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Introduction 

Tlw aim of this article is to dt>scribe receut advances and irnprovernents on the tangent 
coue algorithm of T. '.\lora. This tangent cone algorithm is itself a variant of 8. 
ßuchberger's celebrated algorithm for constructing a Gröbner basis of an ideal in a 
polynomial ring over a field. In the same manner as the knowledge of a Gröbner basis 
allows the computation of numerous invariants of the coordinate ring of a projective 
algebraic variety, a standard basis ( computed by the tangent cone algorithm) does so 
for invariants of the local ring of an algebraic variety at a given point. In this paper 
we describe a generalization which includes Buchberger 's and Mora's algorithm as 
special cases. That is , we show that Mora's algorithm works for any ordering on the 
monomials of K[x1, . .. , xnJ, which is compatible with the natural semigroup structure 
(a fact which was found independently by Gräbe [G]), in particular, the variables may 
have as weil negative, positive or zero weights (cf. § 1 ). This generalization has several 
mathematical applications for examples to deformations of projective varieties or to 
the theory of moduli spaces for singularities. 

This general standard basis algorithm is described in § 1, its implementation in the 
computer algebra system SINGULAR in §2, which has been developed by the authors 
over the last few years. The need for an effective implementation of the tangent cone 
algorithm arose from a.pplica.tions in the theory of singularities. First of all there was 
the success in disproving a conjectured generalization of a theorem of K. Saito (cf. 
[PS]). Later. the attempt to attack Zariski's multiplicity question was one of the most 
stirnulating points. lndeed. none of the existing computer algebra systems were able 
to compute a series of possible counter exarnples. Therefore, we had to invent special 
strategies in particula.r for zero- dirnensional ideals in the local case. 

These strategies, not only valid for the zero- dimensional case, and their imple
mentation in SI:'JGULAR are described in §2. The rnost relevant new strategies are 
the HCtest and the ecartMethod. The HCtest has drarnatic irnpact on the efficiency 
of the algorithm for zero- dirnensional ideals in the local case. lt was first found by 
Pfister and Schönemann and has been implernented in a forerunner of SINGULAR 
since 1985. lt consists of the computation of the minimal monomial not contained 
in the initial ideal and discarding all bigger monomials in further computations. The 
Pfister- Schönemann HCtest was also used in an implementation of Zimnol [Zi] of the 
tangent cone algorithm. 

The ecartMethod, due to Gräbe, consists of the choice of a weight vector of positive 
integers such that the weighted ecart of the input polynomials, with respect to this 
vector, become as small as possi ble. Of course, this method is only useful if the 
system offers an automatic choice of the ecart vector. In SINGULAR this is realized 
by optimizing a certain functional. The HCtest and the ecartMethod will be described 
in more detail in another article. together with further ''combinatorial" algorithms 
which have turned out to be quite successful, even in the classical Buchberger case. 

Whilst the HCtest applies only to 0- dimensional ideals, the ecartMethod works in 
any case and is usually superior to other strategies. But we noticed that computing 
a standard basis with respect to the lexicographical ordering is extremely fast in the 
local case. However, the meaning of this ordering is less clear (it is not an elimination 



ordPring Jll this rast'). \e\·ertheless. it cait lw used to compute a lexicographical 
standard basis a11d t lw11 to rerornp11te a standard basis frorn this 011e with respect to 
the desired ordering. 111 rnany cases this is surprisingly fast. §:3 contains a compa.rison 

of these strategies by gi\·ing the timing for many examples. 
111 §-1 wc pron' that Schreyer's method to compute syzygies generalizes to arbitrary 

sernigroup orderings. lt seems to be the first algorithmic proof of the fact that the 
length of a. free resolution is equal to the number of variables which actually occur in 
the equa.tions (and not on all variables of the ring) in the local and mixed local - global 
case. lt follows basically Schreyer's original proof [SI] but contains some new ideas, 
since ~lacau lay' s lemma, which is usually applied, does not hold for orderings which 
are not well - orderings. We describe the implementation in SINGULAR, which seems 
to be the first implementation even in the classical Buchberger case. We believe that 
this algorithm, and further improvements , will have theoretical as weil as practical 
advantages. which have not fully been realized. 

The last chapter contains a partial positive answer to Zariski's multiplicity con
jeclurt> or question. This question is concerned with the topological nature of the 
alg<'bra.irally defined multiplicity of a. hypersurface singula.rity a.nd belongs certainly 
to the most outstanding open problems in singula.rity theory. Although there are 
partial positiH· answt>rs. e.g. by Zariski. Le, Lipmann. Laufer, O'Shea., Yau and the 
second nanwd author. it has basically resisted all attacks. Our partial result , which 
supports the conjecture, was prompted by computer experiments with SINGULAR in 
order to find a co1111ter example. The proof (given in §.S) does not use any computer 
comp11tation but the computer experiments were essential in guessing the result. In 
tlw last chapter \\"f' include for completeness a proof tha.t the module of leading terms 
( wit h rcs pPct t.o any semigroup ordering) is a flat specia.lization of the or;ginal mod
ule . This is the basis of most applications, e.g. for computing Milnor numbers or 
multiplicities a.ncl Hilbert functions of singula.rities. 

Sl'.\C:l!LAR is implemented in C and C++. A test version is avai lable unter ftp 
from sa.turn.ma.thema.tik.uni-kl.de. The ground fielcls for sta.ndard basis computations 

are =/p= (p a. small prime nurnber < 216
) , Q, Q[Z]/(f), (:Z/p:Z)[Z]/(f) (f irreducible), 

Q( Z, }'.X, ... ) a.nd (=/p7..) (Z, Y, X, .. . ) (finitely ma.ny parameters). Of course, the 
computations in algPbraic or transcendenta.1 extensions a.re H'ry time consuming. SIN
G l'LAR contains also algorithms for computing syzygies, lüull dimensions, Hilbert 
functions. Hilbert polynomials ancl multiplicities (such as degree for projective vari
etiPs, ~lilnor numbers a.nd Tjurinia numbers for isolatecl complete intersection singu
la.rities , Samuel rnultiplicities, Buchsba.um- Rim multiplicities, etc.). Fina.lly, there is 
a quite capable interface with online help and comfortable progra.mming facilities. 

Acknowledgement: The a.uthors were partiall.v supporte<l by the VW-Stiftung, the 
Stiftung für Innovation Rheinland - Pfalz, the DFG and the ESPRIT BRA contract 6846 
POSSO . 
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1 A standard basis algorithm for any semigroup 
ordering 

This algorithm is a ge rwralization of Buchlwrger's a lgorithm (wh ich works for 
\\'ellorderings c f. [BI]. [82]) and '.\l ora's tange nt cone a lgorit hm (whic h works fortan

gent rnne orderings, cf. ['.\11 ]. ['.\!PT]) and which includes a mixture of both ( which is 
useful for certain appl ications). In fact, it is an easy extension of Mora's idea. Bu t 

we presPnt it in a ne \\' way which. as we hope, makes the re lat ion to the exist ing 
stanclard basis a lgor ithms transparent. 

Let/\' be a fi Pld . l' = (.r 1 •• „ • .i·n) and a,p,/ co lumn vectors in 1"!'1, f'! = 

{ 0. 1. 2 .. .. } . Let < lw a semigroup ordering on the set of monomials { .r 0 Jo E f'!n} 
of /\'[.r]. that is . < is a total ordering and .i·.., < xi3 implies :r"'x 0 < x-Yxß for any 

r E r!". Robbiano (cf. [R]) proved that any semigroup ordering can be defined by a 
matrix A E GL(n. :?) as follow s: 

L<>t ar, . .. . a k be t he rows of .4, th en .r 0 < .r f3 if and on ly if t he re is a n i with 

a1<1 = al'3 for j < i and a;<r < a;,3. Thus. x 0 < x 13 if and 0111y if Ao is small e r than 
A.3 with respt·ct to tlw IPxicographical orde ring of vectors in lR" . 

For g E /\'[.r] . g =f. 0. !e t L (g ) be the leading monomial with respect to t he 
ordering < and c(g) tlw coefficient of L(g) in g, that is g = c(g)L(g)+ smalle r 
terms wit h respec t to <. 

Definition 1.1 ii ·f dfjin e Loc <K [x] := 5'< 1 f\'[x] tobe Ihr lorali::alion of f\'[x] wilh 
rtspErt lo thf niultiplicalil't rloseri sei S< := {I + g [ g = 0 01 · g E /\'[x]\{O} and 
1 > L(g) }. 

Remark 1.2 1) /\'[.r] ~ Loc < /\'[:r] ~ /\' [.r](x)• wh e re /\ [x](x) denotes t he local-
ization of /\ [.i·] with respect to the maximal ideal (.r 1 •... , In)· In particular, 
Loc< /\[ .i·] is noet herian , Loc < /\[.r ] is /\'[x] - ftat and /\[x](r) is Loc< /<[x ]- ftat. 

2) If < is a wellorde ring then .i· 0 = 1 is the smallest monomial and Lo c< /\[x] = 

/\ [.r]. lf 1 > 1·, for all i. then Loc < /\' [.1' ] = /\ [:r](r) · 

:3) lf. in gene ral. .r 1 • .• .• . l'r < l and J'r+ I · .... x„ > 1 then 

he nce 

-l) Let < be an elimination ordering for Xr+ 1 . „ „.Tn (that is L(g) E 
/\[.i· 1 , „ „ .rr] irnplies g E /\ [:r 1„ „, Xr]), then x 0 < 1 implies x"' E K[x 1, . „, Xr] · 
In partic11 la.r. < is necessarily a wellordering on the set of monomials 111 

/\.[.r r+I · ... . .rn]· :\ote that lex+ below e liminates but lex- does not. 
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lrnporta11t orderi11gs for applicatio11s are: 

• Tlw lexicographical ordering. gin"11 hy the matrix 

-1 

0 

• The weighted degree reverse lexicographical ordering , given by the ma-

• 

trix 

c 
ll.'2 

w+ : o / 
-1 

Wn) 
- l , w; > 0 for all i, (resp. ~v- : w; < 0 for all i). 

lf ic; = l (respecti\·ely lL'; = -1) for all i we obtain the degree reverse 
lexicographical ordering, degrevlex+ (respectively degrevlex-) . 

r\n elimination ordering for .r r+ 1' .. . ':r n 111 ,,. [1·] = Loc < /\ [ :r] 1s g1ven by 
tlw mat rix 

0 0 0 Wr+I ll'r+2 Wn 
ll'1 ll'2 lL'r 0 0 0 

-1 

/ 
0 -1 

-1 

/ 
0 -l 

\\'ith lL'J > o .... ,Wn > 0. In /\[.r1 , ... ,xr](x1 ..... xrdxr+l1···1Xn] = Loc < /{[x] it 
is giH'll by the sa me matrix with W1 < 0 .... , Wr < 0 and Wr+I > 0, ... , Wn > 0. 

• The product ordering. gi\·en by the matrix 

if the A; define orde rings on monomials given by the corresponding subsets of 

{1·1, · · · • Xn}. 

We call an ordering a degree ordering if it is given by a matrix with coefficients 
of the first ro\\' either all positive or all negative. In the positive (respectively negative) 
case Loc< /,'[1·] = /,'[.r] (respect i\·ely Loc < I<[x] = I<[.r](x)). 

\\'e co11sider also n1odule orderings <m on the set of "monomials" { .r(l'ei} of 

I< [.r]" = L i=I. ... r /,·[.r]e; which are compatible with the orclering < on /\[x ]. That is 



for a ll 111onomials f. J' E /\lr]" a nd p. q E /\' [.r] \\' f' h a\'c: f < m J' implies pf <m pf' 
and 11 < q implies JJ.f <„, 't .f. 

\\ '(' llO\\' fix a 11 urdcri ng <m 011 /\· [.r]" co mpat ible with < a 11d dcnott> it also with 

< . r\gain \\'(' ha\'e tlw 11otio11 of coeffi1ie11t c(.f) a11d leaJing 1no110111ial L(f). < has 
. h(· impurt ;rnt prop('I't .\·: 

L(qf) = L(q) L(f ) for q E /\' [.r] a11d f E /\'[.r]", 
L(f + g):; max(L(.f), L(g)) for f .g E /\.[J·ir, 

Definition 1.3 Lt! I ~ /\'[.r]" bc a submodule. 

J) L(/ ) drnoles lhf submodult of /\'[1']" grnerat ed by { L(f)lf E I} . 

2) / 1 • ...• .fs E I is callcd a standard basis of I if { L(f, ), . .. , L(fs)} generates 
lh f submodulf L(I) C /\'[.r]". 

:] ) A slanda rd basis /1, .. .. fs is called reduced if, for any i. L(Ji) does not di vide 
rrny of thc mo1w111.ials of f 1 .„ .,f5 (erce pt itself}. 

Proposition 1.4 lf {!1. „ .• ls} 1s a standard basis of I Ihm I Loc< /\'[.r ] 
(/1 •• ..• f , ) Lor·< /\' [J']. 

.:\ott> t hat a reduced standard basis of polynomials cloes not necessarily ex ist (cf. 
R t>mark 1.12). 

Tht> proof will be cleduced from the normal form used in t he stanclard basis a lgo

rithm (d. Coru ll a ry l.l I ). :\ otf:' that. in gene ra L it is not trui> that f 1 . ... . f s genera t e 

/ as /\.[.r ]- mod1tlt> (takc I = (.r ) /\' [.r ]. 11 = l. f = .r + .r 2 with lex-) . 

This is also not t rne if I C /\.[J·] is (J' 1 ..... .r.n) - primary a ncl if {!1 .... , f s} is a 

recl uced stand arcl basis: Con sider the ideal I C I\[x,y] genera.tecl by x 10 -y 2 x 9
, y8 

-

.r 2y 7 
• • r 10y 7 which is (.r. y) - primary. The first two e lements a re a reclucecl stan

cla.rd basis o f I Loc</\'[.r,y] = / /\.[J·.y](x.y) where < is clegredex- und he nce generate 

I /\'[.r . y](r.y) but they do not generate 11\ [x, y]. (This answers a question of T. Mora.) 

Notations : 
Let f.g E /\ [1-]'. L(f) = .r" t; a.ncl L(g) = x ßej. lf i = j and .r<>j.rß then we write 

L(J)IL(g). 
lf i =j a ncl .r' = l crn( .r <> .. r 13

). / = (max(o1 . . ßi), .. „max(on , ßn)) then 

lcm(L (f ). L (g )) 
spoly(f. g ) 

·- x-, ancl 

:= x-Y - <> f - ~x-,-Jg. 

lf i =/= j then. by definition. l(f) JL(g), spoly(f,g ) := 0 and lcm( l(f) , L(g)) := 0. 
Let F = {G ~ /\[xrlG finite ancl orcl e red }. 

Definition 1.5 A function .V F: /\ [x]r X F----+ /\[x]r. (p. G) r-> N F(pjG), is called a 
normal form if for an !J p E /\ [.r]" and any GE F ihe follou •ing holds: if N F(pjG) =/= 

0 then L(g) ;{ L( ;V F(p jG)) for allg E G. :V F(glG) is called th e normal form of p 
with respect to G . 

.) 



Example 1.6 Let < be a wellordcring then the following procedure NFBuchberger 

is a normal form: 

h := NFBuchberger (p lG ) 

h := p 

WHILE exist f E G such that l(f)ll(h) DO 

choose the first f EG with this property 
h := spoly(h, f) 

END. 

The principle for many standard basis algorithms depending on a chosen normal 

form is the following: 

S :=Standard (G , NF) 

S :=G 
P := {(f , g)lf,g ES} 
WHILE P -/ 0 DO 

END 

choose (f.g) E P: P := P\ {(f , g)} 
h := NF (spoly (f. g) 1 S) 
IF h -/ 0 THEN 

END 

P :=PU {(h ,f) 1fE5} 
S:=SU{h} 

In thi s language Buchberger's algorithm is just 

Buchberger(G ) = Standard (G, NFBuchberger). 

If < is any orde ring (not necessarily a wellordering) and A the corresponding 
matrix. then the matrix 

defines a wellordering on the monomials of K[t, x] which we denote also by < . For 
f E /\[.r] !e t Jh be the homogenization of f with respect tot and for C ~ J<[x] Jet 
Ch = {fh 1 f E C}. lf f E /\[xt, f = L, fi ei then Jh = L, t0 •f;he;, deg Jih + o:; = 
deg J1h + o.1 for all i. j and the O.i minimal with this property. Similarly, we define 
Ch = {fh j J E C} for G ~ K[xir, 

This ordering has the following property: 

Lemma 1. 7 lf t 0 > x"l, for some / = ( / 1, ... • tn), and a = / I + · · · + /n then x'"Y < 1. 
Espec ially. < is not a wellordering in this case on /( [ .r]. 
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The Lazard method (c f. [L]) to compute a standard basis is the following: 

:-: := Lazard (G ) 

s· : = G" 
S := Buchberger (5) 
S := S(t = 1) 

Remark 1.8 The rt>s ult S is a stanclard basis of the submodule (G) generated by G 
in K[.rir with the additional property that (G) is generated by S as I<[x] - module (we 
need not pass to Loc < /\[.r]!). lf we are only interested in a standard basis of (G) this 
algorithm computes 11 sua lly too much and this might be the reason why it is often 
too s low (altho11gh there are cases where it is surprisingly fast). 

Mora found for tangent cone orderings (cf. [M l], [MPT]) an algorithm which 
computes a standard basis over Loc< /\[x]. This algorithm can be generalized to any 
ordering and we can describe it as follows: 

S : = Standard basis ( G ) 

:...: := G" 
....... := Standard (.5, NFMora ) 
.'-: := ,'-,'(/ = 1) 

Let G <;;:: /\'[t.1-j" be a finite set of homogeneous e lements and p E I<[t,xt ho
mogerwo11s. :'\ott> that a n e lt> ment of /\ [t. xt is homogeneous if its components are 
homoge neous polynomials of the same degree. The generalization of Mora's normal 
form to any semigroup ordering is as follows: 

h := NFMora (plG ) 

h := p 

T := G 
WHILE exist f E T. such that L(f) 1 t"' L(h) for some o DO 

END 

choose J E T wi th L(f) 1 t"' L( h) and O'. minimal 

IF o > 0 THEN 
T:=TU{h} 

END 
h := spoly (t"'h, f) 
IF t 1 h THEN 

END 

choose O'. maximal such that t"' divides h 
h ·- h .- tö 

Proposition 1.9 l ) NFMorn terminales. 
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l) lf h /s a 1wn11al form of p u•llh rfsptcl lo G = {/1, ... . ! s} computed by NFMora 
Ihr 11 Ihr n arr ho11109r 11ro1u; poly110111iaf_., g. ~ 1 •. .•• C E /\'[t . . r] such !hat 

- g J! = 'L ~ .J, + h 

- L ( g) = l '' 
- dcg p + o = deg ~i + deg fi = deg(h) (if ~i -:/ 0, h-:/ O) 

- l(f,) Jt 0 L(h) for all i. o: 

lf < is a wellordering on J\[x] th en g = t0
• 

Proof: 2) By induction suppose that after the v- th step in NFMora we have 

and 

L(g„) = t 0
", 

- deg p + er„ = deg ~i . v + deg r = deg h„ (if ~i,v # 0, h„ # 0) 

- 1- '""•L(h
1
,) > l- 0 " l (h„) for µ < IJ . 

If L(f,) Jt " l(h „) for all i.o then we have finished. 
Since T co nsis t s of e lements fk E G and of hµ constru cted in prev ious steps we 

have to co nsider two cases: 

- If L(fk) 1 f. 0 l ( h„) and o: is minimal for all possible choi ces for fk E G then 

l
0
g„p = L l 0 ~ivfi + l 0 h„ - T/fk + T/fk 

with L(fk)ry = t0 L( h„ ). 

\'v"e obtai n 

hv+I ioh„-17Jk 

9v+l log„ 

~zv+I l o ~iv jf V# k 

Ü v+I l
0

~kv + T/ 

and the induction step follows with a„+ 1 = a + o„. 

- lf l(hµ) 1 tQL(h„) for some µ < v and o is minimal for all possible choices from 
T then 

l
0

g„p = L l 0 ~;„f; + l 0 h„ - 17hµ + T/hµ 

with l(hµ )T/ = l 0 l(h„). 

hv+I l 0 h„ - Tfhµ 

9v+I l
0 g„ - T/9µ 

~iv+ 1 l
0 
~iv - T/~iµ-
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;\Q\\' t <> v- o,,.l(h 1,) > l(h„) implies t'•+nv > l(11Ji<'", that is t <> +<> v = L(g„+i). 
This proH:'S 2) . 
To prove 1) !et / „ = (l(f) 1 J E T„ ) . T„ be the se t T after the v- th reduction. 

Let .'V be an integer such that fs = lv+ 1 = ... (such ;V exists because /\[t, x]' is 
noetherian ). This implies T,,· = T.v+ 1 = .... The algorithm continues with fixed T 
and terminates because < is a wellorderi11g 011 /\'[t, .rr 
Remark 1.10 1) If the orderi11g < 011 I<[x] is a wellordering, the11 the standard 

basis algorithm is esse11tially Buchberger's algorithm because the11 x "' J xß im

plies .r 0 < x 13 . This shows that 011ly elements from G' are used for the reductio11 
in NFMora. Moreover, if Gis homogeneous but < arbitrary, the standard basis 
algorithm coincides with Buchberger's algorithm . 

2) lf < is a ta11ge11t cone ordering then the algorithm is Mora's tangent cone al
gorithm. In his algorithm Mora uses the same normal form, just in another 
language. lnsteacl of passing from I<[x] to I<[t, x] by homogenizing and extend
ing the orclering , he uses the notion of ecart , where ecart(p) = deg 1(ph ). During 
the implementation of SINGULAR we discovered that the normal form with 
ecart(p) := cleg1(l(ph)) t erminates for any ordering, not only for tangent cone 
orderings. This was found also by Gräbe (cf. [G] ). 

Corollary 1.11 LFI S = {!1 •...• J.} be afinite subsel of the submodule I ~ I<[x]'. 

1) lf S is a sta11dard basis of I lhen: 

(i} For any f E /\' [.rr thue are g,~; E I<[x], h E /\'[xr , such that 

( 1 + g) 1 = L: ~J; + h, 

l(g) < 1 if g ::/= 0, L(~J;) :S L(f) if ~i ::/= 0 and. for all i, L(f;) !,L(h). 

(ii} J E I if a11d only if :VFMora (fh 1 Sh) = 0. 

(ii ') J E I if and only if ( 1 + g)J = L ~J; for suitable g, ~i E I<[x], L(g) < 1 
if g ::/= 0 and L(~.J,) :S L(f) if ~; ::/= 0. 

(iii) I Loc<l\[ x] = (S) Loc<!\[x]. 

2) Th e following are equivalent: 

(i) S is a standard basis of 1. 

(ii) Sh = Standard (Sh, NFMora} . 

(iii) .'\fF:Hora (spoly(f.g), Sh)= 0 for all f , g E Sh. 

The corollary is an easy consequence of 1.9. 
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Remark 1.12 l) lf one extends th e ordering < given by the matrix A on K[x] to 
/\. [ t . . r] by 

( 

b U'i • · · · • IL'n) 
: A . W; > 0 

0 

and use homogenization with res pect to the weights w1 , •.. , Wn then the stan
clarcl basi s algorithm works as weil. 

Gräbe discovered (cf. [G]) that for a suitable choice of the weights adapted to 
the input (the polynomials should become as homogeneous as possible with 
res pect to these weights) the algorithm can become faster. We call this the 
(weighted) · ecartMethod. 

2) lf < is a wellordering, we can apply the normal form algorithm to each monomial 
of h and we can achieve that for any f E /{ [X r' 

for suitabl e ~i E /\[x]. h E /\"[.r]' such that L(~Ji) ~ L(f) if ~i -::/: 0 and, for all 
i . no monomial of h is divisible by l(fi) ; h is t hen unique. 

lf we try the same for a n a rbitra ry semigroup ordering, this procedure will, in 
generaL not terminale. Wf' c<u1 onl y derive a presentation ( *) with ~i E /\[[x ]] 
a nd h E /\[[ .r]]' (formal power series) having the above properties. 

:3) A red 11 ced stanclard basis is uniquely determined by J and <. lf < is a we llorder
ing o r dim1-: Loc< /\' [.r]' / l < xi t hen there ex ists always a reduced standard basis 
in /\"[.r.]'. In generaL it ex ists on ly in /\'[ [x]]'. 

10 



2 The standard basis algorithm in SINGULAR 

In S I~(; l · LA R the standard basis algorithm is implemented as follows: 

S := StandardBasis (G ) 

l~P UT: G, a set of polynomial vectors C K[xt 
Ü üTPl!T: S. a standard base of the submodule generated by G with res pect to 
the given monomial order ing 

S := Ch 
update (5) 
HCtest 

T := S 
L := initPairs (5) 
clear (5) 
WHILE L =/- 0 DD 

p := ( a. b, s) the last element from L 
L := L\ {(a,b, s) } 

END 

IF the spoly of a and b is not computed yet THEN 

s := spoly (a, b) 

END 

h := LazyNF (plT) 
IF h =j:. 0 THEN 

END 

HCtest 
updatePairs ( h) 
S:=SU{h} 
clear (S) 
T:=TU{h} 

S := completeReduce (5). 

Remark 2.1 In cases when either < is a wellordering, or G ~ K[x] and 
dimK K[x]/(G) < ()() the standard basis is uniqueiy determined. Moreover , in this 
case we can achieve a presentation (*) as in 1.12 (2) with ~i E K[x], h E K[xy. 

During the algorith m the set S is sorted by increas ing monomial ordering of the 
leading terms of the elements with respect to 

(
~ 0, ... ,0 ) 
: A . 

0 
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The sd T ( respecti \·ely L ) is so rted by increas ing ( respect ively decreasing) mono
mial ordc rin g of thc kading te rms of t he elements ( respf'ct ively the S-poly nomial of 
tlw corresponding p<tir) with rPs pect to 

or 

~ if we use the weighted ecart method. 
( 

J W1, ... , Wn ) 

. .4 
0 

Now we explain the procedures used in the standard basis algorithm: 

Update (S ) 
IN PVT: S. a set of polynomial vectors 
ÜUTPCT: S, the set of polynomial vectors after the in terreduction 

for all s ES DO s := NFBuchberger (s 1 S\{s}). 

HCtest 
l NP l!T : .c...·. a set of polynomia.l s 
ÜUTPl:T : a boolean \·alue (<loes a ··highest corner" exist?) and, if so, the monomial 
·'hi ghest corn er" 

If G ~ /\'[x] (that is „ = 1) then i t tests if there are a;, O'i 2: 0 such 
that t a·.r~' occur as leading terms in S for all i . If this is true i t 
computes the minimal monomial xa (with respect to the ordering < in 
K[x] ) which is not in the ideal generated by the leading terms of the 
elements of S(t = 1). This monomial is called ''highest corner'' . 

It changes the polynomial arithmetic to cancel all monomials taxß 
with .r 3 < xa in further computations . 

Remark 2.2 Notice that the highest corner xa is equal to 1 in the case of a wellorder
ing. Therefore, the procedure is called only if x; < 1 for some i. The method by which 
the highest corner is computed will be the subject of anot her a rticl e. 
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>-- -
- -
>-- -

>-- -

1 

1 

• correspond to leading terms of S(t = 1) , x corresponds to the "highest corner" x 0
• 

L:= initPairs (S) 
INPUT: S, a set of (interreduced) polynomial vectors 
ÜCTPüT: L. the sPt of criti cal pairs 

lt creates the pairset L = { (f, g, s) 1 f, g E S, s the leading term of 
spoly(f,g)}. Using the criteria similar to Gebauer-Möller (cf. [GM]) 
useless pairs are cancelled . 
We have two options: usually the criteria are applied 
for the pairs {(f(t = 1 ). g(t = 1)) 1 f , g E S'}, that is in K[x]. In the 
option sugar crit we apply it to L using the idea of [GMNRT]. 

Clear (S) 
INPCT and OUTPUT: S, a set of polynomial vectors 

Deletes J from S if L(g) 1 t0 l(f) for some o: and g E S. 

Update (h) 
INP UT and ÜUTPCT: h, a polynomial vector 

IF sugar THEN RETURN END 
IF tlh THEN 

choose o: maximal such that t 0 lh 

END 

h . h .= -i; 

UpdatePairs (h) 
INP UT: h. a polynomial vector 

S, a set of polynomial vectors 
OUTPUT: L. the set of crit ical pairs from S and h 

13 



It updates the pairset l. 
L :=LU {(f,h.s ) 1 f ES', s the leading term of spoly(f,h)}. 
The criteria to cancel useless pairs are used as in initPairs. 

h := LazyNF ((a, b,s) 1 T) 
INPUT: s. a polynomial vector to reduce 

(a, b) , the critical pair from which s is the spoly 
T, a set of polynomials with which to reduce 

OUTPUT: h, the reduced polynomial vector 

h := s 
WHILE ex ist f E T such that L(f) 1 ta L(h) for some o DO 

END 

choose the first possible f with respect to the ordering in 
T such that a is minimal. 
IF a > 0 THEN 

END 

IF the position of (a,b,h) in L is not the last one THEN 
L :=Lu {(a,b,h)} 
RETURN 0 

END 
T:=TU{h} 
NFupdate pairs (h) 

h := spoly(to: h. f) 
update (h) 
I F degree ( h) > degree( s) and 
the position of (a,b,h) in L is not the last one THEN 

L :=Lu {(a.b,h)} 
RETURN 0 

END 

NFupdatePairs (h) 
INPUT: h, a polynomial vector 

S, a set of polynomial vectors 
OUTPUT: L the set of some critical pairs from S and h 

IF NOT more pairs THEN RETURN END 
L := LU {(f, h. s) 1 f E 5, <legt L(f) s; <legt L(h) , s the leading term of 
spoly(f, h)} 
The criteria to cancel useless pairs are used as in initPairs. 

Remark 2.3 The option morePairs ( = more pairs in NFupdatePairs) has the 
effect of keeping some useless pairs in order to have better candidates for reduction. 
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The leading idea is to keep (som e of ) those pairs which could not be discarded if we 
had used Lazard's method. In the case of a non - wellorde ring t hi s has turned out to 
be usdul. since it can liclp i11 not creating po lynom ia ls with too long tai ls during the 
normal form com pu tat io11. 

S := completeReduce (S ) 
INP UT and OUTPUT : S. a set of polynomial vectors 

IF < is a wellordering or (S ~ /\[x] and dimr.· /\[x]/(S) < oo) 
THEN 

S:=S(t= 1) 
FOR all s ES DO 

~ ·- redtail (slS') 

END 

ELSE 

FOR all sES DD 

8 :== redtail (slS) 

END 
S := S(t = 1) 

END 

s := redtail (slS) 
INP UT and ÜUTPUT: s. a polynomial vector 

reduces the monomial below L(s) with elements from S as long as 
possible . 

15 



3 Examples and comparisons 

Let 

11u.b.c 

h~ 

a,b .c,d,e 
91 

._ 1.a + l + ::; 3" + I c+2y c-I + Xc-lyc-1::;3 + .„c-2yc(y2 + l.r)2 

._ 1.a + y" + ::; a + i·y:::(i· + Y + :::)2 + (.r + Y + :::)3 

·- .ra +Yb+ ::: c + .rdye-s + .rd-2ye-3 + xd-3ye-4z2 + xd-4ye-4(y2 + tx)2 

These three series stem from our attempts to disprove Zariski's conjecture. 

Examples: 
1. Alex 1 

2. 

:3. 

-1. 
,.. 
.) . 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

l :J. 

1-L 

1.s. 

16. 

/ = (St 3x 2
::: + 2t 2y3x5, 7y + -l-x 2y + y2x + 2zt, 3tz + 3yz2 + 2yz4) 

I = (.r3y2 _ 2; .rsy _ ~.r2y4 _ 2
3
2x2y:::3 _ ~xy6 _ h9

1 

l x2y2z2 + 3:::8,.5.r4y2 + 4.ry5 + 2x2y2z3 + ly; + l l x10) 

l = 111 .10.3 / = ('!.1 af af) 
1 • ax, ay' az 

l = h6 I = (li '!.1 '!.1) , ar, oy, az 

l = h 7 I = (?.1. '!.1 . '!.1 ) ' 3 r 3 y o z 

l - 6 .8.10 .S.S I - ~l '!.1 '!.1 '!.1) - go . - , OL' oy, 8 z 

l _ 6.8.10.5 .s I _ '!.1 '!.1 '!.1) 
- go , - ox' oy' o: 

l - !15.10.3 = JI0.11.3 I = (?.1 '!.1 '!.1 ~ Z9. <J..9.) 
- 1 • g 1 , ax, .J y, i) z ' o x. -9y , i) z 

l _ 111 .10.3 I = (l '!.1 '!.1 0.1) 
- 1 • • ax. oy, i) z 

l = h6 I = (l '!.1 ti ·'!) , • OL, oy, az 

l = h 7 I = (l. '!.1 '!.1 '!.1) , ax, i) y, i) z 

Gräbe 
I = (.r2 _ :::10 _ z20, xy3 _ :::10 _ z3o, y6- xy3w40) 

l = (.r + y)20 + y21 + (.r + y)10 + xgyg + x3y15 + .r2y 11 + x4y4 + (x + y)11, 

I - „ . " - ( '!.1 '!.1 ) 
u r 1..1y 

l = (i· + y)20 + y11 + (x + y)10 + .rgyg + x3y1 s + ;·2y11 + x4y4 + (x + y)11, 

I = (l, ~- *) 
Random 1 
/ = (47x 7 y8::: 3 + 91x 7 y 4 z 7 + 28x3y6 z8 + 63x 2 y , 

21x3y2z 10 + .57xy7z + 15x3yz5 + 5lxy3z3, 
32x

7 y4z8 + 53x6y6z 2 + 17x3y7z2 + 74xy 5 z, 
32x 10 y9:::6 + 23x 5y 8 z8 + 2lx 2 y 3z7 + 27y 5 z , 
8lx1oy10::: + 19x3ys:::s + 79xsz7 + 36xy2z3) 

Random 2 
I = US7xy 2

:::
3 + 28.ry 7

::: + 63xy5
:::

4 + 9lx2 y3z7 + 47x7y8z3, 
.)]x3y2:::10 + 2 l x3y6:::8 + 15x7y4z8 + 32x1oy10::: + 74 xioy9z6, 

.'):3x 2 y + l 7xy 3z3 + 23x3y 5 z 5 + 2 l x6 y6 z2 + 32x5 y8z8, 
19y 5 z + 36.r.3 y::: 5 + 81.r3 y7 z2 + 79x 5 z7 + 27x7 y4:::7) 
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17. 

18 . 

19. 

20. 

Options: 

Random 3 
I = (.r3 + y4 + 2.r.: 3 + .:5 _ :3.r4y2 + 2.:6 + 3.:1 • 

.r.:3 - 2fly2 + .:6 + 2.:i. 
9.r3.:2 + l8.r2.:> - .).:-; + 12.r4y2.:2 + 42.r2.: ti + -Wx3y2z4 + 7z9 + 24x3y2zs, 
_ -ly3z3 _ l!. .r6 y + ;J2J-3ys _ !..r4y::: 3, 

12.ry3
:::

2 + 6.r 5 yz 2 + 24y3z 5 + 20x 4 yz4 + 56y3z6 + 12x4 y z5
) 

Alex 2 

I = (4t 2z + 6::: 3 t + 3z3 + tz, 5l 2:: 7y3x + 5x 2 z 4t3y + 3t 7
, 6zt 2 y + 2x8 + 6z 2 y2t + 2y5

) 

f = !19,19,4 1 = ~i}j_ i}j_ i}j_~ 1 , ax, ay, az 

f = !24,23,6 I = i}j_ i}j_ i}j_ 
1 ' ax , ay, az 

The ordering of the variabl es ist , .r, y , z, w, the computations were clone in character

istic 3200:3. 
Lazard stands for the algorithm "Lazard" and Mora for the algorithm "Standard ba

sis" with NFMora, cf. Chapter 1. 
The columns have the following meaning: 

l. Lazard with MACAULAY, elimination order for homogenizing variable (MAC) 

2. Lazard with SINGULAR, elimination order for homogenizing variable (SING) 

3. f\lora with degrevlex- (- ) 

4 . ~lora with more P a irs , degrevlex - (mP) 

5. Mora with sugar and morePairs, degrevlex- (su/mP) 

6. Mora with sugar, sugarCrit and morePairs, degrevleX- (suC/mP) 

7. Mora with sugar, degrevlex- (su) 

8 . Mora with fast HCtest. degrevlex- (fHC) 

9. ~1ora with weighted ecartMethod and HCtest, degrevlex- (ecartM). 
w de notes the ecart vector, if w = (1, .. . , 1) this is the same as 3. 

10. Mora with !ex- (!ex) 

11. Mora with degrevlex- applied to the standardbasis computed in 10 (d(lex)). 

We used 

- the test version 8.6 of SINGULAR (January 1994) and 

- the ve rsion 4.0 alpha of YIACAULAY ( 15th October. 1993) 
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for the tests on HP - l'X. 9000/7:3.5 with 80 megabyte of memory. 
The symbol „#·· indicates usage of more than 120 megabyte and ''-" indicates that 
this option makes 110 sense. 
The time is given in seconds ( up to one decimal place). The time 0 indicates less than 
0.05 seconds. 

MAC SING - mP su/mP suC/mP su fHC ecartM !ex 
1 2 3 4 5 6 7 8 9 w 10 

1 53 35.7 27.9 28.2 27.6 # 27.9 0 (8 1 2 1) 0 

2 21 12.9 419.8 9.9 9.3 9.5 289.6 0 0.1 (36, 36, 24) 0.5 

3 20 13.6 4 .3 8.6 8.4 6.2 4.4 0.2 0.3 (27, 29, 18) 0.4 

4 2 1.6 6 .9 3.5 3.4 1.4 6.6 0 0 ( 1, 1, 1) 0.9 

5 2 0.8 2.8 2.8 2.7 2.5 2.7 0.5 0.5 (1, 1, 1) 2.1 

6 12 7.3 26 .5 4.5 4.5 4 .7 26.9 0 0 ( 4, 2, 1) 0 

7 6 3.5 21.1 2.2 2 .2 2.5 20.6 0.4 0 ( 4, 2, 1) 0.1 

8 3 1.9 0 0 0 0 0 0 0.4 (29, 27, 18) 0.1 

9 7 4.1 6.8 3 .0 3.1 2.2 7.4 0 0 (27, 29, 18) 0 .2 

10 2 1.3 4 .3 4 .2 4.2 2.0 6.3 0 0 (1, l, 1) 0.3 

II 1 0.7 4 .9 4.6 4.4 2.2 4.9 0.3 0.2 ( l , 1, 1) 0.3 

12 ~ 1.2 # # 559.5 0 .3 # 0 (10, 17, 1 , 1) 0 

13 237 84.2 # 43.4 . 44.1 87.4 0 0 (27, 26) 0 

14 33 14.2 2520.8 56. 7 53.4 44.3 2438.7 0 0 (27 , 26) 0.2 

15 2405 1480 .4 0 0 0 0 0 - 0 (11 ,30,21) 0 

16 6156 4113.7 # # # # # # (57, 27, 23) 0 

17 5 3.3 14.7 1.6 1.6 1.3 15 .0 0 0 (35 , 27, 19) 0.1 

18 4383 3838.4 0.6 0.1 0.1 # 0.5 - 5.1 ( 6, 2, 3, 1) 0 

19 17641 9190.2 # 2205.2 2033.6 2253.6 2.2 1.5 (32, 32, 21) 6.3 

20 83965 50265.5 # 32421.8 33447.3 8855.7 # 315.0 102.3 (32 , 33 , 21) 135.9 

Conclusions: (for the case Loc< /\[x] = I<[x](x)) 
The above ex~mples and many more tests which have not been documented show 

the following pattern: 

1. The HCtest is essential for 0- dimensional ideals. In SINGULAR it is checked au
tomatically whether all axes contain a leading monomial, regardless of whether 
the ideal is 0- dimensional or not (which is not very expansive). If this is so, the 
highest corner is computed and used as described in Chapter 2. In almost all 
cases this is the fastest option. Of course, it may be combined with the ecart
:Vlethod (and is so in SINGULAR if one chooses the ecartMethod). Moreover, 
if it is known in advance that the ideal is 0- dimensional we have the option fast 
HCtest (fHC) which does the following: in case all but one axes contain a lead
ing monomial the search for a leading monomial on the last axes has priority. 
This (as for other options) is achieved by sorting the sets appropriately. 
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d(lex) 
11 

0 

J.J 

1.18 

0.4 

1.3 

0 .1 

1.7 

0.4 

0.3 

0 .2 

0 .6 

0 

0 

0.1 

0 

0 

0 

# 

8.7 

816.6 



2. The ecartMethod applies to any ideal and can be extremely fast if one has a 
good feeling for the weights . In practice this option is only useful if the system 
automatically offers an ecart veclor w. In SINGl'LAR this is implemented 
by choosing w such that the sum of the weighted ecarl over all generators of 
thP ideal (normalized in a certain way) is minimal. Other variants are under 
experi men tat ion. 

3. lf the ecartMethod is not successful, it is usually recommended to use the option 
rnorePairs. 

4. If the above options are not successful one should use morePairs and sugarCrit. 

5. The sugar option is generally good and is a default option in SINGULAR. 

6. Lazard's method is in general slower than the other options, although it is 
sometimes surprisingly fast. In general it seems tobe least a safe option (there 
are no #). 

7. As the above timings show, the lex ordering is usually the fastest. Since it is 
not an elimination ordering in the local case, its use is very limited (e.g. the 
climension is computecl correctly but not the multipli city). But it can be used 
as a preprocessing in the sense tha'.t we first compute a standard bases with lex
and then transform this standard basis into one with the desired ordering, either 
by linear algebra methods or just by using it as an input to another standard 
basis computation. We see that the sum of timings in columns 10 and 11 is in 
genernl a very good strategy. 

These are general principles which have proved useful. Moreover, in SINGULAR 
the options can be comhined by the user. Of course, there are always special examples 
with different behaviour. For example, in example 12 sugarCrit + morePairs is very 
good, but in example 1 it is the worst option. There is no option which is universally 
the best. The standard basis algorithm is extremely sensitive to the choice of the 
strategy, in the local case ( Loc< I<[x] = K[x](x)) even more than in the inhomogeneous 
Buchberger case. The homogeneous Buchberger case, on the contrary, is much less 
sensitive to the choice of the strategy and is very stable. This explains why Lazard's 
method did always succeed, but on average is much slower. The ecartMethod (in 
connection with HC) seems tobe by far the best. But we did not succeed in finding 
a good ecart vector for example 16. Here !ex tcrgether with d(lex) is the best (less 
than 0.1 seconds). The conclusion is that at the moment a system has to offer several 
strategies, a clefault one which is good in most cases, but also gives the user the 
possibility of another choice. 

Moreover, for computations in characterstic zero or over algebraic extensions the 
growth of the coefficients has to be taken into account in the strategies. 
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4 Schreyer's method to compute syzygies 

In this chapter we shall pron' that Schreyer's method to compute syzygies (cf. [Sl], 
[S:2], [E]) works for any semigroup ordering < on /\'[r]' = L~=t /\[r] e;. For the 
treatment of syzygies in a different context, or for different algorithrns see [M2], [Ba], 
[MM], [MMT] and [LS] . 
Let S = {g 1 , ... ,9q} be a standard basis of I ~ K[x]r. 

For /\[x]q = L.::;~;+ 1 I<[x] e; we choose the following Schreyer ordering < 1 

(depending on 5): x<>ei+r < 1 Iße1+r if and only if e ither L(x0 9;) < L(xß9j) or 
L(x0 9;) = L(x ß9j) and i >j. 

For 9;,91 having the leadi ng term in the same com ponent, that is L(9;) 
x 0 'ek, L(9j) = x 01 ek we consider spoly(9;,91) := Tnji9i - m;jgj with mji 

( )
lcm(L(g,),L(g1 )) 

C 9J Io, • 

Because S is a standard basis we obtain ( Corollary 1.11) 

with l(h;1 ) < 1 if h;1 # 0 and L(~~J9„) < l(m j;9;). 
For j > i such that 9i. 91 have lead ing term in the sanw component, !et 

Let ker(/\' [x]q __, /\[xJ' , L.::w; e;+r t-t l:w;9;) denote the module of syzygies, 
syz(/ ). of {91 •. ..• 9q}. The following proposition is essent ially due to Schreyer. 

Proposition 4 .1 Wilh respect lo the ordering < 1 the following holds: 

!) l(r;1 ) = mjiei+r· 

2) { T;j 1 i < j s.t. l(9; ), l(91) are in the same component } is a standard basis for 
syz( I) 

Proof: 1) L(r;;) = l(mjiEi+r - m;je;+r) = mjiEi+r holds by definition of <1 . 

To prove 2) it has tobe shown that l(syz(I)) = ({m;iei+r}) (Definition 1.3). 
Let L w;g; = 0, that is T := L w;ei+r E syz( J) , and !et mek+r = L(r) with respect 

to < 1 . Let 

T := {n er+l \ ner+t be a monornial of T, L(n9t) = L(m9k)}. 

Then. obviously, rlT := L ner+iET ner+l is a syzygy of L(91 ), .. . , L(9q ). Especially, 
#T ~ 2. C hoose l such that ner+l E T for sorne n and ner+l -/: mek+r· Because 
L( T ) = mek+r and the definition of < 1 we have k < l. 
Since mL(9k) = nL(gt) we have mtk \ m. 
But l (rk1) = m1kek+r implies l(rkt) 1 T, that is L(r) E L(.( {mji ei+r})), which proves 
the proposition. 

The algorithm is now easy. 
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Let S be a standar<l basis of 1 ~ /\'[.r]' = L~=I /\[.r] e;. We may assume that L(s) X 
l(s') for different .s . .s' E S. 
Let q := #S. 

W := Syz(S ) 

w := 0 
T:= initSyz (S') 
l := ini tPairs (T) 
WHILE L f. 0 00 

p:=(a,b,s) the last element from L 
l := L\{(a,b,s)} 
s := spoly (a, b) 
h := NF( slT) 
h:=h(t=l) 
W:=WU{h} 

END 

T := initSyz(S) 

i := r; T := 0 
WHILE S f. 00 

s := the first element from S 
i := i + 1 
S':=S\{s} 
s := s + e; 

T:=TU{s} 

END 
T :=Th. 

h := NF(siT) 

h := s 
WHILE ex ist f E T such that L(f) 1 t0t L( h) for some a 00 

END 

choose the first possible f with respect to the ordering in 

T such that a is minimal 
IF ex> 0 THEN 

T:=TU{h} 
END 
h ·- spoly(t0th, f) 
update (h) 
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Here we use 011 A'[t, x]'+q = L~;{ f\' [t, :r] e; the following ordering < 2: 

lf i ::; r and j 2 r + 1 th en m e1 < 2 n t:: ; for all monomial s m, n E I<[t , x]. 
011 L~=I /\' [t, .r]e , res pectively l:: i=r+l l\[t . . r] ei we use th e extension of < (respec

tively < i) desc ribed i11 Chap ter 1. 
S and L are ord e red as in Chapter 2. 

The algorithm "Standard basis" of paragraph 1, toge th er with repeated applica
tion of the algorithm "Syz", provides an effective way to construct finit e Loc< I<[x] 
free resolutions and gives a sharpened version of Hilbe rt 's syzygy theorem which 
generalizes Schreyer's proof (cf. [E], [Sl], [S2]). 

Lemma 4.2 Let {g1 , ..• , gq} be a standard basis of l C K[x]' = Li=l , ... ,r I<[x]e;. 
We assume that the leading terms are a basis vector of K[x]r , that is L(gi) = e„, . 
We se i J = { v 1 :Ji s. t. v = vi} and for v E J we choose exactly one 9i„ such that 
L(gi,,) = e„ . Th en I Loc< /\[x] is a Jree Loc<I<[x] - module with basis {g;„ 1 v E J} and 
(Loc< l\[xJr / l Loc< K[x ] is Loc< l\[x] -free with basis represented by the {e1 1 j <f. J}. 

Proof: Le t us renumber t he 9i such that g;„ = g„ for v E J . First of all , the subset 
{g„ I v E J} C {g1, ... , gq } re rn a ins a standard basi s of I since the se t of leading 
te rms is not changed. 1-l ence. we may assume that all leading te rms are different. By 
Propositio n 1.4 , {9 11 1 v E J} gene ra tes /Loc< J<[x]. Now consider a relation 

L ~1 e 1 = L ~j gj, ~1 E Loc< /\"[.r] . 
J flJ j EJ 

Afte r clearing denominato rs we may assume that ~1 E /\[x ]. Since the leading 
terms i11volve diffe rent e; on each siele, we obta in ~ 1 = · · · = ~n = 0. This shows that 
the g„, v E J are linear independent and that the ej , j tJ. J are independent modulo 
/Loc< K[.r]. Sin ce {L (g1 ) 1 j E J} U {ei 1 i tJ. J} generate L(l\[x]') = (e1, . .. ,er)I<[x] 
{91 1 j E J} U {ei 1 i tJ. J} is a sta nd a rd basis of K[x]' t hi s set generates (Loc <I<[x])' 
by Coroll a ry 1.11. Therefore. {e1 1 j tJ. J} generates ( Loc< /\[x ])'// Loc< /{[x] over 
Loc < /\ [x]. 

Theorem 4.3 Let S = {g1 • ... , gq} be a standard basis of l ~ I<[x]'. Order S in 
such a way that whenever L(gi) and L(gj) involve the same component, say L(gi) = 
x 0 ' ek and L(g1 ) = x 01 ek, then D'i 2 D' j in the lexicographical ordering if i < j . lf 
L(g1 ), .. . , L(gq) do not depend on the variables x 1 , . . . , Xs, then the L( Tij) do not 
depend on the variables x 1 , . .. , Xs +t and 

has a Loc< I\[x] -free resolution of length :S n - s . In particular, M always has a free 
resolution of length :S n and, by Serre's theorem, Loc<K[x] is a regular ring. 

Proof: For i < j a nd L(gi) x 0 ' ek, L(gj) 
(O , . .. , O,a;.s+1· ···),a1 = (O, .. „O ,O'j.s+1 , .. . ) with O'i,s+l 
L(T;1 ) = m ; iei+r does not depend on x 1 , . . . , Xs +l · 
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x 0 ' ek we have O'i 
2 O'j,s+t. Therefore , 



Let Q1 := q ancl ..p 1 : /\[x]q 1 ~ /\"[.r]" the morphism given by {g;}, L w;ei+r 1---+ 

L w;g;. an<l ..p 2 : /\'[.r] '12 ~ /\"[.r]q 1 the analog morphism given by the stanclarcl basis 
{r, 1 }, q2 = #{r;1 } . :-\pplying the same construction as above to syz 1(/) := syz(/) = 

ker(..p 1 ) ancl {r,1 } we obtai11 a stan<larcl basis {r11} of szy 2
(/) := syz(syz(/)) = ker(<p2 ) 

such that tlw leading terms of rf1 clo not clepencl on .r 1 , .. . , J's+2· 

Continuing in the same way we obtain an exact sequence 

Moreover, ker( <r'n-s) = syzn-s (/) has a standard basis { r;/s} such that none of 

the variables appear in L(r;/s). Hence, by the preceding lemrna, K[x]qn-•/ker(<f'n-s) 
becomes free after tensoring with Loc< K[x]. lf we tensor the whole sequence with 
Loc< /\[x] it stays exact (since Loc< /\[x] is K[x]- flat) and is the desired free resolution 
of M. 

Remark 4.4 The above algorithm almost never gives a minimal free resolution (in 
the local or in the homogeneous case). In SINGULAR it is implemented with an 
option to cancel superfluous free factors in an additional step. Because of the non
rninimality there are more reductions necessary than in the usual implementations of 
free resolutions. On the other band , since we know explicitly a standard basis of the 
syzygy modules (for some ordering) by Proposition 4.1 , we have an advantage. An 
effective implementation of the above algorithm requires fast comparisons of mono
mials with respect to the Schreyer ordering. The results of our testing of the above 
metho<l, and its cornparison to other methods, are not yet completed and will be 
given i11 th e near future . 
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5 Zariski 's question, Milnor numbers and multi
plicities 

The generalization of Huchberger's algorithm presented in this paper has many ap
plications. \Ve just mention the computation of Milnor numbers, Tjurina numbers, 
local multiplicities, Buchsbaum- Rirn and Polar multiplicities, first and second order 
deformations of isolated singularities, projections of families with affine fibres onto 
a local base space and, of course, all the usual ideal theoretic operations in a fac

torring loc< l\[x]/ / such as intersection, ideal quotient and decision about ideal or 
radical membership. For further applications see [AMR]. Here we shall only exp lain 
how its implementation in SINGULAR helped to find a partial answer to Z~riski's 
multiplicity question. 

Let J E C{ x 1 , . .. , Xn} = C{ x}, J = L': c0 x'\ J(O) = 0, be a not constant con
vergent powerseries and rnult(f) = min{lal 1 c0 -=/= O} the multiplicity of J (for the 
general definition of multiplicity see the end of this chapter). Let B ~ cn be a suf
ficiently small ball with centre 0 and X= J- 1(0) n B, the hypersurface singularity 
defined by f. If g E C{x} is another powerseries and Y = g- 1 (0) n B, then fand 
g ( or X and Y) are called topologically equiv~lent if there exists a homeomorphism 
h: (B,O)--> (B.O) such that h(X) = Y. The topological type of J is its dass with 
respect to topological equivalence. 

Zariski asked in 1971 (cf. [Z]) whether two complex hypersurface singularities f 
and g with the same topological type have the same multiplicity. 

Zariski's question (usually called Zariski's conjecture) is, in general, unsettled but 
the answer is known to be yes in the following special cases: 

- n = 2, that is for plane curve singularities (Zariski, Le Dung Trang), 

- J is semiquasihomogeneous and g is a deformation of J (Greuel [Gr], O'Shea 
[OS]). 

Recall that f is called semiquasihomogeneous if there exists an analytic change 
of coordinates and positive weights such that the sum of terms of smallest weighted 
degree has an isolated singularity. 

The two series of examples Jt ·b.c and g~ , b, c,d,e in Chapter 3 were actually constructed 

to find a counter example to Zariski's conjecture. The iclea is as follows: let 

f1(x) = f(x) + tf1(x) + l 2f2(x) + ... 

be a deformation of f(x). Let 

. (8!1 8!1) tt(fi)=dm1cC{x}/ -
8 

, ... ,~ 
X1 u.Tn 

denote the Ylilnor number of ft which we assume to be finite for t = O (then it is 
finite for t close to 0). Then, if the topological type of ft is independent of t, the 
Milnor number µ(ft) is independent oft (for t sufficiently close to 0). The converse 
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is also known to be true if n -=/= :J. Hence, if p(ft) is constant but mult(ft) is not, wc 
get a counter examp le (at leas t if n-=/= 3). 

For the above mentio11ed serit->s Jtbc and g~bcde the multiplicity is not constant. 
For t = 0 both series have 11011- degenerate Newton diagram and one can show that 
p(fibc) - 11Utbc) S 1:2 and p(ggbcde) - 11(g~bcde) S 4 (t -=/= 0 and small and some 
restrictions on a, b, c. d, e). Since /l is several hundred or even several thousand there 
seemed to be a good chance for µ(ft) or p(gt) to be constant. Using SINGULAR we 
were able to compute many of these Milnor numbers but neither µ(ft) nor µ(gt) were 
constant. (Actually, in most cases we obtained µ(!0 ) - µ(ft) = 6 and µ(g0 ) - µ(gt) = 
2.) None of the existing computer algebra systems were able to compute the standard 
basis of the ideal of partials of ft respectively 9t for relevant cases. (Only the system 
Macaulay was able to do some cases with small a, b, c using Lazard's method but 
it needed hours or days, whereas SINGULAR needed seconds or minutes. In these 
cases the success of SINGULAR was mainly due to the HCtest . ) The failure to find 
a counter example led to the following positive result which shows that the families 
ft and g1 can never be a counter example. 

Let / 1 ( x) be a ( 1- parameter) holomorphic family of isolated hypersurface 
singularities , that is 0 E C is an isolated critical point of f 1 for each t close to 
0 E C. The polar curve of such a family is the curve singu larity in c n x C defined 
by the ideal (8ftffJ:r, . . . . , 8ftffJ:rn) C C{x , t}. 

Lemma 5.1 Let f 1 be a family of isolated hypersurface singularities. Let H ~ cn-1 

be a hyperplan e through 0 such that formation of th e polar curve is compatible with 
restnction to H. Thal is: polar curve(ft 1 H) = polar curne(ft) n H. Then 

µ(!1) = conslanl '* µ(ftlH) = constant. 

Proof: vVe may assume that H = {In = O} and then the polar curve(JdH) 
is given by (fJftf8x 1 , ••• ,8ft/8xn-l•xn) while polar curve(ft) n H is given by 
(ßft/fJ:r,, . .. ,fJft/ßxn,:rn)· Hence, the assumption is equivalent to ßft/ßxn E 
( fJ ft/ fJ x ,, · · ·, fJ ft/ f)xn -1 1 Xn)· 

We shall use the valuation test for µ- constant by Le and Saito ([LS]): 
µ(ft) = constant ~ for any holomorphic curve / : (ic, 0) --+ (c n x IC, 0) we have 
val(fJft/8t(!(s))) ~ min{val(fJ/t/ßxJr(s))), i = 1, . .. , n}. Moreover, this is equiv
alent to "~" replaced by ">". ( val denotes the natural valuation with respect to 
s.) 

Now Jet 1(s) be any curve in H = {xn = O} . 
Then fJft/fJx 11 E (8Jt/ßx 1, . . . . fJft/fJxn-i,xn) implies that val(fJft/fJxn(r(s)) > 
min{val(fJft/fJx;(r(s))). i = 1, ... ,n - l}. 

Applying the valuation test to f 1 and to ft 1 H , the result follows. 

Proposition 5.2 Let ft(x 1 , ••• , Xn) = g1(x 1, .. . , Xn-1) + x~ h1(x1, ... , Xn) be a family 
of isolated hypersurface singularities. Let g0 be semiquasihomogeneous or let n = 3. 
lf the lopological type of f t is constant then the m ultiplicity of 9t is constant (for t 
close to 0) . 
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Proof: Since f 1 has an isolated singularity we may add terms of sufficiently high 
degrec without changing tlw analytic type of ft· lf n = 3 we may replace 91 by 
9t(.r 1, .r 2 ) + x~" + 1'2"· N sufficiently big, which has an isolated singularity and the 
same multiplicity as g1(.r 1 , x 2 ). Hence, in any case we may assume that 9t has an 
isolated singularity. Applying the preceding lemma to the hyperplane {xn = O} we 
obtain µ(gt) constant. But since Zariski 's conjecture is true for plane curve singulari
ties and for deformations of semiquasihomogeneous singularities ([Gr], [OS]), mult(g1) 

is constant. 

The Milnor number µ(f) of an isolated singularity can be computed as the 
number of monomials in /\[x 1, ... , xn]/ L(I) where l is the leading ideal of 
(ßf/ßx 1, ... ,ßf/ßxn) with respect to any ordering >such that Xi< 1, i = l , ... ,n. 
This follows from the following Corollary 5.4. 

The reason why standard bases can be applied to compute certain invariants of 
algebraic varieties or singularities (given in terms of submodules l C I<[xn, is that 
for any monomial or<lering on /\[x]' we have: 

a) (Loc</\'[x]Y// is a (flat) deformation of Loc<I<[x]' / L(/) (as we shall show 
below) which implies that certain invariants behave semicontinuously or even 
continuously during the deformation. 

b) For a monomial ideal these invariants can be computed combinatorially (but 
one needs extra a lgorithms for the actual computation ). 

In order to show a) we make the following constru ct ion : 
Let g,, ... . 9q be a standard basis of I C /\' [x]' = Li=l. „.,r /\'[:r] ei. Any monomial 
x 0 ek may be identified with the point (a1, ... , an, 0, ... , 1 . ... 0) E Nn+r. Fora weight 
vector w = ( W1, ... , Wn+r) E ::zn+r we define 

· to be the weighted degree of x 0 ek . Let in w(J) the initial term of f E K[x]', that 
is the sum of terms ( monomial tim es coefficient) of f with maximal weighted degree 
and in w(/) the submodule generated by all inw(f) , f E /. 

lt is not difficult to see that there exists a weight vector w E ;z.n+r (indeed almost all 
w will do) such that in w(g;) = c(gi) L(gi) , i = 1, ... , q, and, moreover, inw(/) = L(I). 

We choose such a w and shall now construct the deformation from L(I) to !: 
For f E /\[x]' we can write J = JP + fp-I + fp- 2 + · · · such that the weighted degree 
of each monomial of J„ is v. Let t be one extra variable and put 

]( x, t) = fp( x) + tfp-1(x) + t2fp-2(x) + · · · E I<[x,tr. 

Let I C l\[x , t]" be the submodule generated by all ] , f E /. On I<[x, W we 
choose the product ordering with !ex- on I<[t]: x 0 tPek < xßtqe1 if p > q or if p = q 
and x 0 ek < xße1. 

\Vith respect to this ordering we have L(j) = L(J) and, moreover, L(i) 
L(l)I< [t]. In particular, g1 • • . .• g9 is a standard basis of i . 

Let R := Loc< /\[.r] . S := Loc< I<[x .t ] and I<(t) the quotient field of K[t]. 

26 



Proposition 5.3 lf I =!= RT lhrn sr / i s is a faithfully fiat l\[t](t) - module with ''spe
cial fibrc „ 

and ··generic fibre" 

(Sr/ i S) @ r.·(iJ«l l\(t) ~ R' /IR ® r.· l\(t). 

Proof: The statements regarding the special and the generic fibres are easy. If 
I =/= W then the support of 5r / i S is surjective over Spec /\' [t](t) and hence ([AK], V, 
Proposition 2.4) it remains to show that t is a non - zero divisor of 5r / i S. Let JE 5r 
and tf E i S . By Corollary 1.11 we have 

(1 + g)tf = L~;g;, L((l + g)tf) = L(tf) = tl(J), 

and L(~;g;) ::; L(tf) if ~i =/= 0. Hence, tl(J) is equal to L(~;)L(g;) for some i. Then 
L(~;) is divisible by t and therefore also~; , by definition of > on K[x, W- Subtracting 
~;g; on both sides and arguing as before, we see that all ~i arf' divisible by t. Therefore, 
( l + g) f E i an d J E i S. 

Corollary 5.4 Let e ither < be a wellordering or Rr /IR a finite dimensional /( -

veclor spare. Then th e monomials in l<[x]'\L(!) represent a /\ - basis of Rr /IR. 

Proof: lf < is a wellordering, the monomials not in L(I) are a basis of the free module 
5r / i S (Theorem of Macaulay cf. [E]), hence the result. In general, it is easy to see 
that these monomial are linear independent modulo IR. ( Use a standard basis of I 
and Corollary 1. 11.) 

Hence, if Rr / / R is finite dimensional, there are only finitely many monomials in 
l<[x]r \ L(I). The proposition implies that 5r / is is K[t](t) - free with these monomials 
as basis, hence they also generate Rr /IR. 

Remark 5.5 In general, the monomials not in L(I) are not a basis of Loc<l<[x]/ !. 
Take, for example, l<[x] with lex- and I = (0). Then Loc< K[x] = K[x](x) is not 

/\ - generated by monomials. If < is a wellordering, then 5r / i S is even free over K[t] 

(cf. [E]). 

Corollary 5.6 For any module ordering dim Rr /IR 
denotes the l\rull dimension. 

dim l<[x]r / L(I) where dim 

Proof: ! = Rr implies L(!) = /\[x]r, hence we may assume I =/= Rr. Faithful 
ftatness implies that dim Rr /IR= dim Rr / L(l)R ([AK], V, Proposition 2.10), hence 
the result. 

Let us finish with a final remark about Samuel multiplicites in the local case: 
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Consider the local ring R = /\'[.r](r) with maximal ideal (x) = (x1, ... ,xn) and M = 
Rr / / R a finitely generated R-- module. where I is given as a submodule of I<[xt by 
finitely many ge11erators. Consider 

gr :\I = L(xfM/(xf+ 1 J\f, 
i>O 

which is a graded module over gr R = I<[x]. The formal power series 

SM(T) = L dimK(M /(xr+ 1 M)T\ 
i>O 

is called the Hilbert-Samuel series and the function sM(i) = dimK(M/(x)i+t M) 
the Hilbert-Samuel function of M (with respect to the maximal ideal). 
If h9 r M denotes the Hilbert function of the graded module gr M we have (cf. [Ma]) 
hgrM(i) = dimK(x)iM/(x)i+IM and a polynomial hpgrM E Q[t] (the Hilbert polyno
mial of gr M) of degree d - 1 of the form 

hp
9
r M ( t) = egr M td-I + ( terms of lower degree) 

(d-1)! 

such that hp9 r M ( i) = h9 r M ( i) for i sufficiently big. e9 r M is called the degree of the 
graded module gr .1\1 whilst d is equal to the Krull dimension of gr M. 

lt follows that 
8\,f ( i) - SM ( i - J) = hgr M ( i) 

and there exists a polynomial spM E Q[t] of degree d such that 

EM d 
spM(t) = d!t + (terms of lower degree), 

where d = dim AI = dim gr .M and EM = e9 r M is called the (Samuel) multiplicity 
of Af. The following proposition follows now easily. 

Proposition 5. 7 Let < be a degree ordering (cf. Chapter 1) on the monomials of 
I<[x] such that w; = degree (x;) = -1 fori = l, ... ,n which is extEnded to a module 
ordering on I\[x]' arbitrarily. Let M = Rr / l R as abovE and L(l) the leading ideal 
of 1. Then the Hilbert function h9r M coincides with the Hilbert function hK[x]r /L(I) of 
the graded module I<[x]r / L(I). In particular, dim M = dim K[x]' / L(l) and eM = 
degree(K[x]' / L(l)). Consequently, dim M and eM can be computed from a standard 
basis of I with repect to ,an ordering as above and a Hilbert polynomial algorithm. 

Remark 5.8 If one is only interested in the dimension and the multiplicity it is not 
necessary to compute the full Hilbert series. A fast, direct algorithm for computing 
this is implemented in SINGULAR. Moreover, for computing dimensions we can use 
the fast !ex- ordering by Corollary .5.6 (but, of course, not to compute multiplicities 
or Hilbert functions). 
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