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Abstract 
Image synthesis often requires the Monte Carlo estimation of integrals. Based on a generalized con
cept of stratification we present an efficient sampling scheme that consistently outperforms previous 
techniques. This is achieved by assembling sampling patterns that are stratified in the sense of jittered 
sampling and N -rooks sampling at the same time. The faster convergence and improved anti-aliasing 
are demonstrated by numerical experiments. 

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Prob
abilistic Algorithms (including Monte Carlo); 1.3.2 [Computer Graphics]: Picture/Image Generation; 
1.3.7 [Computer Graphics] : Three-Dimensional Graphics and Realism. 

1. Introduct ion 

Many rendering tasks are given in integral form and 
usually the integrands are discontinuous and of high 
dimension, too. Since the Monte Carlo method 1 !.1 is in
dependent of dimension and applicable to all square
integrable functions, it has proven to be a practical 
tool for numerical integration. lt relies on the point 
sampling paradigm and such on sample placement . In
creasing the uniformity of the samples is crucial for 
the efficiency of the stochastic method and the level 
of noise contained in the rendered images. 

The most popular uniform sampling schemes in 
graphics are jittered and Latin hypercube sampling. 
Jittered sampling2 profoundly has been analyzed by 
Mitchell 1° and in fact can only improve efficiency. 
Chiu et al. 1 joined the concepts of jittered and Latin 
hypercube sampling obtaining an increased uniformity 
of the samples, but no minimum distance property 
can be guaranteed that has been proved to be useful 
in graphics2 . In consequence care of the choice of the 
strata has tobe taken manually, since warping 1G these 
point sets in order to e.g. sample long thin light sources 
can dramatically reduce the benefits of stratification. 

We present an unbiased Monte Carlo integration 
scheme that consistently outperforms the previous ap
proaches, is trivial to implement, and robust to use 
even with warping. This is obtained by an even more 
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general concept of stratification than just joining jit
tered and Latin hypercube sampling. Since our sam
ples are highly correlated and satisfy a minimum dis
tance property, noise artifacts are attenuated much 
more efficiently and anti-aliasing is improved. 

2. Monte Carlo Integration 

The Monte Carlo method of integration estimates the 
integral of a square-integrable function f over the s
dimensional unit cube by 

N-1 

JO,t )• J(x)dx ~ ~ {; J(~;) , (1) 

where the ~; E [O, 1)• are independent uniform ran
dom samples. The efficiency of the stochastic method 
is inversely proportional to the variance a~c of the es
timator (1). Among many so-called variance reduction 
techniques 19 , increasing the uniformity of the samples 
by stratification has been proven to be beneficial in 
graphicsIO, 2. We briefly review the facts relevant to 
this paper; for a more complete survey we refer to e.g. 
Glassner's bookG. · 

2.1. Jittered Sampling 

For jittered sampling2 the unit cube is subdivided into 
N cubes of equal measure }J, where in each cube one 
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lllIHIH~ll 
Figure 1: All elementary intervals in base b = 2 and 
dimension s = 2 with volume >.2(E) = ft. 

random sample is taken (see figure 2 (a)). It is simple 
to show7 that the variance of the resulting estimator 
never can be higher than o-~c· 

2.2. Latin Hypercube Sampling 

The idea of Latin hypercube sampling (N-rooks sam
pling) is to subdivide the unit cube into N intervals 
along each coordinate. Then the samples are chosen 
randomly such that each interval contains exactly one 
point (see figure 2 (c)). Since there are more restric
tions in the placement of Latin hypercube samples in 
comparison to jittered sampling, the variance 

2 
( N ) min{s-1 ,1} · 

2 
O'LHS s N - 1 . O'MC 

can slightly increase. Nevertheless it never can be 
much higher and often is reduced in practical applica
tion. 

3. Uniform Samples from (t, m , s)-Nets 

Chiu et al. 1 combined jittered and Latin hypercube 
sampling in order to achieve more uniformity. An even 
more general concept of stratification has been de
veloped by Sobol' l h that finally yielded the so-called 
(t, m, s)-nets and (t, s)-sequences 11 • 

In order to explain the concept, the notion of the 
elementary interval 

E := rr• [ aj aj + 1) C [O l)s 
bl j ' bl j - ' 

j=l 

is required, where 0 S aj < b1
1 and 0 S lj are integers. 

Consequently the volume of E is 

>. (E) - rr• ~ - b- L:j=1 t1 
s - blj - . 

j=l 

As an example figure 1 shows the structure of all ele
mentary intervals with the volume >.2(E) = ft in base 
b = 2 for dimension s = 2. 

Given two integers 0 S t S m a set of N = bm s
dimensional points Xi is called a (t, m, s)-net in base 
b if every elementary interval with volume >..(E) = 
bt-m contains exactly bt points. 

t can be considered as a quality parameter that is 

EEEB 
t±J±j 

(a) 

. ' 
~=--=- ~-=::: 

- · • e r 1 - • -

. : ! :.:.: t :: ::__:_ 
r--
-: 7r=~ --::-;::. :=~ 

(b) (c) 

Figure 2: Realization of (a) jittered and (c) Latin hy
percube sampling. The realization of a (0, 4, 2)-net in 
base 2 in {b) not only combines both sampling tech
niques, but imposes even more stratification as can be 
seen from the corresponding dyadic elementary inter
vals in figure 1. 

best if chosen small. For t = 0 each elementary inter
val contains exactly b0 = 1 point. Consequently the 
bks points of a (0, ks, s )-net in base b with k E N are 
stratified like both jittered and Latin hypercube sam
pling points at the same time as can be seen in figure 2 
(b). In addition the structure of the elementary inter
vals imposes even more stratification resulting in an 
increased uniformity of the samples. 

In the sequel we explain how to efficiently construct 
such point sets suited for unbiased Monte Carlo inte
gration. 

3.1. Deterministic Generation 

(t, m, s)-nets are much more uniformly distributed 
than random samples can be. This is exploi ted by 
quasi-Monte Carlo integration 12 , where deterministic 
( t, m, s )-nets are used for the estimator ( 1): For cer
tain, very restricted function classes a quadratically 
faster convergence is obtained as compared to random 
sampling. 

Most deterministic constructions of ( t, m, s )-nets 
are based on ( t, s )-sequences: For an integer t 2 0 
an infinite point sequence (yi)~0 is called a (t, s) 
sequence in base b, if for all k 2 0 and m > t the 
point set {ykb'·n, .. . , Y(k+l)bm _ i} is a (t, m, s )-net. 

Consequently the first bm points of a (t, s)-sequence 
form a ( t, m, s )-net. A second approach is to add 
the component b~ to the first bm points of a (t, s )
sequence always yielding a (t, m, s + 1)-net. 

Since explaining explicit constructions is beyond the 
scope of this paper, we refer to Niederreiter's book 12 

and provide the compact implementation (section 7) 
of three (0, 1)-sequences that can be used to generate 
a (0, 2)-sequence and (0, m, 2)-nets. 
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Kollig and Keller/ Efficient Multidimensional Sampling 

Figure 5: Owen scrambling (top row) and random digit scrambling {bottom row) in base 2. A difference is hardly 
perceivable. First intervals are swapped horizontally; -the final image then includes the permutations along the 
vertical direction, too. 

Figure 3: The effect of a Cranley-Patterson rotation 
by the random vector €. 

a) b) c) 

Figure 4: Randomizing the (0, 4, 2)-net in base 2 in a) 
by a Cranley-Patterson rotation can degrade the uni
formity as shown in b). c) Random digit scrambling 
preserves the properties of the net. 

3.2. Randomized Generation 

The quasi-Monte Carlo method yields consistent but 
biased estimators. However , it is possible to randomize 
a (t,m,s)-net P := {ao,a1 , . . . ,aN-1} in such a way 
that 

(1) the randomized point set X:= {xo , xi, ... , XN-i} 
remains a (t, m, s)-net (with probability 1) and 

(2) X; is uniformly distributed in [O, 1)8 for i = 
0, 1, .. . , N - 1. 

The second condition is sufficient to make (1) an un
biased estimator for all square-integrable functions. 
Preserving the uniformity properties of the samples 
by the first condition allows one to benefit from 
the improved convergence of the quasi-Monte Carlo 
method. ·The resulting variance reduction technique 
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belongs to the domain of randomized quasi-Monte 
Carlo integration "" 0 . 

3.2.1. Cranley-Patterson Rotations 

Cranley and Patterson'1 randomized a point set P by 
just adding the same random shift € to each point 
a; E P modulo 1 as illustrated in figure 3. Originally 
developed for point sets that tile periodically, applying 
a so-called Cranley-Patterson rotation to a (t, m, s)
net can destroy its stratification structure (see figure 
4) thus violating condition (1). 

3.2.2. Owen Scrambling 

Owen's randomization scheme preserves the structure 
of (t, m, s)-nets in base b (with probability 1). For the 
(involved) formulas we refer to the original work 13 . 

The actual algorithm, however, is simple to explain. 
Starting with H = [O, l)' the following steps are ap
plied to each coordinate (see figure .5): 

1. Slice H into b equal volumes H1, H2 , .. . , Hb along 
the coordinate . 

2. Randomly permute these volumes in an indepen
dent way. 

3. For each volume Hh recursively repeat the proce
dure starting out with H = Hh. 

Owen 1·1 proved that using an Owen-scrambled 
(0, m, s )-net in ( 1) yields the upper bound 

2 
( 

b ) min{s-1,m) 

O"os ~ b _ 1 · O'~c 

for the variance O"Ös of the resulting estimator. For 
b = N this (0, m, s)-net sampling degenerates to Latin 
hypercube sampling. Decreasing the base b implies 
more restrictions to the sample placement resulting in 
an increased variance bound. Although this variance 
bound is strict, for most functions to be integrated the 
variance is reduced. 
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(ao , bo) 

(rt1.l1 1) 

(a2, b2) 

(a3, b3) ~ 
1 '"" . d,,) 

(c1,d1) 

(c2, d2) 

(c3, d3) ~ 
(eo, fo) 

(e1, fi) 

(e2, h) 

1 ( " . J.1) 

Figure 6: Multidimensional sampling. The highlighted 
sample (a1,b1 ,co, do,e3,f3) is paddedfrom the strati
fied pattems ( a;, b;), ( c;, d;) , and ( e;, f;) using random 
permutations. 

Due to the finite precision of computer arithmetic 
the infinite scheme in fact becomes a finite algorithm. 
Nevertheless the number of required random permuta
tions behaves exponentially in the precision so that an 
efficient implementation remains quite challenging'. 

3.2.3. Random Digit Scrambling 

Instead of using independent random permutations in 
each level of the recursion of Owen scrambling, only 
one random permutation can be used (see the bottom 
row of figure 5). This subset of the original method 
obviously still fulfills the conditions of section 3.2, but 
requires only a number of permutations linear in the 
precision. Opposite to Owen's scrambling method, us
ing random digit scrambling preserves minimum dis
tance properties contained in the net to b.e scrambled. 

A highly efficient implementation becomes available 
for ( t, m, s )-nets in base b = 2, where a permutation 
simply can be realized by the XOR operation"· 5 : Each 
coordinate of the point set is randomized by just per
forming a bitwise XOR of one random bit vector (i.e. a 
random integer) and the components of the point set 
(for the trivial realization see section i) . 

4. Multidimensional Sampling 

Typically the integrands in image synthesis ex
pose. high correlation with respect to certain low
dimensional projections, e.g. the pixel area, Jens 
area, or area light sources . Therefore high-dimensional 
samples are padded using low-dimensional strati
fied patterns 17 . Correlation artifacts are avoided by 
randomly permuting the sample order of the low
dimensional patterns (see figure 6). Additionally the 
number of samples becomes independent of dimen
sion making this approach more practical than jittered 
sampling. 

Although constructions of ( t, m, s )-nets exist for any 
dimension, choosing the optimal quality parameter 
t = 0 requires b 2: s - 1 for m 2: 2. For s > 3 this pro
hibits to use the extraordinarily efficient vectorized 

pixel 

Xo 

light source 

Yo 

Yb"'-1 

Figure 7: Trajectory splitting, see the explanation in 
s ection 4- 1. 

implementations in base b = 2. However, using the 
simple algorithms from section 7, it is possible to pad 
high-dimensional samples in an even simpler way: In
stead of using random permutations we just pad inde
pendent realizationsY of randomly digit scrambled nets 
(or Owen-scrambled nets). Since condition (2) (section 
3.2) holds for the low-dimensional realizations, each 
resulting high-dimensional sample x; is uniformly dis
tributed in [O, 1) 8 for i = 0, 1, ... , N - 1, too, guaran
teeing an unbiased estimate ( l). 

4.1. Trajectory Splitting 

Considering the example of distribution ray tracing2 

splitting trajectories8 , e.g. tracing multiple shadow 
rays for one eye ray, can increase efficiency depend
ing on the correlation coefficient with respect to t"he 
split dimensions w. 

From the definition in section 3.1 it follows that the 
first b1 points of a (t, s)-sequence (yj)~o are a (t, l, s)
net. In addition each point set {Yib"" ... , Y(i+l)b"' -il 

is a ( t , m, s )-net for 0 :::; i < bl-m. This observation can 
be used to realize trajectory splitting by extending the 
scheme from the previous section: 

For the example of pixel anti-aliasing and illumi
nation by an area light source two independent re
alizations are required : An instance of a random
ized (0, l - m , 2)-net of bl-m samples x; in the pixel 
and the first b1 = bl-m · bm samples Yj of an in
stance of a randomized (0, 2)-sequence on the area 
light source. For the i-th sample in the pixel then bm 
shadow rays have to be traced towards the samples 
{Yib"', ... , Y(i+t )b"'- il on the light source (see figure 
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Figure 8: Comparison of pure random (MG), jittered ( JS}, and Latin hypercube (LHS) sampling with our approach 
using random digit scrambling (RDS). 

7) yielding the estimator 

By using the subsequent (0, m, 2)-nets of a (0, 2)
sequence to realize trajectory splitting, the samples 
on the light source itself form a (0, l, 2)-net obtaining 
superior stratification properties in a fully automatic 
way. This would be rather costly to achieve by jittered 
or Latin hypercube sampling. 

5. Numerical Results 

For the application examples two representative set
tings were selected: An overcast sky model daylight 
simulation and an indoor scene with very long and thin 
light sources. The resulting four-dimensional integrals 
compute pixel anti-aliasing with direct illumination. 

The new scheme (2) with Xi and Yi from algorithms 
section 7 is compared to pure random, jittered, and 
Latin hypercube sampling. In the experiments a split-

submitted to EUROGRAPHICS 2002. 

ting rate of 4 was used , i.e. for each eye ray 4 shadow 
rays were traced. 

Trajectory splitting for jittered and Latin hyper
cube sampling was realized by generalizing the mul
tidimensional sampling scheme17 in a straightforward 
way: N samples and 4N samples were generated on the 
pixel and the light source, respectively. Then the set 
of 4N points randomly is split into N sets of 4 points 
and each set is assigned a pixel s,ample in canonical 
order. 

The error graphs in figure 8 are determined by com
puting the L2-norm of a measurement to a converged 
master image. For the case of the hemispherical over
cast sky integral our scheme slightly outperforms jit
tered and Latin hypercube sampling, is much simpler 
to implement, and saves about 10- 15% of the total 
number of rays to be traced in order to obtain the 
same quality. 

Warping the samples onto the long thin light sources 
in the conferences room scene exposes the projection 
regularity of the samples . Therefore Latin hypercube 
sampling significantly outperforms jittered sampling. 
The samples from the new scheme, however, are strati
fied in a more general way and satisfy a minimum dis-
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Figure 9: Improved anti-aliasing and noise reduction 
f or the conf erence room scene with lang light sources. 
Latin hypercube sampling in the left image and our 
new sampling scheme on the right. 

tance property reducing the error by approximately 
further 15%. 

Comparing the zoomed images in figure 9 shows 
that the high correlation of the samples from the new 
scheme results in superior anti-aliasing and noise re
duction as compared to Latin hypercube sampling. 

6. Conclusion 

We presented new algorithms for efficiently generating 
high-dimensional uniform samples yielding unbiased 
Monte Carlo estimators. The implementation of the 
highly correlated sampling scheme is extremely simple 
and d ue to the generalized concept of stratification 
previous patterns are outperformed consistently. 

7. Appendix: Algorithms 

In order to illustrate the simp!icity of the new sam
pling schemes, we provide our highly efficient code. 
Using the fragments it is possible to verify the results 
of the paper with any ray tracer in a very short amount 
of time. 

The routines RLvdC, ßLS, and RLLP implement 
radical inverses 12 , which are (0, 1)-sequences in base 
b = 2 (see section 3.1). Randomized digit scrambling 
(section J.2. :.l) is realized by just calling the routines 
with a random integer instead of the default parameter 
int r = 0. Completing RLvdC with the component 

2!,, yields the famous Hammersley point set , which 
in fact is a (O,m, 2)-net. Using x; = C!n,RLLP(i)) 
instead, however, results in a (0, m, 2)-net of much 
higher quality. Combining y; = (RLvdC(i),RLS(i)) 
results in the first two components of the Sobol' se
quence, which forma (0, 2)-sequence as used in section 
-Ll. 

typedef unsigned int uint; 

double RI_vdC(uint bits, uint r = 0) 
{ 

bits ( bits « 16) 

1 ( bits » 16); 

bits ((bits & OxOOffOOff) << 8) 

1 ( (bits & OxffOOffOO) >> 8); 

bits ((bits & OxOfOfOfOf) << 4) 
1 ((bits & OxfOf OfOfO) >> 4) ; 

bits ((bits & Ox33333333) << 2) 

1 ((bits & Oxcccccccc) >> 2); 

bits ((bits & Ox55555555) << 1) 

1 ((bits & Oxaaaaaaaa) >> 1); 

bits -= r; 

return (double) bits / (double) Ox100000000L; 
} 

double RI_S(uint i, uint r = 0) 
{ 

for(uint v = 1<<31; i; 
if(i & 1) 

r v· 
' 

i >>= 1, V v»1) 

return (double) r / (double) Ox100000000L; 
} 

double RI_LP(uint i, uint r = 0) 
{ 

} 

for(uint v = 1<<31; i; i >>= 1, v 1= v>>1) 
if (i & 1) 

r v· 
' 

return (double) r / (double) Ox.1000000001; 
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