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Abstract 

A notion of discrepancy is introduced, which represents the integration 
error on spaces of r-smooth periodic functions. lt generalizes the diaphony 
and constitutes a periodic counterpart to the classical L2-discrepancy as weil 
as r-smooth versions of it introduced recently by Paskov [Pas93]. Based on 
previous work [FH96], we develop an efficient algorithm for computing peri
odic discrepancies for quadrature formulas possessing certain tensor product 
structures, in particular, for Smolyak quadrature rules (also called sparse grid 
methods). Furthermore, fast algorithms of computing periodic discrepancies 
for lattice rules can easily be derived from well-known properties of lattices. 
On this basis we carry out numerical comparisons of discrepancies between 
Smolyak and lattice rules. 

1 Introd uction 

Discrepancies are a quantitative measure of the precision of multivariate quadra
tures. Their computation, however, often is a very complex task. Therefore algo
rithms are of interest which reduce the cost of computing discrepancies either for 
general quadrature formulas or for special classes. The general case was treated 
in [War72], [Hei95], while in [FH96] the authors developed a technique of using 
tensor product structures of quadratures in order to speed up the computation of 
discrepancy. For the dass of Smolyak quadratures, which was so far practically 
inaccessible to discrepancy computations, this supplied highly efficient algorithms. 
In [FH96] discrepancies and their behaviour under tensor products were studied in 

1 



a general setting involving arbitrary kernels on the unit cube. The resulting dis
crepancies turned out to be the worst case integration error over the unit ball of 
the corresponding reproducing kernel Hilbert spaces of functions. This general ap
proach incorporates the dassical Lrdiscrepancy and its r-smooth generalizations 
given by Paskov [Pas93]. lt enabled us to compute these discrepancies for Smolyak 
quadratures and to compare them with known low discrepancy sequences as well as 
with standard Monte Carlo. For non-zero smoothness, the Smolyak rules performed 
very well . We refer to [FH96] for details. 

The whole analysis of [FH96] was concerned with the non-periodic case (i . e. the 
corresponding reproducing kernel Hilbert spaces consist of non-periodic functions). 
On the other hand, an important dass of multivariate quadratures - the dass of 
lattice rules - was designed particularly for smooth periodic functions. Hence it 
would be desirable to have an analogue of the r-smooth discrepancy for the periodic 
case in order to compare lattice rules to other quadratures as e. g. Smolyak rules. 
The present paper is devoted to this task. 

By using an appropriate kerne} based on Bernoulli polynomials, we introduce the 
r-smooth periodic discrepancy Dr(Q) of a quadrature Q. lt possesses natural in
terpretations - it is the worst case error of Q over the space of functions with 
square summable dominating mixed derivative of order r and the average error 
over a certain related Wiener measure. For smoothness r = 1, we recover the di
aphony introduced in [Zin76], [ZS78]. Our approach provides an efficient algorithm 
for computing Dr(Q) for Smolyak quadratures Q. On the other hand, the well
known behaviour of lattic!:_ rules on Bernoulli polynomials provides also an efficient 
algorithm for computing Dr for this type of quadrature. 

As a consequence of this analysis, we are in a position to compare Smolyak and lattice 
rules numerically. We compare both of them with Monte Carlo integration (more 
precisely, with the easily explicitly computed expectation of Dr of truly random 
points). Although Smolyak rules represent a very general approach which leads 
to optimal (up to logarithmic factors) rates on many dasses of functions induding 
those considered here - our experimental findings revealed a considerably better 
performance of lattice rules. Smolyak rules, in turn, are much better than Monte 
Carlo in the present situation. 

Summarizing, we think that the periodic discrepancies are a further tool to work 
out the advantages or disadvantages of various dasses of multivariate quadrature 
formulas. 

The paper is organized as follows. In Section 2, we recall the Smolyak construction, 
Section 3 briefiy explains the general approach to discrepancy developed in [FH96]. 
The periodic discrepancy is introduced in Section 4, while fast algorithms are given 
in Section 5. The final Section 6 contains the results of numerical experiments. 
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2 Smolyak quadratures 

In 1963, Smolyak [Smo63] introduced a special tensor product technique which de
scribes the construction of higher dimensional quadrature formulas and approxi
mation operators on the basis of a sequence of the corresponding one-dimensional 
objects. If the one-dimensional methods involved possess some optimality features, 
this technique allows to achieve almost optimal error rates in higher dimensions, 
too. For an extensive list of references on theoretical investigations as well as on 
numerical experiments see [WW95] and [NR96]. 

Let G = [O, l]d. In the following we consider tensor products of quadrature formulas. 
Let d = d1 + d2 , d1, d2 ~ 1, and G = G1 x G2 , with G1 = [O, l]d1

, G2 = [O, l]d2 • Let 
further Q', Q" be quadrature formulas on G1 , G2 , respectively, 

and Q = Q' © Q" = ((xi,vi) : j = (j1,h), jl = l, ... ,M1, j2 
standard tensor product 

We want to approximate the d-dimensional integral 

I f = fa!(x)dx, 

1, ... , M2) their 

where f is a continuous function on G. Given a sequence ( Qn);:"=0 of one-dimensional 
quadrature rules on [O , 1] for continuous functions f E C([O, 1]) , 

Pn 

Qnf = l:;wj · f(xj), 
j=l 

with wj E R, xj E [O, 1], we construct the standard tensor product quadrature for 
the approximate computation of I f as 

n 

u~d) J = ( Qn © u~d-l)) J = L:(Qi - Qj-1) © u~d-l) f, 
j=O 

where U~1l = Qn , Q_ 1 = 0. Smolyak's approach modifies this definition, setting 
Q~1 ) = Qn and defining recursively (see [Smo63]) 

n 

Q(d)f - "'""'(Q . - Q . ) Q(d- 1)! 
n - ~ J J-1 © n-j ' (1) 

j=O 

3 



where again Q_1 = 0. The point set r~d) exploited by the quadrature Q~d) is a 
so-called sparse grid. As was derived in [FH96], its cardinality can be calculated 
recursively by the formula 

n 

lr<d> 1 = """' 1r<.1> \ r<.1> 1 . 1r<d-_1> 1 
n ~ J J-1 n-J ' 

(2) 
j=O 

where r~ 1 = 0, provided that the one-dimensional grids rj1) are nested, that means 

r~1 > c rp> c . .. c r~1 >. This condition will be satisfied in all concrete realizations 
of Smolyak rules we consider in this paper. Note that in contrast to the total 
number of points in a regular tensor product grid N = O(M~), under some natural 
assumptions on the sequence (Mn), the number of points in the sparse grid r~d) is 
reduced to lf~d) 1 = O(Mn(Iog Mn)d-I ). 

3 A general approach to discrepancy 

Here we recall the definition of discrepancies related to arbitrary reproducing kernel 
Hilbert spaces as given in [FH96]. In fact, we choose a formally slightly more gen
eral presentation which, however, is equivalent to that.in [FH96]. This equivalence 
follows from Mercer's Theorem, see the argument in [FH96, Section 3]. 

Let G = [O, l]d, let H be an arbitrary real Hilbert space, and let C(G, H) denote the 
space of continuous functions from G into H (where H is endowed with the norm 
topology). Fixa function B(x) (x E G) with B E C(G, H). For this B we define a 
discrepancy DB as follows. Let Q = ((x1, v1 ) , ... , (xM, VM )) be a quadrature formula 
on G, i. e. Xj E G, Vj E IR (j = 1, . .. , M). Put 

IB = lB(x)dx 

(the Bochner integral) and 

M 

QB = L vjB(x j). 
j=l 

Then the discrepancy DB(Q) is defined as 

Hence we get 

(IB- QB, IB- QB) 

GB - 2FB(Q) + SB(Q , Q) ' 
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where ( ·, ·) is the scalar product in H and we used the notation 

(JB,IB) 

(JB ,QB) 

(QB,RB). 

(5) 
(6) 
(7) 

Here R can be any quadrature on G, R = ((y1, w1), ..• , (yN, WN )) . lt follows readily 
from (3) that Ds(Q) is the worst-case integration error of the quadrature Q over 
the function dass 

Ws = {g E C(G): :3h EH, llhllH ~ 1: 

\;/x EG: g(x) = (B(x), h)} . (8) 

Here C(G) denotes the space of continuous real functions on G. Setting K(x, y) = 
(B(x), B(y)), x, y E G, we get a continuous, symmetric, non-negative definite func
tion on G2 ' and the dass w B is the unit ball of the reproducing kernel Hilbert space 
generated by K. Finally, if µ is the mean-zero Gaussian measure on C(G) with 
covariance kernel K, Ds(Q) is the average case quadrature error of Q with respect 
to µ (see [SY70]). 

From now on we set H = L2 (G), the space of square-integrable functions with 
respect to the Lebesgue measure. Hence we consider functions B(x, t) on G2 which 
are such that B(x, ·) E L2 (G) and B(x) = B(x, ·) is continuous from G to L2 (G). 
In [FH96), the special case B(x, t) = (rha (t - x): was studied, where r is a non
negative integer and a+ = a if a > 0 and a+ = 0 otherwise. For r = 0 this 
gives the dassical L2-discrepancy, while for r > 0 one gets the r-smooth versions 
introduced by Paskov [Pas93]. The resulting dasses WB are unit balls of Sobolev 
spaces of functions with Lrbounded dominating mixed derivative, which satisfy 
certain (non-periodic) boundary conditions (see [FH96], [Pas93]). In this paper we 
shall consider the periodic case, which will be introduced in the next section. 

4 Discrepancies related to Sobolev spaces of pe
riodic functions 

Let r > 0 be a natural number. Define for x E R 

l· J (27ry Pr(x) = 1 - (-1) 2 -
1 

br(x) 
r. 
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where br(x) denotes the r-th Bernoulli polynomial, and laJ is the largest integer not 
exceeding a. lt is well-known (see e. g. [GR65, 9.622, 9.623.3]) that for x E IR, 

00 

Pr ( {X}) = 1 + 2 L n -r cos 211"nX 
n=l 

if r is even, and 

00 

Pr ( { x}) = 1 + 2 L n -r sin 27rnx 
n=l 

if r is odd. Here { a} = a - l a J is the fractional part of a number a E R For r 2: 2 
the series converge absolutely and uniformly, for r = 1 it converges in L2 ([0, l]) . 
Now define for x = (6, ... , ~d) E Rd 

d 

Pr(x) = IIPr(6) 
l=l 

and for x, t E G, x = ( 6, ... , ~d), t = ( T1 , ... , T d), 

where { x - t} = ( { ~1 - ri}, ... , { ~d - rd} ). Although we deal with real functions 
only, it is convenient for us to use the following representation 

Pr ( {X}) = L a r ( n) n -r e21Tinx ' 

nEZ 

where n = lnl if n # 0, fi = 1 if n = 0, and 

( ) 
_ { -sign(n)i if n # 0 and r is odd, 

ar n - 1 otherwise. 

For n = (n1, . . . , nd) we set 

d d 

fi = II fi1, ar(n) = II ar(n1). 
l=l l=l 

Hence we get for x, t E G 

B~d)(x , t) = L ar(n) fi-r e21Ti(n,x-t). 

nEZd 
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lt is easily derived from these representations and from (8) that W
8

cd> is the unit 
ball of the Sobolev space of real functions r 

1-fT( G) {g E L2(G): 11911; = L n2rl.9(n)l2 < oo} 
nEZd 

where 

g(n) = L g(t)e-21fintdt 

is the n-th Fourier coefficient (see e. g. [Fra95], where this space is considered). 
1lr ( G) consists of all periodic functions g E L2 ( G) whose generalized derivatives 

!la1 +.„+adg(C C ) u . <.,,l, ••• ,.,,d 

belang to L2 (G) whenever 0 ~ a 1 ~ r (l = 1, ... , d). Let us now consider the 
discrepancy defined by (3) and (4) on the basis of the function B~d)(x, t). Let 
Q =((xi, vi))~1 , R = ((yi, wj))f=I and denote 

DB~d) (Q); 

S8~d) (Q,R), Fr(Q) = F8~d)(Q), Cr= C8~d). 

In these notations, for the sake of simplicity we drop the dimension parameter, which 
is indicated by the arguments Q, R. By the discussion above, Dr(Q) is the warst 
case error of a quadrature Q over the unit ball of the space 1lr ( G) . We consider 
the representation (4) and compute each of the terms. Using (9) and (10) we easily 
obtain 

M 

Lvi, (11) 
j=l 

and 

M N 
Sr(Q, R) - L L VjWk L m-2r e21fi(m,x;-Yk) 

j=l k=l mEZd 

M N 

L L VjWk P2r( {xi - yk}) (12) 
j=lk=l 

lt follows that Dr(Q) can be computed in O(M2 ) operations. Below we analyze 
situations, in which this can be done in a faster way. Note that for r = 1 and 
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uniform weights Vj = 1/M (j = 1, ... , M), D1(Q) is the diaphony of the point set 
(xi,j = 1, ... , M) introduced and studied in [Zin76] and [ZS78]. To see this, observe 
that (4), (11) and (12) give for the case of weights satisfying 2:j'!, 1 Vj = 1, · 

lt remains to compare p2r({x}) with the function g(x) of (ZS78]. 

5 Fast computation of Dr(Q) 

The recursive approach of [Hei95] could be applied to develop an algorithm for the 
computation of Dr(Q) . Formally, this would lead to an O(M(log M)d) algorithm as 
in [Hei95, Section 4], but with a heavy dependence of the constants on r and d. So 
only small r and d can be handled. In this section we concentrate on special types 
of quadratures - good lattice points and Smolyak rules. 

Let L be ad-dimensional integration lattice (see [Nie92, Section 5.3]) and let QL be 
the associated quadrature rule on G with node set LnG' , G' = [O, l)d, and uniform 
weights. The computation of Dr(QL) is easily accomplished following the lines of 
the analysis for the Korobov classes &~ (see [Kor63], [Nie92, Th. 5.23]). According 
to Lemma 5.21 of [Nie92] we have 

Q 
27ri(n„ ) _ { 1 if n E L1-

Le - 0 if n </. L1- , 

where LJ_ = { n E zd : ( n, X) E z for all X E L} is the dual lattice. Using this, the 
definition (3) and relation (10), we get 

Dr(QL) = llJB~d) - QLB~d) llL2 (G) 

II L O"r(n) n,- r ( (I - QL) e27ri(n,·) ) e-27ri(n ,t) llL2(G) 

n E Zd 

( L 'n,- 2r)1/2 = l(J - QL)B~~) (· , 0)11/2 
n EL.i 

(13) 

As usual, 2:' means that the summand for n = (0, „., 0) is left out . Hence in order 
to compute Dr(QL) we have to determine the integration error of QL on the single 
function 

d 
(d) ( ) B2r x, 0 ITP2r(6)' X= (6, ... ,~d) EG'· 

l=l 
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This is just the number theorists criterion considered in various papers dedicated to 
the search of optimal parameters for good lattice points, e. g. [Hab83], [SW90]. The 
evaluation of the integration error on P2r(x) is an O(M) procedure. Note that (13) 
and Theorem 5.23 of [Nie92] imply that for lattice rules QL 

sup l(J - QL)gl1/2 
gEB[d 

2r 

where B x denotes the unit ball of the space X, and the Korobov space E~ consists 
of all functions g E L2 (G) with 

Next we consider Smolyak quadratures. In [FH96], we developed a recursive algo
rithm which allows to reduce the computation of Dn to the one-dimensional case 
provided B(x, t) has product structure. This result applies to the present situation. 
The algorithm is the following. 

As introduced in Section 2, the Smolyak quadrature rule on [O, l]d, d ~ 2, satisfies 
the recursion 

n 
Q~d) = L R; © Q~d~l) , 

i==O 

where ~ = Qi - Qi- Ii Q-1 - 0 and Q~l) = Qn. We fix a maximal level nmax and 
apply a recursion over d to calculate all quantities Fr(Q~d)) and Sr(Q~), Q~)) for 
m, n = 0, 1, . .. ' nmax· 

The recursion starts from the univariate case by computing the terms Fr( Qn), 
Sr(Qm, Qn)· From these terms we get using the behavior of Fr and Sr under sums 
and tensor products as established in [FH96] 

Fr(Qn) - Fr(Qn-1) 

Sr( Qm, Qn) - Sr(Qm-1, Qn) 

-Sr(Qm , Qn-1) + Sr(Qm-1, Qn-1) 
n 

L Fr(R;). Fr(Q~d~l)) 
i==O 
m n """""" s (D· R·). s (Q{d-1) Q{d-.1)) L.J L.J r ..<t,.j, J r m-i ' n-3 

i==O j==O 

Finally, the discrepancy Dr(Q~)) is given by (4), where by (11) Cr= 1 independently 
of the dimension. 
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To handle the one-dimensional quantities, let Q = ((xj, vj))~ 1 and R = ((yk, wk))f=1 

be quadratures on [O, l]. lt is sufficient to transform Sr ( Q, R) into an efficiently 
computable form, since Fr(Q) can be calculated in O(M) operations simply by (11) . 
We assume that the node sets are ordered in such a way that x1 ::; x2 ::; ... ::; x M 

and y1 ::; y2 ::; ... :::; YN · Let us mention that the node sets of many quadrature 
rules are ordered by their definition. Then we determine for each j = 1, ... , M an 
index v(j) such that Xj ~ Yk for each k :::; v(j) and Xj < Yk for k > v(j) . Using this 
we can rewrite the direct formula (12) as follows 

M N 

Sr(Q,R) = LLVjWkP2r({xj-yk}) 
j=lk=l 

where 

t.p(r) f: Vj [I: wkb2r(Xj - Yk) + f, wkb2r(l + Xj - Yk)l 
j=l k=l k=v0)+1 

f a1,2r t (l) f: VjX~-q * 
l=O q=O q j=I 

* [% w,(-y,)' + •=~+i w,(1 -y,)'] (14) 

Here a 1,2r E IR are the coefficients of the Bernoulli polynomial b2r 

Both sums in (14) can be calculated in O(M + N), if the inner sums are added up 
successively. We fix r ~ 0. Assume that there are reals p > 1, c1 , c2 > 0 such that 
the number of nodes Pn in the one-dimensional quadratures Qn satisfies 

This is a natural assumption for Smolyak quadratures. Fix nmax and denote P = 

Pnmaz· Obviously, nmax = O(logP). As was pointed out in [FH96], the complexity 
of the whole recursion process is then O(P log P + d(log P) 4 ) . 
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6 Numerical results 

We will compare the L2-discrepancies Dr of two different Smolyak quadrature rules 
with rank-1 lattices, rank-2 lattices and Monte Carlo integration. 

The Smolyak rules are fully determined by the recursion (1) and the sequence (Qn) 
(n = 0, ... , nmax) of one-dimensional quadratures. We will test two sequences used 
already in [FH96]. In both quadratures Q0 is chosen as the midpoint rule 

Qo f = f(0.5), 

because otherwise the number of grid points would increase exponentially in d. As 
sequence (Qn) (n ~ 1) of one-dimensional rules the Smolyak rule TR uses the 
sequence of composite trapezoidal rules on 2n subintervals, whereas CC takes the 
sequence of Clenshaw-Curtis rules using 2n subintervals (see [Bra77]). Note that by 
(2) the exact number of sample points employed by Q~d) coincides in both cases. 

To compare Monte Carlo integration, we do not use any concrete random number 
generator, but compute the square mean of the discrepancy Dr 

Finally, we include lattice rules into our comparisons. This family of quadrature 
formulas was developed by Korobov [Kor63] and Hlawka [Hla62], and is designed 
especially for the integration of periodic functions of several variables. We will 
consider lattice rules of rank 1 with parameters as indicated in [Hab83], and lattice 
rules of rank 2 with parameters from [SW90]. 

All computations were carried out on a workstation of the series HP-9000 in the 
language c++. Due to cancellation in ( 4) it was necessary to use quadruple precision. 

Unfortunately, the parameters for the good- lattice points were given only for certain 
numbers of points in [Hab83] and [SW90]. Neither can the number of sample points 
in the Smolyak quadratures be chosen voluntarily but depends on the dimension and 
the maximal level nmax. We tried to select such parameter combinations that the 
quadrature rules compared in one table work with as similar numbers of function 
values as possible. To be just against the Monte Carlo quadrature we computed 
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1 r l CC TR Rank 1 Rank 2 MC 
1 1 13953 13953 12288 10404 13953 

1 3.39e-01 2.08e-01 l.14e-02 9.64e-03 7.47e-02 
2 4.9le-03 l.09e-03 2.70e-05 l.03e-05 4.69e-02 
3 l.44e-04 8.18e-06 8.86e-08 l.48e-08 4.40e-02 
4 5.98e-06 6.34e-08 3.06e-10 2.28e-11 4.34e-02 

l r 1 CC TR Rank 1 Rank 2 MC 

1 1 18945 18945 16384 10332 18945 

1 2.51 1.88 3.97e-02 4.63e-02 l.34e-01 
2 l.63e-01 3.2le-02 2.08e-04 2.08e-04 7.24e-02 
3 3.48e-02 9.31e-04 l.59e-06 l.33e-06 6.65e-02 
4 l.34e-02 2.87e-05 l.33e-08 9.40e-09 6.53e-02 

Table 1: Discrepancies with M:::::::: 104 points in d = 3 (top) and d = 4 (bottom) 

the square mean of its discrepancy always with the highest number of points in the 
respective table. However, its performance turned out to be poor in comparison 
with the other methods. 

Tables 1-3 report some numerical experiments for M:::::::: 104 (Table 1) and M:::::::: 105 

(Tables 2, 3) . The results almost speak for themselves. In contrast to [FH96), the 
Smolyak quadratures do not perform very well , particularly with moderate numbers 
of grid points in higher dimensions. Among them only the Smolyak quadrature 
based on the trapezoidal rule can achieve satisfactory results. This is due to the 
fact, that the trapezoidal rule is optimal on the class of smooth periodic functions 
on [O, 1] (see [TWW88]). 

Since good- lattice points were developed especially for periodic functions of several 
variables, it was to be expected that their discrepancy would be smaller than the 
discrepancy of the tensor product methods. However, we were surprised by the 
extend of superiority of the number- theoretic methods. As is only natural, the 

1r1 CC TR Rank 1 Rank 2 MC 
1 1 127105 127105 131072 100044 131072 

1 37.42 43.05 l.18e-01 l.03e-01 2.18e-01 
2 3.38 1.47 l.67e-03 8.04e-04 8.75e-02 
3 1.37 1.33e-01 4.0le-05 1.15e-05 7.71e-02 
4 8.89e-01 l.51e-02 l.05e-06 l.85e-07 7.5le-02 

Table 2: Discrepancies with M :::::::: 105 points in d = 6 
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1r1 CC TR Rank 1 Rank 2 MC 

1 1 163841 163841 131072 100044 131072 
1 6.16e-02 3.5le-02 1.53e-03 1.54e-03 2.18e-02 
2 l.12e-04 2.3le-05 6.08e-07 3.25e-07 1.37e-02 
3 3.84e-07 2.16e-08 3.29e-10 9.24e-11 l.28e-02 
4 l.78e-09 2.09e-11 1.84e-13 2.83e-14 l.26e-02 

1r1 CC TR Rank 1 Rank 2 MC 

1 1 113409 113409 131072 100044 131072 

1 1.01 6.46e-01 8.04e-03 7.86e-03 5.08e-02 
2 1.82e-02 2.89e-03 1.15e-05 6.14e-06 2.75e-02 
3 9.31e-04 2.12e-05 2.44e-08 6.90e-09 2.53e-02 
4 8.54e-05 1.64e-07 5.48e-11 8.54e-12 2.48e-02 

Table 3: Discrepancies with M::::::: 105 points in d = 3 (top) and d = 4 (bottom) 

more general rank-2 methods showed even a slightly better performance than the 
rank-1 rules. 
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