
2

I O
••

1 nterner Bericht

Towards the Harmonisation of UML and SOL
- Syntactic and Semantic Alignment -

R. Grammes, R. Gotzhein

Technical Report 327/03
Technical University of Kaiserslautern

TECHNISCHE UNIVERSITÄT
KAISERSLAUTERN

FACHBEREICH
1-NFORMATIK

Postfach 3049 · D-67653 Kaiserslautern

Towards the Harmonisation of UML and SDL

- Syntactic and Semantic Alignment -

Rüdiger Grammes, Reinhard Gotzhein
Technical University ofKaiserslautern

{grammes,gotzhein}inforrnatik.uni-kl.de

Technical Report 327103

Computer Science Department
Technical University ofKaiserslautem

Postfach 3049
67653 Kaiserslautern

Germany

Towards the Harmonisation ofUML and SDL
Syntactic and Semantic Alignment -

Rüdiger Grammes, Reinhard Gotzhein

Department of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
{grammes,gotzhein}@informatik.uni-kl.de

Abstract. UML and SOL are languages for the development of software systems that have different origins, and
have evolved separately for many years. Recently, it can be observed that OMG and ITU, the standardisation
bodies responsible for UML and SOL, respectively, are making efforts to harmonise these languages. So far,
harmonisation takes place mainly on a conceptual level, by extending and aligning the set of language concepts.

In this paper, we argue that harmonisation of languages can be approached both from a syntactic and semantic
perspective. We show how a common syntactical basis can be derived from the analysis ofthe UML meta-model
and the SOL abstract grammar. For this purpose, conceptually sound and well-founded mappings from meta
models to abstract grammars and vice versa are defined and applied. On the semantic level, a comparison
between corresponding language constructs is performed.

1 lntroduction
UML (Unified Modeling Language [1], [2]) is a graphical language for specifying, modelling and documenting
software systems with widespread use in industry, standardised by the Object Management Group (OMG). lt is a
family ofnotations (e.g., use case diagrams, class diagrams, sequence diagrams, statechart diagrams, deployment
diagrams) supporting different views of a system throughout the software life cycle. Recently, the UML 2.0
standard was finalised. Tue new standard is a major revision of UML 1.x, and introduces, amongst other things,
better support for system structure and components.

SOL (System Design Languages [3]) is a graphical specification language for distributed systems and, in
particular, communication systems, standardised by the International Telecommunications Union (ITU). lt is
widely used in telecommunications industry. SOL is a sophisticated set of notations (e.g., MSC-2000, SDL-
2000, ASN. 1, TTCN), supporting different system views on different levels of abstraction.

With SDL-2000, several important steps towards its future harmonisation with UML were made. For instance,
classes and associations including aggregation, composition, and specialisation were added to the language.
Furthermore, composite states that are similar to submachines in UML statecharts were incorporated. In turn,
UML 2.0 introduced structured classes, which extend classes by an intemal structure consisting of nested
structured classes, ports and connectors. This makes it possible to model architectural aspects of systems in a
fashion similar to SOL.

First attempts to harmonise UML and SOL have already been made. Tue Z.109 standard [4] defines a subset of
UML 1 .3 [2] that has a mapping to SDL-2000. Tue UML subset is used in combination with SOL, with the
semantics based on SDL-2000. In [5], Selic and Rumbaugh define a transformation from SDL-92 to UML l.3
extended with the Rational Rose real-time profile.

Ultimately, these efforts are directed towards an integration ofboth languages and the corresponding notations.
However, at the time being, UML and SOL still deviate in many ways, making it hard to see whether and when
integration might actually be achieved. Differences range from pure syntactic aspects to semantic concepts,
resulting from the origin of the languages. Also, it is not clear whether different views of a system even if
expressed in notations belonging to the same family are consistent.

A true integration of both languages and the corresponding notations will require a common syntactic and
semantic basis. This basis may then be extended in diverging ways, yielding a variety of language profiles. This
way, the system developer will be enabled to model different parts of a system using different notations, and to
combine them into a single view.

In order to derive a common syntactic and semantic basis, the existing language definitions of UML and SOL
should be taken as a starting point. In this paper, we present the results of analysing several corresponding
excerpts ofUML and SOL, compare them, and derive a common subset. On the syntactical level, this is done by
defining conceptually sound and well-founded mappings from meta-models (used to define the abstract syntax of
UML, see Section 2) to abstract grammars (used by SOL, see Section 2) and vice versa (Section 3), and by
extracting common production rules (Section 4). Results of a case study are shown in the Appendix. On the
semantic level, an informal comparison between corresponding language constructs is performed (Section 5).
Results are discussed in Section 6.

TR 327/03, Computer Science Department, Technical University ofKaiserslautem

2 UML Meta-Model and SOL Abstract Grammar .
Tue definition of a language consists of its syntax and semantics. The concrete syntax of a language includes
separators and other constructs needed for parsing the language. The abstract syntax omits these details and
contains only the elements relevant for the definition of the semantics. Both the concrete and the abstract syntax
of a language can be defined in terms of a grammar, consisting of a set of production rules that define the
syntactically correct sentences.
For SDL, a concrete (textual and graphical) syntax and two abstract syntaxes, ASO and ASl, are defined. The
ASO is obtained from the concrete syntax by omitting details such as separators and lexical rules. Otherwise, is
very similar to the concrete syntax of SDL. The abstract syntax ASl is obtained from the abstract syntax ASO
through a step of transformations followed by a mapping. During the transformation, additional concepts are
translated into core concepts of SDL as described in the standard.

The abstract syntax of SDL is described in terms of an abstract grammar, similar to BNF. lt consists of two
kinds of production rules, namely concatenations and synonyms. A concatenation 'lhs ::=(::) rhs' describes the
non-terminal lhs (left band side) as a composite object consisting of the elements denoted by rhs (right band
side). Optional elements are enclosed in square brackets, and alternatives are separated by vertical bars. The
suffix '*' describes a possibly empty list of elements, '+' a non-empty list and '-set' a set of distinguishable
elements. A synonym 'lhs ::=(=) rhs' describes that the non-terminal lhs is an element ofthe kind rhs and can not
be syntactically distinguished from other elements of this kind.

For the mapping described in Section 3, we assume a normal form of the abstract grammar, where
concatenations have no alternatives on the right band side. The SDL abstract grammar can be easily transformed
into this normal form by introducing new synonyms for these alternatives.

Below an excerpt of the AS 1, the production rule State-node, is shown. State nodes are composite objects
consisting of a state name, a save signalset, and sets of input nodes, spontaneous transitions, continuous signals
and connect nodes. Optionally, a state node can have a composite state type identifier (in that case, the state
represents a composite state ofthe respective type).

State-node ::=(::) State-name
[On-exception]
Save-signalset
lnput-node-set
Spontaneous-transition-set
Continuous-signal-set
Connect-node-set
[Composite-state-type-identifier]

A meta-model is a model used to define a language for the specification of models. In UML, this meta-model
approach is used to define the language syntax [...].In particular, the abstract syntax ofthe language is defined
using UML class diagrams. This approach is reflective, since class diagrams are UML models, and therefore
described in terms ofthemselves. On top ofthe model and the meta-model, more layers can exist (meta-meta
models, etc.). UML uses a four Jayer meta-model structure: user objects (MO), model (Ml), meta-model (M2)
and meta-meta-model (M3). Every element in a layer is an instance of an element of the direct superordinate
Jayer.

The UML class diagrams used for the description of the abstract syntax comprise packages, classes, attributes,
associations and specialisation. Classes in the UML meta-model describe language elements. An occurrence of
the language element in the model (Ml) is an instance ofthe meta-model class. Classes in the meta-model can be
parameterised by attributes. Attributes describe properties of the language element described by a class.
Composition between meta-model classes describes that a language element contains another. General
associations relate language elements with each other, e.g., a transition with a trigger. The meta-model uses
packages, abstract classes and specialisation to·structure the abstract syntax.

Fig. 1 shows an excerpt from the abstract syntax of statemachine states. States are described by a class with
four attributes, describing the type of the state. These attributes are derived (' /'), meaning that their value is
derived from other information in the meta-model. A State contains up to one Activity in the role of a
'doActivity'. lt is also associated with an arbitrary number of triggers in the role of deferrable triggers. The
composition between State and Activity is a subset of the association 'ownedElement'.

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 2

State +doActivity
{ subsets ownedElement}

I isComposite: Boolean = false - 1 Activity
1 -

0 .. 1 1 I isOrthogonal: Boolean = false 0 .. 1
I isSimple: Boolean = false
I isSubmachineState: Boolean
= false * ·,1 Trigger

1 +deferrableTrigg{r

Fig. 1: Excerpt from the abstract syntax of states

3 Defining Mappings between UML Meta-Model and SOL Abstract Grammar
In this section, we define precise, conceptually sound mappings from meta-models to abstract grammars, and
vice versa. As it tums out, not every element ofthe UML meta-model can be mapped. Also, several meta-model
elements may have the same representation in·the abstract grammar. Therefore, the mapping is not completely
reversible. However, it is possible to map every element of an abstract grammar to a meta-model representation.
In Section 4, these mappings will be applied to UML and SDL to extract a common syntactical basis.

3.1 Classes and Enumerations
map(MM): A concrete class of the meta-model represents a language element of the model. E.g., the meta
model class State represents all state descriptions in a UML statemachine. In an abstract grammar, a language
element is represented by a specific production rule, namely a concatenation. Therefore, a concrete class in the
meta-model is m'apped to a concatenation ofthe abstract grammar. The name ofthe non-terminal is derived from
the class name and the package structure ofthe meta-model (see below). The right hand side ofthe concatenation
is derived from the class def:i,nition (attributes) and context (associations) as defined below (see 3.2, 3.3).

An abstract c/ass of the meta-model describes properties that are common to its subclasses. E.g., the meta
model class Vertex describes properties that are common to states and pseudo-states (initial states, „.). Since an
abstract class. can not be instantiated, it does not represent a language element of the model. Therefore, no
concatenation is used in the mapping. lnstead, we have decided to map an abstract class of the meta-model to
another kind ofproduction rule, namely a synonym, ofthe abstract grammar. In an abstract grammar, a synonym
replaces the element on its left hand side with an element of the right hand side. This is a similar to abstract
classes in the meta-model, which must be replaced by one of their concrete subclasses in a model. Tue name of
the non-terminal is selected as in the case of a concrete class. Tue right hand side is derived from the context
(specialisation) as described below (see 3.5).

An enumeration in the meta-model is a set of values used to parameterise meta-model classes. E.g., the meta
model class Pseudostate describes different language elements (entry point, exit point, „ .) of the model
depending on the value of the attribute 'kind' of the enumeration type PseudostateKind. Enumerations do not
directly describe language elements of the model. Therefore, as in the case of abstract classes, no concatenation
is used in the mapping. Instead, enumerations are also mapped to synonyms of the abstract grammar.. This
production rule replaces the enumeration by one of its values.

Tue name of the non-terminals introduced by the mappings described above is the qualified name of the class
or enumeration. Tue qualified name is a sequence ofthe packages the class or enumeration is contained in (from
outermost to innermost) and the name of the class or enumeration, each separated by underscores. E.g.,
Kernel_Element is the name of the non-terminal introduced by the class Element in the package Kernel. The
qualified name is used in order to avoid name clashes between equally named classes in different packages.

Example: Tue following example comes from the meta-model ofUML state machines. lt describes two classes,
an abstract class Vertex and a concrete class StateMachine. Furthermore, there is an enumeration TransitionKind.
All ofthese elements are contained in the package BehaviorStatemachines (not shown), that we will shortly refer
to as BehSM.

StateMachine is a concrete class, and is therefore mapped to a concatenation. Tue name BehSM_StateMachine
comes from the package structure and the name of the class. Tue abstract class Vertex and the enumeration
TransitionKind are mapped to synonyms.

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 3

MM map(MM)

StateMachine <<enumeration>>
Transition Kind

BehSM_StateMachine.::=(::)

intemal BehSM_Vertex ::=(=)

~
local
extemal BehSM_TransitionKind ::=(=)

map(AG): As mentioned in the mapping from meta-models to abstract grammars, concrete classes and
concatenations both represent language elements of the model. Therefore, concatenations of the abstract
grammar are mapped to concrete classes in the meta-model. Tue name of the concrete class is derived from the
production rule (see below).

A synonym of the abstract grammar represents a language element that does not appear in the model, but stands
for other language elements. E.g., a Data-type-definition in the SOL abstract grammar is a synonym for a Value
data-type-definition, an Object-data-type-definition or an lnterface-definition. This is a similar concept to abstract
classes in the meta-model, which we have mapped to synonyms in the abstract grammar. However, it is also
similar to an enumeration, where the enumeration stands for one of its values. Therefore, we map a synonym in
the abstract grammar either to an abstract class or an enumeration. Tue exact mapping depends on the right band
side ofthe synonym (see 3.2, 3.3).

Tue name of the class or enumeration is the name of the non-terminal on the left hand side of the production
rule.

Example: In the abstract grammar of SOL, the production rule for the non-terminal State-node is a
concatenation. lt is therefore mapped to a concrete class. Tue production rule for Nextstate-node is a synonym. lt
would therefore either map to an abstract class or an enumeration. Because of the right hand side of the
production rule, which we do not treat at this point, it is mapped to an abstract class.

ASl map(ASl)

State-node

State-node : :=(: :) . . .

Nextstate-node ::=(=) ...
Nextstate-node

3.2 Attributes
map(MM): In the meta-model, attributes of a class represent properties of a language element of the model.
E.g., the attribute 'kind' of the meta-rnodel class Transition describes if the transition is intemal, local or
extemal. In an abstract syntax tree, an attribute is represented as a sub-node of the non-terminal and corresponds
to a class. We have mapped concrete classes to concatenations ofthe abstract grammar. Therefore, an attribute of
a concrete class is mapped to a terminal on the right hand side of the concatenation. We map attributes to
terminals since they do not need to be refined any further. Tue only exception is an enumeration type; in that
case we map the attribute to a non-terminal, since we have mapped enumerations to synonyms and non
terminals. Tue name of the terminal is the name of the type (e.g. Boolean). Tue name of the non-terminal is
derived from the name of the enumeration and the package structure, as defined in 3 .1.

Attributes that are marked as derived carry no additional information and can be omitted. E.g., the attribute
'isComposite' of State can be derived from the number of associated regions. Ifthey are not omitted, additional
static conditions are needed to define the dependencies between the original and the derived attributes. Oefault
values of attributes can not be mapped to the abstract grammar. They can be described by static conditions.

TR 327/03, Computer Science Oepartment, Technical University ofKaiserslautem 4

Elements of ,an enumeration represent values of the enumeration type. A value in an abstract grammar is
represented by a terminal. Therefore, enumeration elements are mapped to terminals of the abstract grammar.
The name of the terminal is the name of the enumeration element. An enumeration is mapped to a synonym of
the abstract grammar. Therefore, we map the terminals to the right hand side of the synonym corresponding to
the enumeration.

Example: The following example (again from BehaviorStatemachines) contains a concrete dass Transition and
the enumeration TransitionKind. The classes are mapped as described in the previous section. The attribute 'kind'
of Transition is an element on the right band side of BehSM_Transition. In this special case ('kind' is an
enumeration), it is a non-terminal that refers to the mapping ofthe enumeration TransitionKind. The name ofthe
attribute is appended as a comment. The enumeration literals of TransitionKind appear as an alternative of
terminals on the right hand side ofthe production rule, written in all caps for better distinction.

MM map(MM)

BehSM_ TransitionKind ::=(=)
<<enumeration>> INTERNAL

TransitionKind Transition
1 LOCAL

internal kind: TransitionKind IEXTERNAL

local
extemal BehSM_Transition ::=(::)

BehSM_ TransitionKind /* kind */ 1

map(AG): A terminal on the right hand side of a concatenation represents a property ofthe language element. In
the meta-model, an attribute represents a property of a language element. The terminal is therefore mapped to an
attribute of the concrete dass corresponding to the concatenation. Tue type of the attribute is the name of the
terminal. Tue name of the terminal can be chosen arbitrarily as long as it does not contlict with other attribute
names of the dass.

A synonym with only terminals on the right hand side represents an enumeration of values. E.g., the synonym
Agent-kind of the SDL abstract grammar is an enumeration of the values SYSTEM, BLOCK and PROCESS.
Therefore, the terminals are mapped to enumeration values of the enumeration corresponding to the synonym.

Example: Tue terminal PRIORITY on the right hand side of lnput-node is mapped back to an attribute of the
corresponding concrete dass. Agent-kind is a synonym and has only terminals on the right hand side. Therefore,
it is mapped to an enumeration. Tue alternatives on the right hand side (SYSTEM, BLOCK and PROCESS) are
mapped to enumeration literals of the corresponding enumeration.

ASl map(ASl)

I< <enumeration> >
Agent-kind ::=(=) Agent-kind

SYSTEM
system

1 BLOCK
I PROCESS block

process

lnput-node ::=(::)
PRIORITY
... lnput-node

prio: Priority

3.3 Associations
map(MM): An aggregation or composition between two dasses means that one language element contains or is
made up of other Janguage elements. E.g., a Region in a statechart contains vertices · and transitions. In the same
way, a node in an abstract syntax tree can have sub-nodes. E.g., a State-transition-graph of the SDL abstract

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 5

grammar bas a set of State-nodes as sub-nodes. Therefore, we map aggregation and composition to tbe abstract
grammar so tbat the definition of tbe aggregated class is a sub-node of tbe aggregating class. This is acbieved by
adding the non-terminal corresponding to tbe aggregated dass on tbe rigbt band side of the concatenation
corresponding to tbe aggregating concrete class.

A general association between two classes is an association between language elements, in wbicb the elements
play a certain role. E.g., a State is associated with a number oftriggers, tbe triggers playing tbe role .of deferrable
triggers. In the SDL abstract grammar, two language elements are associated by identifiers. E.g., an lnput-node is
associated with a Signal by a Signal-identifier on tbe rigbt band side of the concatenation corresponding to the
lnput-node. Therefore, a directed general association is mapped to an identifier on tbe right band side of tbe
concatenation corresponding to tbe concrete class tbe association originates from. An undirected general
association is split into two directed general associations.

An associations witb the union property is tbe union of the associations tbat subset it. This is expressed by the
property subsets. As in the case of derived attributes, associations witb the union property are not mapped to tbe
abstract grarnmar.

Example: Tue following example sbows the abstract class Vertex and the concrete classes Transition and
Region. Region is composed of a Vertex called subvertex. This composition is a subset of tbe association
'ownedElement' between two Elements. In tbe AST, BehSM_Region tbus bas BehSM_Vertex on tbe rigbt band
side, witb the name appended as a comment. Between Vertex and Transition there are two bidirectional
associations, wbicb are split into two unidirectional associations respectively. Attributes and associations of an
abstract class are not mapped to the corresponding synonym in tbe AST, since an abstract class is not a synonym
for one of its attributes or associations. lnstead, they are copied into the respective subclasses, as described in
Section 3.5. In this example, Vertex bas no subclasses. Therefore, we only bave to map the two general
associations ' source' and 'target'. To distinguisb between general association and composition, an association is
mapped to an identifier (in this case, BehSM_ Vertex-ldentifier) on tbe rigbt band side of the corresponding
production rule. How the identifier looks like is not further specified. lt could be a qualified name like in the case
ofSDL.

MM map(MM)

Region

BehSM_Region ::=(::)

~ . BehSM_ Vertex /* subvertex */

BehSM_Vertex ::=(=)

+subvertex
{ subsets ownedElement} BehSM_ Transition ::=(: :)

BehSM_TransitionKind /* kind */
Vertex BehSM_ Vertex-ldentifier

/* source */
BehSM_ Vertex-ldentifier

+source +target /* target */

BehSM_ Vertex-ldentifier ::=(=)
+outgoing +incoming ldentifier

Transition

kind: TransitionKind

map(AG): Non-terminals on the right band side of a concatenation can stand for an enumeration or a class in tbe
meta-model. In case tbey represent an enumeration they represent an attribute ofthe class (see 3.2). In case tbey
represent a class, tbis class is a sub-node of the class corresponding to the concatenation. This is similar to a
class in tbe meta-model that is composed of otber classes. Therefore, in tbis case we map a non-terminal on the
rigbt band side of a concatenation to a composition in the meta-model. Tue composing class is tbe class
corresponding to the concatenation; the composed class is tbe class corresponding to the non-terminal on the
rigbt band side. Tue role oftbe classes can be cbosen arbitrarily.

An identifier on tbe rigbt band side of a concatenation identifies a language element tbat is associated witb the
language element described by tbe concatenation. E.g., in tbe SDL abstract grarnmar, an lnput-node is associated
witb a Signal by a Signal-identifier. Therefore, we map an identifier on the rigbt band side of a concatenation to a
directed general association in the meta-model. Tue source of tbe association is tbe concrete class corresponding

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 6

to the co!lcatenation, according to the mapping in 3.1. Tue target is the concrete class correspondirig to the
language element referenced by the identifier. Tue role ofthe classes can be chosen arbitrarily.

Example: Tue non-terminal lnput-node on the right hand side of State-node is mapped to a composition of
lnput-node in State-node in the meta-model. Tue set-suffix is mapped to the multiplicity 'O .. *', as defmed in 3.4.
Composite-state-type-identifier is an identifier referring to a Composite-state-type-definition (in the abstract
grammar of SDL, identifier/definition pairs usually have the same name with a -identifier/-definition suffix, e.g.
Signal-identifier and Signal-definition). This is mapped to a general association between the two corresponding
classes in the meta-model.

ASI mao(ASI)

lnput-node

State-node ::=(: :)
lnput-node-set O .. * trigger
Composite-state-type-identifier
.. .

~

lnput-node ::=(::) State-node

Composite-state-type-definition : :=(: :)

Composite-state-type-identifier : : =(=) substate
Identifier Composite-state-type-

definition

3.4 Multiplicity
Tue following table defines a mapping between multiplicities in the meta-model and the abstract grammar. In
UML, multiplicities consist of a lower bound and an optional upper bound, which can be infinite. Tue property
ordered expresses that there is a linear order for the elements. Tue property ·unique expresses that no element
appears more than once. In the abstract grammar, an optional element is enclosed by square brackets. A possibly
empty !ist of elements is marked by a ' *' behind the element, a non empty list by a '+'. A set of distinct elements
is marked by the suffix '-set' .

MM AG
0 .. 1 {Name]
O .. n, 1 < n (as o .. *)
0 .. * Name *
0 .. * {unique} Name-sei
1 Name
1..n, 1 < n (as 1..*)
1 .. * Name +
1.. * f uniaue} (as O .. * f uniaue})
n (as O .. *)
n .. m, 1 < n < m (as 1..*)
n .. *, 1 < n (as l..*)

Table 1: Mapping of Multiplicities

Table 1 shows the mapping of multiplicities between meta-model and abstract grammar. If we use lists in the
abstract grammar, the elements are ordered and not necessarily unique. If we use sets, they are not ordered and
unique. Therefore, we can only map one of the properties to the abstract grammar. In this case, the property
ordered is omitted from the mapping.

3.5 Specialisation
In the UML meta-model, abstract classes and specialisation are used frequently to capture common aspects of
different classes, and as part of a meta-language core reused in several standards (see UML: Infrastructure [l]).
For the abstract syntax, abstract classes are not directly interesting, since they can not be instantiated and

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 7

therefore do not appear in a model, except through their subclasses. Nonetheless we map them to the abstract
grammar, to preserve as mucb oftbe structure ofthe meta-model as possible.

map(MM): We bave to map specialisation to tbe abstract grammar, and tbe fact tbat a specializing class inherits
properties of tbe specialised class. The easiest way to do tbis is to copy these properties into the specializing
classes before tbe mapping. This bas the advantage tbat redefinition of properties is easy to realise. They are not
copied to subclasses tbat overwrite tbem.

This is done as follows:

Step 1. For every class that has subclasses, copy all attributes ofthe class and all associations that originate
from this class to eacb of its direct subclasses.

Step 1.1. An attribute is only copied to a subclass if no attribute of tbe same name already exists,
i.e., iftbe attributed is not redefined.

Step 1.2. An association is only copied to a subclass ifit is not redefined in tbe subclass.

Step 2. Repeat step 1 for all subclasses that have new attributes and associations after the last execution of
step 1.

In the meta-model, an abstract class can take part in an association. In the model, an instance of a concrete
class tbat specialises the abstract class takes part in tbe association instead. E.g., a Vertex is associated witb
Transitions as the source of tbese transitions. In the model, the source of these transitions is either a State or a
Pseudostate. In tbe abstract grammar, we can express this using a synonym. W e bave already mapped an
abstract class to a non-terminal and a synonym (see 3.1). To map tbe specialisation to tbe abstract grammar, we
add the non-terminals corresponding to the direct sub-classes of the abstract class to the rigbt band side of tbe
synonym. This means that every occurrence ofthe non-terminal (the abstract class) is replaced by a non-terminal
(one of the subclasses) in the abstract syntax tree. ·

To map specialisation to tbe abstract grarnrnar, we need synonyms. On tbe otber band, a concrete class can
bave subclasses, but is mapped to a concatenation (see 3.1). In tbis case, we transform the meta-model before we
perform tbe mapping. The concrete class witb subclasses is replaced by an abstract class of tbe same name. The
concrete class is renamed, e.g. by adding a special prefix, and added as a subclass of tbe new abstract class. The
subclasses of the concrete class are now subclasses of the new abstract class and the mapping can be performed.
However, we still have to copy the attributes ofthe concrete class to its former subclasses, as described above.

Example: The following example is taken from tbe package Kernel and covers classifiers, classes and
associations. C/assifier is an abstract class with the attribute 'isAbstract'. A classifier can be generalised by
another classifier, described by tbe association named 'general ' . Concrete subclasses of Classifier are Class and
Association. The association 'superClass' between two classes redefines the association 'general'.

Before mapping to tbe. abstract grammar, we bave to copy tbe attributes and associations of the abstract class
Classifier to its subclasses. The attribute 'isAbstract' is copied to tbe classes Class . and Association, since no
attribute of tbe same name exists. A new association 'general' from Association to Classifier is added. Tue
association 'superClass' redefines 'general ', tberefore no new association is added to Class.

The abstract class Classifier is mapped to a synonym. Class and Association are direct subclasses of Classifier,
tberefore, we add tbe non-terminals corresponding to tbese classes on tbe right band side of tbe synonym.

MM

Kernel

Classifier

isAbstract: Boolean = false

+nested
Classifier*

Class

+superClass
• { redefines general}

Association

ma
Kernel_ Classifier : :=(=)

Kernel_Class
1 Kernel_Association

Kernel_Class ::=(::)
Boolean /*isAbstract*/
Kernel_ Class-ldentifier-set /*superClass* /
Kernel_Classifier-set /* nestedClassifier */

Kemel_Association ::=(::)
Boolean /*isAbstract*/
Kernel_ Classifier-ldentifier-set /*general * /

Kernel_Class-ldentifier ::=(=) ldentifier

Kernel_Classifier-ldentifier : :~(=) ldentifier

TR 327!03, Computer Science Departrnent, Technical University ofKaiserslautern 8

map(AG): Non-termina/s of the abstract grammar represent language elements. A synonym of the abstract
grammar with non-tenninals on the right hand side replaces a language element by another. E.g., a Return-node
in the abstract grammar of SOL is replaced by an Action-return-node, a Value-return-node or a Named-return
node. W e map synonyms to abstract classes in the meta-model. Abstract classes can not be instantiated, but can
have instances through their subclasses. Therefore, we map a synonym with non-tenninals on the right hand side
in the abstract grammar to a specialisation relationship. Tue specialised class is the class corresponding to the
non-terminal on the left hand side. The specialising classes are the classes corresponding to the non-terminals on
the right hand side.

ASI map(ASI)

Graph-node ::=(=) Graph-node

Task-node
1 Output-node
1 Call-node D.
1 . ..

Task-node ::=(=) 1 1

Task-node Call-node Output-node
Output-node ::=(::)

Call-node ::=(::)

Example: Tue synonyms for Graph-node and Task-node are mapped to abstract classes. Output-node and Call
node are concatenations and therefore concrete classes. For the non-terminals Task-node, Output-node and Call
node on the right hand side of the synonym, a specialisation relationship is added between Graph-node and
Task-node, Call-node and Output-node.

3.6 Meta-Model Approach vs. Abstract Grammar Approach
From the discussion so far, it is quite obvious that the meta-model approach to defining an abstract syntax is
more expressive than the (context free) grammar approach. As a consequence, the mapping from the SOL
abstract grammar to a meta-model is completely reversible. However, this is not the case for the mapping from
the UML meta-model to an abstract. Several elements of the UML meta-model can not be expressed in the
abstract grammar, including the following:

• Visibility infonnation, default values and derived attributes are not expressible in a context free
grammar. lt is, however, possible to describe them with static conditions.

• Associations with the property union, as weil as the property subsets are not expressible.
• When an attribute or an association of an abstract class is redefined in a subclass, it cannot be properly

reproduced. lnstead, it is copied into the subclasses. Tue property redejined is lost in the mapping.
• Several multiplicities have identical mappings, and cannot be properly reproduced. Tue property

ordered (altematively, the property unique, see Section 3.4) is lost in the mapping.

In consequence, the meta-model approach seems to be preferable as a basis for the harmonisation ofUML and
SOL. lt covers and extends the expressiveness of abstract grammars, and thus seems to be the right choice.
However, when it comes to implementing a language by providing tool support, an abstract grammar is still
needed. With the mapping defined above, such an abstract grammar can be systematically derived.

4 Extracting a Common Abstract Syntax from SOL and UML
Translating the meta-model ofUML 2.0 into an abstract grammar supports the comparison ofthe abstract syntax
ofUML 2.0 and SDL-2000. In particular, enables us to examine how the common constructs of SOL and UML
are reflected in common parts of the abstract syntax of both languages, and to extract a common abstract
grammar.

As it has tumed out, some infonnation ofthe meta-model is lost when it is mapped to an abstract grammar (see
Section 3.6). However, the infonnation lost is not important for the extraction, because it is not present in the
abstract syntax ofSDL.

Instead of mapping the UML meta-model to an abstract grammar, we could apply the mapping from the SDL
abstract grammar to a meta-model. This way, no infonnation would be lost, as the meta-model is more

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 9

expressive. However, the extraction process would not benefit from this choice. Even worse, the extraction
would be harder, since the UML meta-model defines a !arge number of abstract classes with attributes and
associations, which would not show up in the SOL meta-model. lt would be necessary to either copy the
attributes of abstract classes to their subclasses in the UML meta-model (as described in Section 3:5), or to
identify common attributes and associations, and shift them to super-classes in the SOL meta-model.

To relate language elements of SOL-2000 and UML 2.0 on a syntactical level, substantial knowledge of both
languages is required. In particular, it is necessary to take the semantics of language elements into account. E.g.,
we need knowledge of the semantics of the language elements to relate the Package-name of a Package
definition in the abstract syntax of SOL with the String of a structured class in the abstract syntax of UML. Also,
it can be expected that for some of the common constructs the abstract syntax will be different, although the
semantic is the same. In some cases, there might even be a common abstract syntax, although the semantics is
different. 1

To extract the common abstract syntax of the two languages, we take the production rules for language
elements that are sirnilar in UML and SOL, e.g. packages, as a starting point, and compare their right hand sides.
For corresponding elements in both sets of production rules that represent sirnilar concepts, the production mies
for these elements are compared. If they overlap, we can relate the two elements with each other and include
them 'in the common abstract syntax. W e start the extraction with very high level language elements, namely
packages and agents/classes, before moving to language elements with a finer granularity.

4.1 Packages
Both SOL and UML have a concept of packages for grouping and reuse of elements of the specification. Both
support the nesting of packages (2). Tue abstract syntax of UML describes the contents of a package as a set of
PackageableE/ements, a synonym for all elements that can be contained in a package. SOL describes sets ofthe
elements that can be contained in a package, e.g. Signal-definition-set. Common packageable elements in SOL
and UML are agents/classes (3), signals (4) and composite states/statemachines (5).

SOL-2000 ASl
Package-definition : :=(::)
1 :Package-name
2 l?.3:ckagl!-c1efinitjon-set

Oata-type-definition-set
Syntype-definition-set

4 Signal-definition-set
Exception-definition-set

3 !Agent-type-definition-set
5 Composite-state-type

definition
sei

Procedure-definition-set

4.2 Agent-type/Class

CommonAS
Package-definition : :=(::)
1 Package-name
2 Package-definition-set
3 Signal-definition-set
4 'Agent-type-definition-set
5 Statemachine-set

UML 2.0 derived AS
Kemel_Package : :=(::)
1 [StringJ
2 Kernel _Package-set

~:--"

Kern~LPac!glgeableElement-se~
Kemel_PackageMerge-set
Kernel_ VisibilityKind
Kernel_ Elementlmport-set
Kernel_ Packagelmport-set
Kernel Constraint-set

Kemel _PackageableElement : :=(=)
3 StructuredClasses Class
5 BehStateMachines _ StateMachine
4 Communigltio11s_ Signal

UML 2.0 introduces structured classes, which are classes extended with internal structure and ports. Structured
classes are semantically and syntactically similar to Agent-types in SOL. Both have an internal structure of
properties (respectively agents, 9), connectors (channels, 7) and gates (ports, 6). Both agent-types and structured
classes can specialise other agent-types and structured classes (2), however SOL only supports single inheritance
while UML supports multiple inheritance.

Behaviour is associated with an Agent-type as a State-machine-definition, which consists of a name and a
Composite-state-type-identifier (8). Behaviour is associated with structured classes by a Behavior-ldentifier (8).
Behaviour in the abstract syntax of UML is a synonym for statemachines and other behaviour models.
Statemachines are syntactically similar to composite-state-types in SOL. Tue abstract syntax of the two
languages differs slightly, since UML does not have a State-machine-definition. In the common abstract
grammar, we include the State-machine-definition but discard the name associated with it, since it does not exist
inUML.

TR 327/03, Computer Science Oepartment, Technical University ofKaiserslautem 10

SDL-2000 AS 1
Agent-type-definition ::=(::)
1 Agent-~-name

Agent-kind
2 [Agent-type-identifier]

Agent-forrnal-parameter *
Data-type-definition-set
Syntype-definition-set

3 Signal-definition-set
Timer-definition-set
Exception-definition-set
V ariab le-definition-set

4 Agent-type-definition-set
5 Composite-state-type

definition-set
Procedure-definition-set

9 Agent-definition-set,
6 Gate-definition-set
7 Channel-definition~set

8 [State-machine-definition]

State-machine-definition
::=(::) State-name

8 Composite-state-type
identifier

4.3 Signals

CommonAS
Agent-type-definition ::=(::)
1 Agent-type-name
2 [Agent-type-identifier}
3 Signal-definition-set
4 Agent-type-definition-set
5 Statemachine-set
9 Agent-definition-set
6 Port-definition-set
7 Channel-definition-set
8 [Agent-behaviour)

Agent-behaviour ::=(::)
8 Statemachine-identifier

UML 2.0 derived AS
StructuredClasses_Class ::=(::)
1 [String}

2

8

6
7
9

Kernel_ VisibilityKind
Kernel Classifier-Identifier-set
StructClasses _ Class-ldentifier-set
[Kernel_ Type]
Kernel_ Elementlmport-set
Kernel_Packagelmport-set
Kernel Constraint-set
Kernel Behavior-set
[Kernel_ Behavior-Identifier]
Boolean /*isActive*/
Communications _ Reception-set
Ports Port-set ' -CompStruct _ Connector-set
IntStruct_ Property-set
Kernel_Property *
Kernel Classifier-set
Kernel_ Operation *

Kernel_Classifier ::=(=)
4 StructuredClasses Class
5 BehStateMacbines StateMachine
3 Communications_Signal

Signal types exist in SDL and UML to describe communication between agents/objects. Signals have a name (1)
and parameters, which are represented by sorts in SDL and properties in UML. While representing similar
concepts, the abstract syntax of sorts and properties are different, therefore signals in the common abstract
grammar have no parameters.

SDL-2000 (ASl) CommonAS UML 2.0 (derived AS)
Signal-definition ::=(: :) Signal-defil!itiQp. : :=(::) Communications _Signal : :=(: :)
1 Signal-name 1 Signal-name Kernel_ Property *

Sort-reference-identifier* Boolean
Boolean
Kernel_ VisibilityKind

1 [String]
Kernel Classifier-Identifier-set
Kernel Generalization-set
Kernel_ Elementlmport-set
Kernel_Packagelmport-set
Kernel Constraint-set

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 11

/

4.4 Channel/Connector
Channels/connectors connect gates/ports. In SDL, a channel has one or two channel-paths. In case of two
channel-paths, the channel is bi-directional and the originating gate of the first path is the destination gate of the
second path and vice versa. In UML, the connector connects two or more ports. In the common AS, a channel is
a set of channel-ends (2), which is a pair of ports (3). No direction is specified.

SDL-2000 ASl
Channel-definition : :=(::)
l Channel.:o:game

[NODELAY]
2 C~h~(!l-p,ath-set
Channel-path ::=(::)
3 Originating-gate
3 Destinati_()!l~gate

Signal-identifier-set

4.5 Gate/Port

CommonAS
Channel-definition ::=(::)
1 Channel-name
2 Channel-end-set
Channel-end ::=(::)
3 Port-identifier
3 Port-identifier

UML 2.0 derived AS
IntStruct_ Connector : :=(::)

lntStruct Connector-Identifier
2 Ports ConnectorEnd *

/*end, 2 .. * */
[Kernel_ Association-Identifier]
Boolean
Boolean
[Kernel_ VisibilityKind]
l§tring]
[Kernel_ Type]

Ports_ ConnectorEnd ::=(::)
3 [IntStruct_ Connectable

!Element-!dentifier 1
[IntStruct_Property-Identifier]

Gates/ports are endpoints for channels/connectors. Gates specify valid signals for both directions, while ports
have required and provided interfaces (2, 3).

SDL-2000 ASl
Gate-definition : :=(::)
1 Gate-name
2 [n-signal-identifier-set
3 Qut-sigQal-identifier-set

4.6 Agent/Property

CommonAS
Port-definition ::=(::)
1 Port-name
2 Signal-identifier-set
3 Signal-identifier-set

UML 2.0 derived AS
Ports_ Port : :=(::)

Boolean
Boolean

3 lnterfaces_ Interface-Identifier
-set /*required*/

2 lnterfaces_ lpt(!rface-lde!!_tifit!r
-s~t /*provided*/
Ports Port-set-Identifier
lntStruct ConnectorEnd-set

[Kernel_ VisibilityKind]
[String},

[Kernel_ Type-Identifier]
[Kernel_ ValueSpecification]
[Kernel_ ValueSpecification]

Agents and properties are both instances of a type (2) (agent-type in SDL, structured class in UML). Both
specify upper and lower bounds for the number of instances (3). While the lower bound in UML is optional, it is
required in SDL.

TR 327/03, Computer Science Department, Technical University of Kaiserslautern 12

SDL-2000 (ASI) CommonAS UML 2.0 (derived AS)
Agent-definition ::=(::) Agent-definition ::=(::) IntStruct_ Property : :=(: :)
1 Agent-name 1 Agent-name ...

Number-of-instances 2 [Agent-type-identifier] Kernel_ AggregationKind
2 Agent-type-identifier Number-of-instances Kernel_ Property* /*subset* /

Kernel_Property* /*refined*/
Number-of-instances: :=(: :) Number-of-instances ::=(: :) [Kernel_ ValueSpecification]
3 Initial-number 3 [Initial-number] [Kernel_ Association-ldentifier]
3 [Maximum-number] 3 [Maximum-number] Ports ConnectorEnd-ldentifier-set

...
lnitial-number ::=(=)Nat Initial-number ::=(=) Nat [Kernel_ VisibilityKind]
Maximl.lIIf-number : :=(=) Maximum-number ::=(=) Nat 1 [String]

Nat 2 [Kemel_Type-Identifier]
3 [Kemel_ ValueSpecification]

/*upper*/
3 [Kew.el _ ValueSpecification]

/*lower*/

4. 7 Composite-state-type/Statemachine
Composite-state-types as weil as statemachines have a name (1), a sequence of parameters (3) and an identifier
ofthe composite-state-type/statemachine that they specialise (2), if any. In UML, a statemachine has one or more
regions that contain states and transitions. Tue equivalent in SDL is a Composite-state-graph (one region) or a
State-aggregation-graph (two or more regions). A Composite-state-graph contains a State-transition-graph which
contains the states of the Composite-state-type. A Region in UML maps to a State-transition-graph in SDL. Both
contain the states (5) and transitions ofthe composite-state-type/statemachine. Multiple regions are not included
in the common AS, because ofthe different syntax and semantics in SDL and UML.

SDL-2000 (ASl) CommonAS UML 2.0 (derived AS)
Composite-state-type-definition Statemachine ::=(::) BehSM_StateMachine ::=(: :)
··=("") 1 Statemachine-name BehSM Pseudostate-set
1 State-type-name 2 [Statemachine-Identifier] 4 BehSM Region +
2 l Composite-state-type- 3 Parameter• . 2 {BehSM _ StateMachine-Identifier]

identifier ll Statemachine-graph 3 Kernel Parameter *
3 Composite-state-fonnal- BasBeh Behavior-[dentifier-set

parameter * Statemachine-graph ::=(: :) [BasBeh _ BehavioralFeature
State-entry-point-definition-set 4 State-transition-graph -Identifier]
State-exit-point-definition-set Kernel Constraint-set
Gate-definition-set State-transition-graph ::=(: :) Kernel Constraint-set
... 5 State-set Kernel_ Property-set
Composite-state-type- Kernel Class-ldentifier-set

definition-set Kernel Classifier-set
V ariable-definition-set Kernel_ Operation-set
Procedure-definition-set ...
[Compj?site-state-graph 1 Kernel_ VisibilityKind
State-aggregation-node] 1 [String]:

Kernel Classifier-Identifier-set
Composite-state-graph : :=(::) Kernel Generalization-set
4 State-transition-graph Kernel_PackageElement-set

[Entry-procedure-definition] Kemel_ Elementlmport-set
[Exit-procedure-definition] Kernel_Packagelmport-set
Named-start-node-set Kernel Constraint-set

State-transition-graph ::=(: :) BehSM_Region ::=(: :)
[On-exception] 5 BehSM Vertex-set
[State-start-node] ' BehSM Transition-set

5 State-node-set [BehSM _Region]
Free-action-set [Kernel_ VisibilityKind]
Exception-handler-node-set [String]

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 13

4.8 State-node/State
State-nodes in SDL are similar to states in UML, however the syntax is different. Both have a name (1) and an
identifier of the composite-state-type/statemachine that is the submachine of this state (2), if any. States are the
source of transitions, but in SDL these transitions are associated with the trigger of the transition (lnput-node)
and in UML with the state itself

SDL-2000 (AS 1) CommonAS UML 2.0 (derived AS)
State-node ::=(::) State ::=(::) BehSM_State_Concrete ::=(::)

1 State-name [Beh _ ConnectionPointReference]
1 Sta~-name 2 [StateMachine-ldentifier] 2 [BehSM _ StateMachine-ldentifier]

[On-exception] ...
Save-signalset Com _ Trigger-ldentifier-set
lnput-node-set BehSM _Region-set
Spontaneous-transition-set [BehSM_State-Identifier]
Contipuous-signal-set BehSM Transition-Identifier-set
Connect-node-set BehSM Transition-Identifier-set

2 t Composite-state-cype- [Kernel_ VisibilityKind]
identifler] 1 [StringJ

4.9 Parameter
Like signals, parameters in the common AS have a name (1) but no sort or type, since the abstract syntax of sorts
and types is different.

SDL-2000 (ASl) CommonAS UML 2.0 (derived AS)
Parameter::=(::) Parameter::=(::) Kernel_Parameter ::=(::)
1 l\/ariable-name 1 Variable-name 1 [String]

Sort-reference-identifier Kernel ParamerDirectionKind
...
[Kernel_ Type-ldentifier]
[Kernel_ ValueSpecification]
[Kernel_ ValueSpecification]

4.10 Case Study
lnstead of mapping the meta-model of UML to an abstract grammar, we can map the abstract grammar of SDL
to a meta-model. In this way, we can avoid the rr{apping loss from meta-models to abstract grammars. The result
of mapping a part of the abstract grammar of SDL to a meta-model can be seen in Annex C. The mapping covers
parts of the object behaviour.

Based on the SDL and the UML meta-model, we can compare the abstract syntax as in the case of abstract
grammars. We can identify common classes in both meta-models, e.g. State and StateNode or StateMachine and
CompositeStateTypeDefinition. As in the abstract grammar, there is an association between these classes in both
meta-models with the same multiplicity. However, where the abstract grammars of the languages are different,
so are the meta-models. E.g., states in the UML meta-model are associated with transitions, while states in SDL
are associated with input-nodes. We assume that the representation ofthe abstract grammar has no influence on
the coverage of the extracted common abstract syntax.

4.11 Discussion
In this section, we have compared corresponding excerpts of the SDL abstract syntax ASl, and the abstract
syntax AS derived from the UML meta-model by applying the mapping defined in Section 3. As a result, we
have extracted a common abstract syntax for UML and SDL. As a pure syntactical mapping tumed out tobe
infeasible, additional knowledge about the language definitions ofUML and SDL was taken into account for this
extraction. As a result, a substantial coverage of syntax. elements of UML and SDL has been achieved for
structural language elements, i.e., Packages, Agent-types, Agents, Channels and Gates. However, there is little
coverage for behavioural language elements only, despite the fact that both SDL and UML have a concept of

TR 327/03, C?mputer Science Department, Technical University ofKaiserslautern 14

hierarchical statecharts. We therefore draw the conclusion that in order to harmonise UML and SOL, an
extraction on a purely syntactical basis is not sufficient. In order to obtain the best possible coverage, the
comparison should be made on a semantic basis in the first place. Here, the syntactical comparison can provide
valuable information and feedback.

5 Semantic Mapping Between UML Statecharts and SOL Process Graphs
Following the conclusions reached so far, we now compare corresponding language elements of UML and SOL
on a semantic level. For this comparison, we choose UML statecharts and SOL process graphs, respectively.
UML statecharts have a complete semantics with few variation points. Several attempts to formally define the
behaviour of statecharts exist, e.g. [6).

The syntactic comparison of UML and SOL revealed that the abstract syntax of statecharts and process graphs
is very different. However, there are several language elements in both languages that have a similar notation
and represent similar concepts, despite major syntactic differences. E.g., both languages have the concept of a
guarded transition. In the following, we compare the semantics of corresponding constructs of UML statecharts
and SOL process graphs. We omit those cases where corresponding constructs are semantically different. Work
that provides mappings for these cases, too, can be found in [5] for SOL-92 to UML 1.3.

5.1 States
Both UML [1] and SOL [2] have the concept of states as a condition in which the state machine waits for an
event to occur. The state (or set of states) the state machine waits in is called the active state. In UML, it can also
model a condition in which the process performs a certain activity (do-activity). There are several kinds of states
(see [1], 9.3.11): '

• Simple States: A simple state is a state without sub-states (Fig. 2).

, (mam)

Fig. 2: Simple states in SDL and UML

'· • Composite States: A composite state is a state that contains sub-states, which can again be composite
states. In UML, the sub-states of a composite state are partitioned into one or more regions. If the state
machine is in the composite state, it is also in exactly one sub-state of each region (this applies
recursively). SOL distinguishes between composite states, which have a set of sub-states of which
exactly one is active when the state is entered (composite state with one region in UML), and state
aggregations, which consist of several composite states that are interpreted in . an interleaving manner
(composite state with multiple regions in UML).

• Submachine States: UML introduces submachine states, which are semantically equivalent to UML
composite states. Syntactically, they are closer to SOL composite states than the composite states in
UML (Fig. 3). Submachine states make it possible to build the specification in a modular way.

~ntryl
main:
state

exitl

entryl

main:
state

exitl

Fig. 3: Submachine (composite) states and entry/exit-points in SDL and UML

Unlike SOL, simple states in UML can have entry-activities (exit-activities) that are executed when the state is
entered (left).

Composite states in SOL and submachine states in UML (both referred to as composite states in the future)
have entry- and exit-procedures/activities. A transition targeting the composite state leads to an entry ofthe state
at the default entry point (initial pseudostate in UML, unnamed state start node in SOL). A transition to an entry
connection-point reference of the composite state leads to an entry of the state at the entry point that is
referenced by the connection-point reference. If a region of an UML composite state reaches an exit point, or if
all regions reach the final state, the composite state is left at the corresponding exit connection point reference
(completion transition in case of leaving via final states). In SOL, the composite state is left when all state

TR 327/03, Computer Science Oepartment, Technical University ofKaiserslautem 15

partitions have reached a return node. Tue state is left via the corresponding exit point of the composite state. If
more than one exit point is valid, one is chosen in an indeterministic way.

5.2 Signals and Events
State transitions are triggered by signals in SDL and events in UML. An SOL agent has an input port associated
with its state machine, in which signals are queued in the order of their arrival time (see [3], 9). If a signal is
saved in a state, it is not enabled. Tue signal that is dispatched is the first enabled signal in the queue; the saved
signals in the queue are retained in the order of their arrival (see [3], 11. 7).

UML objects have an event pool, with an unspecified ordering of events (see [1], 7.3.5), with the exception of
completion events, which are dispatched before any other event in the pool (see [1], 9.3.14). If an event is
deferred in a state, it is retained in the event pool as long as the state machine is in a state where the event is
deferred, or a transition for this event is enabled (see [1], 9.3 .11). No priority between events that become
enabled again and non-deferred events is specified. If an event was deferred in the previous state and is not
deferred in the current state, it has no priority over an event that was not deferred at all.

SOL signals and UML events are both referred to as 'events' in the remainder ofthe document.

5.3 Timers
In SDL, a timer can be set to expire at a specified time or after a duration. When the timer expires, an event is
generated and put into the input queue. This can trigger a transition when the event is dispatched (see [3], 11.15).
UML has TimeEvents that occur at a certain point in time or after a specified duration (though the starting time is
not defined in the standard). TimeEvents can trigger a TimeTrigger (see [1], 7.3.27).

5.4 Transitions
Transitions in UML and SOL have a run-to-completion semantics, meaning that an event is completely
processed before the next event can be handled.

Transitions with a trigger and no conditions have the same semantics in SOL and UML for simple and
composite states. Tue transition in the active state is enabled when the event the transition is labelled with is
dispatched. When the transition is fired, the source (composite) state of the transition is left, a sequence of
actions is executed and the target (composite) state is entered. More than one transition can be enabled in a state
for an event. When the state machine is in a composite state, and both the composite state and an active sub
state have a transition for the dispatched event, both transitions are enabled. In SDL and UML, the transition of
the nested state has a higher priority than the transition of the containing state, and the transition of the sub-state
is fired (see [3], 11.11 and [1], 9.3.12). This also applies to conflicts between deferred (saved) and consumed
events (Fig. 4). In case of conflicts between consumed and deferred events in orthogonal states, the event is
consumed. This is only possible in UML.

signal is
consumed

signal is
defered

Q ~ignal is .consumed
m state

Ü signal is defered
in state

Fig. 4: Priority of consume and defer

States in SDL can not have more than one transition for the same event (see [3], 11 .2), and orthogonal states
must have a disjoint set of input signals (see [3], 11.11.2). However, in UML this is not the case. If there is more
than one transition for the same event in the active state, one of them is processed. For every orthogonal region,
if there is a transition for the dispatched event in the active state, it is enabled and can be processed. More than
one transition, up to the number of orthogonal regions in the state, can be fired in the same run-to-completion
step in arbitrary order (see [1], 9.3.12). In Fig. 5, ifthe orthogonal state is in the states sl 1 and s21 and the event
sigl is dispatched, both transitions are enabled and fired, since they do not conflict with each other.

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 16

State

Fig. 5: State with two enabled transitions (UML)

Both SDL and UML support transitions that have guards (enabling conditions in SDL) (Fig. 6). Transitions are
only enabled when their guard evaluates to true. If the guard evaluates to false, in SDL the event is not enabled
and the next event is selected from the queue (see [3], 11.6). UML discards the event, unless it is explicitly
deferred or there is another transition for this event that is enabled (see [1], 9.3.12 and 9.3.14). Therefore the
semantics of guards differ between SDL and UML.

sl

sigl [guard]

s2

Fig. 6: Transitions in SDL and UML

Transitions (with guard) that are not explicitly labelled with an event are called continuous signals in SDL and
completion transitions in UML (Fig. 7). Continuous signals are fired when their guard is true and the event
queue is empty (see [l], 11.5). Completion transitions are fired when a completion event occurs and their guard
is true. Completion events are dispatched before all other events. They occur when a do-activity is finished or
when a composite state is left because all regions have reached a final state (see [3], 9.3.14). A completion
transition in UML has a similar semantics as a connect-node in SDL. A connect-node originates from a
composite state and is taken when the composite state is left via the default exit point. A connect-node cannot
have a guard.

sl sl

[guard]

Fig. 7: Continuous signal, connect node and completion transition

5.5 History
UML has two history pseudostates, deep history and shallow history (see [l], 9.3.8). Entering a composite state
over a history state leads to the restoration ofthe active states as it was when the compositt; state was left. Fora
deep history state this applies recursively for all substates. All entry activities of states that are entered are
executed. In SDL a transition can end in a history nextstate. In this case, the next state is the one in which the
transition originated. In case of a composite state, the state is re-entered and the entry-procedure is invoked (see
[3], 11.12.2.1).

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 17

5.6 Actions
In UML, actions are used to describe behaviour. Actions take inputs and transform them into outputs, possibly
modifying the state of the system. Outputs of actions can be connected to inputs of other actions by an activity
flow, as in a statechart transition. UML supports a number ofprimitive actions that more complex actions can be
mapped on. In SDL, transitions perform a sequence of actions. Actions in SDL manipulate data, output signals
and call procedures. SDL supports a small number of specific actions important for communication systems.

• Task/StructuralFeatureAction,VariableAction: Tasks in SDL can contain assignments that are
interpreted when the task is interpreted. In UML, assignments can be realised by a combination of
actions. With ReadStructuralFeatureAction/ReadVariableAction and WriteStructuralFeatureAction/
WriteVariableAction, attributes and variables can be read and written. With ApplyFunctionAction,
primitive functions can be applied.

• Create/CreateObjectAction: CreateObjectAction creates a new object for a given classifier, without
further initialisation. The Create action in SDL creates a new agent in the scope of the creating agent.
lts variables are created and its formal parameters initialised.

• Procedure Call/CallOperationAction: When a procedure is called in SDL, the interpretation continues
at the start node ofthe procedure graph that was invoked by the call. lt resumes after the call node when
the interpretation of the procedure is finished. A CallOperationAction in UML leads to the execution of
an operation in a local or remote object. If the call is synchronous, the interpretation of the transition
resumes after the CallOperationAction when the operation is finished. How parameters and results are
transmitted is not specified.

• Output/SendSignalAction: An output action in SDL leads to the creation of a signal instance of the
specified type and parameters. The signal instance can have an agent set or an agent as target, or it can
be transmitted to any agent reachable via a sequence of valid channels, possibly restricted by the via
argument. In UML, a SendSignalAction leads to the creation of a signal instance of the specified type
and parameters. The signal instance is transmitted to the target object. The path the signal takes, its
transmission time and the order in which signals arrive is undefined.

• Decision/Choice: A decision node in SDL evaluates a question and selects an outgoing transition that
has the answer to the question in its range. If no range of an outgoing transition is matched and an else
branch exists, the else-branch is selected; otherwise a NoMatchingResult exception is thrown. SDL
forbids having the same answer in more than one range of an outgoing transition. When a Choice
pseudostate is reached in UML, the guards of the outgoing transitions are evaluated, and one of the
transitions whose guard evaluates to true is selected in an indeterministic way. Ifthere is an else-branch
and none ofthe guards evaluates to true, the else-branch is selected, otherwise the model is ill-formed.

6 Conclusions and Outlook
With regard to recent language developments, harmonisation and finally integration of languages are becoming
urgent topics. With more notations being used during the development of a given system, the question whether
these views are consistent is gaining importance. Also, in the context of large systems, the use -of a mix of
notations is getting more likely. Standardisation work to harmonise UML and SDL are important efforts towards
the objective ofhaving a set oflanguages that can be used together.

In this paper, we have argued that the harmonisation of languages requires a common syntactic and semantic
basis. Following this line, we have first defined conceptually sound and well-founded mappings from meta
models - used to define the abstract syntax ofUML - to abstract grammars - used by SDL-, and vice versa. By
applying these mappings; we have then extracted common production rules, arriving at a common abstract
grammar for several language constructs. While the results were encouraging for structural language elements, it
turned out that the coverage was below expectations for behavioural constructs. From this experience, we have
drawn the conclusion that an extraction on a purely syntactical basis is not sufficient. Therefore, we have
compared language elements on a semantic basis, too. Here, the results ofthe syntactical study provided valuable
information and feedback.

While the semantic comparison showed that there is indeed potential for the harmonisation of UML and SDL,
it also revealed that without a common mathematical basis, the results that can be obtained will be of limited
value. Without such a basis, any kind of reasoning has to remain informal, leaving too much room for concems.
Therefore, we conclude that future work should be directed towards a common semantic framework for UML
and SDL, with the intention ofhaving extensions ofthis framework to define them formally. Both languages are
complex and sophi~ticated, so this will definitely not be an easy task. However, our experience with the
definition of the SOL formal semantics has shown that this kind of work provides valuable feedback to the
language designers, finally leading to an even better language.

TR 327/03, Computer Science Department, Technical University of Kaiserslautern 18

References
[1] OMG Unified Modelling Language Specification, Version 2.0, 2003
[2] OMG Unified Modelling Language Specification, Version 1.3, 1999
[3] ITU Recommendation Z.100, Specification and Description Language. Geneva, 1999.
[4] ITU-T Recommendation Z.109, SOL combined with UML. Geneva, 2000.
[5] Bran Selic and Jim Rumbaugh: Mapping SOL to UML, Rational Software Whitepaper, 1999
[6] E. Börger, A. Cavarra, and E. Riccobene. Modeling the dynamics ofUML State Machines. In Y.

Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Machines. Theory and
Applications, pages 223-241 . Springer-Verlag, 2000.

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 19

Annex A: Meta-model of UML Statemachines and corresponding Abstract
Grammar

1 1

<<enumeration>> <<enumeration>>
Behavior

TransitionKind Pse u:fo stateKin d
(from Basicllel-.Nors)

iritial intB11al
local dee~ istory

extemal sh alla.vHis tcry

0 .. 1 ,
jein

StateMachine fcrk
+submachine juiction

- dloice -0 .1 entryPont

1

NamKJElerrent ~ 0 .. 1

1

NarrndE/errent

1

exitPcint
(fromKernel) 1~

1

+region ~romYerre/) termirate

Ll t: {subsets ownedMember} r +container +container
{redefines owner} 1 Region 1 fredef in es oVAler}

1

l +subvertex 0 .. 11 1- 0 .. 1
1 +transitions

• {subsets oW!edElement} • 1 +region • {subsets ownedElement}

Vertex
+source +outgoing Transition

1 .
kind : TransitionKind

+target +incoming i.--
1 . 0 .. 1

f';o 0 .. 1 .
+connectionPoint . j
{subsets ownedMember} ~ 0 .. 1 +effect

{subsets o\M1edElement}

?1 Pseudostate 1 State 1 0 .. 1

I isComposite : Boolean = false
+entry

Activity \ kind : PseudostateKind \

+exit I isOrthogonal : Boolean = false - {subsets o\M1edElementl
(fr001 Baslcßeha\4ors) •J +entry • / isSimple : Boolean = false 0 .. 1 0 .. 1-

0 .. 1 0 .. 1 / isSubmachineState : Boolean = f alse +exit
{subsets 01M1edElement}

1 ConnectionPointReference 1 0 .. 1 0 . . 1-
1 1

0 . . 1 +doActiv it{
1' - ~

{subsets ownooBement

+connection - 0 0„1
{su9sets ownedElement} 1 · O o .. 1

1

. .1

+submachineState 1 l +deferrableTrigger J; • o.: +trigger

1 F irelStae

1

Trigier

1 1 (fromCorrrrutatioris)

+statelnv ~~1 {subsets o\MledElement} 0„ 1 +guard

Constraint 1 {subsets ownedElement}

(fromKemel) 1- 0„1

Fig. 8: Abstract syntax of UML statecharts (from the OMG UML language specification, [1])

BehSM _pseudostateKind : :=(=) INITIAL
1 DEEPHISTORY
ISHALLOWHISTORY
IJOIN
IFORK
1 JUNCTION
1 CHOICE
1 ENTRYPOINT
1 EXITPOINT
ITERMINATE

BehSM_TransitionK.ind ::F(=) INTERNAL
ILOCAL
IEXTERNAL

TR 327/03, Computer Science Department, Technical University ofKaiserslautem 20

BehSM_ Vertex ::=(=) BehSM_Pseudostate
1 BehSM _ ConnectionPointReference
1 BehSM _ State

BehSM_State ::=(=) BehSM_State_Concrete
1 BehSM_FinalState

BehSM _ Pseudostate : :=(::)
BehSM PseudostateKind

/* from BehSM Vertex */
BehSM Transition-Identifier-set
BehSM Transition-Identifier-set

/* from Kernel NamedElement */
[Kernel_ VisibilityKind]
[String]

BehSM _ ConnectionPointReference : :=(::)
BehSM Pseudostate-ldentifier-set
BehSM Pseudostate-Identifier-set

/* from BehSM Vertex */
BehSM Transition-Identifier-set
BehSM Transition-Identifier-set

/* from Kernel NamedElement */
[Kernel_ VisibilityKind]
[String]

BehSM_State_Concrete ::=(::)
[Beh _ ConnectionPointReference]
[BehSM _ StateMachine-Identifier]
[BasBeh _ Activity]
[BasBeh _ Activity]
[BasBeh _ Activity]
[Kernel_ Constraint]
Com _ Trigger-Identifier-set
BehSM _ Region-set
[BehSM _ State-ldentifier]

/* from BehSM Vertex */
BehSM Transition-ldentifier-set
BehSM Transition-Identifier-set

/* from Kernel NamedElement */
[Kernel_ VisibilityKind]
[String]

BehSM_FinalState ::=(::)
[Beh _ ConnectionPointReference]
[Kernel_ Constraint]
Com _ Trigger-ldentifier-set
[BehSM _ State-ldentifier]

/* from BehSM Vertex */
BehSM Transition-Identifier-set

/* from Kernel NamedElement */
[Kernel_ VisibilityKind]
[String]

BehSM Transition: :=(::)
BehSM TransitionKind
[Kernel_ Constraint]
Com _ Trigger-Identifier-set
[BasBeh _ Activity]
[BehSM _ Transition-Identifier]
BehSM Vertex-ldentifier
BehSM Vertex-ldentifier

/* kind */

/* outgoing */
/* incoming * /

!* visibility */
/* name */

/* entry */
/* exit */

/* outgoing */
/* incoming */

/* visibility */
/* name */

/* connection * /
/* submachine */
/* entry */
/* exit */
/* doActivity */
/* statelnvariant */
/* deferrableTrigger */
/* region */
/* redefinedState * /

/* outgoing */
/* incoming * /

/* visibility */
/* name */

/* connection */
/* statelnvariant */
/* deferrableTrigger */
/* redefinedState */

/* incoming */

!* visibility * /
!* name */

/* kind */
/* guard */
/* trigger * /
/* effect */
/* redefinedTransition */
/* source */
!* target */

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 21

· 1

/* from Kernel NamedElement */
[Kernel_ VisibilityKind]
[String]

BehSM_Region ::=(::)
BehSM Vertex-set
BehSM Transition-set
[BehSM _ Region-Identifier]

/* from Kernel NamedElement */
[Kernel_ VisibilityKind]
[String]

BehSM_StateMachine ::=(::)
BehSM Pseudostate-set
BehSM _ Region-set
[BehSM _ StateMachine-Identifier]

/* from BasBeh Behavior */
Kernel Parameter-set
BasBeh Behavior-ldentifier-set
[BasBeh _ BehavioralFeature-ldentifier]
Kernel Constraint-set
Kernel Constraint-set

/* from Kernel Class */
Kernel_ Property-set
Kernel Classifier-set
Kernel_ Operation-set

!* from Kernel RedefinableElement */
Boolean

/* from Kernel_PackageableElement */
Kernel_ VisibilityKind

/* from Kernel NamedElement */
[String]

/* from Kernel Classifier */
Boolean
Kernel Classifier-ldentifier-set
Kernel Generalization-set

/* from Kerne!Namespace */
Kernel_PackageElement-set
Kernel_Elementlmport-set
Kernel_ Packagelmport-set
Kernel Constraint-set

BehSM _ StateMachine-Identifier : :=(=) Identifier

BehSM_Pseudostate-Identifier ::=(=) ldentifier

BehSM_Transition-Identifier ::=(=) Identifier

BehSM_Trigger-Identifier ::=(=) Identifier

Annex B: Common Abstract Grammar
Name::=(=) Token
Identifier ::=(::) Qualifier Name
Qualifier ::=(=) Path-item +

Path-item ::=(=) Package-qualifier

Package-qualifier ::=(::) Package-name

/* visibility */
/* name */

/* subvertex * /
/* transitions */
/* extendedRegion */

/* visibility */
!* name */

/* connectionPoint */
/* region */
/* extendedStateMachine */

/* parameter */
/* redefinedBehavior */
/* specification * /
/* precondition */
/* postcondition */

/* owned.Attribute * /
/* nestedClassifier */
/* ownedüperation */

/* isLeaf */

/* visibility * /

/* name */

/* isAbstract */
/* redefinedClassifier */
/* generalization */

/* importedMember * /
/* elementlmport */
/* packagelmport */
/* ownedRule * /

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 22

Package-name ::=(=)Name
Agent-type-name ::=(=)Name
Signal-name ::=(=)Name
Channel-name ::=(=)Name
Port-name ::=(=)Name
Agent-name ::=(=)Name
Statemachine-narne ::=(=)Name
State-name ::=(=)Name
Variable-name ::=(=)Name

Agent-type-identifier ::=(=) Identifier
Statemachine-identifier ::=(=) Identifier
Port-identifier ::=(=) Identifier

Package-definition : :=(::)
Package-name
Package-definition-set
Agent-type-definition-set
Signal-definition-set
Statemachine-set

Agent-type-definition ::=(::)
Agent-type-name
[Agent-type-identifier]
'Signal-definition-set
Agent-type-definition-set
Statemachine-set
Agent-definition-set
Port-definition-set
Channel-definition-set
[Agent-behaviour]

Agent-behaviour ::=(::)
Statemachine-identifier

Signal-definition ::=(::)
Signal-name

Channel-definition : :=(: :)
Channel-name
Channel-end-set

Channel-end ::=(::)
Port-identifier
Port-identifier

Port-definition ::=(::)
Port-name
Signal-identifier-set
Signal-identifier-set

Agent-definition ::=(::)
Agent-name
[Agent-type-identifier]
Number-of-instances

Number-of-instances ::=(::)
[Initial-number]
[Maximum-number]

lnitial-number ::=(=) Nat
Maximum-number ::=(=) Nat

TR 327/03, Computer Science Department, Technical University ofKaiserslautem

· '

23

Statemachine ::=(::)
Statemachine-name
[Statemachine-identifier]
Parameter*
Statemachine-graph

Statemachine-graph : :=(::)
State-transition-graph

State-transition-graph ::=(: :)
State-set

State ::=(::)
State-name
[Statemachine-identifier]

Parameter ::=(: :)
Variable-name

Annex C: SOL Meta-model

1 ContinuousExpression

1

' t

ContinuousSignal --
priorityName:String [0 .. 1]

*

1 ConnectNode 1

'·

0 .. 1

0 .. 1
\(/

1CompositeStateTypeDefinition1

1 Transition 1 • 1

1

OnException
1

exceptionHandlerName: String

0 .. 1 0 .. 1

! •t •
. t

1 SpontaneousTransition J
lnputNode

prio: Priority [O .. 1]
,___

1 1
* ' t

*

-
0 .. 1 0 .. 1

1 ProvidedExpression 1 1
\/

!VariableDefinitionl - StateNode --
- stateName: String

1
1 \V

1
..J SignalDefinition 1

SaveSignalset 1 * /l
1 1

TR 327/03, Computer Science Department, Technical University ofKaiserslautern 24

