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Abstract

In this paper network location problems with several objectives are
discussed, where every single objective is a classical median objective
function. We will look at the problem of finding Pareto optimal loc-
ations and lexicographically optimal locations. It is shown that for
Pareto optimal locations in undirected networks no node dominance
result can be shown. Structural results as well as efficient algorithms
for these multi-criteria problems are developed. In the special case of
a tree network a generalization of Goldman’s dominance algorithm for
finding Pareto locations is presented.
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1 Introduction

In an effort to improve the performance of facility systems, planners have
developed a host of operational models to deal with the location of a facility
on a network (see [Labbé et al., 1995] for a recent survey). A large number
of these models focuses on the minimization of a unique objective function
which is increasing with the distance to travel. However, in many location
problems, especially in the public sector, the decision must be made by a
group of decision makers, e.g. when a group of small communities wants
to build and share a public facility. Then, each decision maker is endowed
with a specific objective function but different decision makers have differ-
ent objectives. In this paper, we consider the median (or minisum) location
problem in this context of several decision makers. Specifically, the goal of
all decision makers is the same: to locate a facility in order to minimize
the total weighted distance to the potential users but the value of weights
assigned to those potential users varies from one decision maker to another,
hence yielding different objective functions. Furthermore, we consider two
types of solutions depending on the fact that a hierarchy among the decision
makers exists or not. In the first case and if the corresponding ranking is
known, the solution we consider is called a lexicographic location and op-
timises the objective functions of the decision makers sequentially according
to the given order. If this order exists but is not known, then some help
might be provided to the decision maker group by giving them the set of the
lexicographic locations with respect to all possible rankings. In the second
case, some help might be again provided to the group through the set of
efficient or Pareto locations, i.e. solutions such that there exists no other
location which is not worse for all decision makers and better for at least one
of them. The literature on location models involving several decision makers
is somewhat reduced at least when they all share the same type of objective
functions. Hansen et al. [Hansen et al., 1986] consider a special case of the
model presented here. More precisely, they provide an algorithm for finding
the efficient points for the so-called point-objective problem: the objective
function of each decision maker is given by the distance to his/her own loca-
tion. Hamacher and Nickel [Hamacher and Nickel, 1996] consider the planar
version of the problems treated here. Finally, Lowe [Lowe, 1978| considers
the case of several decision makers endowed with objective functions which
are not necessarily of the same type. Note that his analysis restricts to the
family of tree networks. Other types of multicriteria location models have
been proposed, see e.g. [Labbé et al., 1995].

As one notices, the nomenclature for location problems is not unique.
Therefore we introduce in the following a classification scheme for location



problems, which should help to get an overview over the manifold area of
location problems.

We use a scheme which is analogous to the one introduced successfully in
scheduling theory. The presented scheme for location problems was developed
in [Hamacher, 1995] and [Hamacher and Nickel, 1996].

We have the following five position classification

posl /[pos2/pos3/posd/posh ,

where the meaning of each position is explained in the following table:

Position | Meaning | Usage (Examples) |

1 number of new facilities

P planar location problem

2 type of problem D discrete location problem
G network location problem
w, =1 all weights are equal

3 spem.al .assumptlons and R a forbidden region
restrictions
) ) A Manhattan metric
4 type of distance function d(V,V) mnode to node distance
.. Medi 1
) type of objective func- 2 edian problem
tion max Center problem

If we do not make any special assumptions in a position, we indicate this
by a e.

The rest of the paper is organized as follows: First we give some defin-
itions and develop some basic concepts which are needed later on. Section
3 is devoted to the lex location problems. In Section 4 we present solution
algorithms for finding the Pareto locations on a general network. Section
5 shows that for tree networks better procedures can be found. The paper
ends with some conclusions.

2 Definitions and basic concepts
By N = (G, 1) we denote a network with underlying graph G = (V, £), where

V = {v1,...,vp} is the node set and €& = {ey,...,en} is the edge set. If the
graph is a tree we use 7 instead of G. If G is a directed graph we denote



edge e € € as e = (v;,v;), v;,v; € V, where v; is the head and v; is the tail
of e. If G is undirected we use the notation e = [v;, v;] = [vj, vi], vi, v; € V.

For every edge e € &£, a function [ : £ — IR, assigns a positive real
number as length to e. By d(v;, v;) we denote the distance between v; and v;
(from v; to v; in a directed graph), which is given by the length of a shortest
path between v; and v;.

For technical reasons edges with length 0 are not allowed. But all presen-
ted algorithms can be modified to include also the case where I(e) > 0,
Ve € €.

A point z on a directed edge e = (v;, v;) is defined as a couple z = (e, ),
t € [0,1], with

d(vg, z) = d(vg, v;) + tl(e) and d(z, vg) == (1 —t)l(e) + d(vj, vk) ,

for any vy € V. A point on an undirected edge e = [v;,v;] is defined as a
couple = = (e, t), t € [0,1], with

d(vg, x) = d(x, vg) := min{d(vg,v;) + tl(e), (1 —t)l(e) + d(vj, )} ,

for any v, € V.

In particular d(v;, x) = tl(e) and d(z,v;) = (1 —t)l(e) holds for all points
x = (e, t). Since (e,0) = v; and (e, 1) = v; all nodes of the network are also
points of the network.

Note that points can only be defined on networks and not on graphs
without edge lengths.

The set of all points of a network (G,![) is denoted by P(G). The sets
{(e,t) € P(G) : t € (t1,t2) , t1,t2 € [0,1]} and {(e,t) € P(G) : t €
[t1,t2] , t1,t2 € [0,1]}, forming subedges of e, are denoted (e, (t1,%2)) and
(e, [t1,t2]), respectively, for any e € £. Of course these sets are empty if
to < t1. For the sake of simplicity, we write e instead of (e, [0, 1]), whenever

this causes no confusion.

1
w;

We assign a vector of weights w; = : # 0 to every node v; € V|

wy?
with w! >0,¢g€ Q:={1,...,Q}.
A point z = (e,t) on an edge e = [v;,v;] is called a bottleneck point

for component ¢ if there exists some node vy with wj > 0, such that
d(vk, ©) = d(vg, vi) + d(vi, 7) = d(vk, v;) + d(v;, 2) -

Let B;; denote the set of bottleneck points on the edge [v;,v;]. Notice that
the set B;; contains at most |V| elements.
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We measure the quality of a point z € P(G) with the multi-criteria me-
dian objective, defined by

fHz) > vmey Wind(T, Vi)
fl)=1 + [:= :
fQ (‘T) Evm 2% wf%d(x, Um)
in the undirected case and
fHz) > omey Wy (AT, V) + d(vy, 7))
fly=1 =+ |:= :
f9(x) > omey Wy (AT, V) + d(Vym, 7))

in the directed case. From [Levy, 1967] it follows that f7(t) := f%((e,t)) is
concave on [0, 1] for all ¢ € Q.

In order to use f(x) in an optimization context an order on IR“ has to
be defined. In this paper two different orders are considered.

As default order we consider the component-wise one defined by

21 = (zi,,z?) < (z%,,zé’?) =2

if and only if 2 <2, Vg=1,...,Q.

If at least one of the latter inequalities is strict, the notation z; < 2z is
used, and z; is said to dominate z,. Consider a subset W C IR¥. A vector
z1 € W is called non-dominated with respect to W if there is no vector
2o € W such that zo < z;. The set of all Pareto vectors with respect to W is
denoted by Wy, .

Let S be a subset of points of P(G). If W = {f(z) : € §}, then the
set of all locations € S such that f(z) € W, is denoted by Xy, (S). If
S = P(G), we simply write X, A point z € A, (S) is called a Pareto
location with respect to S.

Following the classification introduced in the introduction
1/G/e/d(V,G)/Q-Yper and 1/Gp/e/d(V,G)/Q-Y,. are the problems
of finding all Pareto locations (i.e. with respect to P(G)) in the undirected
and directed networks, respectively.

Correspondingly, if W = {f(v):v € V}, the problems classified as
1/G/e/d(V,V)/Q-Y s and 1/Gp/e/d(V,V)/Q-Y ., consist in finding the
set Xper (V) of nodes v € V in undirected and directed networks, respect-
ively, such that f(v) is not dominated by any f(v'), v' € V. Such nodes are
called Pareto nodes.

Another possibility of comparing vectors in IR? is the lexicographical
order. For two vectors z := (21,...,2%), 20 := (2},...,2%) € R?, we say

5



that

1 < 2
< lex <
if and only if
z=2 or A<y for p:= mig{q:zi’#zg}.
g€

If TI(Q) is the set of all permutations of @ = {1,...,Q}, = € P(G) is
called lex(icographic minimum) location or lex optimal with respect to
a permutation 7 € II(Q) if

(FO@),.... Q@) = (FO@),..., FOy))

for all y € P(G). Notice that z is well-defined, since the lex order is a total
order in IR?. Lex locations are useful if a preference in the @ objective
functions f? corresponding to a specific permutation 7 € II(Q) is known.
The set of optimal locations with respect to 7 is denoted by AT,. If the
preference is not known in advance one may be interested to know the set
Xier of all lex locations with respect to all possible permutations of I1(Q).
Analogously to the Pareto location sets, we define, for S C P(G), Xjes (S) as
the set of lex locations with respect to S and Xjey := Xjex (P(G))-

3 Lexicographic Locations on Networks

In the first part of this section we consider the problems 1/G/e/d(V,V)/Q-
ez and 1/Gp/e/d(V,V)/Q-Y1cs, where new facilities can only be placed in
the nodes.

By fI we denote the g-th objective value for node v, i.e.

fl=flv) = Y whd(vi,vm) - (3.1)

Um €V

The values f{ can be computed in O(|V|?) by applying an all-pair shortest
path algorithm (see [Ahuja et al., 1993]). For 7 € I1(Q), we denote

T £
fi(m) = : and f; := f;(id) := :
iﬂ(Q) fiQ

where id denotes the identity permutation. Without loss of generality we
assume that f; # f;, Vv, v; € V,i # j, such that for any = € II(Q)
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the lex location is uniquely defined. Therefore 1/G/e/d(V,V)/Q->., and
1/Gp/e/d(V,V)]/Q-> ., are equivalent to finding the lexicographically min-
imal vectors of the finite set {f;(7) : v; € V, m € II(Q)}, whose cardinality
is O(|V|Q").

We will show next how to check whether for a given vector, say f;, there
exists a permutation 7 such that fi(7) is lex optimal.

To that aim we compute for all v; € V

Min; = {q € Q : fl=min{f] : v; € V}}

and

Lemma 3.1. If J(1) = {1}, then there exists some permutation 7, such
that fi(m) is lex optimal with respect to .

Proof. Choose any permutation m, such that for M; = |Min,|,
{m(1),...,7(M;1)} = Min,. Since J (1) = {1} implies Min; N Min; C Min,
for all j # 1, we get fi(7) <iex fi(7).

|

Lemma 3.2. Let J(1) D {1}. Then there exists some permutation 7, such
that fi(m) is lex optimal with respect to m if and only if

(ﬁr(q))

is lex optimal with respect to the reduced permutation of Q\Min, in the set

{(f;'r(q))qeg\Mim : jej(1)} .

Proof. The claim follows by the definition of the lexicographic order, since
Min; > Min, implies that f{ = f/, for all ¢ € Min, and all j € J(1).

geQ\Miny

|

Lemma 3.3. If Min; = (), then there exists no w, such that fi(m) is lex
optimal.

Proof. Min, = () implies that for any 7 € II(Q), there exists some v; € V
such that £ > f;-r(l).



Based on an iterative application of Lemmata 3.1 , 3.2 and 3.3 the fol-
lowing algorithm finds the set X, (V) of all lex optimal nodes with respect
to V.

Algorithm 3.1. Solving 1/G,Gp/e/d(V,V)/Q-Yex

Input: Network N = (G,!) or (Gp,1)
Output: X, (V)

1. Compute the distance Matrix D = (d;;).

2. Compute f{,v; €V, q € Q.

3. Lex := {1,...,|V|}. Recall that the vectors f(v;) are assumed to be pairwise
distinct. If this is not the case only one representing node is included in Lex.

4. for each 1 € Lex do

(a) Determine Min,.
(b) if Min; = 0, then Lex := Lex\{i}.

5. Xz (V) = 0.

6. for each 1 € Lex do
(a) J' := Lex
(h) Q= Q

(c) for each j € J' do compute
Min; == {q e : f;-’ =min{f} : [ € j'}}
(d) if Min; = ) then Lex := Lex\{i}, goto 6 with next i.
(e) compute J'(i) :={j € J' : Min; O Min;}.
(f) if J(i) = {i} then Xy (V) := Xjex (V) U {v;}, goto 6 with next i.
(g) J = J'(i), Q = Q\Min;, goto 6 (c).
7. Output: X, (V)

Step 1 requires O(|V|?) elementary operations. The loop in Step 6 of
Algorithm 3.1 can be run at most @-times, since |Q'| is strictly decreasing
in each iteration. Step 6 (c) is within that loop the most time consuming
step and can be done in O(Q|V|log|V|). Hence the overall complexity of
Algorithm 3.1 is O(|V]> + |V[*Q?log |V]).

In a directed network, it is easy to see that f¢(z) > f4(v;) for all ¢ € Q
and all z = (e, t) with e = (v;,v;) and 0 < t < 1 (see also Section 4.1). We
therefore conclude with the following proposition.
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Proposition 3.4. The solution set for 1/Gp/e/d(V,G)/Q->.; is the same
as for 1/gD/./d(V, V)/Q'Zlez'

It remains to consider the problems 1/G/e/d(V,G)/Q->ics-

For a given permutation m € II(Q) the definition of the lexicographic
order implies that A}], can be found by a sequence of at most () location
problems, where the set of feasible solution in Step ¢ + 1 is given by the set
of optimal locations of Step q.

The concavity property of the median functions f? on [0,1] (see
[Levy, 1967]), implies that for any z = (e,t), e = [v;,v;], 0 < ¢t < 1 and
for all ¢ € Q:

f4(z) > min {f(v:), f(vs)} -
Consequently a point € P(G)\V can be a lex location if and only if f?(v;) =
fP(vy) = fP(2), 1 < p < Q and v;,v; € Xy (V).

Proposition 3.5. Let x = (e,t) € P(G)\V, with e = [v;,v;]. Then z is lex
location for 1/G /e /d(V,G)/Q-> 1., if and only if f(z) = f(v;) = f(v;) and
Vi, Uj € X.lez(v)

Therefore X, can also be found with Algorithm 3.1 in O(|V|® +
VPPQ*log [V]).

4 Pareto location problems on general net-
works

4.1 The easy cases: Solving 1/G,Gp/e/d(V,V)/Q-%pur
and 1/Gp/e/d(V,G)/Q-Ypar

In the case where the new facility can be placed only at the nodes of the
given network we can determine X, (V) by the following straightforward
approach in O(Q|V|?), given the distance matrix.

Algorithm 4.1. Solving 1/G,Gp/e/d(V,V)/Q-3

Input: Network N = (G,1), Distance Matrix D = (d;;)
Output: A, (V)

1. Xpor (V) =V



2 fori:=1to M do

for j:=1to M do
if f(07) < J(13) then Xy (V) := Kooy (V) \{01}

3. Output: X, (V)

In the case of a directed network where the new facility can be placed
anywhere on the network the following holds:

Proposition 4.1. For a directed network N' = (Gp, 1) we have Xpo, (V) =
Xpar-

Proof. For z € (v;,v;), with  # v;, i # j, (vi,v;) € £ and ¢ € Q we can
write in a directed network:

[ z) = fi(v) = Zwk (z,vr) — d(vi, vg)) Zwk (vg, ) — d(vk, vi))

Since the triangle inequality holds and any path to x necessarily contains
node v;,

Z wi (d(z,vg) — d(vi, v)) > — Z witl(e) +wi ((1 —t)l(e) + d(v;,vi))

= — > witl(e) + wi (I(e) + d(v;, vy))
keM
and
Z w (d(vg, ) — d(vg, vi)) Z witl(e)
keM keM
Hence,

fi(z) — fi(v;) > wi (I(e) + d(vj,v;)) > 0.

Since w; # 0, this means that v; dominates all z € (v;, v;).

|

Therefore we can restrict ourselves to the node set )V, when search-
ing for Pareto locations. Hence we can use Algorithm 4.1 for solving

1/Gp/e/d(V,G)/Q-Lper in OQV]).
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4.2 Solving 1/G/e/d(V,G)/2-%par

What is left, is a solution algorithm for X, in the undirected case. We first
look at the bi-criteria problem to understand the difficulties and identify the
differences to the three other easy cases we just saw.

Analogously to the results of Section 4.1, we may hope for some node
dominance result or at least that only edges [v;, v;] with v;, v; € Xper (V) can
contain Pareto locations in their interior. The following example shows that
none of those two claims is true in general.

Example 4.1. Consider the network of Figure 4.1.

Figure 4.1: The network of Example 4.1. The bold part constitutes the set of Pareto
locations.

The distance matrix is given by

— Rk W o=
AW N WO
N Ot O W W
W O O N =W
S W N W N

0
1
1
4
3
2

With w! := (1,2,1,2,2,2) and w? = (2,1,2,2,2,1) we get f(v) =

Fl) = (37), flus) = (31), f(wa) () vs) = (27), and f(vs) =

So we have
par( ) = {vs, v6} .

If we investigate the edges of G we find that by the concavity (see Section 2)
of f? on the edges:

(1)
(1)
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e v3 dominates all points on the edges [vs, vs], [v3,vs] and [vs, v1].
e vg dominates all points on the edges [vg, V2], [vs, V5] and [ve, v4].
e v, dominates all points on the edge [vq, v4].
e v; dominates all points on the edge [vy, vs).

We also observe that none of the Pareto nodes can dominate a point with
both objectives smaller than 21. The objective functions f' and f? for [vy,vy]
— the only edge left — are shown in Figure 4.2.

21+ £ —21
f2
194 —19
t=0 ([UlaUQ]at) t=1

Figure 4.2: The objective functions f! and f2 on [v, va].

We recognize that

1. All points x € [v1,v9] With x # vy, © # vy have fl(z) < 21 and
f*(z) < 21.

2. No point x € [v1, v9] dominates a point y € [v1, vs).

So we have in total
Xy = {v3,05} U (for, 0], (0,1) -

By changing the weights to w' := (1,2,1,3,2,2), w? := (2,1,2,2,3,1)
we have as A, a proper subset of ([v1,vs], (0,1)) plus {vs, vs}. By further
changing the weights to w' := (1,2,1,4,2,2) and w? := (2,1,2,2,4,1) we
get Xpqr = {vs, v6}-
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4.2.1 Searching for local Pareto locations along the edges

Since situations such as in Example 4.1 may happen, we have to investigate
f%(z) on the interior of the edges. In order to exclude edges or parts of edges
from the search, the following results will be useful.

Let

1
z .
( ;2) = f(z12) , with 215 € Xli;

<12

and .
<221> = f(x21) , with z9; € Xli;} )

2
221
Then the following holds:

Theorem 4.2 (Box Theorem). For all z € X,
1. fi(z) € [2]y, 23,] and
2. f*(z) € [43, 21,

Proof. We only show that f'(z) € [z],, 25;]- The other part can be proved
in the same way. Let x € X, with f(z) = (2',2?). First, 2! < 2], is
impossible, since f!(z) > z{, Vo € P(G). Second, z' > 23, implies that z is

dominated by the lex location z5; with f(z91) = z%l
21

|

Lemma 4.3. If for an edge [v;, vj], v; dominates v; or v; dominates v;, then
there is no Pareto location x € ([v;,v;], (0, 1)).

Proof. Without loss of generality let v; dominate v; with f(v;) < f*(v;)
and f%(v;) < f?(v;). Since f! and f? are concave and f! is not constant on
[vi,v;], we have

fH(vi) < f(z) and f*(v;) < f*(2)

for all € [v;,v;], with x # v;. Therefore v; dominates z.

|

So, in what follows, we can restrict ourselves to cases where the endnodes
of an edge do not dominate each other.
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Proposition 4.4. For an edge e = [v;,v;] with v; and v; not dominating
each other, let f' and f? be non constant on e, let

fHwi) > fH(vy) and f2(vi) < f*(v;) .

and let

thi=max{t €[0,1] : f'(v;) = f ((e,1))}
and

2 :=min{t €[0,1] : f2(v;) = f*((e,1))} .
Then

Xyar ([vi,v5]) = {vi} U {w;} U (e, (1,12)) .

Proof. The endnodes v; and v; do not dominate each other and, by the
concavity of f! and f2, there cannot be a point in ([v;, vj], (0,1)) dominating
v; or v;. Also by the concavity of the objective functions on [v;, v,] we know
that f! is decreasing and f? is increasing in [t!,#?]. Therefore no point
y' = (e, t'), with ¢' € [t!,#?] can dominate another point 3" = (e, t"), with
t" € [t',t?]. The points (e,t) with ¢ € (0,¢!) are dominated by node v; (by
definition of ¢!). The points (e,t) with ¢t € (¢2,1) are dominated by node
v; (by definition of #*). Also by definition of ¢' and ¢*, no point (e,t) with
t € [t',¢?] is dominated by v; or v;.

|

Remark that we do not use the piecewise linearity property of f?¢ in the
proof of Proposition 4.4, so that this result can be extended to any objective
function which is concave in the distances.

Lemma 4.5. For an edge e = [v;,v;] with v; and v; not dominating each
other, let f! or f? be constant on e and let

FHvi) > fH(vy) and f2(v;) < f?(vy) -
Then f(v;) = f(v;) and

e if only one objective function is constant, then
Xpar ([03,v5]) = {vi, v5}

e If both objective functions are constant, then
Xpar ([vi, v5]) = [v3, 5] -

14



Proof. Assume that f'is constant. Then f'(v;) = f'(v;). If f?(v;) >
f?(v;) then v; dominates v;. If f(v;) < f2(v;) then v; dominates v;. So

fvi) = f ().

|

Corollary 4.6. For every edge e = [v;,v;| in the network, Xpq, ([vi,v;]) Is a
(possibly empty) single subedge of [v;, v;] plus one or both endnodes.

Now we can combine the results of that section to an algorithm for finding
Xpar ([vi, vj])-

Algorithm 4.2. Determining X, ([vi, v,])

Input: Edge e = [v;,v;].
Output: X4 ([vs, vj])

1. if v; dominates vj then Xy, ([vs,v;]) = {v;}, stop.
2. if v; dominates v; then X4, ([v;,v,]) := {v;}, stop.
3. if f(v;) = f(v;) then

(a) if f((e,3)) = f(vi) then Xpar ([vi,v;]) := [v3,v;], stop.

(b) if f((e, 3)) # f(v;) then Xpqr ([vi,v5]) == {v;,v;}, stop.
4. if f*(v;) < fY(v;) and f?*(v;) > f?(v;) then exchange v; and v;
5. Compute t! and t? as defined in Proposition 4.4.

6. if t* < ¢?
then X ([vs,v5]) == {vi, v} U (e, (1, 1%))
else Xpar ([v3, v5]) == {vi, v;}.

7. Output: Xy, ([vs,v5]).

On an edge e, the function f? is piecewise linear with at most |V|
breakpoints corresponding to the bottleneck points on this edge. Those,
as well as their value for f? can be computed in O(|V|log|V]), see e.g.
[Hansen et al., 1991]. Then t' and #* can be determined by exploring the
sorted list of bottleneck points once. So, Algorithm 4.2 runs in O(|V|log|V)).

Therefore we can compute | ] X ([v5,v;]) in O(J€|[V]1log|V|). Note

[’Ui,’()j]Ec‘:
that in implementations of Algorithm 4.2, Theorem 4.2 can be used to further
reduce the number of candidates for &, .
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Figure 4.3: Network for Example 4.2.

Example 4.2. Consider the network of Figure 4.3.
The distance matrix is given by

0

NN

— N O
_— O NN
S~ =N

Withw' := (1,2,2,2) and w? := (3,1,2,1) we get f(v,) = (170), fv) = (g),
flvg) = (g), and f(vy) = (g). So we have

Xpar (V) - {Ula V2, U4} .

Since the optimal solutions for the single objective problems are unique we
get z{, = 6, 22, = 9, 23, = 10 and 22, = 7. This means that Theorem 4.2
does not allow to exclude edges. So we use Algorithm 4.2 for each edge.

e FEdge [v1,vs]. None of the vertices v; and v, dominates the other and
the objective functions are not constant, so we use Proposition 4.4 to
determine Xpor ([v1,v2]) . We get t* = 0 and t* = 3 (see Figure 4.4).

Therefore Xye, ([v1, v2]) = {v1, v2} U ([v1, 2], (0, 3)).

e Edge [v9,v4]. Since there are no bottleneck points on the edge and one
function is strictly increasing while the other one is strictly decreasing
we get that X,e ([U2, v4]) = [v2, v4].

e Edge [vs,v4]. Since vy dominates vs we have Xy, ([vs, v4]) = {va}.

16



~
—
I
ja)
~
N
I
|—=
N [ = —
—_

([Ula UQ]’ t)

Figure 4.4: Tlustration for Example 4.2. The determination of X, ([v1,v2]).

e Edge [v1,vs]. v; and vs do not dominate each other and the objective
functions are not constant, so we use again Proposition 4.4 to determine
Xpar ([v1,v3]) . We get t* = L < t' = % (see Figure 4.5). Therefore
Xpar ([v1,vs]) = {v1,vs}.

Let e = [v;,v;] be an edge such that f(v;) # f(v;) and set z'(t) = f1(zy)
and z%(t) = f2(z;) for 2, = (e,t) € Xpar ([vi,v;]) N (e, (0,1)). Both functions
are piecewise linear with the same set of possible breakpoints correspond-
ing to bottleneck points. To simplify denotation we assume without loss of
generality that f' and f? have the same set of breakpoints on [v;,v;]. (If
this is not the case the union of the breakpoints has to be considered.) The
breakpoints are denoted by ¢;, j = 0,..., P with (e, t,) = v;, (e,tp) = v,; and
tj1 <tjforall j=1,...,P. Fort € [t;_1,t;], 2'(t) and 2%(t) are therefore
linear functions of the form, say,

2! (t) = mjt + b and 2%(t) = mit + b7 .

Hence, since f! is not constant, we may write 22 in terms of z'. For each
segment [t;_1,%,], 1 <j < P, we get

2 211

m4 msb;
zzz—{zl—i-bf—#.

m; m;

Now, assume without loss of generality that f'(v;) < f'(v;) and f?(v;) >
f?(v;). Since the functions f!' and f? are concave and piecewise linear on
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Figure 4.5: Tllustration for Example 4.2. The determination of X, ([v1,v3])

[vi,v;] and since they are strictly monotone on X, ([v;,v,]) (see Figure 4.6),
we have that
my >my>...>m, >0

and
0>mi>m;>...>m
so that ) , )
m m m
0>—F>-—2>...>-"2,
mi ~ m3 m,,

which means that z? is a concave function of z' when f(v;) # f(v;). Accord-
ing to Lemma 4.5, X4 ([v5,v;]) contains points in ([v;,v,], (0,1)) either if
f(vi) # f(v)) orif f(xy) = f(vi) = f(vj), for all t € (0,1). In the latter case,
the image of [v;,v;] in the objective space reduces to a single point (2!, 2?),
which can be considered as a degenerate concave curve. We have thus proved
the following lemma.

Lemma 4.7. For e = [v;,v;] with Xpa, ([vi,v;]) N ([, v5],(0,1)) # 0, 2% is a

piecewise linear and concave function in z'.

In order to obtain X, we can draw IM(f), the set of all images of all
Xpar ([Vi,04]), € = [v3,v;] € &, in the objective space. These images consist
of connected components, i.e. isolated points or piecewise concave linear
curves. Since, in the objective space, a point z dominates all other points
in z + IRi ={z+y : y€ ]Ri} we extend all connected components by a
horizontal line segment at its right-most point.
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Figure 4.6: The objective functions f! and f2 on a part of an edge producing local

Pareto locations. Both functions are piecewise linear with the same breakpoints.

Algorithm 4.3. Combining the local Pareto locations

Input: Xy, ([vi,v;]) for all e = [v;,v)] € €.
Output: X,

1.

d.
6.

Let z} . := max {fl(aj) e |J Xar ([vi,vj])}.

[viﬂv]']eg

Build IM(f), which consists of | f(Xpar ([vi, v5]))-

[’U@',’Uj]Eg

For each connected component | in IM(f), let (2},2?) be the right-
most point and add to IM(f) the horizontal segment I' with left-most
point (2}, z}) and right-most point (z},,., 27).

Compute the lower envelope L of IM(f), which is the lower envelope
of O(|€||V]) line segments.

Eliminate every horizontal line segment of L, except its left-most point.

Output: X, = f~(L).

Step 1-3 are necessary to get really rid of all dominated points when
applying the lower-envelope algorithm. Note that these steps can be done
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in linear time and that the order of the number of line segments is not af-
fected. Step 4 of Algorithm 4.3 can be done in O(|€||V|logmax (|£], [V])) (see
[Hershberger, 1989]) and this equals the complexity of the whole algorithm,
since the clean-up Step 5 can be done in linear time.

Note that we may take instead of an open subedge (e, (¢1,t2)), the cor-
responding closed subedge (e, [t1,t5]) without affecting the result of Al-
gorithm 4.3.

Figure 4.7: Tlustration for Example 4.3. The bold part constitutes Xpq.

Example 4.3. We use the results of Example 4.2 as input for Algorithm 4.3

and get
1

Ko = o2, 03] U ([, 2a] , 0, 5))

(see Figure 4.7).

4.3 The @-criteria case

We now turn to the general case of () criteria. While the determination of
Xpar ([vi,v4]) is similar to the bi-criteria case the process of finding &), turns
out to be very much different.

Let e = [v;,v;] be an edge in the network. First notice that Lemma 4.3
holds also for the Q-criteria case and can be proved just by replacing f* and
f? by f7 and f7, (¢ # 4", ¢,q" € Q), respectively.

From now on assume that neither v; dominates v; nor v; dominates v;.
Let @1 and Q, be a partition of the set of criteria such that @, C Q with
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fq(’l)i) > fq(’Uj), Qs C Q with fq(’Ui) < fq(’Uj). Oof course, 9, 7é @, 91NYy =
0 and Q1 U Qy = Q.

The following lemma is analogous to Lemma 4.5.
Lemma 4.8. Let the functions f¢ be constant on e = [v;,v;] for all ¢ € Q;.
o If Qy # 0, then Xy, ([vs,v4]) = {vi,v;}.
o If Oy =0, then Xyor ([vi,v5]) = [vi,v5].
Proposition 4.4 can also be adapted to the general case:
Proposition 4.9. Let f(v;) # f(v;) for an edge e = [v;,v;]. Further let

t(f?) :=max{t €[0,1] : fi(v;) = f1((e,t))} forallqge Q,

and
t2(f9) :=min{t € [0,1] : fi(vy) = f((e,t))} forallge Q,.
Then
o ([0, 05]) = {0} U {05} U (e, (min {2100}, mac {20} )

From these result we can conclude that Corollary 4.6 also holds for the Q-
criteria case, i. e. Xpq, ([vi,v;]) is a (possibly empty) single subedge of [v;, v;]
plus one or both endnodes. This helps very much to decrease the expected
amount of storage in implementations.

In order to determine &), it remains to compare pairwise all elements
of Xpar ([vs,v;]) , for all [v;,v;] € €.

First compare all vertices v; € V and edges where all f9, ¢ € Q are
constant. This has a complexity of O(|€*Q + |V|*Q + |€||V|Q). After that
we can restrict ourselves to cases where at least one f? is non-constant.

Consider a subedge (e, [tr, tr41]), of €, € &, with (e, [tr, tr1]) C Xpar (1),
with t,,t, 41 consecutive breakpoints on ¢;. We know that (e, [t,,t,11]) is a
linear subedge (with respect to f1,..., f9), i. e.

fq ((elat)) = bg + mgt for all qc Q ) le [tratT-Fl] :

We want to find out whether any of the points (e, t), t € [t,, t,41], is domin-
ated by some = € Ugeg Xpar (€).

First, we consider a different linear subedge (ex, [Sp, Sp+1]) € Xpar (€x),
where s,, 5,41 are consecutive breakpoints on ey, i. e.

f?((ex,s)) = bl +mls forallg € Q, s € [sp, 5p11] -

21



A point (e,t) € (e, [tr,tr11]) is dominated by some point (eg,s) €
(€k, [Sp, Sp+1]), by definition, if and only if

by +mls < bl +mlt forall g€ Q,
where at least one inequality is strict. If
F = {(s,t) cmit —mls > bl —bl, Vg € Q} O ([$py Sps1] X [try tri1])

is empty, (ex,[Sp,Sp+1]) does not contain a point dominating some z €
(€l7 [t'rv tr—f—l])-

Otherwise F # () is taken as a feasible solution set of two 2-variable linear
programs:

LB =min{t : (s,t) € F}

and
UB =max{t : (s,t) € F} .

Using [Megiddo, 1982] , LB and UB can be computed in O(Q) time. Let spp
and syp be optimal values for s corresponding to LB and U B, respectively.

If b2 + mlspp = bl + mlILB and b] + mlsyp = bl + m]UB, then no
x € (e, [tr, tr41]) is dominated by any y € (ex, [Sp, Sp+1]). Otherwise redefine
Xpar (€) = Xpgr (e) \[LB,UB]. This comparison can also be done in linear
time.

It should be noted that the same approach works if (e, [¢,, t,41]) is just a
single point « = (e;,t'). In this case LB = UB =t' and

F = {5 : —mis > bl — fi(z), VYq € Q} N [sp, Spt1] -

The case where (e, [Sp, Sp+1]) is just a single point y is treated correspond-
ingly by using

F'={t : m&t> fly)—b!, Vg € Q}N [tr, tr41] ,

LB :=min{t : t € F"}, and UB := max{t : t € F"}.

Since we have O(|V|) segments per edge to investigate and |€| edges we
have to do O(|€[?*|V|?) comparisons each taking O(Q) time. Therefore the
complexity for finding the whole set X, requires O(|€]?|V[*Q) time, which
is the same complexity [Hansen et al., 1986] derived for the special case of
point-objective problems.
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5 Solving 1/7/e/d(V,T)/Q-Sur

A lot of difficult problems on general networks become quite easy to solve
if the underlying graph has a tree structure. We will show in the following
that this is also true for the multicriteria problems. We will also relate our
results with the work which has previously been done on trees and end up
with a generalization of Goldman’s algorithm (see [Goldman, 1971]).

The major concept which makes things easier on trees is convexity. We
first introduce this concept based on [Dearing et al., 1976].

Let N' = (T,1) be a tree network, with 7 = (V, £). For points a,b € P(T)
we define the line segment La, b] between a and b as

Lla,b] := {z € P(T)|d(a,z) + d(x,b) = d(a,b)} ,

which contains all points on the unique path between a and b. A subset
C C P(T) is called convex, iff, for all a,b € C, L[a,b] C C.

Now let C' C P(T) be convex and let h : P(T) — IR be a real valued
function. This function A is called convex on C, iff, for all a,b € C,

h(wx) < Ah(a) + (1= MA(B) , VA € [0,1],
where z, is uniquely defined by
d(zy,b) = Ad(a,b) and d(z),a) = (1 — A)d(a,b) . (5.1)

A function is called convex on 7 if it is convex on C = P(T).
Now we state some results about convex functions on trees which we will
need in the following. Proofs can be found in [Dearing et al., 1976].

Lemma 5.1. Let ¢ € P(T). Then h(z) := d(x,c) is convex on T.

Note that it is possible to define the concept of convexity also on gen-
eral networks. Then one can show that d(z,c) is convex if and only if the
underlying graph is a tree.

Lemma 5.2. Let C C P(T) be a convex set and h, hy, hy be real valued
convex functions on C. Then the following holds:

1. If h is convex on C' then wh is convex on C, for all w > 0.
2. If hq, hy are convex on C' then hy + hy is convex on C.

3. If z* is a local minimizer of h then z* is a global minimizer of h.
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4. If x*,y* € argming . h(x) then L[z*,y*] C argming s h(x).

Corollary 5.3. The single criterion median objective function f? is convex
on T, for all ¢ € Q.

Now let L(a,b) := Lla,b|\{a,b}, L(a,b] := Lla,b]\{a} and Lla,b) :=
Lla,b]\{b}. Further denote by X™*(h?) the set of minimizers for objective
function h?. The following theorem generalizes part 4 of Lemma 5.2 to mul-
tiple criteria.

Theorem 5.4. Let a,b € P(T) and h := (h',...,h¥) be a vector of Q
objective functions, with h? convex on T, for all ¢ € Q.Then the following
holds

{a,b} C Xy iff La, b] C Xpar -

Proof. If
M () #0
qeQ
then
Ko = () 2°(1)
qeQ
and the claim is true by the convexity of the objective functions and
Lemma 5.2.
Now assume
N X (he)=0.
qeQ
Further let a,b € X, and let z, € L[a,b] be defined as in (5.1). Suppose
there exists a point y € P(7), which dominates z,. Assume first that h(a) =
h(b). Then, since y dominates x, and given the convexity of h?, ¢ € Q, we
have
hi(y) < h(zy) < Ahi(a) + (1 — A)hI(b) = h?(a) = h4(D)

for all ¢ € Q and
hY (y) < h? (z3) < A9 (a) + (1 = A)h? (b) = h(a) = h9(b)

for at least one ¢’ € Q. Therefore, y dominates a and b, a contradiction to
a,b € Xy,

Now, if h(a) # h(b) let T,, T, and T, be subtrees of T, which are uniquely
defined by the following conditions

P(Ta) UP(T) UP(Te) = P(T) , P(Ta) NP(Te) N L(a,b) = 0,
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a€P(T,),be P(T,) and L(a,b) C P(7.). Since a is a Pareto location there
must be some ¢, € Q with X*(h%) C P(7,). Otherwise we could move from
a to b not increasing any objective function and decreasing at least one, since

N X(h) =0,

q€eQ
Therefore we could find a point =’ € L(a, b) dominating a, which would be a
contradiction. Analogously, there must be a ¢, € Q, j # i with A*(h%) C
P(Ts)-
So we have g, g, with h%(a) < h%(b), h%(a) > h®(b),

X*(h%) N L(a,b) =0 and X*(h®)N L(a,b) =0 . (5.2)

Denote by 7,2 the subtree of 7 consisting of all 2 € P(T), with z» € L[a, z].
Analogously, denote by 7 the subtree of T consisting of all z € P(T), with
xx € L[b,z]. Clearly, by (5.2), and the convexity of the objective functions
h% and h%, we have

hie(x) > h%(z,) for all z € P(T;) (5.3)

and
h(z) > h%®(xzy) for all z € P(7;"A) : (5.4)

Combining (5.3) and (5.4), a y € P(T) which dominates x has to fulfill
y ¢ P(T5) and y & P(T3,) ,
which is not possible since P(72%) UP(T.) = P(T).
a

We know that every lex location is also a Pareto location. From the proof
of Theorem 5.4 we can easily see that if a point z is not on a path between
two lex locations, this  cannot be Pareto. Therefore we have the following
corollary.

Corollary 5.5. X, is the convex set in P(T) generated by all lex locations
with respect to h', ... h%.

The result of Theorem 5.4 is almost equivalent to a characterization given
in [Lowe, 1978]. The proof presented here is however shorter and simpler.

We could now use Corollary 5.5 together with Goldman’s al-
gorithm ([Goldman, 1971]) and the results about lex locations to solve
1/T/e/d(V,T)/Q->,ar, but there is a more efficient way.
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For T =(V,€)and V' CV let

W) = : ,

w? (V')
where wi(V') := 3, ey wy, Vg € Q.
Proposition 5.6. Let T be partitioned in such a way that T = T UT;U{e}.

Then W (V(T1)) dominates W (V(T3)) if and only if for all x € P(T;) there
exists some y € P(73) which dominates .

Proof. Apply Lemmas 1 and 2 in [Goldman, 1971] to every objective func-
tions and use the fact that one inequality has to be strict.

|

Now we can state a multi-criteria version of Goldman’s dominance al-
gorithm. We start with a subtree containing only a leaf of the tree and
enlarge this subtree until we get a Pareto location by the criterion of Pro-
position 5.6. This procedure is then repeated for all leaves and we end up
with a subtree of all Pareto locations by using Theorem 5.4.

Algorithm 5.1. Solving 1/T /e /d(V,T)/Q-Y par

Input: 7 = (V,&), with length function | and node weight vectors w?,
q€ Q.
Output: X,

1. Initialization
(a) T'=WV,E)=T
(b) W :=W(V)
(c) set the status of all v; € V to not investigated

2. Choose a leaf v, of T' with status not investigated and set the status
of vy, to investigated.

3. If V' = {wy} then go to Step 6.

4. Let v; be the (uniquely defined) adjacent node to vy.
wi
If : dominates %W then

w
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(a) wl :=w]+wl,qe Q
(b) V' :=V'\{uv}, & := E"\[vk, vi]
(c) Update the set of leaves.

5. If there are still leaves in T' with status not investigated then goto
Step 2.

6. Output: X, = P(T").

The algorithm runs in O(Q|V|).
To illustrate the algorithm consider the following example:

Example 5.1. (see also Figure 5.1)

Figure 5.1: Tlustration for Example 5.1. The bold edges and nodes indicate the set of
Pareto locations.

We solve the following instance of 1/T /e /d(V,T)/3-% - Let l(e) :=
Ve € £. The weights of the nodes are given in the following table:

)

| L[ v1fvs|vs] vafws|ws]or]vs]ve]vwo]on]
w |14 6] 8] 4| 1| 2] 1] 3| 2 2 7
w? || 11 3124 5| 2 2| 3| 2 2 3
w3 || 16 1112} 3, 3] 1|6 41 21

3

2
25
Therefore W = 62 and 1W = 31
30
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The adjacency structure of the tree is given in Figure 5.1. Now we check
every leaf till there is no one left with status not investigated:

14 25
e take vi: wy = | 11 | dominates % =1 31
16 30
6+ 14 20
Therefore wy := | 3+11 | =| 14
2416 18
By following the algorithm we delete vg, v7, vg, vs, and vy. The actual value
13
of ws is | 32
4
13
e take v3: w3 = | 32 | does not dominate %
4
7 9
o take vi1: win = | 5 | dominates %Y. Therefore wg:= | 7
21 27
2 11
e take vig: wip = | 2 | dominates % Therefore wg := 9
4 31
11
e take vg: wyg = 9 does not dominate %
31

Since we delete after every domination step the corresponding node from the
tree according to Algorithm 5.1 and no leaf with status not investigated is
left we end up with

Xpar = L[’Ug, Ug] .
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6 Conclusions

In this paper we have developed polynomial algorithms for solving lexico-
graphic and Pareto location problems on networks, where all the single-
criterion objective functions f?(x) are of the sum (or median) type. The
lexicographical problems are reduced to the problem of finding all lexico-
graphically minimum vectors in a finite set, where all possible permutations
of the vector components need to be considered.

Pareto locations can be found with a two-stage strategy. In Stage 1 all
Pareto locations with respect to an edge are found, whereas Stage 2 consists
in a check which of the candidates found in Stage 1 are dominated. While
Stage 1 is similar for the case of () = 2 and () > 2 criteria, Stage 2 is done
differently. The resulting polynomial algorithms are considerably improved
in the case where the graph is a tree. In particular, Goldman’s dominance
algorithm is applicable for finding Pareto locations.

Several of the results can immediately be carried over to multi-criteria
problems, where each single criterion is of the max (or center) type. The
analysis of this paper is based heavily on the partition of the functions f¢
into linear subedges — a fact which is also true for center problems, although
the convexity property of the overall function f¢ on edges e is lost. A paper
on this subject is forthcoming.

Another interesting research topic is the mixing of function types. If, for
instance, sum and max functions are among f!,..., f9, the key concept of
linearity on subedges continues to hold and should make it possible to solve
the corresponding lex and Pareto location problems. If Euclidean distances
with repulsion (i.e. w} < 0) and network distance with attraction (i.e. w? >
0) are considered, different arguments have to be used. Here Pareto locations
can be characterized by the solution of restricted network location problems
where “circles” centered at the nodes define forbidden parts of the network.

Finally we may investigate orders of the objective space which are dif-
ferent from the lexicographical and componentwise one considered in this
paper. For instance, the max ordering, given by

(215, 20) <mo (Y1,---,Yg) & max{z,...,20} <max{yi,...,yo},

is of interest which was already successfully used in planar location problems
(see [Hamacher and Nickel, 1995], [Hamacher, 1995] and [Nickel, 1995]).
Other orders can be found in [Ehrgott, 1996].
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