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Abstract 

We study the global solution of Fredholm integral equations of the 
second kind by the help of Monte Carlo methods. Global solution 
means that we seek to approximate the full solution function. This 
is opposed to the usual applications of Monte Carlo, were one only 
wants to approximate a functional of the solution. In recent years 
several researchers developed Monte Carlo methods also for the global 
problem. 

In this paper we present a new Monte Carlo algorithm for the global 
solution of integral equations. We use multiwavelet expansions to ap­
proximate the solution. We study the behaviour of variance on in­
creasing levels, and based on this, develop a new variance reduction 
technique. For classes of smooth kernels and right hand sides we deter­
mine the convergence rate of this algorithm and show that it is higher 
than those of previously developed algorithms for the global problem. 
Moreover, an information-based complexity analysis shows that our 
algorithm is optimal among all stochastic algorithms of the same com­
putational cost and that no deterministic algorithm of the same cost 
can reach its convergence rate. 

1 Introduction 

We are concerned with the randomized solution of linear integral equations 

u(s) = f (s) + la k(s, t)u(t) dt (1) 

where G ~ IRd is a bounded domain, f and k are given functiolls Oll G alld 
G2 , respectively, alld u is the ullkllOWll fullctioll Oll G ( detailed collditiolls 
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will be given later). Examples of (1) include neutron transport, radiative 
heat transfer, and light transport. The function f is the source density and 
k(s, t) describes the transition from state t to state s. Usually, d is high, 
e. g., d = 6 in neutron transport, so Monte Carlo methods are the preferred 
choice. In their standard form these methods provide statistical estimates 
of one (or a few) functional(s) of the solution u, such as the value u(to) in a 
given point or a weighted mean 

l u(t)g(t) dt 

with g a given fonction. lt is well-known and supported both experimentally 
and theoretically, that for higher d, Monte Carlo is superior to deterministic 
methods in this task. 

But what happens, if we seek to approximate the full solution function 
u instead of just a functional of it? Monte Carlo approaches to the full 
solution were developed by Frolov and Chentsov [4], Sobol [13], Mikhailov 
[10], Voytishek [15, 16], Prigarin [11]. There are two basic ways: 

l. Fixa grid r c G and obtain Monte Carlo estimates of u(s) for s Er. 
Then extend the function from r to all of G by an interpolation or 
approximation procedure. 

2. Use a basis sequence, say, an orthonormal system, to approximate 

n 

u ~ 2:)u, zi)zi 
i=l 

and estimate ( u, zi) by Monte Carlo. 

Note that in both cases, the overall number of samples is O(nN), where 
n is the number of functionals to be estimated (n = \rl in case 1) and N is 
the number of samples for each functional. 

In this paper we are concerned with the second approach (basis se­
quences) . We present a new algorithm which improves upon the above by 
keeping the same precision but reducing the arithmetic cost considerably. 
This is achieved by using multiwavelet expansions and variance reduction 
tuned to their levels. For multilevel versions of the first approach (grid­
interpolation) we refer to Heinrich [6, 7]. 
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2 Multiwavelets 

In this section we briefly present the required facts about multiwavelets, a 
construction which goes back to Alpert [1]. For first applications to Monte 
Carlo see Heinrich [5]. We restrict ourselves to G = [O, l]d . Fix an integer 
r 2:: 0. For f = 0, 1, ... (the level index) , let 

1ft. ={Gei: i E le = {0,„ . , 2e- l}d} 

be the partition of G into disjoint 'cubes of sidelength 2-t., where for i = 

(i1, ... , id) E le, 

with Aej = [2-ej, 2-e(j + 1)) if j < 2e - 1 and Aej = [2-ej, 2-e (j + 1)] 
if j = 2e - 1. Let sr(7re} be the space of splines of maximum degree not 
exceeding r, with no correlation at the interfaces, that is 

and pr (Gei) is the space of polynomials of maximum-degree :S r (so, e. g., 
P 1 (Gei) is the set of multilinear functions on Gei)· The idea of the con­
struction is the following: Choose any orthonormal basis { w1, . .. , Wq} of 
sr(7ro) (with respect to the L2(G) norm) and extend it by {wq+1„ „ ,wq'} 
to an orthonormal basis of sr(7r1). Now we "repeat" this process on higher 
levels: Assume that we have already constructed a basis of sr ( 7f e) . Its ele­
ments, restricted to Gei (i E Ie), are just polynomials in pr(Gei). Shrinking 
Wq+i, ... 'Wq' to Gei, we obtain functions which belong to sr(7re+1) and 
which are orthogonal to sr(7re). Doing this for all i and normalizing, we get 
the desired orthonormal extension. 

More formally, the extensions can be defined as follows: Let L00 ( G) be 
the usual space of essentially bounded functions on G with respect to the 
Lebesgue measure. Let 

be the contraction operators defined for f E L 00 ( G) by 

(C ·f)(t) = { f (2et - i) fort E .Gei 
fi O otherw1se. 

Put 

zoij = Wj (i E Io, j = 1, . .. , q) 
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and, for P ?:: 1, 

Zf.ij = 2Ct.-l)d/2ct.-1,iwq+j (i E It.-1, j = 1, ... , q' - q). 

Clearly, {zt.ij: P ~ m, i,j as above} is an orthonormal basis of sr(7rm), and 
Zfij vanishes outside of Gt.i· Note that for r = 0 we get the d-dimensional 
Haarbasis. 

We also need related interpolation operators. Let r f. be the uniform grid 
on G of mesh size r- 12-t. for r ?:: 1, and the set of centers of the cubes 
Gti (i E l t. ) for r = 0. Let C(G) denote the space of continuous functions 
on G and let 

be the piecewise multivariate Lagrange interpolation on r f. of order r ( i. e. the 
tensor product Lagrange interpolation on each Gt.i)· lt is. readily checked 
that 

llPt.: C(G)-+ Loo(G)ll ~ C1 

and for f E cv(G), 

llf - PdllL00 (G) ~ c2,vrvf.llfllcv(c)1 (2) 

where 1/ ~ r + 1 is a positive integer, cv(G) Stands for the space of 1/ times 
continuously differentiable functions, equipped with the usual norm · 

llfllcv(c) =max sup l(D0 f)(t)I, 
lol :Sv tEG 

and the constants do not depend on P. Observe that, due to the local 
structure of the interpolation, (Pd)(s) can be computed in 0(1) operations, 
the constant not depending on P. 

3 Multiwavelet Monte Carlo 

Here we present the new algorithm. First we specify the conditions on k and 
f in ( 1). We consider equation ( 1) in L00 ( G), where G = [O, 1 ]d as above 
(endowed with the Lebesgue measure). We assume that f E C(G) and that 
k is such that s-+ k(s, ·) defines a continuous function from G to L 1 (G). lt 
follows that the integral operator Tk defined by 

(Tkg)(s) := fc k(s, t)g(t) dt 
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for g E L00 (G), is bounded in L00 (G). We assume that I - Tk is invertible 
in L00 (G), where I denotes the identity operator. Hence, (1) is uniquely 
solvable. 

We fix a final level m and approximate u by 

m 

u ~Um= L L(u, Zfij)Zfij, 
l=O i,j 

where (u,zeij) denotes the scalar product of L2(G). Clearly, Um is the or­
thogonal projection of u onto sr ( 7r m). Our algorithm will approximate Um 
by Monte Carlo. For this purpose, suppose that 'r/lij is a stochastic estimate 
of ( u, Zfij), that is, "llij is a random variable on some (universal for the whole 
algorithm) probability space (0, ~' µ) such that 

IEryeij = ( u, zeij). 

The construction of "llij is the crucial point and will be described later. We 
define a vector valued random variable 

T/f. = L "llijZfij E sr(7re) e sr(7re_i) 
i,j 

(3) 

representing the contribution to level l. Assume that the T/e (l = 0, ... , m) 
are independent. Fix natural numbers Ne (l = 0, ... , m) tobe chosen later 
and let 'f/~a) (a = 1, ... ,Ne) be independent copies of 'f/e (so that {TJ~a) : 

l = 0, ... , m, a = 1, ... , Ne} constitutes an independent family of random 
variables. We approximate u by the sr(7rm)-valued random variable ry: 

m l Nt m ( l Nt ) 
U ~ "l =LN L'f/~a) = LL N L"l~~} Zfij, 

l=O e a=l l=O i,j e a=l 

where ry~~] denote the components of ry~a). lt follows that 

m 

IEry = LL(u,zeij)zeij =Um· 
l=O i,j 

(4) 

(5) 

Hence, our algorithm produces a biased, vector valued estimate. So far 
this is nothing but a formal splitting over the levels. The key point is the 
construction of 'f/lij tuned to the level l. For this sake we note that since 
zeij is orthogonal to sr(7re_ i) , 

(6) 
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for f ~ l. We use this relation in order to modify the standard von Neumann 
Ulam collision estimate (see e. g. Spanier and Gelbard [12], Ermakov and 
Mikhailov [3]) in the following way. First we introduce functions ge(s) and 
he(s, t), f = 0, ... , m, by setting go = f, ho = k, and for f ~ 1, 

ge 
he(„ t) 

f - Pe-if 

k(„ t) - Pe-1k(„ t). 

Due to our requirements on f and k made at the beginning of this chapter, 
ge and he are well-defined. Next we define a Markov chain on G. For this 
purpose let Plij, Pe, and p be arbitrary measurable, non-negative functions 
on G and G2 , respectively, satisfying 

[Peij(t) dt 1, 

[Pe(s,t) dt < 1, 

kp(s,t) dt < 1, 

Plij(s) -:/- 0 whenever Zf.ij(s) -:/- 0, 

Pe(s, t) -:/- 0 whenever he(s, t) -:/- 0, and 

p(s, t) -:/- 0 whenever k(s, t) -:/- 0, 

for almost all s EG and (s, t) E G2 , respectively. We also assume that the 
spectral radius of Tp in L00 ( G) is less than one. 

For each choice of f, i, j these functions define an absorbing Markov chain 
on G with initial density Plij, transition density to the next state Pe, and , 
transition density to all further states p. Almost all trajectories are finite. 
Let 

( to , t i , . . . , t„) 

be such a trajectory. That is, t„ is the last state before absorption, which 
occurs with probability 

1 - k Pe(s, t) dt 

and 

1- lp(s,t)dt , 
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respectively. We define the modified collision estimate as follows. Put 

lt is checked in the usual way, that 

IE7Jeij = (u,zeij), 

provided the spectral radius of Tik i in L00 (G) is less than one, and that 
7Jlij has finite variance provided z]i)Peij E L1(G), the kernels hVPe and 
k2 /p define bounded Operators in L00 (G), and the spectral radius of Tk 2/p 
in L00 ( G) is less than one. 

4 Convergence Analysis 

Recall that we approximate the solution u of (1) by the random variable 7J 
defined in (4). We shall study the mean square norm error e(ry) defined as 

e(ry) = (lEllu - 7JllL,cc) )1/2. 

Denote the norm variance of 7Je by 

ve = 1E ll7Je - IEryellL,cc)' 

and the metric distance of u to sr(7rm) in the norm of L00 (G) by 
dist( u, sr ( 7rm), Loo ( G) ). 

Lemma 1. There is a constant c > 0 depending only an r and d such that 

Proof. By (5) and the triangle inequality we have · 

To estimate the deterministic component, let Qm denote the orthogonal 
projection from L 2 onto sr(7rm)· Using a local representation of Qm (see 
[5], section 8), it is readily shown that 

sup llQm: Loo(G)---+ Loo(G)ll < oo. 
m 
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lt follows that 

llu - UmllL00 (G) = ll(I - Qm)ullL00 (G) 
:S (1 +II Qm: Loo(G)--+ Loo(G)ll) dist(u, sr(7rm), Loo(G)). 

Let us now turn to the stochastic part. Here we have to estimate the variance 
of sums of independent, vector valued random variables. Recall that 

m 1 Nt 

'fJ = L Ne L'fl~a), 
l=O a=l 

the 'f]~a) being independent random variables with values in sr(7re) ~ sr(7rm)· 
Since sr ( 7r m)' considered in the Loo ( G) norm, is isometric to the foo-SUffi of 
2dm copies of sr ( 7ro) (just use the fact that there is no correlation between 
functions on the subcubes of 7r m), it follows that the type 2 constant of 
sr ( 7f m) behaves like 

(logdimSr(7rm)) 112 :::::: m 112 , 

see Ledoux and Talagrand [9] for the notion of type 2 constants. (The 
standard notation :::::: means that both quantities are equal up to a factor 
which can be bounded form above and below by positive constants not 
depending on m.) Thert Proposition 9.11 of [9] gives 

m Nt 

IEll'fl - IErylll
00

(G) :S cm L ~2 L IEl l'fl~a) - IEry~a) llioo(G) 
l=O e a=l 

This proves the lemma. 

m 

cm l:=veNi 1
. 

l=O 

(7) 

D 

The subsequent convergence analysis is carried out for a model dass 
of smooth kernels and right hand sides. lt simplifies the analysis , while 
the essential features . of balancing variance over the levels become more 
transparent. Moreover, this dass is well-studied from the point of view 
of information-based complexity, which allows us to formulate optimality 
results and comparisons with the deterministic setting. To define the dass, 

we fix a positive integer v - the degree of smoothness, and real parameters 
K:1, K:3 > 0, 0 < K:2 < 1, and put 

K {k E Cv(G2
): llkllcv(G2) :S K:1 , llkl\Lcxi (G2) :S K:2} 

:F {f E Cv(G) : llfllcv(G) :S K:3}. 
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We choose the following algorithm parameters: 

r = v - 1, Piij = IGtil-1XGw 

p = Pi = () , where () is some constant, K,2 < () < 1. Hence the initial 
distribution of the Markov chain is the uniform distribution on Gei and all 
further states are distributed uniformly on G, with 1-() being the probability 
of absorption. 

By cost of the algorithm we mean the expected number of arithmetic Op­
erations, comparisons, function evaluations ( of k and J) and random number 
generator calls. The efficiency of algorithms is judged and compared best 
when the error is expressed as a function of the overall cost. The next result 
provides this for the multiwavelet algorithm. We shall assume d > 2v, so 
the dimension is large compared to the smoothness ( we comment on the 
case d ~ 2v at the end). 

Theorem 1. Let d > 2v. There are constants c > 0 and Mo E IN such that 

for each M E IN with M > Mo there is a choice of the parameters m and 

(Nt)~0 such that for all k E JC and f E F the multiwavelet Monte Carlo 

algorithm has cost at most M and error 

Proof. Fixa non-negative integer m , tobe chosen later. There is a constant 
c > 0 such that for all k E JC and f E F, u = (I - h)-1 f satisfies 

(We shall use the same symbol c for possibly different constants, all inde­
pendent of M and m.) Together with (2) this yields 

Again from (2) and the assumptions on k and f we derive 

IJgeJILoo(G) < crve 

and 

Since, by our choice, 

1 

k ( s, t) 1 < /'i,2 < 1 
p(s, t) - () 
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and 

we get 

I
n . · 1 < c2-dl/2-vl 
·tli] -

and hence, by the disjointness ( up to sets of measure zero) of the supports 
of Zfij1 

This implies ve ::; c2-2vt, and the lemma above gives 

(9) 

Since the expected length of the Markov chain depends only on (), a realiza­
tion of the random variable T/lij can be computed at expected cost 0(1). The 
variable T/e has 0(2dl) components, so the cost of computing T/e is 0(2dl). 
Fixing an upper bound M of the overall cost, we minimize the right hand 
side of (9). In a first step we leave m fixed and minimize the second sum­
mand, 

m 

m L 2-2ve Ne-1 

l=O 

subject to the condition 

(10) 

Note that since we are only interested in the order of these quantities, we 
can neglect constant factors. With this in mind, we can write the solution 
of the minimization as 

N e ;:::::: 2-(d/2-v)(m-l)-dl M. 

This choice gives 

m 

m L 2-2ve N e- 1 ::; cmM-12(d-2v)m. 

l=O 
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Next, m has to be chosen in such a way that deterministic and stochastic 
error (i. e. both summands on the right hand side of (9)) are in balance: 

thus 

which is satisfied iff 

2dm:::::: M(log M)- 1 , 

and as the final error bound we obtain 

which proves the theorem. 0 
-

This result should be compared with the lower bound on the same dass 
of v-smooth kernels and right hand sides obtained by the author in [6]. For 
the precise framework we refer to that paper and to 'fraub, Wasilkowski and 
Woiniakowski [14]. 

Theorem 2 ([6]). Let d > 2v. There is a constant c > 0 such that for all 
M E IN the following holds: No stochastic algorithm of cost at most M can 
have a smaller error than 

lt follows that our algorithm is of optimal order on the dass (K, :F). A 
different optimal multilevel algorithm using interpolation instead of wavelet 
decompositions was given by the author in [6], [7]. 

We are also able to compare the behaviour of stochastic and deterministic 
algorithms. The following lower bound (which is, in fact, the optimal order) 
was obtained by Emelyanov and Ilin [2]. For the framework we refer to [2], 
[6] or [14]. 

Theorem 3 ([2]). There is a constant c > 0 such that for all M E IN the 
following holds: No deterministic algorithm of cost ai most M can have a 
smaller error than 

cM-v/ (2d). 
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Hence the rate of convergence of the multiwavelet Monte Carlo algorithm 
on the dass of smooth inputs is roughly the square of that of the best deter­
ministic algorithm (this assumes, of course, that we accept the comparison 
between deterministic and stochastic error criteria). 

Let us now compare our multiwavelet algorithm with the previously de­
veloped one-level procedures mentioned in section 1 under points 1 and 2. 
If the ingredients are optimally chosen, the deterministic part of the error 
has the same estimate n-v/d for v-smooth functions. The variance of the 
estimators for u(s) or (u,zi)Zi is usually 8(1) (even if one uses a wavelet 
expansion and applies the standard estimators without the modifications 
described in section 3). Hence the total error is of the order 

n-v/d + N-1/2(logn)1 /2. 

Minimizing with respect to the cost constraint nN :S M gives 

M- d;2v (log M) d;2v , 

a rate worse than that of our new algorithm, but because of the condition 
d > 2v still better than that of the best deterministic algorithm. 

Let us finally mention that the convergence analysis in the case d :S 2v 
can be carried out similarly. However, for d < 2v the algorithm is no langer 
optimal. An optimal algorithm for this case is given in [6]. To produce a 
corresponding multiwavelet algorithm, we need to combine the approach of 
the present paper with the separation of main part technique in [6], first 
developed in [8]. 
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