Median hyperplanes in normed spaces

Horst Martini Anita Schobel
Mathematische Fakultat Fachbereich Mathematik
TU Chemnitz-Zwickau Universitat Kaiserslautern
D-09009 Chemnitz D-67653 Kaiserslautern
Germany Germany

Abstract: In this paper we deal with the location of hyperplanes in n-—
dimensional normed spaces. If d is a distance measure, our objective is to find a
hyperplane H which minimizes

M
f(H)= Z Wy d(Tm, H),
m=1
where w,, > 0 are non-negative weights, z,, € R*.m =1,..., M, are M demand

points and d(z,,, H) = min,ecp d(,,, z) is the distance from x,, to the hyperplane
H. In robust statistics and operations research such an optimal hyperplane is
called a median hyperplane.

We show that for all distance measures d derived from norms, one of the hyper-
planes minimizing f(H) is the affine hull of n of the demand points and, moreover,
that each median hyperplane is (in a certain sense) a halving one with respect to
the given point set.

1 Introduction

We consider the problem of approximating a set of points n-dimensional
X ={z1,2,...,2p} C R" by a linear function (the linear fit problem). That
problem plays an important role in different mathematical disciplines:

1. In robust statistics and numerical mathematics, linear fit problems are
known as absolute errors regression, median problems, 4 regression and or-
thogonal /vertical L;—fit problems, respectively. Related investigations are
going back to the 18th century, see [BoshT7], [Edg87], and [Edg88]. It should
be noticed that the basic geometric criteria for orthogonal and vertical L+-
fit procedures are strongly related to each other, see also Section 3 below.



The importance of Ly regression (e.g., instead of the known least squares
regression) for robust statistics is based on the fact that exactly for p = 1
the corresponding L, estimates are technically robust in the sense that
they provide protection against arbitrary outliers, cf. the survey [NW82]
and [RL87]. On the other hand, certain approximation problems in nu-
merical mathematics (e.g., the approximation of given functions by linear
functions) lead in a natural way to the same type of problems, see [Ric64]
and [PFTV86]. In particular, [SW8T] present a numerical algorithm for a
linear approximation of finite point sets (regarding orthogonal distances)
which corresponds to a concave quadratic programming algorithm.

. The strong development of computational geometry has provided new in-
sights into various (classical) research areas. In this sense, also a large
variety of location problems was enriched by new methods and algorith-
mical motivations, see the surveys [Lee86], [LW86], [Kor89], and [KM93].
In particular, the time complexity of linear fit problems (in computational
geometry also called linear Ly approxzimation problems) was investigated
by several authors, cf. [MT83], [YKII88], [HITR89], [KM90], [KM93], and
[HIT+93].

And as a second point of view, a special case of one of the most interesting
problems in discrete and computational geometry (namely the k-set prob-
lem) turns out to be related to our considerations below. This subcase is
the problem of counting the number of halving hyperplanes (i.e., the num-
ber of % —sets) with respect to an m-element set X C R". Namely, here
a hyperplane is said to be halving with respect to X if it is spanned by a
subset of X and the number of points on each side differ at most by one.
In this paper we use a slightly modified definition of halving (which we
call pseudo-halving), see Definition 3. Several estimates on the number of
halving lines have been developed and will be discussed in Section 2.

. In operations research the two-dimensional version of the linear fit problem
is known as the line facility location problem, which belongs to the area of
path location.

Path location is an extension of classical facility location. The set A" of
demand points can be seen as a set of existing facilities or demand points
(in the plane) where the weights represent the importance of the existing
facilities. In classical facility location the objective is to find a good point-
shaped facility (see e.g. the books or surveys of [LMWS88], [Pla95], and
[Ham95]), whereas the problem of path location is to locate a dimensional
facility such as a line or a curve in the plane. The objective function is
the same as in classical facility location, namely to minimize the sum of
distances (the average distance, or the maximum distance) between the
existing facilities and the new one. A recent survey about the location



of dimensional structures in the plane is [Mes95]. Using Euclidean and
rectangular distances, line location problems in the plane were discussed by

[WesT5], [MN80], [MN83], [MT82], [MT83], [LW86], and [.C85]. Extensions
to other distances were given by [Sch96b] to block norms and by [Sch96a] to
arbitrary distances derived from norms. In the following we will generalize
the two latter papers to n-dimensional spaces.

One application in that area is the planning of new railways or motorways,
where the existing facilities can be cities and the weights the number of
their inhabitants. Path location can also be used to determine the location
of pipelines, drainage or irrigation ditches, or in the field of plant layout,

see for example [MN80].

We use two different analytical descriptions of hyperplanes, given by the following
definition.

Definition 1 1. Let the real numbers s1,8,,...,8, and b be given, such that
atl least one of the numbers $; # 0. Then we define the hyperplane

Hyg 650 i={(z1,20,. .. 2,) 1 2181 + 2252 + ... + 2,8, = b}.

2. Let S := {s1,82,...,8,-1} C R" be a sel of n — 1 linearly independent
vectors and z € R". Then we define the hyperplane

HZ,S = {LL’ =z + )\181 + )\282 + ...+ )\n_lsn_l . )\1,)\2, .. .,)\n—l S R}

Now the problem we are dealing with in this paper can be stated mathematically:
Given a distance measure d, an index set

./M = {1,2,,M}

and a set

X ={r,, :meM}CR"

of demand points z,, € R" with non-negative weights w,, for all m € M, we are
looking for a hyperplane H such that

is minimized, where

Some more notations should be introduced. In particular, W = 3\ w,, de-
notes the sum of weights of all demand points x,,, the usual unit vectors in R"
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are given by eq,...,eq, |A| denotes the number of elements contained in A, and
lin(A), aff(A) are the sets of all linear and affine combinations of elements of A.
For a hyperplane H let H* H~, and H° denote the set of demand points z,,
lying on either side of H and in H, respectively. In the following we assume that
X contains at least n affinely independent points, since all other cases are trivial.
Namely, in these cases the optimal hyperplane H will pass through all demand
points and satisfy f(H) = 0.

Note that, if {x,z2,...,2,} are n aflinely independent vectors in R", then H =
{z : z = Y0, Nz; with Y7, = 1} is the only hyperplane passing through
X1, Tg,...,T,, such that the hyperplane is fixed by those points.

Definition 2 A hyperplane H is called a halving hyperplane with respect to X =
{2 :m e M} if

Z wm<¥and Z wm<g.

rm€EHT rm€EH~

This definition is the same as the definition of halving given in [NM80],[MN80].
Note that in this definition, it is not required that n of the demand points are
on the hyperplane, as it is e.g. in [KM93]. For the Euclidean case, all optimal
hyperplanes are halving ones, see [KM90]. That is not necessarily true for more
general norms. We therefore introduce the definition of pseudo-halving and will
show in Section 4 that all optimal hyperplanes (for any norm) are pseudo-halving.

Definition 3 A hyperplane H is called a pseudo-halving hyperplane with respect
to X ={xy:me M} if

Z wmggand Z W, <

w
zm€H* zm€H— 2
We will use the classification scheme of [HN93] which was originally developed
for location theory, but is also helpful in this context: In that 5 position scheme
our problem can be described as 1H/R"/ - /d/ 3", meaning in short that we want
to locate one hyperplane (1H) in n-dimensional space R™ with no special as-
sumptions (), for example about the weights; this should be done by using the
distance measure d, and we want to minimize the sum of distances between the
demand points z,, and the hyperplane H (3°). The special case of finding an
optimal line in the plane can be described as 11/P/ - /d/ Y, and if we restrict
ourselves to Euclidean distances we would write 1H/R"/ - [l3/ 3.

In the next two sections some results for Fuclidean and rectangular distances are
given. Section 4 extends these results to distance measures derived from arbitrary
norms in R™. Sections 5 and 6 give some algorithmic approaches for the general
case and for the case that the distance has been derived from a block norm. The
paper is concluded by remarks on possible extensions.
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2 Results for Euclidean distances in R"

Now we shall give a survey on the results for the Euclidean version (1H/R"/ -
/l3/3") of our problem. Thus, we are concerned with the (weighted) orthogonal
Ly approximation of finite point sets of cardinality M in R™ by hyperplanes.
Our starting point is the planar weighted case. In [MN80] it was shown that each
optimal line has to pass through two of the given points, and this was used to get
an O(M?) time and linear space algorithm. This result was improved by [MT83]
to an O(M?logM) time and O(M?) space algorithm, and [L.LC85] sharpened this
up to O(M?) time and space. Finally, [YKII88] and, independently, [KM90]
derived an O(M?) time and O(M) space approach, see also [KM93].

Much more is known for the planar unweighted case 11/ P/w,, = 1/l3/3 (i.e.,
all points have equal weight). Namely, [MN80] observed also a second criterion:
optimal lines have to be halving ones in the sense of Definition 2. Hence, for
the unweighted situation purely combinatorial properties of the given point set
become interesting, since the following subquadratic bounds on the number k(M)

of lines which are halving to the given points 1, 9, ..., zp are known:
h(M) < M? (cf. [Lov7l] and [ELSS73]), (1)
h(M) < M?2log=m5 M (see [PSS92]). (2)

For using these bounds to improve the time complexities given above, it is ne-
cessary to implement the halving line procedure due to [LovT71] and explained in
the following for a given point set in general position. Starting with an arbitrary
halving line H; = aff(zq,z2) with initial orientation from z; to x3, one rotates
it clockwise around x5 (while preserving the orientation as intrinsic) until it hits
some further point z3 to obtain Hy = aff(zq, 23). Then Hj is rotated clockwise
around z3 to get Hs, and so on, until one returns to the starting position. For
odd M, all lines H; are halving ones, and for even M the line H; is halving if
and only if it is oriented from z; to z;41 (otherwise it is an(%, % — 2)—divider).
Using a certain data structure of [OvL81], the rotation procedure of [Lov71] may
be implemented in O(h(M)log? M) time, bearing in mind that the number of

(%, % — 2)—dividers in the even case has asymptotically the same upper bound

as the number of halving lines. This led [YKII88] to an O(M=log®*M) time
and linear space algorithm by using (1), and by (2) this can be improved to an
O(M%logQ_llﬁM) time and O(M) space approach, see [KM93]. The question for
the time optimal algorithm remains to be answered, yet. The known lower bound
is Q(MlogM), proved in [YKII88] by reduction from the so-called uniform gap
on a circle problem.

Regarding the weighted orthogonal L; approximation for n > 3, already the
paper [NM80] contains the statement that there exists an optimal hyperplane
spanned by n affinely independent given points, and a direct generalization of
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the halving criterion is also mentioned (at least for the unweighted case). Using
that incidence criterion and basic techniques from computational geometry (such
as point-hyperplane dual transforms and sweep techniques applied to hyperplane
arrangements), [HIIT93] obtained an O(M™) worst-case time and O(M) space
algorithm for getting one optimal hyperplane. (It should be noticed that this
approach was obtained already in 1988 by the same authors.) Independently,
[KM90] arrived at an equivalent algorithmical approach (i.e., O(M™) time and
linear space), but on a much stronger geometrical basis, see also [KM93]|. Namely,
in [Mar87] a relation between support functions of zonotopes (i.e., vector sums of
line segments or, equivalently, convex n-polytopes all whose r-faces, 2 <r < n—1,
are centrally symmetric) and the weighted orthogonal L; approximation reduced
to (n — 1)-subspaces was observed: using necessary conditions for local minima
of these support functions, one can prove that every optimal (n — 1)-subspace
passes through n — 1 linearly independent given points. Identifying one given
point with the “new” origin, this yields the following necessary condition for the
solutions of the weighted orthogonal L; approxination problem, due to [KM90]
(see also [KM93]): In Euclidean n-space, every optimal hyperplane has to pass
through n affinely independent points of the given set.

Unfortunately, until now there exists no spatial analogue to the computational
evaluation of the line rotating procedure in the plane. However, one can hope to
improve the O(M™) time complexity in the unweighted case by recent results on
the number h(M) of halving hyperplanes to sets of M given points. For n = 3,
the first non-trivial upper bound was given by [BFL90], namely

1

R(M) < O(M?* ), ¢ = —
(M) < O(M*=), ¢ = =,

and [ACE*91] presented
h(M) < O(M5log® M).

Finally, [DE94] improved this by the polylogarithmic factor to the best known
bound \
h(M) < O(M?=).
For n > 4 dimensions, the following bound was obtained by [ZV92]:
h(M) < O(M"=))

with €, = t~("*1)_ where t is the smallest integer with the property that for every
system (1, ..., C,41 of finite point sets in R”, each of size at least ¢, there exist
n+ 1 pairwise disjoint sets S;, each containing at least one member from each C;,
such that the intersection of conv(S;) is nonempty. The authors say that 4n + 3
is a good estimate for ¢, and they actually prove that 4n 4+ 3 is an upper bound
for t. For related considerations, we also refer to [VZ94].

For the weighted case, it even remains to be answered whether ¢M™ is the worst
case number of halving hyperplanes.



3 Results for horizontal distances in k"

In this section we describe how to solve 1 H/R" /- [dpo / 3, that means how to find
a best hyperplane minimizing the sum of lengths of the horizontal lines between
the given points and the hyperplane. That problem has been well solved in the
plane (see e.g. [MT83] and [MN83]). In [Zem84] an n—dimensional formulation
is developed, which can be solved efficiently.

At first we give a formula to calculate the distance dp,, (2, H) between a point
x € R* and a hyperplane H.

Let = (21, 29,...,2,) € R". If Hy 5, is a hyperplane according to Definition
1.1, we get:

|Bmoifizemonin | f g £ 0
dhor (2, Hy52) = 0 it ss=0and 151 +...+ 2,5, =0
oo if s;=0and 181+ ...+ 2,5, #b

Now we note that for finding a hyperplane H minimizing f(H) we can set §; = 1.

Let H:=Hy g, . s,-

Case 1: If 5 > 0, then Hy g .5, = H, 12 n-
21,2,

1 g

| 9,
=

Case 2: If s =0 and 2,181+ ...+ TmnS, = b for all m € M, then the problem
is trivially solved: f(H) = 0 with H a minimizing hyperplane which is a
pseudo-halving one passing through all points z,, € X.

Case 3: If 5 = 0 and 3181 + ... + zpns, # b for at least one k& € M, then
d(zy, H) = 0o, enforcing that f(H) = oo such that H cannot be optimal.

Summarizing these statements, we get as objective function:

f(Hb,s],...,s}l) - Z wmdhor(xma Hb,s},...,s%)
meM
= Z Wi |b— Tyt — S9Tma — « oo — SpTpn-
meM

Lemma 1 For a given set X = {x,, : m € M} C R" and non-negative weights
Wy, for all m € M there always exists a hyperplane minimizing

f(H)= E Wi dhor (T, H)

meM

and passing through n affinely independent points x,, € X.



Proof: Let us assume that Hy« s+ s« 1s an optimal hyperplane which does not
pass through n affinely independent points z,, € X'. Define

Mo:={m e M : |b" =21 — $2" Tpo — ... — S T n| = 0}
Because of continuity of d(z,,, H) = |[b* — 21 — $2"Tma — ... — . T mn| there
exists an environment U = U(b*, s3,...,s:) around that solution such that for

all (b, 35,....8,) €U
1b— Tyt — S2ms — ... — Sumn| 7 0 for all m & Mo,
Now we look at
L= {(b, 82, ...,5)  |b— Tmi — $2Tmz — ... — Sumn| = 0 for all m € Mo},

We know that £ # 0, since (b*,s3,...,5%) € L. Since {z,, : m € My} is not
affinely independent, the solution of the linear system

|6 — 1 — $2Tm2 — .. — Sppmn| = 0 for all m € M,

is not unique. That means, there exists another hyperplane H' = Hy 51 o0 #
H* such that z,, € H' for all m € Mg. In other words, (¥/,$',...,5,/) € L.
Thus, £ is the solution space of a linear system containing at least two different
points, which means that dim(£) > 1. Since the objective function

f(Hb,sé,...,s}L) = Z wm|b — Tp1 — STy — ... — 3~n£mn|
mgMo
is linear for all (b, $2,...,5,) € UN L, we can find a solution which is at least as

good as Hy« 4+ s+ and passes through n affinely independent points z,, € X.
q.e.d.

Lemma 2 For dy,, every hyperplane H* minimizing

fH) = 3" wndpor (2, H)

meM

is a pseudo-halving one.

Proof: Suppose that H = Hy 5, s, is optimal, but
1
zmeHt MiTm1+52Zm2+...5nTmn>b

We define
Mbti={me Mz, + $HTma+ ... SpTmn > b}



and M~ := M\ M*. Then we choose an € € R such that ¢ > 0 and
M ={meM:z, +$22m+ ... 80Tmn > b+ el

Evaluating H, = Hyt. s, .. s, leads to

f(H) = Z W |b+ € — X1 — 2T 2 — .. — SpTnl
meMT
+ Z W |b+ € — Tp1 — 20T 2 — .. — SpTonl
meM—
= Z Wi (|6 — Tyt — $2Tmo — .. — Sulyun| — €)
meM*
+ Z Wi (|0 — 1 — $2Tma — oo — SpTmn| + €)
meM—
= f(H)+6( Yo own— Y wm) < f(H),
meM— meM*t

contradicting the optimality of H. q.e.d.

In the same way as looking at horizontal distances it is possible to define the
distances in the other directions ey, e3,..., ¢, by

b— 181 — ... — TpnSn. .
Lt SN |7 26{2737"'772/}7

k3

dei('raH) = |

leading to the same results as in the horizontal case dj,.(z, H) = d., (z, H). Since
the rectangular distance between a point z,, € R" and a hyperplane H is given

by

1
Lhiz,H) = min —|b—8§ix1 — ... — Sya,]
1=1,2,..,n §;
=  min d.(z,H),

1=1,2,...,n

one consequence of Lemma 1 and Lemma 2 is that both results also hold for /;:

Theorem 1 For rectangular distances d = [y the following two conditions are

satisfied:

1. There exists a median hyperplane which passes through n affinely independ-
ent points x,, € X.

2. All median hyperplanes are pseudo-halving ones.



4 Locating hyperplanes in normed spaces

In this section we extend the results of Section 3 to all distances d derived
from norms. The method we use has been developed in [Sch96a] for the two-
dimensional case.

Let B be a compact, convex set containing the origin in its interior. Moreover,
let B be symmetric with respect to the origin and let x € R™. The gauge

ve(z) == min{|A| : € AB}

then defines a norm with the unit ball B. On the other hand, all norms can be
characterized by their unit balls, see [Min67].

We repeat that the distance between a point x € R" and a hyperplane H is
defined by
d(z,H) = mind(z, z).

ze€H

Let d be any metric derived from a norm, let z,, € R" form € M ={1,2,..., M}
be a given set of points and let w,, for all m € M be non-negative weights. The
problem that we want to solve now reads as follows.

Find a hyperplane H minimizing

J(H) = Z Wi d(2, H).

meM

In the classification scheme from [HN93] (see Section 1) we can write this problem

as LH/R"/ - [norm/ Y.

At first we note that to determine the distance between a point x and a hyperplane
H we can increase the unit ball around x until it touches the hyperplane.

Lemma 3 For any norm ~ with unit ball B and the derived distance d, any
hyperplane H, and any point x € R™ the following equalily holds:

d(z, H) = min{|A| : (z + AB) N H # 0}.
Proof:

dlz,H) = Izrélglld(r,z)
= g%l}r]lmln{|)| tz—x € AB}
= minmin{|A|: 2 € AB + z}
z€H
= min{|A| : 3z € H such that z € AB + z}
= min{|]A|: (z+AB)NH #0.} q.ed.
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Definition 4 Let t € R™ be a given direction. For x € R" and any hyperplane
H C R we define
di(z, H) :=min{|A| : 2 + M € H},

where min{) := oco.

In [Sch96a] it has been shown that this distance between any point and a hyper-
plane can be derived from the following distance between two points z,y € R"™:

di(z,y) := nly — ),

where

af ifz=aot
%(1')3:{ o

oo else.

Thus we get
di(z,H) = rréi];xlldt(x,z).

Note that 0 < d¢(x,, H) < oo if and only if ¢ & lin{sy, s2,...,8,-1}.
As example we get that the length of the horizontal segment from z,, to H then
is de, (2, H) = dpor (2, H) with the first unit vector e; € R".

Lemma 4 Let p,q € R* and D be a linear transformation with
1. D(p) = q and
2. det(D) # 0.

Then we have

dy(D(X), D(H)) = dy(X, H),
where D(H) :== {D(P): P € H}.

Proof: The proof has been done in [Sch96a] for two dimensions, but is also valid
for more than two dimensions by replacing R? by R". However, to make the
paper self-contained, we shortly give this proof again:

We first show that
d,(D(z), D(y)) = d,(z,y) for points z,y € R".
Case 1: d,(z,y) =a < oo : That means, + —y = ap with |a| = @ and we get

dy(D(2), D(y)) = ~(D(y) — D(z))

(
= 7%(D(y — 7))
= v(D(ap))
= v(aD(p))
= vlag) =lo|=a

11



Case 2: d,(z,y) = oo : Then we know that z —y and ¢ are linearly independent,
which means that also D(z —y) and D(¢) are linearly independent (because
det(D) # 0) and we get

4,(D(x), D(y)) = .

Since

di(z, H) = mind;(z, 2)

2eEH

we now can conclude that for a hyperplane H and any point x,,

dy(D(zr), D(H)) = mind,(D(zy), D(z))

z€H
= mind,(xm,, P) =dy(zm, H) q.ed.

zeH

With the help of Lemma 4 we can easily extend the results of Section 3 to the
distances d;.

Theorem 2 For all distances d; the following two conditions hold:

1. There exists a median hyperplane which passes through n affinely independ-
ent points x,, € X.

2. All median hyperplanes are pseudo-halving ones.

Proof: To solve 1H/R"/ - /d;/ 3" we can proceed as follows:

1. Choose ¢ = e1,p =t and transform 1H/R" /- /d;/ Y to 1TH/R"] - [dpor | 3
according to Lemma 4. We then know that H is optimal for the problem
LH/R"/ - /d;/ Y if and only if D(H) is optimal for 1H/R"/ - [dpor ] 3.

2. Solve 1H/R"/ - [dnor/ Y. and get an optimal solution Hj = which passes
through n affinely independent points D(z,,), 2, € X (Lemma 1). We also

know from Lemma 2 that all optimal hyperplanes are pseudo-halving ones
for the transformed point set D(X) = {D(z,,) : z,, € X'}

3. Determine D; = D™'(H*). Since
D(z,,) € H},, <> z,, € D7'(Hj,,)

and affine independency is invariant with respect to the transformation D,
we know that H; passes through n affinely independent points z,, € X'. For
the second statement we use that under the transformation D either no z,,
or all z,, change the side of H such that all optimal hyperplanes have to
be pseudo-halving ones for the distances d;. q.e.d.
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In the following we will show that for any distance d derived from a norm and
any hyperplane with fixed slopes s1,3,...,5,.1 € R" there exists a t € R" such
that

d(z, H) = di(x,,, H) for all m € M.

Thus, when evaluating the objective function f(H) we can replace d by d;.

Lemma 5 Let vy be a norm or v = v for some vector t € R" and let d(x,y) =
v(y—x) be the corresponding distance. Let a set of slopes S = {s1,82,...,8,-1} C
R be given and let t ¢ 1in(S). Then there exists a constant C' := C(S,d,l3) such
that for all z € R" and all x € R

d(:l},HZ75) = O 12($7H275).

Proof: Consider at first @ = 0. For a fixed point zg ¢ lin(S) we know that
I5(0,H,, s) # 0 and 0 # d(0, H,, s) < oo, and therefore we find a real number
C # 0 such that d(0,H,, s) = Cl(0,H, s). Now we look at a hyperplane
H=H.,s# H.,s. Since zy ¢ 1in(S), H can be written as H, s with z = 3z, for

a real number 3. Hence we get

pBd(0,H.,s) = [ min d(0,y)

yEHZO,S
= min ERﬁd(O, 20+ o181+ ...+ Qpo180-1)
= min ERﬁ’y(zO + a1+ ...+ ap_18n-1)
= ngin eR’Y(ﬁ(Zo-l-OqSl—|----—|-6Yn—15n—1))

= min R’y(z +aisit ...t al_1Su1)

— d(O,HZ7s) = ﬁd(O,Hst) = ﬁClg(O,Hst) = CZQ(O,HZ7S),
using the above equation for both d and in the special case [;. For any point

r € R* with  # 0 we finally get:

d(z,H,s) = min d(z,y)

yeHz,S

= min __d(z,z+ o181+ ...+ @p_18,-1)
= min __d(0,z —z+ o181+ ...+ @p_150-1)
= d(0,H")
with H ={z —x 4+ o181 + ... + @p_180_1 : @1, ..., a,_1 € R}

= C1(0, H') because the set of slopes of H' remains S
= Cly(z,H,s5). q.ed.
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Note that in Lemma 5 the properties of the Euclidean distance [; have not been
used, such that /; can be replaced by any other distance derived from a norm or
by distances derived from 4, with ¢ ¢ lin(S). If dy,dz, and d3 are such distances
and S is a set of slopes, we get

C(S,d1, ds)
C(S,dz, d3)

In particular, if H = {(z1,22) : 9 = Sz, + b} is a line in R? with 5,b € R, § # 0,
we obtain

C(S, dl, dg) —

1 .
O(( 3 ) 7dhor7duer) - |5|
Another example is given by the following relation, holding for a hyperplane
H := Hy 4, .. s, (see Section 3).
C(S,h,dyor) = _min o

2,...,TL SZ

As an immediate consequence of Lemma 5 we get: For a given set of slopes
S C R" the optimal hyperplane H with slopes S = {s1, $2,..., 8,1}, that means
the hyperplane H.« ¢ minimizing

min f(H,s)

z€R™

is the same for all norms d and distances d;.

There is another reason for introducing the distances d;. Namely, the following
relation between any distance d(z,y) = v(y — x) derived from a norm 5 and the
distances d; holds.

Lemma 6

dlz,H)= min  di(z, H).

teRn y(1)=1

Proof: To make the paper self-contained we repeat here the proof originally given
in [Sch96a]: Because of Lemma 3 we know that

d(2pm, H) = min{|\| : z,, + A\BN H # 0} =: )\°.

That means there exists t° € R™ with (%) = 1 such that z,, + \°° € H. (Note
that ~(¢) = 1 if and only if ¢ € boundary(B).) Using the definition of d;o, that

means:

d(zy, H) = dw(z,,, H).
For all ¢ with ~(#') = 1 we can calculate that
di(zm, H) = min{|A|: 2z, + M’ € H}
> min{|\|: z, + A\ABN H #£ (0}
= d(z,,, H) using Lemma 3 again  q.e.d.
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Lemma 7 Let H be a hyperplane with S as set of slopes, and d(z,y) = v(y — )

be a distance derived from a norm ~. Then there exists a direction t € R" such
that
d(z,H) =di(z,H) for all x € R".

Proof: Let x € R". According to Lemma 6 we can find a direction u € R" such
that y(u) = 1 and

dz,H) =d,(z,H) < di(x, H) for all t € R".
Suppose that there exist points y € R" and v € R" with v(v) = 1 and
dly, H) =d,(y, H) < d,(y, H).

Note that u ¢ 1lin(S) and v ¢ lin(S) because d(z, H) # oo and d(y, H) # oo.
With Lemma 5 we know that there exists a constant C' := C(S,d,,d,) such that

du(x, H) = Cdy(y, H) and d(x, H) = Cd,(y, H),

yielding €' > 1 in the first case and ' < 1 in the second case, which is impossible.
q.e.d.

Theorem 3 For all distances d derived from norms the following statements

hold:

1. There exists a median hyperplane which passes through n affinely independ-
ent points x,, € X.

2. All median hyperplanes are pseudo-halving ones.

Proof:

ad 1: Suppose H* is an optimal hyperplane, but does not pass through n affinely
independent demand points. Choose t* such that d(x,,, H*) = dy(x,,, H*)
for all m € M according to Lemma 7.

By Theorem 2 we know that the first result holds for 1H/R"/ - [di /3",
and therefore we can choose a hyperplane H° minimizing the sum of all
distances di» and passing through n affinely independent demand points.

Now let t° be given such that d(z,,, H°) = dy(x,,, H°) for all m € M

according to Lemma 7 again. Then we get:

[HY) = Y wpd(e,, HY)

meM

= E Wy dps (T, HY)
meM

15



Z W dir (T, HO)

meM

Z Wy dso (T, H°)  because of Lemma 6
meM

Z Wy d (T, HY)

meM

f(H®) > f(H*) by the optimality of H*.

Thus, also H® is an optimal hyperplane. That hyperplane passes through

n affinely independent demand points which completes the proof.

ad 2: We assume that there is an optimal hyperplane H* with

5

Z wm>%

zm€(H*)~

. With the same notation as in the first part of the proof we know from

Theorem 2 that any hyperplane H® minimizing ds« satisfies

Therefore we get

> o<

Tm€(H®) " wym em€(HO)*

w

W
7and Z wm§7.

f(HY) = Z Wi dpr (T, H”)

meM

> Z wmdt*(a:m,HO)
meM

> [(H"),

contradicting the optimality of H*. q.e.d.

Algorithmical approaches for general norms

By Lemma 3 and Lemma 6 the distance d(z, H) strictly depends on the shape
of the unit ball B which can be an arbitrary convex body centred about the
origin. Thus, for certain unit balls (e.g., having smooth boundary which might
be sufficiently complicated describable) the calculation of d(z, H) is impossible
by discrete methods in the spirit of computational geometry. On the other hand,
there are norms (like the Euclidean one) giving a direct motivation and basis

for computational approaches, and in Section 6 we will show that for polyhedral

norms the time complexity is even more reducable.

In the following we will widely ignore the difficulties mentioned above, and so
it turns out that Theorem 3 yields approaches analogous to the Euclidean case
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discussed in [KM90], [HIT*93], and [KM93]. But once more we underline a basic
difference occuring here. Namely, [KM90] developed an O(M") time and O(M)
space algorithm for the weighted Fuclidean case on the basis that each optimal
hyperplane has to pass through n affinely independent given points. In principle
the same algorithm was established by [HIIt93], but only on the basis of the
weaker statement that there exists an optimal hyperplane satisfying that incid-
ence criterion. In general, part 1 of Theorem 3 above cannot be sharpened to
the state as in the Euclidean situation (a simple example for the [;-case is given
in the final section), and so all our algorithmic procedures refer to only one of
possibly many optimal hyperplanes.
With these remarks as starting point, we only have to give a brief outline of
the computational approaches from [HIIt93] and [KM93], since for (one of) the
best hyperplanes the basic incidence criteria coincide (Lemma 6.3 in [HII*93],
Theorem 2 in [KM93] and part 1 of Theorem 3 above). It is trivial to see that
one can get an optimal hyperplane in O(M"*!) time and O(M") space, namely
by enumerating all

Cy=0(M™)
candidate hyperplanes and computing the corresponding sums of weighted dis-
tances. (Enumeration algorithms spending constant time per candidate-k-subset
can be taken from [RNDT77], Section 5.2.2. The further reduction of the time
complexity to O(M") and of the high space cost to O(M) can be obtained by
constructing a certain homogeneous hyperplane arrangement in (n+ 1)-space and
by using the topological line sweep technique, which is due to [EG89]. The first
step is based on an incremental algorithm due to [EOS86] (and yields O(M™) time
and space), and the second one leads, together with some further considerations,
to the linear space requirements. (The details of these approaches can be taken
from [HIIT93], pp 227-230, and [KM93], pp. 138-142.) Thus, one gets finally
O(M™) time and O(M) space requirements, and possibilities for further improve-
ments are perhaps obtainable with the help of pseudo-halving hyperplanes.

6 Algorithm for block norms

In the special case that the distance measure d is derived from a block norm (i.e.,
the unit ball B is a polytope) it is possible to solve the problem more efficiently.
In the plane that was done in [Sch96b]. The same idea can be extended to
n—dimensional space.

If B is a compact, convex polytope with nonempty interior and extreme points
GJ?t(B) = {bl, bg, ey bG, —bl, —bg, ey —bG}, bz € Rn,l = 1, ey G,

we see that

ve(z) :== min{|A| : € AB}
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is a block norm and can be expressed by

G G
78(X) = min{z [Ag| : X = Z Agby}-
g=1 g=1

In the classification scheme the problem of locating a hyperplane with block
norms can now be written as 1H/R"/ - [dg/ .

Lemma 8 Let dg be derived from a block norm vg. Then

Proof: For determining d(x, H) we know from Lemma 3 that we can increase the
unit ball around z until it touches H. In our case the unit balls are polytopes.
Obviously, a hyperplane touches an n—dimensional polytope in at least one vertex
of that polytope, see e.g. [Sha78]. Thus the formula

d(z,H)= min ldt(x,H)

tER™ y(t)=

from Lemma 6 simplifies for block norms to

dp(tp, H) = min_dy (v, H).

9=1,...,.G

q.e.d.

With the help of the above lemma we can decompose our problem in G inde-
pendent subproblems. Thus, for solving 1H/R"/ - /dg/ 3" it is sufficient to find
the best hyperplane H; minimizing

E wmdbg(xm7 H)
meM

for ¢ = 1,2,...,G, and then to choose that hyperplane H; with the smallest
objective value. How to find the best hyperplanes H is described in Lemma 4.
Therefore we get the following algorithm.

Algorithm
Input: block norm distance dg, z,,,w,, for all m € M
Output: hyperplane H* which solves 1H/R"/ - /dg Y
1. 2=

2. For g =1 to G do

18



1. Determine a transformation D such that D(b,) = e; and det(D) # 0
2. For m € M do: 22 = D(z,,)
3. Find a hyperplane H} minimizing

FH) = 32 wndior (2, H)

meM

4. If f(H}) < z* then
z* = f(H;‘)
.= D_I(H;‘)
3. Output: H* with objective value z*

That algorithm runs in O(GR), where R is the complexity to solve the corres-
ponding problem with horizontal distances (1H/R"/ - [dhor /). In [Zem84] it is
shown that this can be done in linear time for all dimensions n, such that our
algorithm runs in O(GM) time.

A common and simple block norm is [;. The problem 1/P/ - /l;/ 3, to locate
a line in the plane with rectangular distances, has been well solved by many
authors. Most algorithms for this problem separate it into two subproblems;
namely to find the best lines minimizing the sum of vertical and the sum of
horizontal distances, respectively (and then choosing the better one). Most of
the [;—algorithms in the plane also give a transformation from the horizontal line
problem to the vertical line problem or vice versa. We remark that in this sense
the usual planar algorithms for [ are special cases of the above algorithm.

7 Concluding remarks

We have shown that for all distances in R" derived from norms, and all point
sets X' containing n affinely independent points, there exists a hyperplane, min-
imizing the sum of distances to all points in X' and passing through n affinely
independent points z1, ...z, € X'. This is a generalisation of [Sch96a] where the
above statement was proved in the two-dimensional case.

As already mentioned, it was shown in [KM90] that each median hyperplane
in Euclidean n-space is spanned by n affinely independent points of the given
(weighted) set. Our Theorem 3 (part 1), referring to all finite-dimensional normed
spaces, says that there exists a median hyperplane passing through n such given
points. In this general setting, the latter statement cannot be sharpened (in the
direction of the Euclidean incidence criterion), as the following simple example
will demonstrate.
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Consider the following instance of our problem with rectangular distances in
the plane (1//P/ - /l;/"): The unit ball B then is given by the convex hull of
the four points {(1,0),(—1,0),(0,1),(0,—1)}. Furthermore, let the non-weighted
point set X’ be given by the four points X = {(1,1),(1,-1),(—1,1),(—1,-1)}. It
is easy to see that each line passing through two of the four given points has the
(minimal) distance sum 4 with respect to X’; but e.g. the lines z; = 0 and 23 = 0
have the same distance sum with respect to X'. Hence there exist normed spaces
with median hyperplanes containing no point of a suitably given set (a situation
which is not possibe in Euclidean spaces). Thus, one is motivated to ask for
geometric characterisations of those normed spaces (or unit balls) which enforce
the stronger incidence criterion (that each median hyperplane is necessarily the
affine hull of n affinely independent points).

In addition, one might extend the investigations to k—dimensional affine flats ap-
proximating finite point sets in normed spaces regarding the distance sum, where
k € {0,...,n —2}. For k = 0, one obtains an immediate generalisation of the
well-known Weber-Problem (or Fermat-Torricelli problem or minisum problem)
of location theory. And also further non-Euclidean spaces, like those of constant
curvature etc., might be taken into consideration with respect to approximation
problems of the type discussed here.
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