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Abstract

An approach to generating all efficient solutions of multiple objective programs
with piecewise linear objective functions and linear constraints is presented. The
approach is based on the decomposition of the feasible set into subsets, referred to
as cells, so that the original problem reduces to a series of linear multiple objective
programs over the cells. The concepts of cell-efficiency and complex-efficiency are
introduced and their relationship with efficiency is examined. A generic algorithm
for finding efficient solutions is proposed. Applications in location theory as well as
in worst case analysis are highlighted.
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1 Introduction

Theory and methodology of multiple objective linear programming (MOLP) have been
already intensively studied and aplied to a variety of decision making problems. In partic-
ular, the efficient set of those problems can be now easily computed by means of various
algorithms. See [Yu and Zeleny, 1975], [Gal, 1977], [Isermann, 1977], [Ecker et al., 1980],
[Steuer, 1986], [Armand, 1993|, [Wiecek and Zhang, 1996] for different methodologies of
finding the efficient set. Similarly, problems with convex objective functions over a convex
feasible set have been treated, although their efficient set is in general not available in such
an elegant form as it is for linear problems (see [Haimes and Chankong, 1983]). Motivated
by applications, in this paper we examine possibly a simplest class of convex problems,
i.e. multiple objective problems with piecewise linear objective functions and linear con-
straints, for which we develop an MOLP-type description of the efficient set and propose
an approach to finding this set.

Single or multiple objective piecewise linear programs have been also studied by other au-
thors. Fourer ([Fourer, 1985], [Fourer, 1988], [Fourer, 1992]) extended the simplex method
for linear programming to permit the minimization of a convex piecewise linear function.
Achary ([Achary, 1989]) developed a simplex type method for a transportation problem
with two objective functions: a piecewise linear convex function and a piecewise constant
function representing cost and time respectively.

Multiple objective piecewise linear programs (MOPLPs) specifically arise in location prob-
lems, where given a number of exisiting facilities a new facility has to be located so that
some objectives are optimized. The objectives are often in the form of piecewise linear func-
tions due to the fact that typically the sum (or the maximum) of weighted distances from
the existing facilites to the new facility is chosen as a criterion. Moreover, these distances
are often derived from norms with a polyhedral unit ball. See [Durier and Michelot, 1986],
[Pelegrin and Fernandez, 1988], [Hamacher and Nickel, 1993], and [Puerto and Fernandez, 1994]
for various MOPLP models in location theory.

Another area of application is multiple objective worst case analysis. If, for example, the
coefficients of a linear objective function should represent cost of introducing a new product
on the market, their exact numerical values are usually unknown but may be available from
market analysis in the form of a collection of vectors. Under this uncertainty, the worst
case analysis dictates that the resulting objective function be determined through the
maximization over the linear functions corresponding to the vectors in the collection and
hence the objective function becomes a piecewise linear function.

Furthermore, in order to obtain a more structured description of the efficient set of convex
multiple objective programs one may consider approximating the convex objective func-
tions by piecewise linear functions. Such an approximation method including error bound
analysis was proposed by [Burkard et al., 1991].

We note that as a single objective piecewise linear program can be transformed into a linear
program (see [Murty, 1983], p. 18), then also an MOPLP can be converted into a multiple
objective linear program for which solution techniques are available, as mentioned before.
Such a transformation, however, would significantly increase the number of variables and



constraints. The approach presented in this paper does not increase the size of the problem,
but is based on the decomposition of the feasible set into subsets, referred to as cells, so
that the original problem reduces to a series of linear multiple objective programs over
the cells. The approach is an extension of the algorithm proposed by [Nickel, 1995] for
multiple-objective planar location problems.

In the next section the MOPLP is formulated and basic concepts are presented. The
decomposition of the feasible set is studied in Section 3. The concepts of cell-efficiency
and complex-efficiency are introduced in Section 4 and their relationship with efficiency
is examined. Section 5 includes a generic algorithm for finding the efficient set of the bi-
objective piecewise linear program, and an illustrative example is contained in Section 6.
Section 7 concludes the paper.

2 Definitions and basic concepts

Consider the following multiple objective piecewise linear program (MOPLP)

minimize [fi(z),..., fm(2)]
st.x e X, 1 } MOPLP

where
filz) = 12}92)1({i{fi1(x)’ o fik (@)}, i=1,.00,m,

filx) = (o +dy, k=1,... K,

c* is an n x 1 finite vector, d;; is a scalar, K; is the number of affine functions f;; defining

the piecewise linear function f;, X = {x € R" : Az = b, x > 0}, A is an m X n matrix of
full rank, b is an m x 1 vector.
For every f;,i =1,...,m, we can derive a subdivision of X by defining cells if

Z'Eszpl(.I') Zfzk(:c) fOI‘]{,’Il,,K1 leleXflpl(.’lf) >f¢k(1')
th: fOI‘klzl,...,Ki,k#pi,
() otherwise.

We say that f;,, generates C?*. Then we have

Q:
X=ycor i=1,...,m,

pi=1

with dim(C?*) = n (because int(C?*") # @) and 1 < Q; < k;. We say that function f;p, is
active in a cell C?* if

fix) = fip,(x) for every x € C}".



For a general introduction to piecewise linear mappings see [Rourke and Sanderson, 1972].
A feasible point z° € X is said to be an efficient solution of the MOPLP if there is no
other z € X such that fi(z) < fi(z°), i = 1,...,m, with at least one strict inequality.
Let Xg and Xpg denote the set of efficient and properly efficient solutions (in the sense of
[Geoffrion, 1968]) of MOPLP.

Geometrically related to the concept of efficiency is the concept of level sets and level
curves.

Let y € IR™.
Li(yi) = {rzeX: filr)<wy}l,i=1,...,m,
Li(y) = {zeX: fi(zx)=u}i=1...,m.

The following theorem summarizes properties of the sets X and Xpp, (see [Geoffrion, 1968],
[Gal, 1986], [Hamacher and Nickel, 1993|, and [Ehrgott et al., 1996))

Theorem 2.1 1. Letz° € X and y{ = f;(2°),i=1,...,m.
x° € Xg iff

(N L(ys) = () LL(w5). (1)
=1 =1

2. XE == XPE-

3. The set Xg 18 connected.

In the next sections we will use the presented concepts to gain more insight into the
structure of the feasible set as well as efficiency with respect to the cells.

3 Properties of the decomposition
We start with a property specifiying active functions in the cells.

Theorem 3.1 Let f(z) := max {fi1(x),..., fk(x)} be a piecewise linear (convex) function,
where

fi:R" - R'Yi=1,...,K,
fl(l') = (Ci)T.I' + di,
¢ is an n x 1 vector and d; is a scalar and x € X, and X is a polyhedral set defined as in

Section 2. Let C? be a cell in X so that function f,,p € {1,..., K} is active in it. Then,
function f, cannot be active in any other cell in X disjoint with the cell C1.

Proof:
This follows from the fact that the region in which function fi, is active can be written as
{z € R": f1,(z) > fu(x),i=1,..., K} which is a polyhedral set.
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Consider now a bi-objective case of the MOPLP:

minimize [fi(z), fo(z)]
s.t.x € X, 1 2 } BOPLP

where

fi(z) = max{fii(x),..., fu(z),..., fru(x),..., fix(2)},
folz) = max{for(z),..., fou(®),- -, fou(T), ..., for(x)}

and X is defined as in Section 2. Observe that if fi;(x) = fon(z) for every x € X, then
the same function is active in two disjoint cells w.r.t. two (different) criterion indices.

Theorem 3.2 Consider the BOPLP. Let f1;(x) = fou(x) for every x € X. Let fi,(x) be
active in two disjoint cells, say C? and C" , w.r.t. the two (different) criterion indices,
respectively. Then the other two functions, that are active in C? and C” w.r.t. the other
two criterton indices respectively, cannot be the same.

Proof:
Let CY¢NC"™ = (. Assume that fi; and f5, are active in cell C'?, and f;, and f5, are active
in cell C", where

fow(x) = fre(x) for every z € X. (2)
Then we have
fu(z) > fiu(z) forall ze€eClandk=1,...,t,...,u,..., K, (3)
and
fiu(x) > fig(z) forall zeCrandk=1,...,t...,u,..., K. (4)
Similarly
fou(z) > fo(z) forall zeClandk=1,...,0,...,w,...,L, (5)
and
fie(x) > fu(x) forall zeC andk=1,...,v,...,w,...,L. (6)
Assume now that
fou(z) = fru(x) for every z € X, (7)
and consider points in C? and C". For any z¢ € C'? and 2" € C" there must be either
fie(a®) > fu(@”) = fau(a") (8)
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or
fu(@?) < ful@’) = fru(@”). (9)
Assume the case given by (8).
From (7), (2), (3) and (4) we get
fu(@) 2 fru(z) = fou(x) 2 fow(z) = fre(x) forany =z € C“

Therefore
fral2) = fau(@) forany e C". (10)

From (7), (4) and (6) we get
fru(@) > fu(z) > fo(z) = fiu(z) forany zeC".

Therefore
fie(x) = fop(x) forany x € C". (11)

(2), (7) and (10) imply

fie(®) = fru(z) = foo(2) = fou(z) forany =ze€C, (12)
and (2), (7) and (11) imply

fre(x) = fiu(x) = foo(x) = fouw(x) forany zeC". (13)

Let h(zx) be a function defined by (12) and (13). Then h(z) is active in two disjoint cells,
CY% and C", w.r.t. each criterion index, which by Theorem 3.1 is a contradiction.
O

In general, the feasible set X can be decomposed into a finite number of cells C'? generated
by all functions f;, i =1,...,m, so that

Q
x=Jo,
qg=1

where Q is the total number of cells and
fi(x) = fig;,(z) for every x € CY,

where ¢; € {1,...,K;},i=1,...,m.

Let C denote the set of all cells C? in X. In each cell C? € C, f(x) can be written as a

vector f? of m linear functions, f¢ = (f{,..., f4)T. Observe that there are no two distinct
cells in C, say C'Y and C", in which f? and f" are active, respectively, and
[ z) = f"(=). (14)



Therefore, the total number @ of cells in C is
1<Q<]IK. (15)
i=1

Let F denote a face of a cell. A face 7 C C? is maximal efficient if there is no other
efficient face 7' C C? so that F C F'. The set C(F) := {C? € C: F C C} is referred to
as a cell complex or a complex.

Let = be an extreme point of a cell. Denote C(z) := {C? € C : z € C?}. Two distinct
cells C? and C" are said to be adjacent if there exists a face F so that F C C?N C" and
dim(F) > 1.

4 Efficiency with respect to cells

The set L’ (y;) is a polyhedral set whose defining halfspaces are given by

The set L’ (y;) represents the set of the hyperplanes associated with the defining halfspaces
(16). Let 2° € L' (y;). There is a finite number of the defining hyperplanes passing through
x°.

Let K(z) denote a cone with origin at point  and dK(z) denote its boundary. Define
K'(2°) to be the cone generated by the finite number of the defining halfspaces whose

associated hyperplanes pass through z°. Then

Li(y°) C K'(z°) forevery i=1,...,m,

and
NILw) € NE(@). ()
=1 =1
Accordingly
L' (y}) C OK'(x°) forevery i=1,...,m,
and

NLLw) € oK) (19

Theorem 4.1 Let 2° € X and y{ = fi(z°),i=1,...,m.
x° € Xg iff
() K'(2°) = () 0K (2°). (19)

=1 =1



Proof:

(=) If 2° € Xg than (1) holds. Using (17) and (18) we obtain (19).

(<) Assume that x° is not efficient. Then there exists an € X such that f;(z) < f;(2°)
forall i =1,...,m, and for at least one index k, k € {1,...,m}, fe(x) < fe(2°). Therefore
v e Li(y?) foralli=1,...,m, where y¢ = f;(2°) and z ¢ L* (y?) for at least one index k.

Consequently x € N L (y?) and, using (17) we get
=1 =

T € ﬁKi(m"). (20)
Since x ¢ L* (y?) then
z ¢ OK*(2°). (21)

From (20) and (21) we conclude a contradiction.
a

Let 2° € CY. Since fi(x) = fip,(x),pi € {1,...,K;}, for every z € C9, the set L’ (y7)
includes exactly one defining halfspace

H2'(a°) = {2 € X : fip,(2) < 4} (22)
whose associated hyperplane H:(z°) passes through x° and the set C7 N L (y?).

Definition 4.1 z° € C is said to be cell-efficient if

() Hea) = () B e). (23)

Theorem 4.2 Let 2° € int(C?). A point 2° € Xg iff 2° is cell-efficient.

Proof:
(=) the proof is obvious '
(<) If 2° is cell-efficient then (23) holds. Also K'(2°) = H2%(2°) and 0K"(z°) = H:(z°).
Therefore, using (1), 2° is efficient. -
O

Corollary 4.1 Let 2° € int(CY). If x° is cell-efficient, then C? € Xp.
Let C(F)={C%q=1,...,r}.

Definition 4.2 Let z° € rel int(F). A point 2° is said to be complez-efficient if it is
cell-efficient for every cell C? € C(F).



Theorem 4.3 Let 2° € rel int(F) and C(F) be a cell complex containing the face F. A
point x° € Xg iff x° 1s complez-efficient.

Proof:
(=) the proof is obvious
(<) If 2° is complex-efficient, then it is cell-efficient for every cell C? € C(F). That is

N ng(xo) = H2(z°) forall ¢=1,...,r
1=1 i=1

Therefore

which implies
A(Ame) A (A me). 2

Now observe that since x € C for all ¢ = 1,...,r, the cone K;(2°) is defined by exactly r
halfspaces H2(2°). We get

K@) = () HEG) (25)
and
OK;(z°) = OlHiq(af). (26)

From (24), (25), (26) and (1) we conclude that z° € Xp.

Theorem 4.4 Let x° € rel int(F). If x° is complex-efficient then the face F € Xp.

Proof:

Let £ € F and 2 # x°. Assume that  is not efficient, so it is not complex-efficient either.
There exists at least one cell C* € C(F),t € {1,...,r}, such that Z is not cell-efficient. By
Definition 4.1.

N HE (@) # () H(2). (27)
=1 =1
Since z° € F, then z° € C* and since z° is efficient
ﬂ Hgt(xc’) — ﬂ Hi,t(xo)‘ (28)
=1 =1

Observe that () H2'(#) and () H2'(z°) determine the same cones with distinct origins,
=1 = =1 -

and co-existence of (27) and (2_8) is a contradiction.
O



5 Algorithm

The results of the previous sections lead to the development of an approach to finding the
efficient set Xp of the BOPLP. We now present this approach.

First observe that the lexicographic optimal solutions X!, i = 1,2, of the BOPLP are in
Xp, and since Xg is connected, it must consist of a chain of efficient cells and/or faces of
cells “spanned” in the feasible set between the sets of lexicographic solutions.

X'z j =1,2, can be found solving the following single objective problems

minimize  f;(x)
st.x e X[,  i#7,

where X is the optimal solution set of the problem

minimize  fi(z)
s.t.x € X.

Given an extreme point in X'¢*, an efficient cell (or face) adjacent to that point is identified.
Then a new extreme point, which belongs to that efficient cell (or face) and at which the
objective function f;,j # i, assumes the smallest value over the whole cell (or face), is
found. At the extreme points subsequently found, the efficiency test for a new cell (or
face) is performed until a newly found extreme point is in X ]l-e"”‘, j # i. Then the complete
efficient set is generated.

Below we present this approach in generic form.

Initialization:
1. For ¢ =1, 2 solve:
minimize  fi(z)

st.x e X.

Let X be the set of optimal solutions.

2. For 7 = 1,2 solve

minimize  f;(x)
st.xe X[, i#7.

Let X! be the set of optimal solutions.
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2
3. Set Xp:= [J Xle=.

i=1

4. Let x € X! If z is an extreme point of a cell, go to the main step. Otherwise
x € rel int(F) and use a procedure for finding an extreme point of X!*®. Then go to
the main step.

Main Step:

Let y € X!*® be an efficient extreme point of a cell C.
while y ¢ X! do

e Find C(y).

o If there is an efficient cell C" C C(y), set X := XpUC", find z = arg nelg fa(z),

and set y := z.

e Otherwise find a maximal efficient face F such that y € F C C(y), set Xp := XgUF,
find z = arg Hlel';:_l fo(z) and set y := z.

end
Output: Xg
The approach includes four major tasks, namely

i) find an extreme point in X!¢*,

iii) perform efficiency test for a cell,

1v

)

ii) find a cell complex C(y),
)
)

perform efficiency test for a face,

which we will now discuss in more detail.

Procedures for finding an extreme point in X/*®

Procedure A:

1. After performing step 1. of the initialization, enumerate all extreme points in X}.
Let EP(X}) be the set of all extreme points in X}.

11



2. Perform step 2. of the initialization as follows:

minimize  f;(x)
st.x € EP(X]), i#].

Output: an extreme point in X/

Procedure B: (see [Bazaraa et al., 1990])

Let F be a face of a cell C? and = € rel int(F). Let the system Hx = h represent the
hyperplanes binding at x. Note that rank(H) < n—1. Find a solution d # 0 to the system
Hd = 0 and compute 7; = max{y : z + vd € F} < co. Let y* = y + 71d. Hence at y
there is at least one additional linearly independent hyperplane binding. If the new binding
hyperplane(s) along with Hx = h produce a system of rank n, then y! is an extreme point
of the cell C?. Otherwise, repeat this step at y' until after at most n—rank(H) such steps,
an extreme point of C? satisfying Hy' = ¢ is obtained.

Output: an extreme point in X/

Cell complex C(y)
Finding C(y) just involves identifying the indices of the functions active in all the cells
adjacent to the extreme point y.

Efficiency test for a cell C? (based on Theorem 4.2 and Corollary 4.1)
Let a cell C'? be given and let the functions fi; and f5, be active in C'?, where

flt(.r) = (Clt)T./L' + dlt
fow(@) = ()2 + dy.
If the vectors c'* and ¢? are a negative linear combination of each other then the whole

cell O is efficient. Note that ¢!* = 0 or ¢?® = 0 means that we are in the set of optimal
solutions for f; or fs, respectively.

Efficiency test for a face F(based on Theorem 4.4)
This test is performed if there is no efficient cell in C(y).

Let G? denote the 2 X n matrix whose rows are composed of the gradients of the objective
functions active in the cell C'%. The matrix G? will be referred to as the gradient matrix
of the cell CY.

12



In order to check the efficiency of an n — 1 dimensional face in C(y), construct the linear
system:

Gid < 0

foe s (20)

where GY and G" are the gradient matrices of two adjacent cells C? and C" in C(y),
respectively. Solve system (29) for d # 0. If system (29) is infeasible, then the face being
the intersection of C'? and C" is efficient. In fact, it is a maximal efficient face adjacent to
y. Otherwise, that face is not efficient and one should search for n — 2 dimensional efficient
faces in C(y). In general, in order to perform the efficiency test for an n — k dimensional

face in C(y) construct the linear system:
G'd < 0
: (30)

GHld < 0,

where G?, j = 1,---,k + 1, are the gradient matrices of the adjacent cells C? in C(y),
respectively.

If system (30) is infeasible, then the face being the intersection of CV, j =1,--- k+1is
efficient. Otherwise proceed to examining faces of a lower dimension.

Observe, that for some k,k =1,---,n — 1, system (30) has to be infeasible implying that
the corresponding n — k£ dimensional face is efficient.

6 Example

Consider the following BOPLP:

max {fi(x)}

=1,

max { fo(x)}

i=1,-,5

minimize l

st.z€ X ={ze€R’:z >0},

where
fii = z14+23—20 for = a1 425 — 60
fiz = 11— 29 fao = @1 — 3 —20
fiz = —11+ 2 fos = —x1+22+20
f14 = —.%'1—33'2“‘20 f24 = —$1—$2+60
fis = tx1+10 fos = —izi 435

Observe that

X; =Xl = { (100> }
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Figure 1: Tllustration for the example. The gray part is the efficient set. The dashed and dotted lines
represent the cell subdivision given by f; and fs, respectively.

* exr 50
s (3]

The efficient, set is the union of 4 maximal efficient faces and one efficient cell.

XE:f:[UngClUféUf;L,

and

where
0 6.6
A= o (o) (o))
P 6.6 (10
9 = Conv 20 1’ \ 20 y
10 15 35 40
o=
com ((20)’ (22.5)’ (7.5)’ (10)) ’
40 43.3
7 = o (o) ()
43.3 50
A= o ((50) )
and conv(z!,...,2") denotes the convex hull of {z!,... z"}.

The feasible set, cells, and efficient set of this problem are depicted in Figure 1.
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7 Conclusions

In this paper multiple objective piecewise linear programs (MOPLPs) are studied and an
approach to generating their efficient set is proposed. The new concepts of cell-efficiency
and complex-efficiency help examine the efficiency of solutions. The approach is based on
the decomposition of the feasible set into cells so that the efficient set is available as the
union of efficient cells and/or maximal efficient faces.

A generic method for finding the efficient set of bi-objective piecewise linear programs
is presented. We emphasize that while other methods of generating the efficient set of
multiple objective linear programs usually start with identifying efficient extreme points
and then use this information to identify maximal efficient faces, the proposed method
directly finds efficient cells and/or maximal efficient faces. Due to this fact, we expect
that this approach is computationally more attractive, however implementation studies
are needed to verify this hypothesis. When extended to problems with multiple objective
functions, the approach will have the same structure although some modifications will be
needed due to a bigger number of the objective functions.
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