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Introduction 

The aim of this article is to give a survey on recent results about moduli spaces for 
curve singularities and for modules over the local ring of a fixed curve singularity. 
We emphasize especially the general concept which lies behind these constructions. 
Therefore, the article might be useful to the reader who wishes to have the leading 
ideas and the main steps of the proofs explained without going into all the details. 
We also calculate explicit examples ( for singularities and for modules) which illustrate 
the general theorems. 

Following the general philosophy explained below, we give a slightly different ap­
proach to the construction of moduli spaces for modules as in [GrP 2] such that it 
exactly fits into this general frame. Moreover, because of the ·new results about quo­
tients of unipotent group actions from [GrP 1] we can extend the result of [LaP] about 
generic moduli for plane curves with fixed semigroup < p, q > to the non-generic case 
by fixing a Hilbert function of the Tjurina algebra. 

A general method for constructing moduli spaces is the following: 

1. One starts with an algebraic family X --t T with finite dimensional base T which 
contains all isomorphism classes of objects to be classified. This is usually, but 
not always, a versal deforrnation df the "worst" object. 

2. In general Twill contain analytically trivial subfamilies and one tries to interpret 
these as orbits of the action of a Lie group or an algebraic group acting on T. 
In fact, we start with a (infinite dimensional) Lie algebra .C which is usually the 
kernel of the Kodaira-Spencer map of the family X --+ T. In the cases we are 
going to consider we are able to reduce this to an action of a finite dimensional 
Lie algebra L such that the orbits of L ( or rather the group exp .C are the 
isomorphism classes of an object. 

3. If it happens that there is an algebraic structure on the orbit space M = T/G 
such that the G-invariant functions on T are the functions on M, then M is the 
desired ( coarse) moduli space. But usually this is not possible and one needs a 
strification T = UTa such that Ta/G has this property. The stratification will 
be defined by fixing certain invariants of the objects to be classified. 

We shall discuss three special moduli problems: 
The classification of irreducible plane curve singularities with semi-group (p, q) (cf. 
[LaP]), with semi-group (2p, 2q, 2pq + d) (cf. [LuP]) and the classification of torsion 
free modules of rank 1 on the local ring of an irreducible curve singularity (cf. [GrP 
2]). A basic ingredient is a criterion for the existence of a geometric quotient of a 
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unipotent group action (cf. [GrP 1]) which we have to discuss first. 

We give an outline of the arguments in all three cases and explain the main steps 
of the constructions. For complete proofs we refer to [LaP], [LuP], [GrP 1] and [GrP 2]. 
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1 Geometrie quotients of unipotent group actions 

Let K be a field of characteristic 0. 
Let G be an algebraic group acting algebraically on an algebraic variety X. If Y is an 
algebraic variety and 7r : X ---+ Y a morphism then 7r : X ---+ Y is called geometric 
quotient, if 

1. 7r is surjective and open 

3. 7r is an orbit map, i.e. the fibres of 7r are orbits of G. 

If a geometric quotient exists it is uniquely determined and we just say that X/G 
exists. 

By a general result of Rosenlicht which holds for arbitrary algebraic groups there 
exists an open dense G-stable subset U C X such that U / G exists if X is reduced. 
But U is not uniquely determined and it is not at all clear how to construct such an 
open subset. 

If G is reductive and X = SpecA, A of finite type over K then AG is of finite 
type over K and X ---+ SpecAG is a geometric quotient iff all orbits are closed and 
have the same dimension. The Hilbert Mumford criterion for "stable" points ((Mu]) 
is the basic tool for the construction of moduli spaces in global algebraic geometry. 

In singularity theory the groups are almost never reductive. In our applications 
the groups are linipotent. Furthermore it may happen that the ring of invariants AG 
is not of finite type. But even if AG is of finite type and if all orbits have the same di­
mension (they are closed since Gis unipotent) it may happen that X/G does not exist. 

An analysis of "bad" examples suggested the following definition of stability which 
we proposed in [GrP l]. 

Definition: Let G be a unipotent algebraic group, Z = SpecA an affine G-variety 
and X C Z open and G-stable. Let 7r : X ---+ Y := SpecAG be the canonical map. 
A point x E X is called stable under the action of G with respect to A ( or with 
respect to Z) if the following holds: 
There exists an f E AG such that x E X1 = {y E X, f(y) f:. O} and 7r : X1 ---+ Y1 = 
SpecAj is open and an orbit map. 
If X = Z = SpecA we call a point stable with respect to A just stable. 
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Let X"(A) denote the set of stable points of X (under G with respect to A). 

Proposition 1.1: 

1. X"(A) is open and G-stable 

2. X"(A)/G exists and is a quasiaffine algebraic variety 

3. If V C SpecAG is open, U = 7r-1(V) and 7r : U -+ V is a geometric quotient 
then U C X"(A) 

4. If X is reduced then X"(A) is dense in X. 

The aim of this chapter is to describe effective criteria for stability, i.e. to give 
sufficient conditions for the existence of a geometric quotient in terms of given coor­
dinates of X and a given representation of G in Aut(X). These criteria are easier to 
formulate in terms of the Lie algebra of G. 
Let L = Lie ( G). If G is unipotent then L is nilpotent and the representation of 
G-+ AutK(A) induces a commutative diagramme: 

G -+ AutK(A) 
j exp 

-+ Dert1(A) 
exp j 

L 

Here Dert1 
( A) is the set of K-linear nilpotent derivations 8 of A ( 8 is nilpotent 

if for any a E A there is an n( a) such that Sn(a)( a) = 0). 

The best results are obtained for free actions or for abelian L. In these cases we 
obtain necessary and sufficient conditions for the existence of a locally trivial geomet­
ric quotient. 

Definition: A geometric quotient 7r : X -+ Y is locally trivial if an open cover­
ing {Vi}iEI of Y and ni ~ 0 exist, such that 7r-

1(Vi) ~ Vi x Ak over \!i. 

We use the following notations: 
Let L ~ DerW1(A) be a nilpotent Lie-algebra and d: A-+ HomK(L,A) the differen­
tial defined by da(8) = 8(a). If B ~Ais a subalgebra then J B := {a E Al 8(a) E B 
for all 8 E Lf 

Theorem 1.2: Let A be a reduced noetherian K -algebra and L ~ DerW1(A) be 
a finite dimensional abelian Lie algebra. The following conditions are equivalent: 

1. There exists an open subset U C SpecAL such that SpecA -+ U is a locally 
trivial geometric quotient. 
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2. AdA = Adf AL and HomK(L,A)/AdA is flat over A. 

2'. There are xi, ... , Xn E A, Öi, ... , Dm E L such that 

- rank (Di(xi)) is locally constant and equal to the orbit dimension of the 
action of L. 

- dDi (xi) = 0 for all i, j. 

3. There is a filtration F•(A) such that 

- 0 = p-1(A) C F0(A) C F 1(A) C ... and A = UiEZFi(A), 

- DFi(A) ~ pi-1(A) for all i E 7J, and D E L, 

- HomK(L,A)/AdFi(A) is flat over A for all i. 

3'. There are X1, ... , Xn E A, Di, ... , Dm E Land ii, ... , ik E {1, ... , n} such that 

- 1 ~ ii < i2 < ... < ik = n 

E(s) := rank(Di(xi))j9, is locally constant and E(k) is the orbit dimension 
of the action of L 

- dDi(xl) E L: Adxv for all i and f.. ~ ir. 
vsir-1 

4. SpecA = UJEsD(f), S ~AL and for JE S there is a sub-Lie algebra LU)~ L 
such that 

- LU) ®K A1 = L ®K A1 

- H 1(LU)-, A1) = 0 

Proof: (1) implies (2) is proved in [GrP 1] Theorem 4.1. 
(2') resp. (3') is the same as (2) resp. (3) expressed in coordinates. 
(2) implies (3) using the filtration defined by F0 (A) =AL, Fi(A) = J pi-1(A). 
(3) implies (1) follows from theorem 4.7 in [GrP 1]. 

Corollary 1.3: Let A and L be as in the theorem and let F• (A) be a filtration 
of A such that DFi(A) ~ pi-1(A) for all i and all D E L. Let SpecA = UU0 be the 
flattening stratification of SpecA defined by the A-modules H omK(L, A)/AdFi(A). 
Then U°' is invariant under the action of Land U°' -+ Ua/ L is a geometric quotient. 

If the Lie algebra L is nilpotent but no longer abelian we need some extra condi­
tions on a central series of L to obtain a stratification as in the corollary: 
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So, let A be a noetherian K-algebra and L ~ Der/jlA a finite dimensional nilpotent 
Lie algebra. Suppose that A = U;ezF;(A) has a filtration 

p•: 0 = F- 1(A) c F 0 (A) c F 1(A) c ... 

by subvector spaces Fi(A) such that 

(F) hFi(A) ~ pi-1(A) for all i E 'll and all h E L. 
Assume, furthermore, that 

z.: L = Zo(L) 2 Z1(L) 2 ... 2 Zl(L) 2 Zl+i(L) = 0 

is filtered by sub Lie algebras Zi ( L) such that 

(Z) [L, Zi(L)] 2 Z1+i(L)for all j E 'll 
The filtration z. of L induces projections 

Fora point t E SpecA with residue field K(t) let 

i = 1, ... 'k, 

k minimal such that, AdFk(A) = AdA 

si(t) := dim„(t)11"j(AdA) ®A K(t) j = 1, ... , f. 

(si(t) is the orbit dimension of Zj(L) at t). 

Let SpecA = UU0 be the flattening stratification of the modules 

HomK(L, A)/AdFi(A), i = 1, ... 'k 

and 
j=l, ... ,f.. 

Theorem 1.4: U0 is invariant and admits a locally trivial geometric quotient 
with respect to the action of L. 

Remarks: 

1. The functions r;(t) and s;(t) are constant along U0 • 

2. Let Xi, •.. , Xn E A, b1, ... , bm E L satisfying the following properties: 
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- there are Vi, ... vk, 0 ~ v1 < ... < Vk = n, such that dxi, ... , dxv; generate 
the A-module AdFi(A); 

- there are µ 0 , ••• , µl, 1 = µ 0 < µ1 < ... < µl such that 8µ,, .. . , 8m E Zj(L) 
and Zj{L) ~ L: A8i. Then 

i'?;_µj 

rank(80 (xß)(t))ß~ 11; = ri(t), i = 1, ... , k 

rank(80 (xß)(t))a>µ = Sj(t), j = 1, ... ,f. 
- J 

Hence the U0 are defined set theoretically by fixing rank(80 (xß)(t))ß< 11il i 
1, ... , k and rank(80 (xß)(t))a?µi,j = 1, ... ,f. But notice that the U0 carry a 
unique, not necessarily reduced, analytic structure with respect to the flattening 
property and which is defined by the corresponding subminors. 

The key lemma to prove these theorems is the following: 

Proposition 1.5: Let A be a commutative J<-algebra and. 8i, ... , 8n E Der]/l(A) 
and x1 , ..• , Xn E A satisfying the following properties: 

n 

1. [8i, 8iJ E L: A811 
11=1 

2. det(8i(xi)) is a unit in A 

3. For any k = 1, ... , n and any k-minor M of the first k columns of (8i(xi)) we 
have 

11<k 

. ( 81 ) 
(with the conventions x 0 = 0 and §_ = L ). 

n 

Let L ~ L: A811 be any J<-Lie algebra such that 8i, ... , 8n E L, then AL[xi, ... , xn] = 
11=1 

A and xi, ... , Xn are algebraically independent over AL. 

The proposition implies that SpecA --+ SpecAL is a (trivial) geometric quotient 
with fibre Kn. In particular, AL~ A/(xi, ... ,xn) is of finite type over ]{ if Ais of 
finite type and every point of SpecA is stable. 
The proof of this proposition is clone by induction on n. The condition (3) guaranties 
that the elements of the :first column of ( {ji (xi)) are already in AL and furthermore 
this property can be kept during the induction. 

Condition (3) is satisfied in our application, even a stronger one: 
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3'. k=l,„.,n 

i.e. the derivative-vector of each element of the matrix (8i(xi)) is an A-linear 
combination of earlier columns. 

We conjecture that in case of a free action the condition (3) of the proposition 
can be omi t ted. 

Conjecture: Let L ~ Der~1 (A) be a nilpotent Lie algebra of dimension n 
and 81 ... , Ön E L, Xi, •.. , Xn E A such that det(8i(xi)) is a unit. Then there are 
yi, ... , Yn E A such that A = AL[y1, ... , Yn] (equivalently H1(L, A) = 0). 

Remark: If we would require in the conjecture Xi = Yi, i = 1, ... , n then this 
conjecture is equivalent to the Jacobian Umkehrproblem. 

2 A moduli space for plane curve singularities 
with semigroup (p, q) 

We assume that /{ = C. We follow the advice of the introduction: 

1. The "worst" ob ject is the singularity defined by xP + yq. A versal deformation 
of xP + yq fixing the semigroup (p, q), 'p < q and gcd(p, q) = 1, is given by 

where 

F(x,y,T) = xP + yq + L Tiq+jp-pqxiyi, 
(i,j)EB 

B = {(i,j) 1 iq + jp > pq, i ~ p - 2,j ~ q - 2}. 

Let T = {Tiq+ip-'-pq}(i,i)EB, X = SpecC[1.J[[x, y]]/ F, and Ft E C [[x, y]] 
given by Ft(x, y) = F(x, y, t) T = SpecC[T]. Then the family X --+ T has the 
following properties: 

1.1 X--+ T is a versal deformation of SpecC[[x, y]]/xP+yq fixing the semigroup 
(p, q). 

1.2 Every plane curve singularity with semigroup (p, q) is represented in this 
family, i.e. there is a t E T such that the given singularity is isomorphic 
to Xt = SpecC[[x, y]]/(Ft) · 

2. The Kodaira-Spencer map of the family X --+ T is given by 
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· 2. The Kodaira-Spencer map of the family X ---+ T is given by 

p: Derc C[T]--+ C[T][[x,y]]/ (F, ~~, ~:) 

p(8) = dass (8F) = dass ( L 8(Tiq+jp-pq)xiyj) . 
(i ,j)EB 

The kernel of the Kodaira-Spencer map is a Lie algebra C which is a finitely 
generated C[T]-module and has the following property: 

2.1 For t, t' E T the singularities Xt and Xt' are isornorphic iff t and t' are 
in the same integral rnanifold of C, i.e. T / C is a dassifying space for all 
singularities with semigroup (p, q). 
T has a natural C* -action defined by deg Ta = -a. This C* -action is 
induced by the C*-action on C [[x, y]]/xP + yq given by deg x = q and 
deg y = p in order to keep F homogeneous. The induced grading of 
C ~ DercC[T] is defined by deg 8~" = a. One can show that C is gener­
ated as C[T]-rnodule by homogeneous vector fields { Öa} with the following 
properties: 

2.2 There are homogeneous vector fields Öaq+bp E C for (a, b) E Bv := {(p -
2- i,q- 2-j) 1 (i,j) E B} such that 

- { Öaq+bp}(a,b)EBv generate C as C[T]-module 

- deg Öa = a 

- 8a(Tß) = Ößv(Tav ), where av = pq - 2p - 2q - a for a E 7l 

- [8a, Öß] E I: C(T]8v 
V~0t+ß 

Remark: C[rJ [[x,y]]/(~~/~~) is a free C[T]-module of rankµ. The multipli­
cation by F defines an endomorphism of this module. The module admits a 
base { ua} represented by quasihomogeneous polynomials of degree a such that 

UaF = L Öa(Tß) · Uß+pq· 
ß 

This determines the Lie algebra L0 by Öa = l: 8a(Tß)ß/f)Tß and the action of L0 • „ 
ß 

One has to compute the rnatrix of the endornorphism of C[T] [[x,y]]/(~~/.~~) 
given by multiplication with F ( with respect to the basis { Ua} ). For this pur­
pose there exists a fast algorithm which has also been implemented (cf. [LaP], 
appendix with B. Martin). 
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Let Lo be the Lie algebra generated by { Öaq+bp}ca ,b)EBv as Lie algebra and 
L = [ Lo, Lo], then Lo is finite dimensional and solvable and L is nilpotent 
Lo/ L ~ Cbo, bo is the Euler vector field. Because the C[T)-generators { ba} of .C 
are in L0 , L0 and .C have the same integral manifolds which are the orbits of the 
action of L0 . This implies that the action of the kernel of the Kodaira-Spencer 
map .C is induced by the action of the algebraic group G0 := exp L0 with the 
same quotient T/.C = T/G0 . 

3. The grading of C[1] induces for each a 2:: 0 a filtration F;(C[T]) , where F~(C[T] 
is the C-vector space generated by all quasihomogeneous polynomials of degree 
2:: -(a + ip),p 2:: a 2:: 0. Similarly, we get filtrations n: = H;(c [[x,y]]) 
on c [[x, y]] by defining n: tobe the ideal generated by all quasihomogeneous 
polynomials of degree 2:: a+np. The Hilbertfunction of the Tjurina algebra 
of Xt, C [[x, y]]/(Ft, 8Ftf 8x, 8Ftf 8y), with respect to H; is by definition the 
function r;(t), 

n 1-+ r;(t) := dimcC [[x , y]]/(Ft, 8Ftf 8x, 8Ftf 8y, H;) 

Notice that r:(t) = r(Xt), the Tjurina number of Xt if n is big and r:(t) 
dimcC [[x, y]]j H: (hence independent oft) if n is small. 

Remark: We introduced the filtrations F: and n: for different a because the 
general theory works for arbitrary a but in some cases a good choice of a gives bigger 
strata (cf. Theorem 2 .1 ( 3) and the examples at the end of this section). 
There is only a finite range of n such that r:(t) can vary with t. We usually identify 
r: with the finite tuple of values which might vary with t . Moreover, if µ E IN, we 
also write µ for the constant function on IN. 

If b E L is a homogeneous vector field then deg b 2:: p. This implies that b F~ ~ 
F~-1 for all b E L. 
Let k be minimal such that dF:(C[T]) generates C[T]dC[T] over C[T] and consider 
the following filtration of L induced by the filtration of C[T]: 

L = Z~(L)::) z;(L) ::), ... '::) z:(L)::) z:+l(L) = {O} , 

Zt(L) := the Lie algebra generated by {ba}aES;, where Si= {a 1 Tav E F:-i,a =/. O}. 
Since deg Öa = a 2:: p if a =/. 0 we obtain [L, Zf(L )] ~ Zt+1 (L ). 
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Some pictures might be helpful: 

J J 

q 

p-2 p 

\ 
\ 

\ 

\ 

p- 2 p 

The monomials xiyi, (i,j) any point of the rectangle {i ~ p- 2,j ~ q - 2}, are a 
C-basis of the Tjurina algebra C [[x, y]]/(xP+y9) of X0. The monomials in the shaded 
region B = {(i,j) 1 iq + jp > pq, i ~ p - 2,j ~ q - 2} correspond to deformations of 
X 0 with fixed semigroup (p, q). They occur as coefficients of the parameters Ta of the 
versal base space T for such deformations. The Ta are indexed by a = ip + jp - pq if 
xiyi is the coefficient of Ta (this is unique since gcd(p, q) = 1). Hence the (increasing) 
filtration of C [T], F:, is generated by those Ta such that the coefficients xiyi belong 
to a strip as indicated above. Note that the degree of the Ta decreases at most by 
p (=min {p, q}) if we go from F~ to F~+1 , the different choices of a, 0 ~ a ~ p, means 
just a shift of the starting point. 
Bv = {(p - 2 - i, q - 2 - j) 1 (i,j) E B} is just the mirror of B at the centre 
of the rectangle. The vector fields ba which generate the Lie algebra L are in­
dexed by the weights a = aq + bp of the points ( a, b) E Bv. The ( decreasing) 
filtration z: of L is given by dual strips, indexed in a cornplementary manner: 
$; za T Fk-i V 2 2 . za . th . . 
Ua E i {:::::> a" E a 'Q'. = pq - p - q - a, 1.e. k - i lS e mirror Image 
of F~. 

12 



.. 

The second picture shows the ( decreasing) filtration H; of C [[x, y]], H~ is gener-
ated by all monomials above and on the dotted line. Hence r~(t) is the number of 
monomials in the shaded region which are linear independent modulo (Ft, oFtf ox, oFtf oy, H~), 
for t = 0 these are all monomials. 

Let {U~} now be the fiattening stratification on T = SpecC[T] corresponding to 
F: and z:. Notice that each U~ is a locally closed, not necessarily reduced subvariety 
of T. 

Now we can apply theorem 1.4 and obtain that U~ --+ U~/ Lisa geometric quotient. 
Moreover, L0 / L ~ C* acts on U~/ L and U~/ L = U~/ Lo is a geometric quotient of 
U~ by L0 • Fort ET define f{t) = (e~(t), ... ,e%(t)) E INk+i by 

ei(t) = rank(ba(Tß)(t))ßsa+ip,i = 0, . . . ,k. 
a~O 

Theorem 2.1: Let T be the base space of the versal deformation with fixed 
semigroup of Spec c [[x, y]]/(xP + yq) and { u~ }a the stratification of T defined above. 
The following holds: ' 

1. fa is constant Oll u~ and takes different values for different a. The scheme 
structure of U~ is defined by the corresponding minors of (ba(Tß)). Moreover, 
ei(t) = µ(Xt) - rJ+i(t). In particular, ek(t) = µ(Xt) - r(Xt), where µ(Xt) = 
µ = (p - l)(q - 1) is the Milnor number and r(Xt) the Tjurina number of the 
curve singularity Xt = SpecC[[x , y]]/(Ft)· 

2. Let f = (e1, ... , ek) E JNk+1 and let u: denote the unique stratum such fa(t) = f 
for t E u: and assume that u: is not empty. The geornetric quotient u: / L is 
quasiaffin-e and of finite type o~er C. lt is a coarse moduli space for the fÜnctor 
which associates to any complex space S the set of isomorphism classes of fiat 
families (with section) over S of plane curve singularities with fixed sernigroup 
(p, q) and fixed Hilbert function r:(t) = µ - f of the Tjurina algebra. 

3. Let TTmin be the open dense subset of T defined by singularities with minimal 
Tjurina number Tmin· Then there exists an a such that TTmin = u~ for a suitable 
a. In particular, the geometric quotient TTmin/ L exists and is a coarse moduli 
space for curves with semigroup (p, q) and Tjurinanumber Tmin· TTminf L 1s 
locally isomorphic to an open subset of a weighted projective space. 
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Proof: 

1. t EU~ iff rank (öa(Tß)(t))ßsa+•p =: ri(t) (a = 0 excluded) 
o>O 

and rank (öa(Tß)(t))aES; =: Si(t) are constant (remark 2 after Theorem 1.4). 
But since Öa(Tß) = Ößv(T-;:) (a = 0 included) we have Sk = eo, ... , s1 = ek-1 
and ri = max{ 0, ei - 1}. lt is also clear that the scheme structure required by 
the fiattening property is given by the minors. For t E U~ consider the induced 
C-base { ui( t)} of C [[x, y]]/ ( ~' ~ ), ui(t)F(x, y, t) = 2;:: bi(Tj)( t)uj+p9 (t) ( as in 

J 

the remark 2.3). This implies by definition of T;(t), ei(t) = µ(Xt) - Tri(t). 

2. This follows from the fact that u: is locally a versal family for singularities with 
fixed semigroup and Hilbert function and that u: / .L is a geometric quotient. 

3. Is proved in [LaP]. 

Example: p = 5, q = 11 

1. The versa} deformation of x 5 + y11 fixing the semigroup (5, 11) is given by 

F(x,y,T) = 

x5 + y11 + T1 x y9 + T2 x2 y7 + T3 x3 
y

5 + T1 x2 y8 + 
Ts x3 y6 + T12 x2 y9 + T13 x3 y 7 + T1s x3 

y
8 + T23 x3 y9 

13 = {(1,9),(2, 7),(3,5),(2,8),(3,6),(2,9),(3, 7),(3,8),(3,9)} 

13v = {(O, 0), (0, 1), (0, 2), (1, 0), (0, 3), (1, 1) , (0, 4), (1, 2), (2, O)} 

2. The following vector fields generate the kernel .L of the Kodaira-Spencer map 
(these can be computed using the algorithm given in [LaP]). 

ö0 T1 8~1 + 2T2 8~2 + 3T3 8~3 + ... + 23T23 8 ; 23 

bs A8~1 + 13 8~8 + C 8;12 + D 8;13 E 8#18 + l8T1s8#23 · 

2T2 8 ; 12 + ( 3T3 + T1 T2) 8; 13 + D 8;
18 

+ 13T13 8;
23 

T1 8T8 + 2T2 8T8 + C 8T8 + 12T12 _88 12 13 18 23 

b15 - B 8#18 + 8Ts 8#23 

1516 A 8;18 + 7T1 8;23 

b20 3T3 8;
23 

Ö21 2T2 8; 23 

Ö22 T 8 
1 8T23 
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with A = 2T2 - 1~ Tl, B = 3T3 - 1
7
1 T1T2, C = 1T1 + ~1 T1TJ, 

D = 8Ts - 1
8
1 T1 T1 + 121 TlTJ, E = 13T,3 - \\7 T1T12 + 11 Ti2T3Ts + 15152 T1T2T3T1 + 

1 T3T.2T2 
5.113 1 2 3. 

For the filtration F~ of C [1'.] we choose a = 5, i.e. F~ = (Ta 1 a :S 5(1 + 
i)) (we omit the index a) F0 = (Ti,T2,T3),F1 = (Ti,T2,T3,T1,T8 ),F2 = 
(Ti, T2, T3, T1, Ts, T12, T13), F 3 = (Ti, T2, T3, T1, Ts, T12, T13, Tls), F 4 = (Ti, ... , T23). 
The minimial i such that dFi generates C[T] d C[T] is 4, hence k = 4. The 
stratification { Ua} is given by fixing the rank of ( 8a(Tß)) ß9(i+1) for i = 0, ... , 4. 

Calculation shows: 
a;:::o 

U1 - {t E SpecC [T] 1rank(8a(Tß)(t))=6} = {t 1r(Xt)=34} 
- {t 1 f(t) = (1,2,4,5,6)} = {t l 4t~ - 3t1t3 + tit2 f. O} 

with ei(t) = µ(xt) - rJ+i(t).We have U1 = Tr"';"· 

U2 - {t 1 f(t) = (1,2,3,4,5)} 
- { t 1 4t~ - 3t1t3 - tit2 = 0 and A(t) f. 0 or B(t) f. O} 

U3 - {t 1 f(t) = (1,1,3,4,5)} 
- {t l 4t~ - 3t1t3 - tit2 = 'A(t) = B(t) = 0 and 

D(t)(2t2C(t) - t1D(t) - C(t)(C(t)(3t3 + t1t2) - 2t2D(t)) f. O} 

U4 - {t 1 f(t) = (1, 1,2,3,4)} 
- {t 1 A(t) = B(t) = ti(9t1C(t)-11D(t)) = 0 and 

C(t)2 - t1E(t) f. 0 or D(t)2 - ( 1~ ) 2ti E(t) f. O} 

U5 - {t 1 f(t) = (1, 1, 2, 2, 3)} 
- {t 1 A(t) = B(t) = C(t)2 - t1E(t) = D(t) - 1

9
1t1C(t) = 0 and tl f. O} 

u6 - {t 1 f(t) = (0,0, 1,2,3)} 
- { t 1 tl = t2 = t3 = h = ts = 0, t13 f. O} 

U1 - {t 1 f(t) = (0,0, 1, 1,2)} 
- {t 1 tl = ... = ts = 0, t13 = 0 and t12 f. O} 

Us - {t 1 f(t) = (0,0,0, 1, 2)} 
- {t 1 t1 = ... = tn = 0 and tls f. O} 

U9 - {t 1 ~(t) = (O,O,O,O, 1)} 
- { t 1 ti = ... = tls = 0 and t23 f. O} 

U10 = . {t 1 ~(t) = (0,0,0,0,0)} 
- {O} 

Utf .C - D(2T2A - TiB) ~ Proj C[T1T2T3, y] = IP(1:2:3:1o)' y = ATs - BT1 
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Conclusion: The space of plane curves with semigroup ( 5, 11) ist stratified into 
ten strata U1 , ... , U10 , corresponding to the different values of the Hilbert function 
r; of the Tjurina algebra; U1 is the Tmin- and U10 the Tmax-stratum. The quotients 
Uif .C exist and are a coarse moduli space for such singularities with corresponding 
fixed value of r;. 

Remark: 

1. lt is not always possible to choose a = p for the filtration to obtain TTmin as one 
stratum in the corresponding stratification. In the case p = 13, q = 36 we have 
to choose a = 9 (cf. (LaP]). 

2. In the < 5, 11 >-example we have U2 U U3 = {t 1 rank(ba(Tß))(t) = 5} = {t 1 

r(Xt) = 35}. 
The geometric quotient U2 U U3 / [, does not exist (cf. [LaP]), i.e. fixing r is not 
enough, it is necessary to work with a finer stratification. 

3 A moduli space for irreducible plane curve sin­
gularities with semigroup (2p, 2q, 2pq.+ d) 

1. The "worst" object is the singularity defined by (xP + y9)2 + xayß, aq + ßp = 
2pq + d, a < p. A versa} deformation of (xP + y9)2 + xayß, fixing the semigroup 
(2p,2q,2pq + d),p < q,gcd(p,q) = 1 and dodd, is given by 

F(x,y,H , W) = (xP + yg + L(i,j)EBo Hig+ip-pqXiyj)2 + xayß 
+ L(i,j)EB1 Wig+jp-2pgXiyj' 

B0 = {( i, j), iq + j q > pq, i S: p - 2, j S: q - 2}, 

B1 = {(i,j),iq+ jp > 2pq + d,i < p,j < b} 

u {(i,j), iq + jp > 2pq + d, i < 1,j < b + q} 

with1,b defined by/ < p,1q+bp = 3pq-q-p+d. Let H = {Hig+jp-gp}(i,j)EBo, W = 
{Wi9+jp-2pg}(i,j)EB1' T := Spec C [H, W], X Spec C [H, W] [[x, y]] / F. The 
family X ----+ T has the following properties: 

1.1 X----+ T is a versal deformation of SpecC[[x,y]]/(xP + y9)2 + xayß fixing 
the semigroup (2p, 2q, 2pq + d). 

1.2 Every plane curve singularity with semigroup (2p, 2q, 2pq+d) is represented 
in this family. 
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-„ 

1.3 The group µd of d- th roots of unity acts on T via F(>..qx,>..Py,h_,w) = 
).2PqF(>..,y,>..oh_,>..ow) for >.. E µd. 

1.4 dim T = 2(p - 1 )( q - 1) - p - q + 2 + [;]. 

2. The Kodaira-Spencer map of the family X -+ T is given by 
p: DercC [H, W] --. C [H , W] [[x, y]]/(F, ~~, ~~) 
p( 8) = class ( 8F) 
= class (2(xP + yq + l: Hiq+ip-pqxiy3 ) l: 8Hiq+jp-pqxiyi 

( i,j)EBo ( i,j)EBo 

+ l: 8Wiq+jp-2pqxiyi). 
(i,j)EB1 

The kernel of the Kodaira-Spencer map is a Lie algebra [, which is a finitely 
generated C [H, W]-module and has the following property: 

2.1 For t, t' the singularities Xt and Xt' are isomorphic iff for a suitable >.. E 
µd >.. o t and t' are in the same integral manifold of [,, i.e. T / [,/ µd is a 
classifiying space for all singularities with semigroup (2p, 2q, 2pq + d). 

2.2 lt is always possible for (x, b) =f:. (0, 0) to obtain a unique decomposition 

a bF - ( p + q + """"" H · . i j) """"" Eqa+pb i j x y - x y L iq+ip-pqX y L iq+jp-pqx y 
(i,j)EBo (i,j)EBo 

""""" qa+pb i i d( 8 F 8 F) + L Diq+jp-2pqx y mo 8x ' ß . 
(i,j)EB1 y 

This defines vector fields 8aq+pb of the kernel of the Kodaira-Spencer map 
by 8qa+pb( Hs) = ~ E;a+pb and 8qa+pb(Ws) = n;a+pb. [, is generated as 
C [H, W]-module by the vector fields {88 }. 

These vector fields have the following properties: 

- [8t, 8m] E L:: c [H, W]8s 
s>l+m 

Öt = 0 if l > 2pq - 2p - 2q 

- 8t(Wm) = 0 if m < l + d 

- if(a+a,ß+b)or(a+a-p,ß+b-q) E B1 then8aq+bp(Wd+aq+bp) = - 2;q. 

Now it is not difficult to see that 

- aq + bp < pq - q implies (a + a, ß + b) or (a + a - p, ß + b + q) E B1 

- (i,j) E B1 and iq + jp 2:: 3pq + d - q implies (i,j) = (a + a, ß + b) or 
(i,j) = (a + a - p, ß+ b + q) for a suitable (a, b). 
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From these properties we deduce that already 

{8dteL, L = {f = aq + bp, (a + a, ß + b) or (a + a - p, ß + b - q) E Bi} 

generates .C as C [H,.H::)-module. Now for f E L we know that 8t(Wl+d) = 
--2d and 8t(Wm) = 0 if m < f+d. This implies that { 8dteL and {Wl+d}ieL pq 
satisfy the properties of proposition 1.5. 
This implies that T --+ T / .C is a geometric quotient and in particular 
T/.C ~ SpecC [H, W'] with W' = {Wiq+jp-2pq}(i,j)eB2 , B2 = {(i,j) E 
Bi, iq + jp - 2pq - d tf. L }. 
Notice that dim T / .C = (p - 2)( q - 2) + [!J - 1. We obtain as in section 2: 

Theorem 3.1: C(p-2)(q- 2)+[~)-I / µd is a coarse moduli space for families of plane 
curve singularities with semi-group (2p, 2q, 2pq + d). The Tjurina number of all these 
singularities is constant and equal to r = µ - (p- l)(q - 1), where µ = (2p-1)(2q-
1) + d. 
For details of the proof see [LuP]. Note that we did not need to stratify in this case. 

4 A moduli space for torsion free modules of rank 
1 over the local ring of an irreducible curve 
singularity 

Let R be the local ring of an irreducible curve singularity and R = C [[t]] the normal­
ization of R. Let .M od (R) be the category of torsion free rank 1 R-modules, c the 
conductor of R, 8 = 8(R) = dimcR/ R be the 8-invariant, and M = M @R R/torsion. 

Lemma 4.1 

1. Any M E M od ( R) is isomorphic to some fractional ideal M' such that R C 
M' CR and dimcR/M' = dimcM/M. 

2. Let M, M' C R be two fractional ideals such that dim cR/ M = dimcR/ M'. 
Then M '.:::::'. M' iff there is u E R* such that uM = M'. 

3. For any ME Mod(R),M CR and dimR/M = d we have tdHfl ~ M. 

Fora proof cf. [GrP 2]; it is easy, use M CM @ R Quot(R) ~ C((t)). 

Definition: Let M E M od( R) and R C M' C R such that M '.:::::'. M'. We define 
f(M) := {v(m'),m' E M'},(v the valuation of R) and 8(M) as the number of gaps 
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in f(M). 

Remark: f(M) does not depend on the choice of M'. f(M) is a f(R) set. 
b(M) = dimc M / M. In analogy to singularities, we may consider f(M) as the 
"topological type" of M. 

The aim is now to classify all torsion free rank 1 modules with fixed value set 
r. Let Re= C [W, te+t, „ .]] and M E Mod(R) then M E Mod(Rc)· We first solve 
the problem for Mod(Re)· lt is easy to see that R* acts on the classifying space for 
Mod(Re)· The fixed point scheme will then be the solution for Mod(R) since these 
points correspond to Re modules which are also R-modules. 

Let r = { /o, /1, ... , /k, c, c + 1, ... } , 0 = /o < /1 < ... < /k < c. 

k 

1. The "worst" object in Modr(Re) is the monomial module Mo=~ fY'Rc+tefi_ 
i=O 

A versal deformation of Mo fixing r is the c [~][W, te+I' .. . ]]-module 

k 

Mr = L miC[~][W, te+l, ... ]] + tec [~][[t]] C C [~][[t]], 
i=O 

with 
,\ {,\ij}(i,j)El 

I {(i,j), 0 ~ i ~ k,j > 0,j + /i </. f} 

m,· fYi + ~ . ,\ · ·ti+'Yi 
L.,, J+'Yi ~r •J 

Let T = Spec C[A] and X = Spec C[~][W, te+I, .. . ]] be the trivial deformation 
of Re. Mr is a coherent O.x-module, which is flat over T and its restriction Mt 
to the fibre Xt = Spec Re, t E T , is an element of M od (Re)· 

1.1 Mr is a versal deformation of M 0 fixing the value set r. 
1.2 Every Re-module with value set r is represented in this family, i.e. there 

is a t E T such that Mt is isomorphic to the given module. 

2. The Kodaira-Spencer map of the family Mr is given by 

Because Mr C C[~][[t]] is embedded it factors through the Kodaira-Spencer 
map of the embedded family. 
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DercC [A] -4 H omq~:HW,tc+1,.„]](Mr, C [A][[t]]/ Mr) ö f-+ 'Po 

and c.p0 (m) =dass of ö(m), where Ö is lifted to C [A][[t]] by ö(t) = 0. 

2.1 Now one can prove that the Kernel of the Kodaira-Spencer map J:, is the 
Lie algebra generated as C [A]-module by the vectorfields { beh~e~c-1 

k 

Öe = 2: he,i,j 8~ii with he,i,j = Ai,j-l - 2;: Ai,-y„--y;-lAv,j+-y;--y„ 
(i,j)E/ 11=1+1 

( with the convention Aij = 0 if j < 0, >..;,0 = 1 ). 

Remark: 

(1) he,i,i = 0 if l > j 
(2) hi,i,i = 1 if ( i, j) E /. 

c-1 
Furthermore L := 2: Cöe is an abelian Lie algebra. 

l=l 
2.2 lt is not difficult to see that for t, t' E T the modules Mt and Mt' are 

isomorphic iff they are in the same integral manifold of C, i.e. in the 
same orbit under the action of L. 

2.3 C [A] admits a C* -action defined by deg Aij = j. The vector fields 
öe are homogeneous of degree - l. Let r 0 c r be the maximal semi­
group acting on r and a = mult(f 0\ {O} ). For the sub Lie algebras 
L(o) := :L CÖ; and L(l) := :L Cb;, we have H 1 (L(l), C [A]) = 0 and 

i>a i<a 

H 1 (L(ll, C (A]L<0 >) = 0. 

3. Consider now the filtration Fi(C [A]) := the C-vector space generated by all 
quasihomogeneous polynomials of degree less than ( i + 1 )a. 
lf ö E L(o) then öFi <; pi-l. Let T = SpecC [A] = UUa be the flattening 
stratification of the C [A]-modules Homc(L(0l, C [A])/C [A]dFiC [A]. We may 
apply corollary 1.3 and obtain that Ua -4 Ua/ L(o) is a geometric quotient. Since 
H 1 (L(0l, C [A]L(o)) = 0 we obtain that Ua -4 Ua/ Lisa geometric quotient. 

Remark: Fort ET let E(t)(n) :=rank (öt(Aij)(t))j<n, then E(t)(va) is constant 
along Ua for all 11. More precisely, let d be maximal such that d tf. r and r. = 
(ri, ... , r[!J) such that E(to)(11a) = r 11-1, 11 = 2, ... , [~] + 1 for some to E Ua then 

t E Ua {:==:=} E(t)(11a) = r 11-1, II= 2, ... , [~] + 1 

20 

·~-



·' 

Let E(t) := (E(t)(2a), ... E(t)([~] + l)a)). We also write U'- instead of Ua. The 
invariants E( t) which describe the stratification {Ur} can be interpreted as follows: 

Remark: For M E Mod(R), the ring EndR(M) dominates R, we have R C 
EndR(M) CR, and M is an EndR(M)-module. We assume that M CR and define 

. a filtration End•(M) of R by 

En<f'(M) := {g E R 1 g Mn,i c Mn,i for all i} 

where Mn,i =Mn C [[ti, ti+i, ... , ]] + C [[tn+i, tn+i+i, .. . ]]. Endn(M) is independent 
of the embedding of M into R. The function E(t) has the following interpretation: 

E(t)(n) = dimcR/ En<f'(Mt), 

where Mt is the module corresponding to t E T, i.e. E(t) is the Hilbert function of 
R/ EndR(M) with respect to the filtration End•(M). 

Theorem 4.1: Let Re= C[W,te+1, ... ]],r. E '!J},k = [~], ~nd U'- the stratum 
such that E(t) = r. for t E U'-. The geometric quotient U'-/ L exists, is a quasiaffine 
algebraic scheme and a coarse moduli space for fiat families of torsion free Re-modules 
with fixed value set r and fixed Hilbert function of Re/ End(M) with respect to the 
filtration End•(M). The same holds for the local ring Rofan arbitrary irreducible 
curve singularity if we replace Ur by the fixed point scheme U!Y of Ur with respect 
to the natural action of R*. - - -

Fora complete proof see [GrP 2). 

Example: We construct in detail the stratification { U'-} of the space of torsion 
free Re-modules of rank 1 with fixed value set r, and for each stratum we determine 
the quotient for the example 

R =Re= C [[t8
, t9

, •• • ]], c = 8, 
r = ro = {0,2,4,6,8,9, ... },k = 3. 

Recall that r 0 is the maximal semigroup contained in the set r, a = smallest 
non-gap (# 0) of f 0 ,d = biggest gap of r and k = [~]. 

We have: 

I = { ( 0, 1), (1, 1, (2, 1), (3, 1), (0, 3), (1, 3), (2, 3), (0, 5), (1, 5), ( 0, 7)}. 
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The matrix H(~) = (hi,i,j(~)) of the coefficients of the vector fields bi, ... , b7 is: 

1. .. 1 -A11 Ao1 -A21A11 -A31 A21 -A21Ao3 - At2Ao1 -A31A13 - A23An * 
Ao1 - An An - A2t A2t - A31 Ao3 - At3 Ai3 - A23 * 

1 1 1 -A21 Ao1 -A31A11 * 
Ao1 - A21 All - A31 * 

1 1 Ao1 - A31 

We have m(fo) = 2, d = 7. 

Let T = Spec C [~] = UUr.. be the stratification constructed before. Then for 
!:E {(3,5,6),(2,4,5),(3,4,5),(2,3,4)} wehave Ur# 0. 

Ur,(3,5,6) { A, Ao1 - An - A21 + A3t # O} 

Ur,(3,4,s) {,\, Ao1 - An - A2t + A31 = 0, 2An - Ao1 - A21 # O} 

Ur,(2,4,s) - { A, Ao1 - An - A2t + A31 = 2An - A01 - A2t = 0, 
2A31 - Ao3 - A23 + (.\01 - An)(A11A31 - Ao1A21) # O} 

Ur,(2,3,4) { A, Ao1 - An - A21 + A31 = 2An - Ao1 - A21 = O, 
2A13 - Ao3 - A23 + (.\01 - A11)(A11A31 - Ao1A21) = 0} 

let Li ·- Cb1 + Cb3 + Cbs + Cb1, then 

C[~) C[~]L1 [Aoi, Ao3, Aos, Ao1] 

and 

Xn 

X21 

:\31 

X13 

All - Ao1 

A2t - Ao1 

A31 - Ao1 

At3 - Ao3 - Ao1 ( AH Ao1 - All A21) + ! A51 ( Ao1 - A2t) 

X23 A23 - Ao3 - Ao1(.\11Ao1 - A21A31) + !A61(Au + Ao1 - A21 - A31) 

Xis Ais - Aos - (Ao1A21 - AHA31)Ao3 + Ao1(A31 - Aoi)(,\13 - Ao3) 
+ Ao1 A11 ( A23 - Ao3) - ! A51 ( A23 - Ao3) 
+ polynomial in A01, An, A21, A31 · 
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We have 
- - 8 - - - 8 - - -- 8 

(2.Xu - A21) 8 A
13 

+(An - A31 + .X2i) 8 A
23 

+ (2.X13 - A23 - .Xi1A31) 8 A
15 

Ö2 1 C[~]Li 

b4 1 C[~]Li 

86 1 C[~]Li 

- - - 8 
- (An - >.31 + >.21) 8A15 

0 

Let Ür,r. = c.p(Ur,r_),c.p: Ur~ Ur/L1 = SpecC[~.J be the quotient map and L0 = 
K82 + K84. Then 

Ür,(3,5,6) 

Ür,(3,4,5) 

Ür,(2,4,5) 

Ür,(2,3,4) 

Ur,(3,5,6)/ L 

g 

Ur,(3,4,5)/ L 

h 

Ur,(2,4,5)/ L 

Ur,(2,3,4)/ L 

{>., Xn - X31 + X21 # o} 

- {X, Xn - X31 + X21 = o, 2X11 - X21 # o} 

{ :\, Xn - :\31 + X21 = 2:\11 - :\21 = o, 2:\13 - X23 - X~ 1 :\31 # o} 

{ :\, Xn - X31 + X21 = 2X11 - X21 = 2:\31 - :\23 - Xi1 X31 = o} 

Ür,(3,5,6)/ Lo 
SpecC[X11,:\2i,X3i,:\13(X11 - X31 + X21)-X23(2:\11 -:\21)]9 

. Xn - X31 + X21 

Ür,(3,4,5)/ Lo, 
Spec C[Xn, X2i, X23, X15(2X11 - X21) - X13(2X13 - X23) - Xi1 
(Xn + X21) + Xi3]h 

- 2X11 - X21 

Ür,(2,4,5)/ Lo 

Spec c [Xn, X13, X23b:x13 _>. 23 _ 3:xi
1 

Ür,(2,3,4) = Spec C[Xn, X13] 

Remark: Let V := Ur,(2,4,5) U Ur,(3,4,5). Then V = {~ E Ur 1 orbit dimension at >. 
is 5} and even f(EndR(MA)) = {O, 2, 4, 8, 9, ... } is constant on V. lt can be shown 
that the geometric quotient V/ L does not exist, neither in the algebraic nor in the 
analytic category. 

Conclusion: The space of torsion free R-modules, R = C[[t8
, t 9

, •• • ]] is stratified 
into four strata, corresponding to the four different values of the Hilbert function 
of R/ EndR(M). The quotients of these strata by L are coarse moduli spaces for R­
modules ( torsion free, rank 1) with value set r and Hilbert function the corresponding 
value. On the union of two of these strata the orbit dimension of L is constant but 
the quotient does not exist. 
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