


TAME—WILD DICHOTOMY FOR COHEN-MACAULAY MODULES

Yuri A. Drozd and Gert—Martin Greuel

Preprint No 202

UNIVERSITAT KAISERSLAUTERN
Fachbereich Mathematik
Erwin—Schrodinger—Strafle

D—6750 Kaiserslautern

Juli 1991



TAME-WILD DICHOTOMY FOR
COHEN-MACAULAY MODULES

YU.A. Drozd G.-M. Greuel
Mechanics & Fachbereich Mathematik
Mathematics Faculty Universitat Kaiserslautern
Kiew University Erwin-Schrodinger-Strafle
Wladimirskayast. 6750 Kaiserslautern
252017 Kiew Federal Republic of Germany
UdSSR

As it was conjectured in [D F] and proved in [D 1], finite-dimensional algebras of
infinite type (i.e. having infinitely many indecomposable representations) split into
two classes. For the first one, called tame, indecomposable representations of any
fixed dimension form a finite set of at most 1-parameter families, while for the second
one, called wild, there exist arbitrarily large families of non-isomorphic indecompos-
able representations. Moreover, in some sense, knowing representations of one wild
algebra, one would know those of any other algebras.

A lot of examples showed that the same should hold for Cohen-Macaulay modules
over Cohen-Macaulay algebras of Krull dimension 1. In this paper we give a proof
of it based on the same method of “matrix problems” or so called representations
of bocses (cf. §1). But we had to consider a new situation, namely that of “open
subcategories™ (§2) and first reprove the results of [D 1] for it. This new shape seems
to be unavoidable in the case of Cohen-Macaulay modules but it should be also of
use for other questions in representation theory. In §3 we propose a method to reduce
the calculation of Cohen-Macaulay modules to some open subcategory and use the
results of §2 to prove the tame-wild dichotomy.



1 Preliminaries

As the notions of bocses and their representations are not well-known, remind the
main definitions (cf. - [Roi], [D 1]). All considered categories will be linear over
some basic field A which will always be supposed algebraically closed. Respec-
tively, all functors are K-linear (bifunctors bilinear). We write Hom, ® instead
of Homg, ®r. A module over a category A is a functor M : A — Vect
(the category of K-vector spaces); an A-B-bimodule (where A, B are categories)
is a bifunctor V : A” x B — Vect; if A = B, we call V an A-bimodule. For
v e V(X,Y), a € A(X',X), b € B(Y,Y') we write bva instead of V(a,b)(v).-A
bocs is a pair a = (A, V) where A is some category and V an A-coalgebra, i.e. an A-
bimodule V' supplied with a comultiplication ¢ : V — V®,4V and a counite : V — A
satisfying the usual conditions.

A representation of a over some algebra R is defined as a functor M : A —
pr—R, the category of finitely generated projective R-modules. If N is another repre-
sentation, define

Homga(M,N) = Homa_4a(V,(M,N))

where (M, N) is an A-bimodule defined by the rules:
(M,N)(X.Y)=Homgr(M(X),N(Y)) forX,Y € obA;

afb= N(a)fM(b) forf e (M,N)X,Y).
a:Y —Y b: X' — X in A.
The product of ¢ € Homa(M, N) and v» € Homga(L, M) is defined as the compo-
sition
V5Vl 2 (M,N)@a(L,M) 2 (L,N)

where m is the multiplication of R-homomorphisms. Thus the category of repre-
sentations Rep(a, R) is defined. We write Rep(a) instead of Rep(a, K).

Any algebra R can be considered as a bocs (“principal bocs” ) if weput A=V = R.
Of course, representations of such bocses are just representations of K. Remark that
if M € Rep(a. R) and L € Rep(R. R’). then their tensor product M(L) = M @ gL lies
in Rep(a.R'): so M can be viewed as “a family of representations of a paramatrized
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As a rule. the category A will be finitely generated over A, i.e. with finite object
set and a finite set of morphisms (generators) whose products span all spaces of
morphisms A(X,Y). A dimension of a representation of a is defined as a function
d : obA — N. In cases when there is a notion of rank for finitely generated
projective R-modules, we can associate to M € Rep(a, R) its dimension dimM :
obA — N. namely, (dimM)(X) = rank M(X) and denote by Reps(a, R) the set of
representations having dimension d. For instance, this is the case if R = K (hence
rank = dim), so Repy(a) is defined. If S is a system of generators for A, then
each representation M € Rep(a) determines (and is determined by) linear mappings
M(a) : M(X) — M(Y), a € S,a: X — Y. Hence, treating all linear mappings
M (a) as matrices, we can consider Rep,(a) as an algebraic variety lying in affine space
Al carrying the Zariski topology, where

ldll = Y d(X)d(Y).

aX oy
All considered bocses are supposed normal — which means that for any X € obA an
element wy € V(X, X) exists such that e(wx) = lx, p(wx) = wx ® wx. In this case
the bimodule structure on V' is completely determined if we know the kernel of the
bocs a,V = Kere and for each a € A(X.Y) its differential da = awy — wya € V.
Moreover, the coalgebra structure is determined if we know the differentials dv =
pv) —vQuwx —wy @u € VesVioralve V(X, ¥

In main applications free bocses arise, i.e. such that A is a free category (that
of paths AT of an oriented graph I') and the kernel V is a free A-bimodule. A free
bocs is completely determined if we know the set Sp of free generators of A, the set
S, of free generators of V and their differentials. The set S = So U S, is called a set
of free generators of the bocs a.

For technical purposes, semi-free bocses are needed. A semi-free category
is, by definition. a category of the form KT'[g,(a)~!] where a ranges through the set
of loops (i.e. elements of Sy such that a : X — X) and g¢,(t) € K[t] is a non-zero
polynomial (depending on «a). If g, # const, call the loop « marked. A bocs is called
semi-free if A is a semi-free category. V' a free A-bimodule and da = 0 for all marked
loops. In this case call S a set of semi-free generators of a.

If a is free, then. of course. Rep,(a) ~ Alldl: if a is semi-free, then Repg(a) is an
open subset in Alldl,

A semi-free category is called triangular if there exists a system S of semi-free
generators and a function A : S — N such that for any a € S da belongs to the



subbocs generated by b € S with h(b) < h(a).

A representation M € Rep(a, R) is called strict if it satisfies the following two
conditions:

1. If L € Rep(R, R') is indecomposable, then M(L) € Rep(a, R') is also indecom-
posable.

2. If L,L" € Rep(R. R') are non-isomorphic, then M(L) # M(L'), too.

One can say that if such M exists, the representation theory of a is at least as
complicated as that of R.

If aset F = {M,; | M; € Rep(a, R;)} is given (each M, can be a representation
over its own R;), we call F strict provided each M; is strict and if ¢ # j, then
M;(L) # M;(L’) for any L € Rep(R;, R),L" € Rep(R;, R).

We need also “bimodule categories” defined as follows. Let U be an R;-R,-
bimodule where R, R, are some algebras. For each algebra R let P, = P;,(R) be the
category of finitely generated projective R; ® R°’-modules. Consider a P;-P;-bimodule
Ug such that Ug( Py, P2) = Homp,gree(P1,U Qr, P,).

Take the elements of all Ur(P;, P;) as objects of a new category U(R) and as
morphisms from u € Ug(P, P;) to v € Ugr(P{,P;) take all pairs (fi,f2) with
fi € Homp,gree(P;, P!) such that u'f; = fou.

If L € Rep(R,R'), then P, @g L € P;(R'), so L defines a natural mapping

L : Up(Pr, ;) — Ur(P1 ®r L, P, ®r L).

Hence, one can reproduce for bimodule categories the above notion of strictness.

Note that this definition is formally distinct from that of [D1] though they provide
equivalent categories.

Usually the algebras R; are finite-dimensional and in this case the following the-
orem is valid [D1]:



Theorem 1

If R,. R, are finite-dimensional algebras and U is a finite-dimensional R; — R,-
bimodule, then there exists a free triangular bocs a = ay and for each algebra R an
equivalence of categories Tr : Rep(a. R) — U(R) commuting with tensor products,
1.c.

Tr(M @p L)~ Ta(M)®r L for any L € Rep(R, R').

2 Tame and wild open subcategories

Let a be a finitely generated bocs and X C Rep(a) a full subcategory. Call X an
open subcategory if it satisfies the following conditions:

1. f M e Xand N~ M, then N € X;
2. Md NeXifand only if M € X and N € X;

3. for each dimension d the subset Xd =XnN Rep(_i(a) is open in Repj(a).

For any algebra R put X(R) = {M € Rep(a,R) | M(L) € X for anyL €
Rep(R)}. 1t is clear that if M € X(R) and L € Rep(R, R'), then M(L) € X(R').

Call X wild if for any finitely generated algebra R there exists a strict represen-
tation M € X(R). Non-formally this means that to know the representations of X
we have to know the representations for all finitely generated algebras.

It is well-known (and easy to check) that to prove wildness it is sufficient to find
a strict representation M € X(K < r,y >) (free non-commutative algebra with 2
generators), as the latter has a strict representation over any other one. A little more
complicated but also known (cf. [GP] or [D2]) is that here we can replace K <z,y >
by the polynomial ring K[z,y] or even the power series ring K[| z,y |].

(‘all a rational algebra any algebra of the form KA [z. f(z)~!] for a non-zero poly-
nomial f(x), i.e. the affine algebra of a smooth rational affine curve.

Theorem 2

Let a = (A.V) be a finitely generated semi-free bocs, X C Rep(a) an open
subcategory. Then the following conditions are equivalent:

1. X is non-wild:



2. for each dimension d there exists a subvariety X4 C Xy such that

dimXg <[d|= ) d(T)
TeobA

and any representation from X is isomorphic to one belonging to X 4;

3. for each dimension d there exists a subvariety Yq € Xy such that dimYy <1
and any indecomposable representation from X j is isomorphic to one belonging
to Yy .
d

4. there exists a strict set {M, |7 € I, M; € X(R,)} with rational algebras R; such
that for each dimension d all indecomposable representations from X except

a finite number (up to isomorphism) are isomorphic to M;(L) for some i € 14
and some L € Rep(R;) where I is a finite subset of I (depending on d).

(If these conditions are satisfied. call X tame).
Proof

(4) = (3) as any indecomposable n-dimensional representation L of a rational al-
gebra K[z, f(x)~!] maps z to a Jordan cell J()) with eigenvalue A such that f(\) # 0.
Hence representations M;(L) for such L produce a 1-dimensional subvariety of X
and as d is fixed, n is also fixed.

(3) = (2) is quite evident as | d | is an upperbound for the maximal number of
indecomposable direct summands of any representation of dimension d.

(2) = (1) if M € X (K < x,y >) is strict, then M(L) for L € Rep,

2

(K <x,y>) form in X,  a subset of dimension at least n* consisting of pairwise

non-isomorphic representations and n? >| nd | if n >|d |.

At last. (1) = (4) can be proved just by repeating the proof of the above The-
orem 1 given in [D1] if we make the following simple observation. Let a € A(X,Y).

Denote X(a) = {M(a) | M € X}. Then the only possibilities for X(a) are:

- if X # Y. either all linear mappings. or those F : L — L' with rkF = dimL,
or those with rkF = dim L’ or isomorphisms only:

- if X =Y there exists a finite subset E(a) C K such that
X(a)={F:L — L|F has no eigenvalue from FE(a)}.
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Of course. the proof of [D 1]. based on algorithms of reduction of matrices, is rather
complicated. Unfortunately. till now the only known way to obtain the equivalences
(1) <= (2) <= (3) is to prove that (1) = (4).

3 Cohen-Macaulay Algebras

In this paragraph we consider algebras A over K satisfying the following conditions:

(A1) The centre Z of A is a complete local noetherian Cohen-Macaulay ring of Krull
dimension 1 with residue field A’;

(A2) A is a (finitely generated) Cohen-Macaulay module over Z;

(A3) A is semi-prime, i.e. has no nilpotent ideals.

We call such algebras CM-Algebras. Denote by CM(A) the category of A-
modules which are maximal Cohen-Macaulay modules over Z, i.e., in our case, finitely
generated and torsion free. Call them CM-A-modules.

If A is a C'M-algebra, its full quotient ring @ is a semi-simple artinian ring and
there exists a (not necessarily unique) maximal overring A, i.e. a C M-algebra such
that A C A C Q and there are no C M-algebras A’ # A with A C A’ C Q (cf. D3]). It
follows from [Rog| that A is always hereditary, i.e. any C M — A-module is projective
over A.

If R is any K-algebra, denote by C' M (A, R) the category of R-A-bimodules M

satisfying the following conditions:

(M1) M is finitely generated as bimodule;

(M2) zM is torsion free;

(M3) Mp is flat:

(M4) M(L) =M g L is a C M-A-module for any L € Rep(R).

If R/m is finite-dimensional over A" for any maximal left ideal m C R, then (M4)
is equivalent to

(M4') for any non-zero divisor A € Z the R-module M/AM is also flat.



Surely. it M € CM(A.R) and L € Rep(R.R’'), then M(L) € CM(A,R'). So we are
able to define strict modules M € (" M(A, R) and strict sets of such modules just as
in §1. If R is a finitely generated commutative K -algebra of Krull dimension d, call
any bimodule M € C M(A, R) a d-parameter family of C M-A-modules (with base
R).

Call A CM — wild if for every finitely generated algebra R there exists a strict
module M € CM(A,R). Again we have to check the existence of M only for
R=K<z,y> or R= K[z,y],or R= K[| z,y |].

If a A-module M is torsion free (over Z) it can be embedded into the Q-module
Q ®a M, so if A’ is an overring of A, i.e. a C'M-algebra such that A C A’ C @), we can
consider the A’-module A’M, which is the image of A’ @y M in Q ®x M. If M was a
C'M-module, then so is A’M. In this case Q @5 M is finitely generated over @),thus
QIANM ~rQ % -DriQ: where Q,,---,Q; are all pairwise non-isomorphic simple
()-modules. Call the vector r(M) = (ry,---,r¢) the (vector) rank of M and denote
C Mr(A) the set of all C M-A-modules of rank r.

Theorem 3

For a C'M-algebra A the following conditions are equivalent:
1. Ais not C'M-wild;

2. for any rank r = (ry,---,r¢) there exists a d-parameter family M of C'M-A-
modules with d <| r |= 3 !_, r; such that any C M-A-module of rank r is
isomorphic to some M(L):

3. for any rank r there exists a 1-parameter family M of C M-A-modules such that
any indecomposable (' M-A-module of rank r is isomorphic to some M(L):

4. there exists a strict set {M; |i € I, M; € CM(A, R;)} with rational algebras R;
such that for each rank r all indecomposable C M-A-modules of rank r except
a finite number (up to isomorphism) are isomorphic to M;(L) for some : € It
and L € rep(R;) where It is a finite subset of I (depending on r).

If these conditions are satisfied. call A CM-tame.
Proof:

Again (1) = (3) = (2) = (1) is clear. so we have only to prove (1) = (4).

X



Fix an overring A’ D A and denote by C M(A | A’) the full subcategory in CM(A)
consisting of all modules M such that A’M is A’-projective. Of course, if A’ is hered-
itary (e.g. maximal), then CM(A | A') = CM(A). Let I C radA be a two-sided
A’-ideal such that dimgA’/I < oo (it exists as A’/A is a finitely generated torsion
Z-module). Then IM C M C A’M for any C M-module M and any homomorphism
@: M — N can be uniquely prolonged to ¢’ : A’M — A’N. Put

A] =A/1, A2=AI/I

and consider a new category C' = C'(A | A’) whose objects are pairs (P, X) with P
a (finitely generated) projective Ay-module, X C P a A;-submodule, and morphisms
(P.X) — (P, X;) are Az-homomorphisms ¢ : P — P, such that o(X) C Xj;.
Define a functor T': CM(A | A’) — C putting T(M) = (A'M/IM,M/IM) and let
C, be the full subcategory of C consisting of all such pairs (P, X) that A, X = P.
Then the following lemma is evident:

Lemma 1

T'(M) € C, forany M € CM(A | A’') and the functor 7' : CM(A | A') — C, is

full, dense and reflects isomorphisms and indecomposability.

Now consider the A;-A;-bimodule U = A, and define a functor Im : U(K) — C
putting. for ¢ : P, — P>, Imp = (P, Imyp). Denote X the full subcategory of U(K')
consisting of all such ¢ that Kery C radP, and Ay - Imp = P,. As A, is artinian,
any A;-module X possesses a projective cover whence we obtain the following lemma:

Lemma 2

If ¢ € X, then Imp € C, and the functors Im : X — C, is full, dense and
reflects isomorphisms and indecomposability.

Identify, according to Theorem 1, U(A’) with Rep(a) for a free triangular bocs a.
Then X becomes an open subcategory in Rep(a). thus Theorem 2 is applicable, i.e.
X is either tame or wild.

Let u € X(R) for some algebra R. Then u : P, — P, where P; is a projective
A, = R°°’-module. Call u good provided P, ~ P,/IP, where P](TCSP.PQ) 1s a projective
A R?-module (resp. A’ R°?-module) and C'okeru is flat over R. In this case denote
w: P, — P, some homomorphism for which u = @(modl).
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Lemma 3

(a) If u € X(R) is good and M = Imu, then M € CM(A, R).

(b) If {u; | 2 € I.u; € X(R;)} is a strict set, all u; are good and M; = I'mu;. then
{M; |7 € I} is also a strict set.

Proof
(a) Remark that C'okeru ~ Cokeru. so we have an exact sequence
0— M — P2 — N — 0
with K-flat V and hence an exact sequence
0—M@rL— P,®rL— N®rL—0

for any L € Rep(R) where P, @ L is A-projective. This does imply all prop-
erties (M1) - (M4) for M.

(b) follows directly from Lemmas 1 and 2.

Lemma 4

Let u € X(R) for a finitely generated commutative domain R. Then there exists
a non-zero f € R such that uy € X(Ry) is good.

Proof

Denote by F' the quotient field of R. Then (A/radA) @ F' is semi-simple [B1],
hence rad(A @ F) = (radA) @ F and (A ® F)/rad(A® F) ~ (A/rad\) @ F. Hence in
A @ F idempotents can be lifted modulo radical and any projective (A @ F')-module is
of the form P @ F for some projective A-module P. The same is true for the algebras
AN and A;(z = 1.2). As Ay = A/I and I C radA. any projective (A; @ F')-module is
of the form (P > F)/I(P = F). Therefore. if P is a projective A; 2 R-module. there
exists a non-zero f € R such that Py ~ P/]P for a projective Ay &) Ry-module P. So
if u€ X(R).u: P, — P,. we can find f € R for which (P;); ~ P;/IP.. But as A,
are finite-dimensional. N = ('okeruy is finitely generated over Ry and there exists a
non-zero ¢ € R such that N, is flat [B2]. thus uy, is good.

Corollary 1: If X is wild. then \ is wild.
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Proof

Let u € X(R).R = K|[z.y]. be strict. Find f € R such that u; is good and a
maximal ideal m C R such that f ¢ m. As the m-adique completion of R is isomor-

phic to R = K[| z.y |] us provides a good and strict element & € X(R). Then lemma
3 implies that A is C M-wild.

Corollary 2 If A’ is hereditary and X is tame, then A is C' M-tame.

Proof

Let {u; | : € I,u; € X(R;)} be a strict set satisfying conditions (4) of Theorem
2. Remark that if R is a rational algebra, then Reps(R) — Reps(Ry) is finite for any
non-zero f € R and any dimension d. Therefore, lemma 4 allows us to suppose all u;
good. But as A’ is hereditary, CM(A | A’) = CM(A). Hence, lemmas 1-3 imply that
the set {M; | 1 € I} with M; = Imd; satisfies condition (4) of Theorem 3.

Now (1) = (4) follows from corollaries 1 and 2.
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