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Let X and Y be Hilbert spaces and T : X--+ Y be a bounded linear operator. 

The Operator equation 

(*) Tx = y , y E R(T) 

is ill-posed if R(T) is not closed in Y, and in that case regularization methods are 

employed for approximating the minimal norm solution X: of (*). ( c.f. [4],[6]) . In 

Tikhonov regularization one sol ves 

(1) 

where a > 0, yö E Y with lly-yöll ~ 6 and A = T*T. The following results are known 

( c.f. [6], [15]) : 

(ii) llx-x~ll --+ 0 as a--+ 0 

(iii) X: E R(Av), O < 11 ~ 1 ~ llx-x~ll = 0( av) 

(iv) a = c82/(211+l) , X: E R(Av), 0 < 11 ~ 1 ====* llx-x&,11 = 0( 8211/(21/+l)) 

and for all yö with lly-yöll ~ 6. 

llx-x&_ll = o( 15211/(2v+1)) ~X:= o. 
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In a posteriori pararneter choice strategy a = a( 8) is deterrnined during the 

course of solving (1). For this "discrepancy principles" are often used: 

Morozov [11]: 

Arcangeli [ 1]: 

Schock [16]: 

Engl (2]: 
8p 

llAx&-T*ylill = --q, p ~ 0 , q > 0. 
a 

The following results are known about the above discrepancy principles: 

(i) Morozov's method can not give a better rate than 0(81
/

2
) and it is 

attained for X: E R(A l/2) . (c.f. [5]) . 

(ii) 

(iii) 

For Arcangeli's method, x E R(T*) ~ llx-x&ll 

llx-x&ll = 0(82/ 3) ~X:= o. (c.f. (9).) 

V 

For Schock's general dass of discrepancy principles, X: E R(A ), 

0 < 11 ~ 1, p/(q+l) = 2/(2v+l+tq) ~ 

llx-x&ll = 0(8") , s = 2/(2v+l+tq) . 

Here, s--+ 2v/(2v+l) as q--+ (Jl (c.f. [16)) . 
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(iv) In Engl 's rnodification of Schock's method, i E R(Av), 

0 < II~ 1, p/(q+l) = 2/(211+1) ~ 

llx-x&ll = 0(6211/(211+1)) . 

(c.f. (2).) 

(v) In (12], Nair considered Schock's method and proved that X: E R(Av), 

o < 11 ~ 1, p/(q+l) = 2/(211+1+(1-11)/2q) ~ llx-x&ll = 0(6'8) , 

s = 211/[211+l+(l-11)/2q) . 

This result improves the result of Schock [16) and gives the rate 

0(62/ 3
) for p/(q+l) = 2/3 and 11 = 1, and also settles the open 

question of obtaining optimal rate for Arcangeli 's method. 

(vi) Recently S. George and M.T. Nair [3) improved the result in Nair 

[12]: For i E R(Av) , 0 < 11 ~ 1 , 

o < 11 ~ t ~ lli-x&ll = { 0(6m), p/(q+l) ~ 2/(2v+l+(l-211)/2q) 
0(6µ), p/(q+l) ~ 2/(211+1+(1-211)/2q) 

t ~ II~ 1 ~ ll:X:-x&_ll = { 0(6m), p/(q+l) ~ 2/(2v+l) ' 
0(6).), p/(q+l) ~ 2/(211+1) 

where m = p11/(q+l) , µ = 1-[1+(1-211)/2q)p/2(q+l), 

). = 1-p/2( q+ 1 ). 
This result gives the optimal rate 0(62v/(2v+l)) for 

i E R(Av), v ~ 1/2, p/(q+l) = 2/(2v+l) . 

(Engl and his collaborators remarked in many papers that Arcangeli's 

method cannot give optimal rate. This was based on an incorrect 

oberservation of results in (9).) 

In applications one generally replaces the operator A and T in ( 1) by their 

"approximations" A and T respectively. In projection methods ([6), [8]) 
n n 

A = P AP and T = TP , and in a degnerate kernel method of Groetsch (7) for 
n n n n n 

solving integral equation of the fir,st kind. An is obtained by approximating the 
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kernel of the integral operator A by convergent quadrature rules, and T = T . In 
n 

both the above cases llA-A II ---+ 0 and A and A are non-negative and self-adjoint. 
n n 

Recently Nair [13] considered a general type of approximation methods (for 

compact T) : 

(a) 

(b) 

ll(A-A )xll ---+ 0 for every x E X 
n 

ll(A-A )A II ~ 0 . 
n n 

If T is the integral operator, 
1 

(Tx)(s) = J k(s,t)x(t)dt , 0 5 s 5 1 , 
0 

with continuous kernel k(s,t), then one may consider the operator norm induced by 

uniform norm on C[0,1] also; in that case T* is defined by 

1 
(T*x)(s) = f k(s,t)x(t)dt, 0 5 s 5 1 . 

0 

The above consideration includes norm approximation as well as collectively 

compact approximation (A ) of A. If (A ) is the Nyström approximation of the 
n n 

integral operator A, then llA-Anll 5 llAnll , but (An) is a collectively compact 

approximation of A ( c.f. Kress [10]). 

In place of ( 1) one has 

(2) ( al+A )xli = T*yli . 
n a,n, 

The main results of [13] are the following theorems. 
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THEOREM 1 (Hilbert space setting). For n=l,2 , ... , let a = a(n) besuch that 

(i) ll(A-An)Anll ~ c1 a
2 

, 0 < c1 < 1 

(ii) II ( A-An)All ~ (l-c
1
)a2 

(iii) ll(A-An)All ~ ca3 

(iv) ll(A-An)T*ll ~ ca312 
. 

Then 

where c is a generic constant independent of 8,a,n . 

THEOREM 2 (Uniform norrn case for c[O,l]). For n=l,2, ... let a = a(n) be such 

that 

(i) ll(A-An)Anll ~ c1 a
3 
/( a+M) , 0 < c1 < 1 

(ii) li(A-An)All ~ [(1-c1)a+M]a2 
/( a+M) 

(iii) ll(A-An)All ~ ca
4 

(iv) ll(A-An)T*ll ~ ca
2 

. 

Then 

llx-x~,nll ~ c(llx-xall + 8/ a) . 

1 1 
where M = sup (J II k(r,s)k(r,t)drl 2dt) 1

/
2 and c > 0 is a generic constant 

O~s~l 0 0 

independent from 8,a,n . 

Remark 

(i) The approximation procedure does not reduce the accuracy guaranteed 

by the theoretical estimates. 

(ii) In [7]., Groetsch requires n8/a2-+0 for the convergence of the method 

in uniform norm case, whereas the requirement in Theorem 2 is only 

8/a-+O 
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Next we suggest an a posteriori parameter choice strategy for determining a in 

(2) using a procedure adopted in [14] . 

Suppose ( E ) is a positive real sequence such that E ____. 0 and for each n=l,2, .. . , 
n n 

the conditions (i)-(iv) of Theorem 1 (resp. Theorem 2) are satisfied for all a ~ En. 

For 8 > 0, n=l,2„ .„ cosider the discrepancy principle 

D (ab) := aqllA xli -T*ylill = 8P a > E 
n ' n a ,n ' - n' 

for some fixed p ~ 0, q > 0. 

Let 8 > 0 be given, E = sup { E : n=l,2„.„} . 
o n 

c 
llT*ylill ~ c2 , V fJ ~ 8

0
, llAnll ~ c3 , V n=l,2„.„ c

0 
= l+c:/E and 

a
0 

=max {E, (8~/c) 112 } . 

PROPOSITION 3: 

For 6 ~ 6 
0 

there exists ii( 8) E IM, and for n ~ ii( 8) there exists an ( 8) > 0 such that 

(i) En ~ an~ x
0

, Dn(an(8),8) = 8P, V n ~ ii(b). 

(ii) (Hilbert space setting) 

_P_ < 1 ==} {f = 0( tf/(q+l)) and 8 = 0(81-{p/2(q+l))) 
2(q+l) - a ( o)q [äJö) 

n n 

(iii) (Uniform norm casse for C[0,1]) 

L.. < 1 ==} {f = 0( tf/(q+l)) and _b_ = 0(81-{p/(q+l))) . 
q+l - a (o)q a (o) 

n n 

THEOREM .l: 
Let a = an(8), n ~ n(8). 

(i) (Hilbert space setting). 

x E R(Av), 0 < 11 ~ 1, p/2(q+l) ~ 1 ==} 

{ 

pl/ _L_ < _2_ 

llx-xli II= o(d'), s = q+1, q+1 - 2112+1 . 
a,n 1 p p > 

- 2(q+l)' q+l - 211+1 
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(ii) (Uniform norm case) 

XE R(AVT*), 0 < II~ 1, p/(q+l) ~ 1 ~ 

{ 

pll _L < _1_ 

ll:X:-xli ll=O(d'),s= q+l' q+1-v+1. 
a,n 1 _ _L _L > _1_ 

q+l' q+l - v+l 

Proofs of Proposition 3 and Theorem 4 follows as in [14] by using the estimate 

llA x~ -T*ylill ~ cfci(o+~ (resp. llA xli -T*ylill ~ c(ö+a)) . 
n .... ,n n Ct,n CD 
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