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Abstract 

In this note we describe a quintic hypersurface in P 4 with 130 ordinary double pointa. 
This hypersurface is in some sense analogous to the Segre Cubic and tbe Burkbardt 
Quartic. 

Introduction 

The maximum number Nn(d) of ordinary double points (nodes, for short) a hypersurface of 
degree d in pn can have, has been the subject of investigation of several authors. (We refer 
to [A-G-V] for an overview .) The best upperbound so far known for n ~ 4 is the so-called 
spectral bound, obtained by Varchenko([Va]). For hypersurfaces in P 4 of low degree one 
obtains from this: 

N4(3) < 10 

N4(4) < 45 

N4(5) < 135 

In fact, N4 (3) = 10, realised by the Segre Cubic ([Se]), and also N4 (4) = 45, realised by the 
Burkhardt Quartic ([Bu]). These remarkable threefolds are uniquely determined by having 
these singularities (see [Se], [Ka], and [J-V-S]). There is a very rich geometry associated 
with these varieties (see e.g. [S-R], [Bak], [Fi]). 
In [Hi] Hirzebruch constructed a quintic with 126 nodes. In this note we present a quintic 
M in P4 with 130 nodes, thus narrowing down the possibilities for N4(5) to: 

Acknowledgement: 1 am indebted to W. Barth for asking me a question about the vari
ety M(i:o) at the meeting of the DFG-Schwerpunkttagung in April, 1992, held at Eglofstein, 
which led to the discovery of M. Furthermore, 1 would like to thank B. van Geemen for 
the computation of L-functions. 
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§1. The Quintic 

Consider the space P 5
, with homogeneous coordinates Xo,X1 , • •. ,X5 • Let 

be the i-th elementary symmetric function in the Xi. The equation 

defines a P 4 C P 5
, on which the symmetric group E6 acts by permutation of the coordinates. 

Theorem 1: The quintic hypersurface M C P4 defined by the equations 

has exactly 130 nodes. These form three orbits under the permutation group E6. The 
following table gives a name, the number of elements and a representative point of each 
E6-orbit . 

Name Number of elements Point of E6-orbit 

Segre 10 (1 : 1:1 : -1 : -1:-1) 
Moving 90 ( 1 : 1 : -1 : -1 : J=3 : -J=J) 
Extra 30 (1: 1: 1 : 1: J=3 - 2: -J=J - 2) 

§2. Proof of Theorem 1 

The space of EG-invariant quintics in the P 4 defined by S1 = 0 is spanned by Ss and S2S3. 
For each quintic in the pencil we shall determine the singular locus. For this purpose it is 
convenient to express the Si in terms of the power sums: 

5 

Ck := Ck(Xo,X1, .. . ,Xs) = "L,xt. 
i=O 

Modulo S1 one has: 

Ss 
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Consider the variety M (o :ß) C P4 defined by: 

a (a + ß) 
F(o:ß) := aSs + ßS2S3 = 5Cs -

6 
C2C3. 

S . ' 1 1 
o, M = M{l :l) 1s defined by Ss + S2S3 = 5Cs - 3C2C3 = 0 .. 

A point ( 17) := ( TJo : 771 : . .. : 7]s) E P4 C P 5 of M (o:ß) is a singular point if and only if the 
differentials of the two defining equations in P5 are dependent, i.e for some (v : µ) E P 1 

one ha.s: 

VÖiF(o,ß)(17) = µÖiS1(17). 

Clearly, v-::/; 0, so we can put v = 1. Furthermore, the variety M(o:t) ha.s clearly the surface 

S2 = S3 = 0 a.s singular locus . So we a.ssume that a -::/; 0 and put .A := a~ß. From the 
definition of F(o:ß)• and by summing over all indices to eliminate µ, it follows that each 
coordinate 77; ha.s to satisfy the equation: 

·- X 4 
- .AC2X2 - ~.AC3X - !(C4 - .ACi) 

3 6 
4 1 2 1 2 2 

X - ßC4 - .A(C2X - 6C2 + 3C3X) 

0 

where now C; = C;(770,771, ... , 775 ). Now !et x,y,z,t be the four roots of the polynomial 
P>.(X), where we consider ,\, C2, C3, C 4 as variable constants. Note that from the form of 
P>. it follows that x + y + z + t = 0. A priori there are nine different ways in which the 
coordinates 77; of a singular point of M (o:ß ) can be distributed over these four roots. Below 
we list these cases 

Ca.se 1: 6x Case 4: 3x,3y Ca.se 7: 2x,2y,2z 
Case 2: 5x,y Case 5: 4x,y,z Case 8: 3x,y,z,t 
Case 3: 4x,2y Case 6: 3x,2y,z Case 9: 2x,2y,z,t 

We analyse case by case: 

Case 1: This can not occur, since ( 17) = ( x : x : ... : x) E P4 , so x would have to be zero. 

Case 2: We may assume (77) = (1 : 1 : 1 : 1 : 1 : -5). Hence C2 = 30 , C3 = -120 , 
C4 = 630 and 

P>. = (X 4 
- 105) - -\(30X2 - 80X - 150). 

If we require P>.(1) = P>.(-5) = 0, we find ,\ ~ ~~ and thus (a: ß) = (25: 1). 
Case 3: We may a.ssume (77) = (1 : i : 1 : 1 : -2: -2). Hence C2 = 12, C3 = -12, 
C4 = 36 and 

P>. = (X 4 
- 6) - .X(12(X2 - 2) - 8X). 

If we require P>.(1) = P>.(-2) = 0, we find,\= t and (a: ß) = (2: -1). 

Case 4: We may assume (77) = (1: 1: 1 : -1: -1: -1). Hence C2 = 6, C3 = 0, C4 = 6 
and 

P>. = (X4 
- 1) - 6-\(X 2 

- 1). 
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For all A we have P.x(l) = P.x(-1) = O. 

Case 5: We may assume that ( T/) has the form 

(TJ) = (x: X: X: X: U - 2y: -U - 2y) 

For x = 0 we find immediately that P.x(O) = P.x(l) = P.x(-1) = 0 occurs only for A = t· 
So we may assume that (TJ) = (1: 1: 1: 1: u - 2: -u - 2). Hence C2 = 12 + 2u2 , C3 = 
-12-12u2

, C4 = 36+48u2 +2u4
. Equating P.x(X) to zero for X= 1,X = u-2,X = -u-2 

leads to the equations: 

u4 + 24u2 + 15 

u4 
- 12u3 + 24u2 

- 48u + 15 

u4 + 12u3 + 24u2 + 48u + 15 

2.X(u4 + 21u2 + 30) 

2.X( u4 
- 12u3 + 21 u 2 

- 42u + 30) 

2A(u4 + 12u3 + 21u2 + 42u + 30). 

The surn of the last two gives the first equation, whereas substraction leads to: 

u(u2 + 4) = uA(2u2 + 7). 

The solution u = 0 brings us back to Case 3, so we assume u i= 0. Hence 0 = (2A - l)u2 + 
(7 A - 4), which in combination with the first equation gives as solutions: 

.X = 
A = 

1 
13 
25 

u 
u 

±R 
±3 (Case 2). 

Case 6: We may assurne that (77) = (x : x : x : u - x : u - x : -2u - x). The case 
x = 0 leads to A = t, i.e. (o : ß) = (1 : 0), so we take x = 1. One has: C2 = 6(u2 + 1), 
C3 = -6u2

( u + 3), C4 = 6(3u4 + 4u3 + 6u2 T- 1 ). 
Equating P.x(X) to zero for X = l, X = u - 1 leads to: 

u 2 (3u2 + 4u + 6) 

u(u3 + 4u2 + 2) 

= 2u2 A(3u2 + 2u + 9) 

2uA( u3 + 5u2 
- 3u + 3). 

The deterrninant of this equation systern for A is 

The solutions u = 0, u = 2, u = -1 lead us back into the Cases 4, 2 and 3, respectively. 

Case 7: We rnay assume that (ry) = (x: x: y: y: z: z) with x + y + z = 0. This implies 
that the fourth root t of P.x has to be zero. If we denote by fi the i-th power sum in and 
by O'i the i-th elementary symmetric function in x, y, z, we can write Ci = 2fi and so: 

So we obtain the following equations: 

4 



E.1 - 2AE~ 
2AE2 

-~AE3 
0 

0 

We conclude that if A = i, then there are no additional conditions on x, y, z, whereas A :f i 
leads to «:: 2 = E3 = 0, which implies x = y = z = 0. 

Case 8: We may assume (17) = (x : x : x : y: z : t),with 3x + y + z + t = 0 but because 
x+y+ z+t = 0, we obtain x = 0, y+z+t = O. An analysis as in Case 7 gives as possibilities: 

A = ~, no extra conditions on y,z,t 

A :f ~, y, z, t have tobe zero. 

Case 9: We may assume ( 77) = (x : x : -x : -x : z: -z). If x = 0 we are back in Case 5, 
so we may take x = 1. The equations P-\(1) = P-\(-1) = P-\(z) = P-\(-z) = 0 reduce to: 

1 - z4 = 2A(2 - z2 
- z4

) 

l+z2 = 2A(z 2 +2). 

But the first equation follows from the second, and for each value of A we find two values 
for z as so! u tion of 

(2A - l)z2 + (4A - 1) = 0. 

We can summarize the results of the above analysis in the following theorem: 

Theorem 2: 

Consider the pencil of E6-invariant varieties M (a:ß) E P4
, defined by 

Then: A. For a general value of ( a : ß) M(a:ß) has exactly lüO singular points. These 
points are the E6-orbits of: 

( 1 : 1 : 1 : -1 : -1 : -1 ), 
(1: 1: -1: -1: z: -z), 

where z is a solution of {3z 2 + ( a + 2{3) = 0. 

the 10 Segre nodes 
the 90 Moving nodes 

B. For 6 points (a : {3) E P 1 the singular locus E(a:ß) of M(a:ß) is different. The following 
table summarizes the situation: 
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( 0: : ß) Point of E6·orbit 

106 nodes (10) (1:1:1:-1:-1:-1) 
(25 : 1) (90) (1: 1: -1: -1: 3N: -3N) 

(6) ( 1 : 1 : 1 : 1 : 1 : -5) 
130 nodes ( 10) (1:1:1:-1:-1:-1) 

( 1 : 1) (90) ( 1 : 1 : -1 : -1 : R : -v'-3) 
(30) (1 : 1 : 1 : 1 : R - 2: -R - 2) 

( -3 : 1) 10 Del Pezzo nodes (1:1:1:-1:-1:-1) 

(0 : 1) the surface 
52 = 53 = 0 
10 nodes and (1:1:1:-1:-1:-1) 

(-2: 1) 15 lines (x: x: y: y : z: z) 
(x + y + z = 0) 

10 nodes and (1:1:1:-1 : -1:-1) 
( 1 : 0) 20 lines (O:O:O:y:z:t) 

(y + z + t = 0) 

Remarks: 

The 10 Segre points are also the singular point of the Segre Cubic. On each of the 45 lines 
connecting t\vo Segre nodes we find a pair of points, moving over these lines as we vary 
(o:: ß), whence the name moYing nodes. The above computation does not show that these 
point are really nodes. This has to be checked in each case. However, for the variety M 
there is an argument that all 130 singularities are nodes, because if one point were not a 
node, then by symmetry we would have a E6-orbit and this is not allowed by the spectral 
bound. To be more precise, the spectrum of the cone over a smooth quintic in P 3 is as 
foilows: 

5pectral number -
M ultiplicity 20 31 

The spectral bound is that the total number of spectral numbers of all the singularities of 
a quintic C P 4 in any interval (a, a + 1) is less than the number of spectral numbers of the 
c;1.bove spectrum in the same interval. lf we take the interval (~, 1

5
1 

), we find N4(5) ~ 135. 
Now any singularity worse than A1 is adjacent to A2, which implies that in any open 
interval of length one that contains [ 1~, 1i], there are at least two spectral numbers of this 
singularity. But ( ~, 1

5
1 ) is such an interval. lf, say, the smallest E6 -orbit would consist of 

singularities worse than a node, then we would find at least 140 spectral numbers in this 
interval, contradicting the spectral bound. Hence, all singularities have to be nodes. 
lt can be checked that the singularity transverse to a general point of a singular line of 
M(-2:I) and of M(l :O) is also an ordinary double point. 
The variety M (- 3 :1) has only 10 singular points, but these are not ordinary double points. 
For this value of ( o: : ß) the 90 moving nodes coalese in 9-tuples with the 10 Segre nodes. 
The resulting singularity 1 call a Del Pezzo node, as it is locally isomorphic to the cone over 
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the cubic surface in P 3 . 

The variety M(l :O) is defined simply by 5 5 = 0. lt is the Hessian of the Segre Cubic. In 
(Bar] this variety is called Nieto 's threefold and is related to the moduli space of a.belia.n 
surfaces with ( 1 :3 )-polarization. 

A sirnilar analysis of the pencil Q(o,ß) : o:S4 + ßS'i = 7 C4 -
0~2ßC'i = 0 of I;6-invariant 

quartics in P4 can be found in [vdGJ. One finds for general (o: : ß) 30 nodes. For (a : 
ß) = (1 : 0) we obtain the Burkhardt quartic with 15 extra nodes, and for (a: ß) = (4: 1) 
the projective dual of the Segre Cubic (Igusa quartic). lt has 15 singular lines. The values 
(a: ß) = (3: -2) and (a: ß) = (3 : 1) give quartics with resp. 36 and 40 nodes. 

§3. Analogy of M with Segre Cubic and Burkhardt Quartic 

The Segre Cubic S a nd the Burkhardt Quartic ß have the following remarkable property: 

The intersection of the tangent cone at a node with the variety consists of 6 (for S) respec
tively 8 (for ß) planes. 

So in the projectivised tangent spa.ce P 3 of the ambient P 4 at the node, these planes give 
lines intersecting as follows: 

for S for ß 

The quintic M ha.s a simila.r property: 

Theorem 3: 

The intersection of the tangent cone at one of the 10 Segre nodes with the variety M consists 
of 10 planes . In thP. projectivised tangent space P3 at such a node the planes give lines 
intersecting a.s follows: 

~ 

1 

1 

t-----+--- - +----· 
1 1 

1 1 

t-----+----+----· 
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Here the 2 drawn line tripels correspond to 6 of the 15 planes of the Segre Cubic, passing 
through a node, whereas the dashed lines correspond to 4 of the 40 extra planes on M, 
passing in 4 tuples through the Segre nodes. 
In total we have the following planes on M: 

A. The 15 Segre planes, given by (the E6-orbit of) 

Xo + X3 = 0 

X1 + X4 0 

X2 + Xs 0. 

B. The 40 Extro planes, given by (the E6 -orbit of) the equations: 

where w = -i+A 
2 

X o + X1 + X2 + X3 + X4 + Xs 0 

Xo+wX1+w2X2 0 

X3+wX4+w 2 Xs .0 

Proof: lt is easy to see that the above Segre planes in fact lie on the Segre Cubic S3 = 0 
and on Ss = 0. For reasons of degree, the union of the 15 Segre planes is the complete 
intersection of these two hypersurfaces. lt follows that these planes lie on each M(a:ß)· 

However, the variety M contains more planes. First note that the following 16 nodes are 
in the above extra plane: 

0 (1: 1: 1: -1 : -1: -1) 7 ( c : -1 : 1 : -c : 1 : -1) 
8 ( c : -1 : 1 : -1 : -c : 1) 

1 (l:l:l:l:a:b) 9 ( c : -1 : 1 : 1 : -1 : -c) 
2 (1 : 1: 1: b: 1: a) 10 ( 1 : c : -1 : -1 : -c : 1) 
3 (l:l:l:a:b:l) 11 ( 1 : c : -1 : 1 : -1 : -c) 

12 ( 1 : c : -1 : -c : 1 : -1) 
4 (a: b : 1: 1: 1 : 1) 13 ( -1 : 1 : c : 1 : -1 : -c) 
5 (l:a:b:l:l:l) 14 ( -1 : 1 : c : -c : 1 : -1) 
6 (b : l:a:l:l:l) 15 ( -1 : 1 : c : -1 : -c : 1) 

where a = 2w - 1 = A- 2, b = 2w2 - 1 = -H - 2 and c = 2w + 1 = .;=3. The 
point 0 ist the unique Segre node in this plane. One sees that the following four-tuples of 
points are on a line: (0;1,2,3), (0;4,5,6), (0;7,10,13), (0;8,11,14), (0;9,12,15). Apart 
from these 5 lines through the Segre node, there are 9 lines of the type (1, 4; 9, 10), etc., 
containing two extra and two moving nodes. As each of these 14 lines contain 4 nodes, they 
have to be contained in M. As we have rnore than 5 of such lines all lying in the plane, 
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we conclude that the whole plane ha.s to be contained in M. The configuration of the 10 
planes intersecting in a Segre node obviously lies on a quadric cone, which has to be the 
tangent cone of M at the node. We can conclude that for reasons of degree these 10 planes 
together form the complete intersection of the quadric cone and M. 

Concluding remarks: 

The variety M does not have this above property with respect to the other 120 nodes. This 
is in contra.st with the Segre Cubic, and the Burkhardt Quartic. In the Burkha.rd ca.se, there 
is an extra syrnrnetry, relating the nodes of the two E6 -orbits, rnaking the variety invariant 
under the simple group of order 25920. No such thing can happen for M. 

One can prove that the defect of M is 29. This irnplies that for a small resolution M of M 
one ha.s: dim(H:iM )) = 30 , dim(H 3 (M)) = 2. 
(Note that H3 (M) is also equal to the weight-three part Grf (H 3 (M) of the mixed Hodge 
structure H 3(M ). ) In particular, we see that M is rigid. The same holds for the 126 
nodal Hirzebruch quintic and the 125 nodal Schoen quintic (see (Sch]). The L-function of 
H 3(M) is equal to the L-function of the unique weight Jour cusp form for the group f 0(6). 
This can be checked by counting points modulo p and cornparing with a table of Fourier 
coefficients of modular forrns . (1 thank B. van Geemen for doing this calculation.) The 
same L-function is associated to the varieties M(- 2 :l) and M(l:O)· These facts suggest that 
there are correspondences of these varieties with the elliptic modular threefold of f 0(6). 
However, M(-3 :1) gives rise to a weight four form for fo(21). 
Also, it seems tobe of interest to study the Picard-Fuchs equation for this family, as there 
seems tobe a rank four piece of the cohornology splitting off. These matters will be discussed 
in a subsequent paper. 
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