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Abstract

In this paper generalized Ramsey numbers of complete graphs K, versus the set
(,m, k) of (n, k)-graphs are investigated. The value of r(K,,, (n, k)) is given in general
for (relative to n) values of £ small compared to n using a correlation with Turdn
numbers.

These generalized Ramsey numbers can be used to determine the local densities of
graphs not containing a subgraph K,,.

1 Introduction

Let m, [, n and k be positive integers with 0 < [ < (7;) and 0 < k < (Z) and let (n, k)
denote the set of all (n, k)-graphs, i.e. the set of all graphs with n vertices and k edges.
The Ramsey number r({m, 1), (n, k)) is defined as the smallest integer p such that in every
red-green coloring of the edges of the complete graph K, a green (m,!)-graph or a red
(n, k)-graph occurs, i.e. a green graph with m vertices and [ edges or a red graph with n
vertices and k edges. Note that r({m,[), (n, k})) is the classical Ramsey number r(K,,, K,)

it 1 =(7) and k= (}).

Generalized Ramsey numbers 7({(m,[), (n, k)) have been thoroughly investigated by many
authors, an important reason being they lead to some insight in the behaviour of classical
Ramsey numbers.

Particularly for small values of m and n several results have been obtained: In [1] the
Ramsey numbers 7((4,1), (5, k)) have been given for all possible values (I, k) except for
(I,k) € {(6,9),(6,10)}. The two missing numbers can be found in [8] and [22]. The value
of r({5,1),(5,k)) has been determined in [15] for the special case that [ = k£ < 8, in [5]
for | = k =9 and in [14] for all other possible values of (I, k) with [ < 6 or [ = 7 and
k < 9. As a more general result, r({n, s), (n, (Z) — s+ k)) has been given for £ < 3 and

2<s< %(Z) +k in [16] and the values of r(K,, (n, k)) have been given in [9] for 1 < k < n.



The special case m = 3, i.e. the Ramsey numbers (K3, (n, k)), has drawn much attention.
For n < 8 all values are known [3, 4, 10, 11, 12, 13, 17, 19, 21]. Moreover a more general
result has been given in [19] which allows the determination of r(Kj, (n, k)) for arbitrary
values of n and small values of k£ (compared to n).

A similar problem has been introduced in [7], where the local density of graphs not con-
taining specific subgraphs is investigated:

Let @ € IR with 0 < a < 1 and let 3(«,p) € IR be the smallest positive number with
property (P1) or (more general) (P2):

If G is a graph with p > 3 vertices such that every subset of |ap| vertices spans

(P1) more than 3(a,p) p? edges, then G contains a triangle.

If G is a graph with p > m vertices (m > 3) such that every subset of |ap]

P2 . .
(P2) vertices spans more than 3(a,p) p* edges, then G contains a K,,.

To distinguish both cases we will denote ((a,p) by Bk,(«,p) or Bk, (a,p), respectively.
Here Bk, (o, p) is called the local density of a K,,-free graph of order p. Furthermore the
local density fk,, («) of a graph with arbitrary order is defined for m > 3:

Bk, (a) := sup P, (a,p). (1)

p>m

The connexion between the local density of a graph not containing a K, and the generalized
Ramsey numbers r(K,,, (n, k)) can be seen as follows:

(K, (Lap], (Lang) — Br,, (a,p) p* + 1)) and

> p
r(Km, (lap), () = Br,.(a,p)p?) < p.

Thus if the values of the generalized Ramsey numbers r(K,,, (n, k)) are known for all values
of n and k, Bk, (a,p) can be evaluated for arbitrary values of a and p using the following
transformation (2):

By (0, p) = min {5 (Ko, (n,K)) < p where n = [ap) and k = (LO;“) - ﬁp2} L ©

On the other hand, if r(K,,, (n,k)) < cn holds for a constant ¢, 7(K,,, (n,k)) can be
obtained if Sk, (o, p) is known for all values of o and p:

F(K o (,k)) = min {p . lop) = n and (g) ~ B (o0 )" = k} NG

Some notations will be used in the following. A red-green coloring of K, is called a
(K, {n, k))-coloring, if it contains neither a green K,, nor a red (n,k)-graph. We use
V(G) to denote the set of vertices of G and define Ny(v) and N, (v), for all v € V(G), to
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be the sets of green and red neighbours of v, respectively. The number of green (or red)
edges incident to v is denoted by g(v) (or r(v)). A, (or A,) is the maximal degree with
respect to the green (or red) subgraph of G and ¢(G) (or r(G)) is the number of green (or
red) edges in G.

In the following we will determine the Ramsey numbers r(K,,, (n,k)) for m > 3 and
(compared to (Z)) small values of k. Sections 3 and 4 are devoted to generalizations of this

result whereas consequences for the local density of K,,-free graphs are derived in Section
5.

2 Ramsey numbers (K, (n,k)) withn > m > 3

There is a close relationship between Ramsey numbers (K, (n, k)) for small k£ and special
Turan graphs. After defining the Turdan problem we will draw the connexion to the given
Ramsey problem and deduce previously unknown values for (K, (n, k)).

The Turédn problem asks for the maximal number ¢;(n) of edges in a graph of order n not
containing a subgraph isomorphic to G. A Turdn graph for G and n is defined to be a
graph of order n and size t,(n) that does not contain a subgraph G. Turdn’s Theorem [24]
solves the problem in case of G = K,,,. If n > m > 3 then

m—2

b (0) = 55 = 7+ (), (@)

where [ is defined by

n=am-1)+p, a€lN,, 0<[G<m-—2 (5)
Furthermore, the complete (m — 1)-partite graph K,, .. , = Tk, (n) where n; = ... =
ng =a+1and ngy1 =+ = Ny = «a is the only Turdn graph for K, and n.

A very simple connexion between tg, (n) and 7(K,,, (n, k)) can be derived for & < (’;) =
th (TL)

Theorem 1 Let n > m > 3 be positive integers. Then

(K (k) =0 for 0<k< @ —ti. (n).

This correlation will be extended in the following to higher values of k. For this purpose
some further definitions are useful.

For n > m > 3 let {sg, s1,82,.-.}, So < $1 < 83 < -+, be the set of non-negative integers
such that n + s; (mod m — 1) # m — 2. Using the representation of n in (5) we obtain
. 1+ .
;= > 0. 6
S 1+ {m — QJ 1> ( )
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There are uniquely defined integers 7; and ¢; such that
n+s; = v(m—1)+9¢; v €Ny, 0<6;<m-—23 (7)

and for s; < ; (which is true for s; < ) we define

ks o= 6, (W ;“ 1) +(m—8 —2) (72) + (” N 3) ®)

Note that ko = (Z) —tk,, (n) is the highest value of k such that r(K,,, (n, k)) is determined
by Theorem 1. Moreover, for ¢ > 1

I i+06 f m—2
kl_{ki_l—f‘&i—l; Z+ﬂ | m— 2 (9)
which implies that
: i+ n i(i+1)
— - > — ) 1
g k0+j§18] Ln—2J = (2) tin (1) + =5 (10)

It is easily checked that k; can also be written as

1

n+s;

2 .
1J +(@2n—m+1) V““Sl

1J + 57 + sil : (11)

m E—
The following lower bound for 7(K,,, (n, k)) is easily obtained using the Turdn graphs T, .

Theorem 2 Let m >n >3, i € INy and let s;, k; be defined by (6) and (8). Then

n
r(Km, (n,k)) >n+s; if k>k and s; < —.
m
Proof: No green K,, occurs in the red-green coloring of K, in which the green subgraph
is isomorphic to the Turdn graph Tk, (n + s;). On the other hand it is easy to verify that
the maximal number of red edges in a subgraph with n vertices is exactly k;.

n

2) small values of k.

This lower bound is sharp for relative to (

Theorem 3 Let m >n > 3, i € INy and let s;, k; be defined by (6) and (8). Then

2 2m — 3
r(Km, (n,k))=n+s;+1 if k;<k <k and SiSSmaX::”:ﬂLil_ mn

m—2"



Proof: Considering the lower bound for r(K,,, (n,k)) given in Theorem 2 it suffices to
show that 7(K,,, (n,k)) < n+s; +1is true for k£ < k;4q.

Assume that there exists a (K, (n, k;11))-coloring C of K,,;s,11. Using (7) we obtain that
n+s;i+1=~v(m—1)+6, where y =~ and 6 =6, +1,1 < 6 < m — 2. It follows that
kiv1 = 6(7;1) +(m—-06— 2)(;’) + (77321'*1) for each value of i.

Let v € V(K,4s5,41) be a vertex with g(v) = A,. Furthermore let H; := [N,(v)] and
H, := [N,(v) + v]. Since there is no green subgraph K,, C K, .41 in C, there is no green
subgraph K,, ; C H;.

We distinguish two cases:

1. Ay >n+s;+1—7,ie |V(Hy)| <.
If A, > n, any subgraph G with |V(G)| = n of H; contains at most ¢k, ,(n) green
edges. Thus r(G) > (;) —tk, _,(n) > kiy1.

In the case that Ay, < n any subgraph G containing H; and n — A, arbitrary vertices
from Hj has at most g, ,(A,)+ (n—Ay)A, green edges where n — A, < v—s; — 1.
Thus ¢(G) is maximal (and 7(G) minimal) if A, is minimal, i.e. if Ay = n+s;+1—7.
Therefore

9(G) < tg, (n+si+l—y)+n+si+1—7)(si+1—7)
= (g) _5(7;1)+(m_5_2)(g)+(77s2i71)

r(@) > () +m=-6-2+ (5" = ki

Thus G contains a red (n, k;;1)-graph contradicting the assumption.

and

2. Ay <n+s;—n,ie |[V(Hy)| > 7.

Construct a subgraph G C K, 4,41 by successive deletion of s;41 vertices of maximal
degree with respect to the green subgraph. As the number of green edges in the
removed subgraph cannot exceed tg, (s;+1), the number of green edges in G cannot
exceed the following upper bound:

1 1
9(G) < sna, - (5(51- F DA, =t (s + 1))

2

1 m— 2
< S(n—si—1 i) T (s 1)
< 2(n s Y(n+s 7)+2(m_1)(s+)

G contains a red (n, k;y1)-graph contradicting the assumption if

00()-ba= ()b mms-a() o (3]

Transformation of the above equations show that this is true if

4m — 6 m—l( 1 (5) +3m—4
: m—281 m—2m 7

<0.
m-—2

)



Because of 2—:; >1and m — 1 — ¢ > 1, this is satisfied if

,  4m—6 m—1 3m —4
s; + v+

(2

m—QSi_m—Q m—2

With v = [®£2t1] it is easy to see that G contains a red (n,k;41)-graph if s; <
n+2 _ 2m—3

m—1 m—2 °

a

The following Lemma gives a bound for the values of k£ for which the Ramsey number
r(Km, (n,k)) can be determined using Theorem 3.

Lemma 1 Theorem 38 can be applied for all positive integers m,n,k with n > m > 3 and

(Z) —tk,,(n) < k < kmax where

SULRL) o BY s R

b > () = (0 + 302 a(m —1)

Proof: From the upper bound for s; an upper bound for i can be derived. Using (10) a
straightforward calculation leads to the given lower bound for k..

|

Using the description of r(K,,, (n, k)) in Theorem 3 it is not possible to give (K, (n, k))
explicitly. Anyway, given a value of k with 0 < k < k., the value of 7(K,,, (n, k)) can
easily be evaluated using (9) and (11) and Theorem 3.

3 Ramsey numbers r({(m,1), (n, k))

The results obtained in Section 2 strongly depend on the Turdn graph T, (n). Theorems
2 and 3 use the special structure of this graph. They can thus be transferred to more
general cases where the Turdn graphs have a similar structure.

One generalization of the problem of Turdn is that of finding the maximal number of edges
tg(n) in a graph with n vertices not containing a subgraph G € G where G is a given set
of graphs. A Turdn graph for G and n is a graph of order n and size tg(n) that does not
contain a subgraph G € G. (Note that in this general formulation a Turdn graph is not
necessarily unique.) For the case that G = (m, (’;) — Ay withn>m+1and 0 <\ <23
it has been shown in [6] that the graph Tk __, (n) is the only Turdn graph for G and n.
Thus analogously to Theorems 1 to 3 the following statements can be proven:

Theorem 4 Let n,m € IN and A\ € INy withn>m+1>4 and A < m743 Then

() =k = o<k < (5) — (o)



Theorem 5 Let n,m € IN and A\,1 € INg withn >m+1>4 and A < mT_?’ Furthermore

let s; and k; be defined as in (6) and (8), where m is replaced by m — X in (5)-(8). Then

n

m
— . ; . < ]
r({m, <2> A), (n,k)) >n+s; if k>k and s; < —

For small values of £ this bound is sharp.

Theorem 6 Let n,m € IN and A € INg withn > m+1>4, A < mT"l and let s;, k; € INy
as in Theorem 5. Then

T(<m’ (m) - /\>’ <n’ k)) =n+s+1 fOT ki <k < ki+1

2
e n+2 2(m—X)-3
and Si < Smax 1= Vm—A—1" (mf)\z2 :

Proof: Theorem 6 can be proven analogously to Theorem 3. As the Turdn number
b1 (mfl)i)\>(.) is needed, the value of A must be bounded by A < ™.
2

4 Ramsey numbers r(K;,,..., K;, (n,k))

Let tg, . g(n) denote the maximal number of edges in a graph G with n vertices such
that there exists an [-coloring of the edges of G not containing a monochromatic subgraph
G; € G; in color ¢ for all + = 1,...,l. This number can also be regarded as generalized
Turdn number and the graphs in question of size tg, . g (n) are also called Turdn graphs.
In the case that G; = {K;} (j = 1,...,l) the only Turdn graph for Gi,...,G; and n
is the “classical” Turdn graph Tk, (n) where r = r(Kj;,,..., K;) is the Ramsey number
of K;,,...,K; (see [23]). Thus Theorems 1 to 3 can be transferred to Ramsey numbers
r(Ki, ..., K, (n,k)) by replacing the value of m by the value of .

Theorem 7 Let l,iy,...,i;,7,n € IN withl > 2, r := r(K;
Then

LK) >3 andn > 7.

r(Kiyv.o Ky (k) =n if 0<k< (2‘) —ti.(n).

Theorem 8 Let l,iy,...,4,7,n € IN and i € INg withl > 2, r :=7r(K;,,...,K;,) > 3 and
n > r. Furthermore let s; and k; be defined as in (6) and (8), where m is replaced by r in
(5)-(8). Then

T(KllaaKzla<nak>)>n+Sz Zf ]f>k‘z and s1§;



Theorem 9 Let l,iy,...,5,7,n € IN withl > 2, r:=7r(K;,...,K;) >3, n>r and

!

(T(Kil, caay Kij—l’ KZ‘J.,I, Kij+17 ceay Kzl) - 1) S r— 2. (12)

7=1
Then
T(Kil,...,Kil,(n,k))=n+s,~+1 fO’f‘ ki<kSki+1
and Si < Smax 1= /22 — 23

Proof: The colors 1,...,1 are identified with the color “green” in the proof of Theorem
3. The vertex v in the first part of the proof is therefore incident to A, edges of the
colors 1,...,1, i.e. to A, “green” edges. In the induced subgraph N;(v) not more than
bRy e,y K1, ek ([V (N (0))]) edges are “green” (j =1,...,1). With (12) we have

l
Z tKil7---,Kij71,Kij—1,Kij+1 ----- Kj (|V(NJ (U)) |) <tk (Ag)

j=1
and the proof of Theorem 9 can be completed analogously to the proof of Theorem 3.

|

Unfortunately the Ramsey numbers in inequality (12) are not known in general. Neverthe-
less, inequality (12) is true e.g. for (K3, K3), (K3, K3, K3) and (K, K4). The corresponding
Ramsey numbers are r(K3 K,) = 3, r(K; K;) = r(K3 K Ky) = 6,
r(Ks, K3, K3) = 17, r(Ky, K3) = 7 and (K4, K4) = 18.

Corollary 1
r(Ks, K3, (n,k)) = n+s+1 for ki <k <k and s; < %\/n—i- 2 —

T(Kg,Kg,K3,<n,k>) = n+s+1 fO’/’ kz<k§k1+1 and sigivn+2—%,
T(K4,K4,<TL,]€>) = n+s+1 fO’f‘ ki<k§ki+1 and sigx/%vn-l- —%.

Wl

Y

5 The local density of K,,-free graphs

In this section the connexion between Ramsey numbers 7(K,,, {(n, k)) and the local density
Bk, (a,p) of graphs not containing a subgraph K, given in Section 1, equations (2) and
(3) will be used to derive some new results concerning the local density of K,,-free graphs
(m > 3).

In [7] the following conjecture about the values of fx,(«) has been raised:



Conjecture 1 ([7])
(20 —1)/4 if 17/30<a <1,
By (@) = .
(50— 2)/25 if 53/120 < a < 17/30.
For sufficiently large values of p and 0.648 < o < 1 Conjecture 1 has been proven in [7] and

for 3/5 < a < 1 it has been proven in [20]. Conjecture 1 is not true if 0.442 ~ 53/120 <
a < 474/1000 as has been shown in [2].

For the more general case that G does not contain a subgraph K,,, m > 3, the following
upper bounds for fk,, (a,p) have been given in [7]:

Theorem 10 ([7]) Let G be a graph with p vertices not containing a subgraph K,, (m > 3)
and let 0 < a < 1. Furthermore let 6 be a positive real number such that 6(m — 2) < 1.
Then the following upper bound for B, («) can be given for p sufficiently large:

B, (a,p) < max{[(m —3)/(2m — 4)]a?, o*/2},

B (@) < (1/2)a%".
Using the results for Ramsey numbers 7(kK,,, (n, k)) obtained in Section 2, the values of

Bk, (a,p) can now be determined exactly for some values of oz and p. For this purpose
equation (2) is applied:

Theorem 11 Let o € IR with 0 < o < 1 and let Bg,, (a,p) € IR be the smallest positive
number with property (P2). Furthermore let ap be a positive integer such that ap > m.

Then
st = o1 [255]) - (65 )

_1(1+(1_a>a_m—1 VHJ) - L(o2+0)

p\2 2p m—1 2p
m—2< 1)
—_— a__
m—1 2
where o 1= L if m—1|p+1
0 else

Jo+Dm—-1)+1-m+1

and o > Opip =1 —
p(m—1)

Proof: Let s;, k; be defined as in (6) and (8). The following statement is an easy con-
sequence of (2) and Theorem 3:

Bk, (a,p) = ]% KL%}H) — ki+1] with i =max{i >0 : p>n+s;+1}. (13)

We will distinguish two cases:



1. m—1 fp: From (6) we know that there exists s; such that p = n+ s; + 1. Thus
we have s; = (1 — a)p — 1 and

si+l=(1—-a)p if m—-1fp+1
Sitl = —

sit2=(1—a)p+1 else
Using (11) and (13) and defining s := 5,1, we get

1 2
Bk, (a,p) = 2—pz<042p2 —ap+ (m— 1){O;f+fJ —(2ap—m+1) {O;f—'_SJ - 82—8)

and an easy calculation using ¢ := s — (1 — «)p gives

ston = o (13 [555) - (55 )

SAramar-m[2E2)) - (et o)

(=) 5 (1)
@ m—1)" 2 m—1
_ m—2( 1)
T m—1\* T2

2. m—1]|p: In this case there exists s; with p — 1 =n + s; + 1. Furthermore there is
no §; such that p = n+ §; + 1. It follows that s; = (1 — a)p — 2 and using m — 1| p

IN

Si+1 = S5 +2= (1 — a)p.
Using (11) and (13), an easy calculation analogous to case 1 completes the proof.

a

In the special case of m =3 and 1 > a > appn =1 — ~ 2(p+1)2—;0.2571.5 the result stated in
Conjecture 1 and proven in [7] is also obtained by Theorem 11:

B (@) 21 if p even
K3\Q, D) = o o .
2 5_i_12—p_4p% lprdd

A similar result with a better lower bound for « can also be found in [18].
Theorem 11 suggests the following conjecture for the local density of K,,-free graphs:

Conjecture 2 Let m > 3 be a positive integer and o € IR with 0 < o < 1. Then

for some values of a close to 1.
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Analogous to the results about Ramsey numbers r(K,,, (n,k)) given in Section 2, the

more general concepts for Ramsey numbers r({m, (), (n, k)) described in Section 3 can be

transferred to the concept of local densities. For this purpose let G be a given set of

graphs and let Gg(a, p) € IR be defined as the smallest positive number with the following

property:

(P3) If G is a graph with p > 3 vertices such that every subset of |ap| vertices spans
more than (g(a, p) p? edges, then G contains a subgraph G; € G.

In the case that G = (m, [}, i.e. G equals the set of all graphs with m vertices and [ edges,
the value of fg(a,p) can be interpreted as the local density of a graph G whose local
density with respect to subgraphs of order m does not exceed [ — 1.

Theorem 12 Let G be the set of all graphs with m > 3 vertices and (’;) — X edges, where

A€ Ny and A < 2 ie. G := (m, (g’) —A).

Let o € R with 0 < o < 1 and let fg(a,p) € IR be the smallest positive number with
property (P3). Furthermore let ap be a positive integer such that ap > m. Then

o = (155255 - (-5 )

1/(1 m—-A—=1] p+o 1/,
_};<§+(1—a)0— o {m—/\—lJ>_2—p?<a -I-J)

m—)\—Q( 1)
m—A—1\""2

1 if m—A—1|p+1
0 else

where o := {

Jo+Dm=-XA-1)+-m-x+1

d > min::]-_
an oz p(m—)\—l)

Proof: Theorem 12 can be proven analogously to Theorem 11 by using Theorem 6 and
replacing m by m — \.

Thus Conjecture 2 can be generalized:

Conjecture 3 Let G := (m, (ZL) — A) be the set of graphs with m > 3 vertices and (7;) -
edges, where A € INy and A < mT"l.Furthermore, let « € IR with 0 < o« < 1. Then

for some values of a close to 1.
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6 Conclusions

An interesting behaviour of the values of r(K,,, (n, k)) depending on k has been proven
in this paper. Starting with & = (Z) — tg,, (n) the values of r(K,,, (n,k)) grow rapidly
whereas with increasing values of £ (and therefore s;) the slope of r(K,,, (n, k)) decreases
again.

At least one important question remains open: There must exist a point of inflection, i.e. a
value of k£ for which the slope of 7(K,,, (n, k)) starts to increase again. The known lower
bounds for r(K,,, K,,) show that at least one point like this must exist.

Furthermore the results obtained for (K, (n, k)) have been transferred to the concept of
the local density f,, («,p) of K,,-free graphs, for which some previously unknown values
have been determined.
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