UNIVERSITÄT KAISERSLAUTERN

DEFORMATIONS OF AFFINE TORUS VARIETIES

Klaus Altmann

Preprint No 213

FACHBEREICH MATHEMATIK

DEFORMATIONSOFAFFINE TORUS VARIETIES

Klaus Altmann

Preprint No 213

UNIVERSITÄT KAISERSLAUTERN
Fachbereich Mathematik
Erwin-Schrödinger-Straße
6750 Kaiserslautern

Januar 1992

Deformations of affine torus varieties

Klaus Altmann*
Fachbereich Mathematik der Humboldt-Universität zu Berlin PSF 1297, D-O-1086 Berlin, Germany

December 10, 1991

Contents

1 Introduction 1
2 Relative complete intersections in the category of affine torus va- rieties 3
3 Proof of the theorem (2.4) 6
4 Cones with simplicial faces only 13
5 The hexagon singularities 29
6 One and two parameter deformations of cyclic quotient singularities (i.e. $m=n-2 \leq 2$) 39
7 Examples to the cases $m=n-2 \leq 2$ of $\S 6$ 45

1 Introduction

(1.1) Based on the paper [KSB] of Kollár/ Shépherd-Barron, many investigations of the base space of the versal deformation of a two dimensional cyclic quotient singularity were done in the last years: In [A], J. Arndt gave an algorithm for computing the equations of the base space; in [St] and [Ch], J. Stevens and J.A. Christophersen described the components of the reduced base space in a more qualitative way using continued fractions.

[^0]Cyclic quotient singularities are exactly those singularities that appear as two dimensional affine torus varieties:
$X(n, q)$ (quotient of the $\mathscr{Z} / n \mathbb{Z}^{\text {-action }} \xi \mapsto\left(\begin{array}{cc}\xi & 0 \\ 0 & \xi^{q}\end{array}\right)$ on \mathbb{C}^{2}) can be
built as an affine torus variety by the cone
$\sigma:=\langle(1,0) ;(-q, n)\rangle \subseteq N:=\mathbb{Z}^{2}$.
(For the notion of an affine torus variety: cf. [Ke].)
On the other hand, in [Ch] (CDV; §2) Christophersen made the following observation:
Deforming such a cyclic quotient singularity, the total spaces over the components of the reduced base space are (after a finite base change) torus varieties, too.
(1.2) Having this in mind, the following problem seems to be very interesting: Classify (or describe in combinatorical terms) all possible fibre product diagrammes

$$
\begin{array}{ccc}
Y & \stackrel{i}{\hookrightarrow} & X \\
\downarrow & \otimes & \downarrow f \\
\{0\} & \hookrightarrow & S
\end{array}
$$

with:
$X, Y=$ affine torus varieties with closed orbits $0 \in Y, 0 \in X$, respectively;
$0 \in Y$ is an isolated singularity ($0 \in X$ need not to be isolated);
$i=$ morphism of torus varieties with $i(0)=0$;
f is a flat map.
In particular, i maps the torus T_{Y} of Y in the torus T_{X} of X, and $i: T_{Y} \hookrightarrow T_{X}$ is induced by a surjection of lattices:

$$
\begin{aligned}
i^{*}: & M \longrightarrow M / L \\
& \left(M \cong \mathbb{Z}^{n}, \quad T_{X}=\operatorname{Spec} \mathscr{C}[M]\right. \\
& L \subseteq M \text { is an } m-\operatorname{dimensional} \text { sublattice with } M / L \text { torsion free }, \\
& \left.T_{Y}=\operatorname{Spec} \mathscr{C}\left[M /_{L}\right]\right)
\end{aligned}
$$

If X is given by the cone $\sigma \subseteq N \otimes \mathbb{R}\left(N \cong \mathbb{Z}^{n}\right.$ is the dual lattice of $\left.M\right)$, the dual cone $\stackrel{\vee}{\sigma} \subseteq M \otimes \mathbb{R}$ is squeezed to a cone $\bar{\sigma}^{\vee} \subseteq M / L \otimes \mathbb{R}$. (In the dual language: $\bar{\sigma}=\sigma \cap L^{\perp}$ in $\left.N \otimes \mathbb{R}\right)$.
σ and $\bar{\sigma}$ are top dimensional cones (in $N \otimes \mathbb{R}$ and L^{\perp}, respectively) that do not contain any linear subspace.
(1.3) In $\S 2$, all such deformations were completely described in terms of the cone σ and the sublattice $L \subseteq M$. The corresponding theorem is proved in $\S 3$.

In $\S 4$ and $\S 6$, this theorem is used to give an explicit list of all possible pairs $[\sigma, L]$ (in a more or less coarse sense) for two special cases:

1) All proper faces $\tau<\sigma$ are simplicial, i.e. $X \backslash\{0\}$ contains only cyclic quotient singularities of arbitrary dimensions (cf. §4).
2) $\operatorname{dim} Y=2$ and $\operatorname{dim} X \leq 4$ (cf. §6).
$\S 5$ and $\S 7$ contain specified computations of selected cases belonging to the previous paragraph, respectively. These computations can be used as examples for the main theorem (2.4) also.

(1.4) Acknowledgements:

Most of this paper was worked out during a one year stay at the university of Kaiserslautern (paid for by the DFG project "normal surface singularities").
It is a pleasure for me to thank the members of the working group "Algebraic geometry" for their hospitality and warm atmosphere; in particular, I wish to thank G.-M. Greuel and D. van Straten for many helpful discussions and hints.

Finally, I wish to thank R. Schultz for helping me to imagine some 3-dimensional convex bodies, Ms. Dobers and Ms. Bitsch for typing (with $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$) and correcting the manuscript and T. de Jong for letting me use his (meanwhile slightly damaged) car.

2 Relative complete intersections in the category of affine torus varieties

(2.1) With the notations of the previous chapter, a deformation diagramme
$Y \stackrel{i}{\hookrightarrow} X$
$\downarrow \otimes \downarrow f$ of (1.2) would induce a deformation of the corresponding torus T_{Y} :
$\{0\} \hookrightarrow S \quad T_{Y} \hookrightarrow T_{X}$
$\downarrow \otimes \quad \downarrow f$
$\{0\} \hookrightarrow S$.
T_{Y} and T_{X} are smooth. Hence, T_{X} would split locally in a product $T_{X} \cong T_{Y} \times S$, and the germ $(S, 0)$ would have to be smooth also.
(2.2) Let a deformation as in (1.2) be given.

Proposition: Let $I:=\operatorname{Ker}\left(\mathscr{C}[\stackrel{\vee}{\sigma} \cap M] \rightarrow \mathbb{C}\left[\bar{\sigma}^{\vee} \cap M / L\right]\right)$ be the ideal that defines $Y \subseteq X$. Then, I can be generated by m polynoms of the form $x^{r}-x^{s} \in \mathbb{C}[\stackrel{\vee}{\sigma} \cap M]$ $(r, s \in \stackrel{\vee}{\sigma} \cap M ; r-s \in L)$.
In particular, every deformation X of Y described above can be realized by a flat
map $f: X \rightarrow \mathbb{C}^{m}$, which makes Y a relative complete intersection in X.
Proof: Step 1: On the level of the local rings we obtain the following diagramme:

Therefore, $I \cdot \mathcal{O}_{X, 0}=m_{S, 0} \cdot \mathcal{O}_{X, 0}$ is generated by m elements $g_{1}, \ldots, g_{m}((S, 0)$ is smooth), and by the Nakayama Lemma we can choose these generators among the elements of the form $x^{r}-x^{s}(r, s \in \stackrel{\vee}{\sigma} \cap M ; r-s \in L)$.

Step 2: Let $\tilde{I}:=\left(g_{1}, \ldots, g_{m}\right) \subseteq \mathbb{C}[\tilde{\sigma} \cap M]$. Then, $\tilde{I} \subseteq I$ are ideals in $\mathbb{C}[\tilde{\sigma} \cap M]$ meeting the following properties:
(i) \tilde{I}, I are homogeneous with respect to the $M / L^{\text {-grading; }}$
(ii) $\tilde{I}=I$ in the local ring $\mathcal{O}_{X, 0}$.

Now, we want to show $\tilde{I}=I$. For this let $g \in I$ be an arbitrary M / L-homogeneous element. By (ii) there exists an $h \in \mathscr{C}[\sigma \sim M]$ with

$$
\begin{aligned}
& h \cdot g \in \tilde{I} \quad \text { and } \\
& h \notin m_{0}:=\bigoplus_{\substack{r \not v \cap M \\
r \neq 0}} \mathscr{C} \cdot x^{r} \quad \text { (i.e. } h \text { contains a nonvanishing constant term); }
\end{aligned}
$$

by (i) we can assume in addition h to be M / L-homogeneous.
Finally, the closed embedding $i: Y \hookrightarrow X$ sends 0 to 0 (cf. (1.2)), and this property implies $L \cap \stackrel{\vee}{\sigma}=\{0\}$. Hence, the $M / L^{\text {-homogeneous element } h}$ has to be a constant.

Remark: The m vectors $r-s$ that correspond to the generators of I are free generators of the m-dimensional lattice L.
(2.3) Now, our task (cf. (1.2)) is reduced to describe all relative complete intersections in the category of affine torus varieties. For doing this, we will change our point of view slightly:

Let M, N be n-dimensional dual lattices as before; let $\sigma=<a^{1}, \ldots, a^{N}>$ be a top dimensional, rational polyhedral cone in $N \otimes \mathbb{R}$ that does not contain any linear subspace.
$\left(a^{1}, \ldots, a^{N} \in N\right.$ denote the fundamental generators of σ. They are primitive elements of the lattice, i.e. the coordinates of each a^{j} have the greatest common
divisor 1.)
For $r_{0}^{1}, \ldots, r_{0}^{m} ; r_{1}^{1}, \ldots, r_{1}^{m} \in \check{\sigma} \cap M(1 \leq m \leq n-2)$ we define $L:=\sum_{i=1}^{m} \mathscr{Z} \cdot\left(r_{0}^{i}-r_{1}^{i}\right) \subseteq$
M. Suppose that L is an m-dimensional sublattice of M with M / L torsion free and $L \cap \stackrel{\vee}{\sigma}=\{0\}$.
The last condition implies that the "squeezed" cone $\bar{\sigma}:=\sigma \cap L^{\perp}$ is top dimensional in $L^{\perp} \subseteq N \otimes \mathbb{R}$; we obtain the affine torus varieties $X:=\operatorname{Spec} \mathbb{C}[\stackrel{\vee}{\sigma} \cap M]$ and $Y:=\operatorname{Spec} \mathbb{C}\left[\bar{\sigma}^{\vee} \cap M / L\right]$ together with a map $i: Y \rightarrow X$.

Remark: The canonical homomorphism $\mathbb{C}[\stackrel{\vee}{\sigma} \cap M] \rightarrow \mathbb{C}\left[\bar{\sigma}^{\vee} \cap M / L\right]$ need not be surjective (i.e. i would not be a closed embedding) in general.
Look at the following example:

$$
\begin{aligned}
M & :=\mathbb{Z}^{2}, \quad \stackrel{\vee}{\sigma}:=<(1,0) ;(0,1)>\subseteq \mathbb{R}^{2} \\
r_{0}^{1} & :=(2,0), \quad r_{1}^{1}:=(0,3)
\end{aligned}
$$

Then, $L=\mathscr{Z} \cdot(2,-3), M$ splits into $M=L \oplus \mathscr{Z} \cdot(1,-1)$, and the canonical surjection $M \longrightarrow M / L \cong \mathbb{Z} \quad$ is given by

$$
\begin{array}{lll}
(1,0) & \mapsto & 3 \\
(0,1) & \mapsto & 2 .
\end{array}
$$

Restricting this map to $\stackrel{\vee}{\sigma} \cap M, 1 \in \mathbb{Z}$ will not be contained in the image of $\stackrel{\vee}{\sigma} \cap M \rightarrow \bar{\sigma}^{\vee} \cap \mathbb{Z}(=\mathbb{N})$.
(The reason for having such cases is that the image of the semigroup $\stackrel{\vee}{\sigma} \cap M$ need not be saturated.)
(2.4) Theorem: Y has an isolated singularity in $0 \in Y, i$ is a closed embedding, and the ideal $I:=\operatorname{Ker}\left(\mathbb{C}[\check{\sigma} \cap M] \rightarrow \mathbb{C}\left[\bar{\sigma}^{\vee} \cap M / L\right]\right)$ is generated by the elements $x^{r_{0}^{1}}-x^{r_{1}^{1}}, \ldots, x^{r_{0}^{m}}-x^{r_{1}^{m}} \in \mathbb{C}[\stackrel{\vee}{\sigma} \cap M]$ (i.e. the situation of (1.2) with $S=\mathbb{C}^{m}$), iff
for all proper faces $\tau<\sigma$ one of the following conditions is fulfilled (with a suitable order of the r^{i} 's and a^{j} 's and with a possible permutation of r_{0}^{\bullet} and r_{1}^{\bullet}):
(I) $\exists i \in\{1, \ldots, m\}: r_{0}^{i} \in \tau^{\perp} ; r_{1}^{i} \notin \tau^{\perp}$, or
(II) $\tau=<a^{1}, \ldots, a^{k}>$ is smooth (i.e. generated by a part of a \mathbb{Z}-basis of N), and there exists an $\ell(0 \leq \ell \leq k-1)$ with

- $\left\langle a^{j}, r_{0}^{i}\right\rangle=\delta_{i j} \quad(i=1, \ldots, \ell ; j=1, \ldots, k)$
- $\left\langle a^{j}, r_{1}^{i}\right\rangle=0 \quad(1 \leq j \leq i \leq \ell)$
- $\left\langle a^{j}, r_{v}^{i}\right\rangle=0 \quad(i=\ell+1, \ldots, m ; j=1, \ldots, k ; v=0,1)$.

The conditions (I) and (II) of the theorem may look a little bit technical, but they are very strong and easy to handle. As we will see in $\S 4$, these two conditions can be
used to restrict the choice of possible cones σ to a great extent. Moreover, a coarser (but much nicer) version of the above theorem is sufficient for taking the first big steps to classifying squeezable cones:

(2.5) Notations:

1) Let $R:=\left\{\left(r_{0}^{1}\right)^{\perp}, \ldots,\left(r_{0}^{m}\right)^{\perp} ;\left(r_{1}^{1}\right)^{\perp}, \ldots,\left(r_{1}^{m}\right)^{\perp}\right\}$, i.e. we regard the elements r_{ν}^{i} as faces of σ (written as " $r_{\nu}^{i} \in R$ " or " $r_{\nu}^{i} \notin R$ "). In general, these faces will be of dimension $n-1$.
We obtain $\# R \leq 2 m \leq 2 n-4$.
2) A top dimensional face $\tau<\sigma$ that does not belong to R will be called a "good face".

Theorem: If Y has an isolated singularity in $0 \in Y, i$ is a closed embedding, and the ideal $I:=\operatorname{Ker}\left(\mathbb{C}[\stackrel{\vee}{\sigma} \cap M] \rightarrow \mathbb{C}\left[\bar{\sigma}^{\vee} \cap M / L\right]\right)$ is generated by the elements $x^{r_{0}^{1}}-x^{r_{1}^{1}}, \ldots, x^{r_{0}^{m}}-x^{r_{1}^{m}} \in \mathscr{C}[\stackrel{\sigma}{\sigma} \cap M]$ (i.e. the situation of (1.2) with $S=\mathbb{C}^{m}$), then,
each good (top dimensional) face $\tau<\sigma$ admits the following properties:
(i) It is simplicial (even smooth).
(ii) With a suitable order of the r^{i} s and with a possible permutation of r_{0}^{*} and r_{1}^{*} there holds:

- $r_{0}^{1}, \ldots, r_{0}^{m}$ intersect τ in m different ($n-2$)-dimensional faces. $\left(r_{0}^{1}, \ldots, r_{0}^{m}\right.$ were called the R -neighbours of τ.)
- For $i=1, \ldots, m$ the set $\left(r_{0}^{1} \cap \ldots \cap r_{0}^{i}\right) \cup r_{1}^{i}$ contains all vertices of τ.

Remark: If r is an R -neighbour of τ, then either r is an ($n-2$)-dimensional edge of τ, or r is a top dimensional face of σ that is adjacent to τ.
In the first case, r can only be an R -neighbour for at most two different good faces of σ.

3 Proof of the theorem (2.4)

(3.1) With the notations of (2.3) let $\tilde{Y} \subseteq X$ be the zero set of the ideal $\left(x^{r_{0}^{1}}-x^{r_{1}^{1}}, \ldots, x^{r_{0}^{m}}-x^{r_{1}^{m}}\right) \subseteq \mathbb{C}[\check{\sigma} \cap M]$. Then, the map $i: Y \rightarrow X$ factorizes through $Y \rightarrow \tilde{Y} \stackrel{\text { closed }}{\longrightarrow} X$.

Lemma: For an arbitrary proper face $\tau<\sigma$ let orb $\tau:=\operatorname{Spec} \mathbb{C}\left[\tau^{\perp} \cap M\right]$ be the corresponding orbit; denote by $1_{\tau} \in$ orb τ the unit of this torus (defined by sending all monomials to $1 \in \mathbb{C}$).
Now, the following conditions are equivalent:
(1) $1_{\tau} \in \tilde{Y}$;
(2) $\operatorname{orb} \tau \cap \tilde{Y} \neq \emptyset$;
(3) $\forall i=1, \ldots, m:\left[r_{0}^{i} \in \tau^{\perp} \Leftrightarrow r_{1}^{i} \in \tau^{\perp}\right]$.

Proof: (2) \Longrightarrow (3):
The existence of a common point of orb τ and \tilde{Y} yields a ring homomorphism $\varphi: \mathbb{C}[\sigma \sim M] \longrightarrow \mathbb{C}$ with the following properties:
(i) $r \notin \tau^{\perp} \Longleftrightarrow \varphi\left(x^{r}\right)=0$
(φ factorizes through $\mathbb{C}[\stackrel{\vee}{\sigma} \cap M] \hookrightarrow \mathbb{C}\left[\tau^{\vee} \cap M\right] \longrightarrow \mathbb{C}\left[\tau^{\perp} \cap M\right]$. Hence, φ maps x^{r} to 0 for $r \notin \tau^{\perp}$ and to a unit otherwise.)
(ii) $\varphi\left(x^{r_{0}^{i}}-x^{r_{1}^{i}}\right)=0$ for $i=1, \ldots, m$.

Let $\tau \in\{1, \ldots, m\}$. Then, we obtain $\varphi\left(x^{r_{0}^{i}}\right)=\varphi\left(x^{r_{1}^{i}}\right)$, hence

$$
\varphi\left(x^{r_{0}^{i}}\right)=0 \quad \text { iff } \quad \varphi\left(x^{r_{1}^{i}}\right)=0
$$

By (i), this equivalence implies the condition (3).
(3) \Longrightarrow (1):

The ideal of $1_{\tau} \in X$ is generated (as a \mathscr{C}-vectorspace) by

- x^{s} (for $s \in \stackrel{\sigma}{\sigma} \cap M ; s \notin \tau^{\perp}$) and
- $x^{s}-1\left(\right.$ for $\left.s \in\left(\stackrel{\vee}{\sigma} \cap \tau^{\perp}\right) \cap M\right)$.

Hence, this ideal contains the ideal of $\tilde{Y} \subseteq X$.

Corollary: Let $(\tilde{Y}, 0)$ be an isolated singularity. Then, for singular, proper faces $\tau<\sigma$ (i.e. X is not smooth in orb τ) the condition (I) of the theorem is fulfilled.

Proof: Failing (I) is equivalent to the condition (3) of the previous lemma, i.e. $1_{\tau} \in \tilde{Y}$.
Now, $\tau \neq \sigma$ implies $1_{\tau} \neq 0$, and $1_{\tau} \in \tilde{Y}$ has to be a smooth point. Hence, in 1_{τ} the torus variety X would be non-singular too.
(3.2) Lemma: Let $(\tilde{Y}, 0)$ be an isolated singularity, let $\tau<\sigma$ be a proper face that fails the condition (I) of the theorem. (In particular, $\tau=\left\langle a^{1}, \ldots, a^{k}\right\rangle$ is a smooth face.)
Then, with a suitable order of the r^{i} 's and a^{j} 's and with a possible permutation of r_{0}^{\bullet} and r_{1}^{\bullet}, there exists an $\ell(0 \leq \ell \leq k)$ with

$$
\begin{aligned}
& \bullet\left\langle a^{j}, r_{0}^{i}\right\rangle=\delta_{i j} \quad(i=1, \ldots, \ell ; j=1, \ldots, k) \\
& \bullet\left\langle a^{j}, r_{\nu}^{i}\right\rangle=0 \quad(i=\ell+1, \ldots, m ; j=1, \ldots, k ; \nu=0,1) .
\end{aligned}
$$

Proof: Step 1: Completing the fundamental generators a^{1}, \ldots, a^{k} of τ to a \mathbb{Z}-basis $a^{1}, \ldots, a^{k} ; b^{k+1}, \ldots, b^{n}$ of the lattice N, we obtain coordinates that split into two blocks:
$r \in M$ can be written as $r=(\bar{r}, \overline{\bar{r}})\left(\bar{r} \in \mathbb{Z}^{k} ; \overline{\bar{r}} \in \mathbb{Z}^{n-k}\right)$ with $(\bar{r})_{j}=<a^{j}, r>$, and in the same way $(\bar{x}, \overline{\bar{x}})=\left(x_{1}, \ldots, x_{n}\right)$ denote the coordinates of $\mathbb{C}^{k} \times\left(\mathscr{C}^{*}\right)^{n-k} \cong$ $\operatorname{Spec}\left[\tau^{\vee} \cap M\right] \stackrel{\text { open }}{\longrightarrow} X$.
(orb $\tau \subseteq \operatorname{Spec} \mathscr{C}\left[\tau^{\vee} \cap M\right]$ is then given by the equation $\bar{x}=0$, and $1_{\tau} \in \operatorname{orb} \tau$ corresponds to the point $(\underline{0}, \underline{1})$.)

Now, \tilde{Y} contains 1_{τ}, and we can compute the partial derivatives of the equations $g_{i}:=x^{r_{0}^{i}}-x^{r_{1}^{i}}$ in this point.
Let $\ell \in \mathbb{N}(0 \leq \ell \leq m)$ such that (after a permutation of the indices $i \in\{1, \ldots, m\}$, if necessary)

$$
\begin{array}{cll}
r_{0}^{i}, r_{1}^{i} \notin \tau^{\perp} & \left(\text { i.e. } \bar{r}_{0}^{i}, \bar{r}_{1}^{i} \neq \underline{0}\right) & \text { for } \quad i=1, \ldots, \ell ; \\
r_{0}^{i}, r_{1}^{i} \in \tau^{\perp} & \left(\text { i.e. } \bar{r}_{0}^{i}=\bar{r}_{1}^{i}=\underline{0}\right) & \text { for } \quad i=\ell+1, \ldots, m .
\end{array}
$$

Then, we obtain

$$
\begin{aligned}
& \frac{\partial g_{i}}{\partial x_{j}}\left(1_{\tau}\right)=\delta_{\vec{r}_{0}^{i}, e_{j}}-\delta_{\tau_{i}, e_{j}}(i=1, \ldots, m ; j=1, \ldots, k ; \\
&\left.\left\{e_{1}, \ldots, e_{k}\right\} \text { denotes the canonical basis of } \mathbb{Z}^{k}\right) ; \\
& \frac{\partial g_{i}}{\partial x_{j}}\left(1_{\tau}\right)=0 \quad(i=1, \ldots, \ell ; j=k+1, \ldots, n) ; \\
& \frac{\partial g_{i}}{\partial x_{j}}\left(1_{\tau}\right)=\left(r_{0}^{i}-r_{1}^{i}\right)_{j}=<b^{j}, r_{0}^{i}-r_{1}^{i}>\quad(i=\ell+1, \ldots, m ; j=k+1, \ldots, n) .
\end{aligned}
$$

Introducing the following notation

$$
\bar{R}_{\bullet}^{i}:=\left\{\begin{array}{cl}
\bar{r}_{\bullet}^{i} \in \mathbb{Z}^{k} & \text { (if } \bar{r}_{\bullet}^{i} \text { is a unit vector) } \\
\underline{0} \in \mathbb{Z}^{k} & \text { (otherwise) }
\end{array}\right.
$$

we can write down our result in a shorter way:

$$
\frac{\partial g}{\partial x}\left(1_{\tau}\right)=\left(\begin{array}{c}
\frac{\bar{R}_{0}^{i}-\bar{R}_{1}^{i}}{} \left\lvert\, \begin{array}{l}
0 \\
r_{0}^{i}-r_{1}^{i} \\
\underbrace{}_{1, \ldots, k}
\end{array} \underbrace{}_{k+1, \ldots, n}\right.
\end{array}\right) \quad i=\left\{\begin{array}{c}
1 \\
\vdots \\
\ell \\
i=\left\{\begin{array}{c}
\ell+1 \\
\vdots \\
m
\end{array}\right.
\end{array}\right.
$$

Step 2: After a possible changing of the order of the indices i and j and after a possible permutation of \bar{R}_{0}^{0} and \bar{R}_{1}^{0}, we obtain $\bar{R}_{0}^{i}=e_{i}$ for $i=1, \ldots, \ell(\leq k)$.
Since 1_{τ} is a smooth point of \tilde{Y}, the Jacobian matrix $\frac{\partial g}{\partial x}\left(1_{\tau}\right)$ has the maximal rank m. Hence, $\operatorname{rank}\left(\bar{R}_{0}^{i}-\bar{R}_{1}^{i}\right)_{i=1, \ldots, \ell}=\ell$, and this implies $\ell \leq k$.
Now, by selecting ℓ suitable columns of $\left(\bar{R}_{0}^{i}-\bar{R}_{1}^{i}\right)_{i=1, \ldots, \ell}$ we obtain a new $(\ell \times \ell)$ matrix A with $\operatorname{det} A \neq 0$ and all non-vanishing entries equal to ± 1. It would be enough to prove that there exist ℓ such entries that admit a position of ℓ castles that cannot beat each other in a $\ell \times \ell$ chess game.
But this follows easily by induction from the Laplacian Entwicklungssatz:
Let $A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 \ell} \\ \vdots & & \vdots \\ a_{\ell 1} & \ldots & a_{\ell \ell}\end{array}\right) ;$ then $\quad \sum_{j=1}^{\ell}(-1)^{j+1} a_{1 j} \operatorname{det} A_{1 j}=\operatorname{det} A \neq 0$,
and there exists an index j with $a_{1 j} \neq 0$ and $\operatorname{det} A_{1 j} \neq 0$.
Remark: For τ to meet the condition (II) of the theorem, only the proof of $\left\langle a^{j}, r_{1}^{i}\right\rangle=0(1 \leq j \leq i \leq \ell)$ is left. This will be done in (3.4).

$$
\begin{equation*}
\text { Let } Y=\tilde{Y} \text {, i.e. the ideal } I=\operatorname{Ker}\left(\mathbb{C}[\stackrel{\vee}{\sigma} \cap M] \rightarrow \mathbb{C}\left[\bar{\sigma}^{\vee} \cap M / L\right]\right) \text { is gener- } \tag{3.3}
\end{equation*}
$$ ated by the elements $g_{i}=x^{r_{0}^{i}}-x^{r_{1}^{i}} \quad(i=1, \ldots, m)$.

For any index set $\Lambda \subseteq\{1, \ldots, m\}$ we denote by L_{Λ} the corresponding sublattice $L_{\Lambda}:=\bigoplus_{i \in \Lambda} \mathbb{Z}\left(r_{0}^{i}-r_{1}^{i}\right) \subseteq L$ of M.

Lemma:

1) Let $\Lambda \subseteq\{1, \ldots, m\}$; let $p \in L \backslash L_{\Lambda}, s \in M$ be elements with $s, s-p \in \stackrel{\vee}{\sigma}$. Then there exists an index $i \in\{1, \ldots, m\} \backslash \Lambda$ such that $\left[\left(s-r_{\nu}^{i}\right)+L_{\Lambda}\right] \cap \stackrel{\vee}{\sigma} \neq \emptyset$ (for some $\nu \in\{0,1\}$).
2) Given a face $\tau=<a^{1}, \ldots, a^{k}><\sigma$, we denote by Λ_{τ} the index set $\Lambda_{\tau}:=$ $\left\{i \mid r_{0}^{i}, r_{1}^{i} \in \tau^{\perp}\right\}$.

Now, for p, s as before there exist $i \in\{1, \ldots, m\} \backslash \Lambda$ and $\nu \in\{0,1\}$ such that $\left.<a^{j}, s-r_{\nu}^{i}\right\rangle \geq 0$ for all $j=1, \ldots, k$.

Proof: Step 1: We define a graph with M as the set of vertices as follows:
$s, t \in M$ will be connected by an edge iff there exists an index $i \in$ $\{1, \ldots, m\}$ such that either

$$
s-r_{0}^{i}=t-r_{1}^{i} \in \stackrel{\vee}{\sigma} \quad \text { or } \quad s-r_{1}^{i}=t-r_{0}^{i} \in \stackrel{\vee}{\sigma} .
$$

Now, let elements $p \in L, s \in M$ be given such that $s, s-p \in \tilde{\sigma}$; $x^{s}-x^{s-p} \in I$ yields an equation

$$
\begin{equation*}
x^{s}-x^{s-p}=\sum_{\mu} c_{\mu} x^{t_{\mu}}\left(x^{r_{0}^{i(\mu)}}-x^{r_{1}^{(\mu)}}\right) \quad\left(c_{\mu} \in \mathbb{C} ; t_{\mu} \in \stackrel{\sigma}{\vee} \cap M\right) . \tag{*}
\end{equation*}
$$

The exponents $t_{\mu}+r_{0}^{i(\mu)}$ and $t_{\mu}+r_{1}^{i(\mu)}$ are connected by an edge in the above graph M. Therefore, by deleting all terms that admit exponents not contained in the connected component of $s \in M$, the equation (*) keeps its form at the right-hand side. Only two different cases can arise:
(i) $x^{s}-x^{s-p}=\sum_{\mu}^{\prime} c_{\mu} x^{t_{\mu}}\left(x^{r_{0}^{i(\mu)}}-x^{r_{1}^{i(\mu)}}\right)$ or
(ii) $x^{s}=\sum_{\mu}^{\prime} c_{\mu} x^{t_{\mu}}\left(x^{r_{0}^{i(\mu)}}-x^{r_{1}^{i(\mu)}}\right) \quad$ (" $\sum^{\prime \prime}$ " means a part of " \sum ").

The latter case would imply $x^{s} \in I$, i.e. $x^{\bar{s}}=0$ in the ring $\mathbb{C}[M / L]$. Hence, only the first case is possible, and we obtain that s and $s-p$ are contained in a common connected component of M.

Step 2: Any path from s to $s-p$ provides a sequence $s=s_{0}, \ldots, s_{N}=s-p$ with either

$$
\begin{aligned}
s_{\mu-1}-r_{0}^{i(\mu)} & =s_{\mu}-r_{1}^{i(\mu)} \in \stackrel{\sigma}{\sigma} \cap M, \quad \text { or } \\
s_{\mu-1}-r_{1}^{i(\mu)} & =s_{\mu}-r_{0}^{i(\mu)} \in \stackrel{\sigma}{\sigma} \cap M \quad(\mu=1, \ldots, N) .
\end{aligned}
$$

The element $p=s_{0}-s_{N}=\sum_{\mu=1}^{N} \pm\left(r_{0}^{i(\mu)}-r_{1}^{i(\mu)}\right)$ was presumed not to be contained in the sublattice $L_{\Lambda} \subseteq L$. Hence, at least one of the indices $i(\mu)$ does not belong to Λ.

Assume μ^{*} to be the smallest index meeting this property, then we obtain

$$
\begin{aligned}
s_{0}-s_{\mu^{*}-1}= & \sum_{\mu=1}^{\mu^{*}-1} \pm\left(r_{0}^{i(\mu)}-r_{1}^{i(\mu)}\right) \in L_{\Lambda} \quad \text { and } \\
\exists \nu \in\{0,1\}: \quad & \left(s-r_{\nu}^{i}\right)-\left(s_{0}-s_{\mu^{*}-1}\right)=s_{\mu^{*}-1}-r_{\nu}^{i} \in \stackrel{\vee}{\sigma} \cap M \quad\left(i:=i\left(\mu^{*}\right) \notin \Lambda\right) .
\end{aligned}
$$

Finally, the second part of the lemma is a direct consequence from the first part.

Corollary: Let $\tau=<a^{1}, \ldots, a^{k}><\sigma$ be a smooth face; denote $\Lambda_{\tau}:=\left\{i \mid r_{0}^{i}, r_{1}^{i} \in \tau^{\perp}\right\}$ as before. Then, for each $p \in L \backslash L_{\Lambda}$ there exist $i \in\{1, \ldots, m\} \backslash \Lambda$ and $\nu \in\{0,1\}$ such that

$$
<a^{j}, r_{\nu}^{i}>\leq \max \left\{<a^{j}, p>; 0\right\} \text { for all } j=1, \ldots, k
$$

Proof: For a given $p \in L$ we construct the following elements of the lattice M :

1) Since τ is a smooth cone (i.e. $\left\{a^{1}, \ldots, a^{k}\right\}$ is a part of a \mathbb{Z}-basis of the lattice N), there exists an $s^{1} \in M$ such that

$$
<a^{j}, s^{1}>=\max \left\{<a^{j}, p>; 0\right\} \text { for all } j=1, \ldots, k
$$

2) Let $s^{2} \in\left[\operatorname{int}\left(\sigma \sim \tau^{\perp}\right)\right] \cap M$. Then, we obtain

$$
\begin{gathered}
\left\langle a^{j}, s^{2}\right\rangle=0 \quad(j=1, \ldots, k) \text { and } \\
\left.<a^{\mu}, s^{2}\right\rangle>0 \quad \text { for all remaining fundamental generators } \\
a^{\mu} \text { of the cone } \sigma .
\end{gathered}
$$

3) Now, $s:=s^{1}+g \cdot s^{2}(g \in I N ; g \gg 0)$ admits the following properties:

$$
\begin{aligned}
s, s-p & \in \stackrel{\vee}{\sigma} \quad \text { and } \\
<a^{j}, s> & =\max \left\{<a^{j}, p>; 0\right\} \quad(j=1, \ldots, k) .
\end{aligned}
$$

Applying the previous lemma to τ, p and s completes the proof.
(3.4) Lemma: Let $Y=\tilde{Y}$ have an isolated singularity in 0 (that means a combination of the presumptions of (3.2) and (3.3)). Let $\tau=\left\langle a^{1}, \ldots, a^{k}\right\rangle<\sigma$ be a proper face that fails the conditions (I) of the theorem.
Then, additionally to the claim of Lemma (3.2), we can achieve $\left\langle a^{j}, r_{1}^{i}\right\rangle=0$ for $1 \leq j \leq i \leq \ell$.

Proof: In (3.2) we have shown

$$
\begin{aligned}
& <a^{j}, r_{0}^{i}>=\delta_{i j} \quad(i=1, \ldots, \ell(\leq k) ; j=1, \ldots, k) \quad \text { and } \\
& <a^{j}, r_{\nu}^{i}>=0 \quad(i=\ell+1, \ldots, m ; j=1, \ldots, k ; \nu=0,1)
\end{aligned}
$$

in particular $\Lambda_{\tau}=\{\ell+1, \ldots, m\}$.
Now, we prove the above lemma by induction; let $\ell^{\prime} \leq \ell$ such that

$$
<a^{j}, r_{1}^{i}>=0 \quad \text { for } \quad 1 \leq j \leq i \leq \ell ; \quad j \leq \ell^{\prime}-1 .
$$

Claim: There exists an index $j\left(\ell^{\prime} \leq j \leq \ell\right)$ such that $\left\langle a^{j}, r_{1}^{i}\right\rangle=0$ for each $i \geq \ell^{\prime}$.

Proof: Let this not be the case, i.e. $\left\langle a^{j}, \sum_{i \geq \ell^{\prime}} r_{1}^{i}>\geq 1\right.$ for each $j=\ell^{\prime}, \ldots, \ell$.
Then, we define $p:=\sum_{i \geq \ell^{\prime}}\left(r_{0}^{i}-r_{1}^{i}\right) \in \bar{L} \backslash L_{\Lambda}$, which admits the following properties:

1) $\left\langle a^{j}, p\right\rangle=0$ for $j=1, \ldots, \ell^{\prime}-1$
(since $\left.\left\langle a^{j}, r_{0}^{i}\right\rangle=<a^{j}, r_{1}^{i}\right\rangle=0$ for $j \leq \ell^{\prime}-1, i \geq \ell^{\prime}$);
2) $\left\langle a^{j}, p>\leq 0\right.$ for $j=\ell^{\prime}, \ldots \ell$
(since $<a^{j}, \sum_{i \geq \ell^{\prime}} r_{0}^{i}>=1,<a^{j}, \sum_{i \geq \ell^{\prime}} r_{1}^{i}>\geq 1 \quad$ for $\ell^{\prime} \leq j \leq \ell$);
3) $<a^{j}, p>\leq 0$ for $j \geq \ell+1$
(since $\left\langle a^{j}, r_{0}^{i}\right\rangle=0$ for $j \geq \ell+1$).
Therefore, $\max \left\{<a^{j}, p>; 0\right\}=0$ for $j=1, \ldots, k$, and we can apply the corollary of (3.3):
There exist $i \in\{1, \ldots, \ell\}$ and $\nu \in\{0,1\}$ such that $\left\langle a^{j}, r_{v}^{i}\right\rangle \leq 0$ for all $j=1, \ldots, k$. By τ failing the condition (I) of the theorem this implies $r_{0}^{i} \in \tau^{\perp}$, and we obtain a contradiction.

Permuting the indices ℓ^{\prime} and j in both sets $\left\{a^{1}, \ldots, a^{k}\right\}$ and $\left\{r^{1}, \ldots, r^{\ell}\right\}$ the induction hypothesis together with the above claim imply

$$
<a^{j}, r_{1}^{i}>=0 \quad \text { for } \quad 1 \leq j \leq i \leq \ell ; \quad j \leq \ell^{\prime} .
$$

The statements of lemma (3.2) also stay valid during this permutation; hence, the lemma is proven.

Remark:

1) The lemma implies that ℓ has to be smaller than k.
2) The lemmata (3.2) and (3.4) show that meeting the properties (I) or (II) in the theorem (2.4) is a necessary condition (for $Y=\tilde{Y}$ having an isolated singularity). It remains to prove the opposite direction of this theorem.
(3.5) Assume that for each proper face $\left.\tau=<a^{1}, \ldots, a^{k}\right\rangle<\sigma$ at least one of the conditions (I) or (II) is fulfilled.

Lemma: Let $\tau<\sigma$ be a proper face such that orb $\tau \cap \tilde{Y} \neq \emptyset$. Then, $\operatorname{Spec} \mathbb{C}[\stackrel{\vee}{\tau} \cap M] \cap \tilde{Y}$ is irreducible, smooth of dimension $n-m$, and contains the torus $\operatorname{Spec} \mathbb{C}[M / L]$ as an open, dense subset.

Proof: $\operatorname{orb} \tau \cap \tilde{Y} \neq \emptyset$ implies that τ fails the condition (I) (cf. lemma (3.1)), hence, condition (II) must be fulfilled.

We use the language of the proof of lemma (3.2):
${\underset{\tilde{Y}}{\tau}}^{U_{\tau}}:=\operatorname{Spec} \mathscr{C}[\tilde{\tau} \cap M] \cong \mathbb{C}^{k} \times\left(\mathbb{C}^{*}\right)^{n-k}$ is an open, dense subset of X; the equations of \tilde{Y} in U_{τ} have the following form:

$$
\begin{aligned}
& x_{1} \cdot \overline{\bar{x}}^{\overline{\bar{r}}_{0}^{1}}=\bar{x}^{\bar{r}_{1}^{1}} \cdot \overline{\bar{x}}^{\overline{\bar{r}}_{1}^{1}} \quad \text { (the right-hand side does not contain } x_{1} \text {) } \\
& x_{2} \cdot \overline{\bar{x}}^{\overline{\bar{r}}_{0}^{2}}=\bar{x}^{\bar{r}_{1}^{2}} \cdot \overline{\bar{x}}^{\overline{\bar{r}}_{1}^{2}} \text { (the right-hand side does not contain } x_{1}, x_{2} \text {) } \\
& \begin{array}{cc}
\vdots \\
x_{\ell} \cdot \overline{\bar{x}}^{\overline{\bar{x}_{0}^{\ell}}}
\end{array}=\bar{x}^{\bar{x}_{1}^{\prime}} \cdot \overline{\bar{x}}^{\overline{\bar{r}}_{1}^{\ell}} \quad \begin{array}{l}
\text { (the right-hand side does not contain } x_{1}, \ldots, x_{\ell} \text {) }
\end{array} \\
& \text { and } \overline{\bar{x}}^{\overline{\bar{r}}_{0}^{i}}=\overline{\bar{x}}^{\overline{\bar{r}}_{i}^{i}} \text { for } i=\ell+1, \ldots, m \text {. }
\end{aligned}
$$

The last $m-\ell$ equalities define a subtorus $\left(\mathscr{C}^{*}\right)^{(n-m)-(k-\ell)} \subseteq\left(\mathscr{C}^{*}\right)^{n-k}$. The variables $x_{\ell+1}, \ldots, x_{k}$ (belonging to \bar{x}) can free range in a space $\mathscr{C}^{k-\ell}$, but the variables x_{1}, \ldots, x_{ℓ} are completely determined by the first ℓ equations.
Hence, $U_{\tau} \cap \tilde{Y} \cong \mathbb{C}^{k-\ell} \times\left(C^{*}\right)^{(n-m)-(k-\ell)}$; the torus Spec $\mathbb{C}\left[M /{ }_{L}\right]$ corresponds to the open, dense subset $\left(\mathbb{C}^{*}\right)^{k-\ell} \times\left(C^{*}\right)^{(n-m)-(k-\ell)}=\left(C^{*}\right)^{n-m}$.

Corollary: $\tilde{Y} \backslash\{0\}$ is irreducible and smooth of dimension $n-m$. It contains Spec $\mathbb{C}[M / L]$ as an open, dense subset, and the torus action $T \times X \rightarrow X$ induces an action of the small torus

$$
\operatorname{Spec} \mathbb{C}[M / L] \times(\tilde{Y} \backslash\{0\}) \rightarrow(\tilde{Y} \backslash\{0\})
$$

Proof: All these properties can be checked locally, and $\tilde{Y} \backslash\{0\}$ is covered by the open subsets $U_{\tau} \cap \tilde{Y}$ (taking all proper faces $\tau<\sigma$ such that orb $\tau \cap \tilde{Y} \neq \emptyset$).

Therefore, \tilde{Y} itself is irreducible of dimension $n-m$, and $0 \in \tilde{Y}$ is an isolated singularity. As \tilde{Y} is a relative complete intersection in the Cohen-Macaulay variety X, \tilde{Y} has to be Cohen-Macaulay, too. Hence, \tilde{Y} is reduced and normal (non-singular in codimension 1 since $m \leq n-2$).

Spec $\mathbb{C}[M / L] \subseteq \tilde{Y}$ is an open, dense subset, and the group law of the torus extends to an action on \tilde{Y} (which is the restriction of the action of T_{X} on X). Therefore, \tilde{Y} must be an affine torus variety, too, i.e. we obtain $Y=\tilde{Y}$. This completes the proof of the theorem.

4 Cones with simplicial faces only

(4.1) We use the notations of (2.3).

Let $\sigma \subseteq N_{\boldsymbol{R}}$ be a cone such that for all good faces $\tau<\sigma$ the conditions (i) and (ii) of the theorem (2.5) are fulfilled. This means a very strong restriction to the form of σ, and we want to determine all abstract cones (i.e. their structure is reduced to the incidence relation between all faces) that can appear in this way.

Remark: Each n-dimensional σ is a cone over a compact, convex polyhedron P_{σ} of dimension $n-1$. This polyhedron yields the same incidence relations as σ; it can be recovered by intersection of σ with a suitable affine hypersurface in $N_{\boldsymbol{R}}$.
Sometimes (in particular for $n=4$) it is useful to imagine this polyhedron P_{σ} instead of σ itself. According to this, the fundamental generators of σ were often called vertices also.
(4.2) For the rest of this chapter we make the following assumption:

Let σ be a cone such that all proper faces are simplicial ones. That means the corresponding toric variety $X=$ Spec $\mathbb{C}[\stackrel{\vee}{\sigma} \cap M]$ contains at most cyclic quotient singularities outside $0 \in X$.

Definition: For top dimensional faces $\tau_{1}, \tau_{2}<\sigma$ we define

$$
\begin{aligned}
\varrho\left(\tau_{1}, \tau_{2}\right) & :=(n-1)-\operatorname{dim}\left(\tau_{1} \cap \tau_{2}\right) \\
& =\#\left\{\text { vertices of } \tau_{1} \text { that do not belong to } \tau_{2}\right\} \\
& =\#\left\{\text { vertices of } \tau_{2} \text { that do not belong to } \tau_{1}\right\} .
\end{aligned}
$$

Lemma:

1) $0 \leq \varrho\left(\tau_{1}, \tau_{2}\right) \leq n-1$.
2) $\varrho\left(\tau_{1}, \tau_{2}\right)=0 \Longleftrightarrow \tau_{1}=\tau_{2}$;
$\varrho\left(\tau_{1}, \tau_{2}\right)=1 \Longleftrightarrow \tau_{1}$ and τ_{2} are adjacent.
3) If τ_{1} and τ_{2} are connected by a path meeting only $k(n-2)$-dimensional faces of σ but no faces of smaller dimension, then $\varrho\left(\tau_{1}, \tau_{2}\right) \leq k$.
4) Let $K=\left\{\tau_{i}\right\}$ be a set of top dimensional faces such that any two faces of K are adjacent to each other. Then, if a face $\tau<\sigma$ is adjacent to two faces of K, τ is adjacent to all faces of K.
5) Let $\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ and $\left\{\varphi_{1}, \ldots, \varphi_{\ell}\right\}(k, \ell \geq 2)$ be two sets of top dimensional faces such that $\varrho\left(\tau_{i}, \varphi_{j}\right)=1$ for all pairs $[i, j]$. Then there are only two possible cases:
a) $k=\ell=2 ; \quad \varrho\left(\tau_{1}, \tau_{2}\right)=\varrho\left(\varphi_{1}, \varphi_{2}\right)=2, \quad$ or
b) $\varrho\left(\tau_{i}, \tau_{j}\right)=1, \quad \varrho\left(\varphi_{i}, \varphi_{j}\right)=1 \quad$ for all possible pairs $[i, j]$.
(In particular, if σ is not a simplex, (b) implies $k+\ell \leq n-1$!)
The proof is easy and will be omitted here.
(4.3) We start our investigations by regarding (as a first case) the following class of cones σ :

Assume that there exist (top dimensional) faces τ_{L} and τ_{R} such that $\varrho\left(\tau_{L}, \tau_{R}\right) \geq 3$.

Then the sets of all faces that are adjacent to τ_{L} and τ_{R}, respectively, have no common elements. The cone σ must contain at least $2 n$ various faces:

(Each fat point represents a face; the edges between two of these fat points mean that both faces are adjacent ones.)

The faces τ_{L} and τ_{R} have the following form:

$$
\tau_{L}=<A, B, C, \tau_{L} \cap \tau_{R}, \ldots>; \quad \tau_{R}=<P, Q, R, \tau_{L} \cap \tau_{R}, \ldots>
$$

$(A, B, C, P, Q, R \in \sigma$ are vertices, and the points "..." can be omitted, iff $\varrho\left(\tau_{L}, \tau_{R}\right)=3$).

For any vertex $X \in \tau_{\bullet}$ we denote by (X) the adjacent face of τ_{\bullet} that does not contain X. Using this language, the faces $(A),(B),(C)$ are the only possible adjacencies of τ_{L} for $\varrho\left(., \tau_{R}\right) \leq 2($ analog $(P),(Q),(R)$ on the right-hand side) .

Therefore, we define the following sets:

$$
\begin{aligned}
& B_{L}:=\left\{\tau_{L} ; \text { adjacencies of } \tau_{L} \text { that contain } A, B \text { and } C\right\} ; \\
& B_{R}:=\left\{\tau_{R} ; \text { adjacencies of } \tau_{R} \text { that contain } P, Q \text { and } R\right\} .
\end{aligned}
$$

Claim: B_{L} and B_{R} admit the following properties:

1) $\# B_{L}=\# B_{R}=n-3$.
2) There exists a bijection $\Phi: B_{L} \backslash\left\{\tau_{L}\right\} \xrightarrow{\sim} B_{R} \backslash\left\{\tau_{R}\right\}$ such that
(i) $\varrho(\tau, \Phi(\tau)) \geq 2$ for each $\tau \in B_{L} \backslash\left\{\tau_{L}\right\}$, and
(ii) $\varrho(.,) \geq$.3 for the remaining pairs of $B_{L} \times B_{R}$.
(In particular, $\varrho\left(\tau_{L}, B_{R}\right) \geq 3$ and $\varrho\left(B_{L}, \tau_{R}\right) \geq 3$.)
Proof: If $\varrho\left(\tau_{L}, \tau_{R}\right) \geq 4$, then there exists at most one pair $\left[\tau_{1}, \tau_{2}\right] \in B_{L} \times B_{R}$ such that $\varrho\left(\tau_{1}, \tau_{2}\right) \leq 2$.
For $\varrho\left(\tau_{L}, \tau_{R}\right)=3$, we can define Φ as $\Phi:(S) \mapsto(S)$ for vertices $S \in \tau_{L} \cap \tau_{R}$:
Let $\tau_{1} \in B_{L}$, let $\tau_{2}=(S) \in B_{R} \backslash\left\{\tau_{R}\right\}\left(S\right.$ is a vertex of $\left.\tau_{L} \cap \tau_{R}\right)$. Then, $A, B, C \in \tau_{1}$, but at most one of these vertices belongs to τ_{R}. Hence, $\varrho\left(\tau_{1}, \tau_{2}\right) \leq 2$ implies that S cannot be contained in the face τ_{1}, too, i.e. $\tau_{1}=(S)$.
(4.4) Proposition: Let σ be a cone such that all proper faces are simplicial ones. Assume that there exist (top dimensional) faces τ_{L} and τ_{R} such that $\varrho\left(\tau_{L}, \tau_{R}\right) \geq 3$.
Then, for $2 \leq m \leq n-3, \sigma$ cannot meet the condition of theorem (2.5).

Proof: Otherwise we would be in the situation of (4.1) - (4.3). Then, we distinguish between two cases:
$1^{\text {st }}$ case: $\quad B_{L} \subseteq R$
At most $2 m-(n-3) \leq m$ elements of R can sit at the right-hand side of our picture in (4.3). Hence, the remaining (at least three) faces have to be good ones that admit all the same set $R \backslash B_{L}$ of R-neighbours. This fact contradicts to (5) of lemma (4.2).
$2^{n d}$ case: τ_{L}, τ_{R} are good faces.
(After renaming we can assume that τ_{L} is a good face. Because the first case cannot happen even for the right-hand side, there must be another good face $\tau \in B_{R}$. Since $\varrho\left(\tau_{L}, \tau\right) \geq 3$ we can rename the faces once more to obtain $\tau=\tau_{R}$.)

Case (2.1): $\quad B_{L} \backslash\left\{\tau_{L}\right\} \subseteq R ; \quad B_{R} \backslash\left\{\tau_{R}\right\} \subseteq R$.
Then, each good face at the left-hand side admits at least one R-neighbour at the right-hand side.
(Otherwise, there would be a good face τ adjacent to τ_{L} such that τ and τ_{L} admit the same set of R-neighbours. Again by the lemma (4.2)(5), the faces τ, τ_{L} and all these R-neighbours would be adjacent to each other, and so would all other left-hand faces admitting at least one left-hand R-neighbour (cf. lemma (4.2)(4)).
Hence, there had to exist a good face adjacent to τ_{L} that admits right-hand R neighbours only, but this would imply $m \leq 1$.)

Only $m=n-3$ is still possible, and we can assume the following situation:

$$
\begin{gathered}
(A),(P) \in R, \quad \text { but }(B),(C),(Q),(R) \text { are good faces; } \\
\varrho((A),(Q))=\varrho((A),(R))=\varrho((B),(P))=\varrho((C),(P))=1 .
\end{gathered}
$$

This implies $P \in(A) ; P \notin(B),(C)$, hence, $\varrho((A),(B)), \varrho((A),(C)) \geq 2$. Therefore, (B) and (C) have $B_{L} \backslash\left\{\tau_{L}\right\}$ as common set of R-neighbours, i.e. (B) and (C) have to be adjacent.
We can apply lemma (4.2) again:
$\varrho\left(\tau_{L},(B)\right)=\varrho\left(\tau_{L},(C)\right)=\varrho((B),(C))=\varrho((B),(P))=\varrho((C),(P))=1$ would imply $\varrho\left(\tau_{L},(P)\right)=1$ but this means a contradiction.

Case (2.2): \quad There are good faces $\tau_{L}, \tau \in B_{L} ; \tau_{R} \in B_{R}$.
From τ_{L} and τ having the same R-neighbours we can derive the existence of a lefthand good face ψ that admits the same R-neighbours as τ_{R} (cf. the beginning of case (2.1)). In particular, $m=2$ and these two right-hand R-neighbours have to be outside B_{R}.
Hence, B_{R} consists of good faces only. We have found $n-2$ faces (B_{R} and ψ) admitting the same two R-neighbours, which is a contradiction because of lemma (4.2).
(4.5) As a next step we will investigate the case $2 \leq m=n-2$. In this situation, the property (ii) (cf. theorem (2.5)) of good faces implies
(ii)' There exist not only $m=n-2$ but $m+1=n-1 R$-neighbours.
(ii)" If $\# R=2 m=2 n-4$, then there is an element $s \in R$ (different from the $n-1$ R-neighbours) that intersects the good face τ in an $(n-3)$-dimensional edge, i.e. $\varrho(\tau, s) \leq 2$.

Proposition: Let σ be a cone such that all proper faces are simplicial ones. Assume that there exist (top dimensional) faces τ_{L} and τ_{R} such that $\varrho\left(\tau_{L}, \tau_{R}\right) \geq 3$.
Then, for $2 \leq m=n-2, \sigma$ cannot meet the condition of theorem (2.5).

Proof: As in the proof of the last proposition, we assume that σ would meet this condition.
Obviously, τ_{L} and τ_{R} cannot be good faces simultaneously (each of them had to have $n-1$ neighbours from a set with at most $2 n-4$ elements). Hence, by the same arguments as in the proof of the previous proposition, we may assume $B_{L} \subseteq R$.

The right-hand side contains at most $(2 n-4)-(n-3)=n-1$ faces of R, i.e. at least one face τ is left to be good. On the other hand, more than or equal to two good faces at the right-hand side would admit the same set $R \backslash B_{L}$ of R-neighbours, and this would be a contradiction because of lemma (4.2).
Hence, the right-hand side consists exactly of τ and its $n-1 R$-neighbours. This fact implies $\tau=\tau_{R}$, and we obtain the contradiction by missing the announced element $s \in R$ for the good face τ_{R} (cf. (ii)" at the beginning of (4.5)).
(4.6) In the case $m=1$ there are two positive examples. The set $R=\left\{r_{0}, r_{1}\right\}$ consists of two top dimensional faces that have no common vertex:
(I) The octahedron ($m=1 ; n=4$)

(cf. (5.1)).

(II) The tent ($m=1 ; n=4$)

(cf. (5.2)).
Proposition: Let σ be a cone such that all proper faces are simplicial ones. Assume that there exist (top dimensional) faces τ_{L} and τ_{R} such that $\varrho\left(\tau_{L}, \tau_{R}\right) \geq 3$.
Then, for $1=m \leq n-2$, the above two examples are the only ones such that σ can meet the condition of theorem (2.5).

Proof: Each face of σ has to be adjacent either to r_{0} or r_{1}. In particular, σ consists of exactly $2 n$ faces, and r_{0}, r_{1} are two of them.
By lemma (4.2)(1) we obtain $n \geq 4$.
Claim: $\quad \tau_{R}$ is the only face of σ such that $\varrho\left(\tau_{L},.\right) \geq 3$.
(Let $\tau<\sigma$ such that $\varrho\left(\tau_{L}, \tau\right) \geq 3$. Then, the set of all top dimensional faces of σ can be written as a disjoint union in two different ways:

$$
\begin{aligned}
\left\{\tau_{L} \text { and its neighbours }\right\} & \Perp\left\{\tau_{R} \text { and its neighbours }\right\}=\{\text { faces of } \sigma\}= \\
& =\left\{\tau_{L} \text { and its neighbours }\right\} \Perp\{\tau \text { and its neighbours }\} .
\end{aligned}
$$

Hence, $\left\{\tau_{L}\right.$ and its neighbours $\}=\{\tau$ and its neighbours $\}$, and this implies $\tau_{L}=\tau$.)
In particular, the set B_{R} consists of the single element τ_{R} only. That means $n=4$, and we obtain the following picture:

The two examples described above arise from the following two cases:
(I) The sets $\{(A),(B),(C)\}$ and $\{(P),(Q),(R)\}$ both do not contain any pair of adjacent faces.
(II) $\varrho((A),(B))=1$.
(4.7) Lemma: Let σ be an n-dimensional cone ($n \geq 4$) such that all proper faces are simplicial ones. Then, the following three statements are equivalent:
(1) $\varrho(.,) \leq$.2 ;
(2) σ admits at most $n+1$ vertices;
(3) $\stackrel{\vee}{\sigma}$ is equal to the cone over $\Delta^{k} \times \Delta^{n-k-1}$ for a suitable $k=0, \ldots,\left[\frac{n-1}{2}\right]$. (Δ^{i} denotes the i-dimensional, compact simplex.)

Proof: Assume $\varrho(.,) \leq$.2 . We will deal with the compact polyhedron P_{σ} instead of σ (cf. (4.1)) and have to introduce some notations:
choose a top dimensional face I that will be regarded as basic face of P_{σ}. The vertices of I will be represented by the integers from 1 to $n-1: I=<1, \ldots, n-1\rangle$. Let $A=\left\{a^{1}, \ldots, a^{N}\right\}$ be the set of the remaining vertices (not contained in I) of the polyhedron P_{σ}.

Then, the faces of P_{σ} split into only two different types:
type 1: $[i, a(i)]:=<1, \ldots, \hat{i}, \ldots, n-1 ; a(i) \in A>$,
and $a:\{1, \ldots, n-1\} \rightarrow A$ becomes a map which is constant iff σ is equal to a simplex.
type 2: $[i, j ; a, b]:=<1, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n-1 ; a, b \in A>$,
but the elements $a, b \in A$ are not uniquely determined by giving the pair $[i, j]$. It is even possible that there does not exist any face of this type for given i, j.

For each pair $i, j \in I$ we define a non-oriented graph $G(i, j)$ with its set of vertices contained in A as follows:

$$
\overline{a b} \text { is an edge in } G(i, j) \text {, iff }[i, j ; a, b] \text { is a face of } \sigma \quad(a, b \in A)
$$

We obtain the following properties:
(i) If $a(i)=a(j)$, then there is no face of the form $[i, j ; a(i),$.$] .$
(ii) If $a(i) \neq a(j)$, then there exists exactly one element $b \in A$ such that $[i, j ; a(i), b]$ is a face of σ.
(iii) Let $a \neq a(i), a(j)$. Then, the number of faces $[i, j ; a,$.$] of \sigma$ is either 0 or 2 .

Consequences for the graph $G(i, j): \quad G(i, j)$ is the disjoint union of
a) a path from $a(i)$ to $a(j)$ that does not contain any loop (in particular, it is empty if $a(i)=a(j))$ and
b) possibly some loops that do not contain $a(i), a(j)$.
(iv) Let $i, j, k \in I ; a, b \in A$. Then, the number of σ-faces among $[i, j ; a, b],[j, k ; a, b]$ and $[i, k ; a, b]$ is either 0 or 2 .
[That means that the edge $\overline{a b}$ appears in either 0 or 2 of the graphs $G(i, j)$, $G(j, k)$, or $G(i, k)$.]
(v) Let $i, j, k \in I$ be three different elements. Then, for each face $[i, j ; a, b]$, either $a=a(k)$ or $b=a(k)$ has to be true.
[The graph $G(i, j)$ is star shaped with $a(k)$ as its centre.]
(vi) Let $i, j, k \in I$ be three different elements. If $[i, j ; a, b]$ and $[j, k ; c, d]$ are faces of σ, then the sets $\{a, b\}$ and $\{c, d\}$ have at least one common element.
[Any two edges of $G(i, j)$ and $G(j, k)$, respectively, have at least one common vertex.]
(vii) Let $i, j, k, \ell \in I$ be four different elements. If $[i, j ; a, b]$ and $[k, \ell ; c, d]$ are faces of σ, then the sets $\{a, b\}$ and $\{c, d\}$ are equal.
[If $G(i, j), G(k, \ell)$ are not empty, both graphs coincide and consist of a single edge only.]
(viii) If σ is not a simplex, then for each element $a \in A$ there exists a face of the form [.,.; $a,$.$] .$
[Each element of the set A appears as a vertex in some graph $G(i, j)$.]
The proofs of (i) - (viii) are easy; they result from three basic ideas:
regard a suitable ($n-2$)-dimensional face of σ (i.e. a ($n-3$)-dimensional face of P_{σ}) and use the fact that it is always the intersection of exactly two top dimensional faces ((i) - (iv)).
(v) - (vii): If the claim would not be true, the corresponding faces would differ in more than two vertices (regard $[k, a(k)]$ in (v)).
In (viii), the dual statement is trivial: Let $P \in \sigma$ be a vertex that is not contained in a top dimensional face F. Then, there exists another top dimensional face \tilde{F} not containing P such that F and \tilde{F} have contact of codimension 1.

Now, we can use the properties (i) - (iii) and (v) to obtain the following description of the graphs $G(i, j)$:

1) $a(i)=a(j)$ iff $G(i, j)=\emptyset$.
2) If $a(i) \neq a(j)$, then there are two possibilities:
a) $G(i, j)=\{$ edge $\overline{a(i) a(j)}\}$ and $a(k) \in\{a(i), a(j)\}$ for each $k \neq i, j$, or
b) $G(i, j)=\{$ edges $\overline{a(i) b}, \overline{a(j) b}\}$ and $a(k)=b$ for each $k \neq i, j$.

In particular, if σ is not a simplex, $N=\# A$ can be equal to 2 or 3 only; we will consider these two cases separately:

Case $N=3$: Each non-empty graph $G(i, j)$ has to be of the form that is described in (b). Hence, the map $a:\{1, \ldots, n-1\} \rightarrow A$ is surjective, and we can assume the following situation:

$$
\begin{aligned}
n & =4 ; \quad A=\{a, b, c\} \\
a(1) & =a, \quad a(2)=b, \quad a(3)=c ; \\
G(1,2) & =\{\overline{a c}, \overline{b c}\}, \quad G(1,3)=\{\overline{a b}, \overline{b c}\}, \quad G(2,3)=\{\overline{a b}, \overline{a c}\} .
\end{aligned}
$$

On the other hand, such a polyhedron P_{σ} cannot exist by the Euler polyhedron formulae (notice the equation $2 \cdot \#$ (edges) $=3 \cdot \#$ (faces) because of P_{σ} having simplicial faces only).

Case $N=2$: We change our notation slightly:
Let $A=\left\{A_{0}, B_{0}\right\}$ and
$I=\left\{A_{1}, \ldots, A_{k} ; B_{1}, \ldots, B_{n-k-1}\right\} \quad\left(1 \leq k \leq\left[\frac{n-1}{2}\right]\right) \quad$ such that $a\left(A_{i}\right)=A_{0} \quad$ and $\quad a\left(B_{j}\right)=B_{0}$.
Then, we obtain the following graphs:

$$
\begin{aligned}
& G\left(A_{i}, A_{j}\right)=G\left(B_{i}, B_{j}\right)=\emptyset \\
& G\left(A_{i}, B_{j}\right)=\left\{\text { edge } \overline{A_{0} B_{0}}\right\} .
\end{aligned}
$$

In particular, P_{σ} consists of the top dimensional faces

$$
\begin{gathered}
S_{i j}:=<A_{0}, \ldots, \hat{A}_{i}, \ldots, A_{k} ; B_{0}, \ldots, \hat{B}_{j}, \ldots, B_{n-k-1}> \\
(i=0, \ldots, k ; j=0, \ldots, n-k-1)
\end{gathered}
$$

only, i.e. P_{σ} is the polyhedron that is dual to $\Delta^{k} \times \Delta^{n-k-1}$.
(4.8) We are looking for cones σ that are able to meet the condition of theorem (2.5). By the previous lemma, only the investigation of the polyhedra $P_{\sigma}=\left(\Delta^{k} \times \Delta^{n-k-1}\right)^{v}\left(k=0, \ldots,\left[\frac{n-1}{2}\right]\right)$ is left. (The case $n=3$ (and $m=1$) is integrated, since only triangles and quadrangles are candidates for squeezing.)

Cones over $\left(\Delta^{k} \times \Delta^{n-k-1}\right)^{v}$ have the following form:

$$
\begin{aligned}
\sigma= & \left.<a^{0}, \ldots, a^{k} ; b^{0}, \ldots, b^{n-k-1}\right\rangle ; \\
(\nu, \mu):= & \left\langle a^{0}, \ldots, \hat{a}^{\nu}, \ldots, a^{k} ; b^{0}, \ldots, \hat{b}^{\mu}, \ldots, b^{n-k-1}\right\rangle \quad \text { are the top dimensional } \\
& \text { faces of } \sigma \quad(\nu=0, \ldots, k ; \mu=0, \ldots, n-k-1) .
\end{aligned}
$$

These faces are illustrated as vertices of a lattice:

Then, $\varrho((\nu, \mu) ;(\tilde{\nu}, \tilde{\mu}))=1$ means that the points (ν, μ) and $(\tilde{\nu}, \tilde{\mu})$ sit in a common line (either row or column).

Lemma: Let σ meet the condition of theorem (2.5). If r denotes the cardinality of $R=\left\{\left(r_{0}^{1}\right)^{\perp}, \ldots,\left(r_{0}^{m}\right)^{\perp} ;\left(r_{1}^{1}\right)^{\perp}, \ldots,\left(r_{1}^{m}\right)^{\perp}\right\}$ (cf. (2.5)), then the following inequality is true:

$$
(n+m+1) r \geq(k+1)(n-k) m+\max \left\{r, \frac{r^{2}}{n+1}\right\}+\max \left\{r, \frac{r^{2}}{n-k}\right\}
$$

(If R does not contain top dimensional faces only, then correct the definition of r as follows: replace all faces of dimension less or equal than $n-2$ by one of the enclosed ($n-1$)-dimensional ones.)

Proof: We may assume that R consists of top dimensional faces only. (Otherwise, the changes suggested above have to be done, but the conditions (i) and (ii) of (2.5) still keep true.)
Now, we look at the "face lattice" drawn above and count the number of R-faces sitting in each row and column, respectively:

$$
\begin{array}{rlrl}
s_{\nu} & :=\#\left(R \cap \nu^{\text {th }} \text { line }\right) & & (\nu=0, \ldots, k) \\
t_{\mu}:=\#\left(R \cap \mu^{\text {th }} \text { column }\right) & & (\mu=0, \ldots, n-k-1) .
\end{array}
$$

These two numbers admit the following properties:

1) $\sum_{\nu=0}^{k} s_{\nu}=r ; \quad \sum_{\mu=0}^{n-k-1} t_{\mu}=r$.
2) If $(\nu, \mu) \notin R$, then $s_{\nu}+t_{\mu} \geq m$ (by (ii) of (2.5)).
3) $\sum_{(\nu, \mu) \in R} s_{\nu}=\sum_{\nu=0}^{k}\left(\#\{(\nu,.) /(\nu,.) \in R\} \cdot s_{\nu}\right)=\sum_{\nu=0}^{k} s_{\nu}^{2}$;

$$
\sum_{(\nu, \mu) \in R} t_{\mu}=\sum_{\mu=0}^{n-k-1} t_{\mu}^{2}
$$

Hence, we obtain

$$
\begin{aligned}
(n+1) r & =(n-k) \sum_{\nu=0}^{k} s_{\nu}+(k+1) \sum_{\mu=0}^{n-k-1} t_{\mu}=\sum_{(\nu, \mu)}\left(s_{\nu}+t_{\mu}\right)= \\
& =\sum_{(\nu, \mu) \notin R}\left(s_{\nu}+t_{\mu}\right)+\sum_{(\nu, \mu) \in R}\left(s_{\nu}+t_{\mu}\right) \\
& \geq[(k+1)(n-k)-r] m+\sum_{\nu=0}^{k} s_{\nu}^{2}+\sum_{\mu=0}^{n-k-1} t_{\mu}^{2} .
\end{aligned}
$$

Finally, $\sum_{\nu} s_{\nu}^{2}$ (and $\sum_{\mu} t_{\mu}^{2}$) can be estimated in two different ways:
a) $s_{\nu}^{2} \geq s_{\nu}$ provides $\sum_{\nu} s_{\nu}^{2} \geq \sum_{\nu} s_{\nu}=r$, and
b) $\sqrt{\frac{1}{k+1} \sum_{\nu} s_{\nu}^{2}} \geq \frac{1}{k+1} \sum_{\nu} s_{\nu}$ implies $\sum_{\nu} s_{\nu}^{2} \geq \frac{r^{2}}{k+1}$.

Remark:

1) The inequality of the lemma could be improved by finding a better estimation for $\left(\sum_{\nu} s_{\nu}^{2}+\sum_{\mu} t_{\mu}^{2}\right)$.
2) If (n, k, m, r) satisfies not only the inequality but also the sharp version $(n+m+1) r=(k+1)(n-k) m+\frac{r^{2}}{k+1}+\frac{r^{2}}{n-k}$, then the values of s_{0}, \ldots, s_{k} and t_{0}, \ldots, t_{n-k-1} have to be equal, respectively.
In particular, r has to be divisible by $k+1$ and $n-k$.
3) In the case $m=n-2$ we are able to use (ii)' of (4.5) instead of (ii) of (2.5). In particular, m can be replaced by $m+1$, and we obtain the following inequality:

$$
2 n r \geq(k+1)(n-k)(n-1)+\max \left\{r, \frac{r^{2}}{k+1}\right\}+\max \left\{r, \frac{r^{2}}{n-k}\right\} .
$$

Corollary: Only few possiblities for σ remain:
a) $k \leq 1$, or
b) $k=2 ; n=5,6,7,8$, or
c) $k=3 ; n=7$.

Proof: Denote $q:=(k+1)(n-k)$. Then, $k \geq 2$ implies $q>r$, and we obtain the following inequalities:

$$
\begin{aligned}
(n+1) r & \geq(q-r) m+\frac{r^{2}}{k+1}+\frac{r^{2}}{n-k} \geq(q-r) \frac{r}{2}+\frac{r^{2}}{n+1}+\frac{r^{2}}{n-k}, \\
2 q(n+1) r & \geq q(q-r) r+2((n-k)+(k+1)) r^{2}, \\
2 q(n+1) & \geq q(q-r)+2(n+1) r, \\
2(n+1)(q-r) & \geq q(q-r), \quad \text { and this means } \\
2(n+1) & \geq q .
\end{aligned}
$$

Therefore, the inequalities $q \geq 3(n-2)$ (for $k \geq 2$) and $q \geq 4(n-3)$ (for $k \geq 3$) provide the restrictions $n \leq 8$ and $n \leq 7$, respectively.
(4.9) The investigation of the remaining cases has to be more careful now. We still assume that R consists of top dimensional faces only and recall the essential part of theorem (2.5) (applied to the special case $\left.P_{\sigma}=\left(\Delta^{k} \times \Delta^{n-k-1}\right)^{\vee}\right)$:

1) R consists of m pairs of faces of σ (but these pairs need not to be disjoint ones).
2) Given a good face $\tau<\sigma$ (i.e. $\tau \notin R$) it is possible to introduce an order of both, the set of pairs in R on the one hand, and the elements of each pair on the other hand: R consists of $\left(r_{0}^{1}, r_{1}^{1}\right), \ldots,\left(r_{0}^{m}, r_{1}^{m}\right)$.
These orders (that depend on the choice of τ) admit the following properties:
a) The faces $r_{0}^{1}, \ldots, r_{0}^{m}$ correspond to m distinct fat points sitting in the same line (row or column) as τ (cf. the picture at the beginning of (4.8)).
b) For $i=1, \ldots, m$, the line that contains r_{0}^{i} but not τ does not pass through any of the fat points $r_{1}^{i}, r_{1}^{i+1}, \ldots, r_{1}^{m}$.

Case $k \geq 2$: 13 quadruples (n, k, m, r) (such that $k \leq\left[\frac{n-1}{2}\right], 1 \leq m \leq n-2$ and $m+1 \leq r \leq 2 m)$ are left by the inequality of the previous lemma ((2) and (3) of the added remark included):

$$
\left.\begin{array}{llll}
(5,2,1,2) ; & (5,2,2,3) ; & \bullet & \bullet \\
(5,2,2,4) ;(5,2,3,6) & \bullet & \bullet & \bullet \\
& \bullet & \bullet & \bullet \\
\\
(6,2,1,2) ; & (6,2,2,4) ; & \bullet & \bullet \\
(6,2,3,6) & \bullet & \bullet \\
\left.\left(\Delta^{2} \times \Delta^{2}\right)^{\vee}\right)
\end{array}\right)
$$

After checking the above conditions (1), (2a) and (2b) in each of these 13 cases, the only quadruple that survives is $(5,2,2,3)$. Hence, we are able to continue our positive list started in (4.6):
(III) The super triangle $P_{\sigma}=\left(\Delta^{2} \times \Delta^{2}\right)^{\vee} \quad(n=2, n=5)$

Case $k=1$: $\quad P_{\sigma}=\left(\Delta^{1} \times \Delta^{n-2}\right)^{\vee}$ admits the following lattice of top dimensional faces:

Applying the conditions (1), (2a) and (2b) to this special situation, we obtain:

- There exist good faces in each of the two lines.
- Each line contains exactly one element of each R-pair. We number these pairs and denote their elements by r^{i} and s^{i} (sitting in the upper or lower line, respectively).
- $r=2 m$.
(If this would not be the case, we would be able to assume $r^{1}=r^{2}$. Then, the condition (2a) would imply that there had to be an arrangement of faces of the form $\left(\begin{array}{ccc}x & r^{1}=r^{2} & x \\ s^{1} & ? & s^{2}\end{array}\right)($ " x " denotes a good face), but this contradicts (2b).)
- If we would draw edges between both elements of each R-pair on the one hand and between any two elements of R that are contained in the same column on the other hand, then no loops are allowed to arise.
(That means, constellations as $\left.\right|_{s^{2}} ^{r^{1}} \underbrace{r^{2}}_{s^{3}}<\left.\right|_{s^{1}} ^{r^{3}}$ or $\|_{s^{1}}^{r^{1}}$ are forbidden.)
These conditions lead to the following class of squeezable cones:

$(I V)_{P_{1}, \ldots, P_{\ell}}$ The double simplex

$P_{\sigma}^{\vee}=\left(B_{p_{1}}, \ldots, B_{p_{\ell}}\right)$ is built up from blocks of the form
$B_{p}:=\left({ }_{s^{1}}^{x} \int_{s^{2}}^{1} \int_{s^{3}}^{2} / \ldots \int_{s^{p}}^{p-1}{ }_{x}^{r^{p}}\right)(p \geq 0 ; " x "$ denotes a good face $)$.
Therefore, $\sum_{i=1}^{\ell} p_{i}=m$ and $m+\ell=\sum_{i=1}^{\ell}\left(p_{i}+1\right)=n-1$; also we can asume
that $0 \leq p_{1} \leq \cdots \leq p_{\ell}$ is true.
(4.10) We still regard the polyhedron $P_{\sigma}=\left(\Delta^{k} \times \Delta^{n-k-1}\right)^{v}$. But now, we want to omit the restriction that R is allowed to contain top dimensional faces only.

If $K \in R$ is an ($n-2$)-dimensional face of a squeezable cone σ (and we also will assume that it is the only member of R being not of dimension $n-1$), then, in (4.8) and (4.9) K has been replaced by one of the two top dimensional faces containing this edge: R changes to R^{\prime}, and ($\sigma ; R^{\prime}$) remains squeezable (at least in the sense of (2.5)).

Let $r^{i} \in R^{\prime}$ be the face that arises from $K \in R$. Then, $\left(\sigma, R^{\prime}\right)$ must belong to one of the two classes (III) or (IV) $)_{p_{1}, \ldots, p_{\ell}}$, and the following additional properties have to be satisfied:

- Replacing r^{i} by the other top dimensional face that contains K, the result still has to belong to the classes (III) or (IV), respectively.
- There exists almost one good face τ of $\left(\sigma ; R^{\prime}\right)$ that requires r^{i} to be its R neighbour of the $i^{\text {th }}$ pair. Then, K has to be the edge connecting both faces, τ and r^{i}.
- Let α be a good face such that K has to play the role of r_{1}^{i} in $(\sigma ; R)$. Then, in $\left(\sigma ; R^{\prime}\right)$ not only r^{i} but also τ satisfies the condition for r_{1}^{i} described in (2b) of (4.9).

If R contains more than one ($n-2$)-dimensional face we can proceed inductively: Step by step (in an arbitrary order) these faces can be changed into top dimensional ones - the whole system always keeps squeezable.

Having all this in mind, the following two additional classes of squeezable cones will be obtained:
$(I V)_{p, q}^{1}$ The double simplex (with a single edge)
$P_{\sigma}^{\vee}=\left(\begin{array}{c|c|c}x & B_{p} & B_{q} \\ s^{1}\end{array}\right)$, and $r^{1} \in R$ equals the $(n-2)$-dimensional edge
between the two upper good faces of B_{p} and B_{q}, respectively. ($p, q \geq 0$;
$p+q=m-1=n-4$. We also assume $p \leq q$.)
$(I V)_{p, q}^{2}$ The double simplex (with two edges)
$P_{\sigma}^{\vee}=\left(\begin{array}{c|c|c|c}x & B_{p} & B_{q} & r^{m} \\ s^{1} & x^{2} & x^{2}\end{array}\right)$, and $r^{1} \in R\left(s^{m} \in R\right)$ equals the $(n-2)$ dimensional edge between the two upper (lower) good faces of B_{p} and B_{q}, respectively.
($p, q \geq 0 ; p+q=m-2=n-5$. We also assume $p \leq q$.)

Remark: If R contains an edge ℓ of dimension less than $n-2$, then the condition of theorem (2.5) cannot be satisfied:
Otherwise we could replace ℓ by an enclosed edge of dimension $n-2$, and the whole set up would "factorize" through (IV) $)_{p, q}^{1}$. But, in this class, the edge r^{1} is needed to be the R -neighbour of two good faces, i.e. it can not be replaced by a smaller one.
(4.11) In the last two sections we have regarded the polyhedra $P_{\sigma}=\left(\Delta^{k} \times\right.$ $\left.\Delta^{n-k-1}\right)^{\vee}$ with $k \geq 1$. Therefore, only one class of cones remains to be mentioned:

(V) The simplex

$$
\sigma<a^{1}, \ldots, a^{n}>; \quad 1 \leq m \leq n-2 .
$$

Remark: As in the previous cases it remains to classify the possible constellations of R-elements in this class also. But, because of the absence of sufficient good faces, to carry out this task seems to be very stupid and will be omitted here.
(4.12) In this chapter we have proved the following statement:
let $i: Y_{\bar{\sigma}} \hookrightarrow X_{\sigma}$ be a closed embedding of two affine torus varieties that is a relative complete intersection (cf. chapter 2). If, moreover, $Y_{\bar{\sigma}} \backslash\{0\}$ is smooth and $X_{\sigma} \backslash\{0\}$ admits at most cyclic quotient singularities (i.e. the cone σ consists of simplicial faces only), then for σ together with the equations $x^{r_{0}^{i}}-x^{r_{1}^{i}}(i=1, \ldots, m$; $\left.r_{\nu}^{i} \in \check{\sigma} \cap M\right)$ there are only the possibilities (I) - (V) described above.

In the next chapter we will complete our work for the classes (I) - (III): all squeezable cones will be classified not only as abstract cones, but up to automorphisms of the lattice N. Moreover, we will characterize those (3-dimensional) isolated toric singularities that can appear in this way.
The classes (IV) and (V) consist of the simplest cones one can think about - but there are many different cases for the arrangement of the R-neighbours belonging to each good face. We omit further investigations here (cf. chapter 6 for the special cases $m=n-2 ; n=3,4$), but it seems to be quite interesting to keep these cases in mind:
for instance, the whole series of cones over scrolls (given by the determinantic equations

$$
\left.\operatorname{det}\left(\begin{array}{cccccccccc}
x_{10} & x_{11} & & x_{1 k_{1}-1} & x_{20} & x_{21} & & x_{2 k_{2}-1} & & x_{\ell k_{\ell}-1} \\
& & \ldots & & & & \ldots & & \cdots & \\
x_{11} & x_{12} & & x_{1 k_{1}} & x_{21} & x_{22} & & x_{2 k_{2}} & & x_{\ell k_{\ell}}
\end{array}\right)=0 \quad\right)
$$

is hidden in class (IV).

5 The hexagon singularities

The classes (I) - (III) of squeezable cones (cf. (4.6) and (4.9)) provide 3-dimensional toric singularities that are given by cones over a hexagon. Now, by using theorem (2.4) we will describe these cases in detail:

$<A, B, X>$ is a good face. In particular, it is smooth, and we can assume

$$
A=(1,0,0,0) ; \quad B=(1,1,0,0) ; \quad X=(1,0,1,0) .
$$

Hence, $\left.\left\langle A, r_{0}\right\rangle=<X, r_{0}\right\rangle=0$ and $\left\langle B, r_{0}\right\rangle=1$ imply $r_{0}=[0,1,0, *]$, and we can choose our coordinates of N in such a way that $r_{0}=[0,1,0,0]$.

Now, by the properties of good faces or simply by incidence relations only, we obtain the following equations:

$$
\begin{aligned}
& \left\langle a, r_{0}\right\rangle=\left\langle B, r_{1}\right\rangle=\left\langle b, r_{1}\right\rangle=\left\langle Y, r_{1}\right\rangle=0 ; \\
& \left.\left.\left.\left\langle b, r_{0}\right\rangle=\left\langle Y, r_{0}\right\rangle=<A, r_{1}\right\rangle=<a, r_{1}\right\rangle=<X, r_{1}\right\rangle=1 .
\end{aligned}
$$

In particular, that means $r_{1}=[1,-1,0, *]$. We can use the remaining feasibilities of choosing the coordinates well to kill the last component of r_{1}; then, we obtain the result

$$
\begin{array}{lll}
A=(1,0,0,0) & X=(1,0,1,0) ; & r_{0}=[0,1,0,0] \\
a=\left(1,0, a_{3}, a_{4}\right) & & \\
B=(1,1,0,0) & Y=\left(1,1, Y_{3}, Y_{4}\right) ; & r_{1}=[1,-1,0.0] \\
b=\left(1,1, b_{3}, b_{4}\right) & Y=
\end{array}
$$

On the other hand, for P_{σ} to be a convex body of the form drawn above, some 4×4 determinants have to be positive. This provides conditions for our parameters $a_{3}, a_{4}, b_{3}, b_{4}, Y_{3}, Y_{4} \in \mathbb{Z}:$

$$
\begin{gather*}
a_{4}, b_{4}, Y_{4}>0 \tag{5.1.1}\\
\left|\begin{array}{ll}
a_{3} & a_{4} \\
Y_{3} & Y_{4}
\end{array}\right|,\left|\begin{array}{cc}
b_{3} & b_{4} \\
Y_{3} & Y_{4}
\end{array}\right|<0 \\
\left|\begin{array}{cc}
b_{3}-Y_{3} & b_{4}-Y_{4} \\
a_{3} & a_{4}
\end{array}\right|,\left|\begin{array}{cc}
b_{3}-Y_{3} & b_{4}-Y_{4} \\
a_{3}-1 & a_{4}
\end{array}\right|,\left|\begin{array}{cc}
b_{3} & b_{4} \\
a_{3}-1 & a_{4}
\end{array}\right|<0 .
\end{gather*}
$$

The smoothness of the good faces (only $\langle A, B, X\rangle$ was already used) yields

$$
\begin{gather*}
\operatorname{gcd}\left(a_{3}, a_{4}\right)=\operatorname{gcd}\left(a_{3}-1, a_{4}\right)=\operatorname{gcd}\left(b_{3}, b_{4}\right)=1 ; \tag{5.1.2}\\
\operatorname{gcd}\left(Y_{3}, Y_{4}\right)=\operatorname{gcd}\left(b_{3}-Y_{3}, b_{4}-Y_{4}\right)=1
\end{gather*}
$$

Remark:

1) The vertices of σ together sit inside the affine hyperplane $\left[a_{1}=1\right]$ of $N \otimes \mathbb{R}$. That means that the corresponding toric variety X_{σ} is Gorenstein.
2) X_{σ} has an isolated singularity in 0, iff $a_{4}=\left|\begin{array}{ll}b_{3} & b_{4} \\ Y_{3} & Y_{4}\end{array}\right|=1$. (Then, this even implies all gcd-conditions.)

Now, we are ready to determine the special fibre $Y_{\bar{\sigma}}$ of the map $\left(x^{r_{0}}-x^{r_{1}}\right): X_{\sigma} \rightarrow \mathbb{C}^{1}$. We compute the "squeezed" cone $\bar{\sigma}=\sigma \cap\left[r_{0}-r_{1}\right]^{\perp}$: $r_{0}-r_{1}=[-1,2,0,0]$, i.e. the linear subspace $\left[r_{0}-r_{1}\right]^{\perp} \subseteq N$ is given by the equation $a_{1}=2 a_{2}$. The points of intersection of this subspace with the six edges $\overline{A B}, \overline{B X}$, $\overline{X b}, \overline{b a}, \overline{a Y}$ and $\overline{Y A}$, respectively, are

$$
\begin{array}{r}
(2,1,0,0) ; \quad(2,1,1,0) ; \quad\left(2,1 ; b_{3}+1, b_{4}\right) ; \quad\left(2,1, a_{3}+b_{3}, a_{4}+b_{4}\right) ; \\
\left(2,1, a_{3}+Y_{3}, a_{4}+Y_{4}\right), \quad \text { and } \quad\left(2,1, Y_{3}, Y_{4}\right) .
\end{array}
$$

Taking $(2,1,0,0) ;(0,0,1,0) ;(0,0,0,1)$ as a \mathbb{Z}-basis of $\left[r_{0}-r_{1}\right]^{\perp}$, we can omit the first component " 2 " in each point. Then, $\bar{\sigma}$ can be seen to be the cone over the hexagon

$$
H_{I}:=<(0,0) ;(1,0) ;\left(b_{3}+1, b_{4}\right) ;\left(a_{3}+b_{3}, a_{4}+b_{4}\right) ;\left(a_{3}+Y_{3}, a_{4}+Y_{4}\right) ;\left(Y_{3}, Y_{4}\right)>
$$

that sits in the affine hyperplane $\left[\bar{a}_{1}=1\right]\left(\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right.$ denote the coordinates of $\left.\left[r_{0}-r_{1}\right]^{\perp}\right)$.

Remark:

3) $Y_{\bar{\sigma}}$ is Gorenstein, too.
4) The conditions of (5.1.1) express exactly the fact that H_{I} is a convex, nondegenerate hexagon of the form drawn above.
5) The conditions of (5.1.2) express that the (oriented) edges of H_{I} consist of primitive vectors only. But this fact is equivalent to ($Y_{\bar{\sigma}}, 0$) having at most an isolated singularity.
6) $P_{0}+P_{2}+P_{4}=P_{1}+P_{3}+P_{5}$, i.e. the centres of both triangles, $\Delta P_{0} P_{2} P_{4}$ and $\Delta P_{1} P_{3} P_{5}$, coincide.
This condition is not only necessary, but also sufficient (up to \mathbb{Z}-isomorphisms) for H_{I} to have those special vertices as mentioned above.

Therefore, it is exactly the isolated Gorenstein hexagon singularities Y with $P_{0}+$ $P_{2}+P_{4}=P_{1}+P_{3}+P_{5}$ that admit toric deformations of type (I). The corresponding total space X_{σ} is uniquely determined by Y.

(The view of the dual situation illustrates the notion of squeezing: The hexagon results by pressing the cube into dimension 2.)
(5.2) Class (II): The tent

We proceed as in the last section; for shortness we will only list the results in the order of arising:
(i) The good face $<A, B, X>$ together with a good choice of coordinates yields $A=(1,0,0,0) ; B=(1,1,0,0) ; X=(s, 0,1,0)$ and $r_{0}=[0,1,0,0]$.
($s \in \mathbb{Z}$ is a parameter which keeps for us the possibility to change the first component of X if it is necessary.)
(ii) The equations

$$
\begin{aligned}
& \left.\left.\left.\left\langle a, r_{0}\right\rangle=<B, r_{1}\right\rangle=<b, r_{1}\right\rangle=<y, r_{1}\right\rangle=0 ; \\
& \left.\left.\left.<b, r_{0}\right\rangle=<A, r_{1}\right\rangle=<a, r_{1}\right\rangle=1
\end{aligned}
$$

provide $r_{1}=[1,-1,0,0]$ (the last two components vanish after improving the coordinates again - the parameter s of (i) is fixed now).
We obtain the following result:

$$
\begin{array}{lll}
\begin{array}{l}
A=(1,0,0,0) \\
a=\left(1,0, a_{2}, a_{4}\right)
\end{array} & X=(s, 0,1,0) ; & r_{0}=[0,1,0,0] \\
B=(1,1,0,0) & Y=\left(t, t, Y_{3}, Y_{4}\right) ; & r_{1}=[1,-1,0,0] \\
b=\left(1,1, b_{3}, b_{4}\right) & Y
\end{array}
$$

(iii) Conditions for the parameters $s, t, a_{3}, a_{4}, b_{3}, b_{4}, Y_{3}, Y_{4} \in \mathbb{Z}$:

$$
\begin{gather*}
s, t, a_{4}, b_{4}, Y_{4}>0 ; \tag{5.2.1}\\
\left|\begin{array}{ll}
a_{3} & a_{4} \\
b_{3} & b_{4}
\end{array}\right|,\left|\begin{array}{ll}
b_{3} & b_{4} \\
Y_{3} & Y_{4}
\end{array}\right|,\left|\begin{array}{cc}
a_{3} & a_{4} \\
Y_{3} & Y_{4}
\end{array}\right|>0 \\
s\left|\begin{array}{ll}
a_{3} & a_{4} \\
Y_{3} & Y_{4}
\end{array}\right|>Y_{4} ; \quad t\left|\begin{array}{ll}
a_{3} & a_{4} \\
b_{3} & b_{4}
\end{array}\right|>\left|\begin{array}{ll}
a_{3} & a_{4} \\
Y_{3} & Y_{4}
\end{array}\right| ; \quad t b_{4}>Y_{4} . \\
\operatorname{gcd}\left(a_{3}, a_{4}\right)=\operatorname{gcd}\left(b_{3}, b_{4}\right)=\operatorname{gcd}\left(Y_{3}, Y_{4}\right)=1 ; \tag{5.2.2}\\
\operatorname{gcd}\left(s a_{3}-1, a_{4}\right)=\operatorname{gcd}\left(Y_{3}-t b_{3}, Y_{4}-t b_{4}\right)=1 .
\end{gather*}
$$

Remark:

1) X_{σ} is Gorenstein, iff X_{σ} is Q-Gorenstein, iff $s=t=1$.
2) X_{σ} has an isolated singularity in 0, iff $a=\left|\begin{array}{ll}b_{3} & b_{4} \\ Y_{3} & Y_{4}\end{array}\right|=1$.
(Then, this even implies all gcd-conditions.)
(iv) The 3-dimensional cone $\bar{\sigma}=\sigma \cap\left[r_{0}-r_{1}\right]^{\perp}$ is spanned by the vertices

$$
(1,0,0) ;(s, 1,0) ;\left(1, a_{3}, a_{4}\right) ;\left(1, a_{3}+b_{3}, a_{4}+b_{4}\right) ;\left(1, b_{3}+b_{4}\right) ;\left(t, Y_{3}, Y_{4}\right)
$$

which arise as points of intersection of $\left[r_{0}-r_{1}\right]^{\perp}$ with the edges $\overline{A B}, \overline{B X}, \overline{B a}, \overline{a b}$, $\overline{b A}$ and $\overline{Y A}$, respectively. That means, $\bar{\sigma}$ is the cone over the hexagon

$$
H_{I I}:=<(0,0) ; \frac{1}{s}(1,0) ;\left(a_{3}, a_{4}\right) ;\left(a_{3}+b_{3}, a_{4}+b_{4}\right) ;\left(b_{3}, b_{4}\right) ; \frac{1}{t}\left(Y_{3}, Y_{4}\right)>
$$

that sits in the affine hyperplane $\left[\bar{a}_{1}=1\right]$.
Attention: The points $\frac{1}{s}(1,0)$ and $\frac{1}{t}\left(Y_{3}, Y_{4}\right)$ belong to the lattice of $\left[r_{0}-r_{1}\right]^{\perp}$, iff $s=t=1$!

Remark:

3) $Y_{\bar{\sigma}}$ is Gorenstein, iff it is Q-Gorenstein, iff $s=t=1$.
4) The conditions of (5.2.1) express exactly the fact that $H_{I I}$ is a convex, nondegenerate hexagon of the form drawn above.
5) The conditions of (5.2.2) express that $\left(Y_{\bar{\sigma}}, 0\right)$ has, at most, an isolated singularity.
6) $P_{0}+P_{3}=P_{2}+P_{4}$, i.e. the vertices $P_{0}, P_{2}, P_{3}, P_{4}$ form a parallelogram inside $H_{I I}$.
This condition is not only necessary, but also sufficient (up to \mathbb{Z}-isomorpisms) for $H_{I I}$ to have those special vertices as mentioned above.

Therefore, the isolated singularities Y that admit toric deformations of type (II) are exactly those hexagon singularities such that $P_{0}, P_{2}, P_{3}, P_{4}$ form an (isolated) Gorenstein parallelogram singularity. The corresponding total space X_{σ} is uniquely determined by Y. Class (III): The super triangle

The cone $\sigma=<a^{0}, a^{1}, a^{2} ; b^{0}, b^{1}, b^{2}>$ admits 9 top dimensional faces $(\nu, \mu):=<a^{0}, \ldots, \widehat{a^{\nu}}, \ldots a^{2} ; b^{0}, \ldots, \widehat{b^{\mu}}, \ldots, b^{2}>$; each face is represented by a fat point in the (3×3)-lattice drawn above.

In particular,

$$
\begin{aligned}
r_{0}^{1} & =(0,0)=<a^{1}, a^{2}, b^{1}, b^{2}> \\
r & :=r_{1}^{1}=r_{0}^{2}=(1,1)=<a^{0}, a^{2}, b^{0}, b^{2}>, \quad \text { and } \\
r_{1}^{2} & =(2,2)=<a^{0}, a^{1}, b^{0}, b^{1}>
\end{aligned}
$$

Now, we can proceed as usual (kill the last components of r_{0}^{1}, r and r_{1}^{2}, respectively, by choosing the coordinates of N well):
(i) The property for (0,2) $=<a^{1}, a^{2}, b^{0}, b^{1}>$ to be a good face provides
$a^{1}=(1,1,0,0,0) ; a^{2}=(1,0,1,0,0) ; b^{0}=(1,0,0,0,0) ; b^{1}=(1,1,0,1,0)$
and $r_{0}^{1}=[1,-1,-1,0,0] ; r_{1}^{2}=[0,0,1,0,0]$.
(ii) Again, there are many equations:

$$
\begin{aligned}
& \left.<b^{2}, r_{0}^{1}>=<a^{0}, r>=<a^{2}, r>=<b^{0}, r>=<b^{2}, r>=<a^{0}, r_{1}^{2}\right\rangle=0 \\
& <a^{0}, r_{0}^{1}>=<a^{1}, r>=<b^{1}, r>=<b^{2}, r_{1}^{2}>=1
\end{aligned}
$$

Hence, we obtain the following result:

$$
\begin{array}{ll}
a^{0}=\left(1,0,0 ; a_{4}, a_{5}\right) & \\
a^{1}=(1,1,0 ; 0,0) & \\
a^{2}=(1,0,1 ; 0,0) & r_{0}^{1}=[1,-1,-1,0,0] \\
b^{0}=(1,0,0 ; 0,0) & r=[0,1,0,0,0] \\
b^{1}=(1,1,0 ; 1,0) & r_{1}^{2}=[0,0,1,0,0] . \\
b^{2}=\left(1,0,1 ; b_{4}, b_{5}\right) &
\end{array}
$$

(iii) Conditions for the parameters $a_{4}, a_{5}, b_{4}, b_{5}$:
(5.3.1) $a_{5}, b_{5},\left|\begin{array}{cc}a_{4} & a_{5} \\ b_{4} & b_{5}\end{array}\right|<0$.
(5.3.2) $\operatorname{gcd}\left(a_{4}, a_{5}\right)=\operatorname{gcd}\left(b_{4}, b_{5}\right)=1$.

Remark:

1) X_{σ} is Gorenstein.
2) X_{σ} has an isolated singularity in 0 , iff $a_{4}=b_{4}+1$ and $a_{5}=b_{5}=1$.
(iv) The linear subspace $L^{\perp}=\left[r_{0}^{1}-r\right]^{\perp} \cap\left[r-r_{1}^{2}\right]^{\perp} \subseteq N$ is given by the equations $a_{1}=3 a_{3} ; a_{2}=a_{3}$.
To determine $\bar{\sigma}=\sigma \cap L^{\perp}$ it is sufficient to compute the intersection with each of the 3 -dimensional faces of σ only. Then, exactly the six faces of the form $\left\langle.^{0}, .^{1}, .^{2}\right\rangle$ give a contribution, and we obtain $\bar{\sigma}$ to be the cone over

$$
H_{I I I}:=<(0,0) ;(1,0) ;\left(a_{4}+1, a_{5}\right) ;\left(a_{4}+b_{4}+1, a_{5}, b_{5}\right) ;\left(a_{4}+b_{4}, a_{5}+b_{5}\right) ;\left(b_{4}, b_{5}\right)>
$$ that sits in the affine hyperplane $\left[\bar{a}_{1}=1\right] \subseteq L^{\perp}$.

Remark:

3) $Y_{\bar{\sigma}}$ is Gorenstein.
4) The conditions of (5.3.1) mean that $H_{I I I}$ is a convex, non-degenerate hexagon of the form drawn above.
5) The condition of (5.3.2) expresses that $\left(Y_{\bar{\sigma}}, 0\right)$ has at most an isolated singularity.
6) $P_{0}+P_{3}=P_{1}+P_{4}=P_{2}+P_{5}$, i.e. opposite edges are parallel ones which have the same length too.
This condition is not only necessary, but also sufficient (up to \mathbb{Z}-isomorphism) for $H_{I I I}$ to have those special vertices as mentioned above.

Therefore, the isolated singularities Y that admit toric deformations of type (III) are exactly those Gorenstein hexagon singularities such that the hexagon consists of three parallelograms as shown in the picture above.
The corresponding total space X_{σ} is uniquely determined by Y.
(5.4) Which isolated hexagon singularities admit toric deformations of more than one type?
Obviously, the type (II) is not compatible with any of the two remaining types.
On the other hand, the hexagons H belonging to both classes, (I) and (III) are easy to describe: they consist of six copies of a fixed triangle, and these copies are arranged in such a way that any two adjacent ones form a parallelogram.

Remark: The total spaces of both toric deformations have isolated singularities, iff $a_{5}=1$.
If this is the case, then the coordinates can be improved once more to obtain $a_{4}=1$ also. In particular, the corresponding toric variety $Y_{\bar{\sigma}}$ is uniquely determined; the two total spaces are isomorphic to the cones over $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $\mathbb{P}^{2} \times \mathbb{P}^{2}$, respectively.

$Y_{\bar{\sigma}}$ has embedding dimension 7 and can be given by 9 equations:

$$
x_{1} y_{1}=x_{2} y_{2}=x_{3} y_{3}=z^{2}
$$

$$
\begin{aligned}
& x_{1} z=x_{2} x_{3} ; x_{2} z=x_{1} y_{3} ; x_{3} z=x_{1} y_{2} ; \\
& y_{1} z=y_{2} y_{3} ; y_{2} z=x_{3} y_{1} ; y_{3} z=x_{2} y_{1} .
\end{aligned}
$$

In fact, as J. Stevens pointed out to me, this singularity is the cone over the Del Pezzo surface.
Moreover, by explicit computations with the computer programme "Macaulay", Duco van Straten has shown that the above two total spaces represent, indeed, exactly the two components of the reduced versal base space of $Y_{\bar{\sigma}}$.

6 One and two parameter deformations of cyclic quotient singularities (i.e. $m=n-2 \leq 2$)

(6.1) As in $\S 4$ we will use theorem (2.5) to classify squeezable cones σ - only the presumptions are changed now:
$n-2+m \leq 2$ (stronger as in §4), but
there are no restrictions to the form of σ (weaker as in $\S 4$).

In the case $n=3(m=1)$, the cone σ admits simplicial faces automatically. Therefore, we have only to look at $\S 4$ to obtain all possible classes:
$(I V)_{1}$

$(\mathbf{V})_{n=3}$

$(\mathbf{V})_{n=3}^{1}$

(6.2) For the rest of $\S 6$ we will assume $n=4(m=2)$. Let us start by describing this special situation:

- $R \subseteq\{r, s, t, u\}$ (the splitting of R into two pairs, $\left[r_{0}^{1}, r_{1}^{1}\right]$ and $\left[r_{0}^{2}, r_{1}^{2}\right]$, will only be used at the last steps of our computations.)
- As usual, in the beginning, we assume R to consist of 3-dimensional faces only.
- Let $\tau<\sigma$ be a good face. Then, τ satisfies the following conditions:
(i) τ is a (smooth) triangle.
(ii) The three neighbours of τ are contained in the set R.
(In particular, $\# R \geq 3$, and there are no good faces which are adjacent to each other.)
(iii) If $\# R=4$, then the remaining face of R has contact to τ at least in a point. (This is an easy consequence of the next statement (iv).)
(iv) Any two R-faces belonging to a common pair contain (together) all three vertices of τ.
(In particular, if a face has contact to τ in one vertex only (cf. (iii)), then this face has to be contained in the same pair as the opposite R-neighbour of τ.)
- Trivial, but important to mention: the intersection of two faces of σ is either an edge, a vertex, or it is empty.

(6.3) Lemma:

1) If $r, s \in R$ are common neighbours of the good faces τ_{1}, τ_{2}, then only two configurations can occur:

2) There are three common R-neighbours r, s, t of good faces τ_{1}, τ_{2}, iff $\# R=3$ and σ admits at least two good faces, iff
P_{σ} is equal to $\Delta^{1} \times \Delta^{2}$ (with τ_{1}, τ_{2} as base surfaces) or to its degeneration a quadrangular pyramid (cf. (6.5) $(\mathrm{VI})_{2}$ and (VI) ${ }_{12}$, respectively).
3) Assume $\# R=4$. If r, s, t are the R-neighbours of a good face $\tau<\sigma$, then not all of the combinations $(r, s) ;(s, t) ;(t, r)$ can occur as common neighbours of some other good face.

Proof: (1) $r \cap s$ has common points with both faces, τ_{1} and τ_{2}.
(2) is a direct consequence of (1).
(3) Let r, s be common R-neighbours not only of τ, but also of some other good face τ^{\prime}. Then, at the corresponding vertex, τ cannot have contact to the remaining element u of R.

Corollary: The cone σ admits at most three good faces.

Proof: Let $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ be good faces. By (2) the corresponding R-neighbours are $(s, t, u) ;(r, t, u) ;(r, s, u) ;(r, s, t)$, i.e. each of the combinations of two R-faces occurs twice.
(6.4) Proposition: The case of three good faces cannot occur.

Proof: Otherwise let $\tau_{1}, \tau_{2}, \tau_{3}$ be these good faces; assume the R-neighbours to be $(s, t, u) ;(r, t, u) ;(r, s, u)$, respectively.
Only the combinations $(s, t),(r, t)$, and (r, s) are singles. Hence,
r meets the (s, t)-vertex of τ_{1},
s meets the (r, t)-vertes of τ_{2}, and
t meets the (r, s)-vertex of τ_{3}.
Looking at the intersection $r \cap s \cap t$ this yields the picture

i.e. P_{σ} is equal to the pyramid over the hexagon $u \in R$.

Now, we obtain a contradiction, because it is not possible to divide R into two pairs: u would have to be in a common pair with each of the faces r, s, t.
(6.5) Assume that σ has two good faces τ_{1} and τ_{2}.

Starting from the two possibilities described in lemma (6.3) (1), we have to distinguish between some cases (for instance between $\# R=4$ and $\# R=3$). Then, we obtain the following classes of squeezable cones:
(VI)

$r:=A B Y X ; s:=C D X Y ; t:=A C D ; u:=A B C$, and R is the set of pairs $R=\{[r, t] ;[s, u]\}$.
(VI) ${ }_{1}$ (Degeneration of (VI) to $X=Y$)

$r:=A B X ; s:=C D X ; t:=A C D, n:=A B C$, and R is the set of pairs $R=\{[r, t] ;[s, u]\}$.
(Remark: This cone admits simplicial faces only; the class (VI) ${ }_{1}$ coincides with $(\mathrm{IV})_{2}$ of $\S 4$!)
$(\mathrm{VI})_{2}$ (Degeneration of (VI) to $A B C D$ spanning a plane)

$r:=A B Y X ; s:=C D X Y ; t=u:=A B C D$, and R is the set of pairs $R=\{[r, t] ;[s, t]\}$.
(VI) ${ }_{12}$ (Degeneration of $(V I)_{1}$ and $\left.(V I)_{2}\right)$

$$
r:=A B X ; s:=C D X ; t=u:=A B C D,
$$

and R is the set of pairs $R=\{[r, t] ;[s, t]\}$.
(6.6) If σ consists of the R-faces and of one single good face τ only, then the dual body \check{P}_{σ} admits at most five vertices. Therefore, only the following classes of squeezable cones can appear in this case:
(VII)

$r:=A B X ; s:=C D X ; t:=A B C D ; u:=B C X$, and R is the set of pairs $R=\{[r, s] ;[t, u]\}$.
(V) $)_{n=4 ; r=3}$

$r:=A B D ; s:=C A D ; t=u:=A B C$, and R is the set of pairs $R=\{[r, t] ;[s, t]\}$.
(The case of $P_{\sigma}=\Delta^{1} \times \Delta^{2}$ cannot appear, because the good face τ would not have contact to each of the remaining four R-faces.)
(6.7) Only the class
$(\mathrm{V})_{n=4 ; r=4}$ Simplex with the top dimensional faces $r, s, t, u \in R$
can appear, if there is not any good face in σ.
(6.8) Now, we assume that R contains faces of lower dimension. As usual we can derive these additional classes from (6.5) - (6.7):
(VI) ${ }_{2}^{1}$ Replace " $u=A B C D$ " by " $u=A B$ ".
(Then, $R=\{[r, t] ;[s, u]\}$.)
(VI) ${ }_{12}^{1}$ Replace " $u=A B C D$ " by " $u=A B$ ".
(Then, $R=\{[r, t] ;[s, u]\}$.)
(VII) ${ }^{1}$ Replace " $u=B C X$ " by " $u=B X$ ".
(Remark: a) The face $B C X$ changes into a good one.
b) (VII) ${ }^{1}$ can also be derived from (VI) ${ }_{12}$.)
(VII)* Replace " $u=B X$ " (in (VII) $)^{1}$) by " $u=X$ ".

Finally, there are some classes derived from the simplex $(\mathrm{V})_{n=4}$.

7 Examples to the cases $m=n-2 \leq 2$ of $\S 6$

At first we regard the case $m=1 ; n=3$.
Because we are only interested in giving examples, X_{σ} is presumed to have at most an isolated singularity in 0 . Up to this restriction, the classification (7.1) - (7.4) is complete.
Finally, in (7.5) and (7.6) we give an example for X_{σ} having non-isolated singularities (corresponding to a cone that admits even non-simplicial faces).
(7.1) Class $(I V)_{1}$ - the first case:

$$
\text { Assume, that } \left.\left\langle a^{3}, r^{1}\right\rangle=<a^{4}, r^{1}\right\rangle=1 \text {. }
$$

Then, we obtain the following normal form of σ :

$$
\begin{array}{ll}
a^{1}=(1,0,0) & r^{1}=[0,0,1] \\
a^{2}=(0,1,0) & \\
a^{3}=(0,0,1) & s^{1}=[K B, K A, 0]
\end{array} \quad(K, A, B \geq 1 ; \operatorname{gcd}(A, B)=1) .
$$

These cones can also be characterized by the conditions
(i) $\left\{a^{1}, a^{2}, a^{3}\right\}$ is a \mathbb{Z}-Basis of N, and
(ii) $A a^{1}+a^{3}=B a^{2}+a^{4}$.

The special fibre is equal to the cyclic quotient singularity $X\left(K A B+1, K B^{2}\right)$.
(7.2) Class (IV) - the second case:

Then, we obtain the following normal form of σ :

$$
\begin{array}{ll}
a^{1}=(1,0,0) & r^{1}=[0,0,1] \\
a^{2}=(0,1,0) & \\
a^{3}=(0,0,1) & r^{2}=[1, A, 0]
\end{array}(A, B \geq 1) .
$$

These cones can also be characterized by the conditions
(i) $\left\{a^{1}, a^{2}, a^{3}\right\}$ is a \mathbb{Z}-basis of N, and
(ii) $A a^{1}+B a^{3}=a^{2}+a^{4}$.

The corresponding total space X_{σ} is a scroll, and the special fibre is equal to $X(A+B, 1)$ (i.e. to the cone over the rational normal curve of degree $A+B)$.
(7.3) Classes (V) and (V) $)^{1}$ - the first case:

$$
\text { let }\left\langle a^{3}, r^{1}\right\rangle=1 \text {. }
$$

Then, we obtain the normal form

$$
\begin{array}{ll}
a^{1}=(1,0,0) & r^{1}=[0,0,1] \\
a^{2}=(0,1,0) & \\
a^{3}=(0,0,1) & s^{1}=[x, y, 0] \quad(x \geq 1 ; y \geq 0)
\end{array}
$$

The special fibre is equal to \mathbb{C}^{2}.
(7.4) Class $(V)^{1}$ - the second case:

$$
\text { Let } \left.\left\langle a^{1}, s^{1}\right\rangle=<a^{2}, s^{1}\right\rangle=1 .
$$

Then, we obtain the normal form

$$
\begin{array}{ll}
a^{1}=(1,0,0) & r^{1}=[0,0, \ell] \\
a^{2}=(0,1,0) & \\
a^{3}=(x, d-x, d) & s^{1}=[1,1,-1] \quad(d, \ell \geq 1 ; 0 \leq x<d ; \operatorname{gcd}(x, d)=1)
\end{array}
$$

The special fibre is equal to $X\left(\ell d^{2}, \ell d x^{-1}-1\right)$. (Here, x^{-1} is computed in the ring $\mathbb{Z} / d \mathbb{Z})$

Remark:

1) $d=1: X(\ell,-1)$ (i.e. the singularity $\left.A_{\ell-1}\right)$ is embedded in the affine space \mathbb{C}^{3}.
2) $d \geq 2$ yields exactly the T-singularities of [KSB] (embedded as hypersurfaces in 3-dimensional cyclic quotient singularities.
3) $\left(\ell d x^{-1}-1\right)\left(\ell d\left(-x^{-1}\right)-1\right)=\ell^{2} d^{2}\left(-x^{-2}\right)+1 \equiv 1\left(\bmod \ell d^{2}\right)$. In particular, $X\left(\ell d^{2}, \ell d x^{-1}-1\right)=X\left(\ell d^{2}, \ell d\left(-x^{-1}\right)-1\right)$.
(7.5) An example for class (VI):

Let

$$
\begin{array}{ll}
A=(1,1,0,0) & r=A B Y X=[0,0,1,0] \\
B=(0,1,0,1) & s=C D X Y=[0,1,0,0] \\
C=(0,0,1,0) & t=A C D=[0,0,0,1] \\
D=(1,0,1,0) & u=A B C=[1,-1,0,1] . \\
X=(1,0,0,1) & \\
Y=(0,0,0,1) &
\end{array}
$$

Then, squeezing this cone yields the cyclic quotient singularity $X(5,2)$.
(7.6) The above cone σ of type (VI) can also be squeezed by the equation $x^{r}=x^{s}$ - the result is the cone over the pentagon $<(0,0) ;(1,0) ;(2,1) ;(1,1) ;\left(0, \frac{1}{2}\right)>$ (sitting in the affine $\left[a_{1}=1\right]$-plane of \mathbb{Z}^{3}).

References

[A] Arndt, J.: Verselle Deformationen zyklischer Quotientensingularitäten. Dissertation, Universität Hamburg, 1988
[Ch] Christophersen, J.A.: Obstruction spaces for rational singularities and deformations of cyclic quotients. Thesis, University of Oslo, 1989/1990
[Ke] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings I.
Lect. Notes Math., vol. 339. Berlin-Heidelberg-New York: Springer 1973
[KSB] Kollár J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities.
Invent. math. 91 (1988), 299-338
[St] Stevens, J.: On the versal deformation of cyclic quotient singularities. Preprint, Mathematisches Seminar der Universität Hamburg

[^0]: *partially supported by a DFG grant

