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1 Introduction 

This artide aims at investigating the relationship between a finitely generated commutative algebra 
A with affine variety XA and the Lie algebra of all k- derivations of A denoted by Der(A) . Translating 
this problem into the language of geometry means relating the behaviour of the variety XA to that 
of the Lie algebra of all vector fields having polynomial coefficients with respect to a fixed embedding 
in an affine space. 

Besides a general interest in studying this dass of infinite-dimensional Lie algebras also in the 
algebraic case (see [11] Introduction 0.2) , there is still another motivation to consider these types of 
Lie algebras derived from our investigation of finite-dimensional Lie algebras of the type 

Der(Ox )/Derh(Ox) 

for a quasihomogeneous isolated complete intersection singularity (icis) (X, 0) with local algebra Ox 
(see [12], [3]}. Here Derh(Ox) denotes the Lie subalgebra of the Hamiltonian or trivial derivations. 
In their paper [3] Laudal and Bjahr daim that this finite-dimensional Lie algebra is just the right 
object for determining (X, 0) up to isomorphism. Unfort~nately, this is definitely wrong for low 
multiplicities because of a counterexample of a one-parametric family of hypersurface singularities 
of degree 4, which yields a trivial deformation of the Lie algebras (cf. [3]) . 

Thus, the question arises whether the Lie algebra of germs of vector fields Der( 0 x) or of vector 
fields with polynomial coefficients Der(Ax) on the variety X associated to Ax determines the germ 
(X,O) or the algebraic variety X . A very powerful basis for handling this problem is an article of J. 
Grabowski ([4]}, which continues works of 1. Amemiya [2] and H. Omori [16] and develops a purely 
algebraic technique to describe these kinds of Lie algebras. 

Here we can present the following main result: 
Two normal affine varieties X and X' with rings of coordinates Ax and Ax1 are isomorphic if and 
only if the Lie algebras of k - derivations Der(Ax) and Der(Ax•) are so. 
To prove this , we try to analyse the algebraic structures occuring in an object of type Der(Ax) and 
to understand their interactions. Indeed, we obtain a more general result of this kind, which is valid 
for several classes of varieties and Lie subalgebras of Der(Ax ) . But, nevertheless, we are far from 
having a complete algebraic theory about Lie algebras of derivations - one main problem is the 
lack of a description of all integral subvarieties for an arbitrary Lie subalgebra of Der(Ax ) . 

As a further main result we deduce : 
An affine variety X with the ring of coordinates Ax is smooth if and only if the Lie algebra Der(Ax) 
is simple . 
The fact that the smoothness of X implies the simplicity of Der(Ax) was proved by D.A . Jordan 
[10] . Here we introduce a trick which shows that the Lie subalgebra of Hamiltonian vector fields is 
always a Lie ideal , and the singular locus of the variety X must be an integral variety. From this we 
conclude that Lie algebras of derivations on singular varieties admit Lie ideals in any case. 

The key idea of the whole approach is to relate Lie subalgebras to certain geometric subobjects 
of the associated variety or germ- like points, subvarieties or germs of subvarieties and to try and 
describe this dass of Lie subalgebras by purely Lie theoretic properties. This was first developed by 
Purcell and Shanks ([18]) and then also successfully applied by J . Grabowski ([4]), 1. Amemiya ([2]), 
K. Masuda ([14]}, H. Omori ([16]} and H. Hauser and G. Müller ([8], [9]}. 

Furthermore, the Lie algebras of derivations are interesting from a computational aspect since the 
close interaction of the Lie structure and the commutative structure allow Gröbner algorithm-based 
programmes to calculate inside these Lie algebras. Especially in the case of Lie algebras of derivations 
on non-graded k- algebras no general structure theorem is known and therefore, Computeralgebra 
is a very powerful tool to study these kind of Lie algebras. Here we use the system SINGULAR to 
calculate the module structure for several examples of Lie algebras of derivations and for their Lie 
subalgebra (and submodule) of Hamiltonian derivations. 
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2 Integral varieties and Lie ideals in modular Lie algebras 

In this section we aim at finding interactions between subobjects of the k-algebra A reflecting certain 
geometric properties of the variety associated to A and subobjects of a Lie algebra of derivations on 
A. The approach chosen here is mainly based on the study of the vanishing locus of Lie algebras 
of derivations (viewed as vector fields) and Lie algebras of derivations vanishing on certain loci of 
the variety. This seems to work quite weil for the investigation of Lie algebras on abstract algebraic 
varieties. By comparison H. Hauser and G. Müller use, in their paper [8], the Lie subalgebras tangent 
to subvarieties of the given one for the study of Lie algebras of vector fields tangent to embedded 
varieties. 

Let A denote a finitely generated k-algebra without zero divisors which is different from k . If we 
put more emphasis on the geometrical situation, we will also use the notation Ax, where X stands 
for the variety associated to Ax . 

Definition 2.1 A derivation of A is a k-linear map: 

6:A--+A 

which fulfils the Leibnitz equation 6(/g) = 6(/)g + /6(g) for f,g E A. 

The set Der(A) of all derivations on A becomes a Lie algebra with the usual Lie bracket 

[6, 8] = 6 0 8 - 8 0 6 

and admits also naturally an A-module structure. 
A Lie algebra is always understood to be a Lie subalgebra of some object Der(A) and so the 

reference to derivations is usually omitted. 
First we fix all algebraic structures on Der(A) and their interactions for defining a category in 

which these structures and relations are universal. This yields the category of the modular Lie 
algebras of derivations. 

Definition 2.2 A modular Lie algebra is a Lie subalgebra of Der(A) where A is some commutative, 
finitely generated k-algebra with no zero divisors, which is a submodule of Der(A) simultaneously. 

Remark: A modular Lie algebra is always thought tobe paired with its algebra A, but, if no confusion 
is possible, this algebra will not be mentioned explicitly. 

Fixing a set of generators x1 , . .. , Xn of A one has a surjection </> : An __. A of the polynomial 
algebra An in n indeterminants onto A. Then all those derivations of An that stabilize the kernel 
of </> yield derivations on A. The embedding of Der1:er(<1>){An) := {6 E Der(An)l6(ker(<f>)) C ker(</>)} 
into Der(An) = (An)n induces now an injection 

Der1:er(<1>){An) ©A„ A ~ Der(A)--+ An . 

Hence, modular Lie algebras are always torsion-free modules. The generators of the module An will 
also be denoted by the signs o; of the partial derivations on An . 

Definition 2.3 A morphism of two modular Lie algebras (A, C) and (A', C') is a pair of homomor-
phisms 

(µ, v) : (A, .C) --+ (A', .C'), 

where µ denotes a homomorphism of the underlying commutative algebras and v a module homo­
morphism over µ that is a homomorphism of the Lie algebras simultaneously. 

In every modular Lie algebra .C over A there holds a universal equation describing the interaction 
between the different structures: 

[6, /t?) = 6(/)t? + f [6, t?) 'V/ E A, "16, t? E .C. (1) 

Some computation shows that this equation together with all necessary structures just determines 
the category ofmodular Lie algebras of derivations ([19) page 14). This means the property ofbeing 
a derivation is included in the structure of equation ( 1 ). 
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Definition 2.4 A Lie ideal of a modular Lie algebra which is also a submodule is called a modular 
Lie ideal. 

One very basic fact about the behaviour of modular Lie algebras is given by a lemma according to 
Amemiya: 

Lemma 2.5 {see {2} p. 54 7) Let C be a modular Lie algebra over A , L C C a Lie subalgebra, and 
denote by L[l] = { 6 E LI (6, C] C L} the set of all elements of L mapping C into L via the associated 
adjoint operator. Assume now that 6 E L[l] and f6 E L[ll for some f E A , then 

(6(/)) 2 Eh:={! E Al/ C CL} , 

which is the ideal of those elements of A multiplying C into L. 

As a first consequence we conclude 

Lemma 2.6 Every non-vanishing Lie ideal of a modular Lie algebra contains a non-vanishing 
modular Lie ideal. 

Proof: Assume L C C to be a non-vanishing Lie ideal in the modular Lie algebra C over the algebra 
A and 6 E L an arbitrary element . Then we deduce: 

6(!)6 = (6, /6] E L Vf E A. 

Now Amemiya's lemma states that (6(6(/))) 2 lies in the ideal h. Thus, if there is a non-vanishing 
(6(6(/))) 2 E A, the Lie ideal L contains a non-trivial submodule of C. Clearly, the maximal 
submodule Lm of a Lie ideal L is again a Lie ideal: assume 6 E Lm. Then the structure equation 1 
gives 

![8 , 6] = [8, /6] - 8(!)6 E L Vf E A, 'VB E C, 

which means that (8, 6] E Lm VB E C. Thus, Lm is a Lie ideal. 
Hence, it remains to find a nonzero ( 6( 6(!) ))2 . Taking f = x;, one of a fixed set of generators of 

the algebra A, we obtain 

where g; is the coefficient in a representation of 6 in partial derivatives corresponding to these fixed 
generators of A. However, if 6 annihilates g;, we can take f = x[ and obtain 

which cannot vanish for all x; . 
Remark: The lemma implies that for a modular Lie algebra it is the same to be simple in the 

category of Lie algebras or in the category of modular Lie algebras. Furthermore, understanding the 
derivations as vector fields on the variety associated to A , any Lie ideal of a modular Lie algebra 
has to contain a vector field parallel to an arbitrarily chosen one of this modular Lie algebra. 

Now we try to associate commutative objects, i.e. subobjects of the ring of coordinates A , to 
certain subobjects of our modular Lie algebra C over A. 

Definition 2. 7 Let the /c - algebra A be the ring of coordinates of some affine variety. Then an ideal 
i of A is said to be integral with respect to the Lie algebra .C of derivations on A if it is stable under 
the action of C on A: 

C(i) c i . 

The factor representation of C on A/i is then, modulo the kerne!, the usual representation of 
the Lie algebra restricted to the integral subset V( i), i.e. the set of zeros of i. This justifies the 
notation of an integral ideal because one gets a one-to-one correspondence between integral ideals 
and closed, algebraic, integral (in the sense of differential geometry) subschemes of our variety. 

Let us denote by IcA the set of all integral ideals in A with respect to C. One checks easily 
that this set is closed under addition, multiplication, taking intersections or radicals of ideals. A. 
Seidenberg has proved a more general statement: 
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Theorem 1 ([17} Theorem 1) Let I C A be an integral ideal w. r . t. a modular Lie algebra C on 
A with associated primes p 1, .. . , p, . Then all these associated primes are integral and there are 
integral primary ideals q1, ... , q, with 

I = q, n ... n q,. 

We have two maps describing the relationship between modular Lie algebras and integral ideals 
(sec [10)). One of them sends the set of modular Lie ideals of a modular L;p algebra into the set of 
integral ideals by associating the image of its action on A to a modular Lie ideal L 

int : L --+ L(A). 

Reversely, the other one assigns the modular Lie ideal containing all those derivations that map A 
into i to an integral ideal i . 

lid: i--+ C; := C n Der.1:(A, i) . 

In botb cases tbe general structure equation (1) ensures tbat tbe mappings are well-defined. 
In general, these maps are neither the inverse of the other nor injective nor surjective. 
There are some important examples of modular Lie algebras and of tbeir substructures, wbicb 

explain a little bit tbe relation between tbe Lie and the commutative structure: 

1. The most important subobject of a modular Lie algebra on a variety is tbe modular Lie ideal 
of Hamiltonians. lt is defined as follows : 
Write the k-algebra Ax of an r - dimensional, affine variety X as the factor An/(/1, .•• , fp) of a 
polynomial algebra in n indeterminants by an ideal generated by the polynomials fi , ... , fp E 
An. Theo, for any q = n - r polynomials /;,, .. . , /;, and q + 1 variables z;, , . . . , z;,+, the 
deteminant of the formal matrix 

g1;, 8/; 
,, 8z;,~ 1 

H ·· = g1;, 8/; !.1l 
,, lJz:~:. 

8 
8i:1, 8i:1,+1 

defines a derivation on An for which /(X) = (/1, . . . , fp) is integral since every q + 1- minor 
of the Jacobian matrix must vanish on X . Thus, the An- module generated by all these 
determinants stabilizes /(X) and gives rise to an Ax-submodule Hamilton(X) of Der(Ax ) . 
By some computation it becomes obvious that the choice of other generators of Ax or otber 
.polynomials f; splits the fixed Hamiltonians into sums of Hamiltonians w.r.t. the new variables 
and polynomials (see (19] or [10)) . Hence, Hamilton(X) is independent of tbe choices of the 
variables and the /;. 

Now we want to prove: 

Lemma 2.8 Hamilton( X) is a Lie ideal of Der( Ax). 

Proof: Let us fix some H = Hf,; and define H.1:( .. . ) (resp. HI:(. . . )) tobe the determinant of 
the matrix H, where the k-th ~ow (resp . column) of H is replaced by the arguments in tbe 
brackets. lt suffices to show that 

[H, 6] E Hamilton(X) Vc5 E Der(Ax) 

for an arbitrary generator H because the structure equation (1) then ensures this relation for 
all elements from Hamilton(X) . By fixing a set of generators of Ax we choose an embedding 
of X into some affine space and consider the generators H as derivations on An representing 
the corresponding generators of Hamilton(X) . We will show tbat [H, 6] acts on a polynomial 

4 



f E An as a sum of Hamiltonian and trivial (on X) derivations. As usual , denote by 8; the 
partial derivations. If 6 = L, g; 8;, we obtain : 

6(8;(!)) = 8;(6(!)) - 8;(6)(1), 

where 8;(6) denotes the derivation L, 8;(g; )8; with derived coeffi.cients. 

This gives: 

q+l 

[H,6](!) = H(6(!))- 6(H(!)) = H(6(!)) - ~H„(6(8;k(/1))), 
k=l 

where /1 = /;1 for I = 1, ... , q and fq+i = / . By (2) the second summand splits into 

q+I t+l 

L: H"(8;.(6(fi))) - L: H"(8;.(6)(!1)). 
k=l k=l 

(2) 

Since 8;. ( 6) = Lm 8;. (gm)8m is a constant derivation for every column k, the second summand 
here is a Hamiltonian derivation. The first sum can be written as 

q+l q+l 

L:H„(8;.(6(11))) = L: H,.,(8;.(6(1„1))) 
l:=l k 1=l 

because the sums are taken over all columns and rows, respectively. Now 6 represents a 
derivation of Ax and, therefore, 6(/i.1) = L,r,f, E J(X) is constant for /,.1 E J(X) in every 
row . Thus, the summands for k' = 1, .. . , q are either zero on X or Hamiltonians. Moreover, 
the summand for k' = q + 1 is just H(6(!)) and, hence, deletes the first summand of the Lie 
bracket [H, 6] . This completes the proof. 

One can further prove that the modular Lie ideal Hamilton(X) spans the whole tangent space 
in every smooth point P of X, i.e. it contains r = dim X vector fields linearily independent in 
P (cf. (8] p. 315) . 

2. Let An be the algebra of polynomials in n indeterminants and C a modular Lie algebra over 
An . Let further I = (/1 , . . . , fp) be an integral ideal of An generated by the /; . Then we 
can apply the same arguments as for the Hamiltonians to the ideal br C An generated by all 
r- minors of the J acobian and the /; . We conclude that br is again an integral ideal of A with 
respect to C. This implies that after restricting to X = V(J) the singular locus Sing X is 
defined by an integral ideal (see (19]) . 

3. Let Ax be the ring of coordinates of an affine variety as in the first example and assume 
that X is the quasicone over a smooth quasiprojective variety. In other words, X is the 
expansion with the exponential map of some Euler vector field 6E = L,~ 1 w;x;8/8x; of the 
germ of a quasihomogeneous isolated complete intersection singularity. A structure theorem 
proved by Aleksandov (cf. (1]) and Kersken (cf. (21]) independently states that, under these 
circumstances, the Ax-module Der(Ax) is generated by the Euler vector field 6E and the 
Hamiltonians. 

In general, one can calculate the module of derivations of some finitely generated k- algebra 
as syzygies of the module generated by the columns of the J acobian matrix over this algebra. 
For the easiest non-quasihomogeneous plane hypersurface singularity f = x5 + y5 + x 3 y3 in 
C 2 this provides a submodule of (C[x , y]) 2 generated by the elements 

and 
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In distinction to the quasihomogeneous case we observe that the single Hamiltonian 

satisfies the relation H = y62 - :r:61 . Hence, the Hamiltonians can be generated by non­
Hamiltonians, which is definitively false for quasihomogeneous singularities. 

4. If C is a modular Lie algebra over A and M a subset of C, we set 

J(M} := AM(A} 

and call V(M) := V(I(M)) the vanishing locus of the set M. If A is the coordinate ring of 
some variety X, this is indeed the whole set of points where all vector fields of M vanish. The 
map int described above maps C to J{C), which is therefore an integral ideal, and, further 
I(L) = int(L) is an integral ideal for every modular Lie ideal L in C. 

From the discussion of Example 2 we deduce one of the main results: 

Proposition 2.9 An affine variety X with a ring of coordinates Ax is smooth if and only if the 
Lie algebra Der(Ax) is simple. 

Proof: To show that simplicity implies smoothness we take a sufficiently high power !(Sing X)" of 
the ideal defining the singular locus. Since this ideal is integral, Der{Ax, !(Sing X)"}, the set of 
all vector fields vanishing with order n on Sing X defines a proper Lie ideal, which contradicts the 
simplicity of Der(Ax ). 

The other implication was proved by D.A. Jordan [10] for the first time. Here we give a slightly 
different proof, showing that this statement is a consequence of Lemma 2.6: 
Let Der(Ax) contain a proper Lie ideal L. Then we can assume by Lemma 2.6 that Lisa modular 
ideal and therefore Ax includes the integral ideal L(Ax ) . lt is easy to see that L(Ax) must be a 
proper ideal, because otherwise there would exist derivations 6i E Der(Ax) and regular functions 
f; E Ax with 1 =Li 6;{!;). However, then 

(} = L 6;(!;)0 = L [6;, f;O] - f; [6; , O] E L VO E Der(Ax ). 

Hence, X admits an integral subvariety Y with respect to Der(Ax ). But the discussion on Hamil­
tonians above shows that an integral subvariety of Der(Ax) in X cannot contain any smooth point 
P E X, because Der( Ax) spans the whole dim X -dimensional tangent space of X at P. From the 
existence of Y we see that X has to be singular. 

Now we introduce a further structure needed for the comparison of the commutative and Lie 
properties of our objects. 

Definition 2.10 Let L be a Lie subalgebra of a modular Lie algebra C. Then we denote the maximal 
Lie ideal of C inside L by L[001. 

Remark: This maximal Lie ideal can be constructed by the so-called transporter series, which occur 
in the work of Guillemin and Sternberg [5], [6], [7] as weil as in the articles of Omori [16], H. Hauser 
and G. Müller [8] : Define L[o) := L and, recursively, 

Then, by 
L[oo] := niEN L[i) 

we obtain our maximal ideal of C inside L (see [5] Proposition 2.4). Moreover, if Lisa modular Lie 
subalgebra, then, by the structure equation (1), all L[i) are A-modules, and so is L[001. 

Furthermore, we introduce the notion of maximal integral ideals. 
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Definition 2.11 Let a prime ideal p-c A define a subvariety Y C X and C be a modular Lie algebra 
over A, then 

ic :=,max {i C p} 
p lEJ,;A 

is the maximal integral ideal in p and, thus, defines the minimal integral subvariety Z containing Y . 

Remark: The ideal i~ can be constructed from p by 

i~ = {/ E PI 61 0 ••• 0 61(/) E Pi \:/6; E C, \:/t E N}. 

lt is obvious that this set contains i~, but it is also an ideal by the Leibnitz rule . Further one 

checks immediately that i~ is again a prime ideal. This means that the minimal integral subvariety 
containing an irreducible variety is itself irreducible. 

Let us denote by Cp the intersection of the two modular Lie algebras C and Dert(A, p) over A, 
which is exactly the modular Lie subalgebra of C of vector fields vanishing on the subvariety V(p ). 
Then we obtain the following relationship of maximal Lie ideals in a Lie subalgebra of type Cp to 
minimal integral subvarieties over given subvarieties in the following way: 

Proposition 2.12 Let Y C X be an arbitrary subvariety defined by a prime ideal p C Ax . Then 
the maximal Lie ideal (Cp)l00l of C in the Lie subalgebra Cp is exactly the Lie ideal related to the 
minimal integral subvariety Z containing Y : 

Proof: Set M = Ci.: . Then, clearly, M C (Cp)l001 because it is a Lie ideal. 
p 

Now we take a 6 E (Cp)l001 with a representation 6 = E:=l h;o; induced by an embedding of X 
into a suitable affine space and want to show that 6 E M. We see easily that 6 is in M if and only 
if h; Ei~ for all i = 1, ... , n . We will show by induction on the number t of derivations that: 

• \:/h; : 61 o ... o 6,(h;) E p \:/t E N \:/6; E C 

• If 8 = [61 [ ... [61 , 6] ... ]] = L; g;o; , then the g; are sums of the type: 

g; = 61 o . . . o 61(h;) + E 
rC{l, ... ,t} 
r:f {1, . .. ,t} 
j = 1, .. . ,n 

where the sum runs over all proper, ordered subsets r of {l, ... , t} and all h; . The fr are 
some elements from Ax, and Dr denotes the successive application of the 6, to h; given by the 
ordered set r . · 

The main component is the following formula: 
If two vector fields 0, (}' are represented by 8 = 2:?=1 f;o; and (}' = 2:?= 1 ffa;, then their bracket is 
given by 

n 

[8,8'] = L(8(ft}- 8'(!;))8; . (3) 
i=l 

This follows from the corresponding equation, which is valid for derivations on An. 
Replacing 8' by 6 in equation (3) we directly obtain the second statement for the start of our 

induction. The first can be deduced from the facts that (8, 6] E Cp \:/8 E C and 6(1;) E p \://; E Ax . 
Now set 8 = [61 [ ... [61 , 6] ... ]] = E; g;O; and 60 = E; f;o; . Then (3) yields 

[60, 8] = L(6o(g;) - 8(/;))o; . 
i 
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By th~ assumption on the gi we see 

2: 
Tc {O, . .. 't} 
T i= {O, .. . 't} 
j = 1, .. . ,n 

On the other hand, the action of 0 on /i does not increase the number of derivations applied to 
the hi in the coefficients and, hence, the part of the coefficients of [h0 , 9] generated by O(fi) can be 
written in the form of the sum 

L /T6T(h;) 

T c {O, . .. 't} 
Ti= {O, . .. 't} 
j = 1, ... ,n 

since they do not include the action of 60. This means, we have proved the statement on the 
coefficients of O' = [ho [ ... [6,, 6] ... ]] =Li giaj. 

By the first statement of our induction it follows now that 

L /T6T(h;) E p • 

TC {0, . .. , t} 
rf;{O, . .. ,t} 
j = l, .. . ,n 

because the sets T include at most t elements. However, O' E .Cp and, hence, we have 

60 o ... o ht(hi) E p . 

Our proposition is proved. 
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3 Characterizing points on the variety 

Here we try to find a correspondence between certain maximal (w.r.t . the inclusion) Lie subalgebras 
of a modular Lie algebra and points of our variety. This is the usual approach to construct finally an 
isomorphism of the varieties when their Lie algebras of derivations are isomorphic (see [18], [16], [4], 
[8) and [9]). The most recent paper [8) of H. Hauser and G. Müller actually presents a Lie theoretic 
description of all Lie subalgebras of Der(On) tangent to subvarieties not included in the singular 
locus in the case of embedded germs of analytic varieties. These are characterized as balanced 
Lie subalgebras, which means for a Lie subalgebra L C Der(On) to fulfil L(oo) = 0 and Ll21 :j; 0. 
Moreover, it is mentioned there that the whole approach holds true for algebraic varieties. 

Nevertheless, from the viewpoint of a general algebraic theory of modular Lie algebras it seems to 
be a little bit unsatisfactory tobe restricted to modular Lie algebras of all derivations of a k-algebra 
A. For that reason we give a different proof of the reconstruction of points based on the article [4] of 
J. Grabowski, which allows us to apply the whole approach to a wider dass of modular Lie algebras. 
Especially the modular Lie algebras with 0-dimensional vanishing locus are interesting for the study 
of quasihomogeneous isolated complete intersection singularities as they arise naturally there. 

Definition 3.1 Let PE X\ V(C) be a point of the variety X with the maximal ideal mp not lying 
in the vanishing locus of the modular Lie algebra C . Then we denote by 

the modular Lie subalgebra of all those vector fields vanishing in P . 

For this type of modular Lie subalgebras we can show the following properties: 

Lemma 3.2 Cp is a proper, finite codimensional and maximal (w. r. t. the inclusion) Lie subalgebra. 

Proof: Cp is a proper and finite codimensional Lie subalgebra by definition. To prove the max:imality 
let 6 E C\Cp and set L = (6, Cp) tobe the Lie algebra generated by 6 over Cp. Not all coefficients of 
6 = 'L:; f;o; vanish at P and we can assume fi(P) = l. Hence, 6(/)IP = 1, where f =xi - xi(P) is 
the coordinate function corresponding to xi shifted by its absolute value at P. From this it follows: 

o(!)O = [o, f O] - f[o , O] E L V(} E c 

and because of 
0 - 6(/)0 E Cp C L 

we obtain (} E L for all (} E C . 
Next we want to characterize the Lie subalgebras of the type Cp by algebraic properties of 

the maximal Lie ideals c~l. The main problem is to find conditions that distinguish between Lie 
subalgebras of the type Cp and those maximal Lie subalgebras vanishing at the same locus as the 
whole Lie algebra C. 

Lemma 3.3 For every P E X\ V(C) the Lie ideal c~l is infinite codimensional in C and contains 
all vector fields vanishing along the minimal integral subvariety Yp including P . 

If, moreover, P E Xreg is a regular point and C generates the whole tangent space at P, then 

C (oo) - 0 
p - . 

Proof: The minimal integral subvariety Yp containing P is clearly not identical with P since other­
wise P would lie in the vanishing locus of C. Therefore, the first statement is a direct consequence 
of Proposition 2.12 of the preceding section. The infinite codimensionality follows from the fact that 
the factor of C by C~l yields a modular Lie algebra on Yp, which is clearly an infinite-dimensional 
Lie algebra. 

The second statement is now an easy consequence of the first one: 
Since the tangent space at P is dim X -dimensional, the minimal integral subvariety including P is 
X itself. · 
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Corollary 3.4 Let P be a regular point of X. Then, for the Lie subalgebra Der(Ax, mp) of the Lie 
algebra of all derivations Der(Ax) we see 

(Der(Ax, mp ))l00l = 0. 

The key for tbe characterization offinite codimensional Lie subalgebras is the fundamental lemma 
due to J . Grabowski and its specialization to our case below: 

Theorem 2 ( J. Grabowski [4] p. 20} Let C be a modular Lie algebra over a k-algebra A and, further, 
/et L be a finite codimensional, proper Lie subalgebra of L . Then there exists a proper ideal 10 of A 
such that L C Cp for all prime ideals p satisfying Io C p. 

Geometrically this means that the zeros of 10 describe a sublocus of the vanishing locus of L 
and, hence, this vanishing locus cannot be empty. However, for our purpose this result is not strong 
enough because the singular locus itself may be a set of comtnon zeros of all vector fields of C. But 
we can prove the existence of some Io with additional properties, which helps to solve the problem 
in the singular case, too. 

First we introduce a new notation: 

Definition 3.5 An ideal I that fulfils the property of the preceding theorem is called a characterizing 
ideal for a modular Lie subalgebra L in C. This means that L C Cp whenever I C p for some prime 
ideal p CA. 

Remark : Every ideal with a set of common zeros in the vanishing locus of L is also characterizing 
for L, indeed. This gives us a geometrical interpretation of being characterized and we can deduce 
that the set of all characterizing ideals is closed under addition, multiplication, taking intersections 
and radicals. As the main conclusion we obtain : if the ideal I(L) is proper, it is characterizing 
for L and the radical ../f(l) is contained in every reduced, characterizing ideal. Moreover, I(C) is 
characterizing for every Lie subalgebra if it is proper. 

We can sharpen the fundamental lemma for finitely generated k-algebras: 

Lemma 3.6 Let C be a modular Lie algebra over a finitely generated k-algebra Ax without zero 
divisors (which implies C to be finitely generated as an A-module) and L be a finite codimensional, 
proper and maximal Lie subalgebra. Then there is a characterizing ideal 10 with: 

IoC C L. 

Proof: This proof is based on the constructions given by J. Grabowski in the proof of his fundamental 
lemma (see [4] p . 23) . He derives characterizing ideals in the following way : 

l. Assume tbat L is an Ax-module. Then we choose elements 61 , . .. , Or E C \ L representing a 
basis of C/ L and set for Oi 

/i = {/ E Axl/Oi E L}. 

These are finite codimensional ideals and by 

we obtain a characterizing ideal for L . 

2. Unless L is a module, we define for an arbitrary 6 E L 

16 = {/ E Axl'Vg E Ax: gfO E L} 

to be the maximal ideal mapping 6 into L by multiplication . There must exist a 6 E L for 
which 16 -:/= Ax because L is not a module. The 16 for such an element is then a characterizing 
ideal. 
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We see that in the module case the constructed ideal / 0 just fulfils the additional inclusion. So we 
are left with the non-modular case: 
Here one observes that L must contain a set of generators of C as an Ax-module since otherwise 
the module Ax L generated by L would be a greater proper Lie subalgebra. Now, fixing such a set 
61, .. . , 6,, it follows that for each 6i the ideal 16, is either the whole ring Ax or a charcterizing ideal 
for L. However, it cannot be equal to Ax for all 6i and, hence, with 

we obtain our desired ideal. 
Remark: In [16] , Corollary 3.5, H. Omori proves that, with the additional assumption of L[00] = 0, a 
maximal, finite codimensional Lie subalgebra L of C must be modular. This means that the second 
case of our proof does not occur under these circumstances. 

Now we can classify Lie subalgebras associated to points of certain Zariski-open sets in X: 

Theorem 3 Let C be a modular Lie algebra over the k-algebra Ax corresponding to the affine 
variety X. Then: 

1. lf C is "strongly nowhere vanishing" {s. J. Grabowski [4]) , i. e. C(Ax) = Ax, then the set of 
Lie subalgebras 

Mi= {L C Cldim Cf L < oo, L is maximal} 

is bijective to the set of points of X. 

2. If C generates the whole tangent space to X in every regular point P E X , then the set of Lie 
subalgebras 

M2 = {L c Cldim Cf L < oo, L is maximal, L[ooJ = O} 

is bijective to the set of regular points of X . 

3. lf C has a 0-dimensional vanishing locus, which means that C(Ax) is a finite codimensional 
ideal, then the set of Lie subalgebras 

M3 = {L C Cldim Cf L < oo, L is maximal, codim L[oo] = oo} 

is bijective to the set of points of X\ V(C) . 

Remark: In the sequel we will refer to these different settings as modular Lie algebras of type 1, 2 
or 3. Proof: The first result is the classical one by J . Grabowski ([4] Theorem 5.1) . 

Consider now the second type: 
We assume that L is a maximal , finite codimensional Lie algebra and will show that L[oo] = 0 only 
if L = Cp for some regular point P E X. 

Set L = Cp for a singular point P E X . Then L contains the Lie ideal Csing x, which is proper 
since there exists a non-vanishing vector field in P . Thus L[oo] # 0 in this case. 

If L is not of the form L = Cp for any P E X, then L admits the same vanishing locus as C by 
maximality. Furthermore, there exists a characterizing ideal / 0 with I0 C C L. Let I = ../ C(Ax) 
denote the reduced ideal describing the zero set of C. Then, for some power I" , it holds that I" C Io 
and, hence, I" C C L. However, J" C is easily shown tobe a Lie ideal of C since C(Ax) C I . So we 
conclude L[oo] # 0 for such L, too. 

Next we consider the third type: 
Let PE X\ V(C) be a point outside the zeros of C and consider L = Cp. Then P itself is clearly 
not an integral subvariety. Thus the minill).al integral subvariety over P has positive dimension . But 
then Ll001 is infinite-codimensional because, by Lemma 2.12, the factor Cf Ll00l defines a modular 
Lie algebra on a variety of positive dimension. 

If, otherwise, L is not of the form Cp for some P E X\ V(C) , we deduce I" C C L as in the 
second case, where I is the reduced ideal describing the common vanshing locus of C and L. Here, 
however , because of the assumptions on the vanishing locus of C , the ideal I is finite-codimensional 
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and so is I" C as C is finitely generated. Hence, L contains a finite-codimensional Lie ideal of C and 
we are finished . 

Note that all three settings are not determined by purely Lie theoretic conditions since they use 
either the action of the Lie algebra of derivations on the k-algebra or a special assumption on the 
variety. For a general approach it is still open to find a condition that excludes all maximal Lie 
subalgebras not related to geometric subobjects. 

At this point we illustrate the behaviour of the approach by two additional examples: 

1. First we take the intersection X of two hyperplanes in the space given by the equation f = xy 
in the ring C[z, y, z]. Here we have singularities along the z-axis as X is the product of 
two intersecting lines in the plane with an affine line C 1

• Hence, the module Der(Ax) C 
( C[z, y, z])3 of all derivations is generated by 61 = oz, 62 = yoy and 63 = zo%. This means, 
Der(Ax) is a strongly nowhere vanishing Lie algebra and, thus, the set of Lie subalgebras 

Mi = {L C Cldim C/ L < oo, L is maximal} 

includes all points of X whereas the additional assumption L[oo) = 0 distinguishes the regular 
points from those on the z-axis. 

2. Next we consider the Whitney umbrella X given by the polynomial f = z 2 - zy2 in the 
ring C[x., y, z] as an affine variety. Again we have singularities along the z-axis, but now 
these singularities are all analytically isomorphic except for the point 0. Hence, Der(Ax) is 
generated by the vector fields 

and 

61 = yo'JI - 2zoz , 

62 = zo% + 2zoz, 

63 = yzo% + zoy 

64 = y2o% + 2zoz, 

which all vanish at the origin. Therefore, the set of Lie subalgebras 

M3 = { L C Cldim C/ L < oo, L is maximal, codim L[oo) = oo} 

consists of all points of X \ { 0} , and the set 

M2 = {L C Cldim Cf L < oo, L is maximal, L[ooJ = O} 

describes all point outside the z-axis. 

Concerning the structure of the set M; we can show: 

Corollary 3. 7 Let C be a modular Lie algebra of type 1, 2 or 3 over Ax. By the data of the Lie 
algebra C the set M; is not only determined as a set of points, but also as a topological space w. r. t. 
the Zariski-topology. 

Proof: One has to observe that a Lie subalgebra L in M; contains just the vector fields vanishing 
at the point represented by L . Thus, the zeros of a vector field 6 can be found by deciding the 
membership in the Lie subalgebras contained in M; . Moreover, for every P EM; tbere exists a 
vector field that is not zero at P . Hence, the closed sets given by zeros of single vector fields define 
a subbasis for the Zariski-topology on M; . 

We see that all purely topological properties determined by these Zariski-open sets are indeed Lie 
invariants. This includes the determination of algebraic subsets in M;, the irreducibility of closed 
sets and dimensions of subvarieties. Furthermore, we obtain the modular Lie subalgebra of vector 
fields vanishing on an arbitrary algebraically closed set as an intersection of the Lie subalgebras 
corresponding to its points. 
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4 Construction of the ring of regular functions on the vari­
eties 

Now we are left with the task of using our data to construct isomorphisms of the variety from a 
given isomorphism of some modular Lie algebras of type 1, 2 or 3. The usual idea (see [16], [4] or 
[8]) is to study functions of an appropriate dass on the manifold, embedded germ or variety and 
then to show that the pull- back with the bijection of points induced by an isomorphism of modular 
Lie algebras yields a function of the same dass . 

Here we use another idea: first we try to construct a k-algebra of certain rational functions 
purely algebraically from the data of the given Lie algebra. This would imply that an isomorphism 
of the Lie algebras a priori gives rise to an isomorphism of the constructed k-algebras. But then we 
show that, under certain conditions, these k-algebras are just the algebras of regular functions on 
the varieties. 

Westart with the following information: 
Let Ax and Ax• be two finitely generated k-algebras with associated affine varieties X and X', and 

~:C-C' 

the given isomorphism of some modular Lie algebras of the same type over these k-algebras. 

• We know the Zariski-open sets M; and M: of both varieties, induding all regular points of 
them, by the construction above. Moreover, ~ induces a bijection between them. 

• We have a module on cach variety -:- the given modular Lie algebra. 

• As we have proved in the last theorem of the preceding section: each element of the sets M; 
and M: represents not only a point of X or X', but indudes exactly all those vector fields 
that vanish at this point. 

Now assume f E Ax to be a regular function on X. Then we can find a 0 E C for each 6 E C 
with 

Of course, 0 is nothing else but f * 6 E C. The advantage of this description is that the vanishing at 
a point P E Xreg can be expressed directly in terms of our modular Lie algebra: 

Definition 4.1 Let C be a modular Lie algebra of type 1, 2 or 3, and M; the corresponding set of 
maximal, finite-codimensional Lie subalgebras L . Then we define a k - algebra of functions on M; 
by: 

B(C) := {! E kM'IV6 E C 30 E C : f(L) *D- 0 E L 'IL EM;} . 

Remark: This definition is dearly a copy of the above condition restricted to the Zariski-open set 
M; of X . Moreover, by the definition we have a B(C)-rnodule structure on C: For 6 E C and 
f E B(C) we set 

f * 6 := 0, 

where 0 is exactly the fixed element occuring in Definition 4.1. From the construction and the 
interpretation of the L E M; we deduce the uniqueness of 0 and all algebraic properties of a module 
structure. 

Lemma 4.2 Let C be a modular Lie algebra of type 1, 2 or 3. Then B(C) is an integral extension 
of the k-algebra Ax in its quotient field. ff, moreover, either Ax is normal or C is of rank 1, then 
B(C) is isomorphic to Ax . This holds also for every "strongly nowhere vanishing" modular Lie 
algebra C on an arbitrary k - algebra Ax if B(C) is constructed on the set M 1 . 

Proof: Frorn the remark to Definition 4.1 it follows that every regular function on X fulfils the 
conditions determining B(C).· Thus, we see that Ax C B(C). Let f be an arbitrary element of B(C) 
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and take a pair 6, (} for which the defining relation holds . We choose representations fJ = L; g;8; 
and (} = L; h;8; w.r.t . a fixed set of generators of Ax . Then the definition of B(.C) gives 

f(P)g;(P) = h;(P) 't/j, 't/P EM;. 

But this means that f is a rational function on X and that it must be regular on M; because one 
finds a non-vanishing coefficient g; at each point PE M;. We conclude 

B(C) C K(Ax ) . 

Further, if .C is "strongly nowhere vanishing" , and we use M 1 for the construction, Ax ~ B(.C) 
since M 1 is then bijective to X. 

If .C. is of rank 1, we can choose fJ to be the generator of .C. . Then 8 = f' fJ holds a priori for some 
f' E Ax and we deduce 

f(P) = J'(P) 't/P EM; . 

This gives Ax ~ B(.C) as desired. 
Up to now we know that, in general, B(.C) is an extension of Ax for which .C admits a finitely 

generated module structure by Definition 4.1. Moreover, it follows from Definition 4.1 that the 
annihilator in B(.C) of .C is 0. So we can apply a standard theorem of commutative algbra (see [15] 
Theorem 2.1), the so-called "determinant trick" , which yields, under these assumptions , that every 
element f of B(.C) is integral over Ax . This means B(.C.) is an integral extension of Ax and if Ax 
is normal, both k-algebras have to be isomorphic. 

Throughout this and the preceding section we have established the following "summary" state­
ment: 

Theorem 4 Let .C be a modular Lie algebra of derivations on Ax and .C' a modular Lie algebra of 
derivations on Ax• both satisfying one of the following points: 

1. C resp. C' are "strongly nowhere vanishing" modular Lie algebras. 

2 . .C resp . .C' are modular Lie algebras of rank 1 as modules with 0- dimensional vanishing locus. 

3. C and C' are modular Lie algebras with 0- dimensional vanishing locus over normal k - algebras 
Ax and Ax• , respectively. 

,/. .C and C' are modular Lie algebras spanning the whole tangent space in every regular point over 
normal k - algebras Ax and Ax• respectively. 

If the Lie algebras .C. and .C.' are isomorphic, then Ax and Ax· are so, too. 

Proof: These are just all possible cases for C and Ax (resp . C' and Ax•) for which Lemma 4.2 gives 
rise to an isomorphism of B(C) and Ax (resp. B(C') and Ax• ) . Hence, for each of these cases we 
can construct the ring of coordinates on X and X' purely algebraically using only the data of the 
Lie algebras .C and .C'. Thus, an isomorphism of them will induce an isomorphism of the rings of 
coordinates Ax and Ax• . 

Next we note some corollaries to emphasize important special cases: 

Corollary 4.3 Let X and X' be two normal, affine varieties over k with k-algebras A and A' as 
rings of coordinates. They are isomorphic if and only if the Lie algebras Der(A) and Der(A') are so. 

This is one of the main results claimed in the introduction . 

Corollary 4.4 Let Ax and Ax• admit a non- vanishing derivation at every point. Then they are 
isomorphic if and only if the Lie algebras Der(A) and Der(A') are isomorphic. 

This is a special case of a theorem according to S.M. Skryabin (see [20] theorem 2) which proves 
such a statement for every pair of a "strongly nowhere vanishing" modular Lie algebra C over a 
k- algebra R with R = 6R inducing, in R, an ideal 

fJ(f)fJ'(g) - fJ(g)fJ'(!) 't/f,g ER 

which either vanishes or contains at least one non- zero divisor of R . 
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Corollary 4.5 Let Ax and Ax, be non- negative graded k - algebras with ze ro graded parts equal to 
the constant functions . Then we have Euler derivations {possibly more than one) 

6E : f ~ deg(f)f 'V/ homogeneous 

on both varieties. If now the modular Lie algebras .C = Ax6E and .C' = Ax,6E are isomorphic Lie 
algebras, then Ax and Ax, are isomorphic. 

Proof: This follows from the fact that the vanishing locus of an Euler vector field associated to a 
complete graduation is only the single point {O}. By complete graduation we mean that only the 
constant functions are zero-graded . . 

These objects seem to be a little bit exotic, but they come out very naturally during the inves­
tigation of quasihomogeneous isolated complete intersection singularities. This connection will be 
part of a joint work with B. Martin [13] . 
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