Ramsey Numbers of K_m versus (n, k)-graphs and the Local Density of Graphs not Containing a K_m

Kathrin Klamroth Universität Kaiserslautern Ingrid Mengersen
Technische Universität Braunschweig

Abstract

In this paper generalized Ramsey numbers of complete graphs K_m versus the set $\langle n, k \rangle$ of (n, k)-graphs are investigated. The value of $r(K_m, \langle n, k \rangle)$ is given in general for (relative to n) values of k small compared to n using a correlation with Turán numbers.

These generalized Ramsey numbers can be used to determine the local densities of graphs not containing a subgraph K_m .

1 Introduction

Let m, l, n and k be positive integers with $0 \le l \le \binom{m}{2}$ and $0 \le k \le \binom{n}{2}$ and let $\langle n, k \rangle$ denote the set of all (n, k)-graphs, i.e. the set of all graphs with n vertices and k edges. The Ramsey number $r(\langle m, l \rangle, \langle n, k \rangle)$ is defined as the smallest integer p such that in every red-green coloring of the edges of the complete graph K_p a green (m, l)-graph or a red (n, k)-graph occurs, i.e. a green graph with m vertices and l edges or a red graph with n vertices and k edges. Note that $r(\langle m, l \rangle, \langle n, k \rangle)$ is the classical Ramsey number $r(K_m, K_n)$ if $l = \binom{m}{2}$ and $k = \binom{n}{2}$.

Generalized Ramsey numbers $r(\langle m, l \rangle, \langle n, k \rangle)$ have been thoroughly investigated by many authors, an important reason being they lead to some insight in the behaviour of classical Ramsey numbers.

Particularly for small values of m and n several results have been obtained: In [1] the Ramsey numbers $r(\langle 4, l \rangle, \langle 5, k \rangle)$ have been given for all possible values (l, k) except for $(l, k) \in \{(6, 9), (6, 10)\}$. The two missing numbers can be found in [8] and [22]. The value of $r(\langle 5, l \rangle, \langle 5, k \rangle)$ has been determined in [15] for the special case that $l = k \leq 8$, in [5] for l = k = 9 and in [14] for all other possible values of (l, k) with $l \leq 6$ or l = 7 and $k \leq 9$. As a more general result, $r(\langle n, s \rangle, \langle n, \binom{n}{2} - s + k \rangle)$ has been given for $k \leq 3$ and $2 \leq s \leq \frac{1}{2} \binom{n}{2} + k$ in [16] and the values of $r(K_n, \langle n, k \rangle)$ have been given in [9] for $1 \leq k \leq n$.

The special case m = 3, i.e. the Ramsey numbers $r(K_3, \langle n, k \rangle)$, has drawn much attention. For $n \leq 8$ all values are known [3, 4, 10, 11, 12, 13, 17, 19, 21]. Moreover a more general result has been given in [19] which allows the determination of $r(K_3, \langle n, k \rangle)$ for arbitrary values of n and small values of k (compared to n).

A similar problem has been introduced in [7], where the *local density* of graphs not containing specific subgraphs is investigated:

Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$ and let $\beta(\alpha, p) \in \mathbb{R}$ be the smallest positive number with property (P1) or (more general) (P2):

- (P1) If G is a graph with $p \geq 3$ vertices such that every subset of $\lfloor \alpha p \rfloor$ vertices spans more than $\beta(\alpha, p) p^2$ edges, then G contains a triangle.
- (P2) If G is a graph with $p \ge m$ vertices $(m \ge 3)$ such that every subset of $\lfloor \alpha p \rfloor$ vertices spans more than $\beta(\alpha, p)$ p^2 edges, then G contains a K_m .

To distinguish both cases we will denote $\beta(\alpha, p)$ by $\beta_{K_3}(\alpha, p)$ or $\beta_{K_m}(\alpha, p)$, respectively. Here $\beta_{K_m}(\alpha, p)$ is called the *local density* of a K_m -free graph of order p. Furthermore the local density $\beta_{K_m}(\alpha)$ of a graph with arbitrary order is defined for $m \geq 3$:

$$\beta_{K_m}(\alpha) := \sup_{p>m} \beta_{K_m}(\alpha, p). \tag{1}$$

The connexion between the local density of a graph not containing a K_m and the generalized Ramsey numbers $r(K_m, \langle n, k \rangle)$ can be seen as follows:

$$r(K_m, \langle \lfloor \alpha p \rfloor, \binom{\lfloor \alpha p \rfloor}{2}) - \beta_{K_m}(\alpha, p) p^2 + 1 \rangle) > p$$
 and $r(K_m, \langle \lfloor \alpha p \rfloor, \binom{\lfloor \alpha p \rfloor}{2}) - \beta_{K_m}(\alpha, p) p^2 \rangle) \leq p$.

Thus if the values of the generalized Ramsey numbers $r(K_m, \langle n, k \rangle)$ are known for all values of n and k, $\beta_{K_m}(\alpha, p)$ can be evaluated for arbitrary values of α and p using the following transformation (2):

$$\beta_{K_m}(\alpha, p) = \min \left\{ \beta : r(K_m, \langle n, k \rangle) \le p \text{ where } n = \lfloor \alpha p \rfloor \text{ and } k = {\lfloor \alpha p \rfloor \choose 2} - \beta p^2 \right\}.$$
 (2)

On the other hand, if $r(K_m, \langle n, k \rangle) \leq cn$ holds for a constant $c, r(K_m, \langle n, k \rangle)$ can be obtained if $\beta_{K_m}(\alpha, p)$ is known for all values of α and p:

$$r(K_m, \langle n, k \rangle) = \min \left\{ p : \lfloor \alpha p \rfloor = n \text{ and } \binom{n}{2} - \beta_{K_m}(\alpha, p) p^2 = k \right\}.$$
 (3)

Some notations will be used in the following. A red-green coloring of K_p is called a $(K_m, \langle n, k \rangle)$ -coloring, if it contains neither a green K_m nor a red (n, k)-graph. We use V(G) to denote the set of vertices of G and define $N_g(v)$ and $N_r(v)$, for all $v \in V(G)$, to

be the sets of green and red neighbours of v, respectively. The number of green (or red) edges incident to v is denoted by g(v) (or r(v)). Δ_g (or Δ_r) is the maximal degree with respect to the green (or red) subgraph of G and g(G) (or r(G)) is the number of green (or red) edges in G.

In the following we will determine the Ramsey numbers $r(K_m, \langle n, k \rangle)$ for $m \geq 3$ and (compared to $\binom{n}{2}$) small values of k. Sections 3 and 4 are devoted to generalizations of this result whereas consequences for the local density of K_m -free graphs are derived in Section 5.

2 Ramsey numbers $r(K_m, \langle n, k \rangle)$ with $n \geq m \geq 3$

There is a close relationship between Ramsey numbers $r(K_m, \langle n, k \rangle)$ for small k and special Turán graphs. After defining the Turán problem we will draw the connexion to the given Ramsey problem and deduce previously unknown values for $r(K_m, \langle n, k \rangle)$.

The Turán problem asks for the maximal number $t_G(n)$ of edges in a graph of order n not containing a subgraph isomorphic to G. A Turán graph for G and n is defined to be a graph of order n and size $t_g(n)$ that does not contain a subgraph G. Turán's Theorem [24] solves the problem in case of $G = K_m$. If $n \ge m \ge 3$ then

$$t_{K_m}(n) = \frac{m-2}{2(m-1)}(n^2 - \beta^2) + {\beta \choose 2},$$
(4)

where β is defined by

$$n = \alpha(m-1) + \beta, \quad \alpha \in \mathbb{N}_0, \quad 0 \le \beta \le m-2. \tag{5}$$

Furthermore, the complete (m-1)-partite graph $K_{n_1,\dots,n_{m-1}} = T_{K_m}(n)$ where $n_1 = \dots = n_{\beta} = \alpha + 1$ and $n_{\beta+1} = \dots = n_{m-1} = \alpha$ is the only Turán graph for K_m and n.

A very simple connexion between $t_{K_m}(n)$ and $r(K_m, \langle n, k \rangle)$ can be derived for $k \leq \binom{n}{2} - t_{K_m}(n)$:

Theorem 1 Let $n \ge m \ge 3$ be positive integers. Then

$$r(K_m, \langle n, k \rangle) = n$$
 for $0 \le k \le \binom{n}{2} - t_{K_m}(n)$.

This correlation will be extended in the following to higher values of k. For this purpose some further definitions are useful.

For $n \ge m \ge 3$ let $\{s_0, s_1, s_2, \ldots\}$, $s_0 < s_1 < s_2 < \cdots$, be the set of non-negative integers such that $n + s_i \pmod{m-1} \ne m-2$. Using the representation of n in (5) we obtain

$$s_i = i + \left| \frac{i+\beta}{m-2} \right| \qquad i \ge 0. \tag{6}$$

There are uniquely defined integers γ_i and δ_i such that

$$n + s_i =: \gamma_i(m-1) + \delta_i \qquad \gamma_i \in IN_0, \quad 0 \le \delta_i \le m-3$$
 (7)

and for $s_i \leq \gamma_i$ (which is true for $s_i \leq \frac{n}{m}$) we define

$$k_i := \delta_i \binom{\gamma_i + 1}{2} + (m - \delta_i - 2) \binom{\gamma_i}{2} + \binom{\gamma_i - s_i}{2}. \tag{8}$$

Note that $k_0 = \binom{n}{2} - t_{K_m}(n)$ is the highest value of k such that $r(K_m, \langle n, k \rangle)$ is determined by Theorem 1. Moreover, for $i \geq 1$

which implies that

$$k_i = k_0 + \sum_{j=1}^{i} s_j - \left\lfloor \frac{i+\beta}{m-2} \right\rfloor \ge \binom{n}{2} - t_{K_m}(n) + \frac{i(i+1)}{2}.$$
 (10)

It is easily checked that k_i can also be written as

$$k_{i} = \frac{1}{2} \left[-(m-1) \left\lfloor \frac{n+s_{i}}{m-1} \right\rfloor^{2} + (2n-m+1) \left\lfloor \frac{n+s_{i}}{m-1} \right\rfloor + s_{i}^{2} + s_{i} \right].$$
 (11)

The following lower bound for $r(K_m, \langle n, k \rangle)$ is easily obtained using the Turán graphs T_{K_m} .

Theorem 2 Let $m \ge n \ge 3$, $i \in \mathbb{N}_0$ and let s_i, k_i be defined by (6) and (8). Then

$$r(K_m, \langle n, k \rangle) > n + s_i$$
 if $k > k_i$ and $s_i \le \frac{n}{m}$.

Proof: No green K_m occurs in the red-green coloring of K_{n+s_i} in which the green subgraph is isomorphic to the Turán graph $T_{K_m}(n+s_i)$. On the other hand it is easy to verify that the maximal number of red edges in a subgraph with n vertices is exactly k_i .

This lower bound is sharp for relative to $\binom{n}{2}$ small values of k.

Theorem 3 Let $m \geq n \geq 3$, $i \in \mathbb{N}_0$ and let s_i, k_i be defined by (6) and (8). Then

$$r(K_m, \langle n, k \rangle) = n + s_i + 1$$
 if $k_i < k \le k_{i+1}$ and $s_i \le s_{\max} := \sqrt{\frac{n+2}{m-1}} - \frac{2m-3}{m-2}$.

Proof: Considering the lower bound for $r(K_m, \langle n, k \rangle)$ given in Theorem 2 it suffices to show that $r(K_m, \langle n, k \rangle) \leq n + s_i + 1$ is true for $k \leq k_{i+1}$.

Assume that there exists a $(K_m, \langle n, k_{i+1} \rangle)$ -coloring C of $K_{n+s_{i+1}}$. Using (7) we obtain that $n + s_i + 1 = \gamma(m-1) + \delta$, where $\gamma = \gamma_i$ and $\delta = \delta_i + 1$, $1 \le \delta \le m-2$. It follows that $k_{i+1} = \delta\binom{\gamma+1}{2} + (m-\delta-2)\binom{\gamma}{2} + \binom{\gamma-s_i-1}{2}$ for each value of i.

Let $v \in V(K_{n+s_{i+1}})$ be a vertex with $g(v) = \Delta_g$. Furthermore let $H_1 := [N_g(v)]$ and $H_2 := [N_r(v) + v]$. Since there is no green subgraph $K_m \subset K_{n+s_{i+1}}$ in C, there is no green subgraph $K_{m-1} \subseteq H_1$.

We distinguish two cases:

1. $\Delta_q \geq n + s_i + 1 - \gamma$, i.e. $|V(H_2)| \leq \gamma$.

If $\Delta_g \geq n$, any subgraph G with |V(G)| = n of H_1 contains at most $t_{K_{m-1}}(n)$ green edges. Thus $r(G) \geq {n \choose 2} - t_{K_{m-1}}(n) \geq k_{i+1}$.

In the case that $\Delta_g < n$ any subgraph G containing H_1 and $n - \Delta_g$ arbitrary vertices from H_2 has at most $t_{K_{m-1}}(\Delta_g) + (n - \Delta_g)\Delta_g$ green edges where $n - \Delta_g \le \gamma - s_i - 1$. Thus g(G) is maximal (and r(G) minimal) if Δ_g is minimal, i.e. if $\Delta_g = n + s_i + 1 - \gamma$. Therefore

$$g(G) \leq t_{K_{m-1}}(n+s_i+1-\gamma) + (n+s_i+1-\gamma)(s_i+1-\gamma)$$

= $\binom{n}{2} - \delta\binom{\gamma+1}{2} + (m-\delta-2)\binom{\gamma}{2} + \binom{\gamma-s_i-1}{2}$

and

$$r(G) \geq \delta\binom{\gamma+1}{2} + (m-\delta-2)\binom{\gamma}{2} + \binom{\gamma-s_{i-1}}{2} = k_{i+1}.$$

Thus G contains a red (n, k_{i+1}) -graph contradicting the assumption.

2. $\Delta_q \leq n + s_i - \gamma$, i.e. $|V(H_2)| > \gamma$.

Construct a subgraph $G \subset K_{n+s_i+1}$ by successive deletion of s_i+1 vertices of maximal degree with respect to the green subgraph. As the number of green edges in the removed subgraph cannot exceed $t_{K_m}(s_i+1)$, the number of green edges in G cannot exceed the following upper bound:

$$g(G) \leq \frac{1}{2}n\Delta_g - \left(\frac{1}{2}(s_i+1)\Delta_g - t_{K_m}(s_i+1)\right)$$

$$\leq \frac{1}{2}(n-s_i-1)(n+s_i-\gamma) + \frac{m-2}{2(m-1)}(s_i+1)^2.$$

G contains a red (n, k_{i+1}) -graph contradicting the assumption if

$$g(G) \le \binom{n}{2} - k_{i+1} = \binom{n}{2} - \left[\delta\binom{\gamma+1}{2} + (m-\delta-2)\binom{\gamma}{2} + \binom{\gamma-s_i-1}{2}\right].$$

Transformation of the above equations show that this is true if

$$s_i^2 + \frac{4m-6}{m-2}s_i - \frac{m-1}{m-2}(m-1-\delta)\gamma + \frac{3m-4}{m-2} \le 0.$$

Because of $\frac{m-1}{m-2} > 1$ and $m-1-\delta \ge 1$, this is satisfied if

$$s_i^2 + \frac{4m-6}{m-2}s_i - \frac{m-1}{m-2}\gamma + \frac{3m-4}{m-2} \le 0.$$

With $\gamma = \lfloor \frac{n+s_i+1}{m-1} \rfloor$ it is easy to see that G contains a red (n, k_{i+1}) -graph if $s_i \leq \sqrt{\frac{n+2}{m-1}} - \frac{2m-3}{m-2}$.

The following Lemma gives a bound for the values of k for which the Ramsey number $r(K_m, \langle n, k \rangle)$ can be determined using Theorem 3.

Lemma 1 Theorem 3 can be applied for all positive integers m, n, k with $n \ge m \ge 3$ and $\binom{n}{2} - t_{K_m}(n) < k \le k_{\max}$ where

$$k_{\max} \ge \binom{n}{2} - t_{K_m}(n) + \frac{(m-2)^2}{2(m-1)^3}(n+2) - \frac{5(m-2)}{2(m-1)^{\frac{3}{2}}}\sqrt{n+2} + 3.$$

Proof: From the upper bound for s_i an upper bound for i can be derived. Using (10) a straightforward calculation leads to the given lower bound for k_{max} .

Using the description of $r(K_m, \langle n, k \rangle)$ in Theorem 3 it is not possible to give $r(K_m, \langle n, k \rangle)$ explicitly. Anyway, given a value of k with $0 \le k \le k_{\text{max}}$ the value of $r(K_m, \langle n, k \rangle)$ can easily be evaluated using (9) and (11) and Theorem 3.

3 Ramsey numbers $r(\langle m, l \rangle, \langle n, k \rangle)$

The results obtained in Section 2 strongly depend on the Turán graph $T_{K_m}(n)$. Theorems 2 and 3 use the special structure of this graph. They can thus be transferred to more general cases where the Turán graphs have a similar structure.

One generalization of the problem of Turán is that of finding the maximal number of edges $t_{\mathcal{G}}(n)$ in a graph with n vertices not containing a subgraph $G \in \mathcal{G}$ where \mathcal{G} is a given set of graphs. A Turán graph for \mathcal{G} and n is a graph of order n and size $t_{\mathcal{G}}(n)$ that does not contain a subgraph $G \in \mathcal{G}$. (Note that in this general formulation a Turán graph is not necessarily unique.) For the case that $\mathcal{G} = \langle m, \binom{m}{2} - \lambda \rangle$ with $n \geq m+1$ and $0 \leq \lambda \leq \frac{m-3}{2}$ it has been shown in [6] that the graph $T_{K_{m-\lambda}}(n)$ is the only Turán graph for \mathcal{G} and n. Thus analogously to Theorems 1 to 3 the following statements can be proven:

Theorem 4 Let $n, m \in \mathbb{N}$ and $\lambda \in \mathbb{N}_0$ with $n \geq m + 1 \geq 4$ and $\lambda \leq \frac{m-3}{2}$. Then

$$r(\langle m, \binom{m}{2} - \lambda \rangle, \langle n, k \rangle) = n \quad \text{if} \quad 0 \le k \le \binom{n}{2} - t_{K_{m-\lambda}}(n).$$

Theorem 5 Let $n, m \in \mathbb{N}$ and $\lambda, i \in \mathbb{N}_0$ with $n \geq m+1 \geq 4$ and $\lambda \leq \frac{m-3}{2}$. Furthermore let s_i and k_i be defined as in (6) and (8), where m is replaced by $m - \lambda$ in (5)-(8). Then

$$r(\langle m, \binom{m}{2} - \lambda \rangle, \langle n, k \rangle) > n + s_i$$
 if $k > k_i$ and $s_i \leq \frac{n}{m - \lambda}$.

For small values of k this bound is sharp.

Theorem 6 Let $n, m \in \mathbb{N}$ and $\lambda \in \mathbb{N}_0$ with $n \geq m + 1 \geq 4$, $\lambda \leq \frac{m-4}{2}$ and let $s_i, k_i \in \mathbb{N}_0$ as in Theorem 5. Then

$$r(\langle m, {m \choose 2} - \lambda \rangle, \langle n, k \rangle) = n + s_i + 1$$
 for $k_i < k \le k_{i+1}$
and $s_i \le s_{\max} := \sqrt{\frac{n+2}{m-\lambda-1}} - \frac{2(m-\lambda)-3}{m-\lambda-2}$.

Proof: Theorem 6 can be proven analogously to Theorem 3. As the Turán number $t_{\langle m-1,\binom{m-1}{2}-\lambda\rangle}(\bullet)$ is needed, the value of λ must be bounded by $\lambda \leq \frac{m-4}{2}$.

4 Ramsey numbers $r(K_{i_1},\ldots,K_{i_l},\langle n,k\rangle)$

Let $t_{\mathcal{G}_1,\ldots,\mathcal{G}_l}(n)$ denote the maximal number of edges in a graph G with n vertices such that there exists an l-coloring of the edges of G not containing a monochromatic subgraph $G_i \in \mathcal{G}_i$ in color i for all $i = 1,\ldots,l$. This number can also be regarded as generalized Turán number and the graphs in question of size $t_{\mathcal{G}_1,\ldots,\mathcal{G}_l}(n)$ are also called Turán graphs. In the case that $\mathcal{G}_j = \{K_{i_j}\}$ $(j = 1,\ldots,l)$ the only Turán graph for $\mathcal{G}_1,\ldots,\mathcal{G}_l$ and n is the "classical" Turán graph $T_{K_r}(n)$ where $r = r(K_{i_1},\ldots,K_{i_l})$ is the Ramsey number of K_{i_1},\ldots,K_{i_l} (see [23]). Thus Theorems 1 to 3 can be transferred to Ramsey numbers $r(K_{i_1},\ldots,K_{i_l},\langle n,k\rangle)$ by replacing the value of m by the value of r.

Theorem 7 Let $l, i_1, \ldots, i_l, r, n \in \mathbb{N}$ with $l \geq 2$, $r := r(K_{i_1}, \ldots, K_{i_l}) \geq 3$ and $n \geq r$. Then

$$r(K_{i_1},\ldots,K_{i_l},\langle n,k\rangle)=n$$
 if $0 \le k \le \binom{n}{2}-t_{K_r}(n)$.

Theorem 8 Let $l, i_1, \ldots, i_l, r, n \in \mathbb{N}$ and $i \in \mathbb{N}_0$ with $l \geq 2$, $r := r(K_{i_1}, \ldots, K_{i_l}) \geq 3$ and $n \geq r$. Furthermore let s_i and k_i be defined as in (6) and (8), where m is replaced by r in (5)-(8). Then

$$r(K_{i_1}, \ldots, K_{i_l}, \langle n, k \rangle) > n + s_i \quad \text{if } k > k_i \quad \text{and } s_i \leq \frac{n}{r}.$$

Theorem 9 Let $l, i_1, ..., i_l, r, n \in I\!\!N$ with $l \geq 2, r := r(K_{i_1}, ..., K_{i_l}) \geq 3, n \geq r$ and

$$\sum_{j=1}^{l} \left(r(K_{i_1}, \dots, K_{i_{j-1}}, K_{i_{j-1}}, K_{i_{j+1}}, \dots, K_{i_l}) - 1 \right) \le r - 2.$$
 (12)

Then

$$r(K_{i_1}, \dots, K_{i_l}, \langle n, k \rangle) = n + s_i + 1$$
 for $k_i < k \le k_{i+1}$
and $s_i \le s_{\max} := \sqrt{\frac{n+2}{r-1}} - \frac{2r-3}{r-2}$.

Proof: The colors $1, \ldots, l$ are identified with the color "green" in the proof of Theorem 3. The vertex v in the first part of the proof is therefore incident to Δ_g edges of the colors $1, \ldots, l$, i.e. to Δ_g "green" edges. In the induced subgraph $N_j(v)$ not more than $t_{K_{i_1}, \ldots, K_{i_{j-1}}, K_{i_{j-1}}, K_{i_{j+1}}, \ldots, K_{i_l}}(|V(N_j(v))|)$ edges are "green" $(j = 1, \ldots, l)$. With (12) we have

$$\sum_{j=1}^{l} t_{K_{i_1}, \dots, K_{i_{j-1}}, K_{i_{j-1}}, K_{i_{j+1}}, \dots, K_{i_l}}(|V(N_j(v))|) \le t_{K_{r-1}}(\Delta_g)$$

and the proof of Theorem 9 can be completed analogously to the proof of Theorem 3.

Unfortunately the Ramsey numbers in inequality (12) are not known in general. Nevertheless, inequality (12) is true e.g. for (K_3, K_3) , (K_3, K_3, K_3) and (K_4, K_4) . The corresponding Ramsey numbers are $r(K_3, K_2) = 3$, $r(K_3, K_3) = r(K_3, K_3, K_2) = 6$, $r(K_3, K_3, K_3) = 17$, $r(K_4, K_3) = 7$ and $r(K_4, K_4) = 18$.

Corollary 1

$$r(K_3, K_3, \langle n, k \rangle) = n + s_i + 1 \quad \text{for } k_i < k \le k_{i+1} \quad \text{and} \quad s_i \le \frac{1}{\sqrt{5}} \sqrt{n+2} - \frac{7}{3},$$

$$r(K_3, K_3, K_3, \langle n, k \rangle) = n + s_i + 1 \quad \text{for } k_i < k \le k_{i+1} \quad \text{and} \quad s_i \le \frac{1}{4} \sqrt{n+2} - \frac{31}{15},$$

$$r(K_4, K_4, \langle n, k \rangle) = n + s_i + 1 \quad \text{for } k_i < k \le k_{i+1} \quad \text{and} \quad s_i \le \frac{1}{\sqrt{17}} \sqrt{n+2} - \frac{33}{16}.$$

5 The local density of K_m -free graphs

In this section the connexion between Ramsey numbers $r(K_m, \langle n, k \rangle)$ and the local density $\beta_{K_m}(\alpha, p)$ of graphs not containing a subgraph K_m given in Section 1, equations (2) and (3) will be used to derive some new results concerning the local density of K_m -free graphs $(m \geq 3)$.

In [7] the following conjecture about the values of $\beta_{K_3}(\alpha)$ has been raised:

Conjecture 1 ([7])

$$\beta_{K_3}(\alpha) = \begin{cases} (2\alpha - 1)/4 & \text{if } 17/30 \le \alpha \le 1, \\ (5\alpha - 2)/25 & \text{if } 53/120 \le \alpha \le 17/30. \end{cases}$$

For sufficiently large values of p and $0.648 \le \alpha \le 1$ Conjecture 1 has been proven in [7] and for $3/5 \le \alpha \le 1$ it has been proven in [20]. Conjecture 1 is not true if $0.442 \simeq 53/120 \le \alpha < 474/1000$ as has been shown in [2].

For the more general case that G does not contain a subgraph K_m , $m \geq 3$, the following upper bounds for $\beta_{K_m}(\alpha, p)$ have been given in [7]:

Theorem 10 ([7]) Let G be a graph with p vertices not containing a subgraph K_m ($m \ge 3$) and let $0 < \alpha < 1$. Furthermore let δ be a positive real number such that $\delta(m-2) < 1$. Then the following upper bound for $\beta_{K_m}(\alpha)$ can be given for p sufficiently large:

$$\beta_{K_m}(\alpha, p) \leq \max\{[(m-3)/(2m-4)]\alpha^2, \alpha^3/2\},\ \beta_{K_m}(\alpha, p) \leq (1/2)\alpha^{2+\delta}.$$

Using the results for Ramsey numbers $r(K_m, \langle n, k \rangle)$ obtained in Section 2, the values of $\beta_{K_m}(\alpha, p)$ can now be determined exactly for some values of α and p. For this purpose equation (2) is applied:

Theorem 11 Let $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$ and let $\beta_{K_m}(\alpha, p) \in \mathbb{R}$ be the smallest positive number with property (P2). Furthermore let αp be a positive integer such that $\alpha p \geq m$. Then

$$\beta_{K_m}(\alpha, p) = \alpha \left(1 - \frac{1}{p} \left\lfloor \frac{p + \sigma}{m - 1} \right\rfloor \right) - \left(\frac{1}{2} - \frac{m - 1}{2p^2} \left\lfloor \frac{p + \sigma}{m - 1} \right\rfloor^2 \right)$$

$$- \frac{1}{p} \left(\frac{1}{2} + (1 - \alpha)\sigma - \frac{m - 1}{2p} \left\lfloor \frac{p + \sigma}{m - 1} \right\rfloor \right) - \frac{1}{2p^2} \left(\sigma^2 + \sigma \right)$$

$$\leq \frac{m - 2}{m - 1} \left(\alpha - \frac{1}{2} \right)$$

$$where \ \sigma := \begin{cases} 1 & \text{if } m - 1 \mid p + 1 \\ 0 & \text{else} \end{cases}$$

$$and \quad \alpha \geq \alpha_{\min} := 1 - \frac{\sqrt{(p + 1)(m - 1) + \frac{1}{4}} - m + \frac{1}{2}}{p(m - 1)}.$$

Proof: Let s_i , k_i be defined as in (6) and (8). The following statement is an easy consequence of (2) and Theorem 3:

$$\beta_{K_m}(\alpha, p) = \frac{1}{p^2} \left[\binom{\lfloor \alpha p \rfloor}{2} - k_{i+1} \right] \quad \text{with } i = \max\{i \ge 0 : p \ge n + s_i + 1\}.$$
 (13)

We will distinguish two cases:

1. m-1 /p: From (6) we know that there exists s_i such that $p=n+s_i+1$. Thus we have $s_i=(1-\alpha)p-1$ and

$$s_{i+1} = \begin{cases} s_i + 1 = (1 - \alpha)p & \text{if } m - 1 / p + 1 \\ s_i + 2 = (1 - \alpha)p + 1 & \text{else} \end{cases}$$

Using (11) and (13) and defining $s := s_{i+1}$, we get

$$\beta_{K_m}(\alpha, p) = \frac{1}{2p^2} \left(\alpha^2 p^2 - \alpha p + (m-1) \left\lfloor \frac{\alpha p + s}{m-1} \right\rfloor^2 - (2\alpha p - m + 1) \left\lfloor \frac{\alpha p + s}{m-1} \right\rfloor - s^2 - s \right)$$

and an easy calculation using $\sigma := s - (1 - \alpha)p$ gives

$$\beta_{K_m}(\alpha, p) = \alpha \left(1 - \frac{1}{p} \left\lfloor \frac{p + \sigma}{m - 1} \right\rfloor \right) - \left(\frac{1}{2} - \frac{m - 1}{2p^2} \left\lfloor \frac{p + \sigma}{m - 1} \right\rfloor^2 \right)$$

$$- \frac{1}{p} \left(\frac{1}{2} + (1 - \alpha)\sigma - \frac{m - 1}{2p} \left\lfloor \frac{p + \sigma}{m - 1} \right\rfloor \right) - \frac{1}{2p^2} \left(\sigma^2 + \sigma \right)$$

$$\leq \alpha \left(1 - \frac{1}{m - 1} \right) - \frac{1}{2} \left(1 - \frac{1}{m - 1} \right)$$

$$= \frac{m - 2}{m - 1} \left(\alpha - \frac{1}{2} \right).$$

2. $m-1 \mid p$: In this case there exists s_i with $p-1=n+s_i+1$. Furthermore there is no \tilde{s}_i such that $p=n+\tilde{s}_i+1$. It follows that $s_i=(1-\alpha)p-2$ and using $m-1 \mid p$

$$s_{i+1} = s_i + 2 = (1 - \alpha)p.$$

Using (11) and (13), an easy calculation analogous to case 1 completes the proof.

In the special case of m=3 and $1 \ge \alpha \ge \alpha_{\min} = 1 - \frac{\sqrt{2(p+1)+0.25}-1.5}{2p}$ the result stated in Conjecture 1 and proven in [7] is also obtained by Theorem 11:

$$\beta_{K_3}(\alpha, p) = \begin{cases} \frac{\alpha}{2} - \frac{1}{4}, & \text{if } p \text{ even} \\ \frac{\alpha}{2} - \frac{1}{4} - \frac{1-\alpha}{2p} - \frac{1}{4p^2} & \text{if } p \text{ odd.} \end{cases}$$

A similar result with a better lower bound for α can also be found in [18].

Theorem 11 suggests the following conjecture for the local density of K_m -free graphs:

Conjecture 2 Let $m \geq 3$ be a positive integer and $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$. Then

$$\beta_{K_m}(\alpha) = \frac{m-2}{m-1} \left(\alpha - \frac{1}{2}\right)$$

for some values of α close to 1.

Analogous to the results about Ramsey numbers $r(K_m, \langle n, k \rangle)$ given in Section 2, the more general concepts for Ramsey numbers $r(\langle m, l \rangle, \langle n, k \rangle)$ described in Section 3 can be transferred to the concept of local densities. For this purpose let \mathcal{G} be a given set of graphs and let $\beta_{\mathcal{G}}(\alpha, p) \in \mathbb{R}$ be defined as the smallest positive number with the following property:

(P3) If G is a graph with $p \geq 3$ vertices such that every subset of $\lfloor \alpha p \rfloor$ vertices spans more than $\beta_{\mathcal{G}}(\alpha, p) p^2$ edges, then G contains a subgraph $G_i \in \mathcal{G}$.

In the case that $\mathcal{G} = \langle m, l \rangle$, i.e. \mathcal{G} equals the set of all graphs with m vertices and l edges, the value of $\beta_{\mathcal{G}}(\alpha, p)$ can be interpreted as the local density of a graph G whose local density with respect to subgraphs of order m does not exceed l-1.

Theorem 12 Let \mathcal{G} be the set of all graphs with $m \geq 3$ vertices and $\binom{m}{2} - \lambda$ edges, where $\lambda \in \mathbb{N}_0$ and $\lambda \leq \frac{m-4}{2}$, i.e. $\mathcal{G} := \langle m, \binom{m}{2} - \lambda \rangle$.

Let $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$ and let $\beta_{\mathcal{G}}(\alpha, p) \in \mathbb{R}$ be the smallest positive number with property (P3). Furthermore let αp be a positive integer such that $\alpha p \geq m$. Then

$$\begin{split} \beta_{\mathcal{G}}(\alpha,p) &= \alpha \left(1 - \frac{1}{p} \left\lfloor \frac{p + \sigma}{m - \lambda - 1} \right\rfloor \right) - \left(\frac{1}{2} - \frac{m - \lambda - 1}{2p^2} \left\lfloor \frac{p + \sigma}{m - \lambda - 1} \right\rfloor^2 \right) \\ &- \frac{1}{p} \left(\frac{1}{2} + (1 - \alpha)\sigma - \frac{m - \lambda - 1}{2p} \left\lfloor \frac{p + \sigma}{m - \lambda - 1} \right\rfloor \right) - \frac{1}{2p^2} \left(\sigma^2 + \sigma\right) \\ &\leq \frac{m - \lambda - 2}{m - \lambda - 1} \left(\alpha - \frac{1}{2}\right) \\ &\text{where } \sigma := \left\{ \begin{array}{cc} 1 & \text{if } m - \lambda - 1 \mid p + 1 \\ 0 & \text{else} \end{array} \right. \\ &\text{and} \quad \alpha \geq \alpha_{\min} := 1 - \frac{\sqrt{(p + 1)(m - \lambda - 1) + \frac{1}{4} - m - \lambda + \frac{1}{2}}}{p(m - \lambda - 1)}. \end{split}$$

Proof: Theorem 12 can be proven analogously to Theorem 11 by using Theorem 6 and replacing m by $m - \lambda$.

Thus Conjecture 2 can be generalized:

Conjecture 3 Let $\mathcal{G} := \langle m, {m \choose 2} - \lambda \rangle$ be the set of graphs with $m \geq 3$ vertices and ${m \choose 2} - \lambda$ edges, where $\lambda \in \mathbb{N}_0$ and $\lambda \leq \frac{m-4}{2}$. Furthermore, let $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$. Then

$$\beta_{\mathcal{G}}(\alpha) = \frac{m - \lambda - 2}{m - \lambda - 1} \left(\alpha - \frac{1}{2} \right)$$

for some values of α close to 1.

6 Conclusions

An interesting behaviour of the values of $r(K_m, \langle n, k \rangle)$ depending on k has been proven in this paper. Starting with $k = \binom{n}{2} - t_{K_m}(n)$ the values of $r(K_m, \langle n, k \rangle)$ grow rapidly whereas with increasing values of k (and therefore s_i) the slope of $r(K_m, \langle n, k \rangle)$ decreases again.

At least one important question remains open: There must exist a point of inflection, i.e. a value of k for which the slope of $r(K_m, \langle n, k \rangle)$ starts to increase again. The known lower bounds for $r(K_m, K_n)$ show that at least one point like this must exist.

Furthermore the results obtained for $r(K_m, \langle n, k \rangle)$ have been transferred to the concept of the local density $\beta_{K_m}(\alpha, p)$ of K_m -free graphs, for which some previously unknown values have been determined.

References

- [1] R. Bolze and H. Harborth. The Ramsey number $r(K_4 x, K_5)$. In D. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, and D.R. Lick, editors, *The Theory and Applications of Graphs*, pages 109–116. John Wiley & Sons, New York, Chichester, Bisbane, Toronto, Singapore, 1981.
- [2] S. Brandt. The local density of triangle-free graphs. Preprint A 95-14, Freie Universität Berlin, Department of Mathematics, 1995.
- [3] V. Chvátal and F. Harary. Generalized Ramsey theory for graphs, III. Small off-diagonal numbers. *Pacific J. Math.*, 41:335–345.
- [4] M. Clancy. Some small Ramsey numbers. J. Graph Theory, 1:89-91, 1977.
- [5] C. Clapham, G. Exoo, H. Harborth, I. Mengersen, and J. Sheehan. The Ramsey number of $K_5 e$. J. Graph Theory, 13:7–15, 1989.
- [6] G. Dirac. Extensions of Turàn's theorem of graphs. *Acta Math. Acad. Sci. Hung.*, 14:417–422, 1963.
- [7] P. Erdös, R.J. Faudree, C.C. Rousseau, and R.H. Schelp. A local density condition for triangles. *Discr. Math.*, 127:153–161, 1994.
- [8] G. Exoo, H. Harborth, and I. Mengersen. The Ramsey number of K_4 versus $K_5 e$. Ars Combin., 25 A:277–286, 1988.
- [9] R. Faudree, H. Harborth, and I. Mengersen. Ramsey numbers for graph sets versus complete graphs. to appear in *Utilitas Math*.
- [10] R. Faudree, C.C. Rousseau, and R.H. Schelp. All triangle-graph Ramsey numbers for connected graphs of order six. *J. of Graph Theory*, pages 293–300, 1984.

- [11] J.E. Graver and J. Yackel. Some graph theoretic results associated with Ramsey's theorem. J. Combin. Theory, 4:27–51, 1968.
- [12] R.E. Greenwood and A.M. Gleason. Combinatorial relations and chromatic graphs. *Canad. J. Math.*, 7:1–7, 1955.
- [13] U. Grenda and H. Harborth. The Ramsey number $r(K_3, K_7 e)$. J. Combin. Inf. Syst. Sci., 7:166–169, 1982.
- [14] H. Harborth. Ramsey numbers for sets of five vertex graphs with fixed numbers of edges. In N.W. Sauer et al., editor, *Finite and Infinite Combinatorics in Sets and Logic*, pages 169–174. Kluwer Acad. Publ., Amsterdam, 1993.
- [15] H. Harborth and I. Mengersen. Eine Ramsey-Zahl für fünf Knoten und acht Kanten. Elem. Math., 39:6–9, 1984.
- [16] H. Harborth and I. Mengersen. Ramsey numbers for graph sets with fixed numbers of edges. Colloquia Math. Soc. János Bolyai, 60:391–397, 1991.
- [17] J.G. Kalbfleisch. Chromatic Graphs and Ramsey's Theorem. Ph.D. Thesis, University of Waterloo, 1966.
- [18] K. Klamroth. Ramsey-Zahlen für Mengen von Graphen. Dissertation, Technische Universität Braunschweig, 1994.
- [19] K. Klamroth and I. Mengersen. Ramsey numbers of K_3 versus (p, q)-graphs. to appear in $Ars.\ Combin.$
- [20] M. Krivelevich. On the edge distribution in triangle-free graphs. J. Combin. Theory Ser. B, 45:245–260, 1995.
- [21] B.D. McKay and Zhang Ke Min. The value of the Ramsey number R(3,8). J. Graph Theory, 16:183–202, 1992.
- [22] B.D. McKay and S.P. Radziszowski. r(4,5) = 25. J. Graph Theory, 19:309–322, 1995.
- [23] V.T. Sós. On extremal problems in graph theory. In Combinatorial Structures and Their Applications (Proc. Calgary Int. Conf., June 1969), pages 407–410. Gordon and Breach, New York, 1970.
- [24] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452, 1941.