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Let X and Y be Hilbert spaces and T : X — Y be a bounded linear operator.
The operator equation

(*) Tx=y,y€R(T)
is ill-posed if R(T) is not closed in Y, and in that case regularization methods are
employed for approximating the minimal norm solution x of (*). (c.f. [4],[6]). In

Tikhonov regularization one solves

(1) (al+A)x§ = T*y®

where a > 0, yb € Y with ||y—y$|| < § and A = T*T. The following results are known
(c.f. [6], [15]):

(i) lIxa—x3ll < 6/{e

(i) [lx—xgll — 0 as a— 0
(i)  %eR(A"),0<v<1= |&-xg]l = 0(e)
(iv) o = o2/ (2v+1) e R(AU), 0 pig 15 [l = 0(62V/(2V+1))

and for all yb with ||y—y?|| < 4.

&gl = o(8*/P¥*1) = z = 0.



s 0 o

In a posteriori parameter choice strategy @ = o(§) is determined during the
course of solving (1). For this "discrepancy principles" are often used:

Morozov [11]: | Tx8—yd|| =6
i [1: s_ybl = 5
Arcangeli [1]: | Tx8—y8|| =
{a
§P
Schock [16]: | Tx8—yd|| = ==y B >0,9q>0
o
§P
Engl [2]: laxg-T*y3 = & 530,950
a

The following results are known about the above discrepancy principles:
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(i) Morozov's method can not give a better rate than 0(6/“) and it is
attained for % € R(AY2). (c.f. [5]).

(ii) For Arcangeli's method, x € R(T*) = |x—x8]| = 0(6"/%), and
=8|l = 0(6%/%) = % = 0. (c.f. [9].)

(iii) For Schock's general class of discrepancy principles, x € R(Av),

0<v<l, p/(g+l) =2/(2v+1+4q) =

[[x—x3ll = 0(8°) , s = 2/(2v+1+4q) .

Here, s — 2v/(2v+1) as ¢ — o (c.f. [16]) .



(iv) In Engl's modification of Schock's method, x € R(Au),
0<v<l,p/(q+l) =2/(2v+1) =

Ix—xg|| = o(82*/2v+1)y

(cf. [2).)

(v) In [12], Nair considered Schock's method and proved that x € R(Au),
0 <v<1,p/(a+l) = 2/[2v+1+(1-v)/2q] = [|x—=x§|| = 0(6") ,

s = 2v/[2v+1+(1-v)/2q] .

This result improves the result of Schock [16] and gives the rate
0(62/3) for p/(q+1) = 2/3 and v = 1, and also settles the open
question of obtaining optimal rate for Arcangeli's method.

(vi) Recently S. George and M.T. Nair [3] improved the result in Nair
[12]: Forx e R(A"),0< v<1,

0<v<4= ||Z=x8| = {0(6’"), p/(q+1) < 2/(2v+1+(1-2v)/2q)
) ; 0(6"), p/(q+1) > 2/(2v+14(1-2v)/2q)

p<v<l = ||x=xg| = [0(5"’), p/(a+1) € 2/(2v+1)
o ’ 0(6™), p/(q+1) > 2/(2v+1)

where m = pv/(q+1) , p = 1-{1+(1-2v)/2q]p/2(q+1),

A = 1-p/2(q+1).

This result gives the optimal rate 0(62V/ (2V+1)) for
x e R(A"), v> 1/2, p/(q+1) = 2/(2v+1).

(Engl and his collaborators remarked in many papers that Arcangeli's
method cannot give optimal rate. This was based on an incorrect
oberservation of results in [9].)

In applications one generally replaces the operator A and T in (1) by their
"approximations" A_and T_ respectively. In projection methods ([6], [8])

A =P AP and T =TP , and in a degnerate kernel method of Groetsch [7] for

solving integral equation of the first kind. A is obtained by approximating the



kernel of the integral operator A by convergent quadrature rules, and Tn = T. In

both the above cases ||A—An|| — 0 and A and A_ are non—negative and self-adjoint.

Recently Nair [13] considered a general type of approximation methods (for
compact T):

(a)  [I(A=A_)x|| — 0 for every x € X
(b) (A=A Al —0.

If T is the integral operator,
1
(Tx)(s) = [ k(s,t)x(t)dt, 0<s<1,
0

with continuous kernel k(s,t), then one may consider the operator norm induced by
uniform norm on C[0,1] also; in that case T* is defined by

(T*x)(s) = } k(s,t)x(t)dt, 0<s<1.
0

The above consideration includes norm approximation as well as collectively
compact approximation (An) of A. If (An) is the Nystrom approximation of the

integral operator A, then ||A—An|| < ||An|| , but (An) is a collectively compact

approximation of A (c.f. Kress [10]).
In place of (1) one has

(2) (al+A )x8 = T*yb.

The main results of [13] are the following theorems.



THEOREM 1 (Hilbert space setting). For n=1,2,..., let @ = a(n) be such that

(i) I(A-A )A [ <ca®,0<c <1
() (A-A)A]l < (1—<))a?
(i) [(A-A_)A|| < ca®
(iv) (A=A )T*|| < ca®?.
Then

[Ix=x, Il ¢ e(llx—=x4ll + 6/{a),

where c is a generic constant independent of §,a,n.

THEOREM 2 (Uniform norm case for c[0,1]). For n=1,2,... let a = o(n) be such
that

(i) I(A-A )A || < c,0’/(a+M),0<c <1
() (A=A A € [(1—,)a+M]a®/(atM)
(i) (A=A A] ¢ ca®
(iv)  [I(A-A)T*|| < ca®.

Then

[[x=x5, Il € clllx=xo[l + &/ @) -

,1

1 1
where M = sup (f |/ k(1',s)k(7',t)d-r|2dt)1/2 and ¢ > 0 is a generic constant
0<s<1 0 0

independent from §,a,n.

Remark
(1) The approximation procedure does not reduce the accuracy guaranteed
by the theoretical estimates.
(i) In [7]., Groetsch requires nd/ a’—0 for the convergence of the method

in uniform norm case, whereas the requirement in Theorem 2 is only
d/a— 0 '



Next we suggest an a posteriori parameter choice strategy for determining « in
(2) using a procedure adopted in [14].
Suppose (en) is a positive real sequence such that e, — 0 and for each n=1,2,...,

the conditions (i)—(iv) of Theorem 1 (resp. Theorem 2) are satisfied for all a2 € .

For § > 0, n=1,2,..., cosider the discrepancy principle

D (a) := q||Anxgt,n—T”‘y5“ =6, a> €

for some fixed p > 0, q > 0.

Let 60 > 0 be given, € = sup {sn 2 =120 )

c
2
”T*YGH 2 C2 ) Vé 2 601 “An” < C3 ) v II=1,2,..., co = +C3 € and
1/2
a = max {e, (6°/c ) 2%
PROPOSITION 8:
For § < §_there exists i(§) € N, and for n > 1i(6) there exists a (§) > 0 such that
(i) e, $a <x ,D (a(f)f)= 6 , ¥ n > a(6).
(ii) (Hilbert space setting)
sl € 1= —2c = o(/(+D) ang —E_ = o(gP/2a+1))
1 an(5)q {a ©®
(iii) (Uniform norm casse for C[0,1])

P (1 _6: = o(&/(@*+D)) gpg 65 _ (s P/ (@t D)y

q+l -
9 a (6) a

THEOREM 4:
Let a = a (6), n > 0(9).

(i) (Hilbert space setting).

xeR(A”),0<v<l, p/2(q+l) < 1=

pV_ P 2
e 5 I — _ ) e+l a+l = 2041
I8, Il = 0(), s { I
2(q+1)’ q+1 = 2v+1



(ii) (Uniform norm case)
xeR(A'T*),0<v<1,p/(qg+l) < 1=

pV_ P 1

Z—x & e _ ) q+?’ q+1 - v+1
I% xa,nn-ow),s-{ a T
q+1’ q+1 = v+l

Proofs of Prcposition 3 and Theorem 4 follows as in [14] by using the estimate
IA, X8, ~T*y8]| < c{a(s+{@) (resp. [|A_x8 —T*y3]|_< c(d+a)).
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