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Abstract

In this paper we give the definition of a solution concept in multicri-
teria combinatorial optimization. We show how Pareto, max-ordering and
lexicographically optimal solutions can be incorporated in this framework.
Furthermore we state some properties of lexicographic max-ordering solu-
tions, which combine features of these three kinds of optimal solutions.
Two of these properties, which are desirable from a decison maker’s point
of view, are satisfied if and only if the solution concept is that of lexico-
graphic max-ordering.
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1 Introduction

Before discussing optimal solutions we begin with the description of the frame-
work of combinatorial optimization in which we will define solution concepts.
A combinatorial optimization problem is usually defined by a finite ground set
E ={e1,...,em} and a set of feasible solutions F which consists in a subset of
the set of all subsets of E, denoted by P(E). Furthermore there are @) object-
ive functions f; : 7 — IN. The problem is then to find some feasible solution
“minimizing” the @ objectives.

Usually the objectives are defined by means of weight vectors w(e) € IR®
for the elements e of E. The most common objective functions are the sum
of the weights, i.e. f(F) = ) cpwq(e), or their maximum, ie. f(F) =
maxecr Wq(e).

In the context of multiple criteria optimization it is clear that the common
definition of minimizing an objective when only one criterion is considered is no
longer valid. Below we list several definitions of “optimal” solutions of multiple
criteria combinatorial optimization problems, which appear most often in the
literature. The interested reader is referred to [3] for even more.
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Pareto optimality A feasible solution F' € F is called Pareto optimal if there
is no other solution which is not worse with respect to all objective functions
and strictly better with respect to at least one, i.e.

AF' € F: fo(F') < fo(F), q=1,...,Q and f(F) # f(F').

It should be obvious that under the assumption that the problem is formulated
correctly no solution other than a Pareto optimal one should be considered as
“optimal” in any sense. However, the set of Pareto optimal solutions may be
prohibitively large from a decision maker’s point of view. We refer to [6] and
[5] where examples are given in which all feasible solutions are Pareto optimal
and have different objective value vectors.

Max-ordering optimality Here a feasible solution is considered optimal if
the worst objective value is as small as possible, i.e.

max (F'Y VF'eF.

F) <
qﬂhuﬂ}h()'_ﬁg?x

Q) fa
The advantage of this definition is that the optimal solution value is uniquely
defined. However not all max-ordering optimal solutions are also Pareto optimal,
although at least one is, as we will see later. Another weakness is that, once the
objectives are evaluated for a feasible solution, only one (the worst) determines
whether the solution is considered as optimal. Therefore a decison maker may
ask: Why use several objectives to start with?

Lexicographic optimality The definition of optimality which seems to be
closest to single objective optimization is that of lexicographic optimality. A
feasible solution F' is lexicographically optimal if

f(F) <iez f(F') VF' € F.

Recall that for z,y € IR? we say that x <j, y if there exists an index ¢*
such that z, = y, for ¢ = 1,...,¢* — 1 and z4,+ < yg+. Obviously due to
the comparison of solutions according to the lexicographic order this definition
implies a ranking of the objectives (fi is more important than f» and so on). A
decision maker may not be willing, or even be unable, to do that, because he is
indifferent with respect to the single objectives. But again the optimal solution
value, a ()—dimensional vector in this case, is unique.

Extremal Pareto optimality A feasible solution F is called extremal Pareto
optimal if it is the solution of a scalarized problem, i.e. if there exists a scalariz-
ing vector (A1,...,AqQ), all A, strictly positive and Zqul Ay = 1 such that F is
an optimal solution of the single criterion minimization problem with objective
function 2?21 Agfq, i€

Q Q
> A fo(F) <D NSfy(F') VF' € F.
q=1 g=1
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Extremal Pareto solutions are always Pareto solutions. Their objective function
vectors are extreme points of the convex hull of {f(F)|F € F}. In continuous
multicriteria optimization these solutions are also called properly efficient solu-
tions, see [4]. Even the set of extremal Pareto solutions may be very large,
although in most cases its cardinality is much smaller than that of the Pareto
set. Choosing a scalarizing vector A is equivalent to assigning relative pref-
erences to the ) objective functions, something decision makers may want to
avoid.

The rest of the paper is organized as follows. In Section 2 we define lexicographic
max-ordering solutions. In Section 3 we introduce the notion of solution con-
cepts and prove some properties of lexicographic max-ordering solutions. Sec-
tion 4 is devoted to the main result, the characterization of lexicographic max-
ordering solutions by means of two properties. Conclusions are summarized in
Section 5.

2 Lexicographic Max-ordering Solutions

In this paper we want to propose a definition of “optimality” which combines the
features of Pareto, max-ordering and lexicographic optimality, namely consider-
ation of all objective functions, unique optimal solution value, and lexicographic
ordering. In combining these features we will not only be able to preserve the
advantages of these three optimality definitions but we can at the same time
get rid of the main disadvantages such as prohibitively large cardinality of the
set of optimal solutions and neglect of objective functions. First of all we need
the following definition.

Definition 1 For any element x € IR we define O(z) = (01(),...,0q(z))
to be the vector containing the components of x in nonincreasing order: ©1(x) >

.. > 00(x), {z1,..-,20} = {O1(x),...,00(x)}.

Definition 1 is essential for the definition of lexicographic max-ordering solutions,
Lex-MO solutions for short, of a multiple criteria combinatorial optimization
problem.

Definition 2 A feasible solution F' € F is a Lex-MO solution if its objective
function vector is lexicographically minimal with respect to O(f(F)). Therefore

O(f(F)) <ies O(f(F")) VF' € F.

Lexicographic max-ordering solutions have been considered for several special
problems in the literature, under other names. We refer to [8] for location prob-
lems, Lex-MO solutions are called lexicographic centers, and [7] for multicriteria
linear programming, Lex-MO solutions are called nucleolar solutions. In [1] the
relations between multicriteria linear programming and game theory are in-
vestigated with reference to the concept of the nucleolus in game theory. The
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nucleolus has similarities to that of Lex-MO solutions presented in our paper.
In none of these papers the relevance for general multiple criteria optimization
has been considered. This was done for the first time in [2].

We now provide a simple example, taken from [2], illustrating the relations of
Lex-MO solutions and most of the definitions of optimality presented in Section
1.

Example 1 Consider a problem the set of feasible solutions of which is F =
{a,b,c,d,e}. Let us assume that the objective function values and © vectors are
as presented in Table 1.

FfF) O(f(F))

a | (1,3,824) | (8432,1)
b (473787]‘7]‘) (87473717]‘)
c (77574767]‘) (77675747]‘)
d | (3,74,6,5) | (7,6,5,4,3)
e | (4,7565) | (7,6,5,5,4)

Table 1: Objectives and © Values in Example 1

Note that a,b,c, and d are Pareto solutions. The lexicographically optimal solu-
tion is obviously a. The set of maz-ordering solutions consists of ¢,d, and e,
wheras ¢ is the unique Lex-MO solution. We will see later that it is always the
case that Lex-MO solutions are Pareto as well as maz-ordering optimal.

3 Solution Concepts

Before we prove the main results of this paper we proceed by introducing the
general notation of a solution concept for multiple criteria combinatorial op-
timization problems. We also define what is the set of optimal solution values
and what is to be understood as an optimal solution with respect to a solution
concept.

Definition 3 1. A solution concept is defined by a triple (p,0, <), where p is
a nonnegative integer, 8 is a mapping from IRY to IRP, and < is a partial
order in IRP.

2. The set of all optimal solution values is the set of all minimal elements of
{6(f(F)|F € F}, denoted by Vop(p, 0, <).

3. A solution F € F is an optimal solution of the combinatorial optimization
problem with respect to solution concept (p,0, <) if

0(f(F)) € Vopt(p, 6, 2).

The set of all optimal solutions is denoted by Fopi(p, 6, <).
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In other words we can say that F' is an optimal solution with respect to (p, 8, <)
if it does not exist another feasible solution F’ such that 6(f(F")) < 0(f(F)) and
6(F(F") # O(f(F)). Then Vopt(p,8, <) = {6(f (F))|F € Fopi(p,0,<)}. Recall
that < can be a partial order only.

In this paper we only consider solution concepts which satisfy the following
normalization property. For the special case that ) = 1 it is natural to
assume that the usual single objective minimization with the canonical order of
IR should be used. Therefore if (p, 8, <) is any solution concept, we require that
@ = 1 implies (p, 8, <) = (1,id, <g), which actually means ordinary minimiza-
tion of one criterion.

In Example 2 we see that the various definitions of optimality presented in
Section 1 can easily be incorporated in the definition of a solution concept.
We do this by giving in Table 2 the appropriate p, 8, and < definitions for all
optimality definitions, including Lex-MO optimality.

Example 2 The relation of the optimality definitions of Section 1 and the no-
tion of solution concepts is summarized in Table 2.

Optimality P 0 =<

Pareto Q 0(z) == <me
Max-ordering 1| 6(z) = qe{ml,;.)i:fQ} 2, | <m
Lexicographic Q 0(z) == <lew
Extremal Pareto || 1 0(z) =< A,z > <m
Lex-MO Q 0(1’) = 6(1-) Slez

Table 2: Optimality Definitions and Solution Concepts

In Table 2 <jgo denotes the componentwise order in IR®. We will later use
id and max to denote the mappings 6(x) = x and 6(x) = max,eq1,.. @} T4 Of
course < \,x > denotes the scalar product in IR®.

Note that concerning extremal Pareto optimality we get o different 6 for each .
Therefore the set of extremal pareto solutions is actually UF,pi(1, < A,z >, <Rg),
where the union is taken over all scalarizing vectors .

Let us now prove some properties of Lex-MO solutions in terms of solution
concepts. We start with the one already mentioned in Example 1: Lex-MO
solutions are always Pareto optimal and max-ordering optimal.

PI‘OpOSitiOIl 1 1. fopt(Q; ®7 Slew) C '7:opt (Q; ida SIRQ)
2. fopt(Q; @7 Slez) g fopt(lymaxy SR)

The proof of this result has already been given in [2]. We illustrate it with the
data of Example 1.

Hence, due to Proposition 1 the intersection of the set of Pareto and max-
ordering optimal solutions is never empty.
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Figure 1: Pareto, Lex-MO and Max-ordering Solutions

We now repeat, without proof, two other properties which have been shown in
[2]- They show another main advantage of Lex-MO solutions: They can be used
to parametrize the set of Pareto optimal solutions.

Proposition 2 Let \; > 0, ¢ = 1,...,Q be Q strictly positive multipliers
and define @ new objective functions by fo := Agfq and let f' = (fi,-.., fo)-
Furthermore let F* be an element of Fopt(Q, 0, <jez) with respect to f'. Then
F* € Fopr(Q, id, <ge) with respect to f.

Proposition 3 If F* is an element of Fopt(Q,id, <) with respect to f then
there exist strictly positive multipliers Ay >0, q=1,...,Q such that F* is in
Fopt(Q, 0, <iez) with respect to f'.

4 Characterization of Lex-MO Solutions

This Section is devoted to the main result of the paper. We will discuss two
other properties of Lex-MO solutions which characterize this solution concept.
The first is related to a reduced optimization problem. Let us suppose that,
for whatever reason, for some objective functions the values that are taken for
some optimal solution (with respect to a given solution concept, of course) are
known. Then it should suffice to consider for the minimization only the remain-
ing objectives, with the additional constraints, that for the known objectives
the known values are taken. If the optimal solutions of this reduced minimiz-
ation problem are exactly those of the original problem which have the given
values for the specified objectives, we say that the solution concept satisfies the
reduction property. Formally we define the reduced problem as follows.

Definition 4 Let (y1,...,y0) € IR? be such that there erists at least one F €
Fopt(p, 8, %) with fo(F) =y, q=1,...,Q. Furthermore let {iy,...,ix} C
{1,...,Q} be an index set. Then the reduced problem for {iy,..., iy}, denoted
by RP(f*), where f* = (fi,,---, fi,) is defined by

min 0(f*(F))
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st fo(F) =y, q€{l,...,Q}\ {iL,...,ix}.

If we refer to optimal solutions or solution values with respect to a reduced prob-
lem we will use RP(f*) as superscript to clarify notation. Using the definition
of the reduced problem, we define the reduction property.

Definition 5 A solution concept (p,0, =) satisfies the reduction property if for
all index sets {i1,...,ix} C {1,...,Q} and for all (y1,...,yq) € R such that
a feasible solution F' € Fop(p,0,=X) exists with fo(F) =y,, g¢=1,...,Q it
holds that

FEPI) (9,0,=) = {F € Fopr(0,0, )| fo(F) =yy Va ¢ {ir,..-ir}}

The second property we need may seem as natural as the reduction property
from a decision maker’s point of view. Apart from considering only Pareto op-
timal solutions as really good decisions one may also be interested in minimizing
the worst objective function, i.e. considerig only max-ordering solutions. Re-
call that due to Proposition 1 such solutions always exist, namely at least the
Lex-MO solutions.

Definition 6 A solution concept (p,0, <) satisfies the regularity property if
fopt(paaa j) g fopt(]-a max, SR)

To prove our main result we first show that (Q, ©, <;.,) does indeed satisfy the
reduction and regularity property.

Proposition 4 (Q,0, <;.;) satisfies reduction and regularity property.

Proof:

That (Q, 0, <;.;) satisfies the regularity property follows directly from Propos-
ition 1. To prove that it also satisfies the reduction property we have to show
that

k
FEVID) = (F € Foplfo(F) =yq Va & {ir,---,ix}}

for every choice of {i1,...,ix} and (y1,...,yqQ) as in Definition 4. We will denote
the latter set in the equation by F’ for brevity.

First let F be an element of f;zf(f k). By definition of F' it follows that
O(f(F)) <iex O(f(F)) VFeF (1)

But for all elements F' € F' by the definition of the reduced problem it holds
that

fo(F) = fo(F) =y, Vg€ {l,...,Q}\{i1,...,ir}. (2)
From (1) and (2) we conclude that

O(f*(F)) <iex O(F*(F))
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which due to the choice of F must be satisfied with equality. Therefore it holds
that O(f(F)) = ©(f(F)) which clearly implies F' € F'.
Now assume that we have some F' € F'. Such a solution is by definition of

RP(f*) feasible for the reduced problem. Now suppose that there exists a

solution F € FEPU™) such that O(f*(F)) <iep O(F#(F)). This would imply
that also O(F) <jer ©(F), contradicting the choice of F. Hence it must hold

that

O(f(F)) <tex O(F(F)). 3)

(1) and (3) imply that F belongs to f;;f(fk).

Both arguments together complete the proof.

O

In Example 3 we will see that other solution concepts do not always satisfy these
properties. We now prove the main result of the paper, namely that reduction
and regularity are characteristic properties of Lex-MO solutions.

Theorem 1 A solution concept (p,0, =) satisfies reduction and regularity prop-
erty if and only if (p,0, <) = (Q, 0, <iea)

Proof:

That (@, 0, <j.) satisfies both properties has been shown in Proposition 4.
Therefore let us assume that (p,6, <) is a solution concept satisfying both re-
duction and regularity property.

We prove the result by induction on the number g of objectives. For ¢ = 1 the
result follows immediately from the normalization property, since all solution
concepts coincide in that case.

Let us now assume that the result holds for ¢ = 1,...,Q — 1, i.e. (p,0, =)
(¢, 0, <iez). and consider the case ¢ = (). We have to show that F,p:(p, 0, <)
fopt(_Qa 97 Slez)-

Let F be an element of Fopt (p, 8, <). Furthermore denote by y the optimal value
of the max-ordering solution, i.e. y € V,p(1,max, <jg). Since (p, 8, <) satisfies
the regularity property there must exist an index ¢* such that f,«(F) =y (and
f,(F) <y Vq# q*). Therefore F belongs also to {F € F,u(p,0, =)|fo (F) =
y}-

Now we consider the reduced problem with {i1,..., it} ={1,...,Q}\ {¢*} and
the value of f,« fixed at y. Then

(F € Fopt (0,0, )| f0r (F) =y} = Frr(p,0,<)

pt
= fﬁ,f(f )(qa 97 Slew)
= {F (S .Topt(Q; @7 Sl€$)|fq* = y}

g fopt(Q7 67 Slew)-

The first equation follows from the reduction property for (p, 8, <). The second
follows from the induction hypothesis since RP(f*) is a multiple criteria problem
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with  — 1 objective functions and feasible set FEP(*) = {FinF|f,-(F) = y}.
Finally the third is implied by the reduction property for (Q,0,< lex). The
inclusion is trivial. Hence F € Fopt(Q, 0, <iez).

Proving the converse inclusion analogously completes the proof. We let F' be
an element of Fypi(Q, 0, <jez). By regularity we see that there are ¢* and y
such that F' € {F € Fopi(Q, 0, <iez)|fo=(F) = y}. In the same way as above
we conclude that F' € Fop(p, 6, <).

O

We are closing this section with an example giving an overview on which of
the solution concepts mentioned in this paper satisfy the regularity and the
reduction property.

Example 3 In Table 8 we list the solution concepts mentioned in this paper (see
Ezample 2), indicating which do or do not satisfy the reduction and regularity
property.

Solution concept | Reduction | Regularity
(Q,id, <ge) no no
(1, max, <R) no yes
(QJ lda Slew) yes no
(1,< ANz >,<R) yes no
(Q,0, <ie) yes yes

Table 3: Solution Concepts and Properties

Concerning regularity (1, max, <g) satisfies this property by definition. For
the other solution concepts the entries in Table 3 are verified by Proposition
4 and Example 1. For reduction it is easy to construct examples where either
the reduced problem has pareto optimal solutions which are not pareto optimal
for the original problem or some optimal solutions of the original problem are
not optimal for RP(f*). It is also not hard to show that (Q, id, <;.,) and (1,<
Az >, <R) satisfy the reduction property.

5 Conclusions

In this paper we have discussed lexicographic max-ordering solutions of multiple
criteria combinatorial optimization problems. We have seen how this and other
definitions of optimality fit into the notion of solution concepts we have defined.
Reduction and regularity properties have been used to characterize Lex-MO
solutions. It is important to notice that decision makers probably consider both
properties as important features of optimal solutions of optimization problems.

Let us shortly consider the case of a discrete decision problem. In this case the
(finite) set of alternatives a decision maker may choose from is given explicitly,
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rather than implicitly as is usually the case in combinatorial optimization prob-
lems. Then the values of all objectives can be evaluated for all the alternatives.
Provided all criteria are really equally important, i.e. there are no preferences
or rankings at all, the decision maker can choose a Lex-MO optimal alternative
and be sure that:

e he has chosen a Pareto optimal solution, i.e. he cannot improve one cri-
terion without worsening another one,

e 3 solution that has the smallest value of the worst objective, and

e that all Lex-MO optimal alternatives are equivalent in the sense that their
O vectors are the same.

References

[1] F. Christensen, M. Lind, and J. Tind. On the nucleolus of NTU-games
defined by multiple objective linear programs. ZOR — Mathematical Methods
of Operations Research, 43(3), 1996.

[2] M. Ehrgott. Lexicographic max-ordering — a solution concept for multicri-
teria combinatorial optimization. In Methods of Multicriteria Decision The-
ory, Proceedings of the 5th Workshop of the DGOR Working-Group Mul-
ticriteria Optimization and Decision Theory, pages 55-66, 1995.

[3] T. Gal. On efficient sets in vector maximum problems - a brief survey.
European Journal of Operational Research, 24:253-265, 1986.

[4] A.M. Geoffrion. Proper efficiency and the theory of vector maximization.
Journal of Mathematical Analysis and Applications, 22:618-630, 1968.

[5] H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple
objectives. Annals of Operations Research, 52:209-230, 1994.

[6] P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, edit-
ors, Multiple Criteria Decision Making Theory and Application, number 177
in Lecture Notes in Economics and Mathematical Systems, pages 109-127,
1979.

[7] E. Marchi and J.A. Oviedo. Lexicographic optimality in the multiple ob-
jective linear programming: The nucleolar solution. FEuropean Journal of
Operational Research, 57:355-359, 1992.

[8] W. Ogryczak. Location problems from the multiple criteria perspective:
Efficient solutions. Technical Report 94-019, Université Libre de Bruxelles,
1994.



