


SUPERLINEAR CONVERGENCE RATES FOR THE LANCZOS 
METHOD APPLIED TO ELLIPTIC OPERATORS 

MARTIN HANK E * 

Abstract. This paper investigates the convergence of the Lanczos method for computing the 
smallest eigen pair of a selfadjoint elliptic differential op erator via inverse iteration ( without shifts). 
Superlinear convergence rates are es tablished, and their sharpness is inves tigated for a simple model 
problem. These result s are illustrated numerically for a m ore diffi cult problem. 
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1. Introduction. The power iteration met hod is a very well-known tool for 
approximating the largest eigenvalue of a symmetric , positive definite matrix. lt has 
a linear rate of convergence, where the convergence factor is given by the ratio of 
subdominant over dominant eigenvalue. However , with essentially the same amount 
of work (i.e. , the same number of matrix vector multiplies) the Lanczos method [8] 
always yields better approximations of this eigenvalue, and at the same time provides 
some information about the remainder of the spectrum of the given matrix. 

Although being a close relative of the conjugate gradient iteration for solving 
linear systems of equations , the convergence theory for the Lanczos method is less 
developed. Essentially, there are on ly the error bounds by Kaniel and Saad , as pre
sented for instance in Parlett 's book [10]. These bounds improve on the convergence 
factor of the power method , but sti ll , the established rate of convergence is only 
linear. On the other hand the conjugate gradient method is known to converge su
perlinearly, and hence, at least under approp riate assumptions on the distribution 
of the given eigenvalues one may a lso expect superlinear convergence of the Lanczos 
approximat ions. 

In th is paper the performance of the Lanczos method is considered, when app lied 
' to a compact selfadj oint Operator l\

0 

with eigenvalues An , whi ch decay like 

here s > 0 is a prescribed number . This may cor respond to applications where one is 
interested in the smallest eigenvalue(s) of a selfadjoint elliptic differential operator L of 
order s, in which case one would choose f{ tobe the inverse of L on its range. Ericsson 
and Ruhe [4] have shown that the Lanczos method is a very effi cient algorithm fo r 
this kind of eigenvalue problem ; cf. Weinberger [13) for a number of corresponding 
app lications. 

The bounds that will be est ablished below imply a superlinear rate of the form 

( 1.1) (q/k)2sk with some q > 0 , 

as the number k of Lanczos iterations tends to infinity. A good way to think of th is is 
as of a linear rate wi t h a convergence factor decreasing like k- 2• during the iteration . 
Note th at this is worse than the Ray leigh quotient iteration (cf. , e.g .. [10]) , which is 
known to have a cubi c convergence rate locally. However. as the numerical results in 
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[4] and in Section 4 show, the convergence rate of the Lanczos method is sufficiently 
rapid to ensure that only few Lanczos iterations are required for an accuracy up to 
the order of the discretization error. On the other hand , an implementation of the 
Rayleigh quotient iteration may suffer from t he use of different shifts µk in each iter
ation, by which the shifted operator L - µkl becomes indefinite and almost singular, 
with increasing numerical difficulties in the solution of the associated linear systems. 
For computing eigenvalues of differential operators, direct multigrid techniques as 
described by Hackbusch [7 , Chapter 12] will typically be superior. 

The main emphasis of this paper , however , is not on superlinear upper bounds , 
but rather on lower bounds for the Lanczos method. In Section 3 it will be shown for a 
one-dimensional example, nam ely Lu = -u" , that the established upper bound ( 1.1) 
is sharp up to a slight overestimation of the factor q. For this example the precise 
asymptotic behaviour of the approximation error after k Lanczos steps is determined 
by using the connect ion between the Lanczos iteration and orthogonal polynomials. 
The corresponding polynomials can .be expressed explicitiy in terms of (modified) 
Lomm~ l polynomials, and the required asymptotic behaviour of these polynomials 
will be derived to obtain the desired result. 

lt should be emphasized that this theoretical analysis presumes exact arithmetic, 
and also does not take the discretization error into account. lt is well-known that in 
practi ce the Lanczos method may slow down due to round-off errors . Concerning this 
important topic the reader is referred to Cullum and Willoughby [3], or to the pro
ceedings of the Lanczos Centenary Conference (1] for more recent references . To pay 
tribute to these practical considerations, however , numerical results for a two dimen
sional partial differential operator of second order have been included in Section 4. 
These results illust rate the ra pid convergence of the eigenvalue approximations even 
with finite precision arithmetic. 

2 . A general super linear upper bound. In the following some basic proper
ties of the Lanczos process are recollected for the ease of presentation; see Golub and 
Van Loan (5] or Parlett (10] for further details . lt shall be assumed throughout that 
!\ is a compact, selfadjoint and positive definite operator in a Hilbert space X . Let 
{xn} and {.-\~} , respectively, denote the normalized eigenfunctions and eigenvalues of 
f{ and , without loss of generality, let Pn} be in strictly decreasing order. Given any 

00 

Y = L 1'/nX n EX, 
n.=1 

with infinitely m a ny 1'/n #- 0, a (discrete ) inner product 

00 

(2.1) (cp,1/>J := L1'J;cp( ,\n)1/>( ,\„), cp, V' E Il , 
n=l 

can be defined in the space Il of polynomials over IR. 
The Lanczos method with starting vector vo = y/ llYll generates an orthonormal 

basis { Vj } J ,;,;-6 of the kth Krylov subspace 

(2 .2) 

via the i teration 

(2.3) .ßj + l Vj+l = (!\- - Cij/)Vj - ßjVj-1· j = 0, 1, .. „ k - l ; 
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here, ßj+i > 0 is implicitly defined so as to normalize Vj+i, and one has O'j = (vj , I\vj) 
because of the orthogonality requirement. For notational convenience !et v _ 1 = 0. 
lntroducing 

\/k = ( Vo, V 1 , ... , V k - i) , 

one can rewrite (2.3) formally in short terms as 

(2.4) 

where ek is the kth Cartesian. coordinate vector and Tk is the k x k tri diagonal matrix 
of the recursion coefficients , 

By multiplying (2.4) formally from the left with vk• it becomes evident that the matrix 

Tk = Vk• K\/k = ((vi, l\-vj))~,J~O 

is a representation of the orthogonal proj ection of [{ onto the Krylov space Kk(I<; y) , 
and it makes sense to consider the eigenvalues of Tk as approximate eigenvalues of J(. 

The results in this paper strongly rely on the following connection to the theory 
of orthogonal polynomials. As is obvious from the definition (2.2), the basis vector 
Vj E Kj+ 1(K; y) can be rewritten as 

(2.5) 

where Pi E Il j, i.e. , the subset of polynomials of degree j or less. Moreover , from the 
orthonormality of the { Vj } and the definition of the inner product (2.1) follows 

00 

Dij = (v;, Vj} = (p;(I<)y,pj(I<)y) = L 1J~Pi(An)Pj(An) = [p; ,pj] . 
n=l 

In other words , the polynomials {Pj }j ?:D form a sequence of orthonormal polynomi
als with respect to the inner product (2.1). These polynomials satisfy a three-term 
recurrence relation, and it is obvious from (2.3) and (2.5) that the same coefficients 
appear as in (2.3), i e., 

with p_ 1 = 0 and Po = 1/ llYll · Consequently, the matrix Tk is just the principal k x k 
submatrix of the semiinfinite J acobi matrix corresponding to this inner product. 

lt is well-known that the eigecvalues of Tk are the roots of the kth orthogonal 
polynomial Pk , and that an eigenvector u corresponding to such a root ,\ is given by 

(2.7) 

The roots of Pk (also call ed Ritz va /u es) shall be denoted by 

-\u > -\2 .k > ... > Ak .k. 
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At this point it is worth mentioning a well-known a posteriori bound for the error 
between eigenvalues ofTk and /\ ,cf. [10 , Section 13-2]. To this end let A E {,\j ,dL 1 , 

and u be the corresponding eigenvector (2 .7) ofTk; then there is an eigenvalue An of 
f{ with 

(2.8) 

This follows readily from (2.4) and standard perturbation theory. 
To formulate the asymptotic results two different notations will be used: the 

statement an~ bn means tha·t an/bn and bn/an are bounded as n--+ oo; if, moreover , 
an/ bn ____, 1 as n --+ oo then this is denoted by an ~ bn. The following result states an 
upper bound for the superlinear convergence rate of the Lanczos method . 

THEOREM 2 .1. Let An ~ n -s for some s > 0, and assume that y has a component 
a/ong x 1 , z.e. , T/l f:. 0. Then there. are some q > 0 and c > 0 such that 

(2.9) k = 1, 2, ... 

Proof. For any element u E !Rk one has Viu E Kk-i(K ; y), and hence there is a 
polynomial p of degree k - 1 or less with 

(2.10) Viu = p(K)y. 

Vice versa, any polynomial of degree k - l can be identified with an element of Rk 
via (2 .10). This yields the following well-known variational characterization of the 
largest Ritz value, 

1 
_ uTTku _ (Viu,KViu) _ . (p(K)y,Kp(K)y) 

"l ,k - max --T- - max ( ) - max ( ') ( ') ) , 
u,tO u u u ,tO Viu, Viu O,tpEil,_, p(I\. y,p f\. y 

which can be rewritten in terms of the inner product (2.1) as 

(2.11) 
[p, Ap] 
[p,p] 

lt should be mentioned that (2.11) is also known in the orthogonal polynomial 
literature (cf., e.g., Szegö (11, Section 7 .72]) , and has already been the starting point 
for the error analysis of Kaniel and Saad (cf. [10 , Section 12-4]). Here , !et 

k 

-p(A) := II ( 1 - : ) E lh-1 , 
j=2 J 

i.e ., p vanishes at all eigenvalues A2 through Ak , and - by monotonicity - is bounded 
by p(O) = 1 in [O, Ak] . Then it follows from (2.11) and (2.1) that 

A1 ,k 2: [p(p, Ap]] 2: 2 ?(;lf)A1pi:;) ? . 

'P T/1P- 1 + n=k+I % 

Since {17n} E €2 is square summable the series in the denominator is bounded , e.g. , 
by llYll 2. and hence one has 



To complete the proof an estimate of p(A 1 ) is required. By assumption , Ai/An 2: cn' 
for some E > 0, and hence, 

(2 .1 2) 

The assertion now follows from Stirling 's formula. D 
lt must be mentioned that the use of polynomials with prescribed zeros in some 

of the eigenvalues of J\- has already been suggested in [10, p. 247] to obtain useful 
error bounds for clustered spectra; however , there seems tobe no bound like (2.9) in 
the literature. Note how (2.9) illuminates the sensitivity of the rate of convergence on 
the decay rate of the eigenvalues. If the eigenvalues converge rapidly to zero then one 
can think of the dominating eigenvalue(s) to be more isolated. Note that this need 
not affect the convergence rate of the power method. 

The technique used in the proof of Theorem 2.1 is not rest ricted to the largest 
eigenvalue only. For example, to est imate A2 - A2,k one has to impose a prescribed 
zero in A1,k for the polynomials p E Ilk-l tobe used in (2.11). The resulting bound 
is the same as (2.9), but with some !arger q and c. For an est imation of q see the 
following section, i. e., (3 .2). 

Finally, it should be mentioned that similar techniques have been applied by 
Nevanlinna in his monograph [9] to estimate the superlinear convergence rate of con
jugate gradient type methods for solving linear equations. Although not obvious right 
away, it turns out that the rate of convergence for the eigenvalue approximations is 
similar (up to a square root) to the one for solving the linear system (I + I<)x = y , 
cf. (9 , Theorem 5.8.10]. 

3. A model problem. In this section the sharpness of Theorem 2.1 will be in
vestigated. To this end consider the problem of approximating the smallest eigenvalue 
of the differential operator 

(3.1) Lu= -u", V(L) = 1i2 (0, 1) n 1iÖ[O , l] c .C 2 (0 , 1). 

As is well-known the normalized eigenfunctions Xn (t) of L are the sines y12 sin n7rt 
corresponding to eigenvalues µn = (n7r) 2 , n = 1, 2, .... Let y(t) = t be the initial 
function for the Lanczos process tobe considered in .C 2(0, 1). Note that in each step 
of (2 .3) a boundary value problem 

Wj(O) = Wj(l) = 0, 

has to be solved for Wj, and then 

Since 

00 2 
y(t) = L(-1)"+ 1

- sin mrt , a.e. in (0 , 1) , 
n7r 

n=l 

the inner product (2.1) corresponds to a discrete measure with point masses 11; 
2(ni.)- 2 at An = (7rn)- 2 , n E N. Consequent ly, this problem meets the setting of 
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Theorem 2.1 with s = 2. Note that with this more detailed information the evaluation 
of (2 .12) yields the upper bound 

(3.2) 2 ( k ) 2 -4 1 -? 4k 
-\1 - -X1 ,k :S: 3 k + l r (k + 1):::: 671" 2 k -(e/k) 

for the error of the Ritz values. 
The reason for introducing this particular problem as a model problem is that one 

can determine the orthogonal polynomials with respect to (2.1) explicitly in this case. 
Still , this does not mean that their zeros are known, but their asymptotic behavior 
can be determined on the basis of the following (general) observation. 

LEMMA 3 .1. Let µ be a discrete measure with point masses at Pn} ~= 1, where An 
is monotonica/ly decreasing to zero . If {Pk} is a sequence of orthogonal po/ynomia/s 
with respect to dµ and ,\ l ,k the largest zero of Pk then 

(3.3) k --+ 00. 

Proof. Since Aj ,k are the zeros of Pk one can rewrite 

k 

pk(,\) = Pk(O) II ( 1 - --}- ) , 
j=l J ,k 

which yields 

k 1 
p~(,\) = Pk(,\) L ,\ - ,\ . , 

i= l J ,k 

Le., 

(3 .4) 

Recall that between any two mass points of µ there is at most one root of Pk (cf. [11, 
Theorem 3.41.2]) , and hence , 

Consequently, sin ce -\ 1, k converges with superlinear rate to ,\ 1 one can conclude from 
(3.4) that 

which was tobe shown. D 
Consider now the Lommel polynomials {hk ,v} f =o for v > 0 , cf. , e.g., Watson [12, 

Section 9·6], or Chihara [2 , Section VI.6) ; the present notation is adopted from [2). For 
v > 0 the Lommel polynomials are orthogonal with respect to a discrete measure with 
masses J.~.:-l at ±j~.~-l • where Jn ,v-l denotes the nth positive zero of the Bessel 
function J v- l of order v - 1. The three-term recurrence relation is 

(3.5) hk+1 .v(,\) = 2-\(k + v)h.k ,v(A) - h.k - 1,v (A) , k = 0, 1, 2, .. . , 

6 



with ho = 1 and h_ 1 = 0. Of particular interest for the present setting is the case 
v = 3/2, because l1;2(z) = (2/7rz) 112 sin z, and hence, in ,v-1 = n7r for v = 3/2. 
Therefore, using a well established technique (cf., e.g., (2, Section 1.8]) it follows that 
the "squared" polynomials 

(3.6) k=0 , 1,2, ... , 

are orthogonal with respect to the inner product (2.1) corresponding to the model 
problem introduced above. (Note , however , that Pk o[ (3.6) is not normalized ; the 
orthonormal multiple f5k is given in (3.15) below). The following result states the 
asymptotic behavior of hk ,v at a mass point. 

LEMMA 3.2. Let v > 0 and l/>. be a zero of lv-1· Then, for k ~ oo, 

( 3. 7) lv+k(l/>.) ( l )k+v -1 -1 1 
hk ,v().) = Jv(l/ >.) '.:::'. 2).. f (k +V+ l)Jv ( ~) , 

( 3.8) 1 l l ) k+v-1 hk ,v(>.) '.:::'. - .V lv-2( ~ )f(k +V (2>.) . 

Proof. Recall that the Bessel functions of order v+k satisfy the recurrence relation 

(3.9) 
2(k + v) 

lv+k+1( z) = lv+k(z) - lv+k-1(z), k = 0, 1, 2, .... 
z 

Since lv-l vanishes atz= l / >. by assumption, a comparison of this recursion with 
(3.5) yields that hk ,v(>.) = lv+k(l/>.)/Jv(l/>.) for every k E N. (Note, cf. [12], 
that the positive zeros of the Bessel functions lv and lv-l interlace, and hence, 
lv(l/>.) f:. 0). The second part of (3.7) is the well-known asymptotic behavior of the 
Bessel function with fixed argument. 

The proof of the second assertion (3.8) requires the following identity from [12 , 
Section 9·63] for the derivative of a Lommel polynomial , 

(3.10) 

and Hurwitz ' theorem concerning the asymptotic behavior of a Lommel polynomial 
at a point >. which is not a mass point , cf. [12, Section 9·65]: 

( 3.11) hk,v-1( >.) '.:::'. lv-2(1/>.)f(k +V - 1)(2>.)k+v- 2 , 

Since >. is a mass point corresponding to the polynomials { hk ,v }, >. is no mass point 
for the measure corresponding to {hk ,v-d , and hence, (3.7) , (3.10) and (3.11) yield 

h~ , v(>.) '.:::'. - ;
2 

hk+l ,v-d>.) '.:::'. - ;
2 

lv-2(1/ >.)f(k + v)(2>.)k+v-l , 

as k ~ oo. D 
After these preliminaries the strong asymptotic behavior of the error of the Lanc

zos approximation to the smallest eigenvalue of L can be determined. 
THEOREM 3.3. Let L be as in (3.1) with smallest eigenvalue µ 1 = 7r 2 . and 

l / >. u be the corresponding approximation after k Lanc::os steps with mitial Jun ction 
y. Then , 

(3.12) 1 7r
4 

k-3( 7re )4k ---µ1 '.:::'. 
>.1 ,k 64 4k , 

k-+oo. 
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Proof. lt only remains to assemble the prev1ous results. First , from (3.6), 
Lemma 3.2, and Stirling 's formula one has 

7r -1 ) - '> 7re '>k 
Pk(l/µi) = h2k,3/2( l /7r) '.:::' 

16 
l3;2(7r k -( 4k)- · 

Since J_t; 2(z) = (2/7rZ)t/ 2 cos z and h;2(7r) = - l- t;2( 7r) = ,/2/7r by (3.9), this 
g1ves 

(3 .13) 

Second , since Pk(.\) = h~k , 312 ( Vf:.) /2 .JX, Lemma 3.2 and Stirling 's formula yield 

Consequently , one has 

(3.14) 

and a final application of Lemma 3.1 completes the proof. D 
Comparing (3.12) with (3.2) it follows that Theorem 2.1 is quite sharp, a t least 

as far as powers of k-k are concerned. The two values of q for (1.1) as calculated in 
(3. 2) and (3.12) only differ by as little as an extra factor of 7r /4. Numerically, this 
difference can hardly be seen due to the dominating growth of k4k. As of today, it is 
not clear how to improve the technique in the proof of Theorem 2.1 to end up with 
the optimal value of q. 

Finally, consider the sharpness of the a posteriori est imate Ek of (2.8). To this end 
the recursion coeffi cients of the orthonormal multiples of Pk are required. As shown , 
e.g., by Grosjean [6], the polynomials { ..)2k + 3 hk ,3; 2} are orthonormal with respect 
to the Lommel measure; concerning the inner produ ct (2. 1) this implies that 

( 3.15) k = 0 , 1, 2 , ... , 

are the orthonormal polynomials corresponding to t he Lanczos process. Inserting this 
into (3.5) one can compute the coeffi cients Ct j and ßi from (2.6) , namely et0 = 1/15, 
and , for j 2: 1, 

( 3 .16) 
2 1 

ßj = (4j + l )j(4j + 3)(4j - 1) 
Ctj = ( 4j + 1)(4j + 5) , 

To determine Pk-1 ( .\ t ,k) one can use the convexity of Pk- t in [At ,k - t , .\i] to obtain 
that 

From this inequality and Lemma 3. 1 fo llows that 

ll - P~-d.\1 , k) 1 <( .Ai_ .A u) ~k-1Pil '.:::' -At - -At ,k 
Pk-1(.\i) - Pk-t(.At) At - .\ 1,k-1 
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Since the right-hand side goes to zero by Theorem 3.3 it has been shown that 

(3.17) 

cf. (3.15) and (3.13). 
The remaining factor in (2.8) is just the square root of the weight in the kth 

Gaussian quadrature rule for the inner product (2.1 ). This weight converges to the 
mass of the associated measure at At , i. e., 

(3.18) 
k-t 

(Lßj(A1,k))-
1 

- . 
2 

k ~ 00. 

j=O 

Inserting now (3.16), (3.17) and (3.18) into (2.8) one obtains that 

Ek '.:::'. 8~ k-3 /2( :~ )2k . 

As can be seen from Theorem 3.3 this is essentially the square root of (3.12). Note 
that this is in nice agreement with the stronger perturbation error estimate 

1 2 
- - At k ~ Ekh, 
µt ' 

stated in [10 , Section 13-2], where 'Y is the gap between At ,k and A2 ,k . 

lt should be mentioned that the same model problem appears as Example 5.2.8 
in Nevanlinna (9], where lower an9 upper bounds are obtained for the superlinear 
convergence rate of the conj ugate gradient iteration applied to solving (I + L - t )u = f. 
These bounds are approximately the square root of the eigenvalue approximation error 
(3.12). While the upper bounds are obtained with similar techniques as in Section 2, 
Nevanlinna uses a lemma from analytic function theory to derive his lower bound. 
If f = t a.e. in (0, 1), however, then the precise asymptotic convergence rate of the 
residual norm II/-(/+ L- 1)ukll can be computed by similar means as above. 

4. Numerical examples. To illustrate the results of the previous section the 
Lanczos method has been used to compute the smallest eigenvalue µ 1 = 7r 2 of the 
differential operator L of Section 3. The operator is approximated by finite differences, 
which gives the tri diagonal matrix A = n 2 · tridiag(-1 , 2, -1) of size ( n - 1) x ( n - 1) . 
lt is the reciprocal ~ 1 of the smallest eigenvalue of A, i.e. , 

- 1 -2 7r 1 1 -? 
A 1 = - srn - = - + - n - + 

4n 2 2n 7r 2 12 · 

to which the Lanczos approximations will converge. 
For n = 128, Table 4.1 presents the results of the first six Lanczos itera:tions: the 

second column shows the approximation AJ ,k of the Lanczos method after k iterations, 
and the third column contains the approximation error .\ 1 - At k· The numbers in 
the fourth column are the a posteriori error bounds Ek defined in (2.8), while the last 
column contains the reciprocals of the a priori estimate (3.14), which describes the 
exact asymptotic behavior of the approximation erro1-. For comparison, the last line 
shows the true eigenvalue At= "- 2 of L-t. 

Note that only three iterations are required to obtain all significant digits of )q 

within the discretization error . lt can also be seen by counting the zeros in the error 
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TABLE 4.1 

Model problem Lu= -u11 

k approximations absolute errors a posteriori bound estimate (3.14) 

0.067 449951 0.033876319 0 .043 298 950 0.324 606 700 
2 0 .100622293 0.000 703 977 0.007 638 242 0.003 292 797 
3 0 .101323064 0.000003 206 0.000 542 465 0.000009 764 
4 0.101326266 0.000000004 0.000 020 379 0.000000 01.1 
5 0.101326270 0 0.000000 481 0 
6 0.101326270 0 0.000000008 0 

71"-2 0.101321184 

numbers that an algorithm with quadratic or even cubic convergence would not be 
significantly faster. As predicted by the asymptotic analysis of the previous section, 
the a posteriori bounds Ek are significantly !arger than the true errors, .but somewhat 
smaller than their square roots. 

The second example is a more realistic problem. Let 

Lu = -div( a gradu) 

be an elliptic differential operator over the square [O , 1) x [O , 1) with V(L) = 1i2 n1i6 C 
.C 2 , and with piecewise constant coefficient function 

{ 

100 
a(x,y) = 

1 

o:=;x,y:=;0.5, 

elsewhere. 

The aim is to determine the smallest eigenvalues of L. As described in the beginning 
of Section 3, these eigenvalues can be computed wit.h the Lanczos process, solving 
a differential equation Lwj = Vj in each iteration. The following results correspond 
to y ::::: 1 as initial function. The differential equations have been solved with a full 
multigrid V(2, 2)-cycle (called nested iteration in [7)) using two pre and post Jacobi 
smoothing steps, respectively, and bilinear finite elements over 128 x 128 squares on 
the finest level. Note that this means that L- 1 is implemented by an algorithm, and 
not via a matrix vector multiply (although in exact arithmetic the algorithm implic
itly corresponds to some matrix). As a consequence the errors in the computation are 
much !arger than in the previous example . which leads to a certain loss of orthogo
nality in the Lanczos vectors. This is manifested by so-called "spurious" ( or ghost) 
eigenvalues of the resulting J acobi matrix. Spurious eigenvalues can be identified with 
a technique due to Cullum and Willoughby [3). With their approach the first spurious 
eigenvalue of Tk has been detected after k = 7 iterations , with a second one occurring 
after nine iterations . Table 4.2 shows the remaining four dominant eigenvalues of Tk 
for k = 1, .. . , 10. Note the loss of monotonicity in these columns at k = 7 and k = 9, 
which is due to the elimination of the spurious eigenvalues. 

The last column of Table 4.2 shows the decay of the nurnbers Ek of (2 .8) corre
sponding to the dominant eigenvalue . Sirnilarly, the final row contains the respect ive 
numbers E10 for the four largest eigenvalues of T10. 

Again, essentially three to four iterat ions are required to approximate the smallest 
eigenvalue of L within the discretization error , and two more iterations to obtain the 
next one. Note that according to the a posteriori bounds Eio in the last row it is not 
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TABLE 4.2 
P roblem L u = -diu(a gradu) 

k approximations a posteriori bound 

0.013980 0.012071 
2 0.025 811 0.001674 0.002749 
3 0.026269 0.009937 0.000 742 0 .000 615 
4 0.026289 0.012185 0.004675 0.000458 0.000106 
5 0 .026289 0.012695 0.007 539 0.002489 0.000010 
6 0 .026289 0.012 731 0.008085 0.004657 0.000004 
7 0.026289 0 .012 716 0 .007807 0.003244 0.000004 
8 0.026290 0.012 718 0.007843 0.004459 0.000010 
9 0 .026291 0.012 718 0.007856 0.003 327 0.000004 
10 0 .026291 0.012718 0 .007971 0 .005 331 0.000004 

"10 0.000004 0 .000005 0.003623 0 .002657 

quite clear whether the third eigenvalue has converged after 10 iterations . A couple 
of more iterations , however , establish 0.0078 as the first few significant digits of .A3 . 

Anyway, after 10 iterations one has 

µ 1 = 38.0 , µ 2 = 78.6 , and µ 3 ::::::: 125 

as final approximations of the three smallest eigenvalues of L. 
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