theorem 4.2.5 and if, additionally,

f(x) ≥ c > 0 for 0 ≤ x ≤ V + ∆ and some c > 0, we have for n → ∞, b → 0

such that nb→∞ and

1

nb
log

1

b
→ 0,

1

log log n
log

1

b
→∞,

√
nb

2 log 1
b

sup
0≤x≤V

1√
λ(x)
|λ̂1(x)− λ̄1(x)| a.s.−−→

√∫
K2(u)du.
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Note that under the conditions of the corollary for all 0 ≤ x ≤ V

λ(x) =
f(x)

1− F (x)
≥ f(x) ≥ c > 0

λ(x) ≤ f(x)

1− F (V )
≤ c

1− F (V )
<∞,

as we have assumed boundedness of f on [0, V + ∆]. So, the corollary also implies

uniform convergence of λ̂1(x)− λ̄1(x) to 0 on [0, V ] with the same rate.

To get uniform consistency of λ̂1(x) as an estimate of λ(x), we have to investigate the

bias term λ̄1(x) − λ(x). Its convergence behaviour depends on smoothness assump-

tions about λ(x), i.e., about f(x). If, e.g., f(x) is differentiable on [0, V + ∆] with

derivative f
′
(x) which is Hölder continuous of order α, 0 < α ≤ 1, i.e.,

|f ′(x)− f ′(y)| ≤ CH |x− y|α, for all x, y ∈ [0, V ],

for some CH > 0, then λ(x) is also differentiable with derivative

λ
′
(x) =

f
′
(x)

1− F (x)
+

f 2(x)

(1− F (x))2 ,

and a straight-forward calculation, using 1 − F (V ) ≤ 1 − F (x) ≤ 1, c ≤ f(x) ≤ C

and boundedness of f
′
(x) for 0 ≤ x ≤ V , show that λ

′
(x) is also Hölder continuous

of order α. From this, we get

Lemma 4.2.7. If under the assumptions of Corollary 4.2.6, additionally, f(x) is

differentiable and f
′
(x) is Hölder continuous of order α on [0, V ], then

sup
0≤x≤V

∣∣λ̄1(x)− λ(x)
∣∣ = O

(
b1+α

)
.

Proof. For 0 ≤ x ≤ V and small enough b, by the mean-value theorem,

λ(x− bν)− λ(x) = −λ′(x− θbν)bν,

for some 0 ≤ θ ≤ 1. From the Hölder continuity of λ
′
, we have for suitable CH∣∣∣λ′(x− θbν)− λ′(x)

∣∣∣ ≤ CH |θbν|α ≤ CH |bν|α ≤ CHb
α,
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uniformly in 0 ≤ x ≤ V , −1 ≤ ν ≤ 1. As K is a probability density with support

[−1,+1], we conclude, substituting u = x− bν,

∣∣λ̄1(x)− λ(x)
∣∣ =

∣∣∣∣1b
∫
K

(
x− u
b

)
λ(u)du− λ(x)

∣∣∣∣
=

∣∣∣∣∫ K(ν) (λ(x− bν)− λ(x)) dν

∣∣∣∣
=

∣∣∣∣∫ K(ν)λ
′
(x)bν (1 +O (bα)) dν

∣∣∣∣
=

∣∣∣∣∫ νK(ν)dνλ
′
(x)b+O

(
b1+α

)∣∣∣∣
= O

(
b1+α

)
, uniformly in 0 ≤ x ≤ V,

as, due to symmetry of K,
∫
νK(ν)dν = 0.

Combining the previous results we get, using
∣∣∣λ̂1 − λ

∣∣∣ ≤ ∣∣∣λ̂1 − λ̄1

∣∣∣+
∣∣λ̄1 − λ

∣∣,
Theorem 4.2.8 (Uniform Consistency of λ̂1). Under the conditions of Corollary

4.2.6 , we have for n→∞, b→ 0 such that nb→∞,

1

nb
log

1

b
→ 0,

1

log log n
log

1

b
→∞,

sup
0≤x≤V

∣∣∣λ̂1(x)− λ(x)
∣∣∣ = Oa.s.

(
1

nb
log

1

b
+O

(
b1+α

))
.

As an immediate consequence, we have the desired consistency of β̂
(2)
n .

Corollary 4.2.9. Under the assumptions of Theorem 4.2.8, we have for K̃ satisfying

(4.10)

β̂(2)
n

a.s.−−→ β.

Proof.∣∣∣β̂(2)
n − β

∣∣∣ =

∣∣∣∣∫ V

0

K̃(x)
(
λ̂1(x)− λ(x)

)
dx

∣∣∣∣ ≤ sup
0≤x≤V

∣∣∣K̃(x)
∣∣∣ ∫ V

0

∣∣∣λ̂1(x)− λ(x)
∣∣∣ dx

≤ V sup
0≤x≤V

∣∣∣K̃(x)
∣∣∣ sup

0≤x≤V

∣∣∣λ̂1(x)− λ(x)
∣∣∣ ,

and the assertion follows from Theorem 4.2.8.
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4.2.3 Convergence of β̂
(3)
n to β

We first want to prove some results illustrating that λ̂2(x) is a reasonable estimate of

the hazard function λ(x). Recall that

λ̂2(x) =
hn(x)

1− Ĥn(x−)
=

1

1− Ĥn(x−)

1

nb

n∑
i=1

K

(
x−Xi

b

)
δi.

Theorem 4.2.10. Let F have a density f , and let (1−G(x)) f(x) satisfy a Hölder

condition

|(1−G(x)) f(x)− (1−G(y)) f(y)| ≤ CH |x− y|α,

for some CH > 0, 0 < α ≤ 1. Let the kernel K satisfy (K). Then

a) For n→∞, b→ 0 such that nb→∞
√
nb (hn(x)− Ehn(x))

d−→ N (0, σ2
x),

with

σ2
x = (1−G(x)) f(x)

∫
K2(ν)dν,

b) hn(x)
P−→ (1−G(x)) f(x) and, in particular,

mse hn(x) = E [hn(x)− (1−G(x)) f(x)]2 = O

(
1

nb

)
+O

(
b2α
)
.

Proof. We prove a) by applying the Lyapounov central limit theorem (cf. Billingsley

[20]). For this purpose, we write

hn(x) =
1

n

n∑
j=1

Zjn, Zjn =
1

b
K

(
x−Xj

b

)
δj.

For the first three moments of Zjn, we have

µjn = EZjn = E
1

b
K

(
x− Tj
b

)
I (Tj ≤ Cj)

=

∫ ∫
1

b
K

(
x− t
b

)
I (t ≤ z) f(t)g(z)dzdt

=

∫
1

b
K

(
x− t
b

)
(1−G(t)) f(t)dt

=

∫
K (u) (1−G(x− bu)) f(x− bu)du,
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substituting t = x− bu. Using the Hölder condition and
∫
K(u)du = 1, we have

|µjn − (1−G(x)) f(x)| ≤
∫
K(u) |(1−G(x− bu)) f(x− bu)− (1−G(x)) f(x)| du

≤ CHb
α

∫
|u|αK (u) du = O (bα) ,

uniformly in j, as Z1,n, . . . , Zn,n are i.i.d., i.e., we have

µjn = (1−G(x)) f(x) +O (bα) .

EZ2
jn =

∫ ∫
1

b2
K2

(
x− t
b

)
I (t ≤ z) f(t)g(z)dzdt

=
1

b

∫
K2 (u) (1−G(x− bu)) f(x− bu)du.

As K is bounded, we get as for µjn that we may replace (1−G(x− bu)) f(x− bu) in

the integral by (1−G(x)) f(x) up to an error of order O (bα). Hence,

EZ2
jn =

1

b
(1−G(x)) f(x)

∫
K2 (u) du+O

(
bα

b

)
,

and, as µjn = O(1),

σ2
jn = EZ2

jn − µ2
jn =

1

b
(1−G(x)) f(x)

∫
K2 (u) du+O

(
bα−1

)
.

For the third moment, we get by exactly the same kind of argument

γjn = E|Zjn − µjn|2 =
1

b2
(1−G(x)) f(x)

∫
K3 (u) du+O

(
bα−2

)
.

Hence,

lim
n→∞

∑n
j=1 γjn

(
∑n

j=1 σ
2
jn)3/2

= lim
n→∞

n
b2

(1−G(x)) f(x)
∫
K3 (u) du

(n
b
)3/2

[
(1−G(x)) f(x)

∫
K2 (u) du

]3/2
= lim

n→∞

const√
nb

= 0,

i.e., the Lyapounov condition is fulfilled, and a) follows, where the form of σ2
x follows

from

var hn(x) =
1

n2

n∑
j=1

var Zjn =
1

n
σ2

1n =
1

nb
σ2
x + o

(
1

nb

)
.

For the bias we have, as Ehn(x) = µjn,

Ehn(x)− (1−G(x)) f(x) = O (bα) ,

such that, the mse expression follows as it is the sum of variance and squared bias.

The consistency of hn(x) follows, as the mse converges to 0.
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Corollary 4.2.11. Under the assumptions of Theorem 4.2.10

λ̂2(x)
P−→ λ(x) =

f(x)

1− F (x)
for n→∞.

Proof. The results follows immediately from the last theorem and from 1−Ĥn(x−)
P−→

1−H(x) = (1− F (x))(1−G(x)) as a consequence of the law of large numbers.

As for λ̂1(x), we need however uniform consistence over bounded intervals. As a first

step, we remark that the Glivenko-Cantelli Theorem can be strengthened to a law of

the iterated logarithm such that

sup
x

∣∣∣Ĥn(x−)−H(x)
∣∣∣ = Oa.s.

(√
log log n

n

)
. (4.33)

(confer, Van der Vaart [139] p. 268). So, it remains to investigate uniform conver-

gence of hn(x).

For the proof of this result we use for convenience a uniform consistency result of

Györfi et al. [57], which has been formulated for uniformly (ϕ−) mixing random vari-

ables (Zj, Yj), j = 1, . . . , n, which of course also applies to the independent data

(Tj, δj), j = 1, . . . , n, respectively (Tj, 1), j = 1, . . . , n.

Note that, as δi = I (Ti ≤ Ci),

hn(x) =
1

nb

n∑
i=1

K

(
x− Ti
b

)
δi.

We also consider the Nadaraya-Watson kernel estimate

ĥn(x) =
hn(x)

1
nb

∑n
i=1 K

(
x−Ti
b

) =
hn(x)

f̂n(x)
,

which estimates

E {δi | Ti = x} = P (Ci ≥ x | Ti = x) = 1−G(x),

as Ti and Ci are independent. The denominator of ĥn(x) is the usual kernel estimate

of f(x). We do not really need to consider ĥn(x) and f̂n(x) , but the results which we

want to use are formulated in terms of these quantities. Alternatively, we would have

to mimic the lengthy proof of the theorem of Györfi et al. [57] and show the result

for hn(x) directly. We now formulate the assumptions on the distribution of Tj and Cj.
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(D) Tj and Cj, j = 1, . . . , n, are independent with distribution functions respectively

F and G. For V satisfying F (V ) < 1 and G(V ) < 1, F and G have densities

respectively f and g on [0, V ], f(x) > 0 a.e. on [0, V ] and f is differentiable

with derivative f
′

on [0, V ]. f
′

and g are the Hölder continuous of order α on

[0, V ] for some 0 < α ≤ 1.

Note that (D) does not exclude point masses of the censoring distribution G beyond

V which may be appropriate for planned studies with a given maximal duration.

Proposition 4.2.12. Let the kernel K satisfy (K) and, additionally, be also Hölder

continuous of order α, and let (D) be satisfied. Then, for n → ∞, b → 0 such that
logn
nb
→ 0

sup
0≤x≤V

∣∣∣ĥn(x)− (1−G(x))
∣∣∣ = Oa.s.

(
b1+α +

√
log n

nb

)

sup
0≤x≤V

∣∣∣f̂n(x)− f(x)
∣∣∣ = Oa.s.

(
b1+α +

√
log n

nb

)
.

Proof. We apply Theorem 3.3.2 of Györfi et al. [57] to the pairs (Tj, δj) and (Tj, 1),

respectively. Their conditions (A.1)-(A.4) and (K.1)-(K.6) respectively follow from

(D), using also |δj| ≤ 1, and the assumptions on K. Note that we consider the special

case k = 1. As our data are independent, i.e., the ϕ-mixing coefficients are all 0, we

may choose mn = 1 in (3.3.1). As δj and 1 are respectively bounded by 1, we do not

have to use the truncation argument in the formulation of Theorem 3.3.2 and can

choose Mn = 1, too.

Corollary 4.2.13. Under the assumptions of Proposition 4.2.12,

sup
0≤x≤V

|hn(x)− (1−G(x))f(x)| = Oa.s.

(
b1+α +

√
log n

nb

)
.

Proof. As hn(x) = ĥn(x)f̂n(x), we have

|hn(x)− (1−G(x))f(x)| ≤
∣∣∣ĥn(x)− (1−G(x))

∣∣∣ f̂n(x) + (1−G(x))
∣∣∣f̂n(x)− f(x)

∣∣∣
≤
∣∣∣ĥn(x)− (1−G(x))

∣∣∣ ∣∣∣f̂n(x)− f(x)
∣∣∣+
∣∣∣ĥn(x)− (1−G(x))

∣∣∣ f(x) + (1−G(x))
∣∣∣f̂n(x)− f(x)

∣∣∣ ,
and the assertion follows from Proposition 4.2.12, as f is bounded on [0, V ].
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Theorem 4.2.14 (Uniform Consistency of λ̂2). Under the assumptions of Proposition

4.2.12, we have

sup
0≤x≤V

∣∣∣λ̂2(x)− λ(x)
∣∣∣ = Oa.s.

(
b1+α +

√
log n

nb

)
.

Proof. We decompose

∣∣∣λ̂2(x)− λ(x)
∣∣∣ =

∣∣∣∣∣ hn(x)

1− Ĥn(x−)
− f(x)

1− F (x)

∣∣∣∣∣
≤ |hn(x)− (1−G(x))f(x)|

|1− Ĥn(x−)|
+ (1−G(x))f(x)

∣∣∣∣∣ 1

1− Ĥn(x−)
− 1

1−Hn(x)

∣∣∣∣∣
≤ 1

∆
|hn(x)− (1−G(x))f(x)|+ C

∆2

∣∣∣Ĥn(x−)−H(x)
∣∣∣ ,

where we have chosen n0, ∆ such that 1−H(V ), 1− Ĥn(V ) ≥ ∆ > 0 for all n ≥ n0,

using (4.33), and C such that (1−G(x))f(x) ≤ C for all 0 ≤ x ≤ V .

The first term on the right-hand side of the last inequality converges uniformly in

[0, V ] to 0 with rate at least b1+α +
√

logn
nb

by Corollary 4.2.13, and the second term

has the even small upper bound
√

log logn
n

on the rate by (4.33).

Analogously to Corollary 4.2.13, we conclude from Theorem 4.2.14.

Corollary 4.2.15. Under the assumptions of Theorem 4.2.14, we have for K̃ satis-

fying (4.33)

β̂(3)
n

a.s.−−→ β.

4.3 Kernel-Based Change Point Test’s

In this section, we modify Horváth’s test described in Section 4.1.1 for a change point

by replacing the Nelson-Aalen estimate for the cumulative hazard function by the

estimates λ̂1 and λ̂2, respectively, for the hazard functions describe in Section 4.2.

We prove that the test statistic has the same asymptotic distribution under the hy-

pothesis H0 of no change point as Horváth’s test statistic. Recall that the testing

problem is given in (4.2).
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We first study the test based on λ̂2, as the statistic there is rather similar to the

one considered by Horváth, and we can use many arguments from Horváth’s proof.

4.3.1 Change Point Test using λ̂2

Recall that the estimate λ̂2 of the hazard function λ(x) is given by

λ̂2(x) = λ̂2,n(x) =
hn(x)

1− Ĥn(x−)
=

1

1− Ĥn(x−)

1

nb

n∑
i=1

K

(
x−Xi

b

)
δi.

We now stress the dependence on n, as for given k, 1 ≤ k < n, we split the data

into two subsamples X1, . . . , Xk and Xk+1, . . . , Xn, and λ̂2(x) = λ̂2,k(x), then, is

the hazard function estimate based on the first subsample only. The corresponding

estimate based on the second subsample is

λ̂∗2(x) = λ̂∗2,k(x) =
h∗k(x)

1− Ĥ∗k(x−)
=

1

1− Ĥ∗k(x−)

1

(n− k)b

n∑
i=k+1

K

(
x−Xi

b

)
δi,

where Ĥ∗k denotes the empirical distribution function of the sample Xk+1, . . . , Xn.

Now, for convenience, we drop again the index k in λ̂2(x) and λ̂∗2(x).

Analogously to (4.5), we define

θ̂3(k) =

∫ V

0

∫ V

0

K̃(x, y)λ̂2(x)λ̂∗2(y)dxdy

=

∫ V

0

∫ V

0

K̃(x, y)
hk(x)

1− Ĥk(x−)

h∗k(y)

1− Ĥ∗k(y−)
dxdy.

Following Horváth, we get

Qn(k) =
k (n− k)

n3/2

(
θ̂3(k)− θ

)
,

where θ is given by (4.3). Then, we have the following analogue to Theorem 2.1 of

Horváth [62]

Theorem 4.3.1. Assume that K̃(x, y) = K̃(y, x) for all x, y, and that |K̃(x, y)| ≤ C̃k

for all x, y for some constant C̃k. Moreover, let K̃(x, y) be Lipschitz continuous in

one coordinate, i.e., for some C̃ > 0.∣∣∣K̃(x, y)− K̃(x, z)
∣∣∣ ≤ C̃ |y − z| , for all x, y, z ∈ [0, V ],
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where V again satisfies F (V ), G(V ) < 1. Let K satisfy assumption (K). Let the

density f of F be bounded, and let G be continuous. Moreover, let h̃(x) = (1 −
G(x))f(x) satisfy a Lipschitz condition∣∣∣h̃(x)− h̃(y)

∣∣∣ ≤ CH |x− y| for all x, y ∈ [0, V ].

Then, under the hypothesis H0, for n → ∞, b = O (nν−1) and nb → ∞ for some

0 < ν ≤ 1
2
, we have

max
1≤k<n

∣∣∣∣Qn(k)− σΓn

(
k

n

)∣∣∣∣ (kn
(

1− k

n

))−ν
= Op

(
nν−

1
2

)
, (4.34)

where Γn(t), 0 ≤ t ≤ 1, is a sequence of Gaussian processes distributed as (1−t)W (t)+

t {W (1)−W (t)}, 0 ≤ t ≤ 1, with a standard Wiener process W (t), 0 ≤ t ≤ 1. The

scale parameter σ is given by

σ2 =

∫ V

0

(∫ V

0

K̃(x, y)λ(y)dy

)2
λ(x)

1−H(x)
dx.

We postpone the proof to the end of section 4.3 and discuss some immediate con-

sequences of the main theorem first. Note that, as pointed out by Horváth [62] the

limit process Γn(t) already appeared in an earlier paper of Csörgő and Horváth [36]

about U-statistics-type processes without censoring. Their special form is, therefore,

not related to censoring.

Note that the bandwidth rates we need for (4.34) and, then, for change point tests,

are much faster than the mse optimal rate if we would just be interested in estimat-

ing λ(x). The latter would be
(
n−

1
3

)
if we only assume Lipschitz continuity of the

function to be estimated whereas for (4.34) we need O
(
n−

1
2

)
for ν = 1

2
, which is the

common weight or even small for ν < 1
2
. We need this to keep the bias of the kernel

estimates under control.

As an immediate consequence, we get analogously to Corollary 4.2.15 that θ̂3(k)

converges to θ if k grows with n. If we avoid the boundary regions of the sample, we

even have uniform consistency with rate 1√
n
.

Corollary 4.3.2. Under the assumptions of Theorem 4.3.1, we have for any 0 < ε <
1
2

max
εn≤k≤(1−ε)n

∣∣∣∣√n(θ̂3(k)− θ
)
− σΓn

(
k

n

)∣∣∣∣ = Op

(
nν−1/2

)
.
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Proof. The result follows immediately from the theorem, the definition of Qn(k) and

from ε2 ≤ k(n−k)
n2 ≤ (1− ε)2 for all εn ≤ k ≤ (1− ε)n.

Now, we are in a position to construct a change point test. Intuitively, under H0

θ̂3(k) ≈ θ for all k, and under the alternative |θ̂3(k) − θ| will be large for k near the

change point k∗. θ̂3(k) is unreliable for k
n
≈ 0 or ≈ 1 as respectively λ̂2 and λ̂∗2 will

depend on few data only, usually |θ̂3(k) − θ| is down-weighted in those cases. The

common weight function is q(t) = (t(1 − t))1/2 which corresponds to the case ν = 1
2

in Theorem 4.3.1. The test statistic is

max
1≤k<n

∣∣∣∣∣Qn(k)

q
(
k
n

) ∣∣∣∣∣ =
√
n max

1≤k<n
q

(
k

n

) ∣∣∣θ̂3(k)− θ
∣∣∣ . (4.35)

Its asymptotic distribution under H0 follows from

Corollary 4.3.3. If the conditions of Theorem 4.3.1 are satisfied with ν = 1
2
, then if

H0 holds

lim
n→∞

P

a(log n)
1

σ
max

1≤k<n

Qn(k)(
k
n

(
1− k

n

)) 1
2

≤ t+ d(log n)

 = exp(−e−t), (4.36)

and

lim
n→∞

P

a(log n)
1

σ
max

1≤k<n

|Qn(k)|(
k
n

(
1− k

n

)) 1
2

≤ t+ d(log n)

 = exp(−2e−t), (4.37)

for all t, with

a(x) = (2 log x)
1
2 ,

and

d(x) = 2 log x+
1

2
log log x− 1

2
log π.

This follows immediately from Theorem 4.3.1 as Horváth [62] concluded his Corollary

2.2 from his Theorem 2.1.

The test statistic and the asymptotic distribution under H0 depend on θ and σ which

both are usually not known, but they can be replaced by appropriate estimates. Let

us first consider the scale parameter σ. Any estimate σ̂2
n satisfying σ̂2

n
P−→ σ2 and

σ̂2
n ≥ ε for some ε > 0 and large enough n may be used to replace σ2 without
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changing the asymptotic distribution in Corollary 4.3.3. For instance, we would use

Horváth’s estimate

σ̂2
n =

∫ V

0

(∫ V

0

K̃(x, y)
1

1− Ĥn(y−)
dHn(y)

)2
1(

1− Ĥn(x−)
)2dHn(x). (4.38)

for which we know (compare (2.11) of Horváth [62])

|σ̂2
n − σ2| = Op

(
(log n)2)

n1/2

)
, (4.39)

or we could use

σ̃2
n =

∫ V

0

(∫ V

0

K̃(x, y)λ̂2,n(y)dy

)2
λ̂2,n(x)

1− Ĥn(x−)
dx

=

∫ V

0

(∫ V

0

K̃(x, y)
hn(y)

1− Ĥn(y−)
dy

)2
hn(x)(

1− Ĥn(x−)
)2dx. (4.40)

which is also a consistent estimate of σ2 from Corollary 4.2.13 and the Glivenko-

Cantelli Theorem.

So, we can consider the following test statistics with asymptotic distribution under

H0 given by Corollary 4.3.3

T (1)
n = max

1≤k<n

1

σ̂n

Qn(k)(
k
n

(
1− k

n

)) 1
2

,

and

T (2)
n = max

1≤k<n

1

σ̂n

|Qn(k)|(
k
n

(
1− k

n

)) 1
2

.

The approximated critical values of the test can be given by (4.36) for T
(1)
n and by

(4.37) for T
(2)
n . Let c

(1)
α (n) and c

(2)
α (n) are the (1 − α)-quantile of the corresponding

asymptotic distribution of T
(1)
n and T

(2)
n , respectively. Which are defined as,

c(1)
α (n) =

1

a(log n)
{− log(− log(1− α)) + d(log n)} , (4.41)

and

c(2)
α (n) =

1

a(log n)

{
− log

(
− log(1− α)

2

)
+ d(log n)

}
. (4.42)

Therefore, the tests are defined by rejecting H0 if T
(i)
n > c

(i)
α (n) for i = 1, 2. We can

calculate the asymptotic critical value by using (4.41) and also simulate finite sample
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size critical values.

For unknown θ, we follow Horváth [62] and replace it by the estimate under H0

θ̂3

(
bn

2
c
)
, i.e., we replace Qn(k) by

Q∗n(k) =
k (n− k)

n3/2

(
θ̂3(k)− θ̂3

(
bn

2
c
))

, 1 ≤ k < n.

Then, we have immediately from Theorem 4.3.1

Theorem 4.3.4. If under H0, the assumptions of Theorem 4.3.1 are satisfied

max
1≤k<n

∣∣Q∗n(k)− σ
(
Γn
(
k
n

)
− 4 k

n

(
1− k

n

)
Γn
(

1
2

))∣∣(
k
n

(
1− k

n

))ν = Op(n
ν−1/2),

where {
Γn(t)− 4t(1− t)Γn

(
1

2

)
, 0 ≤ t ≤ 1

}
D
= {(1− 2t)B(t), 0 ≤ t ≤ 1} ,

for each n, where {B(t), 0 ≤ t ≤ 1} is a standard Brownian bridge.

The last relation follows immediately from Γn(t)D
=(1− t)W (t) + t (W (1)−W (t)) and

B(t)D
=W (t)− tW (1) for a standard Wiener process W (t), 0 ≤ t ≤ 1.

Corollary 4.3.3 is still true for Q∗n(k) replacing Qn(k) by the argument given in

Horváth [62], such that

Corollary 4.3.5. If the conditions of Theorem 4.3.1 are satisfied with ν = 1
2
, then

under H0

lim
n→∞

P

a(log n)
1

σ
max

1≤k<n

Q∗n(k)(
k
n

(
1− k

n

)) 1
2

≤ t+ d(log n)

 = exp(−e−t), (4.43)

and

lim
n→∞

P

a(log n)
1

σ
max

1≤k<n

|Q∗n(k)|(
k
n

(
1− k

n

)) 1
2

≤ t+ d(log n)

 = exp(−2e−t), (4.44)

for all t, with

a(x) = (2 log x)
1
2 ,

and

d(x) = 2 log x+
1

2
log log x− 1

2
log π.
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The asymptotic distribution of the test statistic under the null hypothesis of no change

in hazard functions, when θ is unknown, can be found from Corollary 4.3.5. Thus we

obtain the test statistic from (4.43) and (4.44), respectively, as

T (3)
n = max

1≤k<n

1

σ̂n

Q∗n(k)(
k
n

(
1− k

n

)) 1
2

,

and

T (4)
n = max

1≤k<n

1

σ̂n

|Q∗n(k)|(
k
n

(
1− k

n

)) 1
2

.

The asymptotic critical values are c
(1)
α (n) and c

(2)
α (n), which are defined in (4.41) and

(4.42), may be used for T
(3)
n and T

(4)
n , respectively.

4.3.2 Change Point Tests with Different Weights

We briefly discuss alternative tests using other weight functions qν(t) = (t(1 − t))ν

for 0 < ν < 1
2

instead of the standard one with ν = 1
2

discussed in the last section.

We follow the exposition of Horváth [62]. The mathematical derivations are the same

as they are only based on Theorem 2.1 of Horváth [62] and our analogous Theorem

4.3.1, respectively.

Corollary 4.3.6. Let the assumptions of Theorem 4.3.1 be satisfied for some 0 <

ν < 1
2
, qν(t) = (t(1− t))ν. If H0 holds

1

σ
sup

0<t<1

Qn(dnte)
qν(t)

D−→ sup
0<t<1

(1− t)W (t) + t(W (1)−W (t))

qν(t)
, (4.45)

and
1

σ
sup

0<t<1

|Qn(dnte)|
qν(t)

D−→ sup
0<t<1

|(1− t)W (t) + t(W (1)−W (t))|
qν(t)

. (4.46)

Note that, for our choice of qν(t) with ν < 1
2
, the integrability condition of Corollary

2.1 of Horváth [62] is automatically satisfied. Now, we can consider change point

tests based on the statistics

T (5)
n = sup

0<t<1

1

σ̂n

Qn(dnte)
qν(t)

,

T (6)
n = sup

0<t<1

1

σ̂n

|Qn(dnte)|
qν(t)

.
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The asymptotic critical values are c
(5)
α (n) and c

(6)
α (n) for test statistics T

(5)
n and T

(6)
n ,

respectively, where c
(5)
α (n) is the (1 − α)-quantile of sup

0<t<1

(1−t)W (t)+t(W (1)−W (t))
q(t)

and

c
(6)
α (n) is the (1− α)-quantile of sup

0<t<1

|(1−t)W (t)+t(W (1)−W (t))|
q(t)

.

If θ is unknown, we can consider in analogy to T
(3)
n and T

(4)
n the following test statistics

T (7)
n = sup

0<t<1

1

σ̂n

Q∗n(dnte)
qν(t)

,

and

T (8)
n = sup

0<t<1

1

σ̂n

|Q∗n(dnte)|
qν(t)

.

The critical values can be calculated by simulation from a reasonable approximating-

model. Instead, we could also use the asymptotic values based on Theorem 4.3.4

following the discussion of Horváth [62] at the end of his Section 2. Suppose, c
(7)
α (n)

and c
(8)
α (n) are the approximate critical values respectively for test statistics T

(7)
n and

T
(8)
n , where c

(7)
α (n) is the (1−α)-quantile of sup

0<t<1

{(1−2t)B(t)}
qν(t)

and c
(8)
α (n) is the (1−α)-

quantile of sup
0<t<1

|(1−2t)B(t)|
qν(t)

.

4.3.3 Proof of Theorem 4.3.1

We mainly follow the proof of Theorem 2.1 of Horváth [62] and, for ease of reference,

use the same notation. First, we split

θ̂3(k)− θ = A1(k) + A2(k) + A3(k), with

A1(k) =

∫ V

0

∫ V

0

K̃(x, y)

(1−H(x)) (1−H(y))
hk(x)h∗k(y)dxdy − θ

=

∫ V

0

∫ V

0

K̃1(x, y)hk(x)h∗k(y)dxdy − θ

A2(k) =

∫ V

0

∫ V

0

K̃(x, y)
(
Ĥ∗k(y−)−H(y)

)
(1−H(x)) (1−H(y))

(
1− Ĥ∗k(y−)

)hk(x)h∗k(y)dxdy

A3(k) =

∫ V

0

∫ V

0

K̃(x, y)
(
Ĥk(x−)−H(x)

)
(1−H(x))

(
1− Ĥk(x−)

)(
1− Ĥ∗k(y−)

)hk(x)h∗k(y)dxdy.

Note that, as 1−H(x) ≥ 1−H(V ) > 0 for 0 ≤ x ≤ V , the kernel K̃1(x, y) is also sym-

metric and uniformly bounded as K̃ itself. In comparison to Horváth’s proof, also note

that we have assumed that H(x) is continuous in [0, V ], such that H(x−) = H(x) etc.
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A1(k) will be the dominant part of θ̂3(k) − θ. We first show in a) that the other

two terms are of small order, and, then, in b) investigate the asymptotic behaviour

of A1(k).

a) As X1, . . . , Xn are i.i.d., we can apply the law of the iterated logarithm (com-

pare, e.g., Section 1.10 of Serfling [128]) to replace Ĥk, Ĥ
∗
k in the denominators of

A2(k), A3(k) by their limits. More precisely, we have as in (4.2) and (4.3) of Horváth

[62]

max
1≤k<n

|A2(k)− A4(k)|
(

log log k

k

)−1

= Op (1)

max
1≤k<n

|A3(k)− A5(k)|

{(
log log k

k

) 1
2

[(
log log k

k

) 1
2

+

(
log log(n− k)

(n− k)

) 1
2

]}−1

= Op (1)

with

A4(k) =

∫ V

0

∫ V

0

K̃4(x, y)
(
Ĥ∗k(y−)−H(y)

)
hk(x)h∗k(y)dxdy

A5(k) =

∫ V

0

∫ V

0

K̃5(x, y)
(
Ĥk(x−)−H(x)

)
hk(x)h∗k(y)dxdy,

where

K̃4(x, y) =
K̃(x, y)

(1−H(x)) (1−H(y))2 , K̃5(x, y) =
K̃(x, y)

(1−H(x))2 (1−H(y))
.

Recall from Section 4.2.3 that hn(x)
P−→ h̃(x) = (1 − G(x))f(x) for n → ∞. As the

next step, we want to replace hk(x) and h∗k(y) in A4(k) by respectively h(x) and h(y).

For that purpose, we split A4(k) = A6(k) +A7(k) +A8(k) and show that the last two

terms are negligible, where

A6(k) =

∫ V

0

∫ V

0

K̃4(x, y)
(
Ĥ∗k(y−)−H(y)

)
h̃(x)h̃(y)dxdy

A7(k) =

∫ V

0

∫ V

0

K̃4(x, y)
(
Ĥ∗k(y−)−H(y)

)(
hk(x)− h̃(x)

)
h∗k(y)dxdy

A8(k) =

∫ V

0

∫ V

0

K̃4(x, y)
(
Ĥ∗k(y−)−H(y)

)
h̃(x)

(
h∗k(y)− h̃(y)

)
dxdy.

First, we consider A7(k). Uniformly in 0 ≤ y ≤ V , 1 ≤ k < n∫ V

0

K̃4(x, y)
(
Ehk(x)− h̃(x)

)
dx = O(b), (4.47)
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as, from our assumptions of K̃ and V , K̃4 is uniformly bounded in x and y, and as

Ehk(x) − h̃(x) = O(b) uniformly in x and k from the proof of Theorem 4.2.5 with

α = 1. As ∫ V

0

K̃4(x, y) (hk(x)− Ehk(x)) dx

=
1

b

k∑
i=1

K̃4(x, y)
1

b

(
K

(
x−Xi

b

)
δi − EK

(
x−Xi

b

)
δi

)
dx,

is a mean of i.i.d. bounded, zero-mean random variables, we get from Hoeffding’s

inequality (compare, e.g., Section 2.3.3 of Serfling [128]) similar to (4.5) of Horváth

[62]

P

(√
k

∣∣∣∣∫ V

0

K̃4(x, y) (hk(x)− Ehk(x)) dx

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2C̃4

)
, (4.48)

where C̃4 is a uniform bound on |K̃4(x, y)| and where we have used∣∣∣∣∫ V

0

K̃4(x, y)
1

b
K

(
x−Xi

b

)
δidx

∣∣∣∣ ≤ C̃4

∫
1

b
K

(
x−Xi

b

)
dx = C̃4,

as K is a probability density. However, we need the above exponential inequality for

D̃k(y) =

∫ V

0

K̃4(x, y)
(
hk(x)− h̃(x)

)
dx =

∫ V

0

K̃4(x, y) (hk(x)− Ehk(x)) dx+O(b)

= Dk(y) +O(b),

uniformly in y and k by (4.47). From (4.48), we get for some c > 0

P
(√

k
∣∣∣D̃k(y)

∣∣∣ > t
)
≤ P

(√
k |Dk(y)| > t−

√
kO(b)

)
≤ 2 exp

(
−(t−

√
kO(b))2

2C̃4

)

≤ 2 exp

(
− t2

2C̃4

+

√
nO(b)t

C̃4

)
≤ 2 exp

(
−ct2

)
, (4.49)

for all large enough n and large t, as from b = O (nν−1), we have nb2 = O(1). We

need an upper bound for the supremum over y. We use the standard approach and

consider an equidistant gird yl = (l− 1
2
) V
m

, l = 1, . . . ,m, such that for every y in [0, V ]

there is a yl with |y − yl| ≤ V
m

. Then, uniformly in k,

sup
0≤y≤V

|D̃k(y)| = sup
1≤l≤m

sup
|y−yl|≤ Vm

|D̃k(y)| = sup
1≤l≤m

sup
|y−yl|≤ Vm

|D̃k(yl) + D̃k(y)− D̃k(yl)|

≤ sup
1≤l≤m

|D̃k(yl)|+ L̃
V

m
, (4.50)
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where we have used that D̃k(y) is Lipschitz continuous with some constant L̃. The

latter follows from Lipschitz continuity of K̃(x, y) and our assumption that F and

G have bounded densities on [0, V ], which implies that H has a bounded density on

[0, V ] too. Noting that 1 −H(x) ≥ 1 −H(V ) > 0 on [0, V ], we get that K̃4(x, y) is

Lipschitz too, i.e., for some constant L4∣∣∣K̃4(x, y)− K̃4(x, z)
∣∣∣ ≤ L4|y − z|, for all x, y, z ∈ [0, V ],

such that ∣∣∣D̃k(y)− D̃k(z)
∣∣∣ ≤ ∫ V

0

L4 |y − z|
∣∣∣hk(x)− h̃(x)

∣∣∣ dx
≤ L4

∫ V

0

(
hk(x) + h̃(x)

)
dx |y − z| ≤ 2L4 |y − z|

where we have used h̃(x) ≤ f(x) and K is a probability density and∫ V

0

hk(x)dx ≤ 1

k

k∑
i=1

∫ V

0

1

b
K

(
x−Xi

b

)
dx ≤ 1. (4.51)

Using the subadditivity of probabilities, we get from(4.49)

P

(
max

1≤k<n
max

1≤l≤m

√
k
∣∣∣D̃k(yl)

∣∣∣ > t

)
≤ 2nm exp

(
−ct2

)
,

and, therefore, with n = m

max
1≤k<n

max
1≤l≤n

√
k

∣∣∣∣∫ V

0

K̃4(x, yl)
(
hk(x)− h̃(x)

)
dx

∣∣∣∣ = Op

(√
log n

)
,

using (4.50), we immediately have also

max
1≤k<n

max
0≤y≤V

√
k

∣∣∣∣∫ V

0

K̃4(x, y)
(
hk(x)− h̃(x)

)
dx

∣∣∣∣ = Op

(√
log n

)
.

As, using (4.51) for the last factor of the first line

|A7(k)| ≤ sup
y

∣∣∣Ĥ∗k(y−)−H(y)
∣∣∣ sup

y

∣∣∣∣∫ V

0

K̃4(x, y)
(
hk(x)− h̃(x)

)
dx

∣∣∣∣ ∫ V

0

h∗k(y)dy

≤ sup
y

∣∣∣Ĥ∗k(y−)−H(y)
∣∣∣ sup

y

∣∣∣∣∫ V

0

K̃4(x, y)
(
hk(x)− h̃(x)

)
dx

∣∣∣∣ ,
we get again from the law of iterated logarithm applied to Ĥ∗k in analogy to (4.6) of

Horváth [62]

max
1≤k<n

|A7(k)|
√
k(n− k) = Op

(√
log n

√
log log n

)
.
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A8(k) is of even smaller order. We can apply the same arguments as Horváth [62] in

deriving his relation (4.7) to derive

max
1≤k<n

|A8(k)| n− k
log(n− k)

= Op (1) ,

by using Lemma B in Section 5.2.2 of Serfling [128] on U-statistics. Note, in particular,

that A8(k) =
∫ V

0
h̃(x)L(x)dx, where h̃(x) ≤ f(x), and

L(x) =

∫ V

0

K̃4(x, y)
(
Ĥ∗k(y−)−H(y)

)(
h∗k(y)− h̃(y)

)
dy

=
1

(n− k)2

n∑
i,j=k+1

∫ V

0

K̃4(x, y) (I(Xi < y)−H(y))

(
1

b
K

(
x−Xj

b

)
δj − h̃(y)

)
dy.

Omitting the diagonal i = j, this becomes a U-statistic

L
′
(x) =

2

(n− k)2

∑
k+1≤i<j≤n

r
′
((Xi, δi), (Xj, δj)) =

1

(n− k)2

∑
k+1≤i<j≤n

r ((Xi, δi), (Xj, δj))

where

r
′
(

(X, δ), (X
′
, δ
′
)
)

=

∫ V

0

K̃4(x, y) (I(X < y)−H(y))

(
1

b
K

(
y −X ′

b

)
δ
′ − h̃(y)

)
dy

r
(

(X, δ), (X
′
, δ
′
)
)

=
1

2

[
r
′
(

(X, δ), (X
′
, δ
′
)
)

+ r
′
(

(X
′
, δ
′
), (X, δ)

)]
.

Note that, r is symmetric and, moreover, as (Xi, δi), (Xj, δj) are independent for i 6= j

and EI(Xi > y) = H(y) due to continuity of H,

Er ((Xi, δi), (Xj, δj)) = 0, for i 6= j,

i.e., EL
′
(x) = 0, too. Also, for fixed b, r is a bounded random variable, as, in partic-

ular, K̃ and K are bounded.

Combining the results on A2(k), A4(k) and the components of A4(k), we get as

in Horváth [62]

max
1≤k<n

k(n− k)

n3/2
|A2(k)− A6(k)|

[
k

n

(
1− k

n

)]−ν
= Op

(
nν−

1
2

)
. (4.52)

Analogously, we get as in (4.9) of Horváth [62]

max
1≤k<n

k(n− k)

n3/2
|A3(k)− A9(k)|

[
k

n

(
1− k

n

)]−ν
= Op

(
nν−

1
2

)
, (4.53)
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with

A9(k) =

∫ V

0

∫ V

0

K̃5(x, y)
(
Ĥk(x−)−H(x)

)
h̃(x)h̃(y)dxdy.

b) To make the bias induced by kernel smoothing explicit, we write

A1(k) =
1

k(n− k)

k∑
i=1

n∑
j=k+1

∫ V

0

∫ V

0

K̃1(x, y)
1

b2
K

(
x−Xi

b

)
K

(
y −Xj

b

)
δiδjdxdy − θ

=
1

k(n− k)

k∑
i=1

n∑
j=k+1

(K∗(Zi, Zj)− θ∗) + (θ∗ − θ) = Uk + (θ∗ − θ) ,

where Zi = (Ti, δi), i = 1, . . . , n, and for z = (z1, z2), z
′
= (z

′
1, z

′
2)

K∗(z, z
′
) =

∫ V

0

∫ V

0

K̃1(x, y)
1

b2
K

(
x− z1

b

)
K

(
y − z′1
b

)
z2z

′

2dxdy

θ∗ = EK∗(Zi, Zj). Then, Uk is a U-statistic with symmetric kernel K∗, mean 0 and

finite second moment, as K̃1 and K are bounded. So, we can conclude as Horváth

[62] from Hall [58]’s invariance principle for U-statistics that

max
1≤k<n

∣∣∣∣∣
k∑
i=1

n∑
j=k+1

K∗(Zi, Zj)− k(n− k)

{∫ V

0

∫ V

0

K̃1(x, y)
(
hk(x)− h̃(x)

)
h̃(y)dxdy

+

∫ V

0

∫ V

0

K̃1(x, y)
(
h∗k(y)− h̃(y)

)
h̃(x)dxdy

}∣∣∣∣∣
= Op (n) .

As in Horváth [62], this relation together with (4.52) and (4.53) implies

max
1≤k<n

∣∣∣∣k(n− k)

n3/2

(
θ̂3(k)− θ∗

)
− Q̃∗n(k)

∣∣∣∣ (kn
(

1− k

n

))−ν
= Op

(
nν−

1
2

)
. (4.54)

with

Q̃∗n(k) =
k(n− k)

n3/2
{
∫ V

0

∫ V

0

K̃1(x, y)
(
hk(x)− h̃(x)

)
h̃(y)dxdy

+

∫ V

0

∫ V

0

K̃1(x, y)
(
h∗k(y)− h̃(y)

)
h̃(x)dxdy

+

∫ V

0

∫ V

0

K̃4(x, y)
(
Ĥ∗k(y−)−H(y)

)
h̃(x)h̃(y)dxdy

+

∫ V

0

∫ V

0

K̃5(x, y) (Hk(x−)−H(x)) h̃(x)h̃(y)dxdy}.

126



Q̃∗n(k) is quite similar to Q∗n(k) in Horváth [62]. We would like to replace Q̃∗n(k) by

Q∗n(k) in (4.54) to make immediate use of the final part of the proof of Theorem 2.1

of Horváth [62].

First, note that the 3rd and 4th summands of Q̃∗n(k) and Q∗n(k) are identical. The

1st and 2nd summands have exactly the same structure, as K̃1 is symmetric, so it is

sufficient to consider the first one only. Looking at the difference between the first

two summands of Q̃∗n(k) and Q∗n(k), we get∣∣∣∣∫ V

0

∫ V

0

K̃1(x, y)h̃(y)dy (dHk(x)− hk(x)dx)

∣∣∣∣ =

∣∣∣∣∫ V

0

L1(x) (dHk(x)− hk(x)dx)

∣∣∣∣
with

L1(x) = I (x ≤ V )

∫ V

0

K̃1(x, y)h̃(y)dy = I (x ≤ V ) J1(x).

Note that, by symmetry and Lipschitz continuity of K̃∣∣∣K̃(x, y)− K̃(x
′
, y)
∣∣∣ ≤ C̃

∣∣∣x− x′∣∣∣ , x, x
′
, y ∈ [0, V + ∆],

and as 1−H(x) also satisfies a Lipschitz condition on [0, V+∆] due to the boundedness

assumption on the densities of F and G, we have that∣∣∣K̃1(x, y)− K̃1(x
′
, y)
∣∣∣ ≤ C̃1

∣∣∣x− x′∣∣∣ , x, x
′
, y ∈ [0, V + ∆],

too for a suitable constant C̃1 and, hence |J1(x) − J1(x
′
)| ≤ C̃1

∣∣x− x′∣∣ too as 0 ≤
h̃(y) ≤ f(y). Therefore, for x ≤ x

′∣∣∣L1(x)− L1(x
′
)
∣∣∣ ≤ ∣∣∣I (x ≤ V )− I

(
x
′ ≤ V

)∣∣∣ |J1(x)|+
∣∣∣J1(x)− J1(x

′
)
∣∣∣

≤ CJI
(
x ≤ V < x

′
)

+ C̃1

∣∣∣x− x′∣∣∣ ,
where CJ is an upper bound for |J1(x)|, which exists due to the boundedness of K̃1.

Using this inequality and substitution x = bu + Ti, we have, as
∫
K(u)du = 1, and

δi ∈ [0, 1]∣∣∣∣∫ ∞
0

L1(x) (dHk(x)− hk(x)dx)

∣∣∣∣ =

∣∣∣∣∣1k
k∑
i=1

δi

[
L1(Ti)−

1

b

∫ ∞
0

L1(x)K

(
x− Ti
b

)
dx

]∣∣∣∣∣
=

∣∣∣∣∣1k
k∑
i=1

δi

∫
[L1(Ti)− L1(Ti + bu)]K(u)du

∣∣∣∣∣
≤ 1

k

k∑
i=1

∫ [
CJI (Ti ≤ V < Ti + bu) + CJI (Ti + bu ≤ V < Ti) + C̃1bu

]
K(u)du

= Op(b),
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from Markov’s inequality as, e.g.,

EI (Ti ≤ V < Ti + bu) = F (V )− F (V − bu) = O(b),

as F has a bounded density f .

We conclude, as k(n− k) becomes maximal for k ≈ n
2

max
1≤k<n

∣∣∣Q̃∗n(k)−Q∗n(k)
∣∣∣ (k

n

(
1− k

n

))−ν
= max

1≤k<n

k(n− k)

n3/2
Op(b)

(
k(n− k)

n2

)−ν
= Op

(√
nb
)

= Op

(
nν−

1
2

)
, (4.55)

if b = O (nν−1). Hence, we may replace Q̃∗n(k) by Q∗n(k) in (4.54).

Finally, we show that we may replace θ∗ by θ in (4.54). Recall that h̃(x) = (1 −
G(x))f(x) and

θ =

∫ V

0

∫ V

0

K̃(x, y)λ(x)λ(y)dxdy =

∫ V

0

∫ V

0

K̃1(x, y)h̃(x)h̃(y)dxdy

θ∗ =

∫ V

0

∫ V

0

K̃1(x, y)E (hk(x)h∗k(y)) dxdy =

∫ V

0

∫ V

0

K̃1(x, y)Ehk(x)Eh∗k(y)dxdy,

as hk(x) depends only on (Xi, δi), 1 ≤ i ≤ k, and h∗k(y) on (Xj, δj), k + 1 ≤ j ≤ n,

and hence are independent. From the proof of Theorem 4.2.5 with α = 1, we have

Ehk(x) − h̃(x) = O(b) uniformly in x and k. Using the boundedness of K̃1(x, y) on

[0, V ]× [0, V ], we immediately get θ∗ − θ = O(b). As in (4.55), we get that replacing

θ∗ by θ in (4.54) has a negligible effect. Finally, we conclude that, from (4.54), we

have

max
1≤k<n

|Qn(k)−Q∗n(k)|
(
k

n

(
1− k

n

))−ν
= Op

(
nν−

1
2

)
,

where Q∗n(k) is defined exactly as on p.239 of Horváth [62], and our result follows

from the rest of the proof of Theorem 2.1 of Horváth [62]. Note that our formula

looks slightly different as we consider only nonnegative Tj and Cj, and as under our

assumptions H(x) is continuous. �

4.4 Consistency of the Change Point Test

In this section, we derive the consistency of the proposed tests under alternatives,

which means that the test have asymptotic power one. For instance, to show consis-

tency of a test statistic T
(i)
n having an asymptotic critical value c

(i)
α (n) it suffices to
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show

P
(
T (i)
n > c(i)

α (n)
)
→ 1, under H1,

as n→∞.

To show consistency of the change point test, we first have to investigate the be-

haviour of λ̂2(x) under the alternative. Let H1 be satisfied for some k∗ < n. We

consider the case where k∗

n
→ τ , 0 < τ < 1, for n → ∞. Let us first consider the

numerator of λ̂2

hn(x) =
1

nb

n∑
i=1

K

(
x−Xi

b

)
δi

=
k∗

n

1

k∗

k∗∑
i=1

1

b
K

(
x−Xi

b

)
δi +

n− k∗

n

1

n− k∗
n∑

i=k∗+1

1

b
K

(
x−Xi

b

)
δi.

As from our assumption on k∗, we immediately have from Corollary 4.2.9

hn(x)
a.s.−−→ τ h̃(x) + (1− τ)h̃∗(x), uniformly in 0 ≤ x ≤ V,

where h̃(x) = (1 − G(x))f(x), h̃∗(x) = (1 − G∗(x))f ∗(x), and F , G and H denote

the distribution functions of Ti, Ci and Xi before the change point and F ∗, G∗ and

H∗ after the change point, respectively. Analogously, we write f and f ∗ for densities

of Ti, and λ and λ∗ for the hazard functions respectively of the two subsamples, i.e.,

before and after the change point.

For the denumerator of λ̂2, we have

1− Ĥn(x−) =
1

n

n∑
i=1

I (Xi ≥ x) =
k∗

n

1

k∗

k∗∑
i=1

I (Xi ≥ x) +
n− k∗

n

1

n− k∗
n∑

i=k∗+1

I (Xi ≥ x)

a.s.−−→ τ(1−H(x)) + (1− τ)(1−H∗(x)), uniformly in x,

by the Glivenko-Cantelli Theorem. Therefore, again uniformly in 0 ≤ x ≤ V

λ̂2(x) =
ĥn(x)

1− Ĥn(x−)

a.s.−−→ τ h̃(x) + (1− τ)h̃∗(x)

τ(1−H(x)) + (1− τ)(1−H∗(x))

= rτλ(x) + (1− rτ )λ∗(x),

with

rτ =
τ(1−H(x))

τ(1−H(x)) + (1− τ)(1−H∗(x))
.
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To consider a specific test, we use the statistic T
(4)
n , which is based on Corollary 4.3.3

T (4)
n = max

1≤k<n

1

σ̂n

√
k

n

(
1− k

n

)√
n
(
θ̂3(k)− θ̂3(bn

2
c)
)
.

Let k = dγne, τ < γ < 1. Then, all data contributing to h∗k(x) and Ĥ∗k(x−) belong

to the second subsample, and λ̂∗2(y)
a.s.−−→ λ∗(y) uniformly in 0 ≤ y ≤ V . λ̂2(x) will be

a mixture of λ(x) and λ∗(x) asymptotically as discussed above.

λ̂2(x)
a.s.−−→ rτ (x)λ(x) + (1− rτ (x))λ∗(x) = λγ(x),

again uniformly in 0 ≤ x ≤ V . Hence, we have

θ̂3(k) =

∫ V

0

∫ V

0

K̃(x, y)λ̂2(x)λ̂∗2(y)dxdy
a.s.−−→

∫ V

0

∫ V

0

K̃(x, y)λγ(x)λ∗(y)dxdy.

If, e.g., τ < 1
2
, then analogously for specifically γ = 1

2
, we have

θ̂3(k)− θ̂3

(
bn

2
c
)

a.s.−−→
∫ V

0

∫ V

0

K̃(x, y)
[
λγ(x)− λ 1

2
(x)
]
λ∗(y)dxdy = ∆γ.

As, additionally, the weight
[
k
n

(
1− k

n

)] 1
2 → γ(1 − γ) for n → ∞, we have that for

any ε > 0 and all large enough n

Dn(k) =

√
k

n

(
1− k

n

) ∣∣∣θ̂3(k)− θ̂3

(
bn

2
c
)∣∣∣ ≥ |∆γ| − ε,

and

max
1≤k<n

Dn(k) ≥ max
τ<γ<1

|∆γ| − ε.

As σ̂2
n will be Op(1) and bounded away from 0 under H1 too, we get that T

(4)
n =

√
n

σ̂n
max

1≤k<n
Dn(k)

P−→∞ with rate
√
n if |∆γ| > 0 for some τ < γ < 1, i.e., the power of

the test will converge to 1 for n→∞, and the test is consistent. The case τ ≥ 1
2

can

be handled analogously. Note that the condition ∆γ 6= 0 depends on K̃, V, λ, λ∗, H,

and H∗, and is an identifiability condition which guarantees that the test will be able

to distinguish H0 and H1 for n→∞.
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4.5 Test Statistic and Asymptotics under H0 for

Antisymmetric Kernels

In this section, we consider change point statistics with antisymmetric kernel K̃ in-

stead of symmetric ones. An antisymmetric kernel function has the form

K̃(x, y) = −K̃(y, x). (4.56)

Stute [136] suggested some estimators of the change point k∗ based on U-statistics

like (4.5), using antisymmetric kernels.

θ̃(k) =
k(n− k)

n2

∫ V

0

∫ V

0

K̃(x, y)(
1− Ĥn(x−)

)(
1− Ĥn(y−)

)dHk(x)dH∗k(y).

Setting rn( k
n
) = θ̃n(k) and interpolating to get a function on [0, 1], he proved the weak

convergence of n1/2(rn(nt)−θ) in D [0, 1]. He also proposed (t(1− t))1/2 as the weight

function. In case of antisymmetric kernels, Horváth [62] pointed out that under H0

estimators θ̂(k) and θ̃(k) have different asymptotic distributions which, however, may

be derived by essentially the same kind of argument. Therefore, we get the following

analogous to Theorem 4.3.1 for antisymmetric kernels.

Let θ̃3(k) be defined by θ̂3(k) in Section 4.3, but using an antisymmetric kernel

K̃(x, y). Then, we get

Q̃n(k) =
k(n− k)

n
3
2

(
θ̃3(k)− θ

)
.

Theorem 4.5.1. Let the assumptions of Theorem 4.3.1 be fulfilled except that K̃(x, y) =

−K̃(y, x). Then, under the hypothesis H0, for n → ∞, nb → ∞ and b = O
(
nν−

1
2

)
for some 0 < ν ≤ 1

2
, we have for a sequence of Brownian bridges {Bn(t), 0 ≤ t ≤ 1}

max
1≤k<n

∣∣∣∣Q̃n(k)− σBn(
k

n
)

∣∣∣∣ [kn
(

1− k

n

)]−ν
= Op(n

ν− 1
2 )

with σ2 as in Theorem 4.3.1.

Proof. We argue as Horváth [62] in the proof of his Theorem 3.1. First note that

part a) of the proof of Theorem 4.3.1 may be used without any change as we have not

exploited symmetry of K̃ there. At the beginning of part b) of that proof, we have

introduced the kernel K∗ which now is antisymmetric such that we cannot use Hall
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[58]’s result. Instead we use Janson and Wichura [69] to conclude with Zi = (Ti, δi)

again

max
1≤k<n

∣∣∣∣∣
k∑
i=1

n∑
j=k+1

K∗ (Zi, Zj)− k(n− k)

{∫ V

0

∫ V

0

K̃1(x, y)
(
hk(x)− h̃(x)

)
h̃(y)dxdy

+

∫ V

0

∫ V

0

K̃1(x, y)
(
h∗k(y)− h̃(y)

)
h̃(x)dydx

}∣∣∣∣∣
= Op(n),

i.e., we have the same kind of approximation result as in the proof of Theorem 4.3.1.

In particular, we get

max
1≤k<n

∣∣∣Q̃n(k)− Q̃∗n(k)
∣∣∣ [k
n

(
1− k

n

)]−ν
= Op(n

ν− 1
2 ),

where Q̃∗n(k) is defined as in the proof of Theorem 4.3.1, but now with an antisym-

metric kernel.

As in the proof of Theorem 4.3.1, we can show with exactly the same arguments

as in the proof of Theorem 4.3.1 that

max
1≤k<n

∣∣∣Q̃∗n(k)− Q̂n(k)
∣∣∣ [k
n

(
1− k

n

)]−ν
= Op(n

ν− 1
2 ),

where Q̂n(k) is called Q∗n(k) in the proof of Theorem 3.1 of Horváth [62]. Again, with

the same arguments as in the proof of Theorem 4.3.1, we finally get

max
1≤k<n

∣∣∣Q̃n(k)− Q̂n(k)
∣∣∣ [k
n

(
1− k

n

)]−ν
= Op(n

ν− 1
2 ),

and the rest of the result follows from Horváth [62]’s derivation of the asymptotics of

Q̂n(k).

Therefore, for ν = 1
2

the asymptotic distribution of the test statistic under H0 using

Corollary 3.2 of Horváth [62] is summarized in Corollary 4.5.2.

Corollary 4.5.2. If the conditions of Theorem 4.5.1 are satisfied, then

lim
n→∞

P

a(log n)
1

σ
max

1≤k<n

Qn(k)(
k
n

(
1− k

n

)) 1
2

≤ t+ d(log n)

 = exp(−e−t), (4.57)
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and

lim
n→∞

P

a(log n)
1

σ
max

1≤k<n

|Qn(k)|(
k
n

(
1− k

n

)) 1
2

≤ t+ d(log n)

 = exp(−2e−t), (4.58)

for all t, with

a(x) = (2 log x)
1
2 ,

and

d(x) = 2 log x+
1

2
log log x− 1

2
log π.

We can use σ̂2
n from (4.38) to estimate σ2, as (4.39) holds in case of antisymmetric

kernels too. Corollary 4.5.2 gives the asymptotic distribution of the test statistic

under the null hypothesis of no change in the hazard functions for antisymmetric

kernels. Thus we get the test statistics from (4.57) and (4.58), respectively, as

T (9)
n = max

1≤k<n

1

σ̂n

Qn(k)(
k
n

(
1− k

n

)) 1
2

,

and

T (10)
n = max

1≤k<n

1

σ̂n

|Qn(k)|(
k
n

(
1− k

n

)) 1
2

.

The asymptotic critical values c
(1)
α (n) and c

(2)
α (n) are now derived from Theorem 4.5.1.

4.5.1 Change Point Tests with Different Weights

As in Section 4.3.2, we can replace the standard weights (ν = 1
2
) with different weights

qν(t) = (t(1− t))ν for 0 < ν < 1
2
. As in Corollary 3.1 of Horváth [62], we have

Corollary 4.5.3. Let the assumptions of Theorem 4.5.1 be fulfilled for some 0 < ν <
1
2
, qν(t) = (t(1− t))ν. If H0 holds, then

1

σ
sup

0<t<1

Q̃n(dnte)
qν(t)

D−→ sup
0<t<1

B(t)

qν(t)
, (4.59)

and

1

σ
sup

0<t<1

∣∣∣Q̃n(dnte)
∣∣∣

qν(t)

D−→ sup
0<t<1

|B(t)|
qν(t)

. (4.60)
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The asymptotic distribution of the weighted test statistics under the null hypothesis

of no change in hazard functions for antisymmetric kernels can be calculated from

Corollary 4.5.3. Thus we obtain the test statistic from (4.59)

T (11)
n = sup

0<t<1

Q̃n(dnte)
σ̂nqν(t)

,

and from (4.60)

T (12)
n = sup

0<t<1

|Q̃n(dnte)|
σ̂nqν(t)

.

The asymptotic critical values are c
(11)
α (n) and c

(12)
α (n) for the test statistics T

(11)
n and

T
(12)
n , respectively, where c

(11)
α (n) is the (1 − α)-quantile of sup

0<t<1

B(t)
qν(t)

and c
(12)
α (n) is

the (1− α)-quantile of sup
0<t<1

|B(t)|
qν(t)

.

4.6 Some Remarks on a Change Point Test using

λ̂1(x)

Regarding Theorem 4.2.5, we expect that the change point test of the previous sections

also works with the same kind of asymptotic distribution under H0. Let λ̂1,k(x) be the

estimate of λ(x) described in Section 4.2.2, which uses only the subsample X1, . . . , Xk.

Correspondingly λ̂∗1,k(x) denotes the same estimate based on Xk+1, . . . , Xn. Then, we

define

θ̂2(k) =

∫ V

0

∫ V

0

K̃(x, y)λ̂1,k(x)λ̂∗1,k(y)dxdy.

From Theorem 4.2.8, we have under H0

sup
0≤x≤V

∣∣∣λ̂1,k(x)− λ(x)
∣∣∣ = Oa.s.

(
1

kb
log

1

b

)
+O

(
b2
)
,

if we assume α = 1 in that theorem. If k
n
→ γ, 0 < γ < 1, the convergence rate

is Oa.s.

(
1
nb

log 1
b

)
+ O (b2) if b → 0 such that the conditions of Theorem 4.2.8 are

satisfied. The same holds for λ̂∗1,k, and we get by the same arguments as used for

Corollary 4.2.9.

Corollary 4.6.1. Under the assumptions of Theorem 4.2.5 with α = 1 and K̃ satis-

fying (4.10), we have under H0∣∣∣θ̂2(k)− θ
∣∣∣ = Oa.s.

((
1

k
+

1

n− k

)
1

b
log

1

b

)
+O

(
b2
)
.
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For instance, kn = dγne for some 0 < γ < 1, this implies that θ̂2(kn)
a.s.−−→ θ, more

precisely, ∣∣∣θ̂2(kn)− θ
∣∣∣ = Oa.s.

(
1

nb
log

1

b

)
+O

(
b2
)

= Oa.s.

(
1

nb
log

1

b

)
,

if b = O (nν−1) for some 0 < ν ≤ 1
2

as in the assumptions of Theorem 4.3.1. For

getting an analogue of said theorem with λ̂1 replacing λ̂2, we would consider

Q
′

n(k) =
k(n− k)

n
3
2

(
θ̂2(k)− θ

)
,

which should be approximated by a Gaussian Process at k
n
, likely the same one as

in Theorem 4.3.1. This would require that for kn = dγne, Q′n(kn) = Op(1), which,

however, does not follow from the above convergence rate which would imply only∣∣∣Q′n(kn)
∣∣∣ = Oa.s.

(
1√
nb

log
1

b

)
,

and from b = O (nν−1) for some 0 < ν ≤ 1
2
, i.e., b = O

(
n−

1
2

)
, we have

√
nb = O(1),

and 1√
nb

log 1
b
→∞. So, the rates of Diehl and Stute [41] which were meant to study

uniform convergence of λ̂1(x) to λ(x) are not suitable for studying the asymptotics

of Q
′
n(k).

We guess that the approach of Diehl and Stute [41] to approximate λ̂1(x) − λ̄1(x)

by (hn(x)− Ehn(x)) /(1−H(x)) where the latter is related closely to λ̂2(x)−Eλ̂2(x)

may nevertheless be used for showing that Q
′
n(k) has the same asymptotic behaviour

as Qn(k) of Theorem 4.3.1, and, then, would enable us to construct change point tests

using λ̂1(x). This has to be postponed to future work.

Another approach to proving an analogue to Theorem 4.3.1 for Q
′
n(k) would be to

mimic the proof of Theorem 4.3.1, which closely follows Horváth [62]’s arguments.

This is far from straightforward either as Horváth uses several deep asymptotic results

for sums of i.i.d. random variables whereas

λ̂1,k(x) =
1

b

k∑
i=1

K

(
x−X(i)

b

)
δ(i)

k − i+ 1
,

is a sum of order statistics with a rather involved kind of dependence. Note that here

X(i), i = 1, . . . , k, denote the order statistics of X1, . . . , Xk only, and δ(1), . . . , δ(k) are

the corresponding censoring indicators.
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4.7 Discussion

The main contributions of this chapter are meticulously developed nonparametric

change point tests for detecting changes in the hazard distribution of survival times

when the observations are subject to right censoring, by extending the U-statistic-type

processes considered by Horváth [62]. In this completely nonparametric framework,

we derived the asymptotic distributions of our proposed test statistics under H0 using

symmetric as well as antisymmetric kernels. Four types of change point tests were

developed for two scenarios using symmetric kernels: the true parameter θ is known

- the developed tests are T
(1)
n and T

(2)
n ; and when it is unknown - the developed tests

are T
(3)
n and T

(4)
n . Subsequently, we developed change point tests T

(5)
n and T

(6)
n using

the weight function qν(t) = (t(1 − t))ν for 0 < ν < 1
2

when θ is known. The asymp-

totic behavior of our proposed test statistics under H1 were shown in Section 4.4. In

case of antisymmetric kernels, we proposed the limit behavior of tests T
(9)
n and T

(10)
n ,

and the weighted asymptotic of tests T
(11)
n and T

(12)
n under the null hypothesis. We

will investigate the finite sample properties of our developed tests via simulations and

real data applications in Chapter 5. All of our developed test statistics are based on

the estimator λ̂2 for symmetric and antisymmetric kernels, although we have found

estimators λ̂1 and λ̂2 as the equivalent estimators of Horváth’s estimator. One can

construct change point tests using λ̂1(x) estimator, which can be considered in future

work. The asymptotic distribution of the change point estimator in the hazard func-

tions using λ̂2 is not explored yet and remains open for further study.
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Chapter 5: Simulations and Appli-
cations

In this chapter, several simulation examples will discuss to assess the finite sample

behavior with different distributions of our developed test statistics. In fact, we use

the Monte Carlo simulation with exponential random variables to investigate the

asymptotic properties of our proposed tests with their power performances. The pro-

posed tests will then be applied to analyze two sets of real data collected from the

cell stimulus responses observed in an animal physiology study at the University of

Kaiserslautern and the breast cancer mortality rates among the recruited patients in

the United States during 1973 to 2012.

The organization of the present chapter is as follows. Section 5.1 explores all the sim-

ulation results to describe the asymptotic behavior of our developed tests in Chapter

4 with corresponding power performances. Illustration of our proposed tests to de-

tect the change point in the hazard distribution is conducted through application in

two data examples and presented in Section 5.2. Finally, Section 5.3 contains some

concluding remarks.

5.1 Simulations

We proposed eight different test statistics for symmetric kernel function in Section

4.3 of Chapter 4, among them T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n are unweighted test statistics

whereas T
(5)
n , T

(6)
n , T

(7)
n and T

(8)
n are weighted test statistics. Another four test statis-

tics T
(9)
n , T

(10)
n , T

(11)
n and T

(12)
n were also proposed in Section 4.5 for antisymmetric

kernel function, where T
(11)
n and T

(12)
n are weighted test statistics.

All of these developed test statistics are based on U-statistic-type processes where
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we use ratio-type kernel hazard estimator. Hence, we use two kinds of kernel func-

tions: K̃(x, y) for U-statistic-type processes and K(x) for the ratio-type kernel hazard

estimator. Typical choices of symmetric K̃(x, y) kernel functions are xy, (x − y)2/2

(the sample variance), |x − y| (Gini’s mean difference), and sign(x + y) (Wilcoxon’s

one-sample statistic) in U-statistics, (confer Csörgö and Horváth [37]). In this simula-

tion study, we consider K̃(x, y) = xy for the symmetric kernel and K̃(x, y) = x−y for

the antisymmetric kernel. Usually, any symmetric kernel functions such as Uniform,

Epanechnikov, Biweight and Gaussian are used for the kernel K(x) in kernel hazard

estimation, as explained in Section 2.2. Furthermore, for the kernel K(x) Wang [143]

recommended to use either the Epanechnikov kernel or the Gaussian kernel in kernel

hazard estimation. Nonetheless, we are using the Epanechnikov kernel as Müller [96]

found that this has certain optimal properties.

All of our developed test statistics in Sections 4.3, 4.3.2, and 4.5 of Chapter 4 contain

kernel hazard estimators, which requires the optimal bandwidth selection for kernel

density estimation. Good discussions of such procedures can be found in the mono-

graph of Jones et al. [70]. The authors found that some second generation methods,

including plug-in and smoothed bootstrap techniques, are far superior to well-known

first generation methods, such as rules of thumb, least squares cross-validation, and

biased cross-validation. They also recommend a solve-the-equation plug-in band-

width selector as being most reliable in terms of overall performance. Among the

various solve-the-equation plug-in bandwidth selectors we are interested in using the

approach proposed by Sheather and Jones [130], which is known as Sheather-Jones

plug-in bandwidth method.

The Sheather-Jones plug-in bandwidth method estimates the optimal bandwidth by

b =

{
R(K)(∫

x2K(x)dx
)2
R(h

′′
n,g(b)))

}1/5

n−1/5,

where R(ϕ) =
∫
ϕ2(x)dx, K is the kernel function and g(b) is the pilot bandwidth,

for details confer Sheather and Jones [130]. Hence, for estimating the function h̃(x)

using the kernel density estimator hn(x) = hn,b(x) (4.16), described in Section 4.2

of Chapter 4, we need to estimate the optimal bandwidth b for the Epanechnikov

kernel using the Sheather-Jones plug-in bandwidth method. Table 5.1 represents dif-

ferent values of the optimal bandwidth b using the Sheather-Jones plug-in bandwidth
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method.

Table 5.1: The Optimal Bandwidth for Epanechnikov kernel using the Sheather-Jones
plug-in Method for Simulated Exponential Sample with Parameter µ and Sam-
ple Size n.

µ
n 1.0 1.5 2.0 2.5 3.0

50 0.096 0.077 0.064 0.048 0.063
100 0.068 0.081 0.054 0.031 0.022
200 0.073 0.031 0.037 0.025 0.019
500 0.058 0.032 0.023 0.022 0.017
1000 0.039 0.029 0.019 0.016 0.013

We choose the bandwidth as a global bandwidth based on the whole sample. In case,

where there is a change point that may lead to somewhat sub-optimal choices as the

optimal bandwidth depends on the hazard function to be estimated, and that differs

between the sub-samples before and after the change point. Moreover, the optimal

global bandwidth essentially depends on summary statistics of the hazard function

like the total curvature (cf. Silverman [131]). So, choosing the bandwidth based on

the total sample should not be a big problem if the shapes of hazard function before

and after the change point are reasonably similar.

Certainly, properties and performances of our tests depend on the kernel function

K̃(x, y), the value of the parameter V , the kernel function K(x) and the bandwidth

b, and the weight q(t) (for the weighted test statistics). The current section focuses

on describing and discussing for all our proposed tests, organized, into two groups:

unweighted and weighted statistics, their features based on the Monte Carlo simula-

tion study.

5.1.1 Asymptotic and Simulated Critical Values

Unweighted Test Statistics

First, we calculated the asymptotic critical value c
(1)
α (n) for tests T

(1)
n , T

(3)
n and T

(9)
n

using (4.41) for different sample sizes n at various levels of significance α and present

those values in Table 5.2. Table 5.3 illustrates various asymptotic critical values
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c
(2)
α (n) for tests T

(2)
n , T

(4)
n and T

(10)
n using (4.42). All these tests have Gumbel ex-

treme value type distribution, where the convergences are rather slow and thus these

tests are conservative for small samples. Hereafter, we did simulation to compare the

simulated critical values with the approximated critical values for our proposed test

statistics, and organize those values in Tables 5.4 and 5.5.

Table 5.2: Some Selected Critical Values c
(1)
α (n) at various Level of Significance α and

Sample Size n for Test Statistics T
(1)
n , T

(3)
n and T

(9)
n .

α
n 0.005 0.01 0.025 0.05 0.10

50 4.6054 4.1842 3.6249 3.1974 2.7616
100 4.5715 4.1735 3.6448 3.2408 2.8289
200 4.5527 4.1718 3.6658 3.2792 2.8850
300 4.5459 4.1731 3.6780 3.2996 2.9139
500 4.5402 4.1762 3.6929 3.3235 2.9469
1000 4.5361 4.1823 3.7124 3.3532 2.9871
3000 4.5350 4.1939 3.7409 3.3948 3.0419

Table 5.3: Some Selected Critical Values c
(2)
α (n) at various Level of Significance α and

Sample Size n for Test Statistics T
(2)
n , T

(4)
n and T

(10)
n .

α
n 0.005 0.01 0.025 0.05 0.10

50 5.0251 4.6039 4.0445 3.6171 3.1813
100 4.9681 4.5701 4.0414 3.6374 3.2256
200 4.9322 4.5513 4.0453 3.6587 3.2645
300 4.9173 4.5445 4.0494 3.6711 3.2853
500 4.9028 4.5388 4.0555 3.6862 3.3095
1000 4.8886 4.5348 4.0649 3.7057 3.3396
3000 4.8748 4.5337 4.0808 3.7346 3.3818

We performed M = 1000 simulations for each case. In each case, we considered a

simulation where the survival time Ti and the censoring time Ci were exponentially

distributed with rate µ and µc, respectively, under the null hypothesis (4.2). Hence,

we obtained the simulated data (Xi, δi) by (4.1). Note that we use µ as the rate of

exponential distribution instead of λ, since λ is used for hazard notation in this study.
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We conducted simulations to compare the simulated critical values of unweighted test

statistics T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n with the approximated critical values of those statis-

tics for the sample sizes n = 50, 100, 200, and 500 with the rate µ = 1.0, 1.5, 2.0, 2.5,

and 3.0 at significance levels α = 0.01, 0.05, 0.10. The results are reported for tests

T
(1)
n and T

(3)
n in Table 5.4, and for tests T

(2)
n and T

(4)
n in Table 5.5.

Table 5.4: Comparison of Simulated and Approximated Critical Values c
(1)
α (n) of Test

Statistics T
(1)
n and T

(3)
n for V = 2

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV

T
(1)
n

Sim.CV
T

(3)
n

App.CV

c
(1)
α (n)

Sim.CV
T

(1)
n

Sim.CV
T

(3)
n

App.CV

c
(1)
α (n)

Sim.CV
T

(1)
n

Sim.CV
T

(3)
n

App.CV

c
(1)
α (n)

50 1.0 4.0393 7.5207 4.1842 2.4922 4.8602 3.1974 1.7762 3.5742 2.7616
1.5 4.0171 6.4119 4.1842 2.5065 4.1211 3.1974 1.7874 3.0208 2.7616
2.0 4.0468 5.6889 4.1842 2.5353 3.6552 3.1974 1.7934 2.6528 2.7616
2.5 3.9962 4.9660 4.1842 2.5170 3.2013 3.1974 1.7919 2.3618 2.7616
3.0 4.1284 5.0169 4.1842 2.5246 3.1318 3.1974 1.8300 2.3143 2.7616

100 1.0 3.9973 6.6437 4.1735 2.3221 4.6146 3.2408 1.6157 3.4695 2.8289
1.5 4.0542 5.8953 4.1735 2.3482 4.0184 3.2408 1.6392 3.0604 2.8289
2.0 4.0463 4.9734 4.1735 2.3562 3.4380 3.2408 1.6328 2.6170 2.8289
2.5 3.9850 4.3589 4.1735 2.2972 2.9101 3.2408 1.6128 2.2330 2.8289
3.0 4.0276 3.8296 4.1735 2.3382 2.6311 3.2408 1.5958 1.9838 2.8289

200 1.0 3.6380 7.3976 4.1718 2.3748 5.0364 3.2792 1.6192 4.0417 2.8850
1.5 3.6786 5.7951 4.1718 2.3208 3.9692 3.2792 1.5798 3.0998 2.8850
2.0 3.5942 5.2874 4.1718 2.3608 3.5809 3.2792 1.6412 2.8581 2.8850
2.5 3.6385 4.6109 4.1718 2.3609 3.1661 3.2792 1.6349 2.4736 2.8850
3.0 3.5934 4.1769 4.1718 2.3628 2.8675 3.2792 1.6013 2.2484 2.8850

500 1.0 3.7351 7.4691 4.1762 2.3875 5.3312 3.3235 1.5752 4.0003 2.9469
1.5 3.7575 6.1999 4.1762 2.3617 4.2677 3.3235 1.6110 3.2051 2.9469
2.0 3.7195 5.3022 4.1762 2.3522 3.6725 3.3235 1.5951 2.7689 2.9469
2.5 3.6498 4.8213 4.1762 2.4383 3.3145 3.3235 1.5736 2.4755 2.9469
3.0 3.8460 4.3719 4.1762 2.3679 3.0536 3.3235 1.5767 2.2619 2.9469

Table 5.4 reveals that the critical values c
(1)
α (n) obtained from the limiting distribution

somehow overestimate the simulated critical values of T
(1)
n with V = 2

µ
, but is mostly

close. However, the simulated critical values of T
(3)
n overestimate the approximated

critical values c
(1)
α (n) with the minimum rate of exponential variables, but these val-

ues proceeds closer as the rate is increasing and the scenario becomes clearer with

larger sample sizes. Therefore, we can use the approximated critical values c
(1)
α (n) to
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the proposed tests T
(1)
n and T

(3)
n reasonably.

Table 5.5: Comparison of Simulated and Approximated Critical Values c
(2)
α (n) of Test

Statistics T
(2)
n and T

(4)
n for V = 2

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV

T
(2)
n

Sim.CV
T

(4)
n

App.CV

c
(2)
α (n)

Sim.CV
T

(2)
n

Sim.CV
T

(4)
n

App.CV

c
(2)
α (n)

Sim.CV
T

(2)
n

Sim.CV
T

(4)
n

App.CV

c
(2)
α (n)

50 1.0 4.0393 7.5207 4.6039 2.4922 4.8602 3.6171 1.8657 3.5742 3.1813
1.5 4.0171 6.4119 4.6039 2.5065 4.1211 3.6171 1.8646 3.0208 3.1813
2.0 4.0468 5.6889 4.6039 2.5353 3.6552 3.6171 1.8660 2.6528 3.1813
2.5 3.9962 4.9660 4.6039 2.5170 3.2013 3.6171 1.8644 2.3618 3.1813
3.0 4.1284 5.0169 4.6039 2.5246 3.1318 3.6171 1.8778 2.3143 3.1813

100 1.0 3.9973 6.6437 4.5701 2.5941 4.6146 3.6374 2.5426 3.4695 3.2256
1.5 4.0542 5.8953 4.5701 2.5848 4.0184 3.6374 2.5387 3.0604 3.2256
2.0 4.0463 4.9734 4.5701 2.5876 3.4380 3.6374 2.5404 2.6170 3.2256
2.5 3.9850 4.3589 4.5701 2.5939 2.9101 3.6374 2.5414 2.2330 3.2256
3.0 4.0276 3.8296 4.5701 2.5953 2.6311 3.6374 2.5412 1.9838 3.2256

200 1.0 3.6419 7.3976 4.5513 3.5645 5.0364 3.6587 3.5311 4.0417 3.2645
1.5 3.6786 5.7951 4.5513 3.5654 3.9692 3.6587 3.5313 3.0998 3.2645
2.0 3.6384 5.2874 4.5513 3.5647 3.5809 3.6587 3.5308 2.8581 3.2645
2.5 3.6423 4.6109 4.5513 3.5650 3.1661 3.6587 3.5310 2.4736 3.2645
3.0 3.6424 4.1769 4.5513 3.5638 2.8675 3.6587 3.5314 2.2484 3.2645

500 1.0 5.5946 7.4691 4.5388 5.5525 5.3312 3.6862 5.5266 4.0003 3.3095
1.5 5.5952 6.1999 4.5388 5.5525 4.2677 3.6862 5.5272 3.2051 3.3095
2.0 5.5952 5.3022 4.5388 5.5523 3.6725 3.6862 5.5271 2.7689 3.3095
2.5 5.5948 4.4813 4.5388 5.5523 3.3145 3.6862 5.5264 2.4755 3.3095
3.0 5.5951 4.3720 4.5388 5.5525 3.0536 3.6862 5.5274 2.2619 3.3095

Table 5.5 displays the asymptotic critical values c
(2)
α (n) are close enough to the sim-

ulated critical values of T
(2)
n with V = 2

µ
for small samples, but are overestimated

for comparative larger sample size n = 500. However, the simulated critical values of

T
(4)
n overestimate the approximated critical values c

(2)
α (n) with the minimum rate of

exponential variables, but these values proceeds closer as the rate is increasing and

the scenario becomes clearer with larger sample sizes, similar to test T
(3)
n . Conse-

quently, it is equitable to use the approximated critical values c
(2)
α (n) to the proposed

tests T
(2)
n and T

(4)
n . The parameter V has a significant impact on our developed tests,

the simulated critical values are illustrating a reasonable performance with V = 2
µ
,

where we are assuming that F (V ) ≈ 0.8646 < 1. Whereas, the simulated critical

values are not that close with V = 3
µ
, where we assume F (V ) ≈ 0.9502 < 1, which
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are illustrated in Tables B.1 and B.2 in Appendix B.

Weighted Test Statistics

The weight function q(t) = (t(1−t))0.2 is considered for this simulation study. Hence-

forth, we used weight q(t) = (t(1 − t))0.2 in calculating the critical values for our

developed tests T
(5)
n , T

(6)
n , T

(7)
n , T

(8)
n , T

(11)
n and T

(12)
n .

The limiting Gaussian process {(1− t)W (t) + t (W (1)−W (t)) , 0 ≤ t ≤ 1} appeared

earlier in Csörgő and Horváth [36] as the limit of U-statistic-type processes when

there is no censoring. Our proposed test statistics T
(5)
n and T

(6)
n have an asymptotic

distribution as Gaussian process divided by its weight q(t), which are presented in

(4.45) and (4.46), respectively. So far our knowledge, there is no known formula

for the distribution function of the limiting random variable in (4.45) and (4.46).

Therefore, we simulated the distribution function in (4.45) and (4.46) for M = 20000

repetitions and computed different percentiles to estimate the critical values at var-

ious level of significance. The obtained critical values are shown in Tables 5.6 and 5.7.

Table 5.6: Selected Critical Values c
(5)
α (n) at various Level of Significance α and n for Test

Statistic T
(5)
n with q(t) = (t(1− t))0.2.

α
n 0.005 0.01 0.025 0.05 0.10

50 5.6230 5.0626 4.2644 3.5860 2.8115
100 6.4367 5.8276 4.9381 4.1241 3.2100
200 7.5343 6.7644 5.7031 4.7207 3.6609
300 8.0469 7.3130 6.2300 5.2005 4.0815
500 8.8748 8.0218 6.7716 5.7200 4.5062
1000 10.0892 9.1182 7.8216 6.5602 5.1605
3000 12.9931 11.5445 9.7071 8.1968 6.3636

106 41.6505 37.0325 31.2583 26.1078 20.2125

143



Table 5.7: Some Selected Critical Values c
(6)
α (n) at various Level of Significance α and n

for Test Statistic T
(6)
n with q(t) = (t(1− t))0.2.

α
n 0.005 0.01 0.025 0.05 0.10

50 6.1179 5.6047 4.8970 4.2818 3.5980
100 7.0775 6.4923 5.6496 4.9482 4.1252
200 8.2244 7.5343 6.4932 5.6930 4.7207
300 8.7031 8.0275 7.0695 6.2155 5.1776
500 9.7780 8.9213 7.7259 6.7867 5.6984
1000 10.9802 10.1390 8.9120 7.8421 6.5995
3000 14.0463 12.9102 11.0982 9.7381 8.2104

106 44.3602 40.7064 35.4265 30.9392 26.0652

Our proposed tests T
(7)
n and T

(8)
n have an asymptotic Brownian bridge type process

distribution, which are respectively sup
0<t<1

{(1−2t)B(t)}
q(t)

and sup
0<t<1

|(1−2t)B(t)|
q(t)

, described in

Section 4.3.2. We conducted simulation for M = 20000 times to compute the distri-

bution function in sup
0<t<1

{(1−2t)B(t)}
q(t)

and sup
0<t<1

|(1−2t)B(t)|
q(t)

for different percentiles. The

results for approximated critical values at various level of significance are presented

in Tables 5.8 and 5.9.

Table 5.8: Some Selected Critical Values c
(7)
α (n) at various Level of Significance α and n

for Test Statistic T
(7)
n .

α
n 0.005 0.01 0.025 0.05 0.10

50 1.2278 1.1446 1.0281 0.9321 0.8226
100 1.2490 1.1629 1.0562 0.9626 0.8591
200 1.2797 1.2088 1.0893 0.9923 0.8872
300 1.2924 1.2080 1.0968 0.9999 0.8922
500 1.3003 1.2207 1.1060 1.0074 0.8965
1000 1.3341 1.2388 1.1158 1.0227 0.9132
3000 1.3156 1.2402 1.8441 1.0364 0.9305

106 1.3438 1.2620 1.1440 1.0479 0.9376
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Table 5.9: Some Selected Critical Values c
(8)
α (n) at various Level of Significance α and n

for Test Statistic T
(8)
n .

α
n 0.005 0.01 0.025 0.05 0.10

50 1.3046 1.2191 1.1075 1.0236 0.9285
100 1.3542 1.2598 1.1470 1.0553 0.9587
200 1.3750 1.2899 1.1853 1.0893 0.9894
300 1.3678 1.2995 1.1833 1.0969 0.9970
500 1.3832 1.3069 1.1980 1.1049 1.0056
1000 1.3950 1.3175 1.2032 1.1153 1.0195
3000 1.4008 1.3201 1.2159 1.1268 1.0267

106 1.4203 1.3361 1.2295 1.1436 1.0442

Our developed tests T
(11)
n and T

(12)
n have asymptotic Brownian bridge type process

distribution, i.e., sup
0<t<1

{B(t)}
q(t)

and sup
0<t<1

|B(t)|
q(t)

, respectively, which are accordingly pre-

sented in (4.59) and (4.60). We conducted simulation forM = 20000 times to compute

the distribution function in sup
0<t<1

{B(t)}
q(t)

and sup
0<t<1

|B(t)|
q(t)

for different percentiles. Re-

sults are displayed in Tables 5.10 and 5.11 for different sample sizes at various level

of significance.

Table 5.10: Some Selected Critical Values c
(11)
α (n) at various Level of Significance α and

n for Test statistic T
(11)
n .

α
n 0.005 0.01 0.025 0.05 0.10

50 2.0443 1.9226 1.7263 1.5553 1.3619
100 2.1360 1.9862 1.7754 1.5947 1.3947
200 2.1255 1.9882 1.7915 1.6190 1.4214
300 2.1436 2.0166 1.8201 1.6395 1.4398
500 2.1757 2.0254 1.7915 1.6300 1.4378
1000 2.1804 2.0376 1.8426 1.6539 1.4614
3000 2.2111 2.0629 1.8441 1.6653 1.4762

106 2.1830 2.0429 1.8501 1.6764 1.4805
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Table 5.11: Some Selected Critical Values c
(12)
α (n) at various Level of Significance α and

n for Test statistic T
(12)
n .

α
n 0.005 0.01 0.025 0.05 0.10

50 2.1953 2.0699 1.8675 1.7210 1.5505
100 2.2592 2.1253 1.9262 1.7669 1.5865
200 2.2768 2.1381 1.9551 1.8016 1.6254
300 2.3077 2.1386 1.9677 1.8070 1.6317
500 2.2673 2.1608 1.9682 1.8072 1.6353
1000 2.3349 2.1973 1.9928 1.8342 1.6531
3000 2.3289 2.2016 2.0031 1.8391 1.6608

106 2.3076 2.1769 1.9998 1.8501 1.6764

Table 5.12: Comparison of Simulated and Approximated Critical Values c
(5)
α (n) of Test

Statistic T
(5)
n with q(t) = (t(1− t))0.2 and V = 2

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 1.2416 5.0626 0.8101 3.5860 0.5885 2.8115
1.5 1.2347 5.0626 0.8270 3.5860 0.5890 2.8115
2.0 1.2439 5.0626 0.8316 3.5860 0.5844 2.8115
2.5 1.2283 5.0626 0.8258 3.5860 0.5891 2.8115
3.0 1.2689 5.0626 0.8480 3.5860 0.6070 2.8115

100 1.0 1.0014 5.8276 0.6350 4.1241 0.4327 3.2100
1.5 1.0167 5.8276 0.6044 4.1241 0.4402 3.2100
2.0 1.0158 5.8276 0.6041 4.1241 0.4429 3.2100
2.5 0.9979 5.8276 0.6148 4.1241 0.4413 3.2100
3.0 1.0195 5.8276 0.6247 4.1241 0.4294 3.2100

200 1.0 0.5754 6.7644 0.3134 4.7207 0.1386 3.6609
1.5 0.5723 6.7644 0.3076 4.7207 0.1300 3.6609
2.0 0.5684 6.7644 0.3129 4.7207 0.1383 3.6609
2.5 0.5765 6.7644 0.3041 4.7207 0.1312 3.6609
3.0 0.5820 6.7644 0.2997 4.7207 0.1381 3.6609

500 1.0 0.1224 8.0218 0.0000 5.7200 0.0000 4.5062
1.5 0.1181 8.0218 0.0000 5.7200 0.0000 4.5062
2.0 0.1147 8.0218 0.0000 5.7200 0.0000 4.5062
2.5 0.1251 8.0218 0.0000 5.7200 0.0000 4.5062
3.0 0.1113 8.0218 0.0000 5.7200 0.0000 4.5062

We performed M = 1000 simulations to compare the simulated critical values with

the approximated critical values for our proposed weighted test statistics T
(5)
n , T

(6)
n ,
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T
(7)
n , T

(8)
n , T

(11)
n and T

(12)
n for the sample sizes n = 50, 100, 200, and 500 with the

rate µ = 1.0, 1.5, 2.0, 2.5, and 3.0 at significance levels α = 0.01, 0.05, 0.10, and we

organized those values in Tables 5.12, 5.13, 5.14 and 5.15. In each case, we considered

the data generation process similar to that of our developed unweighted tests, i.e.,

the survival time Ti and the censoring time Ci were exponentially distributed with

rate µ and µc, respectively, under the null hypothesis (4.2). Hence, we obtained the

simulated data (Xi, δi) by (4.1).

Table 5.13: Comparison of Simulated and Approximated Critical Values c
(6)
α (n) of Test

Statistic T
(6)
n with q(t) = (t(1− t))0.2 and V = 2

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 1.2440 5.6047 1.2122 4.2818 1.1980 3.5980
1.5 1.2469 5.6047 1.2118 4.2818 1.1971 3.5980
2.0 1.2483 5.6047 1.2116 4.2818 1.1968 3.5980
2.5 1.2434 5.6047 1.2117 4.2818 1.1970 3.5980
3.0 1.2689 5.6047 1.2101 4.2818 1.1948 3.5980

100 1.0 1.7051 6.4923 1.6792 4.9482 1.6640 4.1252
1.5 1.7007 6.4923 1.6786 4.9482 1.6626 4.1252
2.0 1.7017 6.4923 1.6787 4.9482 1.6632 4.1252
2.5 1.7043 6.4923 1.6794 4.9482 1.6639 4.1252
3.0 1.7053 6.4923 1.6793 4.9482 1.6642 4.1252

200 1.0 2.3756 7.5343 2.3437 5.6930 2.3255 4.7207
1.5 2.3766 7.5343 2.3447 5.6930 2.3263 4.7207
2.0 2.3754 7.5343 2.3437 5.6930 2.3254 4.7207
2.5 2.3762 7.5343 2.3441 5.6930 2.3262 4.7207
3.0 2.3764 7.5343 2.3444 5.6930 2.3264 4.7207

500 1.0 3.6901 8.9213 3.6632 6.7867 3.6454 5.6984
1.5 3.6904 8.9213 3.6630 6.7867 3.6461 5.6984
2.0 3.6905 8.9213 3.6629 6.7867 3.6460 5.6984
2.5 3.6902 8.9213 3.6630 6.7867 3.6456 5.6984
3.0 3.6904 8.9213 3.6632 6.7867 3.6462 5.6984

Using the Sheather-Jones plug-in optimal bandwidth b from Table 5.1, V = 2
µ

and

the weight q(t) = (t(1− t))0.2, we found that the approximated critical values c
(5)
α (n)

of test statistic T
(5)
n are highly overestimating the simulated critical values of T

(5)
n for

all cases. So, the tests using the approximated values are quite conservative. The

simulated critical values are proceeding to zero as sample size increases for test T
(5)
n ,

which reveals in Table 5.12. Oppositely, the simulated critical values for test T
(6)
n are
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proceeding to the approximated critical values c
(6)
α (n) as sample size increases, those

are illustrated in Table 5.13.

Table 5.14: Comparison of Simulated and Approximated Critical Values c
(7)
α (n) of Test

Statistic T
(7)
n with q(t) = (t(1− t))0.2, V = 2

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 2.5172 1.2620 1.6130 1.0479 1.2034 0.9376
1.5 2.0834 1.2620 1.3499 1.0479 1.0220 0.9376
2.0 1.8346 1.2620 1.1810 1.0479 0.9077 0.9376
2.5 1.6160 1.2620 1.0487 1.0479 0.7957 0.9376
3.0 1.5902 1.2620 1.0086 1.0479 0.8026 0.9376

100 1.0 1.7715 1.2620 1.2344 1.0479 0.9720 0.9376
1.5 1.5667 1.2620 1.1097 1.0479 0.8741 0.9376
2.0 1.3376 1.2620 0.9383 1.0479 0.7443 0.9376
2.5 1.1382 1.2620 0.8031 1.0479 0.6305 0.9376
3.0 1.0272 1.2620 0.7056 1.0479 0.5618 0.9376

200 1.0 1.3507 1.2620 0.9008 1.0479 0.5911 0.9376
1.5 1.0976 1.2620 0.6887 1.0479 0.4534 0.9376
2.0 0.9598 1.2620 0.6343 1.0479 0.4192 0.9376
2.5 0.8636 1.2620 0.5564 1.0479 0.3660 0.9376
3.0 0.7946 1.2620 0.5051 1.0479 0.3274 0.9376

500 1.0 0.6971 1.2620 0.2389 1.0479 0.1891 0.9376
1.5 0.5280 1.2620 0.1928 1.0479 0.1533 0.9376
2.0 0.4648 1.2620 0.1651 1.0479 0.1324 0.9376
2.5 0.4267 1.2620 0.1503 1.0479 0.1192 0.9376
3.0 0.3730 1.2620 0.1365 1.0479 0.1088 0.9376

Table 5.14 illustrates the approximated critical values c
(7)
α (n) and the simulated crit-

ical values of T
(7)
n for the sample sizes n = 50, 100, 200, and 500 with the rate

µ = 1.0, 1.5, 2.0, 2.5, and 3.0 at significance levels α = 0.01, 0.05, 0.10 using the

Sheather-Jones plug-in optimal bandwidth b from Table 5.1, V = 2
µ

and the weight

q(t) = (t(1− t))0.2, we found that the simulated critical values of T
(7)
n slightly over-

estimate c
(7)
α (n) for the small size, e.g., n = 50, 100, but underestimated for larger

sample size. In comparing the results for given n and various µ, we have to recall

that the test procedure parameter V depends on µ in our setup, and this may have

an influence.
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Table 5.15: Comparison of Simulated and Approximated Critical Values c
(8)
α (n) of Test

Statistic T
(8)
n with q(t) = (t(1− t))0.2, V = 2

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 2.5172 1.3361 1.6130 1.1436 1.2034 1.0442
1.5 2.0834 1.3361 1.3499 1.1436 1.0220 1.0442
2.0 1.8346 1.3361 1.1810 1.1436 0.9077 1.0442
2.5 1.6160 1.3361 1.0487 1.1436 0.7957 1.0442
3.0 1.5902 1.3361 1.0086 1.1436 0.8026 1.0442

100 1.0 1.7715 1.3361 1.2344 1.1436 0.9720 1.0442
1.5 1.5667 1.3361 1.1097 1.1436 0.8741 1.0442
2.0 1.3376 1.3361 0.9383 1.1436 0.7443 1.0442
2.5 1.1382 1.3361 0.8031 1.1436 0.6305 1.0442
3.0 1.0272 1.3361 0.7056 1.1436 0.5618 1.0442

200 1.0 1.3507 1.3361 0.9008 1.1436 0.5911 1.0442
1.5 1.0976 1.3361 0.6887 1.1436 0.4534 1.0442
2.0 0.9598 1.3361 0.6343 1.1436 0.4192 1.0442
2.5 0.8636 1.3361 0.5564 1.1436 0.3660 1.0442
3.0 0.7946 1.3361 0.5051 1.1436 0.3274 1.0442

500 1.0 0.6971 1.3361 0.2389 1.1436 0.1891 1.0442
1.5 0.5280 1.3361 0.1928 1.1436 0.1533 1.0442
2.0 0.4648 1.3361 0.1651 1.1436 0.1324 1.0442
2.5 0.4267 1.3361 0.1503 1.1436 0.1192 1.0442
3.0 0.3730 1.3361 0.1365 1.1436 0.1088 1.0442

Table 5.15 also reports that the test statistic T
(8)
n slightly overestimates its approx-

imated critical values c
(8)
α (n) for the small size, e.g., n = 50, 100 with the rate

µ = 1.0, 1.5, 2.0, 2.5, and 3.0 at significance levels α = 0.01, 0.05, 0.10, but underesti-

mates for larger sample size. Therefore, it turned out that the critical values obtained

from the limiting distribution for tests T
(7)
n and T

(8)
n are roughly close, hence we can

use the approximated critical values c
(7)
α (n) and c

(8)
α (n), respectively, to the proposed

tests.

From Tables 5.4, 5.5, 5.12-5.15, the asymptotic critical values obtained from the limit-

ing distributions for all proposed tests (except T
(5)
n ) are somehow roughly close to the

true one. Though, the parameter V has a significant impact on our developed tests,

the simulated critical values are illustrating a reasonable performance with V = 2
µ
,

where we are assuming that F (V ) ≈ 0.8646 < 1. Whereas, the simulated critical

values are not that close with V = 3
µ
, where we assume F (V ) ≈ 0.9502 < 1, which

are illustrated in Appendix B. The standard errors for T
(1)
n , T

(2)
n , T

(3)
n , T

(4)
n , T

(5)
n , T

(6)
n ,
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T
(7)
n and T

(8)
n are 0.9117, 0.4151, 1.1203, 1.1137, 0.0280, 0.0132, 0.1574 and 0.1565 in

case of n = 50, µ = 3 and V = 2
µ
; and 0.8341, 0.1278, 0.9842, 0.9777, 0.0038, 0.0121,

0.0603 and 0.0592 for n = 200, µ = 3 and V = 2
µ
; respectively, which indicates that

the standard errors decrease for larger sample size. Smaller standard errors imply

that simulations M = 1000 is quite fair, but we will get even improved results with

the larger simulation repetitions and the larger sample sizes. Because of the compu-

tational time restriction, we limit our simulation with M = 1000 repetitions. We can

reasonably, therefore, use the approximated critical values to the proposed tests and

to estimate the power of the corresponding tests.

5.1.2 Simulated Powers

We conducted the Monte Carlo simulation with M = 1000 repetitions to investigate

the power performance of our proposed test statistics T
(1)
n , T

(2)
n , T

(3)
n , T

(4)
n , T

(5)
n , T

(6)
n ,

T
(7)
n and T

(8)
n for n = 50, 100, 200, 500, V = 2

µ1
, the Sheather-Jones plug-in optimal

bandwidth b from Table 5.1, µ1 = 1.0, 1.5, 2.0, µ2 = 1.0, 1.5, 2.0 and µc = 1.0, 1.5, 2.0.

Here, µ1 and µ2 are the rate of exponential survival time distributions before and after

the change point, respectively, and µc is the rate of exponential censored distribution.

In each case, we assume under the alternative hypothesis (4.2) that

F1 = Exp(µ1), F2 = Exp(µ2), and G = Exp(µc).

We ran simulation to investigate the power of all proposed tests by dealing with differ-

ent sample sizes but holding the same location of change point, i.e., k∗ = 0.50, which

means 50% observations are from the before-change sample and 50% observations are

in the after-change sample. Tables 5.16-5.17 display the results of the power analysis

for all the developed tests with samples of size n = 50, 100, 200, 500.

Table 5.16 shows that our proposed tests T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n have almost the

size corrected powers under the null hypothesis of no change in the hazard functions

of survival times at the level α = 0.01 and α = 0.05. However, all these powers are

not strong enough for V = 2
µ1

with the Sheather-Jones plug-in optimal bandwidth b.

Clearly, the power for the choice µ1 = 1.5, µ2 = 1.0, and µc = 1.0 is the best among

all other combinations for all sample sizes, e.g., the power of tests T
(1)
n , T

(2)
n , T

(3)
n and

T
(4)
n are 0.267, 0.248, 0.178, and 0.178, respectively, at the level α = 0.05 for n = 100.
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Table 5.16: Simulated Powers of Test Statistics T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n for V = 2

µ1
, and

Optimal Bandwidth b, using the Simulated Critical Value for µ1 = µ2 = 1.

(α = 0.01) (α = 0.05)

n Censor µ1 µ2 µc T
(1)
n T

(2)
n T

(3)
n T

(4)
n T

(1)
n T

(2)
n T

(3)
n T

(4)
n

50 50.2% 1.0 1.0 1.0 0.006 0.006 0.015 0.015 0.046 0.046 0.050 0.050
40.2% 1.0 1.5 1.0 0.048 0.048 0.018 0.018 0.149 0.149 0.065 0.065
45.1% 1.5 1.0 1.0 0.139 0.139 0.106 0.106 0.229 0.229 0.136 0.136
55.2% 1.5 1.0 1.5 0.050 0.050 0.034 0.034 0.119 0.119 0.079 0.079
58.5% 2.0 1.0 2.0 0.101 0.101 0.049 0.049 0.155 0.155 0.111 0.111
53.8% 2.0 1.5 2.0 0.037 0.037 0.013 0.013 0.103 0.103 0.054 0.054

100 50.2% 1.0 1.0 1.0 0.009 0.009 0.019 0.019 0.056 0.046 0.058 0.058
40.3% 1.0 1.5 1.0 0.043 0.043 0.023 0.023 0.148 0.128 0.092 0.092
45.4% 1.5 1.0 1.0 0.158 0.158 0.103 0.103 0.267 0.248 0.178 0.178
55.3% 1.5 1.0 1.5 0.061 0.061 0.049 0.049 0.146 0.166 0.101 0.101
58.6% 2.0 1.0 2.0 0.093 0.093 0.062 0.062 0.159 0.149 0.118 0.118
53.9% 2.0 1.5 2.0 0.049 0.049 0.026 0.026 0.122 0.181 0.070 0.070

200 50.0% 1.0 1.0 1.0 0.006 0.006 0.010 0.010 0.033 0.043 0.031 0.031
40.0% 1.0 1.5 1.0 0.055 0.054 0.013 0.013 0.132 0.058 0.057 0.057
45.0% 1.5 1.0 1.0 0.147 0.147 0.107 0.107 0.235 0.149 0.152 0.152
55.0% 1.5 1.0 1.5 0.059 0.074 0.039 0.039 0.111 0.142 0.091 0.091
58.4% 2.0 1.0 2.0 0.100 0.100 0.049 0.049 0.148 0.105 0.105 0.105
53.6% 2.0 1.5 2.0 0.043 0.079 0.018 0.018 0.100 0.205 0.057 0.057

500 49.9% 1.0 1.0 1.0 0.011 0.014 0.010 0.010 0.054 0.050 0.049 0.049
39.9% 1.0 1.5 1.0 0.057 0.024 0.029 0.029 0.127 0.054 0.054 0.054
44.9% 1.5 1.0 1.0 0.161 0.119 0.101 0.101 0.233 0.121 0.159 0.159
54.9% 1.5 1.0 1.5 0.060 0.042 0.029 0.029 0.123 0.079 0.083 0.083
58.3% 2.0 1.0 2.0 0.087 0.040 0.046 0.046 0.145 0.060 0.092 0.092
53.5% 2.0 1.5 2.0 0.040 0.121 0.012 0.012 0.108 0.216 0.046 0.046

Similar power performances are also observed in Table 5.17 for our developed weighted

tests T
(5)
n , T

(6)
n , T

(7)
n and T

(8)
n with the weight q(t) = (t(1− t))0.2, V = 2

µ1
, and the

Sheather-Jones plug-in optimal bandwidth b. A reasonable power performance is

found in the case of parameter choice µ1 = 1.5, µ2 = 1.0, and µc = 1.0 with n = 500

at the level α = 0.05, for instance, the observed powers for the tests T
(5)
n , T

(6)
n , T

(7)
n

and T
(8)
n are 0.178, 0.120, 0.253, and 0.306, respectively.
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Table 5.17: Simulated Powers of Test Statistics T
(5)
n , T

(6)
n , T

(7)
n and T

(8)
n for q(t) =

(t(1− t))0.2, V = 2
µ1

, and Optimal Bandwidth b, using the Simulated Critical
Value for µ1 = µ2 = 1.

(α = 0.01) (α = 0.05)

n Censor µ1 µ2 µc T
(5)
n T

(6)
n T

(7)
n T

(8)
n T

(5)
n T

(6)
n T

(7)
n T

(8)
n

50 50.2% 1.0 1.0 1.0 0.006 0.006 0.015 0.015 0.050 0.046 0.052 0.052
40.2% 1.0 1.5 1.0 0.059 0.058 0.014 0.014 0.158 0.063 0.076 0.076
45.1% 1.5 1.0 1.0 0.157 0.157 0.062 0.062 0.233 0.168 0.143 0.143
55.2% 1.5 1.0 1.5 0.061 0.097 0.035 0.035 0.117 0.188 0.078 0.078
58.5% 2.0 1.0 2.0 0.109 0.110 0.044 0.044 0.153 0.122 0.111 0.111
53.8% 2.0 1.5 2.0 0.041 0.086 0.011 0.011 0.108 0.189 0.052 0.052

100 50.2% 1.0 1.0 1.0 0.011 0.010 0.013 0.013 0.054 0.053 0.059 0.059
40.3% 1.0 1.5 1.0 0.154 0.001 0.019 0.019 0.054 0.051 0.104 0.104
45.4% 1.5 1.0 1.0 0.266 0.161 0.102 0.102 0.180 0.164 0.185 0.185
55.3% 1.5 1.0 1.5 0.135 0.066 0.050 0.050 0.067 0.140 0.102 0.102
58.6% 2.0 1.0 2.0 0.159 0.031 0.061 0.061 0.101 0.036 0.117 0.117
53.9% 2.0 1.5 2.0 0.118 0.100 0.025 0.025 0.057 0.202 0.080 0.080

200 50.0% 1.0 1.0 1.0 0.007 0.013 0.006 0.006 0.046 0.055 0.041 0.041
40.0% 1.0 1.5 1.0 0.058 0.020 0.015 0.015 0.137 0.060 0.065 0.065
45.0% 1.5 1.0 1.0 0.114 0.121 0.161 0.161 0.156 0.151 0.116 0.116
55.0% 1.5 1.0 1.5 0.044 0.038 0.029 0.029 0.082 0.109 0.065 0.065
58.4% 2.0 1.0 2.0 0.045 0.020 0.028 0.028 0.070 0.060 0.068 0.068
53.6% 2.0 1.5 2.0 0.037 0.079 0.020 0.020 0.083 0.184 0.063 0.063

500 49.9% 1.0 1.0 1.0 0.006 0.013 0.008 0.008 0.047 0.046 0.056 0.057
39.9% 1.0 1.5 1.0 0.055 0.020 0.016 0.016 0.088 0.050 0.136 0.137
44.9% 1.5 1.0 1.0 0.138 0.120 0.122 0.122 0.178 0.120 0.253 0.306
54.9% 1.5 1.0 1.5 0.027 0.028 0.023 0.023 0.054 0.060 0.075 0.083
58.3% 2.0 1.0 2.0 0.027 0.020 0.020 0.020 0.051 0.050 0.108 0.127
53.5% 2.0 1.5 2.0 0.013 0.103 0.026 0.026 0.059 0.184 0.081 0.081

For investigating the improved power performance for all of our developed tests, we

also conducted Monte Carlo simulations with V = 3
µ1

and keeping remaining param-

eters unchanged. Tables 5.18 and 5.19 illustrate that results. Note that we have used

the simulated critical values for µ1 = µ2 = 1 without censoring to calculate powers

for each of our proposed tests. Therefore, due to censoring, we have found not ex-

actly the size corrected powers (but almost close to) for our proposed tests under the

null hypothesis of no change in the hazard functions of survival times at the levels

α = 0.01 and α = 0.05. Tables 5.18 and 5.19 reveal that results.
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Table 5.18: Simulated Powers of Test Statistics T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n for V = 3

µ1
, and

Optimal Bandwidth b, using the Simulated Critical Value for µ1 = µ2 = 1.

(α = 0.01) (α = 0.05)

n Censor µ1 µ2 µc T
(1)
n T

(2)
n T

(3)
n T

(4)
n T

(1)
n T

(2)
n T

(3)
n T

(4)
n

50 50.2% 1.0 1.0 1.0 0.009 0.009 0.010 0.010 0.046 0.048 0.050 0.050
45.3% 1.0 1.5 1.0 0.263 0.951 0.113 0.113 0.335 0.954 0.234 0.234
45.1% 1.5 1.0 1.0 0.383 0.609 0.234 0.234 0.424 0.618 0.313 0.313
36.9% 1.5 2.0 1.0 0.374 0.166 0.101 0.101 0.502 0.184 0.266 0.266
55.2% 1.5 1.0 1.5 0.269 0.889 0.147 0.147 0.312 0.894 0.224 0.224
46.7% 1.5 2.0 1.5 0.199 0.471 0.059 0.059 0.332 0.495 0.173 0.173
58.5% 2.0 1.0 2.0 0.269 0.626 0.160 0.160 0.296 0.642 0.215 0.215
53.8% 2.0 1.5 2.0 0.279 0.928 0.118 0.118 0.331 0.930 0.208 0.208

100 50.2% 1.0 1.0 1.0 0.010 0.010 0.011 0.011 0.050 0.050 0.053 0.053
45.2% 1.0 1.5 1.0 0.442 0.631 0.196 0.196 0.499 0.651 0.343 0.343
45.4% 1.5 1.0 1.0 0.403 0.523 0.284 0.284 0.433 0.531 0.359 0.359
36.9% 1.5 2.0 1.0 0.357 0.082 0.119 0.119 0.490 0.089 0.272 0.272
55.3% 1.5 1.0 1.5 0.290 0.944 0.184 0.184 0.319 0.951 0.256 0.256
46.7% 1.5 2.0 1.5 0.208 0.461 0.081 0.081 0.341 0.514 0.201 0.201
58.6% 2.0 1.0 2.0 0.249 0.625 0.175 0.175 0.281 0.649 0.229 0.229
53.9% 2.0 1.5 2.0 0.305 0.973 0.157 0.157 0.346 0.976 0.256 0.256

200 50.0% 1.0 1.0 1.0 0.006 0.006 0.010 0.010 0.053 0.051 0.043 0.043
44.9% 1.0 1.5 1.0 0.250 1.000 0.148 0.148 0.322 1.000 0.237 0.237
45.0% 1.5 1.0 1.0 0.384 0.393 0.266 0.266 0.422 0.406 0.333 0.333
36.7% 1.5 2.0 1.0 0.355 0.333 0.135 0.135 0.479 0.354 0.271 0.271
55.0% 1.5 1.0 1.5 0.276 0.978 0.183 0.183 0.315 0.979 0.238 0.238
46.2% 1.5 2.0 1.5 0.196 0.461 0.069 0.069 0.313 0.510 0.171 0.171
58.4% 2.0 1.0 2.0 0.272 0.560 0.174 0.174 0.299 0.582 0.226 0.226
53.6% 2.0 1.5 2.0 0.280 0.994 0.147 0.147 0.330 0.996 0.218 0.218

500 49.9% 1.0 1.0 1.0 0.006 0.011 0.008 0.008 0.044 0.049 0.051 0.051
44.9% 1.0 1.5 1.0 0.015 0.895 0.017 0.017 0.018 0.963 0.077 0.077
44.9% 1.5 1.0 1.0 0.081 0.143 0.086 0.086 0.084 0.188 0.142 0.142
36.6% 1.5 2.0 1.0 0.031 0.073 0.042 0.042 0.068 0.094 0.063 0.063
54.9% 1.5 1.0 1.5 0.049 0.693 0.041 0.041 0.067 0.817 0.070 0.070
46.3% 1.5 2.0 1.5 0.023 0.096 0.037 0.037 0.031 0.102 0.064 0.064
58.3% 2.0 1.0 2.0 0.080 0.048 0.050 0.050 0.100 0.055 0.078 0.078
53.5% 2.0 1.5 2.0 0.032 0.900 0.015 0.015 0.051 0.951 0.065 0.065

Comparing the simulated powers of all the unweighted tests, we observe in Table 5.18

that T
(2)
n test performs better than the tests T

(1)
n , T

(3)
n and T

(4)
n in all cases considered

here. Nevertheless, T
(1)
n and T

(2)
n tests are based on the same functional with known θ.
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Table 5.19: Simulated Powers of Test Statistics T
(5)
n , T

(6)
n , T

(7)
n and T

(8)
n for V = 3

µ1
, and

Optimal Bandwidth b, using the Simulated Critical Value for µ1 = µ2 = 1.

(α = 0.01) (α = 0.05)

n Censor µ1 µ2 µc T
(5)
n T

(6)
n T

(7)
n T

(8)
n T

(5)
n T

(6)
n T

(7)
n T

(8)
n

50 50.2% 1.0 1.0 1.0 0.010 0.010 0.013 0.013 0.050 0.051 0.051 0.051
45.3% 1.0 1.5 1.0 0.267 0.939 0.122 0.122 0.334 0.942 0.223 0.223
45.1% 1.5 1.0 1.0 0.385 0.512 0.232 0.232 0.425 0.526 0.322 0.322
36.9% 1.5 2.0 1.0 0.386 0.064 0.120 0.120 0.505 0.078 0.264 0.264
55.2% 1.5 1.0 1.5 0.270 0.866 0.147 0.147 0.311 0.874 0.222 0.222
46.7% 1.5 2.0 1.5 0.207 0.430 0.068 0.068 0.333 0.453 0.172 0.172
58.5% 2.0 1.0 2.0 0.270 0.581 0.163 0.163 0.296 0.601 0.219 0.219
53.8% 2.0 1.5 2.0 0.283 0.917 0.121 0.121 0.331 0.918 0.194 0.194

100 50.2% 1.0 1.0 1.0 0.010 0.010 0.011 0.011 0.050 0.050 0.049 0.049
45.2% 1.0 1.5 1.0 0.288 0.982 0.184 0.184 0.354 0.984 0.268 0.268
45.4% 1.5 1.0 1.0 0.406 0.394 0.300 0.300 0.433 0.407 0.378 0.378
36.9% 1.5 2.0 1.0 0.374 0.020 0.158 0.158 0.491 0.078 0.296 0.296
55.3% 1.5 1.0 1.5 0.293 0.928 0.198 0.198 0.319 0.931 0.257 0.257
46.7% 1.5 2.0 1.5 0.221 0.441 0.103 0.103 0.348 0.497 0.208 0.208
58.6% 2.0 1.0 2.0 0.249 0.545 0.185 0.185 0.282 0.569 0.230 0.230
53.9% 2.0 1.5 2.0 0.310 0.963 0.175 0.175 0.346 0.969 0.252 0.252

200 50.0% 1.0 1.0 1.0 0.007 0.011 0.006 0.006 0.046 0.050 0.044 0.044
44.9% 1.0 1.5 1.0 0.161 1.000 0.096 0.096 0.161 1.000 0.179 0.179
45.0% 1.5 1.0 1.0 0.210 0.237 0.170 0.170 0.210 0.250 0.297 0.304
36.7% 1.5 2.0 1.0 0.313 0.013 0.119 0.119 0.313 0.054 0.276 0.276
55.0% 1.5 1.0 1.5 0.134 0.974 0.097 0.097 0.134 0.977 0.170 0.170
46.2% 1.5 2.0 1.5 0.170 0.448 0.059 0.059 0.170 0.497 0.171 0.171
58.4% 2.0 1.0 2.0 0.099 0.476 0.074 0.074 0.099 0.498 0.151 0.151
53.6% 2.0 1.5 2.0 0.156 0.992 0.092 0.092 0.156 0.993 0.149 0.149

500 49.9% 1.0 1.0 1.0 0.006 0.011 0.008 0.008 0.048 0.050 0.052 0.053
44.9% 1.0 1.5 1.0 0.017 1.000 0.051 0.051 0.017 1.000 0.107 0.107
44.9% 1.5 1.0 1.0 0.038 0.105 0.207 0.240 0.038 0.117 0.323 0.324
36.6% 1.5 2.0 1.0 0.060 0.011 0.114 0.114 0.069 0.051 0.260 0.261
54.9% 1.5 1.0 1.5 0.033 1.000 0.054 0.057 0.071 1.000 0.159 0.162
46.3% 1.5 2.0 1.5 0.011 0.450 0.032 0.032 0.011 0.522 0.274 0.274
58.3% 2.0 1.0 2.0 0.027 0.405 0.086 0.096 0.067 0.428 0.108 0.134
53.5% 2.0 1.5 2.0 0.013 1.000 0.023 0.023 0.013 1.000 0.476 0.476

Table 5.19 reports that the test T
(6)
n has better powers than other weighted tests T

(5)
n ,

T
(7)
n and T

(8)
n under the parameter combinations considered in this experiment with

different censoring percentages.
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5.1.3 Evaluation of Change Point Estimators

Let the estimator of the change point k∗ be the point k where the test statistic takes

its maximum for the unweighted test T
(1)
n , that is,

k̂∗ = arg max
1≤k<n

T (1)
n .

This estimator also holds for the unweighted tests T
(2)
n , T

(3)
n and T

(4)
n . However, for

the weighted test T
(5)
n , the change point estimator is given by

k̂∗

n
= arg max

0<t<1
T (5)
n ,

which is also true for the tests T
(6)
n , T

(7)
n and T

(8)
n .

Table 5.20: Simulated Estimates of Change Point in the Hazard Distribution using Test

Statistics T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n for V = 3

µ1
, and Optimal Bandwidth b.

Estimate of k∗ Std. Error of k∗

n k∗ Censorµ1 µ2 µc T
(1)
n T

(2)
n T

(3)
n T

(4)
n T

(1)
n T

(2)
n T

(3)
n T

(4)
n

50 25 55.2% 1.5 1.0 1.5 16.65 29.00 32.08 31.79 22.42 9.34 18.88 19.81
100 50 55.3% 1.5 1.0 1.5 33.25 56.88 63.03 62.77 45.98 17.58 41.03 42.02
200 100 55.0% 1.5 1.0 1.5 66.06 106.32 123.05 121.76 92.97 25.38 86.85 89.21
500 250 54.9% 1.5 1.0 1.5 160.27 253.63 313.50 302.55 232.30 33.97 222.80 228.70

Table 5.21: Simulated Estimates of Change Point in the Hazard Distribution using Test

Statistics T
(5)
n , T

(6)
n , T

(7)
n and T

(8)
n for V = 3

µ1
, and Optimal Bandwidth b.

Estimate of k∗ Std. Error of k∗

n k∗ Censorµ1 µ2 µc T
(5)
n T

(6)
n T

(7)
n T

(8)
n T

(5)
n T

(6)
n T

(7)
n T

(8)
n

50 25 55.2% 1.5 1.0 1.5 15.97 26.44 31.32 30.78 22.87 6.78 18.69 19.11
100 50 55.3% 1.5 1.0 1.5 32.56 50.31 62.01 61.74 46.42 6.39 39.21 39.48
200 100 55.0% 1.5 1.0 1.5 36.50 99.83 101.80 102.01 67.42 5.01 78.98 78.95
500 250 54.9% 1.5 1.0 1.5 39.46 249.84 237.52 226.39 41.29 9.68 190.13 189.55

It is evident from Tables 5.20 and 5.21 that change point estimators are quite good

for the two-sided tests T
(2)
n and T

(6)
n . Tests T

(2)
n and T

(6)
n use knowledge of θ, which is

too good for practice. The unweighted tests T
(3)
n and T

(4)
n for unknown θ overestimate
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k∗ due to particular λ, λ∗. On the other hand, the weighted tests T
(7)
n and T

(8)
n for

unknown θ perform better, as other weight q(t) may be helpful.
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Figure 5.1: Detection of change point in the hazard distribution using the test T
(2)
n .

(a) U-statistics process for T
(2)
n , simulated critical value, and the location of significant

change point are presented; and (b) True (blue) and estimated (red) change points
are located in the simulated survival data.
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Figure 5.2: Detection of change point in the hazard distribution using the test T
(6)
n .

(a) U-statistics process for T
(6)
n , simulated critical value, and the location of significant

change point are presented; and (b) True (blue) and estimated (red) change points
are located in the simulated survival data.
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Figure 5.3: Detection of change point in the hazard distribution using the test T
(8)
n .

(a) U-statistics process for T
(8)
n , simulated critical value, and the location of significant

change point are presented; and (b) True (blue) and estimated (red) change points
are located in the simulated survival data.

Figures 5.1, 5.2, and 5.3 present the potential impact of our proposed tests to the

simulated data with µ1 = 1.0, µ2 = 1.5, and µc = 1.0 for n = 500 at the level

α = 0.05, we observed that our tests significantly identified the change point in the

hazard distribution with 56.3% censoring.

5.2 Real Data Applications

We apply our developed tests for detecting change points in the hazard functions over

the course of time to two real data examples; breast cancer mortality, and cell stim-

ulus responses. The first data set is well-known survival data and the later one is a

cognitive data. Breast cancer mortality data contains 78.9% of censored observations,

whereas the cell stimulus response data contains only 0.5% of censored observations,

hence we are interested in investigating our developed methodologies with very high

as well as with very low percentages of censored scenarios. As the value of the true

parameter θ is unknown for these two data examples, we applied the unweighted tests

T
(3)
n and T

(4)
n along with the weighted tests T

(7)
n and T

(8)
n to investigate the change

point in the hazard distributions.
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5.2.1 Cell Stimulus Response Data

We consider the cell stimulus response data again, which we have studied intensively

in Chapter 3. Let us first note that the data contain delays, i.e., waiting times be-

tween the stimulus and the onset of the response, such that we may interpret them

as survival times which are also waiting times between entering the study (time of

origin) and the occurrence of the event of interest (time of failure).

Applying the change point tests developed in Chapter 4 to this data is not com-

pletely justified as the sequence of delay data are coming from the same cell and are

likely not a sequence of independent data ordered in time. Nevertheless, we apply

hazard function change point tests to these data and look what happens.

The cell stimulus response data contains only 15 censored observations out of 3000,

so it has very low censoring percentage 0.5%. To detect a change in the hazard dis-

tribution over the times in the cell stimulus responses, we used unweighted tests T
(3)
n

and T
(4)
n , and weighted tests T

(7)
n and T

(8)
n , where we estimated the true parameter

θ by θ̂(3)(bn
2
c) and the variance by σ̂2

n. We considered the symmetric kernel function

K̃(x, y) = xy; V = 3.1 to fulfill Assumption (D) and (4.4), since max(Ti) = 3.9

and max(Ci) = 3.7; and the optimal bandwidth b = 3e−11 for n = 3000 as per the

condition (4.17).
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Figure 5.4: Detection of change point in the hazard distribution using the test statistic
T

(3)
n in (a), T

(4)
n in (b), T

(7)
n in (c), and T

(8)
n in (d) with the optimal bandwidth

b = 3e−11, and the asymptotic critical values are presented by the red horizontal
lines.

As we conducted our test at 5% level of significance, hence the critical value for the

test T
(3)
n is c

(1)
α (n) = 3.3948, and and for the test T

(4)
n is c

(2)
α (n) = 3.7346 with n = 3000

from Tables 5.2, and 5.3, respectively. The critical values for the weighted tests T
(7)
n

and T
(8)
n are observed as c

(7)
α (n) = 1.0364 and c

(8)
α (n) = 1.1268, respectively, from

Tables 5.8, and 5.9 at α = 0.05 with n = 3000. There is an evidence of significant

change point in the hazard distribution of cell stimulus responses at 5% level of sig-

nificance in Figure 5.4.
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Multiple change points can also be tested by using the binary segmentation procedure

described in Algorithm 3, Chapter 3. For our developed tests we are rewriting that

in the following algorithm for the test T
(4)
n .

Algorithm 5 The generic Binary Segmentation algorithm to detect multiple change
points using the test T

(4)
n .

1: Set the data for testing X1, . . . , Xn and the optimal bandwidth b.
2: Calculate the test statistic T

(4)
n and the critical value c

(2)
α (n) at α level of signifi-

cance. if T
(4)
n > c

(2)
α (n) then select m̃1 := arg maxT

(4)
n .

3: Split the data in to two segments, i.e., X1, . . . , Xm̃1 and Xm̃1+1, . . . , Xn, calculate

the critical value c
(2)
α (n) and redefine the bandwidth b for each segment with

different sample sizes n. Repeat step 1 and 2 for each segment until no significant
change points are detected.

4: Obtain m̃1, . . . , m̃q.
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Figure 5.5: U-statistic process for the test statistic T
(4)
n to detect multiple change

points in the hazard distributions of cell stimulus responses with the asymptotic
critical value is presented by the red horizontal line and the location of change points
are indicated by a dotted vertical red line in (a); and the estimated multiple change
points are indicated by the red vertical line in (b).

Using the binary segmentation procedure for test T
(4)
n with c

(2)
α (n) = 3.7346 for the

entire sample n = 3000 and the bandwidth b = 3e−11, we found that the change

point in the hazard distribution of cell stimulus responses at m̃1 = 2685 using
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m̃1 := arg maxT
(4)
n . At the step 2 of Algorithm 5, we split the entire sample into

two parts: X1, . . . , X2685 and X2686, . . . , X3000. Hereafter, we recalculated the critical

values for each segments and found the significant change point at m̃2 = 266 for the

first segment of data X1, . . . , X2685 with c
(2)
α (n) = 3.7318 for the sample size n = 2685

and the bandwidth b = 3e−13, which is presented in Figure 5.5.
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Figure 5.6: U-statistic process for the test statistic T
(8)
n to detect multiple change

points in the hazard distributions of cell stimulus responses with the asymptotic
critical value is presented by the red horizontal line and the location of change points
are indicated by a dotted vertical red line in (a); and the estimated multiple change
points are indicated by the red vertical line in (b).

Again, using the binary segmentation procedure of Algorithm 5 for the test T
(8)
n with

c
(8)
α (n) = 1.1268 for the entire sample n = 3000 with the bandwidth b = 3e−11, we

found the change point in hazard function at t = 0.89 so in the sample at m̃1 = 2670

using m̃1 := arg maxT
(8)
n . At the step 2 of Algorithm 5, we split the entire sample

into two parts: X1, . . . , X2670 and X2671, . . . , X3000. Hereafter, we recalculated the

critical values for each segments and found the significant change point at t = 0.10

which turns on the sample at m̃2 = 300 for the first segment with c
(8)
α (n) = 1.1252 for

the sample size n = 2670 and the bandwidth b = 3e−13, which is reported in Figure

5.6.

Figure 5.5 illustrates the two significant change points in the hazard distribution
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at 2685 and 266 using the test T
(4)
n , we also estimated two change points in the haz-

ard distribution of cell stimulus responses at 2670 and 300 using the test T
(8)
n which

are shown in Figure 5.6. Both the significant change points, which are detected by

T
(4)
n and T

(8)
n , are quite close.

The change points identified by these tests are close to the change points which

are found in Chapter 3 by various other methods. So, it seems to be confirmed that

there are changes happening around observations 265 and 2680, i.e., roughly after 9%

and 89% of the sample, respectively. If this is rather a change of hazard, a change of

the mean, or a change in regression has to be investigated further, using data from

other cells too.

5.2.2 Breast Cancer Mortality Data

We use the Surveillance, Epidemiology, and End Results (SEER) Program Public-Use

Data (1973-2010), National Cancer Institute, DCCPS, Surveillance Research Pro-

gram, Cancer Statistics Branch, released April 2013, based on the November 2012

submission. This data contains cancer incidence and survival for cases diagnosed

from 1973 to 2010, follow-up continued until December 31, 2012. Our focus is on the

breast cancer mortality data only. Calculation of hazard functions will be based on

the breast cancer patient’s risk of death, which is described in Section 2.4.2.

For the purpose of analysis we excluded patients with unknown follow-up time and

not a case of first tumor. We define an event as death from breast cancer. If a

patient dies from another cause they are censored at the time of their death. The

breast cancer mortality data contains 78.9% of censored observations, where there

are 576250 observations among them 455196 are being censored. For such big data

set, we used only the weighted tests T
(7)
n and T

(8)
n to find out the change point in

the hazard functions, since the convergences of the unweighted tests T
(3)
n and T

(4)
n are

rather slow and thus these tests are conservative only for small samples. To calculate

the hazard rates, we converted monthly survival times (SurvM ) into yearly survival

times and used DeathCause variable as the censoring indicator variable.

Before using tests T
(7)
n and T

(8)
n we considered some values for our parameters of

interest to fulfill all the assumptions in Theorem 4.3.4 of Chapter 4. We considered

the symmetric kernel function K̃(x, y) = xy; V = 30 for fulfilling Assumption (D)
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and (4.4), since max(Ti) = 37.92 and max(Ci) = 37.41; and the bandwidth b = 0.05

for n = 576250 as per the condition (4.17). We conducted tests T
(7)
n and T

(8)
n to

detect change points in the hazard distribution at 5% level of significance with the

asymptotic critical values c
(7)
α (n) = 1.0479 and c

(8)
α (n) = 1.1436 from Table 5.8 and

Table 5.9, respectively, corresponding U-statistic processes are illustrated in Figure

5.7.
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Figure 5.7: Detection of change point in the hazard distribution using test T
(7)
n in

(a), and test T
(8)
n in (b) with the Sheather-Jones plug-in bandwidth b = 0.05, and the

asymptotic critical values are presented by the red horizontal lines.

Figure 5.7 implies a significant change point in the hazard distribution at 46100 data

position. Multiple change points in the hazard distribution can also be tested and

estimated by using the binary segmentation procedure described in Algorithm 3 of

Chapter 3. We rewrite that algorithm for test T
(8)
n as Algorithm 6 and the necessary

asymptotic critical values for tests T
(7)
n and T

(8)
n are reported in Table 5.22.

163



Algorithm 6 The generic Binary Segmentation algorithm to detect multiple change
points using the test T

(8)
n .

1: Set the data for testing X1, . . . , Xn and define the optimal bandwidth b and
parameter V .

2: Calculate the test statistic T
(8)
n and the critical value c

(8)
α (n) at α level of signifi-

cance. if T
(8)
n > c

(8)
α (n) then select m̃1 := arg maxT

(8)
n .

3: Split the data in to two segments, i.e., X1, . . . , Xm̃1 and Xm̃1+1, . . . , Xn, calculate

the critical value c
(8)
α (n) and redefine the optimal bandwidth b and parameter V

for each segment with different sample sizes n. Repeat step 1 and 2 for each
segment until no significant change points are detected.

4: Obtain m̃1, . . . , m̃q.

Table 5.22: Some Selected Critical Values of T
(7)
n and T

(8)
n Test Statistics at various α and

n.

α

c
(i)
α (n) n 0.005 0.01 0.025 0.05

c
(7)
α (n) 576250 1.3318 1.2579 1.1400 1.0406

530150 1.3136 1.2385 1.1351 1.0398

c
(8)
α (n) 576250 1.4056 1.3335 1.2242 1.1375

530150 1.3932 1.3198 1.2161 1.1333

Using the binary segmentation procedure of Algorithm 6 for the test T
(8)
n with c

(8)
α (n) =

1.1375 for the entire sample n = 576250 and the Sheather-Jones plug-in optimal band-

width b = 0.05, we found that the change point in the hazard distribution at t = 0.08

so in the sample at m̃1 = 46100 by m̃1 := arg maxT
(8)
n . At the step 2 of Algorithm

5, we split the entire sample into two parts: X1, . . . , X46100 and X46101, . . . , X576250.

Hereafter, we recalculated the critical values for each segments and found the signifi-

cant change point at t = 0.86 which turns on the sample at m̃2 = 495575. Figure 5.8

illustrates those significant change points in the hazard distribution for breast cancer

mortality data.
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Figure 5.8: U-statistic process for the test statistic T
(8)
n to detect multiple change

points in the hazard distributions of breast cancer mortality with the asymptotic
critical value is presented by the red horizontal line and the location of change points
are indicated by a dotted vertical red line in (a); and the estimated multiple change
points are indicated by the red vertical line in (b).
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Figure 5.9: Estimated hazard functions using Nelson-Aalen estimator for the breast
cancer mortality data during the time period 1973 to 1976 in (a); 1977 to 2004 in (b);
and 2005 to 2010 in (c).

Figure 5.8 reveals the two significant change points at years m̃1 = 2.79 and m̃2 = 31.04

in the hazard distributions of the breast cancer mortality data using our developed

test T
(8)
n at the level α = 0.05. Initially, using test T

(8)
n we observed the significant

change point at t = 0.08 and t = 0.86. The total observation period consists of 434
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months. Hence, for the first change point t = 0.08, we found nt = 434×0.08 = 34.72,

which in years is m̃1 = 2.79. Similarly, for the second change point t = 0.86, we found

nt = 434×0.86 = 373.24, which is in years m̃2 = 31.04. Hence, the changes in hazard

happened around the years 1976 and 2004.

Estimated hazard functions using the Nelson-Aalen estimator for different time pe-

riods of the breast cancer mortality data show three different patterns of hazard

functions in Figure 5.9. During the time period from 1973 to 1976, breast cancer

patients in the United States experienced higher hazard rate, e.g., 0.06, of mortality,

than other two time periods. Starting from the higher hazard rate, breast cancer

patients attended 0.02 hazard rate of mortality after 8 years during the time period

1973 to 1976, after 6 years during the time period 1977 to 2004, and after only half a

year during the time period 2005 to 2010. These changes in hazard functions happen

due to the improvement in medical breakthroughs, treatments or diagnosis at that

time.

5.3 Discussion

This chapter is devoted to investigating the theoretical findings of our proposed tests

in Chapter 4 by simulations, and hence, the practical impact of the real data analysis

is demonstrated by successfully detecting the significance change points in the hazard

functions to the breast cancer mortality data and the cell stimulus response data.

166



Chapter 6: Summary and Conclu-
sions

Motivated by the long-standing demands in survival analysis to have a deeper under-

standing of the overall survival trends with its changes for an entire population, we

rigorously developed nonparametric methods for detecting change points in the haz-

ard distribution under the right random censorship, since nearly a universal feature

of survival data is censoring, the most common form of which is right-censoring. Our

proposed tests, inspired by Horváth [62], are based on U-statistics to detect change in

the hazard distribution using symmetric and antisymmetric kernels. Our developed

methods do not require any model assumptions to find out significant changes in the

hazard distribution, hence, are not affected by model misspecification errors. Instead,

following a model implicitly and concerning about corresponding model misspecifica-

tion errors which is done by all the existing methods, our approach does not need to

take into account model misspecification errors.

We extended the U-statistic-type nonparametric change point statistics to detect the

change in the distribution of the observations under random censorship considered by

Horváth [62] to the hazard function case. Using symmetric and antisymmetric kernel

functions we developed different types of test statistics, for instance, we proposed

eight different test statistics for symmetric kernel function in Sections 4.3 and 4.3.2 of

Chapter 4, among them T
(1)
n , T

(2)
n , T

(3)
n and T

(4)
n are unweighted test statistics whereas

T
(5)
n , T

(6)
n , T

(7)
n and T

(8)
n are weighted test statistics. Another four test statistics T

(9)
n ,

T
(10)
n , T

(11)
n and T

(12)
n also proposed in Section 4.5 for antisymmetric kernel function,

where T
(11)
n and T

(12)
n are weighted test statistics. We derived the asymptotic dis-

tributions of our proposed test statistics; where the the unweighted statistics T
(1)
n ,

T
(2)
n T

(3)
n , T

(4)
n , T

(9)
n and T

(10)
n have a Gumbel extreme value type distribution; the

weighted tests T
(5)
n and T

(6)
n have the limiting Gaussian process distribution; T

(7)
n and

T
(8)
n have an asymptotic Brownian bridge type process distribution; and T

(11)
n and
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T
(12)
n also have asymptotic Brownian bridge type process distribution, i.e., sup

0<t<1

{B(t)}
q(t)

and sup
0<t<1

|B(t)|
q(t)

, respectively. As we already know that the convergences of Gumbel

extreme value type distribution are rather slow and thus these tests are conservative

for small samples, the asymptotic critical values are reported in Tables 5.2-5.3. We

ran Monte Carlo simulation with 20,000 repetitions to simulate the approximated

critical values for all the weighted tests and presented in Tables 5.6-5.11. We also

showed that our proposed tests have an asymptotic power of 1 under the alternative

hypothesis in Section 4.4.

We conducted different simulations to investigate the theoretical finding of our pro-

posed tests in Chapter 5. In the simulation study, we used the kernel function

K̃(x, y) = xy; the value of the parameter either V = 2
µ

having assumption F (V ) ≈
0.8646 < 1 or V = 3

µ
having F (V ) ≈ 0.9502 < 1; the Epanechnikov kernel function

K(x) with the Sheather-Jones plug-in optimal bandwidth b were used to estimate

the kernel density estimator hn(x) (4.16) in the ratio-type kernel hazard estimator;

and the weight function q(t) = (t(1 − t))0.2 was considered for comparing with the

standard weight
√
t(1− t). We did 1000 simulations to investigate the simulated and

approximated critical values in Section 5.1.1, where it turned out that the critical

values obtained from the limiting distribution for all these tests are roughly close.

Hence, we can use the approximated critical values from Tables 5.2-5.3 and 5.6-5.11

for the corresponding proposed tests to detect the change point in the hazard distri-

bution.

We found the better power performance of all our proposed tests with V = 3
µ1

. This

is due to the fact that the critical values of all these tests with V = 3
µ1

slightly smaller

than that of all these tests with V = 2
µ1

. Hence, it is apparently very important to

choose an appropriate V for all these proposed tests.

We used two actual data sets to illustrate the potential impact of our developed tests

for identifying the significant change point in the hazard distribution. In the survival

study, we examined that the breast cancer mortality has two significant change points

around 1974 and 2004 in mortality hazard distribution. In the cognitive study, we

realized two significant change points in the cell stimulus response’s hazard distribu-

tion at about 9% and 89% of the whole sample. This is in line with the change points

found by the majority of more common change point tests, which we have studied in
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Chapter 3. For detecting multiple change points in the hazard distribution, we used

the binary segmentation procedure described in Algorithm 3 of Chapter 3.

Chapter 3 attempts to raise the awareness of the missing data problem in change

point analysis by illustrating different classical nonparametric change point proce-

dures. Additionally, we also demonstrated the change point methods for detecting

a change in the distribution of the observations under either missingness or random

censorship in Section 3.4.3. Hence, we experienced that it is important to know and

use the right data feature for investigating change point correctly.

In Chapter 2, we also developed the Cross-Entropy algorithm to estimate multiple

change points for the hazard functions in the piecewise constant model (2.25) as well

as the piecewise linear model (2.29), and observed that the CE method performed

better than the existing counterpart Nelder-Mead Simplex algorithm through simula-

tions and real data applications. This method can also be used as a detection method

for identifying multiple change points in the hazard functions.

Finally, we wish to conclude by mentioning some related areas as further research.

The estimation of the change point in the hazard functions is insufficient without pre-

vious testing of the existence of this change along with inevitable censoring. Hence,

this thesis contains useful, not affected by the model misspecification errors and eas-

ily manageable tests for detecting changes in the hazard distribution under the right

random censoring. We have demonstrated their practical applications through sim-

ulations and real data examples. However, we did not establish the consistency and

the asymptotic distribution of the change point estimator in this context, which can

be considered as a further research topic.

Another issue, not studied in this thesis, is the choice of the parameter V . Cer-

tainly, the performances of our developed tests depend on the parameter V and the

bandwidth b. Although we have shown the satisfactory results in the simulation

study, the question of finding adaptive methods for the choice of the parameter V is

not explored yet and remains open.

A fascinating future research area is to develop a nonparametric change point test

of the hazard functions for the functional data feature in the case of i.i.d. as well as
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censoring. Furthermore, our proposed methods can be extended to the right censor-

ing and left truncation scenario, which seems more rational in some survival studies.

Another interesting field of further research is an implementation of the sequential

(online) change point method in the hazard functions, which allows detecting change

as soon as possible while the data are collected. As in survival analysis, the sequential

method is more reasonable.

170



Appendix A: Breast Cancer Dataset

We use the Surveillance, Epidemiology, and End Results (SEER) Program Public-Use

Data (1973-2010), National Cancer Institute, DCCPS, Surveillance Research Pro-

gram, Cancer Statistics Branch, released April 2013, based on the November 2012

submission. This data contains cancer incidence and survival for cases diagnosed

from 1973 to 2010, follow-up continued until December 31, 2012. Our focus is on the

breast cancer data only.

Table A.1: Variables descriptions for the Breast Cancer Patients using SEER Data from
1973-2010.

Variables
Name

Description and Values

Age Age at diagnosis. Actual age in years. 999 for unknown age.

Race Race of the Patients: 1- White, 2-Black, 3- Other(American Indian/AK
Native, Asian/Pacific Islander), 7- other unspecified, 9- unknown.

DateYr The year of diagnosis of the tumor

DateMo The month of diagnosis of the tumor

DeathCause Indicates cause-specific survival: 0- Alive or dead of other cause,1- Dead,
9- N/A not first tumor.

SurvM Survival Months of the patients. 9999 for unknown.
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Appendix B: Simulated Critical Val-
ues

Table B.1: Comparison of Simulated and Approximated Critical Values c
(1)
α (n) of Test

Statistics T
(1)
n and T

(3)
n for V = 3

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV

T
(1)
n

Sim.CV
T

(3)
n

App.CV

c
(1)
α (n)

Sim.CV
T

(1)
n

Sim.CV
T

(3)
n

App.CV

c
(1)
α (n)

Sim.CV
T

(1)
n

Sim.CV
T

(3)
n

App.CV

c
(1)
α (n)

50 1.0 0.4834 3.1680 4.1842 0.1073 1.8071 3.1974 0.0000 1.3146 2.7616
1.5 0.4901 2.7742 4.1842 0.1129 1.5525 3.1974 0.0000 1.1074 2.7616
2.0 0.4847 2.4753 4.1842 0.1164 1.3998 3.1974 0.0000 0.9842 2.7616
2.5 0.4741 2.1789 4.1842 0.1159 1.2228 3.1974 0.0000 0.8617 2.7616
3.0 0.4735 2.2476 4.1842 0.1292 1.2733 3.1974 0.0000 0.8895 2.7616

100 1.0 0.4472 2.9021 4.1735 0.0882 1.6839 3.2408 0.0000 1.2777 2.8289
1.5 0.4605 2.7801 4.1735 0.0979 1.6141 3.2408 0.0000 1.2073 2.8289
2.0 0.4609 2.3635 4.1735 0.0974 1.3648 3.2408 0.0000 1.0205 2.8289
2.5 0.4448 1.9063 4.1735 0.0974 1.0890 3.2408 0.0000 0.8401 2.8289
3.0 0.4661 1.6888 4.1735 0.0975 0.9705 3.2408 0.0000 0.7244 2.8289

200 1.0 0.4299 2.8189 4.1718 0.0818 1.8477 3.2792 0.0000 1.3958 2.8850
1.5 0.4300 2.1103 4.1718 0.0831 1.3867 3.2792 0.0000 1.0358 2.8850
2.0 0.4216 2.0166 4.1718 0.0812 1.3049 3.2792 0.0000 0.9851 2.8850
2.5 0.4331 1.7357 4.1718 0.0821 1.1503 3.2792 0.0000 0.8462 2.8850
3.0 0.4183 1.5737 4.1718 0.0814 1.0307 3.2792 0.0000 0.7723 2.8850

500 1.0 0.5746 3.3709 4.1762 0.1491 2.0741 3.3235 0.0000 1.3620 2.9469
1.5 0.5602 2.6758 4.1762 0.1368 1.6466 3.3235 0.0000 1.0857 2.9469
2.0 0.5846 2.3250 4.1762 0.1467 1.4291 3.3235 0.0000 0.9298 2.9469
2.5 0.5866 2.1308 4.1762 0.1385 1.3173 3.3235 0.0000 0.8444 2.9469
3.0 0.5746 1.9264 4.1762 0.1313 1.1741 3.3235 0.0000 0.7667 2.9469
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Table B.2: Comparison of Simulated and Approximated Critical Values c
(2)
α (n) of Test

Statistics T
(2)
n and T

(4)
n for V = 3

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV

T
(2)
n

Sim.CV
T

(4)
n

App.CV

c
(2)
α (n)

Sim.CV
T

(2)
n

Sim.CV
T

(4)
n

App.CV

c
(2)
α (n)

Sim.CV
T

(2)
n

Sim.CV
T

(4)
n

App.CV

c
(2)
α (n)

50 1.0 1.5811 3.1680 4.6039 1.5748 1.8071 3.6171 1.5715 1.3146 3.1813
1.5 1.5810 2.7742 4.6039 1.5747 1.5525 3.6171 1.5715 1.1074 3.1813
2.0 1.5809 2.4753 4.6039 1.5746 1.3998 3.6171 1.5714 0.9842 3.1813
2.5 1.5809 2.1789 4.6039 1.5747 1.2228 3.6171 1.5714 0.8617 3.1813
3.0 1.5806 2.2476 4.6039 1.5741 1.2733 3.6171 1.5709 0.8895 3.1813

100 1.0 2.2263 2.9021 4.5701 2.2194 1.6839 3.6374 2.2160 1.2777 3.2256
1.5 2.2260 2.7801 4.5701 2.2191 1.6141 3.6374 2.2155 1.2073 3.2256
2.0 2.2261 2.3635 4.5701 2.2192 1.3648 3.6374 2.2156 1.0205 3.2256
2.5 2.2263 1.9063 4.5701 2.2194 1.0890 3.6374 2.2159 0.8401 3.2256
3.0 2.2263 1.6888 4.5701 2.2194 0.9705 3.6374 2.2160 0.7244 3.2256

200 1.0 3.1369 2.8189 4.5513 3.1293 1.8477 3.6587 3.1242 1.3958 3.2645
1.5 3.1371 2.1103 4.5513 3.1295 1.3867 3.6587 3.1244 1.0358 3.2645
2.0 3.1369 2.0166 4.5513 3.1293 1.3049 3.6587 3.1242 0.9851 3.2645
2.5 3.1370 1.7357 4.5513 3.1294 1.1503 3.6587 3.1242 0.8462 3.2645
3.0 3.1370 1.5737 4.5513 3.1295 1.0307 3.6587 3.1243 0.7723 3.2645

500 1.0 4.9451 3.3709 4.5388 4.9360 2.0741 3.6862 4.9309 1.3620 3.3095
1.5 4.9452 2.6758 4.5388 4.9361 1.6466 3.6862 4.9310 1.0857 3.3095
2.0 4.9452 2.3250 4.5388 4.9361 1.4291 3.6862 4.9310 0.9298 3.3095
2.5 4.9451 2.1308 4.5388 4.9360 1.3173 3.6862 4.9309 0.8444 3.3095
3.0 4.9452 1.9264 4.5388 4.9361 1.1741 3.6862 4.9310 0.7667 3.3095
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Table B.3: Comparison of Simulated and Approximated Critical Values c
(5)
α (n) of Test

statistic T
(5)
n with q(t) = (t(1− t))0.2 and V = 3

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 0.1486 5.0626 0.0347 3.5860 0.0000 2.8115
1.5 0.1506 5.0626 0.0352 3.5860 0.0000 2.8115
2.0 0.1489 5.0626 0.0358 3.5860 0.0000 2.8115
2.5 0.1457 5.0626 0.0360 3.5860 0.0000 2.8115
3.0 0.1455 5.0626 0.0408 3.5860 0.0000 2.8115

100 1.0 0.1120 5.8276 0.0221 4.1241 0.0000 3.2100
1.5 0.1153 5.8276 0.0245 4.1241 0.0000 3.2100
2.0 0.1154 5.8276 0.0243 4.1241 0.0000 3.2100
2.5 0.1113 5.8276 0.0244 4.1241 0.0000 3.2100
3.0 0.1167 5.8276 0.0244 4.1241 0.0000 3.2100

200 1.0 0.0000 6.7644 0.0000 4.7207 0.0000 3.6609
1.5 0.0000 6.7644 0.0000 4.7207 0.0000 3.6609
2.0 0.0000 6.7644 0.0000 4.7207 0.0000 3.6609
2.5 0.0000 6.7644 0.0000 4.7207 0.0000 3.6609
3.0 0.0000 6.7644 0.0000 4.7207 0.0000 3.6609

500 1.0 0.0000 8.0218 0.0000 5.7200 0.0000 4.5062
1.5 0.0000 8.0218 0.0000 5.7200 0.0000 4.5062
2.0 0.0000 8.0218 0.0000 5.7200 0.0000 4.5062
2.5 0.0000 8.0218 0.0000 5.7200 0.0000 4.5062
3.0 0.0000 8.0218 0.0000 5.7200 0.0000 4.5062
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Table B.4: Comparison of Simulated and Approximated Critical Values c
(6)
α (n) of Test

statistic T
(6)
n with q(t) = (t(1− t))0.2 and V = 3

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 1.0432 5.6047 1.0390 4.2818 1.0369 3.5980
1.5 1.0431 5.6047 1.0390 4.2818 1.0368 3.5980
2.0 1.0431 5.6047 1.0389 4.2818 1.0368 3.5980
2.5 1.0431 5.6047 1.0389 4.2818 1.0368 3.5980
3.0 1.0429 5.6047 1.0386 4.2818 1.0365 3.5980

100 1.0 1.4688 6.4923 1.4642 4.9482 1.4619 4.1252
1.5 1.4686 6.4923 1.4640 4.9482 1.4616 4.1252
2.0 1.4686 6.4923 1.4640 4.9482 1.4617 4.1252
2.5 1.4688 6.4923 1.4642 4.9482 1.4619 4.1252
3.0 1.4688 6.4923 1.4642 4.9482 1.4619 4.1252

200 1.0 2.0696 7.5343 2.0645 5.6930 2.0611 4.7207
1.5 2.0697 7.5343 2.0646 5.6930 2.0613 4.7207
2.0 2.0696 7.5343 2.0645 5.6930 2.0611 4.7207
2.5 2.0696 7.5343 2.0646 5.6930 2.0612 4.7207
3.0 2.0697 7.5343 2.0646 5.6930 2.0612 4.7207

500 1.0 3.2565 8.9213 3.2531 6.7867 3.2625 5.6984
1.5 3.2566 8.9213 3.2532 6.7867 3.2626 5.6984
2.0 3.2566 8.9213 3.2532 6.7867 3.2626 5.6984
2.5 3.2565 8.9213 3.2531 6.7867 3.2626 5.6984
3.0 3.2566 8.9213 3.2532 6.7867 3.2626 5.6984
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Table B.5: Comparison of Simulated and Approximated Critical Values c
(7)
α (n) of Test

statistic T
(7)
n with q(t) = (t(1− t))0.2, V = 3

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 1.0431 1.2620 0.6384 1.0479 0.4373 0.9376
1.5 0.9053 1.2620 0.5525 1.0479 0.3692 0.9376
2.0 0.7960 1.2620 0.4871 1.0479 0.3319 0.9376
2.5 0.7081 1.2620 0.4326 1.0479 0.2907 0.9376
3.0 0.6980 1.2620 0.4247 1.0479 0.2971 0.9376

100 1.0 0.7267 1.2620 0.4846 1.0479 0.3523 0.9376
1.5 0.6962 1.2620 0.4533 1.0479 0.3356 0.9376
2.0 0.5919 1.2620 0.3820 1.0479 0.2795 0.9376
2.5 0.4774 1.2620 0.3178 1.0479 0.2319 0.9376
3.0 0.4229 1.2620 0.2731 1.0479 0.1998 0.9376

200 1.0 0.5720 1.2620 0.3087 1.0479 0.2001 0.9376
1.5 0.4329 1.2620 0.2293 1.0479 0.1439 0.9376
2.0 0.4011 1.2620 0.2176 1.0479 0.1409 0.9376
2.5 0.3554 1.2620 0.1895 1.0479 0.1204 0.9376
3.0 0.3112 1.2620 0.1714 1.0479 0.1073 0.9376

500 1.0 0.2559 1.2620 0.0973 1.0479 0.0724 0.9376
1.5 0.2060 1.2620 0.0781 1.0479 0.0578 0.9376
2.0 0.1743 1.2620 0.0671 1.0479 0.0498 0.9376
2.5 0.1631 1.2620 0.0611 1.0479 0.0455 0.9376
3.0 0.1484 1.2620 0.0553 1.0479 0.0410 0.9376
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Table B.6: Comparison of Simulated and Approximated Critical Values c
(8)
α (n) of Test

statistic T
(8)
n with q(t) = (t(1− t))0.2, V = 3

µ and Optimal Bandwidth b.

(α = 0.01) (α = 0.05) (α = 0.10)
n µ Sim.CV App.CV Sim.CV App.CV Sim.CV App.CV

50 1.0 1.0431 1.3361 0.6384 1.1436 0.4373 1.0442
1.5 0.9053 1.3361 0.5525 1.1436 0.3692 1.0442
2.0 0.7960 1.3361 0.4871 1.1436 0.3319 1.0442
2.5 0.7081 1.3361 0.4326 1.1436 0.2907 1.0442
3.0 0.6980 1.3361 0.4247 1.1436 0.2971 1.0442

100 1.0 0.7267 1.3361 0.4846 1.1436 0.3523 1.0442
1.5 0.6962 1.3361 0.4533 1.1436 0.3356 1.0442
2.0 0.5919 1.3361 0.3820 1.1436 0.2795 1.0442
2.5 0.4774 1.3361 0.3178 1.1436 0.2319 1.0442
3.0 0.4229 1.3361 0.2731 1.1436 0.1998 1.0442

200 1.0 0.5720 1.3361 0.3087 1.1436 0.2001 1.0442
1.5 0.4329 1.3361 0.2293 1.1436 0.1439 1.0442
2.0 0.4011 1.3361 0.2176 1.1436 0.1409 1.0442
2.5 0.3554 1.3361 0.1895 1.1436 0.1204 1.0442
3.0 0.3112 1.3361 0.1714 1.1436 0.1073 1.0442

500 1.0 0.2559 1.3361 0.0973 1.1436 0.0724 1.0442
1.5 0.2060 1.3361 0.0781 1.1436 0.0578 1.0442
2.0 0.1743 1.3361 0.0671 1.1436 0.0498 1.0442
2.5 0.1631 1.3361 0.0611 1.1436 0.0455 1.0442
3.0 0.1484 1.3361 0.0553 1.1436 0.0410 1.0442
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[10] Antoch, J., Hušková, M.: Permutation tests in change point analysis. Statistics

& probability letters 53(1), 37–46 (2001)

179
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[50] Gijbels, I., Gürler, Ü.: Estimation of a change point in a hazard function based

on censored data. Lifetime Data Analysis 9(4), 395–411 (2003)

182



[51] Gombay, E.: Change detection in linear regression with time series errors. Cana-

dian Journal of Statistics 38(1), 65–79 (2010)

[52] Gombay, E., Liu, S.: A nonparametric test for change in randomly censored

data. The Canadian Journal of Statistics/La Revue Canadienne de Statistique

28(1), 113–121 (2000)

[53] Good, P.: Permutation, Parametric, and Bootstrap Tests of Hypotheses.

Springer, New York, 3rd edn. (2005)

[54] Goodman, M.S., Li, Y., Tiwari, R.C.: Survival analysis with change point

hazard functions. Tech. rep., Harvard University Biostatistics Working Pa-

per Series, Working Paper 40 (2006), http://biostats.bepress.com/cgi/

viewcontent.cgi?article=1043&context=harvardbiostat

[55] Goodman, M.S., Li, Y., Tiwari, R.C.: Detecting multiple change points in

piecewise constant hazard functions. Journal of applied statistics 38(11), 2523–

2532 (2011)

[56] Green, P.J.: Reversible jump markov chain monte carlo computation and

bayesian model determination. Biometrika 82(4), 711–732 (1995)
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[62] Horváth, L.: Tests for changes under random censorship. Journal of statistical

planning and inference 69, 229–243 (1998)

183

http://biostats.bepress.com/cgi/viewcontent.cgi?article=1043&context=harvardbiostat
http://biostats.bepress.com/cgi/viewcontent.cgi?article=1043&context=harvardbiostat
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of Statistics 26(1), 101–116 (1964)

[146] Worsley, K.J.: On the likelihood ratio test for a shift in location of normal

populations. Journal of the American Statistical Association 74(366a), 365–367

(1979)

[147] Worsley, K.J.: An improved bonferroni inequality and applications. Biometrika

69(2), 297–302 (1982)

[148] Worsley, K.J.: Exact percentage points of the likelihood-ratio test for a change-

point hazard-rate model. Biometrics 44(1), 259–263 (1988)

[149] Yandell, B.S.: Nonparametric inference for rates with censored survival data.

The Annals of Statistics 11(4), 1119–1135 (1983)

[150] Yao, Y.C.: Maximum likelihood estimation in hazard rate models with a

change-point. Communications in Statistics-Theory and Methods 15(8), 2455–

2466 (1986)

190



[151] Zeileis, A., Leisch, F., Hornik, K., Kleiber, C.: strucchange. an r package for

testing for structural change in linear regression models. Journal of Statistical

Software 7(2), 1–38 (2002)

[152] Zeileis, A., Shah, A., Patnaik, I.: Testing, monitoring, and dating structural

changes in exchange rate regimes. Computational Statistics & Data Analysis

54(6), 1696–1706 (2010)

[153] Zhao, X., Wu, X., Zhou, X.: A change-point model for survival data with

long-term survivors. Statistica Sinica 19(1), 377–390 (2009)

191



Scientific Career

2000 Bachelor of Science in Statistics (held in 2002), Ja-
hangirnagar University, Bangladesh

2001 Master of Science in Statistics (held in 2004), Jahangir-
nagar University, Bangladesh

2006 Master of Philosophy (Coursework completed) in
Statistics (held in 2008), Jahangirnagar University,
Bangladesh

01/2005 - 12/2005 Teaching Assistant, Department of Applied Physics
and Communication Engineering, East West University,
Bangladesh

01/2006 - 05/2006 Adjunct Faculty, Department of Applied Physics and
Communication Engineering, East West University,
Bangladesh

06/2006 - 12/2009 Lecturer, Department of Statistics, Jahangirnagar Uni-
versity, Bangladesh

12/2009 - till date Assistant Professor, Department of Statistics, Jahangir-
nagar University, Bangladesh

08/2013 - 2017 PhD in Mathematics, University of Kaiserslautern, Ger-
many

192



Wissenschaftlicher Werdegang

2000 Bachelor of Science in Statistik (erhalten 2002), Ja-
hangirnagar University, Bangladesch

2001 Master of Science in Statistik (erhalten 2004), Jahangir-
nagar University, Bangladesch

2006 Master of Philosophy (Kurse abgeschlossan) in Statistik
(erhalten 2008), Jahangirnagar University, Bangladesch

01/2005 - 12/2005 Teaching Assistant, Department of Applied Physics
and Communication Engineering, East West University,
Bangladesch

01/2006 - 05/2006 Adjunct Faculty, Department of Applied Physics and
Communication Engineering, East West University,
Bangladesch

06/2006 - 12/2009 Lecturer, Department of Statistics, Jahangirnagar Uni-
versity, Bangladesch

12/2009 - jetzt Assistant Professor, Department of Statistics, Jahangir-
nagar University, Bangladesch

08/2013 - 2017 Doktorentin im Fach Mathematik, Technische Univer-
sität Kaiserslautern, Deutschland

193


	Abstract
	Acknowledgement

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Overview
	Motivation
	State of the Art
	Outline of the Thesis

	Change Point in Hazard Functions with Censored Data
	Censored Data
	Review of Hazard Functions Estimation
	Change Point in Hazard Functions
	Change Point Models and Methods for Hazard Function
	Change Point in Hazard using the Cross-Entropy (CE) Method

	Simulations and Applications
	Simulations
	Real Data Applications

	Discussion

	Change Point Analysis with Missing Data
	Single Change Point Models
	Single Change Point in Mean
	Single Change Point in Linear Regression

	Multiple Change Points Models
	Multiple Change Points in Mean
	Multiple Change Points in Linear Regression

	Missing Data Imputation
	Missing-Data Mechanism
	Imputation Methods
	Imputation in Cell Stimulus Response Data

	Real Data Analysis
	Changes in Mean
	Changes in Regression Coefficients
	Changes in Distribution

	Discussion

	Change Point in Hazard Function using U-statistic for Censored Data
	Test Hypothesis
	Horváth's Test for Changes based on Censored Data

	A Hazard-Function based Statistic
	Convergence of n(1) to 
	Convergence of n(2) to 
	Convergence of n(3) to 

	Kernel-Based Change Point Test's
	Change Point Test using 2
	Change Point Tests with Different Weights
	Proof of Theorem 4.3.1

	Consistency of the Change Point Test
	Test Statistic and Asymptotics under H0 for Antisymmetric Kernels
	Change Point Tests with Different Weights

	Some Remarks on a Change Point Test using 1 (x)
	Discussion

	Simulations and Applications
	Simulations
	Asymptotic and Simulated Critical Values
	Simulated Powers
	Evaluation of Change Point Estimators

	Real Data Applications
	Cell Stimulus Response Data
	Breast Cancer Mortality Data

	Discussion

	Summary and Conclusions
	Breast Cancer Dataset
	Simulated Critical Values
	Bibliography

