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Abstract

There are several good reasons to introduce classification schemes
for optimization problems including, for instance, the ability for con-
cise problem statement opposed to verbal, often ambiguous, descrip-
tions or simple data encoding and information retrieval in bibliograph-
ical information systems or software libraries. In some branches like
scheduling and queuing theory classification is therefore a widely ac-
cepted and appreciated tool.

The aim of this paper is to propose a 5-position classification which
can be used to cover all location problems. We will provide a list of
currently available symbols and indicate its usefulness in a - neces-
sarily non-comprehensive - list of “classical” location problems. The
classification scheme is in use since 1992 and has since proved to be
useful in research, software development, classroom, and for overview
articles.

1 Introduction

In several branches of optimization classification schemes have been success-
fully introduced and are used by every author publishing in the respective
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area. Well known examples include the 3-position schemes in scheduling
[GLLKT79] and in queuing theory [Ken51].

Like any other formalization such classification schemes should be concise
and allow a precise description of the problem class at hand. As such it
contributes to more transparency in the scientific discussions and avoids mis-
understandings in — often ambiguous — verbal problem descriptions. As a
tool in data encoding and information retrieval it is absolutely necessary in
bibliographical information systems or software libraries.

Proposals for classification schemes for location problems exist since 1979
when Handler and Mirchandani [HM79] suggested a 4-position scheme which
is applicable to network location problems with objective functions of the
center type. Eiselt et al 1993 [ELT93] used a 5-position scheme which clas-
sifies competitive location problems, i.e. models which are based on a game
theoretic approach. Carrizosa et al [CCMP95] presented a 6-position scheme
for classifying planar problems where both demand and service are given by
a probability distribution.

The 5-position classification scheme proposed in this paper is designed in
such a way that not only classes of specific location models are covered but
all of them in a single scheme.

It is in use since 1992 when it was first implemented in a course on planar
location theory [Ham92], [Ham95]. It was presented to the research com-
munity since then in conferences and publications see, e.g. ( [HN93], [Nic94],
[Nic95], [HN96], [NP96], [HNLI6], [RCPNF96]) and was received with posit-
ive feedback. The software library LOLA (Library of Location Algorithms,
[HKNS96]) is based on this classification scheme to provide a comprehensive
concise and precise software library.

In the next section the classification scheme will formally be introduced.
After a general description of the five positions, specific symbols are proposed
for continuous, network and discrete location problems. The last section
shows the usefulness of the proposed scheme by referring to some location
literature and indicating the corresponding classification.

The authors of this paper and colleagues who have already used the scheme
found it useful. It is our hope that the location community will take this
paper as starting point of a discussion which will lead to a commonly accepted
classification of location problems.



2 A classification scheme for location prob-
lems

In this section we will describe a classification scheme for location problems.
This scheme has been used in our group since 1992 and (after some modific-
ations) proved to be a useful tool for structuring lectures as well as research
papers (see references in the introduction).

First we will give a general description of the structure of this classifica-
tion scheme. Then we will in three subsections, devoted to continuous, net-
work and discrete location problems describe in more detail the usage of the
scheme. Finally we will give a summary of the used symbols.

2.1 General structure of the scheme

The classification scheme has 5 positions written as
Posl/Pos2/Pos3/Pos4/Pos5 ,

where the meaning of each position is described in the following.

Pos1 This position contains information about the number and the type of
the new facilities.

Pos2 The type of the location problem with respect to the decision space.
This information should at least differentiate between continuous, net-
work and discrete problems.

Pos3 In this position is room for describing particularities of the specific loc-
ation problem. We should, for example, be able to include information
about the feasible solutions or about capacity restrictions.

Pos4 This position is devoted to the relation of new and existing facilities.
This relation may be expressed by some distance function or simply by
assigned costs.

Pos5 The last position contains a description of the objective function.

If we do not make any special assumptions in a position this is indicated
by a e. For example, a e is Position 5 means that we look at any objective
function. The e in Position 3 means that the standard assumptions for the
problem described in the remaining four positions hold. For example in
planar location problems a e in Position 3 means that we have (as usual)



positive weights for the existing facilities. In general we also assume by
default that we minimize the objective function.

In the next subsections we will describe the usage of the classification in the
three main areas of location theory: continuous location, network location
and discrete location. We will introduce specific symbols to express the
information described in this section.

2.2 Continuous Location Problems

Since continuous location problems are the oldest location problems and
deal with geometrical representations of reality a broad range of different
location problem types has to be taken into account. Standard assumptions
are positive weights and convex objective functions.

We will now describe the possible symbols for each position.

e Position 1: We have an expression which consists of a number
ne{l,...,N}

and a string specifying the type of the new locations. This string may
be, for instance,

an empty string stands for location of n points.

1 n lines have to be located.

p n paths consisting of one or several line segments
have to be located.

A n general areas have to be located. We can also

have circles (C) or rectangles (R)

If several types of new facilities have to be placed we can have in Posi-
tion 1 several of the above described expressions separated by commas.

e Position 2:

IR¢ The problem has to be solved in the d-dimensional
space.

P A problem in the plane (d = 2).

H A problem in a general Hilbert-Space.

e Position 3:

F A feasibility region is introduced, i.e. x € F is
required.



B

Wy, =1

Wy, S0

Wy, :
distribution

Wy - f(')

alloc

queue

e Position 4:

In continuous location we usually give information about the distance
function used. We allow either to specify a distance function or a norm
or gauge inducing a distance function by dist(x,y) := norm(y —z). To
each symbol an index m can be added to express that every existing

A forbidden region is introduced, i.e. = & int(R)
is required. If the shape of the forbidden regions
is important, further specification include, for in-
stance, R convex or R circle.

A barrier is introduced, where neither placement
of new facilities nor trespassing is allowed.

An unweighted problem.

Positive and negative weights are allowed.

The weights satisfy a specified distribution, for ex-
ample: w,, : P()\) means that the weights are
Poisson distributed with respect to parameter \.
If we only want to express that the w,, are ran-
dom variables we write w,,, : RV.

The weights are generated by a function f.
Mutual communication between the new facilities.
This is the standard assumption for continuous
location problems and may be omitted.

The allocation of existing to new facilities is part
of the problem.

The service of the new facilities is combined with
a queue. If further specification is needed the 3-
position classification for the queue (see [Ken51])
can be included.

facility defines its own distance.

lp

vy

Ypol
Tmiz
-l
dH aus
dinhom

The distance is defined by an l,-norm, where for
example, [y is the Euclidean norm.

A general gauge.

A polyhedral gauge.

A mixed gauge.

A general norm.

The Hausdorff distance.

Inhomogeneous distance. The distance function is
not everywhere the same in the decision space.



e Position 5:

Remember that we by default always minimize.
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@ : property

The classical Weber or sum objective func-
tion.

The ordered Weber or sum objective func-
tion.

The maximum objective function.

Same as above but we maximize the object-
ive function (we have an obnoxious location
problem).

Cent-Dian objective function.

We have continuous demand satisfying the
distribution d.

We have continuous demand (d;) and also
the new facilities are distributed with respect
to some distribution ds.

A sum objective with some probabilistic in-
fluences, like, for example, different scenarios
or weights which are random variables. Ana-
logous maxpyep -

Multicriteria Weber Problem, where we are
looking for Pareto locations. Analogous for
other objective functions.

Multicriteria Weber Problem, where we are
looking for lexicographic minimal locations.
Analogous for other objective functions.
Multicriteria Weber Problem, where we are
looking for max ordering locations. Analog-
ous for other objective functions.
Multicriteria Problem, where we are looking
for Pareto locations. The objective functions
are either of the max or the sum type. Ana-
logous for other objective functions and other
criteria.

A general objective function with some prop-
erty, e.g. ¢ : increasing. To indicate proper-
ties like increasing or decreasing we can also
write ' or Y\, respectively.



After having described the positions separately we will now give a list of
well-known continuous location problems and their classification.

[ ] l/P/O/lz/Z

This is the classical Weber problem with Euclidean distance.

o 1/P/e/e/>.

This is the class of all one facility Weber problems in the plane.

o N/P/(mc)/e/3.
This is the class of all N-facility problems in the plane, where the
interaction between the new facilities is given (As explained earlier the

symbol “mc” may be omitted).

e N/P/alloc/e/>’
This is the class of all planar multi-Weber problems, where allocation
is part of the problem.

o 1/IR"/e/|| - ||/max
This is the problem of finding a centre line in the d-dimensional space
with respect to some norm.

By using this scheme we can easily describe problems which are not of the
classical type. For example, N/P/B,R/v/Q —}_,,., the problem of finding
the set of all Pareto locations with respect to ) objective functions (each of
which is of the Weber type) for a N-facility planar location problem under a
general gauge with barriers and forbidden regions is not solved yet. In this
example we can also see that the verbal description is much clumsier and
more ambiguous than the 5-position string.

2.3 Network location problems

e Position 1: Like in the continuous case this position consists of a num-
ber

ne{l,...,N}

and a string specifying the type of the new locations, e.g.

An empty string stands for location of n points.
P n paths have to be located in the network consist-
ing of one or several edges.
n trees have to be located in the network.
n subgraphs have to be located in the network.

Q-
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e Position 2:

g The problem is defined on a network, where the
underlying graph is a general undirected graph.

gp The problem is defined on a network, where the
underlying graph is a general directed graph.

T The problem is defined on a network, where the

underlying graph is a tree.

e Position 3: The same possibilities as in the continuous case. Default is
“alloc¢” and non-mutual communication.

e Position 4: Since on a network the distance is always measured with
respect to the shortest-path distance we only have to specify from where
to where we are allowed to measure. We therefore have always an
expression d(-,-) where the first arguments determines the possibilities
for the existing and the second argument the possibilities of the new
facilities.

d\V,V) The new and existing facilities have to be nodes of
the graph.

d\v,9) The existing facilities are in the nodes of the graph
and the new facilities can be any point on the
graph. Analogous d(V, T).

d(g,Vv) The new facilities are in the nodes of the graph
and the existing facilities can be any point on the
graph. Analogous d(T,V).

d(g,9) The existing and the new facilities are allowed to
be any point on the graph. Analogous d(T,T).

e Position 5: Any meaningful continuous objective function can also be
used in the network case.

Again we will give some well-known problems as illustration:

o 1/G/e/d(V,G)/>_

This is the absolute 1-Median problem.

e 2/G/(alloc),w,, = 1/d(V,G)/max
This is the unweighted 2-centre problem (with allocation).

© 1/T/e/d(V,T)/Q = 3,

Is the multicriteria 1-median problem on a tree.



2.4 Discrete location problems

e Position 1:
n € {1,... ,N}  The number of new facilities.

o The number of new facilities is not known in
advance and its determination is part of the
problem.

g, Two different kinds of new locations have to

be found. Analogous p-different types.
e Position 2: Always D.

e Position 3:

cap Capacity restrictions.

bdg Budget restrictions.

dmax A maximal distance is given up to which clients
can be served. Analogous d,;,.

price Denotations for a specific pricing policies, e.g.

— priceps mill-pricing. The client has to pay
the transportation cost.

— pricey uniform delivery pricing. The client
has not to pay the transportation cost.

— pricep spatial discriminatory pricing. The
prices of the product are depending on the
distance to the client.

e Position 4: Here any restrictions and specifications of the costs ¢;; can
be given.

e Position 5: Any of the objective functions of the continuous or network
case can be used. Additionally specific discrete location type objective

such as
Y comp Competitive location model.
QAP Quadratic assignment objective function.
D uncow Coverage objective function.
cov T 2 uncon  COvering objective function.
hub Hub location objective function.

may be used.



We give again some examples as illustration:

o N/D/e/e/3]

This is the discrete N-median problem.

o §/Dje/e/3]

This is the uncapacitated facility location problem (UFL).

b ﬁ/D/dmawﬂ bdg/./Zuncov
This is the coverage problem.
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2.5 Summary of the used symbols

In this section we will give an overview of the introduced so far, symbols to
make it easier to compose a specific instance of the problem classification. Of
course not all combinations of symbols make sense. The reader should also
keep in mind that several symbols of one column may be concatenated by
commas if applicable. Obviously, it will be necessary to extend the number of
available symbols in the future. We plan to make ETEX-macros available for

generating the classification strings. This will be announced on the LOLA
homepage (see [HKNS96]).

‘ Position 1 ‘ Position 2 ‘ Position 3 ‘ Position 4 ‘ Position 5
ne{l,...,N} | R? R L D
l P F y max
p H B “Ypol CD
d
R T w,, : distribution | dgaus Q- Zpar
T D W RV dinhom Q — Zlez
G W, : f() d(V,V) Q@ —> wo
§ mc d(V,9) Q — (D, max)pe
8,1 alloc d\V,T) Zcomp
Cap d(g’ V) ZTLTLCO’U
bdg (T’ V) Zcov + Zuncov
dmaav d(g’ g) ZCO’U
price d(T,T) QAP
queue D ord
Zprob
maxpmb
Zhub
@ : property

The current version of LOLA (see [HKNS96]) uses these symbols to guide
users of the software library to define and find the respective location model

(see Figure 1).
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Humber Type Extras Metric Objective Options Help

LOLA

Location file:  fusrfiocaliolafikfexamplesbook/bsp2.13

Restriction file:  fusriocalfolastkfexamplesfextrasfhspz.13re

Number of new Locations:

Type: planar
Extras: Restrictions: convex polyhedron
Metric: 13

Objective:

Classification: 1 f P ! R=convexpolyhedron f 13 f E

Computation

Figure 1: A screenshot of the LOLA frontend.
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3 Examples

The purpose of this section is not to provide a comprehensive overview of
location literature. But is is intended to indicate to the reader that location
problems of various kinds can be described unambiguously sing the proposed
5-position scheme. Of course the classification can not represent the com-
plete contents of a paper, but the 5-position scheme can reflect the major
particularities of the problem(s) investigated.

3.1 Continuous Location Problems

A. Aly, D. Kay and D. Litwhiler jr. Location dominance on spherical surfaces. Operations
Research, 27:972-981,1979

1/IR?/ o /p(P;, X) :shortest great circle distance/ 3

Y.P. Aneja and M. Parlar. Algorithms for Weber facility location in the presence of
forbidden regions and/or Barriers to travel. Transportation Science, 28(1):70-76,1994.

1/P/R,B[ly] 3

G. M. Appa and I. Giannikos. Is linear programming necessary for single facility location
with maximum of rectilinear distance? J. Oper. Res. Soc, 45(1):97-101,1994.

1/P/wm = l/ll/maxobnom

M. L. Brandeau. Characterisation of the stochastic median queue trajectory in a plane
with generalized distances. Operations Research, 40(2):331-341,1992.

1/P/queue/lp] 3,0

J. Brimberg and R. F. Love. Global convergence of a generalized iterative procedure for
the minisum location problem with [, distances. Journal of Oper. Res.,41:1153-1163,1993.

1/P[e[l,/3

E. Carrizosa and F. Plastria. Locating an Undesirable Facility by Generalized Cutting
Planes. submitted to Mathematics of Operations Research, 1995.

l/md/f/lg/Qoobnow :

R. Carbone and A. Mehrez. The single facility minimax distance problem under stochastic
location of demand. Management Science, 26:113-115,1980.

1/P/wp : RV/li/mazprop
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R. Chen and G. Y. Handler. The conditional p-center problem in the plane. Nav. Res.
Logist., 40(1):117-127,1993.

k/P/ e [ly/maz

V.F. Doekmeci. A quantitative model to plan regional health facility systems. Manage-
ment Science, 24:411-419,1977.

ﬁ;ﬂ;ﬁ;ﬁ/P/wm : RV/Z2/Zp'rob

Z. Drezner. Discon: A new method for the layout problem. Operations Research, 28:1375-
1384,1980.

kC/P/ e [l2] >

Z. Drezner and G. O. Wesolowsky. A trajectory method for the optimisation of the mul-
tifacility location problem with [, distances. Management Science, 24:1507-1514,1978a.

k/P[e[lp] 3.

Z. Drezner and D. Simchi-Levi. Asymptotic behaviour of the Weber location problem on
the plane. Ann. Oper. Res., 40:163-172,1992.

1/Plwpm =1/e /3

Z. Drezner and G. O. Wesolowsky. The Weber problem on the plane with some negative
weights. INFOR, 29(2):87-99,1991

1/Plwm 2 0/l 3,
1/P/wm 2 0/la/ 3,
1/P/wm 2 0/13/ 3,

R. Durier and C. Michelot. On the set of optimal points to the Weber Problem: Further
results. Transportation Science, 28(2):116-149,1994.

o/P/e /7]

H.A. Eiselt and G. Charlesworth. A note on p-center problems in the plane. Transportation
Science, 20(2):130-133,1986.

k/P/ e [ly/mazx

L. R. Foulds and H. W. Hamacher. Optimal bin location and sequencing in printed circuit
board assembly. European Journal of Operations Research, 66(3):279-290,1993.

N/P[R/lp] 2
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R.L. Francis, T.J. Lowe and M.B. Rayco. Row-column aggregation for rectilinear distance
p-median problems. Transportation Science, 30(2):160-174,1996.

k/P[e /L]

H.W. Hamacher and S. Nickel. Multicriteria planar location problems. Furop. J. of Oper.
Res., 94(1):66-86,1996.

1/P/ e [1,/]Q — (32, max)ics
l/P/./lP/Q_Zlez
l/P/./ll/Q_Elem
1/P/ e [l]/Q — mazie,
1/P/ e [5/Q— 3,
1/P/e [15/Q—3,,,
1/P/e[13/Q =3 yo
1/P[e[li[2=3%,,,
1/P[ e [l1/2 =% o
1/P/ e [l/Q — maxp,,
1/P/ e [l/Q — mazpo

P. Hansen, D. Peeters, D. Richard and J.-F. Thisse.The minisum and minimax location
problems revisited. Operations Research, 33:1251-1265,1985.

1/P/F union of convex polygons, w,, : 2 [l,/maz,
1/P/F union of convex polygons, w, : 7 /l,/ >

P. Hansen, J. Perreur and J.-F. Thisse. Location theory, dominance and convexity: Some
further results. Operations Research, 28:1241-1250,1980.

k/P[e/ly] 3
k[P e [(lp)m/ 22

D.W. Hearn and J. Vijay. Efficient algorithms for the (weighted) minimum circle problem.
Operations Research, 30(4):777-795,1982.

1/P/ e [ly/mazx

J. Karkazis and C. Papadimitriu. A branch-and-bound algorithm for the location of facil-
ities causing atmospheric pollution. European Journal of Operations Research, 58(3):363-
373,1992.

]./P/R/lz/ Zobnoz
1/P/R[l2/ maXopnos
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A. Kolen. Equivalence between the direct search algorithm and the cut approach to the
rectilinear distance location problem. Operations Research, 29(3):616-620,1981.

k/P[e /]

L.F. McGinnis and J.A. White. A single facility rectilinear location problem with multiple
criteria. Transportation Science, 12:217-231,1978.

1/P[ e [l1/2 = (3, max)par

I.D. Moon and L. Papayanopoulus. Minimax location of two facilities with minimum
separation: Interactive graphical solution. J. Oper. Res. Soc., 42(8):685-694,1991.

2/P/wp, = 1,dmin(x1,22) /12 /max

L. Ostresh jr. On the convergence of a class of iterative methods for solving the Weber
location problem. Operations Research, 26:597-609,1978a.

1/R"/ e [la/ 32

J. Picard and H.D. Ratliff. A cut approach for the rectilinear distance facility location
problem. Operations Research, 26(3):422-433,1978.

k/P[e [/

C. ReVelle, D.Marks and J.C. Liebman. An analysis of private and public sector location
models. Management Science, 16:692-707,1970.

1/P[e[ly/3
1/G/ e [d(V,G)] X2

K.E. Rosing. An optimal method for solving the (generalized) multi-Weber problem.
European Journal of Operations Research, 58(3):414-426,1992.

k/P[e][l2f 3.

C.S. Sung and C.M. Joo. Locating an obnoxious facility on an Euclidean network to
minimize neighbourhood damage. Networks, 24(1):1-9,1994.

1/P/F = Network/ly/ Y,

obnozx

J.F. Thisse, J. Ward and R. Wendell. Some properties of location problems with block
and round norms. Operations Research, 32:1309-1327,1984.

l/P/wm = 1/” - ||block/ma$,
1/P/wy, =1/1,,1 < p < oo/maz,
l/P/wm = 1/” : ”block/za
1/P/wm =1/l,,1 <p< oo/}
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D. Trietsch. Optimal multifacility defensive location on planes with rectilinear distances.
Networks, 23(6):517-523,1993.

k[ Pwm =1/11/ 3 comps
k/P/wm = l/ll/mawcomp

R. Vergin and J. Rogers. An algorithm and computational procedure for locating economic
facilities. Management Science, 13B:240-254,1967

1/P[e[L/},
1/P[e[la] 3,
k/P[e][l2f3,

G.0. Wesolowsky and R.F. Love. The optimal location of new facilities using rectangular
distances. Operations Research, 19:124-130,1971.

k/P[e [/

G.0. Wesolowsky and R.F. Love. A nonlinear approximation method for solving a gener-
alized rectangular distance Weber problem. Management Science, 18:656-663,1972.

k/P[e[li/3

3.2 Network Location Problems

O.Berman, R.C Larson and S. Chiu. Optimal server location on a network operating as
an M/G/1 queue. Operations Research, 33:746-771,1985.

1/g/qU€U€/d(V’ g)/ Zpreb

O. Berman, D. Simchi-Levi and A. Tamir. The minimax multistop location problem on a
tree. Networks, 18:39-49,1988

1/T /wm : RV, cap/d(V,G)/mazprop

O. Berman and D. Simchi-Levi. Minisum location of a travelling salesman. Networks,
16:239-254,1986.

l/g/wm : RV, cap/d(V, g)/ Zprob’
]./T/U)m : RV; Cap/d(va g)/ prr-ob

A. Billionnet and M.C. Costa. Solving the uncapacitated plant location problem on trees.
Discrete Applied Mathematics, 49(1-3):51-59,1994.

1T/ e[dV,V)/ 3
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M.L. Brandeau and S.S. Chiu. A unified family of queueing location models. Operations
Research, 38:1034-1044,1990.

1/G/queue/d(V,G)[ 3 prob

M.L. Chen, R.L. Francis, J.F. Lawrence, T.J. Lowe and S. Tufekci. Block vertex duality
and the one-median problem. Networks, 15:395-412,1985.

1/G/ e [d(V,V)/ 3

S.S. Chiu. A dominance theorem for the stochastic queue median problem. Operations
Research, 34:942-944,1986a.

1/g/queue/d(V, g)/ Eprob

S.S. Chiu, O. Berman and R.C. Larson. Locating a mobile server queueing facility on a
tree network. Management Science, 31:764-772,1985.

1/[T/queue/d(V,G)] 3 prop

R.L. Church and R.S. Garfinkel. Locating an obnoxious facility on a network. Transport-
ation Science, 12(2):107-118,1978.

]-/g/ b /d(v7g)/20bnow

J.R. Current, C.S. Revelle and J.L. Cohon. The median shortest path problem: A multiob-
jective approach to analize cost vs. accessibility in the design of transportation networks.
Transportation Science, 21(3):188-197,1987.

k/G]e [dV,G)/2— (D, shortest path)

P.M. Dearing, R.L. Francis and T.J. Lowe. Convex location problems on tree networks.
Operations Research, 24:628-642,1976.

k/T/e/[d(G,9)/,
k/T/e/dG,G) 3

S.Eilon and D.P. Deziel. Siting a distribution center. Management Science, 12B:245-
254,1966.

k/G/ e [dV, V)] X2

H.A. Eiselt and G. Laporte. The existence of equilibria in the 3-facility Hotelling model
in a tree. Transportation Science,27(1):39-43,1993.

3/T/ L4 /d(Va g)/ Ecomp
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E. Erkut and B.C. Tansel. On parametric medians of trees. Transportation Science,
26(2):149-156,1992.

T/ wm = f()/d(V,9)] 32

M. J. Fischer, N.D. Griffeth, L. Guibas and N.A. Lynch. Optimal placement of identical
resources in a tree. Inf. Comput., 96(1):1-54,1992

k/T|wm =1/d(V,V)/max

R.L. Francis, T.J. Lowe and H.D. Ratliff. Distance constraints for tee network multifacility
location problems. Operations Research, 26:570-596,1978.

k)T [dmas/d(V,G)/maz

H. Frank. Optimum locations on a graph with correlated normal demands. Operations
Research, 15:552-556,1967.

/G fwm : N(11,0%) /A, 0)] 5 v +
1/ Jwm : N (1,02)/d(V, G) fmaprop

R. Garfinkel, A. Neebe and M. Rao. The m-center problem: Minimax facility location.
Management Science, 23:1133-1142,1977.

k/G/wm = 1/d(G,G)/maz

A.J. Goldman. Minimax location of a facility in a network. Transportation Science, 6:407-
418,1972.

1/G/ e [d(V,G)/max

S.L. Hakimi. Optimum location of switching centers and the absolute centers and medians
of a graph. Operations Research, 12:450-459,1964.

1/G/ e [d(V,G)/ 3,
1/G/ e [d(V,G)/mazx

S.L. Hakimi. Optimum distribution of switching centers in a communication network and
some related graph theoretic problems. Operations Research,13:462-475,1965.

k/G[ e [d(V,G)] 3,
k/G[ e [d(V,G)/maz

S.L. Hakimi and S.N. Maheshwari. Optimum location of centers in networks. Operations
Research, 20:967-973,1967.
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