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Abstract 

In this paper we will introduce the concept of lexicographic max-ordering solutions for 
multicriteria combinatorial optimization problems. Section 1 provides the basic notions of 
multicriteria combinatorial optimization and the definition of lexicographic max-ordering 
solutions. 

In Section 2 we will show that lexicographic max-ordering solutions are pareto op
timal as weil as max-ordering optimal solutions. Furthermore lexicographic max-ordering 
solutions can be used to characterize the set of pareto solutions. Further properties of 
lexicographic max-ordering solutions are given. 

Section 3 will be devoted to algorithms. We give a polynomial time algorithm for the 
two criteria case where one criterion is a sum and one is a bottleneck objective function, 
provided that the one criterion sum problem is solvable in polynomial time. For bottleneck 
functions an algorithm for the general case of Q criteria is presented. 

1 Introd uction 

In this paper we consider combinatorial optimization problems with multiple criteria. First 
we introduce the general fra.mework. 
We are given a ground set E = { ei, •.. , em} of elements ( e.g. edges of a graph) and a set 
:F ~ 'P(E) of feasible solutions (e.g. spanning trees of a graph~ We have a vector-valued 
weight-function w: E-+ IN~ and for each q E {1, ... , Q} an objective function f 9 : :F-+ IN 
such that f(F) = (!1(F), ... , fq(F)) 1 E INQ. 
In this paper we shall consider two types of objective functions, na.mely sum (!9(F) = 
l:eeF w9(e)) and bottleneck (!9(F) = ma.xeeF w9(e)) functions. We always consider min
imization problems. 
The most common solution concepts in multicriteria optimization a.re the following. 

1. Pa.reto optimality 

A feasible solution F E :F is pa.reto optimal (a pareto solution) if there is no F' E :F 
such tha.t f 9(F') ~ f 9(F) q = 1, ... , Q a.nd strict inequality holds in at least one case. 
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The ma.in disa.dvanta.ge of this concept is the possibly la.rge ca.rdina.lity of the set of 
pa.reto solutions. lt is ea.sy to construct exa.mples such tha.t every fea.sible solution is 
pa.reto optimal a.nd all solutions ha.ve different objective va.lues, see e.g. [3] or [4]. 

2. Ma.x-ordering optima.lity 

A solution FE Fis ma.x-ordering optimal (a. ma.x-ordering solution) if 

ma.x fq(F) $ ma.x fq(F') 
qE{l,„„Q} qE{l,„.,Q} 

for all F' E F. 

Compa.red to pa.reto optima.lity this concept ha.s the advanta.ge of a. unique optimal solu
tion va.lue, i.e. ma.xqe{i,„.,Q} fq(F) is the sa.me for ea.ch ma.x-ordering optimal solution 
F. But on the other ha.nd only one of the Q objectives is ta.ken into a.ccount for the 
optimal solution, i.e. only one objective function is needed to determine if a fea.sible 
solution is optimal, once the optimal va.lue is known. 

By introducing the concept of lexicogra.phic ma.x-ordering we shall combine both fea.tures: 
Considera.tion of all objective va.lues simulta.nously a.nd unique optimal solution va.lµe. 

Definition 1 1. For x E IRQ define 0(x) as the permutation (01(x), ... , 0q(x)) of x for 
which 0 1 (x) ~ ... ~ 0q(x) holds. 

2. If x, '1J E IRQ x is lexicogra.phically smaller than '1J if there is 0 < q < Q such that 
X&= '1J&, i $ q - 1 and Xq < '1/q· We write x <tu: y. 

S. A feasible solution F E F of a combinatorial optimization problem is lexicographic ma.x
ordering optimal (lex-MO optimal, lex-MO solution) if 0(/(F)) $1ex 0(/(F')) for all 
F' eF. 

Such solutions ha.ve been introduced for loca.tion problems a.s lexicogra.phic centers in [6] 
a.nd for multicriteria. linear progra.mming in [5]. In the la.tter lex-MO solutions a.re called 
nucleolar solutions. The concept of the nucleolus is taken from ga.me-theory. The rela.tions 
of ga.me-theory a.nd muliobjective linea.r progra.mming have been investigated in [1]. 

Example 1 Let F = { a, b, c, d, e} and f(F), 0(/(F)) be given as in Table 1. 

F f F 0 f F)) 
a (1,3,8,!,.I} (8,4,3,!,1} 
b (4,3,8,1,1} (8,4,s,1,1) 
c (7,5,4,6,1} (7,6,5,4,1} 
d (3, 7,4,6,5) (7,6,5,4,3} 
e (4, 7,5,6,5} (7,6,5,5,4) 

Table 1: f and 0(1) in Example 1 

Hence a, b, c, d are pareto optimal, c, d and e are max-ordering optimal. But the lex-MO 
solution c is unique. 

Exa.mple 1 is illustra.ted in Figure 1. 
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2 Properties of Lexicographic Max-Ordering Solutions 

In the following we will usually write 0(F) instead of 0(/(F)). 
The next result proves tha.t lex-MO solutions really combine the concepts of pa.reto a.nd 
max-ordering optima.lity. 

Proposition 1 1. If F is lez-MO optimal then Fis pareto optimal. 

2. If F is lez-MO optimal then F is maz-ordering optimal. 

·Proof: 
Suppose tha.t F is a. lex-MO solution. 

1. H there is some fea.sible F' such tha.t J„(F') ~ J„(F) for q = 1, ... , Q a.nd inequa.lity 
holds in least one ca.seit follows tha.t 0(F') <1ez 0(F), contradicting the choice of F. 

2. H there is some F' such ihat maxq=1 , ... ,Q J„(F') < maxq=1,„.,Q J„(F) we have that 
01(.F') < 01(F). Hence obviously 0(F') <1ez 0(F), aga.in a contradiction. 

0 

Therefore. we ha.ve the inclusion a.s in Figure 1, which due to Exa.mple 1 is strict in general. 

pareto 
solutions 

a 

b 
e 

max-ordering 
solutions 

Figure 1: Lex-MO, pa.reto a.nd max-ordering solutions 

Lex-MO solutions ca.n further be a.pplied to pa.ra.metrize the set of pa.reto solutions. Thus, 
besides the interest in lex-MO solutions due to combination of unique solution value a.nd 
simulta.nous considera.tion of all objective functions, lex-MO solutions a.re of interest for de
termining the set of pa.reto solutions. 

Proposition 2 Let >.„ > 0 q = 1, ... , Q and let F* be a lez-MO solution with respect to 
f' = (!{,„.,J!:J), where f~(F) = >.„J„(F). Then F* is pareto optimal with respect to f. 
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Proof: 
Suppose F* is not pa.reto optimal. Then there exists some F E F such that fq(F) $ 
fq(F*) q = 1, „., Q and fq•(F) < fq•(F*) for some q•. Hence >.qfq(F) $ Aqfq(F*) q = 
1,„ .,Q and Aq•fq•(F) < Aq•fq•(F*). Therefore 

0(>.1fi(F), „ ., >.qfq(F)) <1u 0(>.if1(F*), „., >.qfq(F*)) 

contradicting lex-MO optima.lity of F*. 

D 

Note that in Proposition 2 it is important that Aq > 0. 

Proposition 3 lf F* is pareto optimal then there ezist Aq > 0 q = 1, ... , Q such that F* 
is lez-MO optimal with respect to f', where f' is defined as in Proposition ~ 

:to:~·= { /,~·) ~:~:i;e 0 

Then >.q tq(F*) = { 
0
1 fqh(F*) / O and we have 0(F') = (1, ... , 1, 0, ... , 0). Since F* is 

J' · ot erw1se 
pareto optimal for all F E F such that f(F) # f(F*) there exists a q• such that fq.(F) > 
fq•(F*). 
We consider two cases. 

Case 1: fq.(F*) # 0 
~ Aq•fq•(F) > Aq•fq•(F*) = 1 

Case 2: fq•(F*) = 0 
~ fq•(F) > 0 
~ Aq•fq•(F) = 2fq•(F) > 1 

The last inequa.lity of Case 2 follows from integra.lity of weights wq(e). In both cases we 
conclude that 0(F) >1u 0(F*) and the result follows. 

D 

We shall now mention two other properties of lex-MO solutions. 

Proposition 4 Let 11" be a permutation of {1, ... , Q}, let !11:(F) = U11:(i)(F), ... , f11:(Q)(F)). 
Then 

Proof: 
For all FE F: 0(/(F)) = 0(!11:(F)). 

0 

This property is called anonymity. Note that this property (obviously) does not hold for usual 
lexicographic optimization. The next results considers a property concerning invariance under 
(positive) affine transformations of objective functions and weights. 
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Proposition 5 1. Letf;=af9 +b q=l, ... ,Q a>O,b~O.Definef'=(f{, ... ,ff.J). 
Then f>(f'(F)) = a0(f(F)) + b and therefore lex-MO solutions are invariant under 
(positive) affine transformations of objective functions. 

2. Let w~(e) = aw9(e) q = 1, .. . , Q a > O. Then f; = a/9 q = 1, ... , Q. Hence lex
MO solutions are invariant under (positive) linear transformations of weights. In case 
the Q objectives are all bottleneck functions the invariance holds for (positive) affine 
transformations of weights. 

Proof: 

1. Obviously / 9{F) ~ fr(F) # af9(F) + b ~ afr(F) + b for a > O, b ~ 0. 

2. If f 9 is a sum function: 

f~(F) = L:Caw9(e)) = a L: wq(e) = af9(F) 
eEF seF 

If / 9 is a bottleneck function: 

f~(F) = max(aw9(e) + b) = amaxw9(e) + b = af9(F) + b 
eEF eEF 

The cla.im follows from these equations and the first part. 

0 

For sum functions invariance under (positive) affine transformations of weights depends on 
the cardinalities of feasible solutions, since J;(F) = af9(F) + IFlb. Hence it holds if IFI = 
const.VF E F, e.g. if Fis the set of bases of a matroid. 

3 Algorithms 

Now we will turn our attention to algorithms for determining lex-MO solutions. We first 
restrict ourselves to the case Q = 2 and consider two cases. 
We will first shortly describe the case where fi and h are sum functions . By Proposition 1 
every lex-MO solution is also a max-ordering solution. But since the max-ordering problem 
for sum objectives is NP-hard, so is the lex-MO pr9blem. This was shown for unconstra.ined 
problems in [2] and for spanning tree problems in (3). The same is obviously also true for 
Q > 2 sum functions. 

3.1 One bottleneck and one sum objective 

Without loss of generality we assume that fi is a sum objective and h is a bottleneck 
objective. In this case we have no more tha.n m = IEI different values of pareto solutions, since 
h cannot a.tta.in more tha.n m values. This fact ena.bles us to give the following polynomial 
time a.lgorithm. 
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Algorithm 1 

Step 1 Renumber E such tha.t w2(e1) ~ ... ~ w:i(em) 
Let t = O,Opt = oo,k = 0 

Step 2 t = t + 1 
Step 3 k = k + 1 

a) lf k ~ 2 and w:i(ek) = w2(ek-1) goto 3 

b) Let w'( e;) = { 00 ~ = l, · · ·' k - 1 
wi(e;) ;=k, ... ,m 

c) Solve minFe.1' l:eeF w'(e) 
Denote the solution by Ft 
Let f = max{fi(F,), h(F,)} 

d) lf f < Opt 
Opt = f,t• = t, goto 2 

lf f > Opt, i = t - 1, goto 4 
lf f = Opt goto 2 

Step 4 Solution is Fi with objective value 0(Fi) 

Theorem 1 Algorithm 1 is correct and calculates a lex-MO solution in O(mS(.r)) steps, 
where S(.r) is the time complexity to solve a one criterion sum problem for feasible set .r. 

Proof: 
Due to the reordering of elements in Step 1) and Step 3a) h ( Ft) ha.s to be strictly decrea.sing in 
t. By restricting the ground set and therefore the set offea.sible solutions, fi(Ft) is increa.sing. 
Therefore there exists some t• ~ 0 such tha.t 

max{fi(F,), h(Ft)} = h(Ft) t = 1, ... , t• 

max{fi(Ft), h(Ft)} = fi(Ft) t ~ t• + 1 

(See Figure 2.) To see this, suppose tha.t max{fi(F1), f2(F1)} = h(Fi)· Otherwise we are 
done, setting t• = 0 due to monotonicity of the sequences. 
Now suppose there are t:i > ti and solutions F,11 :Ft2 such that /i(Ft1 ) ~ h(F,1 ),/i(Ft2 ) 5 
h(Ft2 ) but fi(Ft1 ) 5 /i(Ft2 ) i.e. for t1 the maximum is atta.ined for fi and for t:i it is atta.ined 
for f:i. t:1 > t1 implies h(F,1) > h(Ft2 ). But this yields 

h(Ft1) 5 fi(Ft1 ) 5 fi(Ft2 ) 5 h(Ft2 ) < h(Ft1) 

Due to this contradiction t• must exist and the algorithm stops after at most m iterations. The 
minimal value of max{fi(Ft), h(F,)} can only be atta.ined for t E { t„ ... , i}. lt is therefore 
clear that the a.lgorithm computes a max-ordering solution. But since every lex-MO solution 
is max-ordering optimal a.nd due to the strictly decreasing values of h(Ft) only 0(Fi) can be 
the optimal value of a. lex-MO solution. 

0 
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Figure 2: Sequences fi(Ft), h(Ft) 

3.2 Bottleneck functions 

Here we will give a.n algorithm for the general ca.se of Q bottleneck functions. lt will be useful 
to introduce some nota.tion for restricted ma.x-ordering bottleneck problems (MO-bottleneck 
problems). 

Definition 2 Let i 1 , ••• ,i1; k $ Q be indicea in {1, ... ,Q} auch that i; #- i1 j #- l. Let 
v1 , ... , v1; be nonnegative integers. The restricted MO-bottleneck problem 

is defined aa followa 

min ma.x wq( e) 
FeF qE{l, .. „Q}\{i1, ... ,i„} 

under the restriction that fi;(F) $ v; j = 1, ... , k. 

To solve restricted MO-bottleneck problems is not ha.rder tha.n to solve a. bottleneck problem 
with one objective function a.s Proposition 6 shows. 

Proposition 6 MOB((ii, ... ,i1;),(v1, ... ,v1;)) can be solved by solving 

min ma.xw'(e) 
FeF,F<;,E' eeF 
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where E' = E \ {e E El3j E {1, ... , k}: f;,(e) > v;} and w'(e) = ma.JCqe{1 ... ,Q}\{i1, ... ,i„} Wq(e). 

Proof: 
For FE F 

max maxwq(e) =max max wq(e) = maxw'(e) 
qE{l, ... ,Q}\{i1, ... ,i11} eEF eEF qE{l, ... ,Q}\{i1, ... ,i11} eeF 

Since FE Fis feasible for MOB((ii, ... ,i1;),(v1 , ••• ,v1;)) if and only if it does not contain 
a.ny element of {e E El3j E {1, ... , k}: ft,(e) > v;} the proof is complete. 

0 

For k = 0 MOB((),()) is the unrestricted MO-bottleneck problem. For simplicity we will use 
MOB((i1 , ••• ,i1;),(vi,. „,v1;)) also to denote the optimal value ofthe problem. 
Now we can formulate the algorithm. lt is understood that 0q = -oo if q:; 0. 

Step 1 q=l 
Step 2 I 

II 

III 
IV 

Algorithm 2 

0q = 00 

For all q - 1 tuples (ii, ... , iq-1) of {1, ... , Q} i; -1 i1,j -::1 l 
If MOB((ii, ... ,iq-2),(01, ... ,0q-2)) > 0q-1 next tuple 
0 11 = min(0q,MOB((ii,.„,iq-1),(0i, ... ,0 11-1))) 
next tuple 

q=q+l 
If q ~ Q goto Step 2 else STOP 

Theorem 2 Algorithm 2 is correct. At termination (01, ... , 0q) is the value of a lex-MO 
solution and any solution with MOB((i1, ... , iq-1), (E)i, „., 0q-1)) = 0q found in the last 
iteration is a lex-MO solution. 

Proof: 
Let (0i, ... , 0q) be the output of the algorithm and (0i, „., 0q) be the optimal solution 
value for the lex-MO problem. We show that 0q = 0; by induction on q. 
The case q = 1 is obvious by definition of MOB((),()) a.nd Proposition 1. Now suppose that 
for some q 0; = 0i i ~ q. We have to show that 0q+l = a;+l. 
First note that a.ny Solution with MOB((i1, „., iq-1), (01, ... , 0q-1)) > 0q = e; ca.n
not be optimal since the algorithm must already have encountered a solution F such that 
0q(F) = 0q = 0;. Obviously we have 0q+l ~ 0;+1. Now let F E F be such that 
{01(F),„.,0q+i{F)) = (0i1 „.,0;+1) = (/;1 (F),„.,/;

4
+i(F)), e.g. a.ny optimal solution. 

Hence Fis fea.sible in MOB((j1,„.,jq),{0i,„.,0;)) = MOB((Ji,„.,jq),(0i, ... ,0 11 )), 

the optimal value of which is therefore 0;+1. Since 0q\.+1 is the minimum of all values 
MOB{(ii, ... ,iq),{0i,„.,0q)) computed in Step 2 II it follows that 0q+l = 0;+1. 
Now since every solution F computed in the last iteration ha.s by the above arguments 0(F) = 
{0i, ... , 0q) the rest of the theorem follows. 

0 
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Algorithm 2, however, is not necessarily polynomial. In the warst ca.se it is necessary to solve 
Q! restricted MO-bottleneck problems. This warst ca.se occurs ü for each q every 
MOB((i1, ... , iq-1), (01, ... , 0q_1)) ha.s the same value, and 0q is different for each q. 

On the other hand in the best ca.se we only have to solve ( ~ ) such problems, namely in 

the ca.se that for each q there is only one MOB((ili···,iq--1),(E>li···,0q-1)) with optimal 
value 0q. 
Some improvement of Algorithm 2 is ea.sily possible by not considering any elements e E E 
with Wq(e) > E>q-1 when solving the restricted MO-bottleneck problems. 
We will now give an example for a.lgorithm 2. 

Example 2 We consider the spanning tree problem for K 4 with edge weights given as in 
Figure S. 

(2,3,4,0) 

Figure S: Graph for Example t 

In Table t the performance of Algorithm 2 i8 summarized. Edge weights w' ( e) of Proposi
tion 6 are noted in the sequence [1, 2], [1, 3], [1,4], [2, 3], [2,4], [3,4] with "- 11 indicating edges 
not feasible in the restricted MO-bottleneck problem. MOB denotes the optimal values for 
the corresponding problem. Tuples not considered in Step 2 II as well as tuples that yield 
subproblems MOB that have been considered before are not recorded. 
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q II tuple 1 w' 1 E' 1MOBl0q 
1 () „ „ „ „ „ „ E „ „ 
! (1) „ „ „ 9 9 „ E „ „ 

(2) „ „ „ „ „ 9 E „ „ 
{9} 9 9 „ „ „ „ E „ „ 
(.t) „ „ ! „ „ „ E „ „ 

9 (1,2) „ „ „ 9 9 9 E „ „ 
(1,9} 19,f 19-4 E 9 9 
{1,,f} „ „ 2 9 2 „ E 9 9 
(2,3} 3 2 „ „ „ 1 E 9 9 
{2,,f} „ „ ! „ „ 9 E „ 9 
(9,,f) 9 9 ! „ „ „ E 9 9 „ (1,9,2} 10,f 19- E \ {[3,4]} 9 9 
{1,9,,f} 19-02.f E \ {[1,4]} 2 2 
(1,,f,!) „ „ 2 9 1 - E \ {[3,4]} 9 2 
{1,,f,9} --!02,f E \ {[1, 2], [1, 3]} 2 2 
{2,9,1} 10,f--1 E \ {[2, 3], [2, 4]} 1 1 
{!,9,,f} 9 ! - „ „ 1 E \ {[1,4]} 9 1 
{9,,f,1} 192--.t E \ {[2, 3], [2, 4]} 9 1 
{9,4,2) 9 2 0 „ „ - E \ {[3,4]} 9 1 

Table 2: Algorithm 2 for the graph of Figure 9 

Due to Theorem 2 any optimal solution of MOB((2,3,1)(4,4,3)) is lex-MO solution. So by 
Proposition 6 we have to solve a bottleneck spanning tree problem for the graph of Figure 4. 
Hence F = {[1, 2], [1, 3], [3, 4]} is the unique optimal solution with 0(F) = ( 4, 4, 3, 1). Note 
that each of the 16 spanning trees of K" is maz-ordering optimal in this example and that 
there are .4 pareto optimal spanning trees, namely: 

F = {[1, 2], [1, 3], (1, 4]}, f(F) = (3, 3, 4, 4) 
F = {[1, 2], (2, 3], (2, 4]}, J(F) = ( 4, 2, 4, 3) 
F = {[1, 2], (1, 3], (3, 4]}, J(F) = (3, 4, 4, 1) 
F = {[1, 4], (2, 3], (2, 4]}, J(F) = ( 4, 2, 3, 4} 
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Figure ~: Finding an optimal solution in Example 2 
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