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Abstract 

Approximation properties of the underlying estimator are used to 
improve the efficiency of the method of dependent tests. A multilevel 
approximation procedure is developed such that in each level the num
ber of samples is balanced with the level-dependent variance, resulting 
in a considerable reduction of the overall computational cost. The 
new technique is applied to the Monte Carlo estimation of integrals 
depending on a parameter. 

1 Introduction 

The method of dependent tests is a basic way of using Monte Carlo esti
mates for the approximation of whole functions (as opposed to the approx
imation of a single function value or a weighted integral as in the classical 
Monte Carlo approach). The method was developed and studied by Frolov 
and Chentsov (1962), Sobol (1962, 1973), Ermakov and Mikhailov (1982) , 
Mikhailov (1991) , Voytishek (1996 , 1997) , Prigarin (1995) , and others. The 
aim of the present paper is to propose a multilevel version of this method, 
based on the ideas developed in Heinrich (1998a). We exploit the approxima
bility of the underlying estimator to decompose it into levels. The number of 
samples used for each level can be tuned to the variance of the contribution 
from this level, so that an overall reduction of computational cost is reached. 
The new method is presented in a general framework , and later on studied 
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in detail for the computation of integrals depending on a parameter. While 
Heinrich (1998a) and Heinrich and Sindambiwe (1999) consider the class er 
of r-times continuously differentiable functions on the unit cube and provide, 
besides the algorithm, also a complexity analysis including lower bounds, in 
this paper we mostly concentrate on the study of the algorithm and give a 
more general convergence analysis. We consider arbitrary domains instead 
of th~ cube and relaxed smoothness assumptions requiring the function to 
be in a Sobolev class w; with 1 < p < oo, and this only with· respect to the 
parameter variable. We study the expected norm error in Lp for 1 < p < oo 
and we are able to give quantitative results on the convergence. This is new 
even for the standard, one-level method of dependent tests. For that one, 
such an approach has so far only been carried out for Hilbert spaces, see, e.g„ 
Mikhailov (1991), Voytishek (1996), Prigarin (1995). For Lp spaces (p > 2) 
only asymptotic results were obtained on the basis of weak convergence, 
with no information on the speed of convergence (to the Gaussian limit), 
see, e.g., Frolov and Chentsov (1962), Ermakov and Mikhailov (1982), Pri
garin (1995) , Voytishek (1997). Finally, the case 1 < p < 2 is often left out 
because the usual tools do not work - the involved functions have infinite 
variance. We are able to study this case too and determine the convergence 
rates for both one- and multilevel rnethods. In the end, a few remarks on 
lower bounds and a comparison between one- and multilevel methods are 
made. The present paper is an extended version of a note which appeared 
in the abstract volume of this conference ( see Heinrich, 1998b). A multi
level approach with the possibility of independent sampling is developed in 
Heinrich (1998c). 

2 The Standard Method of Dependent Tests 

Let X be a Banach space. A random variable with values in X is a Borel 
measurable mapping ry : n --t X on some probability space (n, ~' µ) such 
that the values of rJ are almost surely contained in a separable subspace of 
X. For 1 :S; p < oo we denote by Lp(X) = Lp(D, ~'µ,X) the space of all 
X-valued random variables ry on (n, ~ ' µ) satisfying 

IE\\ry\\P = k \lry(w)llP dµ(w) < oo 

(see Ledoux and Talagrand, 1991 , for details). 
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Now let T/ E Lp(X) for some p with 1 :=; p < oo. We seek to approximate 
the expectation 

u = IE'f/ EX. 

Usually, X is an infinite dimensional function space, which makes it , in 
general, impossible to compute u itself. Instead, an estimate for Pu is 
constructed, where P is some continuous linear finite rank operator (an 
interpolation or approximation operator, for example), acting from X to 
another Banach space Y (as a rule, either X itself or a larger function space, 
compare section 4). We shall assume that X is continuously embedded into 
Y, that is, there is a continuous injection J : X --+ Y. In the sequel we shall 
identify X with J(X) ~ Y as sets. The norms will be distinguished by 111\x 
and llllY· Let 

n 

Px = L (x, xi) Yi (x EX) (1) 
i=l 

be a representation of P, where xi EX* (the dual of X) and Yi E Y. The 
standard method of dependent tests consists of the estimate 

1 N 
Pu~(}= - LPT/j, 

N 1=1 

(2) 

where (T/j }f=1 are independent realizations of T/· (We assume that all random 
variables considered in this paper are defined on the same basic probability 
space (0, L:, µ).) Combined with (1) , this gives 

n n (1 N ) 
~ (u, xi) Yi ~ (} = ~ N ~ (T/j, xi) Yi (3) 

( which makes it clear that we use the same N samples for the estimation 
of the whole family of functionals (u, xi)). As an illustration, we consider 
integrals depending on a parameter, which will be studied in detail later 
on. For the moment we do this on an informal level - precise assumptions 
follow in section 4. 

Let G 1 C IRd1 , G2 c IRd2 and f be a function on G1 x G2. We want to 
approximate 

u(s) = r f(s , t) dt 
lc2 
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as a function of the parameter s E G1. Let X and Y with X ~ Y be some 
spaces of functions on G1 and let P be an operator acting on g E X as 

n 

(Pg)(s) = Lg(si)<pi(s) 
i=l 

( one can think, e.g., of piecewise linear interpolation). Let ~ be a uniformly 
distributed on G2 random variable. We set 

Then 

11(w) = IG2lf ( ·, ~(w)). 

IE11= { f(-,t) dt=u. 
la2 

Now the method of dependent tests approximates 

with (~j}f= 1 being independent realizations of ~· 

3 The Multilevel Approach 

Assume that we are given a sequence of continuous linear finite rank oper
ators (Pe)~ 1 from X to Y with Pm = P instead of P alone (usually, the 
approximation operators P belang to such scales in a natural way). Let 

ne 

Pex = L (x, xii) Yli (x EX) 
i=l 

(f = 1, ... , m) be the respective representations. Choose positive integers 
(Ne)~ 1 and estimate 

m 

Pmu = L(Pe - Pe-1)u (4) 
l'=l 
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(with Po = 0) by 

m 1 Nt 

LN L(Pe - Pe-1)'r/ej (5) 
i=l e j=l 

m [n t (1 Nt ) nt-1(1 Nt ) l ~ ~ Nef;('r/ej,xei) Yei- ~ Ne_f;(TJe1 ,xe-1,i) Ye-1,i 

where ('r/ej : j = 1, ... , Ne, f = 1, ... , m) are independent realizations of 
ry. We set no = 0, so for f = 1 the second term of the last line of (5) is 
to be understood as zero. Observe that the standard (one-level) method 
corresponds to the case m = 1 and N 1 = N. For parametric integration 
the concrete form of (5) is given later on - see relation (15). Now we shall 
analyze the error. For 1 :S p < oo we define the p-th expected norm error of 
the estimate ( as 

By the triangle inequality, ep(() can be bounded by a deterministic and a 
stochastic component: 

ep(() (IEl\u - Pmu + Pmu - (ll~)l/p 

< llu - Pmu\\y + (IEl!Pmu - (ll~)l /P . (6) 

Next we shall give an upper bound for the stochastic component. For this 
purpose we let 1 :::;: p :S 2 and recall that a Banach space Z is said to be of 
type p if there is a constant c > 0 such that for all n E IN and (zi)f= 1 C Z , 

(7) 

where (Ei)f=1 is a sequence of independent Bernoulli variables with 
µ{Ei = 1} = µ{Ei = -1} = ~· We refer to eh. 9.2 of Ledoux and Ta
lagrand (1991) for this definition and background. The smallest possible 
constant in (7) is called the type p constant of Z, denoted by Tp(Z). Let 
us mention that every Banach space is of type 1 (triangle inequality) , and 
that type p implies type q for 1 :S q < p. Each finite dimensional space is of 
type 2, and for 1 :S p < oo the spaces Lp(v) (with v an arbitrary measure) 
are of type min(p, 2). Clearly, all subspaces U of a type p space Z are of 
type p themselves, with Tp(U) :S Tp(Z). Now we can present a bound of the 
stochastic part of the error. 
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Proposition 1 Let 1 < p::::; 2 and assume ry E Lp(X). Then 

where Ym = span (LJ~ 1 Pe(X)) C Y. 

PROOF. By (4) and the first part of (5) we have 

m l Nt 

Pmu - (= LN L(Pe - Pe-i)(u - 'r/ej)· 
l=l e j=l 

(8) 

Now put 

(f = 1, ... , m, j = 1, . .. , Ne). These are independent Ym-valued mean zero 
random variables with finite p-th moment 

(9) 

Proposition 9.11 of Ledoux and Talagrand (1991) states that 

m Nt m Nr 

IEll 2.: 2.: Pejllv::::; (2Tp(Ym))P 2.: 2.: IEllPejllv· 
i=l j=l l=l j=l 

Combining this with (8) and (9) yields the result. • 
Corollary 2 Let 1 < p::::; 2 and assume that ry E Lp(X). Then 

m 

(IE llPmu - (llv) 11P::::; 2Tp(Ym)(1Ellu - 'r/ll~ L NJ-PllPe - Pe-1: X-+ YllP)l /P. 
i=l 

PROOF. This follows directly from 

IE ll(Pe - Pe- 1)(u - T/)llv ::::; llPe - Pe-1 : X-+ YllP1Ellu - 'r/ll~· 

• 
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4 Integrals Depending on a Parameter 

Let d1 and d2 be positive integers arid G1 C IRd1 and G2 C IRd2 be bounded 
open sets with Lipschitz boundary. Let 1 :S q < oo, let r be a positive 
integer with r/d1 > 1/q, and let wrq,O(G1 X G2) be the space of all f E 

Lq(G1 x G2) such that for each multiindex a = (a1, . .. , ad1 ) with lal = 

a1 + ... + ad1 :S r the generalized derivative D? f with respect to the G1 

coordinates exists and belongs to Lq(G1 x G2). Hence, somewhat loosely 
speaking, we consider functions f(s, t) with smoothness w;(Gi) in the first 
variables E G1 and summability Lq(G2) in the second variable t E G2. The 
norm on w;·0 (G1 x G2 ) is defined as 

(For all notation concerning Sobolev spaces we refer to Adams, 1975). We 
study the estimation of 

u(s) = J f (s, t) dt 
G2 

(10) 

in Lq(G1), that is, integration over G2 with parameter domain G1 and the 
error measured in the norm of Lq(G1). To put this into the framework of 
sections 2 and 3 we set X = w;(G1), Y = Lq(G1 ) and p = min(2, q). We 
let ~ = ~(w) be a uniformly distributed on G2 random variable on (0 , :E, µ) 
and we define 'T/ = 'TJ(w) by 

'T/: w---+ IG2lf ( ·, ~(w)). 

Lemma 3 The function 'T/ is a random variable with values in X = w; ( G 1), 

belongs to Lq(X), IE'T} = u and 

(11) 

PROOF. We first verify that the values of 'T/ almost surely belong to w; ( G i) 
and that 'T/ is Borel measurable as a mapping into w;(G1) (note that w;(Gi) 
is a separable Banach space). Let us denote by ft the function given by 
ft(s) = f (s, t). Then ft E Lq(G1) for almost all t, by Fubini's theorem. 
Using elementary facts from distribution theory, it is readily checked that 
for all a with la l :S r the weak derivative (D? !)( ·, t) coincides with Da ft 
for almost all t. This implies ft E w;(G1 ) for almost all t. Moreover, since 
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w;(G1) is isometric to the subspace of EBq L: 1al:Sr Lq(G1) of those Ua) jaj::;r 
with f a = D°' fo, we can use 6.2.12 of Pietsch (1987) to prove that t -+ 
(D°' ft)1a i:Sr is Borel measurable as a mapping into the direct sum above, 
and hence t -+ ft is Borel measurable as a mapping into w; ( G 1). We have 

lt follows that IE17 is well-defined, and because of ( 10), equals u. • 

Now we have to define suitable approximation tools in w;(G1). There 
is a vast literature on this subject and a variety of possibilities. Since a 
review of these tools is not the subject of this paper, we restrict ourselves 
to formulating the requirements on the approximating operators needed for 
our purposes and make a few comments on how to satisfy them. Let Pe : 
w;(G1)-+ Lq(G1) (l = 1, 2 ... ) be a sequence of Operators of the form 

nt 

Pef = 2:: f (sei)'Pt.i (12) 
i=l 

with Sf.i E G1 (the closure of G1) and 'Pei E Lq(Gi). The Sobolev embedding 
theorem guarantees that the point evaluations are well-defined. We assume 
that there are constants c1, c2, c3 > 0 such that for all e 

(13) 

and, if Ir ,q denotes the identical embedding of w; ( G) into Lq ( G i), 

( 14) 

Such sequences can be constructed for many domains, e.g. by using tri
angular, rectangular or isoparametric finite elements of suitable order. We 
refer to Ciarlet (1978) for details. For the unit cube and arbitrary r, piece
wise multivariate Lagrange interpolation will do (among many others), as 
described in Heinrich (1998a) and Heinrich and Sindambiwe (1999). For 
polyhedral domains and r = 2 piecewise linear interpolation on successively 
finer triangulations is a standard approach, the sei being the vertices of the 
triangles and the <pei being the corresponding hat functions. 

The restriction to point evaluations of f in (12) was just made for nota
tional simplicity. One could also admit values of derivatives (D°' f)(s) with 
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Iod < r/d1 - l/q. Now the multilevel method of dependent test fixes an m 
and approximates u according to (5) by 

(15) 

where the Ne (e = 1, ... , m) are positive integers, ~ej (e = 1, ... , m, j = 

1, ... , Ne) are independent realizations of the uniformly distributed on G2 
random variable ~, and for e = 1 we set no = 0, so in this case the second 
term is zero. Next we provide a bound for the stochastic part of the error 
of the multilevel method. 

Proposition 4 Let 1 < q < oo, p = min(2, q) and Let (Pe)~ 1 satisfy (13} 
and (14}. Then there is a constant c > 0 such that for all f E w;·0 (G1 x G2) 
with llfllw'·o :S 1, for all m E IN and Ne E IN (e = 1, ... , m) the multilevel 

q 

estimate ( defined above satisfies. 

PROOF. From Lemma 3 we get ry E Lq(X) ~ Lp(X) and 

(IE!lu - rtli~) 1 /P < llullx + (IEllrti1~) 1 /P 
= 11 IErtllx + (IE!Jrtll~ )1/P 

< 2(1Ellrtllk )lfq :'.S 2llf llwr,o :'.S 2. 
q 

Moreover, by ( 14) 

llPe - Pe-1 : X---+ Yll :::; crre . 

(16) 

Finally, since Lq( G 1 ) is of type p, all of its subspaces have a type p constant 
not exceeding that of Lq(G1). Now Corollary 2 yields the result. • 

Remark. For the one level method (2) we obtain under the assumptions 
of Proposition 4 with P = Pk for some k 2: 1, 

(IEllPu - OllP )1/P < cN1/ p-l _ 
Lq(G1) -

(17) 
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For q = 2 (= p) this is well-known (see, e.g.,Voytishek, 1996). 

In the following we shall choose the Ne and balance deterministic and 
stochastic error in such a way that we obtain minimal error at fixed com
putational cost. In the theorem below 'cost of computing ~, means the 
total number of arithmetic operations, random number calls and function 
evaluations required for the computation of the coefficients of all 'Pli in (15). 

Theorem 5 Let 1 < q < oo, p = min(2, q) and let (Pe)~ 1 satisfy {13} and 
( 14). Then there exist constants c1, c2 > 0 such that for each integer M > 1 
there is a choice of parameters m, (Ne}1~ 1 such that the cost of computing 
( is bounded by c1M and for each f E w;·0 (G1 X G2) with llfllwr,O ~ 1 the 

q 

p-th expected norm error (with respect to the norm of Lq(G1)) satisfies 

ep(() ~ c2M-r/di if r/d1 < 1 - l/p, 
ep(() ~ c2M1/P-L logM if r/d1 =1- l/p, 
ep(() ~ c2M1/p-l if r/d1 > 1 - 1/p. 

PROOF. Throughout the proof andin the sequel the same symbol c, c1, or 
c2 is used for possibly different positive constants, not depending on m, M 
and f. The cost of computing ( is obviously bounded by 

(18) 

The line of the subsequent proof is the following. For the moment we fix m 

to be any positive integer with 

(19) 

First we choose the Ne for this fixed m and estimate the stochastic part of 
the error. Later on we select the final m so that deterministic and stochastic 
part of the error are in balance. 
So let 

Ne = r r(r+di / p)e-((1- 1/p)di -r)m M l (20) 

if r/d1 < 1 - 1/p, 

(21) 

if r/d1 = 1 - l/p, and 

(22) 
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if r / d1 > 1 - l/p. Although this choice looks complicated, it has an obvious 
source - this is (up to constants) what we get when minimizing the bound 
from Proposition 4, 

m 
LNl-P2-rpl 
l=l 

( the variance, for p = 2) , subject to the condition 

m 

L2d1lNe :SM 
l=l 

(the cost). Since this aspect is not relevant for the proof, we omit the 
standard calculation. lt is readily checked that from (19) and the choices 
(20), (21) or (22) it follows that 

m 

L 2d1l Ne :S cM. 
l=l 

The deterministic part of the error (see (6)) satisfies, by (14) and (11), 

(23) 

Next we compute the bounds on the stochastic part of the error in Propo
sition 4. First we treat the case r / d1 < 1 - l/p. We have 

( 

m ) l/p 
L Nl-P2-rpl :S cMl/p-l2((l-l/p)d1 -r)m, 

l=l 

(24) 

which is a consequence of (20) and, the following calculation of exponents 

(1 - p)[-(r + difp)i - ((1 - l/p)d1 - r)m] - rpi 

((p - l)(r + difp) - rp)i + (p - 1)((1 - l/p)d1 - r)m 

((1 - l/p)d1 - r)i + (p - 1)((1 - l/p)d1 - r)m 

p((l - l/p)d1 - r)m + ((1 - l/p)d1 - r)(i - m). 

N ow we choose m in such a way that 

c rrm < M1/p-1 2((1-1/p)d1 -r)m < c rrm 
l - - 2 , (25) 

which means that, up to constants, we equalize the bounds for deterministic 
and stochastic part of the error, that is, the right hand sides of (23) and 
(24). Clearly, (25) is equivalent to 

C 2d1m < M < C 2d1m 
1 - - 2 
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(different constants!), and it suffices to take m to be the largest integer 
satisfying 

(23), (24), (25) together with (16} and (6) yield 

ep(() ::::; cM-r/d1. 

For r/d1 = 1 - l/p we use (21) and argue similarly: 

(1 - p)(-d1f) - rpf = p((l - l/p)d1 - r)f = 0 

and hence 

We choose m in such a way that 

c 2-rm < Ml/p-lm < c 2-rm. 
1 - - 2 

This is equivalent to 

c ml /( l-l/p) 2d1m < M < c ml/( l-l /p) 2d1m 
1 - - 2 , 

and we let m be the largest integer satisfying 

ml/(1-l/p) 2d1(m-l) ::::; M. 

We obtain 

ep(() ::::; cM1/P- 1 Iog M. 

Finally, for r/d1 > 1 - l/p we have 

(1 - p)(-(r + di/p)f) - rpf = ((1 - l/p)d1 - r)f 

and hence 

( 

m ) l /p L Nj-Prrpe ::::; cMl/p-1. 

l=l 

Here we choose m so that 

C 2-rm < Ml/p- 1 < C 2-rm 
1 - - 2 ' 
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or equivalently 

and we let m be the largest integer with 

2r(l-1/p)- 1(m-1) :::; M. 

This yields 

and proves the theorem. • 
Remark. As already mentioned, by 'computation of (' we meant the com
putation of coefficients of the functions 'Pli in (15). Having accomplished 
this, it is often possible to combine these functions in a computationally 
favorable way. Usually, the spaces span{ 'Pli : i = 1, ... , nl} are nested, 
and one can decompose 'Pli successively into combinations of 'Pl+l,i until 
level m is reached. For standard choices of approximation (as e.g. finite 
elements, piecewise Lagrange polynomials, piecewise linear functions, men
tioned above) such a decomposition can be achieved in cnm :::; cM opera
tions. 

Now assume this is done, as well, and we want to compute ((s) for many 
s E G 1 ( e.g., to prod uce a graph of the approximating function). For each s, 
this can be carried out in :::; c operations, provided the functions 'Pm ,i can be 
computed in :::; c operations and the supports of these functions are almost 
disjoint, which means that 

supmaxl{j: supp (cpm,i) nsupp (cpm,j) i-0\ < oo. 
m i 

Again, many known approximation scales, including the above mentioned 
examples, possess this property. 

Let us finally consider the one-level method and make comparisons. The 
sum of deterministic and stochastic error ( see ( 17)) amounts to 

while the cost M is of the order 2dik N. Equalizing both terms above, we 
see that at cost M we can reach an error 

l /p- 1 
cM1+c1-1 / vldi / r. (26) 
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This is certainly larger than 

Mmax(l/p-l,-rd1 ) 

' 
which we get (up to the log term) from Theorem 5. The saving by the 
multilevel method can be seen better if we compare the cost of reaching an 
error E. > 0. For the one-level method the cost is 

c (~) di/r+(l-l/p)-
1 

1 

while for the multilevel method ( up to log's) 

C (~) max(d1/r,(1-l/p)-
1

) 

The results of Theorem 5 are optimal in a very. general sense: No ran
domized algorithm of cost M can do better ( except for a constant factor 
independent of M or, perhaps, a log-term in the case r/d1 = 1 - l/p). 
We cannot give the required formal framework for such statements here 
and refer instead to the literature on information-based complexity theory 
(see Traub, Wasilkowski, and Wo:iniakowski, 1988, Novak, 1988,_ Heinrich, 
1994, Heinrich and Sindambiwe, 1999). Nevertheless, a few words on these 
lower bounds seem appropriate. First of all, we now restrict ourselves to 
the model case G1 = [ü, ljd1 , G2 = [O, l]d2 • For the problem of parametric 
integration of functions from the dass w;'0 (G1 X G2) lower bounds are, in 
fact, easily derived from known results ( quite in contrast to the situation of 
cr(G1 X G2) studied in Heinrich and Sindambiwe, 1999). Indeed , by con
sidering the subclass of w;'0 (G1 x G2 ) of functions depending only on the 
second component, i.e. f (s, t) = g(t), we see that the problem is no easier 
than stochastic integration of Lq( G2) functions. For this, the lower bound 
M 1/p-l with p = min(2, q) is known, see Novak (1988, 2.2.9, Proposition 1, 
and references). Similarly, the subclass of all functions in w;'0 (G 1 x G2) 
depending only on the first component f (s, t) = g(s), can be identified with 
w;(G1), hence the problem is no easier than approximation of functions of 
w;(G1) in Lq(G 1), for which the known lower bound for stochastic methods 

is M-r /di, see Heinrich (1994, Thm. 6.1 and references). Thus 

Mmax(l / p-l ,- r / d1 ) (27) 

is a lower bound, which shows that Theorem 5 yields, in fact, the optimal 
rate and hence the minimal Monte Carlo error in the sense of information
based complexity theory ( up to a possible log factor in the case r / d 1 = 
1 - 1/p). 
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When comparing the one- and the multilevel method, it seemed that we 
compared only upper bounds. Such a discussion would be meaningless since 
it does not exclude the existence of better estimates for any of the methods 
under comparison. In our case, however, this is not so. Looking again at 
functions depending only on the first or the second variable, it is easy to 
check directly that the one level method cannot be better than 

c (rrk + Nl/p-1), 

and hence, the rate (26) is sharp. Let us finally mention that the lower 
bound (27) also holds for q = p = 1, in which case it turns into a positive 
constant. This shows that no method can have a nontrivial convergence rate 
for q = 1. 
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