UNIVERSITÄT KAISERSLAUTERN

TAME-WILD DICHOTOMY FOR COHEN-MACAULAY MODULES

Yuri A. Drozd and Gert-Martin Greuel

Preprint No 202

FACHBEREICH MATHEMATIK

TAME-WILD DICHOTOMY FOR COHEN-MACAULAY MODULES

Yuri A. Drozd and Gert-Martin Greuel

Preprint No 202

UNIVERSITÄT KAISERSLAUTERN Fachbereich Mathematik Erwin-Schrödinger-Straße D-6750 Kaiserslautern

Juli 1991

TAME-WILD DICHOTOMY FOR COHEN-MACAULAY MODULES

YU.A. Drozd Mechanics & Mathematics Faculty Kiew University Wladimirskayast. 252017 Kiew UdSSR G.-M. Greuel Fachbereich Mathematik Universität Kaiserslautern Erwin-Schrödinger-Straße 6750 Kaiserslautern Federal Republic of Germany

As it was conjectured in [D F] and proved in [D 1], finite-dimensional algebras of infinite type (i.e. having infinitely many indecomposable representations) split into two classes. For the first one, called tame, indecomposable representations of any fixed dimension form a finite set of at most 1-parameter families, while for the second one, called wild, there exist arbitrarily large families of non-isomorphic indecomposable representations. Moreover, in some sense, knowing representations of one wild algebra, one would know those of any other algebras.

A lot of examples showed that the same should hold for Cohen-Macaulay modules over Cohen-Macaulay algebras of Krull dimension 1. In this paper we give a proof of it based on the same method of "matrix problems" or so called representations of bocses (cf. §1). But we had to consider a new situation, namely that of "open subcategories" (§2) and first reprove the results of [D 1] for it. This new shape seems to be unavoidable in the case of Cohen-Macaulay modules but it should be also of use for other questions in representation theory. In §3 we propose a method to reduce the calculation of Cohen-Macaulay modules to some open subcategory and use the results of §2 to prove the tame-wild dichotomy.

1 Preliminaries

As the notions of bocses and their representations are not well-known, remind the main definitions (cf. [Roi], [D 1]). All considered categories will be linear over some basic field K which will always be supposed algebraically closed. Respectively, all functors are K-linear (bifunctors bilinear). We write Hom, \otimes instead of Hom_K , \otimes_K . A module over a category A is a functor $M : A \to Vect$ (the category of K-vector spaces); an A-B-bimodule (where A, B are categories) is a bifunctor $V : A^{op} \times B \to Vect$; if A = B, we call V an A-bimodule. For $v \in V(X, Y)$, $a \in A(X', X)$, $b \in B(Y, Y')$ we write bva instead of V(a, b)(v). A bocs is a pair $\mathbf{a} = (A, V)$ where A is some category and V an A-coalgebra, i.e. an A-bimodule V supplied with a comultiplication $\mu : V \to V \otimes_A V$ and a counit $\varepsilon : V \to A$ satisfying the usual conditions.

A **representation** of a over some algebra R is defined as a functor $M : A \longrightarrow pr-R$, the category of finitely generated projective R-modules. If N is another representation, define

$$Hom_{\mathbf{a}}(M,N) = Hom_{A-A}(V,(M,N))$$

where (M, N) is an A-bimodule defined by the rules:

$$(M, N)(X, Y) = Hom_R(M(X), N(Y))$$
 for $X, Y \in \mathbf{ob}A$;
 $afb = N(a)fM(b)$ for $f \in (M, N)(X, Y)$,
 $a: Y \longrightarrow Y', b: X' \longrightarrow X$ in A .

The product of $\varphi \in Hom_{\mathbf{a}}(M, N)$ and $\psi \in Hom_{\mathbf{a}}(L, M)$ is defined as the composition

$$V \xrightarrow{\mu} V \otimes_{\mathcal{A}} V \xrightarrow{\varphi \otimes \psi} (M, N) \otimes_{\mathcal{A}} (L, M) \xrightarrow{m} (L, N)$$

where m is the multiplication of R-homomorphisms. Thus the **category of repre**sentations $Rep(\mathbf{a}, R)$ is defined. We write $Rep(\mathbf{a})$ instead of $Rep(\mathbf{a}, K)$.

Any algebra R can be considered as a bocs ("principal bocs") if we put A = V = R. Of course, representations of such bocses are just representations of R. Remark that if $M \in Rep(\mathbf{a}, R)$ and $L \in Rep(R, R')$, then their tensor product $M(L) = M \otimes_R L$ lies in $Rep(\mathbf{a}, R')$; so M can be viewed as "a family of representations of \mathbf{a} paramatrized by R". As a rule, the category A will be finitely generated over K, i.e. with finite object set and a finite set of morphisms (generators) whose products span all spaces of morphisms A(X, Y). A **dimension** of a representation of **a** is defined as a function $\underline{d} : \mathbf{ob}A \longrightarrow \mathbf{N}$. In cases when there is a notion of rank for finitely generated projective R-modules, we can associate to $M \in Rep(\mathbf{a}, R)$ its dimension $\underline{dim}M$: $\mathbf{ob}A \longrightarrow \mathbf{N}$, namely, $(\underline{dim}M)(X) = \operatorname{rank} M(X)$ and denote by $Rep_{\underline{d}}(\mathbf{a}, R)$ the set of representations having dimension \underline{d} . For instance, this is the case if R = K (hence rank = dim), so $Rep_{\underline{d}}(\mathbf{a})$ is defined. If S is a system of generators for A, then each representation $M \in Rep(\mathbf{a})$ determines (and is determined by) linear mappings $M(a) : M(X) \longrightarrow M(Y), a \in S, a : X \longrightarrow Y$. Hence, treating all linear mappings M(a) as matrices, we can consider $Rep_{\underline{d}}(\mathbf{a})$ as an algebraic variety lying in affine space $\mathbf{A}^{||d||}$, carrying the Zariski topology, where

$$\|\underline{d}\| = \sum_{\substack{a \in S, \\ a: X \to Y}} \underline{d}(X) \underline{d}(Y).$$

All considered bocses are supposed **normal** — which means that for any $X \in \mathbf{ob}A$ an element $\omega_X \in V(X, X)$ exists such that $\varepsilon(\omega_X) = 1_X$, $\mu(\omega_X) = \omega_X \otimes \omega_X$. In this case the bimodule structure on V is completely determined if we know the **kernel** of the bocs $\mathbf{a}, \bar{V} = Ker\varepsilon$ and for each $a \in A(X, Y)$ its **differential** $\partial a = a\omega_X - \omega_Y a \in \bar{V}$. Moreover, the coalgebra structure is determined if we know the **differentials** $\partial v = \mu(v) - v \otimes \omega_X - \omega_Y \otimes v \in \bar{V} \otimes_A V$ for all $v \in \bar{V}(X, Y)$.

In main applications free bocses arise, i.e. such that A is a free category (that of paths $K\Gamma$ of an oriented graph Γ) and the kernel \bar{V} is a free A-bimodule. A free bocs is completely determined if we know the set S_0 of free generators of A, the set S_1 of free generators of \bar{V} and their differentials. The set $S = S_0 \cup S_1$ is called a set of free generators of the bocs a.

For technical purposes, semi-free bocses are needed. A semi-free category is, by definition, a category of the form $K\Gamma[g_a(a)^{-1}]$ where a ranges through the set of loops (i.e. elements of S_0 such that $a : X \longrightarrow X$) and $g_a(t) \in K[t]$ is a non-zero polynomial (depending on a). If $g_a \neq const$, call the loop a **marked**. A bocs is called **semi-free** if A is a semi-free category, \overline{V} a free A-bimodule and $\partial a = 0$ for all marked loops. In this case call S a set of **semi-free generators** of **a**.

If **a** is free, then, of course, $R\epsilon p_{\underline{d}}(\mathbf{a}) \simeq \mathbf{A}^{||\underline{d}||}$; if **a** is semi-free, then $R\epsilon p_{\underline{d}}(\mathbf{a})$ is an open subset in $\mathbf{A}^{||\underline{d}||}$.

A semi-free category is called **triangular** if there exists a system S of semi-free generators and a function $h: S \longrightarrow \mathbf{N}$ such that for any $a \in S \quad \partial a$ belongs to the

subbocs generated by $b \in S$ with h(b) < h(a).

A representation $M \in Rep(\mathbf{a}, R)$ is called **strict** if it satisfies the following two conditions:

- 1. If $L \in Rep(R, R')$ is indecomposable, then $M(L) \in Rep(\mathbf{a}, R')$ is also indecomposable.
- 2. If $L, L' \in Rep(R, R')$ are non-isomorphic, then $M(L) \not\simeq M(L')$, too.

One can say that if such M exists, the representation theory of **a** is at least as complicated as that of R.

If a set $F = \{M_i \mid M_i \in Rep(\mathbf{a}, R_i)\}$ is given (each M_i can be a representation over its own R_i), we call F strict provided each M_i is strict and if $i \neq j$, then $M_i(L) \not\simeq M_j(L')$ for any $L \in Rep(R_i, R), L' \in Rep(R_j, R)$.

We need also "bimodule categories" defined as follows. Let U be an R_1 - R_2 bimodule where R_1, R_2 are some algebras. For each algebra R let $P_i = P_i(R)$ be the category of finitely generated projective $R_i \otimes R^{op}$ -modules. Consider a P_1 - P_2 -bimodule U_R such that $U_R(P_1, P_2) = Hom_{R_1 \otimes R^{op}}(P_1, U \otimes_{R_2} P_2)$.

Take the elements of all $U_R(P_1, P_2)$ as objects of a new category U(R) and as morphisms from $u \in U_R(P_1, P_2)$ to $u' \in U_R(P'_1, P'_2)$ take all pairs (f_1, f_2) with $f_i \in Hom_{R_i \otimes R^{op}}(P_i, P'_i)$ such that $u'f_1 = f_2 u$.

If $L \in Rep(R, R')$, then $P_i \otimes_R L \in P_i(R')$, so L defines a natural mapping

 $\otimes L: U_R(P_1, P_2) \longrightarrow U_{R'}(P_1 \otimes_R L, P_2 \otimes_R L).$

Hence, one can reproduce for bimodule categories the above notion of strictness.

Note that this definition is formally distinct from that of [D1] though they provide equivalent categories.

Usually the algebras R_i are finite-dimensional and in this case the following theorem is valid [D1]:

Theorem 1

If R_1 , R_2 are finite-dimensional algebras and U is a finite-dimensional $R_1 - R_2$ bimodule, then there exists a free triangular bocs $\mathbf{a} = \mathbf{a}_U$ and for each algebra R an equivalence of categories $T_R : \operatorname{Rep}(\mathbf{a}, R) \longrightarrow U(R)$ commuting with tensor products, i.e.

 $T_{R'}(M \otimes_R L) \simeq T_R(M) \otimes_R L$ for any $L \in Rep(R, R')$.

2 Tame and wild open subcategories

Let a be a finitely generated bocs and $\mathbf{X} \subset Rep(\mathbf{a})$ a full subcategory. Call X an **open subcategory** if it satisfies the following conditions:

1. If $M \in \mathbf{X}$ and $N \simeq M$, then $N \in \mathbf{X}$;

2. $M \oplus N \in \mathbf{X}$ if and only if $M \in \mathbf{X}$ and $N \in \mathbf{X}$;

3. for each dimension \underline{d} the subset $\mathbf{X}_{\underline{d}} = \mathbf{X} \cap Rep_{\underline{d}}(\mathbf{a})$ is open in $Rep_{\underline{d}}(\mathbf{a})$.

For any algebra R put $\mathbf{X}(R) = \{M \in Rep(\mathbf{a}, R) \mid M(L) \in \mathbf{X} \text{ for any } L \in Rep(R)\}$. It is clear that if $M \in \mathbf{X}(R)$ and $L \in Rep(R, R')$, then $M(L) \in \mathbf{X}(R')$.

Call X wild if for any finitely generated algebra R there exists a strict representation $M \in \mathbf{X}(R)$. Non-formally this means that to know the representations of X we have to know the representations for all finitely generated algebras.

It is well-known (and easy to check) that to prove wildness it is sufficient to find a strict representation $M \in \mathbf{X}(K < x, y >)$ (free non-commutative algebra with 2 generators), as the latter has a strict representation over any other one. A little more complicated but also known (cf. [GP] or [D2]) is that here we can replace K < x, y >by the polynomial ring K[x, y] or even the power series ring K[|x, y|].

Call a **rational algebra** any algebra of the form $K[x, f(x)^{-1}]$ for a non-zero polynomial f(x), i.e. the affine algebra of a smooth rational affine curve.

Theorem 2

Let $\mathbf{a} = (A, V)$ be a finitely generated semi-free bocs, $\mathbf{X} \subset Rep(\mathbf{a})$ an open subcategory. Then the following conditions are equivalent:

1. X is non-wild:

2. for each dimension d there exists a subvariety $X_d \subset \mathbf{X}_d$ such that

$$\dim X_{\underline{d}} \leq |\underline{d}| = \sum_{T \in \mathbf{obA}} \underline{d}(T)$$

and any representation from \mathbf{X}_{d} is isomorphic to one belonging to X_{d} ;

- 3. for each dimension \underline{d} there exists a subvariety $Y_{\underline{d}} \subset \mathbf{X}_{\underline{d}}$ such that $\dim Y_{\underline{d}} \leq 1$ and any indecomposable representation from $\mathbf{X}_{\underline{d}}$ is isomorphic to one belonging to $Y_{\underline{d}}$;
- 4. there exists a strict set $\{M_i \mid i \in I, M_i \in \mathbf{X}(R_i)\}$ with rational algebras R_i such that for each dimension \underline{d} all indecomposable representations from $\mathbf{X}_{\underline{d}}$ except a finite number (up to isomorphism) are isomorphic to $M_i(L)$ for some $i \in I_{\underline{d}}$ and some $L \in Rep(R_i)$ where $I_{\underline{d}}$ is a finite subset of I (depending on \underline{d}).

(If these conditions are satisfied, call **X** tame).

Proof

 $(4) \Longrightarrow (3)$ as any indecomposable *n*-dimensional representation *L* of a rational algebra $K[x, f(x)^{-1}]$ maps *x* to a Jordan cell $J(\lambda)$ with eigenvalue λ such that $f(\lambda) \neq 0$. Hence representations $M_i(L)$ for such *L* produce a 1-dimensional subvariety of $\mathbf{X}_{\underline{d}}$ and as \underline{d} is fixed, *n* is also fixed.

 $(3) \Longrightarrow (2)$ is quite evident as |d| is an upperbound for the maximal number of indecomposable direct summands of any representation of dimension d.

(2) \implies (1) if $M \in \mathbf{X}_{\underline{d}}(K < x, y >)$ is strict, then M(L) for $L \in Rep_n$ (K < x, y >) form in $\mathbf{X}_{n\underline{d}}$ a subset of dimension at least n^2 consisting of pairwise non-isomorphic representations and $n^2 > |n\underline{d}|$ if $n > |\underline{d}|$.

At last, $(1) \Longrightarrow (4)$ can be proved just by repeating the proof of the above Theorem 1 given in [D1] if we make the following simple observation. Let $a \in A(X, Y)$. Denote $\mathbf{X}(a) = \{M(a) \mid M \in \mathbf{X}\}$. Then the only possibilities for $\mathbf{X}(a)$ are:

- if $X \neq Y$, either all linear mappings, or those $F: L \longrightarrow L'$ with rkF = dimL, or those with rkF = dimL' or isomorphisms only;
- if X = Y there exists a finite subset $E(a) \subset K$ such that $\mathbf{X}(a) = \{F : L \longrightarrow L \mid F \text{ has no eigenvalue from } E(a)\}.$

Of course, the proof of [D 1], based on algorithms of reduction of matrices, is rather complicated. Unfortunately, till now the only known way to obtain the equivalences $(1) \iff (2) \iff (3)$ is to prove that $(1) \implies (4)$.

3 Cohen-Macaulay Algebras

In this paragraph we consider algebras Λ over K satisfying the following conditions:

- (A1) The centre Z of Λ is a complete local noetherian Cohen-Macaulay ring of Krull dimension 1 with residue field K;
- (A2) Λ is a (finitely generated) Cohen-Macaulay module over Z;

(A3) Λ is semi-prime, i.e. has no nilpotent ideals.

We call such algebras CM-Algebras. Denote by $CM(\Lambda)$ the category of Λ -modules which are maximal Cohen-Macaulay modules over Z, i.e., in our case, finitely generated and torsion free. Call them CM- Λ -modules.

If Λ is a CM-algebra, its full quotient ring Q is a semi-simple artinian ring and there exists a (not necessarily unique) **maximal overring** $\overline{\Lambda}$, i.e. a CM-algebra such that $\Lambda \subset \overline{\Lambda} \subset Q$ and there are no CM-algebras $\Lambda' \neq \overline{\Lambda}$ with $\overline{\Lambda} \subset \Lambda' \subset Q$ (cf. D3]). It follows from [Rog] that $\overline{\Lambda}$ is always hereditary, i.e. any $CM - \overline{\Lambda}$ -module is projective over $\overline{\Lambda}$.

If R is any K-algebra, denote by $CM(\Lambda, R)$ the category of R- Λ -bimodules M satisfying the following conditions:

(M1) M is finitely generated as bimodule;

(M2) $_ZM$ is torsion free;

(M3) M_R is flat;

(M4) $M(L) = M \otimes_R L$ is a CM- Λ -module for any $L \in Rep(R)$.

If R/m is finite-dimensional over K for any maximal left ideal $m \subset R$, then (M4) is equivalent to

(M4') for any non-zero divisor $\lambda \in Z$ the *R*-module $M/\lambda M$ is also flat.

Surely, if $M \in CM(\Lambda, R)$ and $L \in Rep(R, R')$, then $M(L) \in CM(\Lambda, R')$. So we are able to define strict modules $M \in CM(\Lambda, R)$ and strict sets of such modules just as in §1. If R is a finitely generated commutative K-algebra of Krull dimension d, call any bimodule $M \in CM(\Lambda, R)$ a d-parameter family of CM- Λ -modules (with base R).

Call Λ **CM** – wild if for every finitely generated algebra R there exists a strict module $M \in CM(\Lambda, R)$. Again we have to check the existence of M only for $R = K \langle x, y \rangle$, or R = K[x, y], or R = K[|x, y|].

If a Λ -module M is torsion free (over Z) it can be embedded into the Q-module $Q \otimes_{\Lambda} M$, so if Λ' is an overring of Λ , i.e. a CM-algebra such that $\Lambda \subset \Lambda' \subset Q$, we can consider the Λ' -module $\Lambda'M$, which is the image of $\Lambda' \otimes_{\Lambda} M$ in $Q \otimes_{\Lambda} M$. If M was a CM-module, then so is $\Lambda'M$. In this case $Q \otimes_{\Lambda} M$ is finitely generated over Q, thus $Q \otimes_{\Lambda} M \simeq r_1Q_1 \oplus \cdots \oplus r_tQ_t$ where Q_1, \cdots, Q_t are all pairwise non-isomorphic simple Q-modules. Call the vector $\mathbf{r}(M) = (r_1, \cdots, r_t)$ the (vector) rank of M and denote $CM_{\mathbf{r}}(\Lambda)$ the set of all CM- Λ -modules of rank \mathbf{r} .

Theorem 3

For a CM-algebra Λ the following conditions are equivalent:

- 1. Λ is not *CM*-wild;
- 2. for any rank $\mathbf{r} = (r_1, \dots, r_t)$ there exists a *d*-parameter family M of CM- Λ -modules with $d \leq |\mathbf{r}| = \sum_{i=1}^{t} r_i$ such that any CM- Λ -module of rank \mathbf{r} is isomorphic to some M(L);
- 3. for any rank r there exists a 1-parameter family M of CM- Λ -modules such that any indecomposable CM- Λ -module of rank r is isomorphic to some M(L);
- 4. there exists a strict set $\{M_i \mid i \in I, M_i \in CM(\Lambda, R_i)\}$ with rational algebras R_i such that for each rank r all indecomposable CM- Λ -modules of rank r except a finite number (up to isomorphism) are isomorphic to $M_i(L)$ for some $i \in I_{\underline{r}}$ and $L \in rep(R_i)$ where $I_{\underline{r}}$ is a finite subset of I (depending on \underline{r}).

If these conditions are satisfied, call Λ **CM-tame**.

Proof:

Again $(4) \Longrightarrow (3) \Longrightarrow (2) \Longrightarrow (1)$ is clear, so we have only to prove $(1) \Longrightarrow (4)$.

Fix an overring $\Lambda' \supset \Lambda$ and denote by $CM(\Lambda \mid \Lambda')$ the full subcategory in $CM(\Lambda)$ consisting of all modules M such that $\Lambda'M$ is Λ' -projective. Of course, if Λ' is hereditary (e.g. maximal), then $CM(\Lambda \mid \Lambda') = CM(\Lambda)$. Let $I \subset rad\Lambda$ be a two-sided Λ' -ideal such that $\dim_K \Lambda'/I < \infty$ (it exists as Λ'/Λ is a finitely generated torsion Z-module). Then $IM \subset M \subset \Lambda'M$ for any CM-module M and any homomorphism $\varphi: M \longrightarrow N$ can be uniquely prolonged to $\varphi': \Lambda'M \longrightarrow \Lambda'N$. Put

$$\Lambda_1 = \Lambda/I, \ \Lambda_2 = \Lambda'/I$$

and consider a new category $C = C(\Lambda | \Lambda')$ whose objects are pairs (P, X) with Pa (finitely generated) projective Λ_2 -module, $X \subset P$ a Λ_1 -submodule, and morphisms $(P, X) \longrightarrow (P_1, X_1)$ are Λ_2 -homomorphisms $\varphi : P \longrightarrow P_1$ such that $\varphi(X) \subset X_1$. Define a functor $T : CM(\Lambda | \Lambda') \longrightarrow C$ putting $T(M) = (\Lambda'M/IM, M/IM)$ and let C_o be the full subcategory of C consisting of all such pairs (P, X) that $\Lambda_2 X = P$. Then the following lemma is evident:

Lemma 1

 $T(M) \in C_o$ for any $M \in CM(\Lambda \mid \Lambda')$ and the functor $T: CM(\Lambda \mid \Lambda') \longrightarrow C_o$ is full, dense and reflects isomorphisms and indecomposability.

Now consider the Λ_1 - Λ_2 -bimodule $U = \Lambda_2$ and define a functor $\underline{Im} : U(K) \longrightarrow C$ putting, for $\varphi : P_1 \longrightarrow P_2$, $\underline{Im}\varphi = (P_2, Im\varphi)$. Denote **X** the full subcategory of U(K)consisting of all such φ that $Ker\varphi \subset radP_1$ and $\Lambda_2 \cdot Im\varphi = P_2$. As Λ_1 is artinian, any Λ_1 -module X possesses a projective cover whence we obtain the following lemma:

Lemma 2

If $\varphi \in \mathbf{X}$, then $\underline{Im}\varphi \in C_o$ and the functors $\underline{Im} : \mathbf{X} \longrightarrow C_o$ is full, dense and reflects isomorphisms and indecomposability.

Identify, according to Theorem 1, U(K) with $Rep(\mathbf{a})$ for a free triangular bocs \mathbf{a} . Then \mathbf{X} becomes an open subcategory in $Rep(\mathbf{a})$, thus Theorem 2 is applicable, i.e. \mathbf{X} is either tame or wild.

Let $u \in \mathbf{X}(R)$ for some algebra R. Then $u : P_1 \longrightarrow P_2$ where P_i is a projective $\Lambda_i \odot R^{op}$ -module. Call u **good** provided $P_i \simeq \tilde{P}_i / I\tilde{P}_i$ where $\tilde{P}_1(resp.\tilde{P}_2)$ is a projective $\Lambda \odot R^{op}$ -module (resp. $\Lambda' \odot R^{op}$ -module) and Cokeru is flat over R. In this case denote $\tilde{u} : \tilde{P}_1 \longrightarrow \tilde{P}_2$ some homomorphism for which $u = \tilde{u}(modI)$.

Lemma 3

- (a) If $u \in \mathbf{X}(R)$ is good and $M = Im\tilde{u}$, then $M \in CM(\Lambda, R)$.
- (b) If $\{u_i \mid i \in I, u_i \in \mathbf{X}(R_i)\}$ is a strict set, all u_i are good and $M_i = Im\tilde{u}_i$, then $\{M_i \mid i \in I\}$ is also a strict set.

Proof

(a) Remark that $Cokeru \simeq Coker\tilde{u}$, so we have an exact sequence

 $0 \longrightarrow M \longrightarrow \hat{P}_2 \longrightarrow N \longrightarrow 0$

with R-flat N and hence an exact sequence

$$0 \longrightarrow M \otimes_R L \longrightarrow P_2 \otimes_R L \longrightarrow N \otimes_R L \longrightarrow 0$$

for any $L \in Rep(R)$ where $P_2 \otimes_R L$ is Λ' -projective. This does imply all properties (M1) - (M4) for M.

(b) follows directly from Lemmas 1 and 2.

Lemma 4

Let $u \in \mathbf{X}(R)$ for a finitely generated commutative domain R. Then there exists a non-zero $f \in R$ such that $u_f \in \mathbf{X}(R_f)$ is good.

Proof

Denote by F the quotient field of R. Then $(\Lambda/rad\Lambda) \otimes F$ is semi-simple [B1], hence $rad(\Lambda \otimes F) = (rad\Lambda) \otimes F$ and $(\Lambda \otimes F)/rad(\Lambda \otimes F) \simeq (\Lambda/rad\Lambda) \otimes F$. Hence in $\Lambda \otimes F$ idempotents can be lifted modulo radical and any projective $(\Lambda \otimes F)$ -module is of the form $P \otimes F$ for some projective Λ -module P. The same is true for the algebras Λ' and $\Lambda_i(i = 1, 2)$. As $\Lambda_1 = \Lambda/I$ and $I \subset rad\Lambda$, any projective $(\Lambda_1 \otimes F)$ -module is of the form $(P \otimes F)/I(P \otimes F)$. Therefore, if P is a projective $\Lambda_1 \otimes R$ -module, there exists a non-zero $f \in R$ such that $P_f \simeq \tilde{P}/I\tilde{P}$ for a projective $\Lambda_1 \otimes R_f$ -module \tilde{P} . So if $u \in \mathbf{X}(R), u : P_1 \longrightarrow P_2$, we can find $f \in R$ for which $(P_i)_f \simeq \tilde{P}_i/I\tilde{P}_i$. But as Λ_i are finite-dimensional, $N = Cok\epsilon ru_f$ is finitely generated over R_f and there exists a non-zero $g \in R$ such that N_g is flat [B2], thus u_{fg} is good.

Corollary 1: If \mathbf{X} is wild, then Λ is wild.

Proof

Let $u \in \mathbf{X}(R)$, R = K[x, y], be strict. Find $f \in R$ such that u_f is good and a maximal ideal $m \subset R$ such that $f \notin m$. As the *m*-adique completion of R is isomorphic to $\hat{R} = K[|x, y|] u_f$ provides a good and strict element $\hat{u} \in \mathbf{X}(\hat{R})$. Then lemma 3 implies that Λ is CM-wild.

Corollary 2 If Λ' is hereditary and **X** is tame, then Λ is *CM*-tame.

Proof

Let $\{u_i \mid i \in I, u_i \in \mathbf{X}(R_i)\}$ be a strict set satisfying conditions (4) of Theorem 2. Remark that if R is a rational algebra, then $Rep_d(R) - Rep_d(R_f)$ is finite for any non-zero $f \in R$ and any dimension d. Therefore, lemma 4 allows us to suppose all u_i good. But as Λ' is hereditary, $CM(\Lambda \mid \Lambda') = CM(\Lambda)$. Hence, lemmas 1-3 imply that the set $\{M_i \mid i \in I\}$ with $M_i = Im\tilde{u}_i$ satisfies condition (4) of Theorem 3.

Now (1) \implies (4) follows from corollaries 1 and 2.

References

- [B 1] Bourbaki, N.: Algèbre, Ch. VIII.
- [B 2] Bourbaki, N.: Algèbre Commutative.
- [D 1] Drozd, YU.A.: Tame and wild matrix problems. In: Representations and Quadratic Forms. Kiev, 1979, 39-74. Engl. translation in: Amer. Math. Soc. Transl. (2) <u>128</u>, 1986, 31-55.
- [D 2] Drozd, YU.A.: Representations of commutative algebras. Funk. Analiz i Priložen. 6 (1972) no. 4, 41-43.
- [D 3] Drozd, YU.A.: On existence of maximal orders. Mat. Zametki, <u>37</u> (1985), 313-316.
- [G P] Gelfand, I.M.; Ponomarev, V.A.: Remark on classification of pairs of commuting linear mappings in finite-dimensional vector space. Funk. Analiz i Priložen. <u>3</u> (1969) no.4, 81-82.
- [D F] Donovan, P.; Freislich, M.R.: Some evidence for an extension of the Brauer-Thrall conjecture. Sonderforschungsbereich Theoret. Math. 40, Bonn (1972) 24-26.
- [M] MacLane, S.: Homology, Berlin, 1963.
- [Roi] Roiter, A.V.: Matrix problems and representations of BOCS's. In: Representations and Quadratic Forms, Kiev, 1979, 3-38.
- [Rog] Roggenkamp, K.W.: Lattices over Orders, II. Lect. Notes in Math., 142, Springer, 1970.

α

λ₀+μ(α)