
2

I D
••

TECHNISCHE UNIVERSITÄT
KAISERSLAUTERN

Interner Bericht

Compositional Testing
of Communications Systems

R. Gotzhein, F. Khendek

Technical Report 329/04

FACHBEREICH
INFORMATIK

Postfach 3049 · D-67653 Kaiserslautern

Compositional Testing of Communication Systems

R. Gotzhein 1, F. Khendek2

1Computer Science Department, University ofKaiserslautem, Kaiserslautern, Germany
gotzhein@informatik.uni-kl.de

2ECE Department, Concordia University, Montreal, Canada
khendek@ece.concordia.ca

Technical Report 329/04

Computer Science Department
University of Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany

Compositional Testing of Communication Systems

R. Gotzhein 1, F. Khendek2

1Computer Science Department, University ofKaiserslautem, K~iserslautem, Germany
gotzhein@informatik.uni-kl.de

2ECE Department, Concordia University, Montreal, Canada
khendek@ece.concordia.ca

Abstract. Today, test methods for communication protocols assume, among other things, that the protocol design
is specified as a single, monolithic finite state machine (FSM). From this specification, test suites that are capable
of detecting output and/or transfer faults in the protocol implementation are derived. Limited applicability ofthese
methods is mainly because oftheir specific assumptions, and due to the size ofthe derived test suite and the resulting
test effort for realistic protocols. In this work, the compositional test method (C-method), which exploits the
a:vailable structure of a communication protocol, is proposed. The C-method first tests each protocol component
separately for output and/or transfer faults, using one ofthe traditional test methods, then checks for composability,
and finally tests the composite system for composition faults. To check for composability and to derive the test suite
for the detection of composition faults, it is not required to construct the global state machine. Instead, all
information is derived from the component state machines, which avoids a potential state explosion and lengthy test
cases. Furthermore, the test suite checks for composition faults only. This substantially reduces the size ofthe test
suite and thus the overall test effort.

1. Introduction

Systematical methods for testing protocol implementations have a long and successful record.
The relevance and the potential of protocol testing is first recognized in [11], which has initiated
a research stream that has produced a diversity of test methods with different foci. These methods
usually assume that the design of the protocol implementation to be tested is given in the form of
a finite state machine (FSM), that this state machine is minimal, completely specified, and fully
connected. Some methods further assume the FSM tobe deterministic [2,4,13], while others
relax this constraint [9]. Recently, the focus has been shifted to real-time testing [3] and
embedded testing.

All these test methods have in common that test cases are derived from a protocol design that is
specified as a single finite state machine. To test a complete commlinication system, such a
monolithic FSM has to be derived first, which normally leads to large state spaces and therefore
long test cases as well as large test suites that can often not be managed in practice. Thus,
complete protocol testing today is restricted to testing individual, relatively small protocol
entities, but not their interworking.

lt is this observation that has led us to investigate a different approach, which we call
compositional testing. Here, communication systems are perceived as being built from
components that can be modeled as FSMs. Each ofthese components is tested using well-proven
techniques, such as the UIOv-method [13] or the Wp-method [4]. However, when these
components are put together by adding glue code, no monolithic FSM is constructed in order to
derive test cases for the composite system, which would lead to long test cases, large test suites,
and a repetition of tests already performed on component level. Instead, the composite system is

© R. Gotzhein, F. Khendek

only tested for composition faults, i.e., faulty glue code, a new type of fault that extends and
complements the classical fault model. We note that compositional testing is different from
interoperability testing [1], where the objective is to check whether two implementations 11 and
fi conforming to the same specification S interoperate correctly. Here, two implementations may
interoperate correctly, in some cases, and incorrectly, in other cases, because of faulty glue.
Compositional testing is directed towards detecting faulty glue, assuming that 11 and12 conform
to S 1 and S 2, respectively.

In this paper, we will develop these ideas up to a certain point, and illustrate them through
examples. We focus on a specific type of composition, called concurrent composition. However,
other types of composition may be considered as well. The results so far may stimulate a new
research stream that finally leads to a theory of compositional testing. Section 2 defines the
concurrent composition of asynchronously communicating FSMs, and states necessary
conditions for composability. The compositional test method (C-method) is defined in Section 3.
An application is shown in Section 4. We draw conclusions and indicate future research topics
in Section 5.

2. Concurrent composition
In this section, we define the concurrent composition of two FSMs. Further types of composition
are perceivable, for instance, in the context of micro protocols [5]. On specification level,
composition can be expressed by defining a composition operator. On implementation level, this
operator is usually realized by a piece of code that we call glue code.

Concurrent composition may be applied to put local and/or remote components together. From
the conceptual viewpoint, this should not make any difference. For instance, we may compose
protocol entities PE1 1 and PE1 2 as well as PE1 2 and PE2 2 concurrently, as shown in Figure la)
and b), respectively'. For the local compositibn, the gl~e code may consist of intemal data
structures and operations to add signals to the input queue ofthe other protocol entity (Figure lc).
For the remote composition, the glue code may comprise an entire logical communication
medium, which may in turn be a composite system (Figure ld).

PE21
'

r -~--~-~- - - - -
1b):

-,
PE2,2

L _:,·_:·.:._·:: ... ::_:·_:·..:_ - - - - - - ..J

PE21
'
-,

1

"---::=--r-~ 1
1

-~~--m-e-d-iu-m--~~~I :

L-------------..J

Figure 1: Concurrent composition of protocol entities

© R. Gotzhein, F. Khendek 2

In this paper, we use the standard definition ofFSM, and a derived notion:

Definition 1: Afinite state machine (FSM) M is a tuple (S,I,O,s0,')...,e) with:

- S is a finite set of states.

1 is a finite input alphabet.

- 0 is a finite output alphabet.

- s0 E S is the initial state.

- Ae c SxlxOxS defines the transitions of M.

A finite state machine is completely specified, if for each state and each input, a transition is
defined. There exist several ways to extend a given FSM to a completely specified machine, e.g.,
by adding implicit transitions (cf. SDL [7]). Thus, FSMs are completely specified by default. We
adopt this approach in the following definition:

Definition 2: A completely specified finite state machine (csFSM) N = (S,I,O e,s0,A.) is derived
from an FSM M = (S,I,O,s0,A.e) as follows:

- S, 1, s0 as in M.

- 0 e = 0 u { e}, where e ~ 0 is called error output.

- /... = Ae u Ai> is the transition relation of N. Tuples of A are called transitions of N.

- Ae defines the explicit transitions of N.

- Ai= { (s,i,e,s) 1 s E S /\ i E 1 /\ -.3o E 0, s' E S: (s,i,o,s ') E Ae } defines the implicit tran-
sitions of N.

Tue standard definition of FSMs does not distinguish between explicit and implicit transitions.
We consider explicit transitions as regular behavior. Implicit transitions are undesired behavior,
but included to enhance testability of the implementation. Thus, csFSMs are always completely
specified, i.e., for each state and each input, a transition is defined. The concept of implicit
transition is similar to that found in SDL [7], with the difference that an error output is produced.
Below, we omit the error output e and the transition relation Ai for brevity.

To define the concurrent composition of csFSMs, we assume that they communicate by
asynchronous reliable signal exchange, where sending and receiving of signals is modeled as
output and input of the communicating csFSMs, respectively. Therefore, an input queue
collecting signals that are delivered, but not yet consumed, is associated with each csFSM.
Furthermore, each signal cames identifications of the sending and receiving machine, which may
be · evaluated as needed. The identifications are determined dynamically from the sending
machine, the connection structure of the communicating csFSMs consisting of typed channels,
and explicit addressing, if necessary. Again, this is similar to SDL.

Definition 3: Let N1 = (S1,IbObso,bA.1) and N2 = (S2,Ji,02,s0,2,A.2) be csFSMs. Let 011,2 c 0 1
n h (Ofi 1 c02 n11) be the set of signals exchanged between N1 and N2 (N2 and N1), called
internal signals. The concurrent composition of N1 and Ni. denoted N1 II N2, is defined by the
derived state machine Q = (S,I,O,s0,A.):

S = S1 x 11* x S2 x12* is the set of states.

- 1=11 u 12 is the (finite) input alphabet.

© R. Gotzhein, F. Khendek 3

- 0 = OI u 0 2 is the (finite) output alphabet.

- so= (so,b<>,so,2,<>) is the initial state, consisting of the initial states of NI and N2 and the
initial states of input queues associated with NI and N2, respectively.

- A c SxlxOxS is the transition relation of Q. Tuples of ')..., are called transitions o[Q. /...., is
derived from AI and 'A2 as follows:

(s,i,o ,s ') E A with s = (s bq bs2,q2) and s ' = (s I ',q I ',s2 ',q2 ') iff

(3(sbi,o,sI') E AI: (qI = <z>" qrAq/=ifo E Ol12 thenqp<o> elseq2 As2 =s2 '))v
(3(s2,i,o,s2 ') E 'A2: (q2 = <i>" q2' /\ q / = if o E 0121 then q I"<o> eise q I /\ s I = s I J)

This definition includes the concurrent composition of two independent csFSMs, i.e., two
csFSMs that do not exchange signals. In this case, OlI 2 = Oh I = {}.

' '

A csFSM can be represented as a labeled directed graph, where states correspond to nodes, and
transitions correspond to edges labeled with input and output.

Definition 4: A labeled directed graph Gis a tuple (V ,L,E), consisting of a set of nodes V, a set
of labels L, and a relation E c Vx VxL, defining the directed edges of the graph. A path is a non
empty sequence of consecutive edges. A tour is a path that starts and ends at the same node. A
directed graph G is strongly connected, if for each pair of nodes (v, v '), where v * v ', there is a
path from v to v '.

Example 1: Figure 2 shows the concurrent composition of deterministic, strongly connected
csFSMs NI and N2. Note that the error output as well as the implicit transitions are not shown in
the figure. The machines interact via eh, which is typed by OlI,2 and Oh,b and are connected to
the environment by typed channels chI and ch2. The resulting behavior after composition (see
Figure 3) can be represented by the state machine Q =NI II N2, where states are represented as
tuples (s I•q I,s2,q2) denoting the states of NI and N2, and of their input queues.

chI
XJ,env = {x4,x6}

ch2
X2,env = {x2}

Xenv I = {xI} Xenv,2 = {x3,x5}

NI: xI/iI N2: iilx2

xli2

II = {xih,i3}
i3!x6 0112= {iI 12 ={x3,x5,iI}

X5/i3

Q I = {X4,X6,i I} 02= {x2.i2,i3}

Figure 2: Concurrent composition: component machines NI apd N2 (Example 1)

© R. Gotzhein, F. Khendek 4

X1 ,env = {x4,x6}

xenv,1 = {x 1}

Figure 3: Concurrent composition: derived machine Q (Example 1)

While it is syntactically possible to compose all kinds of csFSMs, this is not always meaningful.
Which csFSMs to compose, first of all depends on the intended global behavior, which is
problem specific. However, some general composition criteria can be stated:

CC1. Interna! signals of either machine are eventually consumed by the other machine in an
explicit transition, i.e., the composed system is free of intemal unspecified receptions.
This excludes transitions that have been added to obtain a fully specified state machine,
i.e., implicit transitions yielding an error output (see Definition 2).

CC2. The composed system is free of intema/ deadlocks. Since it is assumed that extemal
signals can be produced in any order, this again restricts the intemal interaction only.

3. Compositional testing of concurrently composed csFSMs
In this section, we will show how to derive test suites for testing the implementation of
concurrently composed csFSMs. We assume that certain assumptions conceming the component
csFSMs (e.g., strongly connected, deterministic) and their implementations (e.g., conceming the
number of states) are satisfied, and that the implementation of each csFSM can be tested using a
test method that detects all output and transfer faults.

A direct approach to test the composite system would be to determine its global state machine,
and then to apply one of the existing test methods to derive test cases · for this machine. This,
however, has the following drawbacks:

- The state set of the global state machine may be large. Firstly, this can consume consider
able computational resources to determine the machine. Secondly, it can lead to a large
test suite containing long test cases, implying a testing effort that quickly becomes
unmanageable.

- The global state machine may be non-deterministic, due to the concurrency of the com
posite system, which reduces the applicability of existing test methods.

© R. Gotzhein, F. Khendek 5

- All tests already executed on component level are in fact repeated. This is a severe draw
back in general, and especially if components are to be reused in different protocol config
urations.

To avoid these disadvantages, a test method satisfying the following properties is sought:

- lt is not necessary to compute the global state machine.

- Only tests checking the correctness of the glue code of the csFSMs are derived.

- Tests already perf ormed on component level are not repeated.

These properties can only be satisfied if the implementations of the design components, which
have been tested on component level, remain unchanged. This means that only glue code to
realize the specific type of composition is added. Only if this constraint is satisfied, tests that have
been applied on component level (e.g„ to detect transfer and output errors) need not be repeated
after composition. All that remains to be checked is the correct implementation of the
composition operator.

In the following, we introduce a method for compositional testing - henceforth called
compositional test method (C-method) - that satisfies the above properties. Westart by defining
the fault model, then introduce concepts, notations, and an initial tour coverage graph, and finally
give a procedural definition of the C-method.

3.1. Fault model

The common way to check that a conformance relation that is defmed on an infinite set of input
sequences holds between two finite state machines is to reduce the set of possible
implementations to a finite number by assuming a fault model [10]. The classical fault model of
protocol testing assumes that the implementation I can be treated as a mutant of the specification
S, where a mutant may be obtained by altering outputs of transitions (outputfaults), by altering
tail states of transitions (transfer faults), by adding states up to a given number as well as extra
transitions to and from these states. This general fault model is sometimes reduced to output and
transfer faults by assuming that the number of implementation states is less or equal to the
number of specification states, and to deterministic implementations.

Implementations are tested by applying input sequences and observing the output sequences. An
implementation fault is detected, if an observed output sequence differs from the expected output
sequence. Whether this fault is an output fault or a transfer fault, or due to an extra state or an
extra transition, depends on the fault model, on the diagnosis capability of the test method, and
on the knowledge about the implementation at the time of test execution.

The classical fault model is usually applied to single components that are specified by a finite
state machine, e.g„ a single protocol entity. lt may also be applied to a composite system, e.g„
protocol entities and an underlying medium, if a fmite state machine of that system can be
constructed. This, however, causes the aforementioned problems (large state spaces, non
determinism, repetition of tests). In order to avoid these problems, we propose to take the
structural aspect of the composition into account, and to distinguish the following fault
categories:

- component fault: the implementation of a component does_not satisfy its specification

- composition fault: the glue code does not satisfy its specification in the given context

© R. Gotzhein, F. Khendek 6

The problem of compositional testing can then be stated as follows:

Let Nl and N1 be the specifications of two components, and 11 and h be their imple
mentations, where 11 and h satisfy their specifications N 1 and N2' respectively.
Then, derive a minimal test suite that is sufficient to check whether the system l
consisting of 11' 12, and glue code satisfies the specification N1 II N2.

As before, implementations are tested by applying input sequences, and comparing the observed
and the expected output sequences. Again, it depends on the fault model, the diagnosis capability
ofthe test method, and the knowledge about the implementation at the time oftest execution how
a detected fault may be classified. For instance, if the components have already been tested
successfully, and their implementations are reused in the composite system, then detected faults
can be classified as composition faults.

To derive a minimal test suite that is sufficient to check the composed system, a model ofthe glue
code is needed. In general, the glue code could be a component or a composite system itself, for
instance, a logical communication medium, which may have further attached components. As
testing would be unfeasible in this general setting, we make the following assumption:

i) Whenever 11 and h are both in their initial states, the glue code is in a deter
mined state w.r.t. 11 and fi.

ii) The behavior of the glue code is deterministic w.r.t. 11 and fi.

iii) If the glue code interacts with other components, this has no effect on its behav- ·
ior towards 11 and fi.

iv) The glue code is not creating messages for N1 or N2.

The first assumption limits the maximum length of test suites to the set of all initial tours, i.e.,
paths that start and end in the initial state. All assumptions together ensure that a finite number
of test cases is sufficient.

3.2. Concepts and notations

The following definitions recall and introduce some concepts and notations for testing:

Definition 5: A test case tc is a non-empty sequence of inputs i1.i2 •...• in- A test suite ts is a non
empty set of test cases {tc btc2, ... ,tcm}. An augmented test case atc is defined as a non-empty
sequence oftransitions (also called test elements) i 1/o 1.i/o2 •...• in/on- An augmented test suite ats
is a non-empty set of augmented test cases {atc batc2'····atcm}.

Definition 6: Let atc 1 and atc2 be augmented test cases (sequences of transitions) of deterministic
csFSMs N1 and N2 that communicate via a common channel eh with sets 011,2 and Ofi,J of
intemal signals. The concurrent composition of atc 1 and atc 2, denoted atc 1 11 atc 2, is obtained by
combining all test elements into one augmented test case atc 1,2 such that the following constraints
are satisfied:

- the order of test elements of atc 1 and atc 2 is preserved;

© R. Gotzhein, F. Khendek 7

- for atc 1 (atc2), test elements triggered by extemal signals may be added to atc 1,2 without
further constraints;

- for atc 1 (atc2), test elements by intemal signals may only be added to atc 1 2 if this signal
has already been output in a previous test element, and is ready for consum'ption;
the order of outputs is preserved.

The rationale here is that intemal signals are entirely controlled by the concurrently composed
csFSMs, while extemal signals are under the control ofthe tester and can therefore be sent at any
time. From the definition, it follows that II commutes, i.e., atc1,2 = atc2,1.

Example 2: For the csFSMs N1 and N2 ofExample 1, the following augmented test cases can be
derived and composed:

- atc1 =x/i1.i/x4
- atc2 = illx2.xii2

- atc1 II atc2. = x11i1.i11x2.xii2.i/x4

Definition 7: The concurr.ent composition of two augmented test cases is called complete, iff all
their test elements are included, and the input queues ofthe corresponding csFSMs will be empty
after their execution. Otherwise, it is called incomplete.

Example 3: Tue concurrent composition of atc 1 and atc 2 in Example 2 is complete. However, the
concurrent composition of atc 1 and atc2' = i 11x2 results in x 1/i 1.i /x2 , which is incomplete.

3.3. Initial tour coverage tree

Selected augmented test cases of components form the basis for deriving a test suite for
validating the correct implementation of their composition. These test cases are derived from a
so-called initial tour coverage tree, reduced to the set of relevant test cases, and composed with
matching test cases of the other component.

Definition 8: Let N = (S,1,0 e,s0,A.) be a csFSM with the underlying graph G, where Gis strongly
connected. An initial tour of G is a tour of the underlying graph that starts and ends in the node
corresponding to the initial state s0 of N. lt is called minimal, if no edge is contained more than
once. A complete set of minimal tours is a set of minimal tours such that every edge is covered
at least once.

Definition 9: Given a csFSM N = (S,1,0e,so,A.), where the underlying graph is strongly connected„
an initial tour coverage tree T is a tree that covers all minimal tours.

The rationale behind this choice is that (i) transition coverage can be achieved this way1, and that
(ii) both automata should be synchronized at least in their initial states, a criterion for
composability. To construct an initial tour coverage tree, we use a tree that, for a given state,
captures all cycle free paths to the initial state, called homing tree:

1. Initi~l tour coverage is a reduced form of path coverage.

© R. Gotzhein, F. Khendek 8

Definition 10: Given a csFSM N = (S,I,Oe,so,A.) and a state s E S, where the underlying graph is
strongly connected, a homing tree H(s) is a minimal tree that covers all cycle-free paths of N
leading from s to the initial state s 0.

We give algorithms for the construction ofhoming trees and initial tour coverage trees in Tables
1 and 2, respectively. Both algorithms are illustrated.

Step 1: Start the construction of H(s) with its root node nr, labeled with s.

· Step 2: Assume that H(s) has been constructed up to level k, k ~ 1. Then level k+ 1
is built by examining the nodes of level k:
Step 2.1: Anoden oflevel k is terminated, if its label is identical to the label

of a node on levelj, where 1 ~} < k, or if it is identical to s0.

Step 2.2: Otherwise, lets denote the label of node n. Then, for all transitions
(s,x,y,s '), attach a branch and successor node to the current node,
labeled x/y and s ', respectively.

Step 3: Prune the resulting tree by successfully removing all leaf nodes that have a
label s * s0, and the corresponding edges.

Table 1: Construction of a homing tree H(s)

Figure 4: Horning trees (example)

© R. Gotzhein, F. Khendek 9

Step 1: For each state s of N, construct a homing tree H(s).

Step 2: Start the construction of Twith the root node nr, labeled with the initial state
s 0 of N. This is level 1 of T.

Step 3: Assume that T has been constructed up to level k, k ~ 1. Then level k+ 1 is
built by examining the nodes of level k:

Step 3 .1: Anode n of level k is terminated, if its label is identical to the label
of a node on level j, where 1 s j < k.

Step 3.2: Otherwise, let s denote the label of n. Then, for each transition
(s,x,y,s '), attach a branch and successor node to the current node,
labeled x/y and s ', respectively.

Step 4: To each leaf node n, attach the homing tree H(s) by merging the root node
of H(s) with n, where s denotes the label of n.

Table 2: Construction of an initial tour coverage tree T

Figure 5: Initial tour coverage tree (example)

3.4. The C-method

In Section 2, we have stated general composition criteria CC1 and CC2 that should be satisfied
for a meaningful composition on design level. First, the composed system should be free of
intemal unspecified receptions, which means that receptions occurring during „normal
operation" have to be consumed by regular transitions. This excludes transitions that have been
added for mere technical reasons to obtain fully specified state machines (see Definition 2). Also,
the composed system should be free of intemal deadlocks.

© R. Gotzhein, F. Khendek 10

C-method

Step 1: Test the implementations Ii and h of components Ni and N2.

Step 1.1: Select a suitable test method (e.g., DS [8], UIOv [13], Wp [9]).
Step 1.2: Derive the test suites for Ni and N2.

Step 1.3: Execute the tests. lf all tests are successful, continue with Step 2.
lf not, correct the faults and repeat Step 1.

Step 2: Test the implementation ofthe concurrent composition of Ni and N2.

Step 2.1: Remove all transitions of Ni and N2 that yield an error output.
These transitions have already been tested during component
testing, and need not be tested again.

Step 2.2: Build the initial tour coverage trees for Ni and N2, and determine
all maximal paths, i.e., all paths that start at the root node and end
at a leaf node, constituting augmented test suites ats i and ats 2.

Step 2.3: From the augmented test suites atsi (ats2), remove all intemally
triggered test cases, i.e., those test cases that are triggered by N2
(Ni).

Step 2.4: From the augmented test cases, remove all local tours, i.e.,
(sub)sequences of test case elements that (1) start and end in the
same state, and (2) contain only extemal inputs and outputs. They
have already been checked during component testing, and need
not be repeated.

Step 2.5: Remove the maximum suffix that does not contain an interaction
with the other component. These test elements have been checked
already.

Step 2.6: For each test case atci,j ofthe augmented test suite atsi after Step
2.5, find an augmented test case atc2,1 of N2 that starts and ends in
the initial state such that atc i,J II atc2,1 is complete, and determine
atc i ,2,j = atc i ,J II atc2,j, yielding the concurrent augmented test
suite ats i ,2. Analogously for each test case atc2,1 of ats2.

Step 2.7: Based on ats b ats2, and ats i ,2, check whether Ni and N2 meet the
composition criteria CCl and CC2, i.e., whether for each test case
of ats i (ats2), there is a matching test case of N2 (Ni). Yes:
continue with Step 2.8; no: stop.

Step 2.8: For each test case in ats i 2: merge adjacent test case elements in
cases where (1) the intem~l output ofthe first matches the intemal
input of the second, and (2) the output is the only signal in the
queue after being sent. Replace intemal inputs and outputs by "-",
and remove test case elements "-/-".

Step 2.9: Execute the test.

Table 3: The C-method

© R. Gotzhein, F. Khendek 11

To check whether two csFSMs Ni and N2 meet these criteria, we assume that they are always
capable to resynchronize in their initial states. In other words, if Ni is in its initial state and stays
there, N1 should be able to reach its initial state without further interaction with Nb and vice
versa. If this assumption is satisfied, it suffices to consider the explicit initial tours of both
automata, i.e., the explicit transition sequences starting and ending in the initial states, and to
check whether for each explicit initial tour, there is a matching explicit initial tour of the other
automaton such that their concurrent composition is complete. This design criterion can also be
stated in terms of concurrent composition of augmented test suites, and thus be checked as a by
product of test case derivation.

In Table 3, the C-method is defined in a procedural style. We point out that in the course of
applying the test procedure, it is checked whether Ni and N2 satisfy the composition criteria. This
is a constraint imposed on design level, which should be checked before implementing the design
and testing the implementation. Thus, all steps except Steps 1.2, 1.3, 2.8, and 2.9 should already
be executed in the design phase.

As expected, the augmented test suites ats i and ats2 are reduced to empty test suites in case Ni
and N2 do not interact, i.e., in case of their independent concurrent composition, which, among
other things, satisfies the criterion for concurrent composability. The reason is that all necessary
testing has already been done on component level. Of course, one can argue that in the
implementation, interaction of the two components may occur, and has to be excluded. This,
however, is not covered by this type of tests. When protocol components are reused, it is
sufficient to test them once, which means in a certain sense that testing is reused, too. In these
cases, compositional testing can start with Step 2.

4. Application of the C-method to the InRes protocol

To illustrate the C-method, we apply it to the InitiatorResponder (InRes).protocol [6]. The InRes
protocol is a connection-oriented communication protocol for the reliable exchange of mess~ge
over an order-preserving, connection-less medium. lt provides an asymmetrical service: the ini
tiator requests connections and sends data, the responder accepts, refuses, and clears connections,
and receives data. In this example, the InRes protocol entities 1 and R are the components that are
composed concurrently, yielding a composite system 1 \\ R. In the implementation of this system,
the glue code is represented by the underlying medium. Tobe able to use this medium for the
implementation ofthe 1 \\ R, we assume that it does not lose messages.

Figure 6 shows the specifications 1 and R of the the InRes protocol entities and their concurrent
composition.. Both automata contain further transitions that can be derived by applying Defini
tion 2, and thus are fully-specified. To avoid cluttering, we have omitted these transitions in the
figure. The underyling graphs are deterministic, and strongly connected. We assume that Step 1
of the C-method that tests the implementations of 1 and R separately has already been executed
successfully. Below, we go through Step 2:

- Step 2.1: Removal of transitions yielding an error output
These transitions have been omitted in the figure, therefore, starting point for Step 2.2 are
the finite state automata shown in Figure 6.

© R. Gotzhein, F. Khendek 12

- Step 2.2: Build initial tour coverage trees, and determine ats1 and atsR

The initial tour coverage trees for 1 and Rare shown in Figure 7. The test suites are:

ats1 = {atc1,1,atc1,2,atc1,3,atc1,4}, with
atc1,1 ICONreq/CR .. DR/IDISind
atc1,2 = ICONreq/CR. CC/ICONcnf. DR/IDISind
atc1,3 = ICONreq/CR. CC/ICONcnf. IDATreq/DT. DR/IDISind
atc14 = ICONreq/CR. CC/ICONcnf. IDATreq/DT. AKI-. DR/IDISind

atsR {atcR,batcR,2•atcR,J•atcR, 4}

atcR 1 = DTl-
atcR,2 = CR/ICONind. IDISreq/DR
atcR,J = CR/ICONind. ICONrsp/CC. IDISreq/DR
atcR,4 = CR/ICONind. ICONrsp/CC. DT/IDATind. -/AK. IDISreq/DR

- Step 2.3: Remove test cases triggered by intemal inputs

All test cases of R are triggered by inputs of the Initiator and therefore removed:

ats1 {atc1,1,atc1,2,atc1,3,atc1,4}

atsR = {}

- Step 2.4: Remove extemal local tours

Not applicable in the InRes example.

I:

D

X1,env = {ICONcnf,IDISind}

XenvJ = {ICONreq,IDATreq}

XR,env = {ICONind,IDATind}
ch2 X env,R = {ICONrsp,IDISreq}

DT/-

R
OIR,1=
eh {CC,DR,AK}

Oh,R = {CR,DT}

Figure 6: InRes protocol entities 1 and R

© R. Gotzhein, F. Khendek 13

1: R:

ICONreq/CR
DT/-

1

2

2 wait4AK

D~d
3®

AK!-

Figure 7: Initial tour coverage graphs of I and R

- Step 2.5: Remove suffix containing extemal interaction only.

Not applicable in the InRes example.

- Step 2.6: For each augmented test case in ats1 (atsR), find an augmented test case from R
(!) such that their concurrent composition is complete, and determine the concurrent aug
mented test suite ats 1,2.

ats 1,2 = { atc1,1 II atcR,a' atc1,2 II atcR,b' atc1,3 II atcR,c' atc1,4 II atcR,d }, with:

atc1,1 = ICONreq/CR. DR/IDISind

atcR,a = CR/ICONind . IDISreq/DR

atc1,1 II atcR,a = { ICONreq/CR. CR/ICONind. IDISreq/DR. DR/IDISind}

atc12 = ICONreq/CR. CC/ICONcnf. DR/IDISind

atcR b = CR/ICONind. ICONrsp/CC . IDISreq/DR

atc1,2 II atcR,b = { ICONreq/CR. CR/ICONind. ICONrsp/CC. CC/ICONcnf.

IDISreq/DR. DR/IDISind,

ICONreq/CR. CR/ICONind. ICONrsp/CC. IDISreq/DR.

CC/ICONcnf. DR/IDISind }

atc1,3 = ICONreq/CR. CC/ICONcnf. IDATreq/DT. DR/IDISind

atcR,c = CR/ICONind. ICONrsp/CC. IDISreq/DR. DTl-

atc1,3 II atcR,c = { ICONreq/CR. CR/ICONind. ICONrsp/CC . CC/ICONcnf.

© R. Gotzhein, F. Khendek 14

IDATreq/DT. IDISreq/DR. DR/IDISind. DTI-,

ICONreq/CR. CR/ICONind. ICONrsp/CC. CC/ICONcnf.

IDATreq/DT. IDISreq/DR. DT/- . DR/IDISind,

ICONreq/CR. CR/ICONind. ICONrsp/CC . CC/ICONcnf.

IDISreq/DR. IDATreq/DT. DT/- . DR/IDISind,

ICONreq/CR. CR/ICONind. ICONrsp/CC . IDISreq/DR.

CC/ICONcnf. IDATreq/DT . DT/- . DR/IDISind }

atcl,4 = ICONreq/CR. CC/ICONcnf. IDATreq/DT . AKJ- • DR/IDISind

atcR d= CR/ICONind. ICONrsp/CC. DT/IDATind. -/AK. IDISreq/DR

atci,411 atcR,d = { ICONreq/CR. CR/ICONind. ICONrsp/CC. CC/ICONcnf.

IDATreq/DT. DT/IDATind. -IAK. AKJ-. IDISreq/DR. DR/IDISind,

ICONreq/CR . CR/ICONind . ICONrsp/CC . CC/ICONcnf.

IDATreq/DT. DT/IDATind. -IAK. IDISreq/DR. AKJ-. DR/IDISind}

- Step 2.7: Check the composition criteria CCl and CC2

For each test case of atsb there is a test case of R such that their concurrent composition is
complete. This trivially holds for ats R• which is empty.

- Step 2.8: Merge test case elements, and replace intemal inputs and outputs by „-"

ats1,2 = { .atc1,1 II atcR,a• atc1,2 II atcR,b• atc1,3 II atcR,c' atcI,4 II atcR,d}, with:

atc11 II atcR a = { ICONreq/ICONind. IDISreq/IDISind }
' '

atc1,2 II atcR,b = { ICONreq/ICONind. ICONrsp/ICONcnf. IDISreq/IDISind }

atc1,3 II atcR,c = { ICONreq/ICONind. ICONrsp/ICONcnf. [IDATreq/- III IDISreq/-] .
-/IDISind } ,

atc1,4 II atcR,d = { ICONreq/ICONind. ICONrsp/ICONcnf. IDATreq/IDATind.
IDISreq/IDISind}

Note that test case atc13 II atcR c requires that test input IDATreq and IDISreq are tobe applied
concurrently to stimulate this behavior. This is expressed by the notation [tce 1 III tce2]. The
resulting test suite ats 1,2 consists of 4 test cases, with 14 test case elements. In addition,
component tests are to be perf ormed.

5. Conclusions and future work
In this paper, the compositional method (C-method) for testing communication protocols has
been introduced. The C-method first tests each protocol component separately for component
faults (output and/or transfer faults), using one of the traditional test methods, and then checks
their composition for composition faults.

To apply the C-method, it is not necessary to compute the global state machine. Instead,
composition tests are derived from local initial tour coverage trees. Only tests checking the glue

© R. Gotzhein, F. Khendek 15

code are derived. We have introduced and justified a fault model for the glue code that leads to
manageable composition test suites.

The work on compositional testing has been triggered by our results on micro protocols [5], a
concept to structure communication systems and to foster reuse of protocol designs. Micro
protocols are protocols with a single (distributed) functionality and the required collaboration
among protocol entities. To develop customized communication systems, micro protocol designs
are selected from a library, composed to yield a complete design, and implemented. We use the
ITU language SDL to formally specify micro protocol designs, and to compose them. We believe
that the C-method will contribute to the testing of customized communication systems that are
composed of micro protocols.

The results presented in this paper leave room for further work. Tue following improvements and
enhancements are perceivable:

- Tue justification of the C-method and its benefits should be treated more rigorously,
developing a test theory that is rich _ enough to provide a formal proof that the derived test
suite is both necessary and sufficient to detect all composition faults.

- So far, only the concurrent composition of two FSMs has been considered. lt would be
useful to extend the C-method to compositions of more than two FSMs, and also to the
composition of composites that have already been tested succ~ssfully.

- Other types of compositions, for instance, concurrent composition with shared variables,
or composition through inheritance, are perceivable. Again, this requires extensions to the
C-method.

In conclusion, the presented results may stimulate a new research stream that eventually may lead
to a theory of compositional ~esting of asynchronous systems.

References
[1] R. Castanet, 0. Kone: Deriving Coordinated Testers for Interoperability, Protocol Test Systems,

Volume VI C-19, Pau, France, 1994

[2] T. S. Chow: Testing Software Design Modeled by Finite-State Machines, IEEE Transactions on
Software Engineering, Val. SE-4, No. 3, 1978, pp. 178-187

[3] A. En-Nouaary, R. Dssouli, F. Khendek: Timed Wp: Testing Real-Time Systems, IEEE Transactions
on Software Engineering, 2002, pp. 1023-1038

[4] S. Fujiwara, G. v. Bachmann, F. Khendek, M. Amalou, A. Ghedamsi: Test Selection Based on Finite
State Models, IEEE Transactions on Software Engineering, Val. 17, No. 6, June 1991, pp. 591-603

[5] R. Gotzhein, F. Khendek, P. Schaible: Micro Protocol Design: The SNMP Case Study, SDL and
MSC Workshop (SAM'2002), Aberystwyth, UK, June 24-26, 2002

[6] D. Hogrefe: OS! Formal Specification Case Study: The InRes Protocol and Service, revised, Report
No. IAM-91-012, Update May 1992, University ofBeme, May 1992

[7] ITU-T Recommendation Z.100 (11/99) - Specification and Description Language (SDL),
International Telecommunication Union (ITU), 1999

[8] Z. Kohavi: Switching and Finite Automata Theory, McGraw Hill, USA, 1978

[9] G. Luo, G. v. Bachmann, A. Petrenko: Test Selection Based on Communicating Nondeterministic
Finite-State Machines Using a Generalized Wp-Method, IEEE Transactions on Software
Engineering, SE-20, No. 2 (1994), pp. 149-162

© R. Gotzhein, F. Khendek 16

[10] A. Petrenko, G. v. Bochmann, M. Yao: On Fault Coverage ofTestsfor Finite State Specifications,
Computer Networks and ISDN Systems, Special Issue on Protocol Testing, Vol. 29, 1996, pp. 81-
106

[11] B. Sarikaya, G. v. Bochmann: Some Experience with Test Sequence Generation for Protocols,
Proceedings ofthe 2nd International Workshop on Protocol Specification, Testing, and Verification,
North Holland, 1982, pp. 555-567

[12] B. Sarikaya, G. v. Bochmann: Synchronization and Specification lssues in Protocol Testing, IEEE
Transactions on Communications, COM-32, No. 4, 1982, pp. 389-395

[13] S. T. Vuong, W. W. L. Chan, M. R. Ito: The UIOv-Methodfor Protoco/ Test Sequence Generation,
Second International Workshop on Protocol Test Systems, Berlin, Germany, 1989

© R. Gotzhein, F. Khendek 17

