
i

. .,,

< ,

Interner Bericht

An Object-Oriented Architecture for User Interface
Management in Distributed Applications

Ralf Denzer

222/92

Fachbereich Informatik

.~I Universität Kaiserslautern · Postfach 3049 · D-6750 Kaiserslautern .

An Object-Oriented Architecture for User Interface
Management in Distributed Applications

Ralf Denzer

222/92

Universität Kaiserslautern
AG Computergraphik

Postfach 30 49
6750 Kaiserslautern

Mai 1992

H b
AG Graphische Datenverarbeitung und Computergeometrie

erausge er: .
Leiter: Professor Dr. H. Hagen

Abstract

An Object-Oriented Architecture
for User Interface Management

in Distributed Applications

RalfDenzer

University of Kaiserslautern
Postfach 3049

6750 Kaiserslautern, Germany

User inteif aces f or Zarge distributed applications have to handle specific problems:
the complexity of the application itself and the integration of online-data into the
user inteif ace. A main task of the user inteif ace architecture is to provide poweiful
tools to design and augment the end-user system easily, hence giving the designer
more time to focus on user requirements.

Our experiences developing a user inteif ace system f or a process control room
showed that a lot of time during the development process is wasted for the integra­
tion of online-data residing anywhere but not in the user inteif ace itself. Furtheron
extemal data may be kept by different kinds of programs, e.g. C-programs running
a numerical process model or PROLOG-programs running a diagnosis system,
both in parallel to the process and in parallel to the user inteif ace.

Facing these specific requirements, we developed a user inteiface architecture
f ollowing two main goals: 1. integration of extemal inf ormation into high-level
graphical objects and 2. the system should be open for any program running as a
separate process using its own problem-oriented language. The architecture is based
on two approaches: an asynchronous, distributed and language independent
communication model and an object model describing the problem domain and
the inteiface using object-oriented techniques. Other areas like rule-based p;-ogram­
ming are involved, too.

With this paper, we will present the XA VIA user inteif ace architecture, the (as f ar
as we know) first user inteif ace architecture, which is consequently based on a
distributed object model.

Keywords: User Interface Management Systems, Distributed Systems, Object
Orientation, Rule Based Programming

1. Introduction

Tue task of technical plant operation is to manage a complex dynamical system in an optimal
way. Most of the difficulties involved in this task are corning from the mass of data and from
the causal and temporal relationships within the plant, which are often not exactly known.
In critical situations operators have to decide in short time how to react on unforseen events.
Tue decision process is rather difficult because on one hand there is too much "low level"
information (up to some hundreds or thousan9s of alarms within a few rninutes), but on the
other band there is a lack of "high-level" information, namely what to do next. This situation
has been described by Sachs with the term cognitive overload. [3].

A lot of work has been done in the real time cornmunity to develop systems supporting
operators with diagnostic knowledge, to filter information at runtime or to predict critical
sittiations [3-9]. User interfaces have been improved using high resolution graphics and
knowledge based techniques [4,5]. Graphical and pictorial informations are good media to
use the human-computer information channel more efficiently, which is extremely impor­
tant if operators are under time pressure.

In 1989, Foley described some of the goals of future user interface development tools [10],
which should provide context-sensitive, knowledge based help. In case of process control
systems we think, that not only help but the whole dialogue should depend on the current
context. Another aim should be to assist the user interface designers doing their work. As
in our case the user interface designer has a lot to deal with the question how to embed
remote information into his system, we found it useful to concentrate a part of our work on
the integration problem in distributed environrnents.

There have also been approaches to concurrent and parallel systems and to cornmunication
methods in different areas ofuser interface techniques [11-14], some of them clairning to
follow the Seeheim Model [15] and some of them criticizing it. There is still a lot of work
to do on the way to highly parallel and direct manipulation user interfaces, such as multi
agent models [16,17].

We think that object oriented techniques [18-21] for user interface management systems in
combination with knowledge based approaches and distributed processing will play an
important role in the future. We have tried an integration of these three fields, mainly
focussing on the process control room.

2. Goals

2.1 Adaptive user interface design

To design the user interface we incorporate any kind of useful information: native (internal
or remote) data, high-level graphical representations, hypertext, images and knowledge.
Tue knowledge coming from plant designers and operators is specifically used to adapt the
graphical representation,and the dialogue to a given process context, in order to rninimize
the time for perception and interaction.

·'

2.2 Integration of remote information

The process control environment is a highly distributed environment. True decision support
means integrating many different methods like diagnosis, quality control, models, observers
and so on (fig. 1). Because of the methods being of very different kinds of nature, different
software systems are used.

user interface

observer processinterface diagnosis

process

Fig. 1: Distributed environment

Therefore, we concentrated one part of our work on the following question: how can we
integrate inf ormations generated by any process distributed over a network into the user
interface, doing this in an easy and very general way, thus keeping our system open? Thereby
we use the word "easy" in terms of "as easy as possible as a principle" and "easy to actually
do the integration of remote data".

A specific requirement from process control was, that the whole information processing has
tobe asynchronous (as we never know when events occur) and, if not realtime, at least
prioritized.

3. Architecture

3.1 Main concepts

Our architecture consists of several parts which are independent of each other, namely

• a language- and network- independent communication model,

• an extendable message protocol,

• an object interface providing links between remote objects artd

• an object system acting as the user interface.

Each of the parts is built on top of the previous one and uses its features. Nevertheless, a
given application does not have to use each of the parts. E.g. it is possible to run a C-program
as a measurement process on a remote node without using the fourth layer; the C-program
only has to stick to the communication model (which does not have a syntactical view on
the messages it transports) and to the message prot-ocoVobject interface (which do have
syntax).

Tue communication model uses standard communication mechanisms as they are defined
by the OSI reference model. Tue kernel of the communication model is a decentralized and
asynchronous message passing system, which provides link and message management. Each
process in the distributed environment can communicate with each other. On top of the
message passing system we have defined a C-interface which is used to interface to other
programming languages (fig. 2).

Tue message protocol and the object interface define the way applications share informa­
tions. Tue main concept used is the connection of objects viarequest- andstate-change-mes­
sages .. An object willing to use an information residing in a remote object has to send a

appl ication
layer

language
layer

message-
pass ing layer

com11unication
layer

General model

application 1
c 1

message passing '
...._DE~Cn_e_t__,~-OS~I~.&.-~~--·

OSI 7: Application layer

OSI 6: Presentation layer

and synchronization

OSI 5: Session layer

Fig. 2: Layers of the communication model

request to the remote object. As a response, the remote object sends back the actual state
and will send the new state in the future whenever the state changes. As you will see later
on, it is not the objects responsibility to do such. lt is rather the object system handling all
of the communication and update for all of the objects residing in the application.

The message protocol is extendable. We use tags to identify what kind of information is
transported (e.g. TAGl for requests, TAG2 for state changes). Introducing new tags, it is
possible to extend the functionality of the communication system. Currently, we are
thinking about transporting whole objects including their methods to remote applications,
which is possible in a symbolic environment. We could use new tags to implement this
without changing the message protocol or the object interface.

The object system on top of our architecture (which we use as the user interface) is
independent of the layers beyond. An application in the distributed environment could use
its own object description, hence making it possible to choose an implementation language
which is well suited to the specific problem the application has to solve.

Our main goal was to produce high-level interaction objects which could be used anywhere
in the user interface (also as multiple instances), transporting their whole functionality with
them. In case of critical situations in a technical plant, it is necessary to reduce the
interaction at a rninimum level, hence giving the operators the time to focus on their
problem and not on searching the interface for the point where they can do what they have
to do. From our point of view, this is the main disadvantage of the technology currently
used. As mentioned earlier, it was also a goal to make the dialogue adaptable to a given
process context.

Another goal was to support the designer of the user interface. There are two main areas
where we support the designer:

• integration of remote information into the user interface and

• creating and maintaining object databases used as user interface applications

We will introduce our object description in the sequel.

3.2 Object description

Fig. 3 shows the description of a single object as we store it in our database. An object is
described by

• name, priority and object dass,

• a set of attributes defining its properties and

• a set of methods defining its behaviour

We store object classes (generalizations of a set of objects) in object class hierarchies as it
is usually done in object oriented systems. lnheritance of attributes and methods and default

\
a1: (text)

remote application object
on node N', task T'

a2: (int) (external(n' ,t' ,o' ,a'))

a3: (pixmap)

a4: (frame-window)

a5: (int)

m1: (if (a2 > a5) then (graphical-action))

m3:

Fig. 3: Object model

(int)
(text)

mechanisms are also provided. A specific application consists of one or multiple object
hierarchies and dialogue hierarchies.

An object attribute (or a dass attribute) can be of technical nature or of graphical nature.
Technical attributes are numbers, strings, state attributes and text attributes. Graphical
attributes can be all kinds of graphical representations, as basic graphical primitives, but
mainly high-level interaction objects themselves, such as icons, pixmaps, menus etc. An
object may have a whole dialogue hierarchie (induding frame windows) as an attribute,
describing the way the user interacts with the object.

As methods to describe the behaviour of an object or object dass we use rules. Our
experiences showed, that rules are well suited to the prob lern of flexible and adaptable user
interfaces. Rules directly implement the state transitions in the technical process as well as
in the user interface.

Combining a number of technical attributes, graphical attributes and rules operating on the
attributes, it is possible to design high-level interactive objects which may be used in any
window on the screen. We can integrate help and information windows in the object dass
or object description to provide any useful information where it is needed, namely in the

interaction with the object itself. As long as the rules operate only on the object itself (which
is often the case), it is possible to store the whole interaction in the object class.

Furtheron, we may add attributes and rules to object instances. This is done to describe
specific relationships between objects, which may not be generalized in the object class. These
relationships describe the relationships between real world objects, e.g. "if tank BIO is
empty, you are not allowed to switch on pump Pul or pump Pu2". We use such relationships
to manipulate and adapt the dialogue at runtime.

Another key feature of the architecture is, that it is based on a distributed object model.
Attributes may be extemal attributes. An object 0 may have an attribute A, which resides in
an attribute A* of object O* in another application across the network, which is the origin
of the information. There is a direkt map from the local triple [O,A, value V] to the origin
of the information [node N*, task T*, object O*, attribute A *, value V*]. This is one of the
main advantages we see in our architectural approach: there is no programming going on
to embed a remote information. We just define the attribute as tobe external and the object
system automatically establishes the link to the remote object as soon as the local object is
loaded into the runtime system.

Another advantage of using this map is, that we must not define the origin of an information
in the object dass. An attribute state of pump Pul may reside in the local application
whereas the state of pump Pu2 resides in a remote application. They both may be taken as
instances from object class pumps, as the map is defined for the attribute state after creating
the object instance.

An object may have external attributes residing anywhere in the network. They may reside
in different applications on different nodes, e.g. a meastirement value [01, Al, Vl] corning
from [Nl *,Tl*, 01 *,Al*, Vl *] and a diagnosis information [01, A2, V2] corning from a
diagnosis system as [N2*, T2*, 02*, A2*, V2*]. Tue map may be defined for every single
remote information. Clearly we support the designer in creating the maps in the design
system.

4. Implementation

We have implemented the presented architecture under V AXJVMS using DECnet and C
for the communication model. We also implemented language layers for C, OPS5 and
PROLOG. As we wanted to combine object orientation with rules as methods, we finally
decided to use OPS5 as the base of an object system, which we then implemented ourselves.
We decided to use OPS5, because OPS5 is event driven from its nature, which applies .
directly to the user interface and the process model. On the other hand, the OPS5 pattern
matcher and the rule selection strategy are well suited for our purposes.

Our experiences using OPS5 were rather positive, because the code is very compact and
represents exactly the state transitions of the real world. lt is also rather easy to debug. For
example, the whole runtime kernel of the distributed communication system (including a
prioritizing rule scheduler), which we tried to implement "waterproof', consists of some
20 rules.

editors 1 IECvindovs interface

XGS XGS

design 11ethods <PS5 interf ace

transfor•ations ----.i application loader

xos xos
syntax checker scheduler

pictorial interface <PS5 interface

XDS xcs
database interface lmessage passing systeml

/ \
obJect obJect re11<>te re11<>te

database database syste. syste•

Fig. 4: Implementation

We have split the object system into two parts: a design system to create and maintain
applications and a runtime system to load and execute applications (fig.4). The applications
we create using the design system may be graphical and non-graphical applicatioris. E.g. we
use the same design environment to design symbolical process simulations running in
parallel to the user interface.

The runtime system includes a graphics system based on Xtoolkit/Motif to display and
control the dialogue.

5. Applications

We have built two very complex user interfaces in a distibuted environment using our
current implementation.

The .first user interface was one for the garbage burning part of the garbage burning plant
TAMARA. We have reported about this in (1,2,22]. The experiences using rules to create
the adaptive behaviour of the user interface were very positive.

Tue second implementation was for the air quality measurement network of the Austrian
federal state of Kärnten [23]. Tue network has been built by the Austrian research centre
Seibersdorf and the work has been done in the context of our cooperations in the field of
environmental computer science [26,27]. Most of the current work is concentrated on this
field, as presented in recent publications [24,25].

6. Conclusions

Tue main advantages of object orientation is, that the design environment grows in functio­
nality with every new object dass. Using OPSS-rules as methods benefits in a very compact
code, because within OPSS you can use set operations in the condition elements. Thus it is
possible to apply one single rule to a large number of objects or even to a whole application.
As an example, it is possible to manage the whole alarm display of all objects implementing
four rules. Beyond that, the code represents the transitions occuring in the model, which
means, that we have a direct map of the way we would describe the reality onto its software
representation.

Tue benefit of the communication model is that it is very easy in principle and that it can
integrate programs written in other programming languages. One of the difficulties imple­
menting the model was its asynchronous nature. Because of that, we must provide synchro­
nisation mechanisms for each programming language or tool we want to embed, which is
not always easy.

References

[1] Dittrich G., Kerpe R., T AMARA- Versuchsanlage zur schadstoffarmen Müllverbrennung, GVC-Kongress,
Baden-Baden, December 1989

[2] Denzer R., User Interface Management in Distributed Systems, in: Denzer R., Hagen H., Kutsche K.H.,
Visualisierung von Umweltdaten, GI-workshop, Rostock, November 1990, Informatik-Fachbericht 274, pg.
83-97, Springer

[3] Sachs P., ESCORT - an Expert System for Complex Operations in Real Time, Alvey workshop on Deep
Knowledge, IEE, London, 1985

[4] Alty J.L., Mullin J., Dialogue Specification in the GRADIENT Dialogue System,in: Sutcliffe A„ Macaulay
L., People and Computers V, Proc. of the 5. Conf. of the BCS HCI Specialist Group, Nottingham, Cambridge
University Press, 1989

[5] Elzer P. et. al., Expertensysteme und hochauflösende Graphik zur Unterstützung des Bedienpersonals in
der Prozeßleittechnik, Prozeßrechensysteme 1988, Stuttgart, Informatik-Fachbericht 167, Springer, 1988

[6) Tzafestas G., Ed., Knowledge-Based System Diagnosis, Supervision and Control, Plenum Press, New York,
1989

[7] Khanna R., Moore, R.L., Expert Systems Involving Dynamic Data for Decisions, Int. Expert Systems
Conference, Oxford, 1986

[8] IEE Colloquium on Expert Systems in Process Control, London, 1988

[9] IEE Colloquium on The USe of Expert Systems in Control Engineering", London, IEE Digest No. 1987/27,
1987

(10] Foley J.D„ Next Generation User Interface Development Tools, in: Hansmann, Hopgood, Strasser Eds„
Eurographics '89, September 1989, Hamburg, North-Holland

(11] Roudaud B. et. al„ SCENARIOO: A new generation UIMS, in: Diaper, Gilmore, Cockton, Shackel Eds„
INTERACT '90, Cambridge, August 1990, North-Holland

(12] Hili R.D., Herrmann M„ The Structure ofTube -A Tool for ImplementingAdvanced User Interfaces, in:
Hansmann, Hopgood, Strasser Eds., Eurographics '89, September 1989, Hamburg, North-Holland

(13] Hübner W. et. al„ Designing a System to Provide Graphical User Interfaces: The THESEUS Approach,
in: Eurographics '87, North-Holland

(14] ten Hagen P.J.W, Schouten H.J„ Parallel graphical output from Dialogue Cells, in: Eurographics '87,
North-Holland

(15] Pfaff G.E. Ed„ User Interface Management Systems, Springer Verlag, 1985

(16] Coutaz J „ UIMS: Promises, Failures and Trends, in: Sutcliffe A„ Macaulay L., People and Computers V,
Proc. of the 5. Conf. of the BCS HCI Specialist Group, Nottingham, Cambridge University Press, 1989

(17] Edmonds E„ An Experiment In Interactive Architectures, in: Diaper, Gilmore, Cockton, Shackel Eds„
INTERACT '90, Cambridge, August 1990, North-Holland

(18] Koivunen, M.-R„ WSE: An Environment for Exploring Window Strategies, in: Hansmann, Hopgood,
Strasser Eds„ Eurographics '89, September 1989, Hamburg, North-Holland

(19] Breen D.E.; Kühn V„ Message-Based Object Oriented Interaction Modeling, in: Hansmann, Hopgood,
Strasser Eds„ Eurographics '89, September 1989, Hamburg, North-Holland

(20] Hübner W„ Games M.R„ Two Object-Oriented Models to Design Graphical User Interfaces, in:
Hansmann, Hopgood, Strasser Eds„ Eurographics '89, September 1989, Hamburg, North-Holland

(21] Burgstaller J. et. al., On The Software Structure Of User Interface Management Systems, in: Hansmann,
Hopgood, Strasser Eds„ Eurographics '89, September 1989, Hamburg, North-Holland

(22] Denzer R., Hagen H., Kira G„ Koob F„ Using Process Knowledge for Adaptive User Interfaces, in: Rzevski
G„ Adey R. A. (eds.), Applications of Artificial Intelligence in Engineering VI (AIENG VI), Oxford, 1991,
Proceedings, pg. 583-596, Computational Mechanics Publication, Elsevier Applied Science, 1991

(23]Uenzer R., Schimak G „ Visualization of an Air Quality Measurement Network, 6. Symposium on Computer
Science for Environmental Protection, Munich, December 1991, in press, Springer-Verlag, 1991

(24] Denzer R„ Object-Oriented Modeling of Iconic Dialogues for Environmental Software Systems, 2.
Workshop on Visualization of Environmental Data, Dagstuhl, Germany, November 1991, in press, Springer­
Verlag, 1991

(25] Denzer R„ Kira G„ Koob F„ Interactive Visualization ofMultiple Environmental Measurement Networks,
2. Workshop on Visualization ofEnvironmental Data, Dagstuhl, Germany, November 1991, in press, Springer­
Verlag, 1991

•
(26] Denzer R., Visualization Problems in Environmental Protection, Dagstuhl-Seminary on Scientific Visua-
lization, August 1991, in press

(27] Denzer R„ Güttler R„ Grützner R„ Visualization of Environmental Data - Topics and results of the 1991
Dagstuhl Workshop, 6. Symposium on Computer Science for Environmental Protection, Munich, December
1991, in press, Springer-Verlag, 1991

-.

