A reduction algorithm for integer multiple objective linear programs

D. Schweigert and P. Neumayer

We consider a multiple objective linear program $(MOLP) \max\{Cx|Ax = b, x \in \mathbb{N}_0^n\}$ where $C = (c_{ij})$ is the $p \times n$ -matrix of p different objective functions $z_i(x) = c_{i1}x_1 + ... + c_{in}x_n, i = 1, ..., p$ and A is the $m \times n$ -matrix of a system of m linear equations $a_{k1}x_1 + ... + a_{kn}x_n = b_k, k = 1, ..., m$ which form the set of constraints of the problem. All coefficients are assumed to be natural numbers or zero. The set M of admissable solutions is given by $M = \{x | Ax = b, x \in \mathbb{N}_0^n\}$. An efficient solution \overline{x} is an admissible solution such that there exists no other admissable solution x with $C\overline{x} < Cx$. The efficient solutions play the role of optimal solutions for the MOLP and it is our aim to determine the set of all efficient solutions.

From the p different objective function we generate a new parametric objective function f which has the property to perserve the canonical order on $(\mathbb{N}_0^n; \leq_{lex})$. Therefore we can use f to find all efficient solutions in a lexikographic order. An efficient solution which is already found will be eliminated by some constraints to get the next efficient solution.

This is a theoretical approach to solve the problem because of the high complexity of the procedures involved. But we have already shown in [] that for small bicriteria integer linear programs it is applicable. This approach generalizes the results in [] to the multicriteria case by introducing an objective function f which is strictly monotone for two different orderings.

1 The scaling

We determine for every objective function $z_i(x)$ the minimal value a_i and the maximal value b_i . We denote the difference by $d_i = b_i - a_i + 1$. If for some objective function $z_i(x)$ we have $d_i = 1$ then we may drop this objective function because it is unnecessary as a criterion for the decision. Without a loss of generality we assume that $d_i = 1$ then we may drop this objective function because it is unnecessary as a criterion for the decision. Without a loss of generality we assume that $d_i > 1$ and introduce a new parametrix

objective function $f: \mathbb{N}_0^n \to \mathbb{N}_0^n$

$$f(x) = \sum_{i=1}^{p} \left(\prod_{j=1}^{i} d_j \right)^{-1} z_i(x)$$

We write $z_i(x) = c_i(x)$ where $c_i = (c_{i1}, ..., c_{in})$ and have $f(x) = f(x) = \sum_{i=1}^{p} \left(\prod_{j=1}^{i} d_j\right)^{-1}$

 $c_i(x) = \frac{1}{d_1}c_1x + \frac{1}{d_1d_2}c_2x + + \frac{1}{d_1...d_p}c_px$. We consider the canonical order \leq on \mathbb{N}_0^P which is defined componentwise. $(a_1, ..., a_p) \leq (b_1, ..., b_p)$ if and only if $a_i \leq b_i$ for every i = 1, ..., p. The criterion space of the MOLP is given by

$$Z = \left\{ z \in \mathbb{N}_0^P | z = Cx, x \in \mathbb{N} \right\}$$

under the above hypothesis. It is obvious that $(Z; \leq)$ is a suborder of $(\mathbb{N}_0^P; \leq)$. Furthermore the function $g: Z \to \mathbb{R}_0$ $g(z) = g(c_1x, ...c_nx) = f(x)$ is strictly monotone on Z as

$$\left(\prod_{j=1}^i d_j\right)^{-1} > 0.$$

On the other hand let us consider the lexicographic order $<_{lex}$ on \mathbb{N}_0^P which is defined in the following way. $(a_1, ..., a_p) <_{lex} (b_1, ..., b_p)$ if there exists $m \in \mathbb{R}_0$ with $0 \le m < p$ such that $a_k = a_k$ for k = 1, ..., m - 1 and $a_m < b_m$. The linear order $(\mathbb{N}_0^P; < lex)$ has the linear suborder $(Z; <_{lex})$. Furthermore we may consider $(\mathbb{R}; <)$ as a lexicographic order as well. Our aim is to show that $g: Z \to \mathbb{R}_0$ also preserves the lexicographic order. We will use the following

Proposition 1.1

Let $\Delta \overline{c}_i d_i \in \mathbb{N}$ with $0 < \Delta c_i < d_i$ and i = 1,...,p. If $a_i = \Delta c_i + \frac{a_{i+1}}{d_{i+1}}$ for i = 1,...,p-1 and $a_p = \Delta c_p$ for i = p then we have $\frac{a_i}{d_i} < 1$ for i = 1,...,p.

Proof. For i=p we have $a_p < d_p$ and hence $\frac{a_p}{d_p} < 1$. Assume that we have proved $\frac{a_{i+1}}{d_{i+1}} < 1$ for some i=1,...,p-1. We have

$$a_i = \Delta c_i + \frac{a_i + 1}{d_i + 1} \le d_i - 1 + \frac{d_i + 1}{d_i + 1} < d_i - 1 + 1 = d_i.$$

Hence we have $\frac{a_i}{d_i} < 1$.

Theorem 1.2

The function $g: Z \to \mathbb{R}_0$ defined by $(z) = g(c_1x, ..., c_px) = f(x)$ preserves the lexicographic order.

Proof. Let $z^1 <_{lex} z^2$ and hence $(c_1x^1, ..., c_nx^1)L_{lex}(c_1x^2, ..., c_px^2)$. We have

$$\left(\prod_{i=1}^{i}\right)^{-1} c_i x^1 = \left(\prod_{j=1}^{i} d_j^{-1}\right) c_i x^2 \text{ for } i = 1, ..., m-1$$

and

$$\left(\prod_{j=1}^{m} d_{j}\right)^{-1} c_{m} \cdot x^{1} < \left(\prod_{j=1}^{m} d_{j}\right)^{-1} c_{m} x^{2}.$$

It remains to show that

$$\left| \sum_{i=m+1}^{p} \left(\prod_{j=1}^{m} d_{j} \right)^{-1} c_{i} \left(x^{2} - x^{1} \right) \right| < \left(\prod_{j=1}^{m} d_{j} \right)^{-1} c_{m} \left(x^{2} - x^{1} \right)$$

or after a division that

$$\sum_{i=m+1}^{p} \left(\prod_{j=m+1}^{i} d_{j} \right)^{-1} c_{i} \left| x^{2} - x^{1} \right| < c_{m} \left(x^{2} - x^{1} \right)$$

(We also notice that $1 \leq c_m (x^2 - x^1)$ because we have only integers). For our convenience we put $\Delta \overline{c}_i := |c_i (x^2 - x^1)|$

$$\sum_{i=m+1}^{p} \left(\prod_{j=m+1}^{i} d_{j} \right)^{-1} \triangle \overline{c}_{i} =$$

$$\frac{\triangle c_{m+1}}{d_{m+1}} + \frac{\triangle c_{m+2}}{d_{m+1} \cdot d_{m+2}} + \dots + \frac{\triangle c_{p-1}}{d_{m+1} \dots \cdot d_{p-1}} + \frac{\triangle c_p}{d_{m+1} \dots \cdot d_p} = \frac{1}{d_{m+1}}$$

$$(\triangle c_{m+1} + \frac{1}{d_{m+2}}(c_{m+2} + \dots + \frac{1}{d_{p-1}}(\triangle c_{p-1} + \frac{1}{d_p} \triangle c.$$

Using the proposition 1.1 we get

$$= \frac{1}{d_{m+1}} (\triangle c_{m+1} + \frac{1}{d_{m+2}} (\triangle c_{m+2} + \dots + \frac{1}{d_{p-1}} (\triangle c_{p-1} + \frac{a_p}{d_p}))$$

$$= \frac{1}{d_{m+1}} (\triangle c_{m+1} + \frac{1}{d_{m+2}} (\triangle c_{m+2} + \dots + \frac{a_{p-1}}{d_{p-1}})) = \dots$$

$$= \frac{a_{m+1}}{d_{m+1}} < 1 \le c_m (x^2 - x^1)$$

Corollary 1.3

The function f has the properties

$$(1.3.1) \ Cx^1 < Cx^2 \ \text{implies} \ f(x^1) < f(x^2)(1.3.2) \ Cx^1 <_{lex} Cx^2 \ \text{implies} \ f(x^1) < f(x^2)$$

Assume that the admissable solution $x^0 \in M$ is not efficient. Then there exists an admissable solution x' with $Cx^0 < Cx'$. By (1.3.1) x^0 is not an optimal solution of $\max\{f(x)|Ax=b,x\in\mathbb{N}_0^n\}$.

Corrollary 1.4

If x^0 is an optimal solution of $\max\{f(x)|Ax=b,x\in\mathbb{N}_0^n\}$ then x^0 is an efficient solution of $\max\{Cx|Ax=b,x\in\mathbb{N}_0^n\}$

2 The adaption of constraints

Let x^0 be the effecient solution which is found as an optimal solution of the linear program $\max\{f(x)|Ax=b,x\in\mathbb{N}_0^n\}$ Let $f_0=f(x^0)$ the optimal value

of the objective function f. Then we eliminate this efficient solution by the constraint $f(x) < f_0$.

We call a solution $x^1 \in M$ dominated by a solution $x^2 \in M$ if $Cx^1 < Cx^2$. We eliminate all solutions $x \in M$ which are dominated by x^0 with the constraint $y'(Cx - (x^0) > 0$ then x^0 determinates no $x \in X$ for $y \in \mathbb{N}^n$, $(y \neq 0)$. By adding these constraints the set of admissable solutions changes.

Lemma 2.1

Let x be the set of all admissable solutions. If for every $x \in X$ there is a vector $y \in \mathbb{N}^n$ with $y'(Cx - Cx^0) > 0$ then x^0 dominates no $x \in X$.

Proof. If we have $y'(Cx - Cx^0) = \sum_{i=1}^{p} ((Cx)_i - (Cx^0)i)y_i > 0$ then there exists at least one index i such that $(Cx)_i - (Cx^0)_i > 0$. It means that at least in one component i the value of the new solution x in the objective function is greater than the value of x^0 . Hence x will not be dominated by x^0 .

Let $z^1 = Cx^1, z^2 = Cx^2, ..., z^j = Cx^j$ be different efficient solutions for the problem $\max\{Cx|Ax = b, x \in \mathbb{N}_0$. Let $L = \{x^1, ..., x^j\}$ be the set of the efficient solutions which were found till now.

Lemma 2.2

Let $(Cx)_i > 0$ for i = 1, ..., p and $x \in X$. For $x^j \in L$ there exists $y^j \in \mathbb{N}^n$ with $y^{j'}(Cx - Cx^j) > 0$ if and only if $(Cx)_i - (Cx^j)_i y_i^j > 0$ for i = 1, ..., p and $\sum_{i=1}^p y_i^j \geq 1$.

Proof. If $y^{j'}(Cx - Cx^0) > 0$ holds then we have $(Cx - Cx^0)i_0 > 0$ for at least one component i_0 . We choose $y^j_{i0} = 1$ and all other components $y^j_i = 0$. As Cx > 0 we have $((Cx)_i - (Cx^j)_i)y^j_i > 0$ for every i = 1, ..., p and $\sum_{i=1}^p y^j_i \geq 1$.

On the other hand from $\sum_{i=1}^{p} y_i^j \ge 1$ it follows that there is a vector $y_k^j = m \ge 1$ for some k. For this k we have

 $((Cx)_k - (Cx^j)k) \cdot y_i^j > C$. Now we choose $y_k^j = 1$ and every other component $y_i^j = 0$ and we have $y^{j'}(Cx - Cx^j) > 0$.

Theorem 3.3

Let X be the set of all admissable solutions which fulfill the following constraints $Ax = b, f(x) < f(x^j), y^{j'}(Cx - Cx^j) > 0$ for every $x^j \in L$ with $x \in \mathbb{N}_0^n, y^j \in \mathbb{N}_0^P$. If $x \neq 0$ then the linear program $\max\{f(x)|x \in X\}$ generates a new efficient solution. If $x = \emptyset$ then all efficient solutions have been already found in the list L.

Proof. The new solution x' has the property that for every efficient solution x^j of our list L we have $f(x^j) > f(x')$. We have to show that x' is efficient. If x' is not efficient then either x' is dominated by an element of the admissable set x of the actual calculation or by an already eliminated element.

Case 1.z' = Cx' is dominated by z = Cx of the actual admissable set X. Then we have Cx > Cx' and as f is strictly monotone f(x) > f(x'), a contradiction.

Case 2. z' is dominated by the already eliminated point z^j . But this contradicts the constraint $y^{j'}(Cx - Cx^j) > 0$. Hence x' is an efficient solution.

3 The reduction algorithm.

We use the notations of the preceding sections.

Step 1. Calculation of the objective function f for i = 1, ..., p do

$$b_i = \max\{c_i x | Ax = b, x \in \mathbb{N}_0^n\}$$

$$a_i = \min\{c_i x | Ax = b, x \in \mathbb{N}_0^n\}$$

$$d_i = b_i - a_i + 1$$

$$f(x) = \sum_{i=1}^{p} \left(\prod_{j=1}^{i} d_j \right)^{-1} c_i x$$

Step 2.Initial solution (z^1, x^1)

 (z^1,x^1) is calculated by $\max\{f(x)|Ax=b,x\in\mathbb{N}_0^n\ \}$

$$L := \{(z^1, x^1)\}$$

$$x^1 := \{x | Ax = b, x \in \mathbb{N}_0^n, \text{ there is } y^1 \in \mathbb{N}_0^p \text{ with } (Cx)_j - z_j^1 y_j^1 \ge 1\}$$

$$i := 1$$

Step3: Searching loop

for
$$x^i \neq \emptyset$$
 do (z^{i+1}, x^{i+1}) is calculated by $\max\{f(x)|x \in x^i\}$

$$L := Lu\{(z^{i+1}, x^{i+1})\}\$$

$$x^{i+1} = \{x \in x^i f(x) < f(x^{i+1}), \text{ there is } y^{i+1} \in \mathbb{N}_0^p \text{ with } \sum_{j=1}^p y_j^{i+1} \ge 1 \text{ and } (Cx)_j - z^{i+1} y_j^{i+1} > 0 \text{ for every } j = 1, ..., p\}$$

$$i := i + 1$$

Step 4.Output

for
$$j = 1, ..., i$$
 do print (z^j, x^j)

Theorem 3.1

The reduction algorithm finds every efficient solution of the integer multiple objective linear program

$$\max\{Cx|Ax = b, x \in \mathbb{N}_0^n \}$$

Proof. Assume there is an efficient solution x^0 with $z^0=Cx^0$ of $\max\{Cx|Ax=b,x\in\mathbb{N}_0^n\}$. Then there exists $z^k,z^{k+1}\in L$ such that $z^k>_{lex}z>_{lex}z^i$ and such that for $z'\in L$ we have either $z^i>_{lex}z$

k or $z^{k+1}>_{lex}z'$. We consider the $(k+1)^{st}$ iteration of the searching loop in step 3. In this state z belongs to admissable set x as $f(x^k)>f(x)$ and z is efficient by hypothesis. The algorithm found z^{k+1} as $f(x^{k+1})\geq f(x)$ holds in contradiction to $z>_{lex}z^{k+1}$ and hence $f(x)>f(x^{k+1})$.

Literatur

- [1] L.G. Chalmet, L. Lemonidis, D.J. Elzinga An algorithm for the bicriteria integer programming problem, European Journal of Operations Research vol 25(1986) 292-300.
- [2] T. Gal, A general method for determining the set of all efficient solutions to a linear vector maximum problem European Journal of Operations Research vol 1 (1977) 307-322.
- [3] A. Göpfert, R.Nehse Vektoroptimierung, Teubner, Leipzig 1991
- [4] W. Habenicht, Neuere Entwicklungen auf dem Gebiet der Vektoroptimierung, Operations Research Proceedings 1990 DGOR, Springer Verlag 204-218
- [5] H. Isermann, The enumeration of the set of all efficient solutions for a linear multiple objective program, Operations Research Quarterly vol 28 no.3 (1977) 711-725.
- [6] P. Korhonen, J. Wallenius, A multiple objective linear programming decision support system, Decision Support Systems vol. 6 no. 3 (1990) 243-251
- [7] P. Neumayer, D. Schweigert, Three algorithm for bicriteria integer linear programs, OR-Spektrum 1995
- [8] R.E. Steuer, Multiple Criteria Optimization, Theory, Computation and Applications Wiley, New York 1986

D. Schweigert P. Neumayer
FB Mathematik SAP
Universität
67663 Kaiserslautern 69185 Walldorf
Germany Germany