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We consider a multiple objective linear program (MOLP)max{Cz|Az =
b,z € Nj } where C' = (¢;;) is the p x n-matrix of p different objective func-
tions z;(x) = eqxy + ... + Cintn,t = 1,...,p and A is the m x n-matrix of
a system of m linear equations ap 1 + ... + appx, = bp,k = 1,...,m which
form the set of constraints of the problem. All coefficients are assumed to
be natural numbers or zero. The set M of admissable solutions is given by
M = {z|Az = b,z € Nj}. An efficient solution T is an admissible solution
such that there exists no other admissable solution z‘ with C7 < Cz‘. The
efficient solutions play the role of optimal solutions for the MOLP and it is
our aim to determine the set of all efficient solutions.

From the p different objective function we generate a new parametric objec-
tive function f which has the property to perserve the canonical order on
(NG5 <iewr). Therefore we can use f to find all efficient solutions in a lexiko-
graphic order. An efficient solution which is already found will be eliminated
by some constraints to get the next efficient solution.

This is a theoretical approach to solve the problem because of the high com-
plexity of the procedures involved. But we have already shown in [] that for
small bicriteria integer linear programs it is applicable. This approach gene-
ralizes the results in [] to the multicriteria case by introducing an objective
function f which is strictly monotone for two different orderings.

1 The scaling

We determine for every objective function z;(z) the minimal value a; and the
maximal value b;. We denote the difference by d; = b; — a; + 1. If for some
objective function z;(z) we have d; = 1 then we may drop this objective
function because it is unnecessary as a criterion for the decision. Without a
loss of generality we assume that d; = 1 then we may drop this objective
function because it is unnecessary as a criterion for the decision. Without
a loss of generality we assume that d; > 1 and introduce a new parametrix



objective function f: N} — Np

We write z;(z) = ¢;(z) where ¢; = (¢i,...,¢n)" and have f(z) = f(z) =
. -1
f:l (H;:l d])
ci(z) = iclx + ﬁcw + ...+ T We consider the canonical order <

on NI which is defined componentvvlse (a1y...,a,) < (by,...,b,) if and only if
a; < b; for every 1 = 1, ..., p. The criterion space of the MOLP is given by

Z={z€NJ|z=Cz,z €N}

under the above hypothesis. It is obvious that (Z; <) is a suborder of
(Néj; g) . Furthermore the function g : 7 — Rg g(2) = g(a1z,...chx) = f(z)

is strictly monotone on 7 as
; -1
(H d]> > 0.
J=1

On the other hand let us consider the lexicographic order <., on Néj
which is defined in the following way. (a1, ..., a,) <ier (b1, ..., b,) if there exists
m € Rg with 0 < m < p such that ay = a; for k=1,....m —1 and a,, < b,,.
The linear order (Néj; < le:z;) has the linear suborder (7; <j.;). Furthermore
we may consider (R; <) as a lexicographic order as well. Our aim is to show
that ¢ : 7 — Ry also preserves the lexicographic order. We will use the
following

Proposition 1.1

Let A¢d; € N with 0 < A¢; < d; and ¢ = 1,...,p. If a; = Ac¢; + u”“for
t=1,..,p—1and a, = Ac, fori:pthenwehavea—, <1forz—1,...,

Proof. For ¢« = p we have a, < d, and hence u’— < 1. Assume that we have
proved 2l < 1 for some i = 1,. — 1.We have
a; +1 d; +1

<d;—1

<d2—1+1:d2

ai = Ac; +



Hence we have % < 1.
Theorem 1.2

The function g : 7 — Ry defined by (2) = g(e1z, ..., c,x) = f(x) preserves
the lexicographic order.

Proof. Let 2! <., 2% and hence (c12', ..., ¢,2") Liex(c12?, ..., c,2?). We have

i\ ! i
(H) it = (H dj_l) cxifori=1,...,m—1
7=1

7=1
” —1 . ~1
(H Cl]) Cm * z! < (H d]> Cm.I'2.
7=1 7=1

It remains to show that

f: (ﬁd) (2 — 21| < (fpz),r («? — o)

i=m+1 \j=1

and

or after a division that

> (1 )

i=m+1 \j=m+1

z?— .I‘1| < Cp (.1‘2 — :L'l)

(We also notice that 1 < ¢,, (z? — ') because we have only integers). For

our convenience we put A¢; := |¢; (22 — z)|
P i -1
) I 4) 2=
i=m+1 \j=m+1
VAN VAN AV Ac, 1
dnt1 dmt1 - dimgo dotteedp—1 dpyree-dy  dmga



1 1 1
(A1 + —(emr2 + .+ —(Depor + — Acc

dm+2 dp—l dp
Using the proposition 1.1 we get
1 1 a
= Ney, AN Nep_y + 2.
dm-}—l( Cmt1 + dm+2( Cp42 + ...+ dp—l( Cp—1 t+ d,

1 1 _
= (Acpir + —(Depmga + ... + M) =
dm—}—l dm—}-?

_ Um+1 <1<e, (:c2 _$1)
dm+1

Corollary 1.3

The function f has the properties

(1.3.1) Cz' < Cz* implies f(z') < f(2?)(1.3.2) Cz' <, Cz® implies
fle) < f(a?)

Assume that the admissable solution z° € M is not efficient. Then there
exists an admissable solution z’ with C'z° < Cz’. By (1.3.1) 2° is not an

optimal solution of max{f(z)|Az = b,z € Ny }.
Corrollary 1.4

If 2° is an optimal solution of max{f(z)|Az = b,z € Nj} then 2° is an
efficient solution of max{Cz|Ax = b,z € N} }

2 The adaption of constraints

Let z° be the effecient solution which is found as an optimal solution of the
linear program max{ f(z)|Az = b,z € N} Let fo = f(z°) the optimal value
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of the objective function f. Then we eliminate this efficient solution by the
constraint f(z) < fo.

We call a solution 2! € M dominated by a solution z? € M if Cx! < Cz?.
We eliminate all solutions € M which are dominated by z° with the cons-
traint y'(C'z — (2°) > 0 then 2° determinates no z € X for y € N*, (y # 0).
By adding these constraints the set of admissable solutions changes.

Lemma 2.1

Let = be the set of all admissable solutions. If for every x € X there is a

vector y € N* with y'(Cz — C'z°) > 0 then z° dominates no = € X.
P
Proof. If we have y'(Cz — Cz%) = > ((Cz); — (Cz®)i)y; > 0 then there exists
=1
at least one index ¢ such that (Cz); — (C:EO)Z- > 0. It means that at least in
one component ¢ the value of the new solution x in the objective function is
greater than the value of z°. Hence z will not be dominated by z°.
Let z' = Cz', 22 = C2?,...,27 = Cx’ be different efficient solutions for
the problem max{Cz|Az = b,z € Ny. Let L = {z',...,27} be the set of the

efficient solutions which were found till now.
Lemma 2.2

Let (Cz); > 0 for i =1,..,pand z € X. For 27 € L there exists y' € N
with y/'(Cz — Cz?) > 0 if and only if (Cz); — (C2?);y! > 0 fori =1,...,p
P
and >yl > 1.
i=1
Proof. If y/'(Cx — Cz°% > 0 holds then we have (Cz — C'z%)ig > 0 for at least
one component ig. We choose y/, = 1 and all other components y! = 0. As

. P
Cz > 0 we have ((Cz); —(Ca?);)y] > 0 for every 1 = 1,....,pand > y/ > 1.
=1

k3

P ,

On the other hand from ) y/ > 1 it follows that there is a vector y, = m > 1
i=1

for some k. For this k& we have

Cz)r — (Cz))k) - y! > C. Now we choose y! = 1 and every other com-
/ z k
ponent y! = 0 and we have y/'(Cz — Cz?) > 0.

Theorem 3.3



Let X be the set of all admissable solutions which fulfill the following cons-
traints Az = b, f(z) < f(2?),y" (Cx — C2?) > 0 for every 27 € L with
x € Noy/ € N If z # 0 then the linear program max{f(z)|z € X} gene-
rates a new efficient solution. If x = @ then all efficient solutions have been
already found in the list L.

Proof. The new solution z’ has the property that for every efficient solution
2 of our list L we have f(27) > f(z'). We have to show that 2’ is efficient. If
x' is not efficient then either 2’ is dominated by an element of the admissable
set x of the actual calculation or by an already eliminated element.
Casel.z’ = Cz' is dominated by z = Cz of the actual admissable set X.
Then we have Cx > Cz’ and as f is strictly monotone f(z) > f(z), a
contradiction.

Case 2. 2’ is dominated by the already eliminated point z/. But this contra-
dicts the constraint yj’(C:z: — C2?) > 0. Hence 2’ is an efficient solution.

3 The reduction algorithm.

We use the notations of the preceding sections.
Stepl. Calculation of the objective function f forz=1,...,p do
b; = max{c;z|Az = b,x € Nj }

a; = min{¢;z|Axz = b,z € N} }
di = bZ — a; + 1
' -1
p i
fz) =2 (H dj) ci

=1 \ j=1
Step 2.Initial solution (2!, z")
(2", 2') is calculated by max{ f(z)|Az = b,z € N }
L= {(=', ")}

z' = {z|Azx = b,z € N, there is y' € N with (Cz); — zjy} > 1}
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1:=1

Step3: Searching loop

for ' # @ do ("', 2'*1) is calculated by max{f(z)|z € z'}

L := Lu{("*, zt1)}

el = {z € 2 f(z) < f(z'*1), there is y'*' € N} with Zp:y;*l > 1 and
(Cx); — zi+1y;+1 > 0 for every j = 1,...,p} ~

1i=1+1

Step 4.0utput

for y =1,...,2 do print (ijxj)

Theorem 3.1

The reduction algorithm finds every efficient solution of the integer mul-
tiple objective linear program

max{Cz|Az = b,z € N} }

Proof. Assume there is an efficient solution z° with 2% = Cz° of max{C'z| Az =
b,z € Nj }. Then there exists 2k 2k ¢ [ such that 2% >, 2 >, 2° and
such that for 2z’ € L we have either z* >, z

kEor ¥t >, 2'.We consider the (k + 1)°*" iteration of the searching loop in
step 3. In this state z belongs to admissable set x as f(z*) > f(z) and z is
efficient by hypothesis. The algorithm found 2**! as f(z**1) > f(z) holds in
contradiction to z >, 2! and hence f(z) > f(z**!).
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