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Abstract 

The problem of constructing a geometric model of an existing object from a set of bound­
ary points arises in many areas of industry. In this paper we present a new solution to 
this problem which is an extension of Boissonnat's method [2]. Our approach uses the 
well known Delaunay triangulation of the data points as an intermediate step. Starting 
with this structure, we eliminate tetrahedra until we get an appropriate approximation of 
the desired shape. 

The method proposed in this paper is capable of reconstructing objects with arbitrary 
genus and can cope with different point densities in different regions of the object. The 
problems which arise during the elimination process, i.e. which tetrahedra can be elim­
inated, which order has to be used to control the process and finally, how to stop the 
elimination procedure at the right time, are discussed in detail. Several examples are 
given to show the validity of the method. 

1 Introd uction 

The reconstruction of an object from surface points irregularly located in 3D-space is one 
of the most interesting open problems in the field of computer aided engineering. In recent 
years, this problem is of increasing importance since eff icient scanning techniques become 
available. A survey on different methods of data acquisition was given by Jarvis [9]. These 
methods often produce a large amount of data that can not be handled by current CAD­
systems. The surface reconstruction modules of such systems are . until now restricted by 
limiting the number of points which they are able to manage. Furthermore these systems are 
usually based on either curve fitting or edge detection and therefore only provide a restricted 
reconstruction tool. So the process of surface reconstruction, which is also referred to as 
reverse engineering, still remains a time consuming task. 

This paper presents a new method for the reconstruction of an object from a set of boundary 
points. This method is focused on the generation of a polyhedral approximation of the object 
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which is an important step in the process of reverse engineering as stated by Varady [14]. 
The proposed method is an extension of Boissonnat's work [2] . He suggests a volume based 
surface reconstruction method which uses the well known Delaunay triangulation of the data 
points as an intermediate step. The basic strategy of his algorithm is to eliminate tetrahedra 
form the triangulation to extract an object representation and to approximate the desired 
shape. 

In contrast to Boissonnat 's method, which is restricted to the reconstruction of objects with 
genus 0, the algorithm presented here is able to reconstruct objects with genus > 0. This 
is an important advantage since real world objects are usually not restricted to genus 0. In 
order to reconstruct an object in a reasonable way, it is necessary to get the data points from 
different samples using multiple views. Hence we can get different densities of the sample 
points in different regions of the object. A nonuniform distribution of the data points is 
also desired if there are different levels of details within the object. Our method is also able 
to cope with this phenomenon, provided that the object is totally sampled. To do this, we 
developed a strategy for automatically terminating the elimination process. Thus the method 
avoids undesired holes in the polyhedral approximation. 

In the remaining part of this section the problem which we want to solve is described in 
detail. After that some assumptions are made which <:t.re required for the method to produce 
acceptable results. These assumption· do not really restrict the method, they rather claim 
some facts that can be stated as common sense. At the end of the section a short overview 
of some related work that has been done in the past on the same topic is given. 

The volume based reconstruction method is described in particular in the second section. 
Details like defining criteria for removable tetrahedra, defining a cost function to control the 
elimination process and the automatic termination of the removal are elaborately explained. 
An algorithm is given which recapitulates the different items of the method. 

A few examples demonstrate the validity of our approach and the quality of the resulting 
approximation. We conclude our work with some remarks on further steps which have tobe 
done to make reverse engineering a powerful and versatile engineering tool. 

1.1 Statement of the Problem 

The problem that we want to solve in this paper can be stated as follows: 

Given a set P = {p1 , ... , Pn} of unstructured data points sampled from the surface 
S of an unknown object, construct a closed polyhedron of triangular faces through 
all data points. 

The solution to this problem is not unique and it is difficult to characterize a polyhedron 
that approximates the original object in a convenient way. Among the possible solutions, 
polyhedra with special properties may be preferred. Polyhedra of minimal area as suggested 
by O'Rourke [12] may yield strange results [2]. Another criteria was given in [1] where the 
curvature of the original surface is used to generate an object model. 
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Since there is a large number of possible solutions, it is unsuitable to generate all possible 
polyhedra to find an optimal one. So we must find a way to reduce the complexity of the 
problem. The basic idea of the method presented here is to use a global structure on the 
data points, from which an optimal representation can be obtained. 

1.2 Assumptions 

In contrast to previous methods, the algorithm presented here makes relatively few assump­
tions about the set of data points and the object from which they are sampled. The most 
important advantage of the new method is that the object to be reconstructed may have 
arbitrary topological type. Nevertheless some assumptions are necessary to guarantee an 
appropriate approximation of the desired shape. 

lt is obviously clear that we can't expect an adequate reconstruction of the intended object 
if the data points are inaccurately sampled from the object. Since the only knowledge of 
the object the algorithm is given is the set of unstructured sample points , it is impossible 
to recover details in regions where the point density is insufficient. So we assume that the 
density of the sample points is higher than the dimension of the smallest detail. 

To assure that the surface S of the unknown object is properly reconstructed we have to 
claim another property of the data points. Since the resulting surface consists of triangles 
which are faces of tetrahedra of the Delaunay triangulation, we should suppose that these 
triangles are in some way part of the original surface S which we want to reconstruct. This is 
the case when all three edges of the triangle are on S. To satisfy this condition, we demand 
the following property which we call density constrain1 · 

For each point on S, the nearest data point Pi according to the euclidean distance 
in IR3 is also the nearest data point with respect to thP distance measured on S. 

However, this constraint is a necessary but not sufficient prerequisite for our method. lt 
should be noted that the method presented here does neither require nor exploit structural 
information in the data points, e.g. points lying on scan lines or additional information such 
as normal vectors in each data points. 

1.3 Related Work 

In recent years a lot of work was published which is concerned with the problem of object 
reconstruction. A great deal of this methods assume that the data points do have some 
structural information, e.g. lying on cross sections or scan lines, or additional information 
such as normal vectors are available in each data point. Since we do assume that we only 
have the 3D-coordinates of the data points and no additional information, we restrict our 
attention to methods that have the same prerequisites. 

As mentioned before, a volume based object reconstruction method was introduced by Bois­
sonnat [2]. Another method which uses the Delaunay triangulation as an intermediate step 
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was proposed by Edelsbrunner and Mücke [6]. They extend the concept of a-shapes which was 
introduced in [5] to the three-dimensional case. This geometric structure can be generalized 
to weighted a-shapes [4] to cope with different point densities . However, the determination 
of appropriate weights in the data points is still an open problem. 

A reconstruction method that construct a boundary representation out of an initial graph 
is due to Veltkamp [16] . O'Rourke [13] presented an algorithm that reconstructs a simple 
polygon out of a set of boundary points in the plane. Since this method make use of the 
concept of Voronoi diagrams, it can be easily extended to the three-dimensional case. An­
other method which is also due to O 'Rourke [12] construct polyhedra of minimal area as 3D 
object models. However, these method may produce strange results [2]. An approximative 
surface reconstruction method was suggested in [8] . In this method , the resulting approxi­
mation do not contain the sampled data points. An detailed overview of additional surface 
reconstruction methods can be found in [15]. 

2 Volume based method 

To obtain an approximation of the desired shape we use a volume based reconstruction 
method typically consisting of the following steps: 

1. Create a volumetric description of the convex hull of the given points. This model yields 
a tessellation of the hull into small volume elements. 

2. Eliminate volume elements from the initial object representation in order to improve 
the approximation of the desired 3D-shape. This step make use of a heuristic which 
guarantees that the remaining structure is still a polyhedron. 

3. Extract the outer surfaces of the volume elements in order t.o obtain a boundary repre­
sentation of the generated object. 

Following Boissonnat's approaGh we use the Delaunay triangulation of the points as volume 
representation. This geometric structure suggests itself because of its nice properties (see 
Lawson [11]) and the fact that there are well known algorithms to compute this triangulation 
efficiently even in the three-dimensional case. Therefore we have to define criteria to decide 
whether a tetrahedron can be eliminated or not. 

In addition the order the order in which the tetrahedra are removed has to be specified. lt 
is obvious that the quality of the resulting surface depends on this order. We use a cost 
function c to assign a value c(t) to each tetrahedron t. This value is used to determine the 
elimination sequence. 

In general it turns out that the elimination process has to be stopped even if there are still 
tetrahedra that can be removed according to the defined criteria. Figure 3 shows an example 
where removing all removable tetrahedra results in a clearly not acceptable approximation. 
This dif ficulty raises the problem of finding an appropriate stopping point for the tetrahedra 
removal. 
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These problems, i.e. defining criteria for removable tetrahedra, determining an appropriate 
elimination sequence and finding the best stopping point , are discussed in detail in the next 
sections. 

2.1 Criteria for the elimination of tetrahedra 

If we eliminate a tetrahedron from the triangulation, we must guarantee that the remaining 
structure is still a polyhedron. Thus we can only eliminate tetrahedra if the elimination does 
not result in a isolated point, i.e. a point which does not belong to a tetrahedron any more. 
This rule is obvious because all the data points are sampled from the surface of the object 
and therefore our goal is to reconstruct a coherent surface without isolated points. 

As we want to sculpture our object from the triangulation, it is clear that we want to eliminate 
only these tetrahedra which have at least one face on the surface of the current approximation. 

In his work, Boissonnat [2] gave the following two criteria for the elimination of tetrahedra: 

A tetrahedron can be eliminated, if 

• exactly one face, three edges and three points are on S or 

• exactly two faces, five edges and four points are on S 

where S is the surface of the current approximation. 

Since Boissonnat's method is restricted to the reconstruction of objects with genus 0, these 
criteria are sufficient for his purpose. The tetrahedra specified by this two criteria are not 
the only ones that can be eliminated without violating the rule mentioneri above. As we want 
to reconstruct objects with genus > 0, we must extend Boissonnat's criteria. 

\fit 
,L - --- - --- -- ---- - - •• • • - -- • ••••• • •• •• -• • • • 

a) b) 

5 



c) d)_ 

Figure 1: Examples of removable (a), b) and d)) and not removable (c)) tetrahedra 

Figure 1 shows three types of tetrahedra that can be removed in addition to the tetrahedra 
specified up to now. Figure la) shows a tetrahedron with one face and four points on S. This 
one can be eliminated because the point not belonging to the face does not become isolated 
after the elimination. The tetrahedron in Figure 1 b) has three faces and four points on the 
surface S. The tetrahedron in figure lc) has also three faces and four points on S. But in 
contrast to the one in figure 1 b) this one can not be eliminated because doing so the point 
P gets isolated which is a violation of our elimination rule. The tetrahedra in figure ld) has 
four faces and four points on S. This one can be eliminated because each point is a vertex of 
at least one other tetrahedron. 

Therefore we get the following five criteria for the elimination of tetrahedra: 

A tetrahedron can be eliminated if 

• one face and tree vertices are on S 

• two faces and four vertices are on S 

• one face and four vertices are on S and the vertex not belonging to the 
face does not become isolated ( figure la)) 

• three faces are on S and the common vertex of the faces does not 
become isolated ( figure 1 b)) 

• all four faces are on S and no vertex becomes isolated (figure ld)) 

2.2 Definition of the cost function 

lt is obviously clear that the quality of the resulting approximation depends on the order in 
which the tetrahedra are eliminated from the triangulation. The required density constraint 
implies that all triangles of the desired approximation are faces of the tetrahedra of the 
Delaunay triangulation. This observation implies that we want to keep small and regular 
tetrahedra and we must remove irregular tetrahedra with long edges and large faces. We do 
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so because it is unlikely that such a tetrahedron belong to the desired approximation if the 
point density is sufficiently high. 

To determine the order in which the tetrahedra are removed , we associate a value c(t) to each 
tetrahedron t. Since the tetrahedron with the maximum value should be removed, we must 
choose this cost function in way that undesired tetrahedra are removed first. This can be 
done in various ways. 

Possible cost functions may be for example the value of the langest edge of the tetrahedron, 
the area of the largest face or the radius of the circumscribed sphere. In our algorithm, we 
use the following cost function: 

c(t) max{d(m,pi)+(-1) 0 ·d(m,m1.)} 

where 

a sgn(n · (m - m1J) 

and 

m center of the circumscribed sphere of t 
Pi vertex of t 
d euclidean distance 
mf; circumcenter of face fi which is on S 
n surface normal of fi 

This cost function, which is due to Boissonnat, is the maximum distance between the faces 
oft on S and the associated parts of the circumscribed sphere. c(t) is illustrated in figure 2. 

Figure 2: cost function c( t) 
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The cost function is chosen in a way that, if the density of the data points is sufficiently 
large, the value c(t) of a removable tetrahedra t belonging to the interior of the object is 
smaller than the value of any tetrahedron belonging to the exterior of the object. So this cost 
function guarantees that we do only eliminate tetrahedra which do not .belong to the interior 
of the object. 

2.3 Automatie detection of the stopping point 

In the last two sections, we defined criteria for the elimination of tetrahedra and by defining 
a cost function c, we determine the order in which the tetrahedra are removed since we 
eliminate the tetrahedron with the largest value first . 

. The question now is, how long do we eliminate tetrahedra? We can of course eliminate all 
tetrahedra which fullfill our elimination criteria. But in this case, a lot of tetrahedra are 
removed even after we got an appropriate approximation of the object. The fact that all 
data points come from the surface of the object leads to a first naive solution: Eliminate 
tetrahedra until all data point lie on the surface S of the current approximation. However, 
this choice has two major drawbacks: 

1. To reconstruct reflex edges, it may be necessary to eliminate tetrahedra even if all data 
points are on the surface S. 

2. Different point densities in different regions of the object lead to undesirable holes in 
the polyhedral approximation. 

The first problem was already mentioned by Boissonnat. His algorithm stops if all points are 
on the surface. Afterwards tetrahedra are removed until no decrease in the cost function is 
achieved. But his method is not able to cope with the second problem. lt is important to 
notice, that this problem is not caused by our modified elimination rules, it also occurs when 
we only use the restricted criteria given by Boissonnat. 

If the density of the data points is not uniform, the cost function does not guarantee any 
more that tetrahedra which do not belong to the interior of the object are eliminated first. 
In this case we remove tetrahedra which belong to the interior of the object and therefore 
we get undesirable holes in the approximation. Hence we must stop the process before we 
eliminate the 'wrong' tetrahedra. 

. „ : ;~ ~ : ·. . 
... ·': 

: „ .. :; . . 

Figure 3: Example of an undesired hole in the polyhedral approximation 
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Figure 3 shows an example of an undesirable hole in the approximation we get if we do not 
stop the process at the right time. Near the reflex edge, thc density of the data points is 
three times higher than at the rest of the object. So we get an hole at the lower right corner 
of the object while the data points belonging to the edge are not on the surface. 

In the following we present a strategy for the termination of the elimination process. This 
strategy solves the two problems mentioned above. First , we automatically detect the ap­
propriate stopping point. This solves the second problem. If all data points are now on the 
surface S, we are dorre. lf not, we must perform some morc elimination steps to complete 
the surface. 

The detection of the stopping point is dorre by investigating the elimination function 

e(t) = max c(t). 
tET 

lt can be observed that this function has several significant jumps. One of these jumps 
corresponds to the optimal stopping point. This particular jump is characterized by a stabi­
lization of the cost on a higher level. Figure 4 shows an example of a characteristic elimination 
function. 

c(t) 

8.47· IO" 

K77j llKKKl 1 

Figure 4: Characteristic elimination function 

To realize that the optimal stopping point corresponds to the jump where the elimination 
function shows a stabilization of the cost on a higher level, we consider the following argument: 
At the desired stopping point a tetrahedron is eliminated which belongs to the interior of 
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the object and has at least one face on the surface of the current tetrahedral approximation. 
After eliminating this tetrahedron, its neighbours have at least one face on the surface. So 
this neighbours can be eliminated if the elimination does not result in a isolated point. In 
the general case, such a tetrahedron has higher costs than a tetrahedron which do not belong 
to the interior of the object. This holds because the face of the tetrahedron which is on the 
surface is large since the vertices are on the surface of the object but the face is an interior 
one. 

By the elimination of such a tetrahedron, more and more tetrahedra of this kind become 
removable and since they all have higher costs than the tetraP..edron removed before the 
stopping poiut, we get a stabilization of the cost at a higher level. 

lf we want to detect the optimal stopping point, we must make some elimination steps even 
after this point. So we must undo this steps afterwards. 

After detecting the stopping point, we perform the second part of our strategy. lf all data 
points now are on the surface, we are done. At this point, if our object is of genus 0 and 
the data points are uniformly distributed, we get the same result as Boissonnat get with his 
method. lf not all data points are on the surface, we must furthermore eliminate tetrahedra. 

Since the elimination process is stopped to avoid undesired holes, the elimination rules or the 
cost function have to be changed before the algorithm proceeds. lf the data points do not 
violate the assumption that the density of the data points is higher than the dimension of 
the smallest detail, we can expect that actually existing holes in the object are broken out 
before the stopping point. Therefore we can use the restricted elimination rules after this 
point. Since, as mentioned before, we also get undesired holes if we only use these restricted 
criteria, the cost function has tobe changed too. This is clone by scaling the cost function c(t) 
by the radius of the circumscribed sphere, which is a measure for the size of the tetrahedron. 
So the cost of a small tetrahedron increases in comparison to the cost of a big tetrahedron. 
After the stopping point the modified cost function 

c'(t) = c(t) 
d(m,pi) 

is used where m and Pi are defined as so far. To complete the surface, tetrahedra are 
eliminated which fullfill the restricted elimination criteria. The order in which the tetrahedra 
are eliminated is determined by the modified cost function c' ( t) tetrahedra are eliminated 
until all data points are on the surface and no more decrease in the cost function is achieved. 

2.4 Reconstruction algorithm 

Using the preparatory work which is dorre in the last three sections, we are now able to 
describe our reconstruction algorithm. The algorithm starts with a set P = {p1 , ... ,pn} of 
data P<?ints sampled from the surface of the object. At the end the algorithm provides a 
tessellation of the object into tetrahedra; the faces of this tetrahedra which do only belong 
to one tetrahedron form the surface of the object. 
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The algorithm consists of five major steps: 

(1) Compute the Delaunay triangulation T of P 

(2) Mark all tetrahedra t E T that can be eliminated according to the modified 
elimination rules. 

(3) For all marked tetrahedra t compute c(t) . 

( 4) Until the stopping point is not detected: 

(a) Eliminate tetrahedron 
tmax = max{ ti E T 1 c( ti) ~ c(tj) 'tfti -::/- tj}. 

(b) Investigate the neighbours ni of tmax, if they can be eliminated, compute 
c(ni)· 

(5) Complete the surface: 

(a) Mark all tetrahedra that can be eliminated according to the restricted 
elimination rules. 

(h) For all marked tetrahedra t compute the new costs c' ( t). 
( c) Repeat the steps ( 4) ( a) and ( 4) (b) until all points of P are on the surface 

S and no more decrease in the costs is obtained. 

The construction of the Delaunay triangulation even in three dimensions is a well known 
problem in computational geometry. Therefore many algorithms for its computation have 
been developed (see e.g. [3], [7], [10], [17]). In our method we us an implementation of an 
incremental algorithm given by Watson [17]. 

To mark a tetrahedron that can be removed, it may be necessary to check whether a vertex 
Pi becomes isolated after the elimination. This is dorre by computing recursively a list of all 
tetrahedra that have Pi as a vertex. lf this list only contains the tetrahedron to be eliminated, 
the vertex becomes isolated and the tetrahedron can not be eliminated. lf the list contains 
at least two tetrahedra, Pi does not become isolated after the elimination. 

During the determination of the cost function c(t) in step (3-), the computational effort can 
be reduced, if we store the radius of the circumscribed sphere in each tetrahedron. This can 
be dorre during the computation of the Delaunay triangulation since this radius is already 
needed at this time. 

The most important step of our algorithm is the elimination of the tetrahedra tmax· To do this 
in an efficient way, we must sort the tetrahedra by the value c( t). If we store the tetrahedra 
sequentially in an array, we get into problems performing step ( 4 )(b) because we must remove 
the tetrahedron tmax from the array and, if necessary, add some new tetrahedra to it. So it is 
necessary to resort the array afterwards. In our algorithm, we avoid this problem by using a 
balanced binary tree to store the tetrahedra. So we only have logarithmic cost if we remove 
or add one tetrahedron. This tree has to be . rebuild in step (5)(b) since the elimination 
criteria are restricted after the stopping point and the value of the cost function changes for 
all removable tetrahedra. 
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3 Examples 

In this section we present two examples to demonstrate the validity of our method. Figure 5 
shows an torus like object with three holds. Beside the data points and the final approxi­
mation, the triangulation of the convex hull and an intermediate step in the reconstruction 
process is shown. 

a) data points b) convex hull 

c) intermediate step d) final approximation 

Figure 5: torus like object with three holes 

In this example, all data points are on the surface of the approximation when the stopping 
point is reached. In this case, no completion of the surface is necessary. The next example 
shows an object for which we need the completion of the surface. The data points shown in 
figure 6a) are artificially sampled from a small object which has a cubic pocket. Since the 
density of the data points is higher in one part of the object , not all data points are on the 
surface when the stopping point is reached. 
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a) data paints 

b) reflex edge c) cubic packet 

d) reflex edge e) cubic packet 

Figure 6: small abject with a cubic packet 
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Figure 6b) and 6c) show the approximation of the surface at this point. After the completion 
of the surface, we get the final approximation of the object which is depicted in figure 6d) 
and 6e), respectively. The reflex edge where the density of the data points is higher is fairly 
reconstructed as well as the cubic pocket. 

4 Summary and Future Work 

In this paper we described a new method for the construction of a polyhedral representation 
of an arbitrary object from a set of unstructured surface points. Our method is a volume 
based one which means that we start with a volumetric representation of the convex hull of 
the data points and then extract our object by sculpturing this representation. We use the 
Delaunay triangulation of the data points because this geometric structure is very natural, has 
nice properties and is easy to compute. So we sculpture our object by eliminating tetrahedra 
from the triangulation. To do this, criteria are defined which are used to decide whether 
a tetrahedron can be removed or not. In contrast to previous methods, by defining these 
criteria we are able to reconstruct objects with arbitrary genus. By assigning a cost function 
c(t) to each tetrahedron t that fullfill one of our elimination criteria, we fix the sequence in 
which tetrahedra are eliminated since the tetrahedron with the largest value is eliminated 
first. 

In addition to the benefit that the genus of the object is not restricted, another important 
advantage of our approach over already existing methods is the ability to cope with different 
point densities. We do this by an automatic termination of the elimination process an by 
completing the surf ',Ce afterwards. Therefore we do not get undesired holes in our approxima­
tion and we assure that all data points are on the surface of the object, which is an important 
point for applications which are attached to our algorithm. 

The construction of a polyhedral object representation out of the data points and generating 
a surface approximation at the same time is only a first step in the process of reverse engi­
neering. The final goal of this task is to create a CAD-model of the object. To do this, several 
steps are necessary (see [14] for an overview). Based on the triangulation of the surface we 
must find a segmentation of the surface of the object and after that we perform a modeling 
step in which we represent the the different segments by different CAD-primitives (planes, 
cones, cylinders, free-form surfaces, etc.). 

Segmentation means grouping points belonging to the same region. This can be done by 
identifying points that have similar properties, for instance normal vectors or curvature. 
This additional information can be computed from the surface triangulation. To improve the 
quality of these additional information, we can optimize the surface triangulation using data 
dependent triangulations. 

During the modeling step we must assure that the created CAD-surfaces meet some quality 
requirements and that the surfaces are constructed in a way that we can guarantee a certain 
continuity along the boundaries of adjacent patches. This satisfies an important requirement 
in the reverse engineering process: we must be able to manufacture the reconstructed object 
out of the CAD-representation. 
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In these areas, a lot of future work is required before reverse engineering becomes a powerful 
and profitable tool in the design and manufacturing process. 
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