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Introduction

Let K be a field, K[[z]] (respectively K[[y]]), be the formal power series in the vari-
ables z = (zy,...,z,) (respectively y = (y1,...,¥n)) and f € K{[z]], g € K[[y]] two
non-zero, non-invertible formal power series. The problem of Thom-Sebastiani type
for the categories of maximal Cohen-Macaulay modules (see [HP]) means studying
the category of maximal Cohen-Macaulay modules over K{[z,y]]/(f + g) in con-
nection with the categories of maximal Cohen-Macaulay modules over K[[z]]/(f)
and K{[y]]/(g), respectively. A very special case of this type of problem appears
in Knorrer’s paper [Kn], where the hypersurface singularities of type f + y?, that
is g = y?, are studied. If char K # 2, then every maximal Cohen-Macaulay R" =
K[[z,y]]/(f + y*)-module is a direct summand in the first syzygy over R” of a cer-
tain maximal Cohen-Macaulay R := K{[z]]/(f)-module (see [Kn]). This result was
very useful for proving that a hypersurface over an algebraically closed field of char-
acteristic # 2 is simple if and only if it has a finite Cohen-Macaulay representation

type (see [Kn], [BGS]).

Let s > 2 be an integer which is not a multiple of the characteristic of K. Then every
maximal Cohen-Macaulay R' := K[[z,y]]/(f + y®)-module N is a direct summand
of the first syzygy Qk/(7T) of T := N/y*'N over R’ (see [Po] or [HP](2.8)). Clearly
T is a deformation of the maximal Cohen-Macaulay R-module M := N/yN to R:=
R[y]/y*™') = R'/(y*~'). Thus, we may describe the maximal Cohen-Macaulay R'-
modules by taking the first syzygies over R’ of deformations of maximal Cohen-
Macaulay R-modules to R.

The purpose of this paper is to give some applications of the above results, when
s = 3. (We also suppose K to be an algebraically closed field in some proofs.) In
this situation, we know from [HP] (3.1) that it is enough to consider only those
indecomposable infinitesimal deformations of M which are liftable to R'/(y*). Sec-
tion 1 gives a homological characterization of this liftability and shows its connec-
tion with the characterization stated in [HP] (3.4). We also show that the corre-
spondence T — Q%L (T) is “almost” injective and “almost” preserves indecompos-
ability (see Theorem 1.7). In the following two sections we take f = z' and we
are mainly interested in describing the maximal Cohen-Macaulay modules N over
K[[z,y]]/(z! + ¥®) =: R’ such that N/yN = P? (where P, = K[[z])/(z"), 1 <i < t,
are all non—free indecomposable modules over R = K[[z]]/(z') and d > 1 is an
integer). We obtain a precise description (see Theorem 3.1), which completes the
preliminary results from [HP] (4.2). To this intent we find in Section 2 all infini-
tesimal deformations of P?, which are liftable to R'/(y*). Our Theorem 3.2 gives a
necessary condition for an R-module M to have the form M = N/yN for a certain
maximal Cohen—Macaulay R'-module N.

The main part of this paper was done whilst the third author was visiting the
Universities of Essen and Kaiserslautern (supported by a grant from the Deutsche
Forschungsgemeinschaft (DFG)) and the Sonderforschungsbereich Gottingen. Part
of the paper was done at the University of Bucharest and the Romanian Institute
of Mathematics. The authors are grateful to these institutions for their support.



1 Liftability of infinitesimal deformations

Let K be a field of characteristic # 3, K[[z]] be the formal power series ring over K
in z = (z1,...,,), f € K[[z]], f # 0 a non-invertible formal power series,

R = K[[z]|/(f), R := K[z, y))/(f +¥*), R:= Rly)/(y*) ~ R[(y).

Let M be a maximal Cohen-Macaulay R-module and ¢ € Exti(M, M) be repre-
sented by

0—M-ST-5H N—0.
Then T has an R-module structure given by y - 17 = 2 0 p, and the complex T' —
T — T -2 M — 0 is exact, that is T is an infinitesimal deformation in the sense

of [HP]. T is liftable to R'/(y’), j > 2, if there exists an R'/(y’)-module E such
that E£/y*E = T and the complex

is exact (it follows Tor?/(yj)(é, E)=0forall £ > 1).
Let Ly C Extir(M, M) be the subset of those £ represented by

0—M-S5T-25M—0

for which the infinitesimal deformation T of M is liftable to R'/(y"). We are inter-

ested in studying Las, mainly because of the following basical result from [HP] (3.1)
(see also [Po] and [HP] (2.8)).

Theorem 1.1
For every indecomposable maximal Cohen-Macaulay R'-module N there exists an

indecomposable R-module T such that:

(i) T is an infinitesimal deformation of a maximal Cohen-Macaulay R-module M

to R;
(ii) T is liftable to R'/(y*);

(iii) N is a direct summand of the first syzygy Q% (T) of T over R'.

In the same paper it was also given a characterization of the liftability of an infini-
tesimal deformation T to R'/(y*) (see [HP] (3.4)). An homological characterization
of the liftability to R'/(y*) is given in this section. We begin by introducing some
notations, which will be useful also for the following sections.

Let (A, a) be a noetherian local ring, g € a a non—zero divisor of A and B := A/(g).
A pair of square d-matrices (p,) with entries in A satisfying oy = gl , where I,
is the d x d-unit matrix, is called a matrix factorization of g (we call (¢, %) reduced
if the entries of ¢, are all in a). Since g is a non—zero divisor, we have i) = gl if
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and only if Y = gly. If A = K[[z]], g = f the matrix factorizations of f describe
the maximal Cohen—-Macaulay R-modules.

For évery such non—free R-module M there exists a reduced matrix factorization
(¢, %) of f which defines a minimal free resolution of M

R R YR SR M—0.

This is an important factor, which makes it easier to study the maximal Cohen-
Macaulay R-modules over hypersurfaces (see [Ei] and [Yo], Ch. 4). If A =
K[[z,y]]/(y*), g = f the matrix factorizations of f describe (by [PP] (2.8) and

also [Ru] (2.5.4)) the infinitesimal deformations of maximal Cohen-Macaulay R-
modules in a similar way.

If (¢, %) is a reduced matrix factorization of f corresponding to the maximal Cohen-
Macaulay R-module M, then a reduced matrix factorization of f over K{[z,y]]/(y?)
corresponding to an infinitesimal deformation T' of M has the form (¢ + ya, ¥ — y3)
for some a, 8 € M(d x d, K[[z]]) satisfying atp = ¢f3 or, equivalently, Yo = By, in
other words (a, ) is a morphism (v, ) — (¢, %) of matrix factorizations corre-
sponding to a morphism u : QL(M) — M. It is easy to see that & = Extr(M,u)(n),
n defined by

0 — Qp(M) — L — M —0,

the beginning of a minimal free resolution of M. Since af(¢+ya) = apa+yafa =
(¢ + ya)Ba we have the following

Lemma 1.2
The pair (af3, Ba) is an endomorphism of the matrix factorization (¢ + yo, ¥ — yf3),
which corresponds to an R—endormorphism 6 of T'.

The map 6 is uniquely given by & as follows below. Let QL,(T') be the first syzygy
of T over R' and 0 — Q3(T) — F — T — 0 a part from a minimal free

R'—resolution of T'. Tensorizing by R @ g — we obtain the following exact sequence

1) 0—T— RQp QL(T) — RQr F — T — 0
which yields the extension
(¢) 0 — T - R®p Qhy(T) — QL(T) — 0.

The minimal free resolution of T over R

- - wl  akm
2) 3BT TR AP 5§

gives the following extension
(v) 0— T~ QL(T) =5 L — QL(T) — 0
(note that R Qp F ~ Z)

Lemma 1.3
Ext%(Q}i(T),ﬂ +y-17)(v) =e.



Proof: It is enough to show that there exists a cocartesian square

T —— L
0+y-1Tl J,
7 (Y E@RQ}Q,(T).

By [HP] (3.1),

_( ¢v—yB 0 _ ¢+ ya 0
T‘(aﬁ+y1d so+ya) a“d”‘(—(ﬁawld) w—yﬁ)

form a matrix factorization of f corresponding to R @z QL (T) and if jo- L —» L2 is
the injection on the second summand L, the pair (2, 72) gives a matrix factorization
morphism (¢ + ya, ¥ — yB) — (7, 0) corresponding to v.

Thus, we have:

R @r O (T) = L*/{( — y8)(a), (a8 +yla)(a) + (¢ +ya) (B)la,b € L)
= Lo T/((¥ - yB)(a), (0 +ylr)(a(a))la € L),
which is enough. a
We have a canonical isomorphism HornR(Q2 (T),T) = Ext% (T T) given by a —
Ext% #(Q%(T), a)(é) where ¢ is defined by 0 — Q%(T) — Ly —s Lg —5 T —30,

is the beginning of the minimal free resolution of T' over R ‘and we denote by
Homg the usual Hom in ModR/{R} (for notations cf. [Yo]). Of course, in our case
Q;(T) T and using the above Lemma, we obtain the following:

Proposition 1.4
The map induced in Endg(T') by 0+y-17 corresponds via the canonical isomorphism
Endg(T) = Ext2~(T, T) to 1) above. In particular,  depends only on T.

Corollary 1.5
(i) € € Lpr (that is T is Ithable to R'/(y*)) if and only if 6 + ylr factorizes
through a free R-module.

(ii) T is liftable to R'/(y®) if and only if RQ 50 factorizes through a free R—module.
Proof:

(1) T is liftable to R'/(y*) if and only if € splits (see [ADS] (1.5)), that is 1) is
zero in Ext;‘%(T,T). Now apply Proposition 1.4.

(ii) Tensorizing € by R ® 5 — we obtain the extension
0— M — RQp Qp(T) — QR(M) — 0.
(Tor?(R, Q%(T)) = 0), which splits if and only if T is liftable to R'/(y®) b
[ADS] (1.5). The proof goes now as in (i). O
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Remark 1.6

Starting with Proposition 3.2 [HP], we can obtain another proof of the Corollary
1.5. We sketch this proof only for (i) (the proof of (ii) is similar).

In addition to the above notations, we take S := K{[z,y]]/(y*) and ¢ := p+ya, P =
¥ — yf3, such that ($, ) gives a matrix factorization over S, corresponding to 7.

Let (@1, 1/)1) and (s, 1/)2) be two arbitrary matrix factorizations corresponding to T
and T,, respectively (Tl, T, are both infinitesimal deformations of maximal Cohen—
Macaulay modules). For a morphism (p, ¢) between (¢4, zpl) and (cpg,t,bz) we denote
by Coker (p, q) the canonical morphism induced between T} and T (see [Yo], Chapter
7). From Proposition 3.2 [HP] we know that

(*) T is liftable to R'/(y*) if and only if there are v,7 € M(d x d,S) such that
af3 + yly = p7 + y. Suppose T is liftable to R'/(y*).

We have 0 + y - 17 = Coker(af + ylr, Ba +y - 17) and, by (*),

Coker(aff + y - 11,fa + y - 17) = Coker(y - ¥,v¢y) (notice that T' ~ Coker @!).

Moreover, we have the following two commutative diagrams:

g . . ¥ . 8 T e @
Py 1 O+y-1r
§ ——= §f ———s B v P =
and
0 g¢ - 84 - T 0
id b Coker(1,id)

f——s P = G Cmen, B e

by v Coker(7, 1)

fl—— g e = T

-0

Comparing the above diagrams, we see that 6 + y - 11 factorizes through a free R-

module. For the converse implication, let L be a free module and T 25 L 57T two
maps such that § + y - 17 = g o h we have two commutative diagrams:



0 5 v 58 T 0
b % h

0 r Sl L 0

0 p ey L 0
g g g

0 gd g4 T 0

with L a free S—module, and so we deduce

h”d; = }
g = g
(notice that f is a non—zero divisor in S).

Unifying these diagrams, we find y € M(d x d, S) given by g'h" such that O +y-1r =
Coker (41, ) which is enough, because of (*), for the liftability of T' to R'/(y*).

Let now Tpr C L be the subset of those ¢
0O—M —T—M-—10

for which T is indecomposable.

We end this section by proving a result which shows the role of the sets 7Tps in the
description of maximal Cohen—Macaulay modules over R'.

Theorem 1.7
The following statements hold for £, €' € Ta:

(i) Qp(Te) = Qr(Te) as R'-modules, if and only if either T¢ = Tg or Ty =
Q%(Tg:) as R—modules (the last case can only appear if Qp(M) = M ).

(ii) Qg (T¢) is either indecomposable, or O, (1) is a direct sum of two indecom-
posable maximal Cohen-Macaulay R'-modules N, N’ such that RQgr N ~ T
and R @r N' ~ Q}%(TE)

(ii1) If Q%(T{) and T; are not isomorphic as R-modules, then there exists at most

one maximal Cohen-Macaulay R'-module N such that R @p N = T;.



Proof:

(i)

(i)

1%

If Qp(Te) = Q(Ty) for some £ € Ty then T; & QL(Te)
Do (Te) [v* Qe (Te) = Qp(Ter) [y* Qe (Ter) = T & Q(Ter), by [ADS] (1.5),
since §,¢§’ € Ly. Since T, Ty are indecomposable it follows that Q5(T¢),
Q}%(TEI) are indecomposable (R is Gorenstein!). Thus, T; = Tg, or T
Q%(Tg) by Krull-Schmidt Theorem.

N N

12

If % (T¢) = N@® N’ is a non-trivial decomposition of 0, (T¢) then, by Nakaya-
ma’s Lemma, we have a non-trivial decomposition QL (T¢)/y*Qk/(Te) ~

N/y*N @ N'[y*N'. As above it holds that Qp/(T¢)/y*Qp/(T¢) ~ Te ® Qx(Te)
and so Tz = N/y%N, Q%(Tg) =~ N'/y*N' or conversely.

Suppose T¢ = N/y*N = N’/y*N’ for two maximal Cohen-Macaulay R'-
modules N, N’. By [Po] or [HP] (2.8) it follows

N @ Ql /(N) g Q}{I(Té) g N, 69 Q}{/(N,).

By Nakayama’s Lemma N, N', Q% (N), Q% (N’) are indecomposable and so
either N & N' or N = QL/(N'). The last case implies Ty & R Qp N =
R®p Qp(N') = QL (R®r N') & Q%(Tg), which is a contradiction.

O

Remark 1.8

The description of maximal Cohen—-Macaulay R'-modules is complete if we are able
to describe the set {0}, (T¢)}¢e7,, by Theorem 1.1. Using Theorem 1.7 and [HP] (3.2)
the last set is almost completely described if we are able to describe the isomorphism
classes of T¢, € € Ty. By [HP] (1.1) T¢ = Ty as R—modules if and only if there exists
an R-automorphism o of M such that Exth(a, M)(€) = Extp(M,o)(€). This defines

an equivalence relation “~” on 7Tps and it remains to study T/ ~.



2 Infinitesimal deformations of modules over
K([[z]]/(z")

Let K be an algebraically closed field with char K # 3, z,y two variables, R :=
K[[z])/(z"), R:= R[yl/(y*), R := K[[z,y]]/(z" + v°).

The non—free indecomposable R-modules are P; := K[[z]]/(z'), | < i < t. The
reduced matrix factorization of P; is (z',z'~*) and P,_; is the first syzygy over R of
B,

In the spirit of the Thom-Sebastiani problems, we study the maximal Cohen-
Macaulay R'-modules in connection with the infinitesimal deformations of the mod-

ules over K[[z]]/(z") (which, of course, have the following general form Pi‘f‘ @- - -EBPZ’ .
1< <---<is<t, 1 <s<t, dj €N, if they do not have free direct summands).

In this section, by different methods from those of [HP], we are going to study the
existence of infinitesimal deformations which are liftable to R'/(y*).

Our next theorem completes [HP] (4.1).

Theorem 2.1
Let 1,d be two positive integers. Then

(i) P? has infinitesimal deformations liftable to R'/(y*) if and only if t,d satisfy
one of the following conditions :

(a) t = 2i and d is even,
(b) t =34,
{¢) 2 = Bi.

(if) If t = 31 (respectively 2t = 31), then every infinitesimal deformation of P
liftable to R'/(y*) is a direct sum of d copies of three types of cyclic infini-
tesimal deformations given by the following matrix factorizations (7, 05)1<s<3
(respectively (o, Ts)1<s<3), where T, = ' +y-p,, 0, = ¥ —z'yp, and pl,p;,;_13
are the third roots of the unity.

(iii) Ift = 21, d = 2q, q € N, then there exists a unique infinitesimal deformation
of P? liftable to R'/(y*) and its corresponding matrix factorization is a direct

. z* 0 ¢ 0
sum of g—copies of ((y I,-), (_y JE,))
Proof: We may suppose t > 2 otherwise ¢ < 2: and so 2(t — 1) < t and we
may treat the case P2 ; the first syzygy QL(P¢) of P, because the correspondence
T — QIE(T) given by taking the first syzygy over R defines a bijection between the
infinitesimal deformations of P{ and the infinitesimal deformations of P ;.

Suppose there exists an infinitesimal deformation T' of P¢ liftable to R'/(y*). We

know that a matrix factorization (@, ) of z* over K[z, y]]/(y?) has the form ¢ = ¢+



ya, ¥ = — yB, with ,¥,a,8 € M(d x d, K[[z]]), @B = ab, By = Yo, (¢,9) =

(z' - Iz,2'~" - I;) being a matrix factorization corresponding to M = P{.

From [HP] (3.2) or from Remark 1.6 we deduce that there exist

7,7 € M(d x d, K[[z,y]]/(y*))

such that i

af +yla= ¢ +9¢ = (¢ + ya) + 7(¢ — yB).
Writing v = v1 + yvy2, 7 = 71 + y72 with v, 7; € M(d x d, K[[z]]), 1 = 1, 2.
We have

aff =Yy +ny
Ii =am+ey2+mnp—"1p.

From a1 = @3 we can write az'™* = 2.

So we have a - z'% = 8 and from (1) we deduce

02 . wt—?t = xz,yl + Tlxt—-i
Iy =an +ry+rin - .1 a.

If t > 37 we have

{(12 g mt—3: = 47y zt-Zt

¥ = a(a? - g% — 1, - gt %) 2i

+ 2y + 2t — 2% na

and because ¢ > 1, t > 3¢ we obtain I; = 0(mod z). So 3¢ > t (¢ > 2: by our

assumption!).

If 3: > t we can write by (2)

a2 — xsi—t(,yl + -

t—2i)

8

t—2

‘1) — 2% ma+ ay.

So I; = ayi(mod z). This implies @ = a?v,(mod z).

But o? = 0(mod z), because 3i > t and so a = a?y; = 0(mod z).

We obtain a contradiction from I; = ay; = 0(mod z). Thus, the cases (b) t = 3:

and (a) t = 2: (in order to obtain d even) remain to be studied.

The case (c) 2t = 31 will follow from (b) applied to the first syzygy of T' over R (as

we have seen before).

We need the following lemma, which will be proved later.



Lemma 2.2

Let (p,v) be a d-matrix factorization of z*, U,V two invertible d-matrices over
K|[z]] such that ¢ = UpV and a, 8 two d—matrices over K|[z]] defining an infini-
tesimal deformation T of Coker ¢ to R. Then o' :=UaV, B := V18U give also
a matrix factorization of T'.

Applying this lemma for U,V = U~! we see that modulo such transformations we
may suppose that @ modulo z is in the Jordan form (in our case ¢ = z'- I; commutes

with every U!), let us say a = @ €; mod z,
j=1

>
<.

where ¢; = (K being algebraically closed),

oo~
—_ >
oo o

is a s;—Jordan cell.

From (2) we have o> = v; + 71 - r' and I = ay; + 'y, + %1 — ' implies

I; = o*(mod z*). (3)
By (3) we see that A; #0, A3 =1 and s; =1, e =d. Thus
A1 0
a=¢c+zb, fore=
0 A
We show by induction on r, 0 < r < 7 that § = 0(mod z") the case r = 0 being
obvious.

Suppose 0 < r < 7 — 1. By induction hypothesis we have § = 0(mod z"!) and so
by (3)
I;=ao® =€+ 3220 mod 7+

It follows 3¢z = Omod z™*! and so # = Omod z". Hence, @ = emod z* and it is

enough to apply the following lemma, since a — ¢ € pM(d x d, K[[z]]).

Lemma 2.3

Let (p,%), a,3 be as in Lemma 2.2.

If o := a4+ np + pw, B := f + wy + ¢n for two d-matrices n,w over K[[z]], then
(o, ') defines also T.

Proof: We have (I; + ny)(¢ + ya)(1s + wy) = ¢ 4 ya' mod y? and
(la —wy)(¥ —yB)(1a— ny) = ¢ — yB#' mod y?. Thus, (¢ + yo', ¥ — yB') defines also
T since I; + ny, I; 4+ wy are invertible. O

10



Proof of Lemma 2.2: Clearly ¢ +yo' = U(p+ya)V, v —yB' = V-1 (¢ —yB)U".
Thus, (¢ + ya',¢ — yB') defines also T, since U,V are invertible. d

We continue the proof of 2.2 with the case (a) t = 2:.
Thus, ¢ =% = z'- I; and a = 3. We also have

{02 =z (n+mn)

I =z'(y2+m)+an —no.

Thus we have o? = 0(mod ).

As above, we can consider @ = ag + 260 with ap € M(d x d,K), ap = éqB €j, where
J=1

Aj
. 1 ..’ 0 q 2
€;j is a s;—Jordan cell ¢; = o ,Aj € K, lej =d and of = 0.
‘e s J=
0 1A

Because of the particular form of ap, aZ = 0 implies s; < 2 and A; = 0 for all
1 €7 £ ¢. In order to obtain d even we shall show that s; =2 forany 1 < j <gq.
Suppose that there exists j € {1,...,q} such that s; = 1. Of course, we may
suppose that j = 1.

From (4) we have
I; = ' (72 + 72) + (a0 + 20)11 — T (a0 + z0).
So

I4 = o1 — ap(mod ). (5)

But s; = 1 implies that ag = (%’%)

Looking at the entry (1,1) of I; we see that this is a contradiction by (5). Thﬁs,
sj=2foralll <j<qandd=2q.

Let Vj, be the elementary matrix given by Vj, = (vrs)1<r s<d;

1 fr=sandr#y,p

ves =< 1 if (r,8) = (4,p), or (r,3) = (p, ),
0 otherwise.

Changing a by V,,aVj,( notice Vj;I = Vj,) for some j,p (that is permuting some

i 010
lines and some corresponding columns of «) we may suppose ag = (HF) by
q
Lemma 2.2.
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By (4) we have

z(aof + o) + 2%6* = o* = 0mod z'. (6)

Express 0 in blocks, let us say 6 = (f’ ¥), where e,n,v,8 € M (q x q, K[[z]]). We
may suppose 1 = 0 because

. e +yze  yav
v= y(I, + zn) 'l + yzé

is equivalent with .

. _ [ &'l +yze yzv(ly +an)

$= yl, z' I, + yxd
(multiply the second line by (I, + zn)~' and the second column by I, + zn). Note
x| x

e+ | *
n = 0. It follows € + § = 0mod z'~!. Clearly ¢ is equivalent to

'l, yzv —yzled — 't (e +4)
yl, g '

that the matrix agf + 8ag + z6% = 0mod z*~! has the form because

Since z'*!(¢ + §) = 0mod z* (¢ = 2i) we may suppose

. (I ya
7= ( yl, zin )
for v/ = v — zed, that is we may take ¢ = § = n = 0. Then 62 = 0 and by (6) it

follows v = 0 mod z'~!. Using Lemma 2.3 we may suppose also v = 0. Then ¢ is a

direct sum of copies of 2 x 2-matrices (;‘ ﬁ) which are indecomposable. O

In the final part of this section we are going to state a result about the existence of
infinitesimal deformations liftable to R'/(y*).

Proposition 2.4
Let M = @ P, withs > 2,1 <i<-<i, <t dj €N Ift>2,+i or
9=1

2t < 211 + 15, there are no infinitesimal deformations of M to R liftable to R [(y*).

Proof: We may suppose t > 2i,+41; because otherwise we have 2(t —1,)+(t —1,) < ¢
and so Qk(M) has no infinitesimal deformations to R liftable to R'/(y*), that is M
has none either. We use the same method as in Theorem 2.1. A matrix factorization

for M is

:L'illdl 0 xt_illdl 0
= g ) d) = 3
0 T's Id,, 0 xiie Ids
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and let (¢ = ¢ + ya,p = ¢ — yf) be a matrix factorization for an infinitesimal
deformation 7T'. Thus, we have

ay = ¢f (7)
writing
aj;p ... Qg 511 we¥ e
@g=| i 8= @ :
Qi .. Op Ba svs D

with o, 8;; € M(d; x d;, K[[z]]) we obtain by (7) a.xz!~* = z'r . B4, for every
1 <r,k <s, thus a, - £t~ = (3, because of the hypothesis.

Let us write the relations which characterize the liftability of 7' to R'/(y*) (as in the
Proof of 2.1):

af =en+ny (%)
14 =av + ey — T8 + Tt (**)

with 7,7 € M(d x d, K[[z])), and d = ¥ d;.
3=1

From (*) we obtain Y a,p, - Bpx = x'r - v}, + 2'7%* 7}, for every r k € {1,...,s}.
p=1

s iy e Finel e bl
Here we set 71 = (¥1)1<rk<s a0d Ty = (T, )1<rk<s But Gpx = 2777 - ay, thus

S
§ t—tp—1 1 1 t—tp, 1 i
a"PaPk - T sk FYrk + T 'kTrk' (8)

p=1

Now we look to ().

We have ¢y, = 0(mod z), 7% = 0(mod z) and because t > 2i, + ¢; we also have
B = 0(mod z). So we obtain 7; - § = 0(mod z). From (**) we deduce that I; =
a7v;(mod ), in particular

Iy = Z a1p7y, (mod ). (9)

p=1

Writing (8) for £ = 1 we obtain 4}, = 0(modz) (t > 2i, + 7,!), for every r €
{1058k
Introducing this in (9) we obtain I;, = 0(mod z), which is a contradiction.

In conclusion, we have shown that if ¢ > 2:, 4+, there is no infinitesimal deformation

T of M, liftable to R'/(y*). O

Remark 2.5
(i) Proposition 2.4 implies the similar result obtained by [HP] (4.1) under hypoth-

esisis<%ori>—2§}.
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(ii) If s = 2,t = 215 + 21,22 > 1; there exists an infinitesimal deformation 7" of
P;, ® P? given by the matrix factorization

-y 0 ¥ gy 0
0 T2 —y , 0 itz i y ,
y D g% —ghy 0 ghta

which is liftable to R'/(y*), that is the conditions from Proposition 2.4 are
sharp. Indeed, if N is the R'~module from Remark 3.3, then clearly N/y*N
is a lifting of T to R'/(y*).
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3 Maximal Cohen—Macaulay modules over

K{[z,y]l/ (=" + y°)

Let K, R, R and R’ be as in Section 2.

In this section we shall apply the results obtained in Section 2 in order to describe
the maximal Cohen-Macaulay R'~modules N with the property N/yN ~ P¢ for i,d
positive integers, 1 <1 < t, P, = K[[z]]/(z").

Theorem 3.1
Let 1,d be two positive integers, 1 <1 < t. Then

(i) there exists a maximal Cohen-Macaulay module N such that N/yN is a direct
sum of d—copies of P; :== K|[[z]]/(z') if and only if either t = 3: or 2t = 3i, or
t =21 and d is even.

(ii) Ift = 3: then each maximal Cohen-Macaulay R'-module N such that N/yN =
P¢ is a direct sum of d—copies of some from the following three cyclic maximal
Cohen—Macaulay R'-modules

Q; = K[z, y]]/(z' + pjy), 1 <j <3 and p; = 1.

(iii) If 2t = 31, then each maximal Cohen-Macaulay R'-module N such that N =
P is a direct sum of d—copies of some from the following three cyclic maximal
Cohen—Macaulay R'-modules

Q; = K([z,y]l/(z” - piz'y + ply*), 1 <5 < 3.

(iv) If t = 21 and d = 2q, q € N, then each maximal Cohen-Macaulay R'-module
N such that N/yN = P¢ is a direct sum of q—copies of the ideal (z',y)R'.

Proof: If there exists a maximal Cohen-Macaulay R'-module N such that N/yN =
P¢, then T = N/y*N is an infinitesimal deformation of P¢ liftable to R'/(y*). Thus,
the necessity from (i) follows from 2.1.

To prove (ii) let ¢ = 3: and N be a maximal Cohen—Macaulay R'-module such that
N = P¢,

Then N @ Qr(N) = QL(T),T = N/y®N by [Po] or [HP] (2.8). Since T is liftable
to R'/(y*) it must be a direct sum of d-cyclic deformations corresponding to (z* +
p;y, % — p;z'y), 1 < j <3 by Theorem 2.1.

Thus, Qk/(T') is a direct sum of d—copies of maximal Cohen-Macaulay R'-modules
corresponding to the matrix factorizations

.T2i—pjxiy| _y2 $i+pjy l y2
(7j?€j): 2 .t 2 . ) — (2t 21 o ot
\\ Pl +y |z +pjy (piz' +y) | s™ = piz'y
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1 <3<3. But

(= =ity + iyt Y
L 0 % 1,

and
—3piy® = (¢* — 2pjy)(* + pjy) — (2% — piz’ + piy?).

It follows

- ( z —picy+ply’ | 0 )
! 0 |z +piy )
that is, Qf,(T) is the direct sum of d—copies of {Q; ® Q' }1<j<3, @ = Vg(Q;). Since
Q’/yQ’ is not a direct summand of P¢ we are done.

The case (iii) is similar using 2.1.

In case (iv) T is a direct summand of g—copies of the infinitesimal deformation of

P? given by ((’i 9 (“’i %)) (see 2.1).

y -y z*

Then Q},(T) is a direct sum of g—copies of the maximal Cohen—Macaulay R'-module
corresponding to the matrix factorization (7, 0) given by

 0|—-y2 0

i 8

s | =y 2l 0 -y
y 0| 2 0

0 y| vy x*

which is equivalent to 7/ @ 7" for 7’ = ("y ;’,’2), = (_I_'y 1jj,) Clearly 7/ ~ 7" and the

ideal (z',y) corresponds to (7/,0"). Thus, Qk(T) (respectively N) is a direct sum
of d—copies (respectively g—copies) of (z*,y). ]
Theorem 3.2

Let M = ESBPS’ withl <i; <---<iy<t,s>2andt>2,+1, ort < 2i;+1,.
1=1
Then there is no maximal Cohen-Macaulay R'-module N such that N/JyN = M.

Proof: Suppose there is a maximal Cohen-Macaulay R'-module N such that
N/yN = M and apply 2.4 for T = N/y>N. O

Remark 3.3

If s =2,t =213+ 11,12 > 1; there exists a maximal Cohen-Macaulay R'-module NV
given by the matrix factorization

Iil _y 0 $2i2 Ilgy y2
0 z@ —y , _y2 itz :L‘i’y
Y 0 z*2 —.Tiiy —y2 it

such that N/yN = P;, @ P2. Thus, the conditions from theorem 3.2 are sharp.
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