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As it was conject ured in [D F] and proved in [D l] , finite-dimensional algebras of 
infinite type ( i .e. having infinitely many indecomposable representations) split into 
two classes. For the first one, called tarne, indecomposable representations of any 
fixed dimension forma finite set of at most 1-parameter families , while for the second 
one, called wild, there exist arbitrarily large families of non-isomorphic indecompos­
able representations . Moreover, in some sense, knowing representations of one wild 
algebra, one would know those of any other algebras. 

A lot of examples showed that the same should hold for Cohen-Macaulay modules 
over Cohen-Macaulay algebras of Krull dimension 1. In this paper we give a proof 
of it based on the same method of "matrix problems" or so called representations 
of bocses (cf. § 1). But we had to consider a new situation, namely that of "open 
subcategories'' (§2) and first reprove the results of [D 1] for it. This new shape seems 
to be unavoidable in the case of Cohen-Macaulay modules but it should be also of 
use for other questions in representation theory. In §3 we propose a method to reduce 
the calculation of Cohen-Macaulay modules to some open subcategory and use the 
results of §2 to prove the tarne-wild dichotomy. 



1 Preliminaries 

As the notions of bocses and their representations are not well-known, remind the 
main definitions (cf . . [Roi], [D l]). All considered categories will be linear over 
some basic field K which will always be supposed algebraically closed. Respec­
tively, all functors are K-linear (bifunctors bilinear). We write Hom, ® instead 
of H om K , ® n.·. A mod ule over a category A is a functor M : A - V ect 
(the category of K-vector spaces); an A-B-bimodule (where A, B are categories) 
is a bifunctor V : A 0

P x B - Vect; if A = B, we call V an A-bimodule. For 
v E V(X,Y), a E A(X', X), b E B(Y,}'"') we write bva instead of V(a,b)(v). ·A 
bocs is a pair a = (A, V) where Ais some category and V an A-coalgebra, i.e. an A­
bimodule V supplied with a comultiplication µ : V' - V ®A V and a counit c: V - A 
satisfying the usual conditions. 

A representation of a over some algebra R is defined as a functor M : A ~ 
pr-R, the category of finitely generated projective R-modules. lf N is another repre­
sentation, define 

Homa(M, N) = HomA-A(V, (M. N)) 

where (M, N) is an A-bimodule defined by the rules: 

(M, N)(X, Y) = HomR(M(X), N(Y)) forX, Y E obA; 

afb = N (a)f M(b) forf E (M, N)(X, Y) , 

a:Y~Y', b:X'~X inA. 

The product of <..p E Homa(M, N) and 1jJ E Homa(L , M) is defined as the compo-
sition 

V~ V ®A V~ (M,N) 0 A (L,M) ~ (L,N) 

where m is the multiplication of R-homomorphisms. Thus the category of repre­
sentations Rep(a, R) is defined. We write Rep(a) instead of Rep(a, K). 

Any algebra R can be considered as a bocs ( "principal bocs") if we put A = V = R. 
Of course. representations of such bocses are just representations of R. Remark that 
if M E Rep( a. R) and L E Rep( R, R'). then their tensor product M ( L) = M ® R L lies 
in Rep(a. R') : so M can be viewed as "a family of representations of a paramatrized 
by R'·. 



As a rule. the category A will be finitely generated over K, i.e. with finite object 
set and a finite set of morphisms ( generators) w hose prod ucts span all spaces of 
morphisms A(X, }'"). A dimension of a representation of a is defined as a function 
d. : obA --+ N. In cases when there is a notion of rank for finitely generated 
projective R-modules, we can associate to M E Rep( a, R) its dimension dimM : 
obA--+ N. namely, (dimM)(X) =rank M(X) and denote by Rep4(a, R) the set of 
representations having dimension d_. For instance, this is the case if R = /{ (hence 
rank = dim), so RePrJ.(a) is defined. lf S is a system of generators for A, then 
each representation ME Rep(a) determines (and is determined by) linear mappings 
M(a): M(X) --+ M(Y), a E S,a: X --+ Y. Hence, treating all linear mappings 
M(a) as matrices, we can consider Repd(a) as an algebraic variety lying in affine space 
Aildll, carrying the Zariski topology, where 

11411 = L d.(X)d_(Y). 
aE S . 

a :X-Y 

All considered bocses are supposed normal - which means that for any X E obA an 
element wx E V(X,X) exists such that c(wx) = lx, µ(wx) = wx ® wx. In this case 
the bimodule structure on V is completely determined if we know the kernel of the 
bocs a, V= Kerc and for each a E A(X. Y) its differential äa = awx -Wya E \/'. 
Moreover, the coalgebra structure is determined if we know the differentials äv = 
µ(v) - v 0 wx -Wy 0 v E V 0 A V for all v E V(X, Y). 

In main applications free bocses arise, i .e. such that A is a free category ( that 
of paths Kf of an oriented graph f) and the kernel V is a free A-bimodule. A free 
bocs is completely determined if we know the set S0 of free generators of A, the set 
S1 of free generators of V and their differentials. The set S = 50 U 51 is called a set 
of free generators of the bocs a. 

For technical purposes, semi-free bocses are needed. A semi-free category 
is, by definition, a category of the form Kr[ga(a)- 1

] where a ranges through the set 
of loops (i.e. elements of S0 such that a : X --+ X) and 9a(t) E K[t] is a non-zero 
polynomial (depending on a). lf 9a f const, call the loop a marked. A bocs is called 
semi-free if Ais a semi-free category. ·p a free A-bimodule and äa = 0 for all marked 
loops. ln this case call S a set of semi-free generators of a. 

lf a is free, then. of course. Rt Pd(a) ~ All411; if a is semi-free, then Repd(a) is an 
open subset in All!!.11. - -

A semi-free category is rnlled triangular if there exists a system S of semi-free 
generators and a function h : .'>' --+ N such that for any a E S' äa belongs to the 



subbocs generated by b ES with h(b) < h(a). 

A representation M E Rep( a, R) is called strict if it satisfies the following two 
conditions: 

1. If L E Rep( R, R') is indecomposable, then M ( L) E Rep( a, R') is also indecom­
posable. 

2. If L, L' E Rep(R, R') are non-isomorphic, then M(L) 'f:. M(L'), too. 

One can say that if such M exists, the representation theory of a is at least as 
complicated as that of R. 

If a set F = {Mi 1 Mi E Rep( a, Ri)} is given ( each Mi can be a representation 
over its own Ri), we call F strict provided each Mi is strict and if i f:. j, then 
Mi(L) 'f:. Mj(L') for any L E Rep(R;, R), L' E Rep(Rj, R). 

We need also "bimodule categories" defined as follows. Let U be an R 1 -Rr 
bimodule where R1 , R2 are some algebras. For each algebra R let P; = Pi(R) be the 
category of finitely generated projective R; @R0 P-modules. Consider a Pi-Prbimodule 
UR such that UR(P1, P2) = HomR10Rop(P1, U 0 R2 P2). 

Take the elements of all UR(P1 , P2 ) as objects of a new category U(R) and as 
morphisms from u E UR ( P1 , P2 ) to u' E UR ( P{, Pn take all pairs (fli h) wi th 
fi E H omR,0RoP(P;, Pf) such that u' f1 = fiu. 

If L E Rep(R, R'), then Pi 0 R L E P;(R'), so L defines a natural mapping 

Hence, one can reproduce for bimodule categories the above notion of strictness. 

~ote that this definition is formally distinct from that of [D 1 J though they provide 
equivalent categories. 

l ' sually the algebras Ri are finite-dimensional and in this case the following the­
orem is valid [Dl]: 



Theorem 1 

lf R 1• R2 are finite-dimensional algebras and U is a finite-dimensional Rt - Rr 
bimodule, then there exists a free triangular bocs a = au and for each algebra R an 
equivalence of categories TR: Rep(a. R) ---t U(R) commuting with tensor products, 
l.C. 

2 Tarne and wild open subcategories 

Let a be a finitely generated bocs and X C Rep(a) a full subcategory. Call X an 
open subcategory if it satisfies the following conditions: 

1. lf M E X and N ~ M, then N E X; 

2. M EB N E X if and only if M E X and N E X; 

3. for each dimension d the subset Xg_ =X n Repg_{a) is open in Repg_(a). 

For any algebra R put X(R) = {M E Rep{a, R) 1 M(L) E X for anyL E 
Rep(R) }. lt is clear that if M E X(R) and L E Rep(R, R'), then M(L) E X(R'). 

Call X wild if for any finitely generated algebra R there exists a strict represen­
tation M E X{R). Non-formally this means that to know the representations of X 
we have to know the representations for all finitely generated algebras. 

lt is well-known ( and easy to check) that to prove wildness it is sufficient to find 
a strict representation M E X(J< < x, y >) (free non-commutative algebra with 2 
generators ), as the latter has a strict representation over any other one. A little more 
complicated but also known (cf. [GP1 or [D2]) is that here we can replace K < x, y > 
by the polynomial ring K[x , y] or even the power series ring K[I x, y 11· 

Call a rational algebra any algebra of the form [{ [x. f ( x )- 11 for a non-zero poly­
nomial .f(:r), i.e. the affine algebra of a smooth rational affine curve. 

Theorem 2 

Let a = (A. \/) be a finitely generated semi-free bocs, X C Rep(a) an open 
subcategory. Thcn the following con<litions are equivalent: 

1. X is non-wild: 

: ) 



2. for each dimension d there exists a subvariety xd c xd such that 

dimXd s;I g I= L g(T) 
TEobA 

and any representation from Xg is isomorphic to one belonging to Xg; 

3. for each dimension g there exists a subvariety Yd C Xd such that dimYd s; 1 
and any indecomposable representation from xd is isom~rphic to one belo~ging 
to }'d; -

4. there exists a strict set {Mi 1 i E J, Mi E X( R;)} with rational algebras Ri such 
that for each dimension d all indecomposable representations from xd except 

a finite number (up to isomorphism) are isomorphic to M;(L) for som~ i E Jg 

and some L E Rep(Ri) where Jg is a finite subset of J ( depending on d). 

(lf these conditions are satisfied. call X tarne). 

Proof 

( 4) ===> ( 3) as any indecomposable n-dimensional representation L of a rational al­
gebra K[x, f(x)- 1

] maps x to a Jordan cell J(>.) with eigenvalue >.such that /(>.) # 0. 
Hence representations M;( L) for such L produce a 1-dimensional subvariety of Xd 
and as d is fixed. n is also fixed. -

(3) ===> {2) is quite evident as 1d1 is an upperbound for the maximal number of 
indecomposable direct summands of any representation of dimension g. 

(2) ===> (1) if M E Xd(J{ < x,y >) is strict, then M(L) for L E Repn 

( K < x. y >) form in Xng a subset of dimension at least n 2 consisting of pairwise 

non-isomorphic representations and n2 >Ing 1 if n >I d j. 

At last. ( 1) ===> ( 4) can be proved just by repeating the proof of the above The­
orem 1 gi ven in [D l] if we make the following simple observation. Let a E A (X, Y). 
Denote X(a) = {M(a) 1 Af EX}. Then the only possibilities for X(a) are: 

- if X # Y. either all linear mappings. or those F : L --t L' with rkF = diml , 
or those with rkF = diml' or isomorphisms only: 

- if X= Y there exists a finite subset E(a) C 1\ such that 
X(a) = {F: L --t L 1 F has no eigenvalue from E(a)}. 
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Of course. the proof of [D l]. based on algorithms of reduction of matrices, is rather 
complicate<l. Cnfortunately. till now the only known way to obtain the equivalences 
(1) ~ (2) ~ (3) is to prove that (1) ==> (4). 

3 Cohen-Macaulay Algebras 

In this paragraph we consider algebras A over K satisfying the following conditions: 

(Al) The centre Z of Ais a complete local noetherian Cohen-Macaulay ring of Krull 
dimension 1 with residue field K; 

(A2) A is a (finitely generated) Cohen-Macaulay module over Z; 

(A3) A is semi-prime, i.e. has no nilpotent ideals. 

We call such algebras CM-Algebras. Denote by CM(A) the category of A­
modules which are maximal Cohen-Macaulay modules over Z, i.e., in our case, finitely 
generated and torsion free. Call them CM-A-modules. 

lf A is a C M-algebra, its full quotient ring Q is a semi-simple artinian ring and 
there exists a (not necessarily unique) maximal overring A, i.e. a CM-algebra such 
that A C A C Q and there are no C M-algebras A' -=f. A with A C A' C Q (cf. 03]). lt 
follows from [Rog] that A is always hereditary, i.e. any CM - Ä-module is projective 
over .\. 

lf R is any K-algebra, denote by C M(A, R) the category of R-A-bimodules M 
satisfying the following conditions: 

(Ml) M is finitely generated as bimodule; 

( M2) z M is torsion free; 

(M3) MR is ftat; 

(M4) M(L) = lvf 0 R Lisa C M-A-module for any L E Rep(R). 

If R/m is finite-dimensional over A' for any maximal left ideal m CR. then (M4) 
is equivalent to 

( l\I4') for any non-zero divisor ..\ E Z the R-module M / ..\!vf is also ftat. 



Surely. if ME CM(A.R) and L E Rep(R.R'). then M(L) E CM(A,R'). So we are 
able to define strict modules 1\1 E CM(A. R) and strict sets of such modules just as 
in §1. lf R is a finitely generated commutative K-algebra of Krull dimension d, call 
any birnodule ME C M(A, R) a d-parameter family of CM-A-rnodules (with base 
R). 

Call A CM - wild if for every finitely generated algebra R there exists a strict 
rnodule M E CM(A, R). Again we have to check the existence of M only for 
R = K <x,y>, or R = K[x,y], or R = K[I x,y !]. 

If a A-rnodule M is torsion free ( over Z) it can be ernbedded into the Q-module 
Q 0 A M, so if A' is an overring of A, i.e. a C M-algebra such that AC A' C Q, we can 
consider the A'-rnodule A' M, which is the irnage of A' ®A M in Q ®AM. If M was a 
CM-module, then so is A'M. In this case Q (i')A M is finitely generated over Q,thus 
Q ®AM '.::::'. r1 Qi EB · · · EB rtQt where Q1, · · ·, Qt are all pairwise non-isornorphic simple 
Q-modules. Call the vector r(M) = (r1 , · · ·, rt) the (vector) rank of M and denote 
C Mr(A) the set of all C M-A-rnodules of rank r. 

Theorem 3 

For a C M-algebra A the following conditions are equivalent: 

1. A is not CM-wild; 

2. for any rank r = (ri,·„,rt) there exists a d-parameter family M of CM-A­
modules with d :SI r I= L:::=l Ti such that any CM-A-module of rank I is 
isornorphic to sorne M(L ): 

3. for any rank r there exists a 1-parameter family M of CM-A-modules such that 
any indecomposable C M-A-module of rank r is isomorphic to some M(L ); 

4. there exists a strict set {Mi 1 i E J, .llJi E CM( A, Ri)} with rational algebras Ri 
such that for each rank i: all indecomposable C M-A-modules of rank r except 
a finite number (up to isomorphism) are isornorphic to Mi(L) for sorne i E Ir 
and L E rep( Ri) where Ir is a finite subset of I ( depending on r). 

lf these conditions are satisfied, call A CM-tarne. 

Proof: 

Again (4) ==} (3) ==} (2) ==} (1) is clear. so we have only to prove (1) ==} (4). 



Fix an overring A' :JA and denote by CM(A 1 A') the full subcategory in CM(A) 
consisting of all modules Al such that A' M is A'-projective. Of course, if A' is hered­
itary (e.g. maximal). then CM(A 1 A') = CM(A). Let I C radA be a two-sided 
A'-ideal such that dimKA'/I < oo (it exists as A'/A is a finitely generated torsion 
Z-module). Then IM CM C A'M for any CM-module M and any homomorphism 
r.p : M --+ N can be uniquely prolonged to r.p' : A' M ---+ A' N. Put 

A1 = A/1, A2 = A'/1 

and consider a new category C = C(A 1 A') whose objects are pairs (P, X) with P 
a (finitely generated) projective Armodule, X C Pa A1-submodule, and morphisms 
( P, X) --+ ( P1 , Xi) are Ar homomorphisms r.p : P ---+ P1 such that r.p( X) C X 1 . 

Define a functor T: CM(A 1 A')---+ C putting T(M) = (A'M/IM,M/IM) and let 
C0 be the full subcategory of C consisting of all such pairs (P, X) that A2X = P. 
Then the following lemma is evident: 

Lemma 1 

T(M) E C0 for any M E CM(A 1 A') and the functor T: CM(A 1 A')---+ C0 is 
full, dense and refiects isomorphisms and indecomposability. 

Now consider the Ai-Arbimodule U = A2 and define a functor Im : U(I<) --+ C 
putting. for r.p: P1 --+ P2 , lmr.p = (P2 , /mr.p). Denote X the full subcategory of U(I<) 
consisting of all such r.p that H err.p C radP1 and A2 • lmr.p = P2 . As A1 is artinian, 
any Armodule X possesses a projective cover whence we obtain the following lemma: 

Lemma 2 

lf r.p E X, then /mr.p E C0 and the functors Im : X --+ C0 is full, dense and 
refiects isomorphisms and indecomposability. 

ldentify, according to Theorem 1, U(K) with Rep(a) for a free triangular bocs a. 
Then X becomes an open subcategory in Rep(a), thus Theorem 2 is applicable, i.e. 
X is either tarne or wild. 

Let u E X( R) for some algebra R. Then u : P 1 ---+ P2 where P; is a projective 
.\, 2 ·R0 P-module. Call u good provided P, '.'.:::'. P;/IP; where Pl(resp.P2 ) is a projective 
AC !l0 P-mo1ule (resp. A'O R 0 P-module) an<l Cokeru is fiat over R. In this case denote 
ü: P1 --+ JJ2 some homomorphism for which u = u(modl). 

9 



Lemma 3 

(a) If u E X(R) is good and Af = lmu, then ME CM(i\, R). 

(b) If {ui 1 i E /. u; E X(Ri)} is a strict set, all u; are good and M; = lmu;, then 
{ M; 1 i E /} is also a strict set. 

Proof 

(a) Remark that Cokeru ~ Cokeru. so we have an exact sequence 

o-M-P2-N-o 

with R-flat N and hence an exact sequence 

for any L E Rep(R) where P2 0 R L is A'-projective. This does imply all prop­
erties (Ml) - (M4) for M. 

( b) follows directly from Lemmas 1 and 2. 

Lemma 4 

Let u E X( R) for a finitely generated commutative domain R. Then there exists 
a non-zero f E R such that u1 E X(R1) is good. 

Proof 

Denote by F the quotient field of R. Then (A/radA) 0 F is semi-simple [Bl], 
hence rad(A 0 F) = (radA) 0 Fand (A 0 F)/rad(A 0 F) ~ (A/radA) 0 F. Hence in 
i\ O F idempotents can be lifted modulo radical and any projective ( i\ 0 F)-module is 
of the form P O F for some projective A-module P. The same is true for the algebras 
A' and i\i(i = 1. 2). As A1 = A/ I and I C radi\, any projective (A1 0 F)-module is 
of the form (P :? F)/ l(P O F). Therefore. if Pisa projective A1 0 R-module. there 
exists a non-zero f E R such that P1 '.:::::'. P /IP for a projective A1 0 Rrmodule P. So 
if u E X(R). u: P 1 - P2 • we can find f ER for which (P;)J '.:::::'. P;/IP;. But as A; 
are finite-dimensional. ~v = Cohru1 is finitely generated over R1 and there exists a 
non-zero g E H such that Xg is fiat [B2]. thus u19 is good. 

Corollary 1: lf Xis wild. then .\ is wild. 

10 



Proof 

LP-t u E X(R). R = K[x. y]. be strict. Find .f E R such that UJ is good and a 
maximal ideal m C R such that f </. m. As the m-adique completion of R is isomor­
phic to R = K[I x. y IJ u1 provides a good and strict element u E X(R). Then lemma 
3 implies that /\. is CM-wild. 

Corollary 2 lf /\.' is heredi tary and X is tarne, then /\. is C M-tame. 

Proof 

Let { u; 1 i E I , u; E X( R;)} be a strict set satisfying conditions ( 4) of Theorem 
2. Remark that if R is a rational algebra, then Repd(R) - Repd(R1) is finite for any 
non-zero J E R and any dimension d. Therefore, lemma 4 allows us to suppose all u; 
good. But as /\.' is hereditary, C M(A. 1 /\.') = C M(A.). Hence, lemmas 1-3 imply that 
the set {M; 1 i E J} with M; = lmu; satisfies condition (4) of Theorem 3. 

N ow (1) ==> ( 4) follows from corollaries 1 and 2. 

l l 
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