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Introduction 

Let K be a field, K[[x]] (respectively I<[[y]]) , be the formal power series in the vari
ables x =(xi, ... , xn) (respectively y = (y1, ... , Ym)) and JE K[[x]], g E K[[y]] two 
non-zero, non- invertible formal power series. The problem of Thom-Sebastiani type 
for the categories of maximal Cohen- Macaulay modules (see [HP]) means studying 
the category of maximal Cohen-Macaulay modules over K[[x, y]]/(J + g) in con
nection with the categories of maximal Cohen- Macaulay modules over K[[x]]/(J) 
and K[[y]]/(g), respectively. A very special case of this type of problem appears 
in Knörrer's paper [Kn], where the hypersurface singularities of type f + y2

, that 
is g = y2

, are studied. lf char K i- 2, then every maximal Cohen-Mac~ulay R" = 
K[[x, y]]/(J + y2 )- module is a direct summand in the first syzygy over R" of a cer
tain maximal Cohen- Macaulay R := K[[x]]/(J)-module (see [Kn]). This result was 
very useful for proving that a hypersurface over an algebraically closed field of char
acteristic i- 2 is simple if and only if it has a finite Cohen- Macaulay representation 
type (see [Kn], [BGS]). 

Lets 2:'.: 2 be an integer which is not a multiple of the characteristic of K. Then every 
maximal Cohen-Macaulay R' := K[[x, y]]/(J + y8 )-module N is a direct summand 
of the first syzygy !1k,(T) of T := N/ys- 1 N over R' (see [Po] or [HP](2.8)). Cl~rly 
T is a deformation of the maximal Cohen- Macaulay R- module M := N /yN to R := 

R[y]/ys-l) ~ R' /(ys-l ). Thus, we may describe the maximal Cohen-Macaulay R'
modules by taking the fi;:_st syzygies over R' of deformations of maximal Cohen
Macaulay R- modules to R. 

The purpose of this paper is to give some applications of the above results, when 
s = 3. (We also suppose /{ to be an algebraically closed field in some proofs.) In 
this situation, we know from [HP] (3.1) that it is enough to consider only those 
indecomposable infinitesimal deformations of M which are liftable to R' /(y4

). Sec
tion 1 gives a homological characterization of this liftability and shows its connec
tion with the characterization stated in [HP] (3.4). We also show that the corre
spondence T ---t nk,(T) is "almost" injective and "almost" preserves indecompos
ability (see Theorem 1.7). In the following two sections we take f = x 1 and we 
are mainly interested in describing the maximal Cohen- Macaulay modules N over 
K[[x, y]]/(x1 + y3

) =: R' such that N/yN ~ Pl (where P; = K[[x]]/(xi), 1 S:: i < t, 
are all non- free indecomposable modules over R = K[[x]]/(x1

) and d 2:'.: 1 is an 
integer). We obtain a precise description (see Theorem 3.1), which completes the 
preliminary results from [HP] ( 4.2). To this intent we find in Section 2 all infini
tesimal deformations of Pl, which are liftable to R' /(y 4

) . Our Theorem 3.2 gives a 
necessary condition for an R- module M to have the form M ~ N /yN, for a certain 
maximal Cohen- Macaulay R'- module N. 

The main part of this paper was clone whilst the third author was visiting the 
Universities of Essen and Kaiserslautern (supported by a grant from the Deutsche 
Forschungsgemeinschaft (DFG)) and the Sonderforschungsbereich Göttingen. Part 
of the paper was clone at the University of Bucharest and the Romanian Institute 
of Mathematics. The authors are grateful to these institutions for their support. 



1 Liftability of infinitesimal deformations 

Let K be a field of characteristic =/= 3, K[[x]] be the formal power series ring over K 
in x = (x 1, ••. , xn), f E K[[x]], f =/= 0 a non- invertible formal power series, 

R := K[[x]]/(f), R' := K[[x, y]]/(f + y3
), R := R[y]/(y2

) ~ R' /(y2
). 

Let M be a maximal Cohen-Macaulay R- module and ~ E ExtkOli, M) Le repre
sented by 

0-t M ~T~ N-tO. 

Then T has an R-rriodule structure given by y · lT = i o p, and the complex T-+ 
T-+ T 2-+ M -+ 0 is exact, that is T is an infinitesimal deformation in the sense 
of (HP]. T is liftable to R' /(yi), j ;::: 2, if there exists an R' /(yi)- module E such 
that E / y2 E ~ T and the complex 

2 ;-2 y2 

E~E~E-+E 

is exact (it follows Tor~/(yi)(R, E) = 0 for all l ~ 1). 

Let LM C Extk( M, M) be the subset of those ~ represented by 

i p 
0-tM-tT-tM-tO 

for which the infinitesimal deformation T of M is liftable to R' /(y'1). We are inter
ested in studying LM, mainly because of the following basical result from (HP] (3.1) 
(see also [Po] and [HP] (2.8) ). 

Theorem 1.1 
For every indecomposable maximal Cohen·-Macaulay R' - module N there exists a.n 

indecomposable R-module T such that: 

(i) T i~an infinitesimal deformation of a maximal Cohen-Macaulay R - module M 
to R; 

(ii) T is liftable to R' / (y4
); 

(iii) N is a direct summand of the first syzygy i1k,(T) of T over R'. 

In the same paper it was also given a characterization of the liftability of an infini
tesimal deformation T to R' /(y4

) (see [HP] (3.4)). An homological characterization 
of the liftability to R' /(y4

) is given in this section. We begin by introduci~g some 
notations, which will be useful also for the following sections. 

Let (A,g) be a noetherian local ring, g E g a non- zero divisor of A and B := A/(g). 
A pair of square d- matrices ( <p, 'ljJ) with entries in A satisfying <p'l/J = gld, where Jd 
is the d x d-unit matrix, is called a matrix factorization of g ( we call ( <p, 'ljJ) reduced 
if the entries of <p, 'l/J are all in g). Since g is a non-zero divisor, we have <p'l/J = gld if 
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and only if 'lj;rp = gld. If A = K[[x]], g = f the matrix factorizations of f describe 
the maximal Cohen- Macaulay R- modules. 

For every such non- free R- module M there exists a reduced matrix factorization 
( rp, 'ljJ) of J which defines a minimal free resolution of M 

This is an important factor, which makes it easier to study the maximal Cohen
Macaulay R- modules over hypersurfaces (see [Ei] and [Yo], Ch. 4). If A = 

K[[x, y]]/(y2
), g = f the matrix factorizations of f describe (by [PP] (2.8) and 

also [Ru] (2.5.4)) the infinitesimal deformations of maximal Cohen- Macaulay R
modules in a similar way. 

If ( rp, 'ljJ) is a reduced matrix factorization of f corresponding to the maximal Cohen
Macaulay R-module M, then a reduced matrix factorization of f over K[[x, y]]/(y2

) 

corresponding to an infinitesimal deformation T of M has the form ( rp + ya, 'lj;- yß) 
for some a,ß E M(d x d,K[[x]]) satisfying a'lj; = rpß or, equivalently, '!/Ja= ßrp, in 
other words ( a, ß) is a morphism ( 'lj;, rp) -----+ ( rp, 'ljJ) of matrix factorizations corre
sponding to a morphism u: nk(M)-----+ M. lt is easy to see that ~ = Extk(M, u)(77), 
17 defined by 

0 -----+ n k ( M) -----+ L -----+ M -----+ 0, 

the beginning of a minimal free resolution of M. Since aß(rp•+ya) = a'l/Ja+yaßa = 
( rp + ya )ßa we have the following 

Lemma 1.2 
The pair (aß, ßa) is an endomorpbism of the matrix factorization ( rp + ya, 'lj;- yß), 

which corresponds to an R--endormorphism 0 of T. 

The map 0 is uniquely given by ~ as follows below. Let Ok,(T) be the first syzygy 
of T over R' and 0 ----+ Ok,(T) ---: F -----+ T ----+ 0 a part from a minimal free 
R'-resolution of T. Tensorizing by R ® R' - we obtain the following exact sequence 

1) 0----+ T----+ R ® R' Ok,(T) -----+ R ® R' F-----+ T-----+ 0 

which yields the extension 

(c) 0-----+ T ~ R ® n' Ok,(T) -----+ Ok(T)----+ 0. 

The minimal free resolution of T over R 
2) . 4 . -----+ L <p+yo L 1/;-yß L cp+yo L ~ T -----+ Ü 

gives the following extension 

(v) 0 -----+ T ~ nA(T) ~ L -----+ Ok(T) -----+ 0 

- -(note that R ® n F ~ L ). 

Lemma 1.3 
Extk(Ok(T) , () + y · lr )(v) = €. 
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Proof: lt is enough to show that there exists a cocartesian square 

T~ L 

9+y·lr 1 1 
T ~ R ®ROk,(T). 

By [HP) (3.1), 

( 
1/J - yß . 0 ) and er _ ( tp + ya 0 ) 

7 
= aß+ yld tp + ya - -(ßa + yld) 1/J - yß 

forma matrix factorization of f corresponding to R @Rflk,(T) and if j2. L--+ L2 is 
the injection on the second summand L, the pair (j2 , j 2 ) gives a matrix factorization 
morphism ('P + ya,1/J-yß)--+ (T,cr) corresponding to v. 

Thus, we have: 

R ®R nk,(T) ~ L 2 /((1/; - yß)(a), (aß+ yld)(a) + ((tp + ya)(b))la, b E L) 
- -

~ L ffi T/((1/; - yß)(a), (0 + ylT)(q(a))la E L), 

which is enough. 0 

We have a canonical isomorphism Homn(Dli(T), T) ~ ExtMT, T) given by a--+ 

ExtMDli(T), a)(€) where E is defined by 0 --+ Dli(T) --+ L1_--+ Lo --+ T --+ 0, 

is the beginning of the miniJ:Eal f!ee resolution of T over R, · and we denote by 
HomR the usual Horn in ModR/{R} (for notations cf. [Yo]). Of course, in our case 
O~(T) ~ T and using the above Lemma, we obtain the following: 

Proposition 1.4 
The map induced in End.R(T) by B+y· lT corresponds via the canonical isomorphism 

Endn(T) ~ Ext1(T, T) to 1) above. In particular, () depends only on T. 

Corollary 1.5 
(i) ~ E LM (that is T is liftable to R' /(y 4

)) if and only if () + ylr factorizes 

through a free R - module. 

(ii) T is liftable to R' /(y3
) if and only if R ®nB factorizes through a free R - module. 

Proof: 

(i) T is liftable to R' /(y4
) if and only if c splits (see [ADS] (1.5)), that is 1) is 

zero in ExtA(T, T). Now apply Proposition 1.4. 

(ii) Tensorizing c by R ®n - we obtain the extension 

0--+ M--+ R ®R' Ok,(T)--+ Dk(M) --+ 0. 

(Torf(R, Dk(T)) = 0), whi ch splits if and only if T is liftable to R' /(y 3
) by 

[ADS] (1.5). The proof goes now as in (i). O 
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Remark 1.6 
Starting with Proposition 3.2 [HP], we can obtain another proof of the Corollary 
1.5. We sketch this proof only for (i) (the proof of (ii) is similar). 

In addition to the above notations, we take S := K[[x, y]]/(y2
) and (/; := tp+ya, .;/; := 

7/; - yß, such that (cp, .;/;) gives a matrix factorization over S, corresponding to T. 

Let (cp1,;/;i) and (cp2,;/;2 ) ~e two arbitrary matrix factorizations corresponding to T1 
and T2 , respectively (Ti, T2 are both infinitesimal deformations of maximal Cohen
Macaulay modules ). For a morphism (p, q) between ( cp 1 , ;/;i) and ( cp2, ~2) we denote 
by Coker (p, q) the canonical morphism induced between T1 and T2 (see [Yo], Chapter 
7). From Proposition 3.2 [HP] we know that 

(*) T is liftable to R' /(y4
) if and only if there are /, T E M(d x d, S) such that 

aß+ yld = cpT + /~· Suppose T is liftable to R' /(y4
). 

We have () + y · lr = Coker(aß + ylr,ßa + y · lr) and, by (*), 
Coker( aß + y · lr, ßa + y · lr) = Coker(/ · ~' ~/) (notice that T ""' Coker cp! ). 
Moreover, we have the following two commutative diagrams: 

0 T 0 

() + y · lr 

0 --- T 0 

and 

0 T 0 

id Coker( ~,id) 

0 0 

Coker( /, ~/) 

0 - - ----- T --~~ 0 

Comparing the above diagrams, we see that () + y · 1r factorizes through a free R
module. For the converse implication, let L be a free module and T ..!!:.+ L !..+ T two 
maps such that () + y · lr = g oh we have two commutative diagrams: 
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0 sd c.p sd T 0 

h" h' lh 
f · lL 0 L L L 0 

0--- L 
f·h 

L L 0 

g" g' g 

0--- T 0 

with L a free S- module, and so we deduce 

h"~ h' 
g" ~g' 

(notice that J is a non-zero divisor in S). 

Unifying these diagrams, we find; E M(d x d, S) given by g'h" such that O+y · lr = 

Coker (!;f;, ~!) which is enough, because of (*), for the liftability of T to R' /(y4
). 

Let now lM c LM be the subset of those e 
0 --+ M --+ Tf. --+ M --+ 0 

for which Tf. is indecomposable. 

We end this section by proving a result which shows the role of the sets JM in the 
description of maximal Cohen-Macaulay modules over R'. 

Theorem 1.7 
The following statements hold for e, e E JM: 

(i) Ok,(Tf.) ~ f!k,(Tf.') a.s R'- modules, if and only if either Tf. ~ Tf.' or Tf. ~ 
nA(Te) as R-modules (the last ca.se can only appear if Ok(M) ~ M). 

(ii) f!k,(Tf.) is either indecomposable, or f!k,(Tf.) is a direct sum of ~o indecom

posable maximal Cohen-Macaulay R'- modules N, N' such that R ®R' N '::'. Tf. 
and R ®R' N' '::'. f!k(Tf.) . 

(iii) If f!A(Tf.) and Tf. are not isomorphic a.s R-modules, then there exists at most 

one maximal Cohen- Macaulay R'-module N such that R ®R' N ~ Tf.. 
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Proof: 

(i) If nk,(Te) ~ nk,(Te) for some e, e E TM then Te ffi nk(Td ~ 

nk,(Te)/y2nk,(Te) ~ nk,(Te 1 )/y2nk,(Te) ~ Te, EB nk(Te), hy [ADS] (1.5), 
since e, e' E CM. Since Te, Te are indecomposable it follows that nA(Te), 

nk(Te) are indecomposable (R is Gorenstein!). Thus, Te ~ Te, or Te ~ 
nk(Te) by Krull- Schmidt Theorem. 

(ii) If nk,(Te) = N EB N' is a non-trivial decomposition of n~,(Te) then, by Nakaya
ma's Lemma, we have a non- trivial decomposition nk,(Te)/y2nk,(Td ::: 
N/y2 N EB N' /y2 N'. As above it holds that nk,(Te)/y2nk,(Te) '.::::'.Te EB nk(Te) 
and so Te~ N/y 2 N, nk(Te) ~ N' /y2 N' or conversely. 

(iii) Suppose Te ~ N/y2 N ~ N'/y2 N' for two maximal Cohen- Macaulay R'
modules N, N'. By [Po] or [HP] (2.8) it follows 

N EB nk,(N) ~ nk,(Te.) ~ N' EB nk,(N'). 

By Nakayama's Lemma N, N' , nk,(N), nk,(N') are indecomposable and so 

either N ~ N' or N ~ nk,(N'). The last case implies Te ~ R ® R' N ~ 
R ®R' nk,(N') ~ nk(ii ®R' N') ~ nk(Te), which is a contradiction. 0 

Remark 1.8 
The description of maximal Cohen-Macaulay R'- modules is complete if we are able 
to describe the set {nk,(Te)}eETM by Theorem 1.1. Using Theorem 1.7 and [HP] (3.2) 
the last set is almost completely described if we are able to describe the isomorphism 
classes of Te' e E TM. By [HP] ( 1.1) Te ~ Te as R- modules if and only if there exists 
an R-automorphism a of M such that Extk(a, M)(e) = Extk(M, a)(e). This defines 
an equivalence relation ",...,_," on TM and it remains to study TM/"'· 
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2 Infinitesimal deformations of modules over 
K[[xJ]/(xt) 

Let K be an algebraically closed field with char K -=f. 3, x, y two variables, R := 

K[[x]]/(xt), R := R[y]/(y2
), R' := K[[x, y]]/(xt + y3

). 

The non-free indecomposable R- modules are Pi := K[[x]]/(xt 1 ::; i < t. The 
reduced matrix factorization of Pi is (xi,xt-i) and Pt-i is the first syzygy over R of 
P;. 

In the spirit of the Thom-Sebastiani problems, we study the maximal Cohen
Macaulay R'-modules in connection with the infinitesimal deformations of the mod
ules over K[[x]]/(xt) (which, of course, have the following general form P;~ 1 ffi · · ·EB P;:·, 
1 ::; i 1 < · · · < is < t, 1 ::; s < t, dj E N, if they do not have free direct summands). 

In this section, by different methods from those of [HP], we are going to study the 
existence of infinitesimal deformations which are liftable to R' /(y4

). 

Our next theorem completes [HP] ( 4.1). 

Theorem 2.1 
Let i, d be two positive integers. Then 

(i) P/ has infinitesimal deformations liftable to R' /(y4
) if and only if t, d satisfy 

one of the following conditions : 

(a) t = 2i and d is even, 

(b) t=3i, 

(c) 2t = 3i. 

(ii) If t = 3i (respectively 2t = 3i), then every infinitesimal deformation of P/ 
liftable to R' / (y4 ) is a direct sum of d copies of three types of cyclic infini
tesimal deformations given by the following matrix factorizations ( T8 , o-sh<s<3 
(respectively(o-s,Tsh<s<3), wherers = xi+y·p8 , O"s = x 2i-XiYPs andp1,p;,p3 

are the third roots of the unity. 

(iii) If t = 2i, d = 2q, q E N, then there exists a unique infinitesimal deformation 
of P/ liftable to R' /(y4

) and its corresponding matrix factorization is a direct 

sum of q- copies of ( (:' x~), (_x~ ~.)). 

Proof: We may suppose t ~ 2i otherwise t < 2i and so 2(t - i) < t and we 
may treat the case ptd-i the first syzygy nk(P/) of P/, because the correspondence 

T --t nk(T) given by taking the first syzygy over R defines a bijection between the 

infinitesimal deformations of P/ and the infinitesimal deformations of P/·-i· 
Suppose there exists an infinitesima~ deformation T of P/ liftable to R' /(y4 ). We 
know that a matrix factorization ( cj;, 1f;) of x 1 over K[[x, y]]/(y2

) has the form cj; = <p+ 
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ya, 7/J = 7/J-yß, with r.p,7/J,a,ß E M(d x d,K[[x]]), r.pß = a'lj;, ßr.p = 7/Ja, (r.p,7/J) = 
(xi· Id, xt-i · Id) being a matrix factorization corresponding to M = Pl. 
From [HP] (3.2) or from Remark 1.6 we deduce that there exist 

/,TE M(d x d, K[[x, y]]/(y2
)) 

such that 
aß+ yld = rj;T + 1-0 = (r.p + ya)T + 1(7/J- yß). 

Writing / = /1 + Y/2, T = T1 + YT2 with /i, Ti E M(d x d, K[[x]]), i = 1, 2. 

We have 

From a'lj; = r.pß we can write axt-i = xiß. 

So we have a · xt-2 i = ß and from (1) we deduce 

= Xi/1 + T1Xt-i 

= 0:/1 + Xi/2 + xt-iT2 - xt-2i . T1 . a. 

lf t > 3i we have 

= /1 + T1 . Xt-2i ' 

= a( a2 . xt-3i - T1 . xt-2i) + Xi/2 + xt-iT2 - xt-2iT1 a 

(1) 

(2) 

and because i ~ 1, t > 3i we obtain Id = O(mod x). So 3i :::: t (t :::: 2i by our 
assumption!). 

lf 3i > t we can write by (2) 

= x3i-t( 11 + 71 . xt-2i) 

= xi('Y2 + xt-2i. T2) - xt-2iT1a + 0:/1· 

So Id = a11(mod x). This implies a = a 211(mod x). 

But a 2 = O(mod x ), because 3i > t and so a = 0:211 = O(mod x ). 

We obtain a contradiction from Id = 0:11 = O(mod x ). Thus, the cases (b) t = 3i 
and (a) t = 2i (in order to obtain d even) remain to be studied. 

The case ( c) 2t = 3i will follow from (b) applied to the first syzygy of T over R ( as 
we have seen before). 

We need the following lemma, which will be proved later. 
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Lemma 2.2 
Let ( cp, 'ljJ) be a d- matrix factorization of xt, U, V two invertible d- matrices over 
K[[x]] such that cp = UcpV and a,ß two d- matrices over K[[x]] defining an infini

tesimal deformation T of Coker cp to k Then a' := UaV, ß' := v- 1ßu-1 give also 
a matrix factorization of T. 

Applying this lemma for U, V = u-1 we see that modulo such transformations we 
may suppose that a modulo x is in the Jordan form (in our case cp = xi· Id commutcs 

e 
with every U!), let us say a _ .EB E:j mod x, 

J=l 

( 

A· 

where c; = ~ 

is a Sj-Jordan cell. 

(K being algebraically closed), 

From (2) we have a 2 = /1 + T1 · xi and /d = a.11 + Xi/2 + x 2
iT2 - xiT1 a implies 

By (3) we see that Aj =f. 0, AJ = 1 and Sj = 1, e = d. Thus 

( 

A1 0 ) . 
a = c + xO, for c = 

0 Ad 

(3) 

We show by induction on r, 0 ::; r < i that () = 0( mod xr) the case r = 0 being 
obvious. 

Suppose 0 < r ::; i - 1. By induction hypothesis we have () = O(mod xr-l) and so 
by (3) 

lt follows 3c2 x() = 0 mod xr+l and so () = 0 mod xr. Hence, a = c mod xi and it is 
enough to apply the following lemma, since a - c E cpM(d x d, K[[x]]). 

Lemma 2.3 
Let (cp,1/;), a,ß be as in Lemma 2.2. 

If a' := a + T/'P + cpw, ß' := ß + w'I/; + 1/;T/ for two d- matrices T/, w over K[[x]], then 
( a', ß') defi.nes also T. 

Proof: We have (/d + T/Y)(cp + ya)(Id + wy) = cp + ya' mod y2 and 
(Id - wy)('I/; - yß)(Id - T/Y) 1/; - yß' mod y 2

. Thus, (cp + ya', 'ljJ - yß') defines also 
T since ld + T/Y, Id + wy are invertible. D 
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Proof of Lemma 2.2: Clearly tp+ya.' = U(tp+ya)V, l/J-yß' = v- 1(tf;-yß)U- 1
• 

Thus, ( tp + ya.', l/J - yß') defines also T, since U, V are invertible. D 

We continue the proof of 2.2 with the case (a) t = 2i. 

Thus, tp = l/J =xi· Id and a. = ß. We also have 

= xi(/1 + T1) 

= Xi(/2 + T2) + O'.T1 - T10'.. 
(4) 

Thus we have a:2 _ O(mod x ). 
q 

As above, we can consider a. = a 0 + x() with a.0 E M(d x d, K), a.0 = .EB Ej, where 
J=l 

>. . 
J 

q 

Ej is a Sj-Jordan cell c:; = 
1 0 , >.; E K, L:s; = d and a.6 = 0. 

j=l 

0 1 

Because of the particular form of a.0 , a.6 = 0 implies Sj :S 2 and >.; = 0 for all 
1 :S j :S q. In order to obtain d even we shall show that Sj = 2 for any 1 :S j :::; q. 
Suppose that there exists j E {1, ... , q} such that Sj = 1. Of course, we may 
suppose that j = 1. 

From ( 4) we have 

So 

Id = O:o/1 - T1a:o(mod x). (5) 

But s 1 = 1 implies that a.o = ( ~ 1 ~ ) · 

Looking at the entry (1, 1) of Id we see that this is a contradiction by (5 ). Thus, 
s; = 2 for all 1 ~ j :S q and d = 2q. 

Let \tjp be the elementary matrix given by \!jp = (vrshs;r,~s;d, 

{ 

1 if r = s and r # j, p 

Vrs = 1 if (r,s) = (j ,p), or (r,s) = (p,j), 
0 otherwise. 

Changing a by "Jva."Jv( notice Vj;1 = \!jp) for some j,p (that is permuting some 

lines and some corresponding columns of a.) we may suppose ao = ( ~q 1 ~ ) by 

Lemma 2.2. 
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By ( 4) we have 

(6) 

Express() in blocks, let us say () = (~ ~), where c,TJ,v,i5 EM (q x q,K[[x]]). We 
may suppose T/ = 0 because 

__ ( xi lq + yxc yxv ) 
<.p - y(Iq + XTJ) xi le + yxi5 

is equivalent with 
. = ( xi lq + yxc yxv(lq + XTJ) ) 

<.p ylq x' lq + yxi5 

(multiply the second line by (Iq + XTJ )-1 and the second column by lq + XTJ ). Note 

that the matrix aoe + eao + x()2 
_ o mod xi-l has the form ( c: J I : ) because 

T/ = 0. lt follows c + i5 = 0 mod xi-l. Clearly cp is equivalent to 

Since xi+l ( c + i5) = 0 mod xt ( t = 2i) we may suppose 

_ = ( xi lq yxv' ) 
'P yl x' I q q 

for v' = v - xci5, that is we may take c = i5 = T/ = 0. Then 02 = 0 and by (6) it 
follows v - 0 mod xi-l. Using Lemma 2.3 we may suppose also v = 0. Then <p is a 
direct sum of copies of 2 x 2-matrices (:' x~) which are indecomposable. D 

In the final part of this section we are going to state a result about the existence of 
infinitesimal deformations liftable to R' /(y4

). 

Proposition 2.4 
s d · 

Let M = EB Pi 1
, with s ;::: 2, 1 :S i < · · · < is < t, dj E N. If t > 2i .~ + i1 or 

j=l J 

2t < 2i 1 + is, there are no infi.nitesimal deiormations of M to R liftable to R' /(y 4 ) . 

Proof: We may suppose t > 2is+i 1 because otherwise we have 2(t-ii)+(t-is) < t 
and so nk(M) has no infinitesimal deformations to R liftable to R' /(y4

), that is M 
has none either. We use the same method as in Theorem 2.1. A matrix factorization 
for M is 
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and let ( rp = <.p + ya., ;/; = 'ljJ - yß) be a matrix factorization for an infinitesimal 
deformation T. Thus, we haw~ 

a.'I/; = c.pß (7) 

writing 

a.= 
( 

Q~l Q.ls ) _ ( ß~1 · · · ß .1s ) 
. . ß_ . . . . ' . . 

Osl Oss ßs1 ßss 

with Oij,ßij E M(di X dj,K[[x]]) we obtain by (7) OrkXt-ik = xir ·ßrk, for every 
1 :S r, k :S s, thus Ork · xt-ik-ir = ßrk because of the hypothesis. 

Let us write the relations which characterize the liftability of T to R' /(y4
) (as in the 

Proof of 2.1): 

s 

with /i, T; E M(d x d, K[[x]]), and d = L,dj. 
j=l 

s 

From ( *) we obtain L, Orp · ßvk = xir · 1:k + xt-ikr;k for every r, k E {1, ... , s }. 
p=l 

Here we set /1 = (!;k)i~r,k~s and T1 = ( r;k)i~r,k~s· But ßvk = xt-ik-ip · Opk, thus 

s 

~ 0 0 . xt-ik- ip = xir . '""1 + xt-ikTl L rp pk 1rk rk• (8) 
p=l 

Now we look to ( ** ). 
We have <.p/2 = O(mod x), r 2 '1/; = O(modx) and because t > 2is + i1 we also have 
ß = O(mod x ). So we obtain r 1 · ß = O(mod x ). From ( **) we deduce that Id = 
a.11 ( mod x), in particular 

s 

ld 1 = L a.1v1;1(modx). (9) 
p=l 

Writing (8) for k = 1 we obtain 1:1 = O(modx) (t > 2is + i 1!), for every r E 
{1,„.,s}. 

Introducing this in (9) we obtain ld1 - O(mod x ), which is a contradiction. 

In conclusion, we have shown that if t > 2is + i 1 there is no infinitesimal deformation 
T of M, liftable to R' /(y4

). D 

Remark 2.5 
(i) Proposition 2.4 impliesthe similarresult obtained by [HP] (4.1) under hypoth-

. . t . 2t 
es1s i s < 3 or i > 3. 
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(ii) lf s = 2, t = 2i2 + i1 , i 2 > i 1 there exists an infinitesimal deformation T of 
Pi 1 EB Pi; given by the matrix factorization 

0 ))· 
which is liftable to R' /(y4), that is the conditions from Proposition 2.4 are 
sharp. lndeed, if N is the R'- module from Remark 3.3, then clearly N/y4 N 
is a lifting of T to R' /(y4

). 
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3 Maximal Cohen-Macaulay 
K[[x, y]]/(xt + y 3

) 

modules over 

Let K, R, R and R' be as in Section 2. 

In this section we shall apply the results obtained in Section 2 in order to describe 
the maximal Cohen- Macaulay R'- modules N with the property N/yN ~ Pl for i, d 
positive integers, 1 :::; i < t, P; = K[[x]]/(x i). 

Theorem 3.1 
Let i, d be two positive integers, 1 :::; i < t. Then 

(i) there exists a. ma.xima.l Cohen- Ma.ca.ula.y module N such tha.t N/yN is a. direct 
sum of d- copies of P; := K[[x]]/(xi) if a.nd only if either t = 3i or 2t = 3i, or 
t = 2i a.nd d is even. 

(ii) If t = 3i then ea.cb ma.xima.l Cohen-Ma.ca.ula.y R'- module N such tha.t N /yN ~ 
Pl is a. direct sum of d- copies of some from the following three cyclic ma.xima.l 
Cohen-Ma.ca.ula.y R' -modules 

Qi = K[[x,y]]j(xi + PiY), 1 :S j :S 3 a.nd P] = 1. 

(iii) If 2t = 3i,· then ea.ch ma.xima.l Cohen- Ma.ca.ula.y R' - module N such tha.t N ~ 
Plis a. direct sum of d- copies of some from the following three cyclic ma.xima.l 
Cohen- Ma.ca.ula.y R' - modules 

(iv) If t = 2i a.nd d = 2q, q E N, then ea.cb ma.xima.l Cohen- Ma.ca.ula.y R' - module 
N such tha.t N / y N ~ Pl is a. direct sum of q- copies of the idea.l (x i , y) R'. 

Proof: Ifthere exists a maximal Cohen- Macaulay R'- module N such that N/yN ~ 
Pl, then T = N/y2 N is an infinitesimal deformation of Pl liftable to R' /(y4

). Thus , 
the necessity from (i) follows from 2.1. 

To prove (ii) let t = 3i and N be a maximal Cohen-Macaulay R'- module such that 
N'.:::'. pd_ 

• 
Then N EB n~,(N) ~ Ok,(T), T = N/y2 N by [Po) or [HP) (2.8). Since T is liftable 
to R' / (y4

) it must be a direct sum of d- cyclic deformations corresponding to (x i + 
pjy,x2i -pjxiy) , 1:::; j:::; 3 by Theorem 2.1. 

Thus, Ok,(T) is a direct sum of d-copies of maximal Cohen- Macaulay R'- modules 
corresponding to the matrix factorizations 
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1 :::; j:::; 3. But 

and 

lt follows 
. ,....., ( x2i - pjxiy + p2y2 0 ) 

/1 0 x' + PiY ' 

that is, Ok,(T) is the direct sum of d- copies of {Q1 ffi Qj}i~j9, Qj = Ok,(Q1). Since 
Qj / yQj is not a direct summand of Pl we are clone. 

The case (iii) is similar using 2.1. 

In case (iv) T is a direct summand of q- copies of the infinitesimal deformation of 

Pl given by ((=; x~), (~~ ~;)) (see 2.1). 

Then Ok,(T) is a direct sum of q- copies of the maximal Cohen-Macaulay R'- module 
corresponding to the matrix factorization ( T, u) given by 

( 

xi o_ -y2 

-y x' 0 
T= 

y 0 x' 
0 y y 

-t') 
which is equivalent to T

1 ffi T
11 for T

1 = (X~ ~r2

)' T 11 = e~ y:i). Clearly T
1 

,....., T
11 and the 

ideal (xi,y) corresponds to (r',u'). Thus, Ok,(T) (respectively N) is a direct sum 
of d-copies (respectively q- copies) of (xi,y). 0 

Theorem 3.2 
Let M = EB Pidi with 1 :::; ii < · · · < is < t, s 2:'.: 2 and t > 2i8 + ii or t < 2i1 + i 8 • 

j=l J 

Then there is no maximal Coben- Macaulay R'-module N such that N/yN ~ M. 

Proof: Suppose there is a maximal Cohen- Macaulay R'- module N such that 
N/yN ~ M and apply 2.4 for T = N/y2 N. D 

Remark 3.3 
If s = 2, t = 2i2 + ii, i2 > i 1 there exists a maximal Cohen- Macaulay R'- module N 
given by the matrix factorization 

x2i2 x•2y 
-y2 xi' +i2 .. 

-y2 -x•2y )) 
such that N/yN ~ P; 1 ffi Pi~· Thus, the conditions from theorem 3.2 are sharp. 
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