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Abstract 

The main problem in computer graphics is to solve the global illumination prob
lem, which is given by a Fredholm integral equation of the second kind, called the 
radiance equation (REQ). In order to achieve realistic images, a very complex kernel 
of the integral equation, modelling all physical effects of light, must be considered. 
Due to this complexity Monte Carlo methods seem tobe an a.ppropriate approach to 
solve the REQ approximately. We show tha.t replacing Monte Carlo by quasi-Monte 
Carlo in some steps of the algorithm results in a. faster convergence. 
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1 Introduction 

In computer graphics image generation 1 mainly consists of two steps: First the radiance 
equation (REQ) has tobe solved to determine the global illumination. Then the solution 
of the REQ is sampled by simulating a lens in order to compute the radiance value for 
each pixel of the image matrix. 

In our case the scene to be illuminated is composed of disjoint triangles Ak , 1 :::;; k 
:::;; ]{, where I< depends on the detail of modelling and is in the range of 103 ... 106 for 
practical scenes. The union S of all triangles is the surface of the scene. We assume that 
the scene is finite and closed and that each triangle has a local coordinate system and is 
not degenerate. To solve the REQ means to know the radiance L(x,w) in any location 
X E uf=l Ak = s for any direction w E n, where n is the hemisphere in normal direction 
in x. The radiance L is measured in [ +] and as such is intensity per solid angle. Our m n • 
eyes perceive something proportional to L. The radiance equation (REQ), a Fredholm 
integral equation of the second kind, is given by 

L(x ,w) = La(x,w) + { L(h(x,w'),-w') fr(-w' , x ,w) cosO(x,w') dw' (1) Jn, 
where L(x,w) is the radiance emerging from x in direction w. L is the sum of the source 
radiance La and the radiance from all over the hemishere !1' ( over surface location x ) 
refiected at x into direction w. h(x,w') is the first point hit from location x in direction 
w' and 0( x, w') is the angle between the surface normal in x and the direction w'. The 
f r term is a bidirectional refiection distribution function (BRDF) describing the surface 
properties in a surface location x for light coming from direction -w' and being reflected 
into direction w. In this way the BRDF characterizes color, gloss, etc. of the surface. Due 
to the Helmholtz principle we have 

fr(-w',x,w) = fr(-w , x,w') 

which means, that all light paths can be reversed. This is an important property and the 
basis of ray tracing. The algorithm which will be derived in the next section is designed 
for the so-called radiosity setting 2

• In this setting all surfaces are diffuse reflectors , i.e. 
we only allow constant BRDFs, describing a uniform refiection independent of direction: 

The REQ is a convenient formulation of a radiative transfer problem. U sually the 
radiance L is a vector of components representing the color basis red, green and blue. So 
all equations would be replicated for each component. For the sake of simplicity we now 
restrict to only one wavelength. 

We rewrite equation ( 1) as operator equation: 

L =La+ T1 L (2) 
1 For a profound introduction into computer graphics see [CW93), for a survey on Monte Carlo methods 

in computer graphics see [MP93) . 
2See the conclusion for elusion of this restriction. 
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The solution is accessible via the Neumann series. Since the operator norm is less than 
1 in the diffuse environment, the series is converging and can be cut o:ff at a certain level 
M with little loss of accuracy 3 : 

oo M 

L = LT}Lo ~ LT}Lo (3) 
i=O i=O 

Since the operator T1 is positive, the truncation of the series causes a certain underesti
mation. 

The radiance value of one pixel P is the mean value integral over its area: 

Lp = l~I i L(h(Eye,dir(Eye,x)),-dir(Eye,x)) dx (4) 

where Eye is the position of th~ observer's eye and dir( Eye, x) is the direction from the 
eye through location x on the screen into the scene. 

2 Algorithm 

The main idea of our algorithm is to calculate average local solutions of the REQ for 
the triangles Ak, as proposed in [HK94b], and then to reconstruct the image from these 
average informations. The average local solutions will be computed by quasi-Monte Carlo 
integration (see [Nie92]). The idea of applying low discrepancy particle methods to inte
gral equations goes back to the work of [Hla62], [NW73], and [SP87]. 

In order to solve the REQ we insert (2) into itself and get 

L L0 + T1 L0 + T1 T1 L (5) 
Ld +Li 

where 

Ld := Lo + T1 Lo is the direct illumination and 
Li:= T1 T1 L is the indirect illumination. 

The direct illumination Ld is calculated separately, since there exist fast techniques for its 
computation. For the Monte Carlo integration, we have to integrate over all solid angles 
of triangles with L0 -=f. 0: 

Ld(x,w) 

L0 (x,w) + [ Lo(h(x,w'),-w') fr(-w',x,w) cosO(x,w') dw' Jn, 
LS 

L0 (x,w) + L 1 Lo(h(x,w'),-w') fr(-w',x,w) cosO(x,w') XAk(h(x,w')) dw' 
k=I 0~ 

LS IO' 1 N-1 

~ L0 (x,w) + L ; ?= Lo(h(x,w:), -w:) fr(-w~, x,w) cos O(x,w:) XAk(h(x,w:)) 
k=l i=O 

(6) 

3In practical diffuse environments M ~ 10 is sufficient. 
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where LS is the number of lightsources, f!lc is the solid angle of triangle Ak seen from 
location x without obstruction. The XAk function is the visibility function: 

(h( ')) ··= { 1 h(x, w') E Ak XAk x,w .. 0 1 e se 

For the determination of the indirect contribution Li, we first apply a functional \{J Ak to 
the solution of the REQ: 

(L, '11Ak) = 11 L(x,w) cosO(x,w) XAk(h(x,w)) dw dx (7) 

The functional \{J Ak = cos 0( x, w) XAk ( h( x, w)) is the "detector" -function for the total 
incoming power on surface Ak, which is given by the inner product above. So the mean 
diffuse radiance reflected by this triangle is 

(8) 

Supposed we have an approximation for L Ak ( x), the approximation for the indirect illu
mination looks like: 

L;(x,w) (T1 T1 L)(x,w) 

'" L (t. LA,(h(x,w')) XA,(h(x,w'))) J,(-w', x,w) cosO(x,w') rM' (9) 

To finally generate the image, we have to resample the approximation of L for each 
pixel. For one pixel we have 

OS-1 

Lp ~ ds L L(h(Eye, dir(Eye, xi)), -dir(Eye, x;)) 
t=O 

(10) 

where OS is the oversampling rate per pixel, i.e. the number of rays shot from the eye 
through the pixel into the scene. 

3 Quasi-Monte Carlo Integration 

The quasi-Monte Carlo integration uses the same formula (11) as the (pseudo-) Monte 
Carlo method, but replaces the (pseudo-) random numbers by low discrepancy sequences. 

(11) 

The ( u;) then are a deterministic pattern on Js = [O, l ]8 specifically designed for integra
tion. That means, that quasi-random numbers may fail several statistical tests applied 
for pseudo-random numbers; they solely keep the property of uniform distribution. Since 
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we can only use a finite number of samples, the pattern has a deviation from the uniform 
distribution measured as discrepancy. The discrepancy of a given ( deterministic) point 
set PN = { uo, ... , u N -1} wi th regard to a family of su bsets :F is defined as 

l N-1 

D(:F, PN) = sup As(A) - N L XA( u;) , 
AEF i=O 

(12) 

where the supremum is taken over all subsets A ~ Js of the family :F and As is the 
Lebesgue measure on Js. The discrepancy can be seen as maximum integration error for 
the characteristic functions of such a family of subsets. 

For :!* = { A = fl:=1 [O, a;] i 0 ::; a; ::; 1} we have the star-discrepancy 

The inequality of Koksma and Hlawka 

N-l l. f(u) du - ~ ~ f(u;) :S; V(J) · D*(PN) (13) 

is a separation of upper error bound into the star-discrepan<:y, depending only on the 
sampling pattern, and the total variation V(f) of the integrand. This decomposition 
makes sense if the total variation V(f) in the sense of Hardy and Krause (for further 
details see [Nie92]) can be bounded by a finite constant. 

Since L, L0 and fr are not continuous, this estimation is not directly applicable. In 
[HK94a] we showed an upper error bound for the pixel oversampling (10), whereas an 
upper error bound for algorithms for L and LAk is an open problem in the setting of 
computer graphics. 

3.1 Low Discrepancy Sequences 

Let us now recall two standard types of low discrepancy sequences. First, we define <[> as 
the radical inverse function: 

= = 
(14) 

j=O j=O 

where the natural number b > 1 is the base and i E IN. The values <[>b always are in 
the unit interval [O, 1). For illustration: <1> 2 (i) simply is the binary representation of i 
mirrored at the decimal point 4

. 

The Halton and the Hammersley sequence are s-dimensional vectors built from radical 
inverse functions in relatively prime bases bj, that is, we choose subsequent primes for the 
bj. For 0 ::; i < N we have: 

Halton points: u; = (<l>b1 (i), ... ,<l>b,(i)) 

Hammersley points: u; = ( ~, <l>b1 (i), ... ,4>b._1 (i)) 

4 For fast algorithms for computing <P we refer to [Str93] or [HW64]. 
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The discrepancies D*(PN) for both sets have the following order of magnitude (see 
[Nie92]): 

0 (
logNs N) 

DHalton E 

DHammersley E 
0 (logsN-1 N) 

The Halton sequence is an incremental pattern, meaning that increasing the number of 
samples is possible without discarding the samples already drawn. In contrast to this 
the Hammersley sequence is not incremental since increasing the sampling rate results 
in discarding all samples computed so far. In consequence this pattern is not useful for 
adaptive sampling, although it has an asymptotically smaller discrepancy. No values of 
either sets need to be precomputed, since all values are directly accessible. 

U sing a permutation a of the set { 0, 1, ... , b - 1} for the generation of the radical 
inverse functions is called scrambling: 

j=O j=O 

Scrambling is used for breaking the dependencies of the radical inverse function for large 
bases in high dimensions. Scrambling, which is useful in most applications of quasi
Monte Carlo integration, in computer graphics has no big effect. That fact arises from 
the complex scene geometry, where an E-change of one ray direction can change a random 
walk path completely. 

There is a variety of more low discrepancy sequences as the Faure-, the Sobol-, and 
further scrambled sequences. All these sequences differ a little bit in quality for the 
environment of computer graphics, but have about the same order of magnitude in dis
crepancy. 

4 Implementation 

The implementation is split into a preprocessing step for the evaluation of (7) and the 
rendering step for cakulating the mean pixel radiances of (10). 

We rewrite equation (7) by substituting the truncated Neumann series (3) for the 
solution L: 

(L, WAk) 
M 

~ (LT} Lo, '11 Ak) 
j=O 

M 

L (Tj Lo, '11 Ak) 
j=O 

M 

~ 11 (Tf Lo)(x, w) cos O(x, w) XA, (h(x, w)) ,J,,, dx 
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where 

M j j+l 

L l 1 IT!r(-w1,xi,w1+1) IT cosO(x1_1,w1) 
j=O OJ+I So l=l l=l 

M 

2= 
j=O 

Q 

Lo(xo,w1) XAk(xJ+1) dxo dw1 · · · dw1+i 

h(x1-i,w1) for l > 0 and 
7r 

[O , 2l X [O, 27r] 

(15) 

So is the surface of the lightsources where L0 > 0. For the Monte Carlo evaluation of 
(15) we use a (2M + 4)-dimensional low discrepancy sequence (ui) for all decisions of a 
random walk simulation. U sing the first two components ( Ui,o, Ui,I) we choose a starting 
point xo E So for the path on a light source. Then the particle is shot into direction 
W1 = (01, <P1) = (27rui,2, ~Ui,3)· The triangle which is hit first in this direction receives the 
incoming power. Subsequently the particle is attenuated due to the BRDF in the hitpoint 
and traced into the next direction given by (27rui,4 , ~Ui,5 ). This procedure is extended to 
a path length of M + 1 lines. By this we do the evaluation of (7) for all triangles Ak 
simultaneously by only one low discrepancy sequence. 

As mentioned in section 3.1, for adaptive termination of the preprocessing step we have 
to apply infinite low discrepancy sequences like the Faure-, Halton-, or Sobol-sequence. 
The termination criterion is similar to [Pas94]. For two numbers N1 and N2 of iterated 
paths, we determine an error by 

6E(N N) = 
1 

i, 2 "K L IA 1 L,.,k=I O,k k 

where the LAk(Ni) is the approximation of (7) by Ni samples and L0 is the radiance of 
the different light sources. Further we select an interval 6N for the measurements. The 
distance d is the Euclidean distance between the two color vectors LAk (Ni)· The process 
is terminated if for a fixed T and the smallest n E IN 

6E((n + t) 6N, (n + t + 1) 6N) < t for 0 ~ t < T . 

Since the error is weighted by the size of the triangles, after termination the bigger areas 
Ak are integrated more exactly than the smaller areas. This makes sense, because in the 
resampling step (9) the bigger areas are hit more often than the smaller ones. 
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The image generation is clone by selecting positions in a pixel and sending rays from 
the eye through these positions into the scene. As shown in [HK94a), the Halton sequence 
is well suited for adaptive oversampling in this case. 

Having determined the hitpoints in the scene, the radiance emerging from them into 
the direction of the eye has to be calculated by (5) for averaging (10). The direct light Ld 
is calculated by (6). lt would be very expensive to calculate the contribution of all lights 
for all hitpoints of the oversampling process. So for the OS hitpoints, we calculate the 

1. h "b t" f number of lights l" ht 1 t d b d t t. ( h ' h ig t contn u 10n o 05 ig s se ec e y a ran om permu a 10n w ic 
changes from pixel to pixel so as to avoid aliasing), so that alltogether every light is used 
exactly once for one pixel. 

For each first hitpoint from the eye into the scene, we resample (7) by jittering rays 
over the hemisphere. From (9) we derive 

L;(x,w) ~ L (t, LA, ( h(x, w')) XA, (h(x, w'))) 

L (t, LA,(h(x,w')) XA,(h(x,w'))) 

L (t, LA,(h(x,w')) XA,(h(x,w'))) 

fr(-w',x,w) cosO(x,w') dw' 

f r ( -w'' X' w) sin 
20

' dB' d<f/ 
2 

f ( _ , ) d sin
2 

O' d<f/ 
r w,x,w 

2 

"' ;R St.' (t,LA,(h(x,w')) XA,(h(x,w;))) f,(-w;,x,w) 

where x = h(Eye, -w) is the point first hit by a ray from the Eye into direction -w. 
SR is the number of scattered rays used for the evaluation of the integral. For reasons of 
efficiency a kind of importance sampling is applied. The' rays are not uniformly distributed 
over the hemisphere n, but distributed with respect to the sin2 0'-term. 

This sampling method applies to all BRDFs. In order to reduce the variance, it would 
be better to use a basis decomposition of the BRDF and to integrate over the basis vector 
separately (e.g. see [War92]). But since here we only allow the evaluation of diffuse, i.e. 
constant BRDFs no decomposition is necessary. 

In addition to the algorithm explained above, we implemented two enhancements: 
First we included mirrors. A perfect mirror can be modelled by a 8-function. So whenever 
a ray hits a singular surface, it is reflected without changing its radiance. The second 
enhancement concentrates on the fact that the h( x, w) operation is the most expensive 
operation in computer graphics. Therefore we implicitely increase the number of samples 
for the indirect light LAk of one pixel by using the samples of the eight neighbouring 
pixels. In order to assure a small error for this averaging, we have to guarantee a small 
deviation of normals. Therefore we only take those indirect light rays, which hit the same 
surfaces as considered in the current pixel. Since we exclusively used triangles to model 
our scenes, the deviation then is equal to zero. This kind of increment of samples acts 
as a low pass filter ( since Monte Carlo integration simply is averaging) and so smoothes 
the indirect light contribution. Note that this method does not smear sharp contours, 
because it is not an image space method. 
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This method acts conveniently to the observer's eye: If we see areas which extend over 
big areas of the image, we tend to perceive high levels of noise. Exactly in this case the 
averaging smoothes this effect. If on the other hand we have many small objects in one 
pixel, the eye cannot distinguish and such does not perceive the high variance. 

4.1 Measurements 

Due to the complexity of the kernel of the REQ, for realistic scene description no analytic 
solution is accessible to serve as benchmark for the various rendering methods. So there 
are two ways left to test the performance of illumination algorithms. The first is to 
compute a solution with a very high number of samples and to take this solution as 
reference for calculations with less samples (see [HK94b]). 

The second method is to simplify the kernel in such a way that an analytical solution 
becomes accessible. Be Pd = !, fr = ~, and L0 = ~ for all triangles Ak. Then the solution 

L = L0 + {Pd L cosO(w)dw ln 7r 
00 

i=O 

where 

T = 1 cosO dw = 12

1' 17i cosO(w) sinO dO d</J = 7r 

simply is the projection of the unit-hemisphere onto the plane. By simplifying the kernel 
this way, only the complexity of the construction of the scene remains. This analytic 
solution can be used for finding obvious errors in the simulation. But more importantly 
it can serve as a benchmark test for illumination algorithms by calculating the distance 
to the analytic solution. 

For the experiments we chose four different scenes. All scenes were modelled in meters, 
that is in real measure. The scenes are an empty cube (!< = 12 triangles ), a living room 
(!< = 3604 triangles), an office (!< = 276 triangles) and the computer graphics teapot 
(Utah Teapot) in a box (!< = 1572 triangles ). Images of the last three scenes can be seen 
in figure 1. 

The algorithm described in section 2 will always have a small systematic error due 
to the truncation of the Neumann series. In the measurements we used M = 29 for the 
experiments with the analytic solution in order to keep the truncation error very small 
and M = 6 for the realistic experiments. 

For the analytic solution experiments (all surfaces were grey with fr = 2
1
1' and emitted 

white light with L0 = ~) we calculated the mean square deviation ~a(N) and the weighted 
mean square deviation ~aw(N) : 

l::f=1 (LAk (N) - ! )2 
J{ 
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Ef=l(LAk(N) - !)21Akl 
]{ Ef=1 IAkl 

The comparison of different sampling pa.tterns for various numbers of samples is illustrated 
in tables 2 and 3. lt can be observed that the low discrepancy sequences acquire the same 
level of error faster than the (pseudo-) random sequences. Note that inside the cube there 
are not any obstructions, and so the algorithm converges very fast due to the simple, 
symmetric geometry. 

For the realistic setting (i.e. real surface textures and light sources, except for the cube, 
for which we still used the analytic setting), table 1 shows the behaviour of adaptive 
termination as described above. For a given accuracy c of the preprocessing step, the 
number N of samples needed for termination (fj.N = 1000, T = 2) is printed. From these 
tables it can be seen that the complexity of construction of the scene nearly replaces 
scrambling of the low discrepancy sequences. lt also can be seen that the low discrepancy 
sequences are superior to the (pseudo-) random sequences, i.e. they terminate faster. 

5 Conclusion and Further Work 

We proposed an algorithm to approximately solve the global illumination problem for 
scenes consisting of diffuse and pure specular objects. The quasi-random, i.e. determin
istic preprocessing step is applicable to any BRDF. In order to make the resampling step 
apply to not only diffuse BRDF and especially to gather caustics, the incoming radiance 
in equation (7) has to be stored for any incoming direction (for example by spherical 
harmoni cs). 

By our experiments we proved that the quasi-random approach for the preprocessing 
step is slightly superior to the pseudo-random algorithm. 
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Sequence N per scene 
cube l living room 1 office 1 teapot 

E = 10-3 

Lin. Congr. 42000 36000 48000 31000 
lnversive 35000 37000 37000 36000 
Halton 33000 36000 28000 29000 
Faure 32000 29000 30000 30000 
Sobol 30000 35000 30000 24000 

E = 3.3 · 10-4 

Lin. Congr. 100000 99000 149000 102000 
lnversive 101000 115000 126000 106000 
Halton 92000 100000 72000 85000 
Faure 99000 95000 72000 77000 
Sobol 95000 87000 78000 77000 

E = 10-4 

Lin. Congr. 330000 343000 439000 334000 
lnversive 337000 314000 397000 316000 
Halton 266000 305000 235000 238000 
Faure 276000 283000 276000 219000 
Sobol 310000 298000 253000 228000 

Table 1: Samples needed for a termination by E 
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Sample Sequence 
N Lin. Congr. Inversive Halton Faure Sobol 

empty cube 
103 0.0647699 0.0469468 0.0459244 0.0375936 0.0458288 
104 0.0138841 0.0150312 0.015322 0.0101492 0.0154578 
105 0.00416856 0.00426497 0.00347108 0.00388516 0.0139228 

. . 
hvmg room 

103 5.68352 3.89019 2.0911 1.46717 5.49831 
104 1.87948 1.5128 2.15754 1.94902 1.51938 
10s 0.64136 0.550875 0.524932 0.727295 0.573517 

office 
103 0.46748 0.456453 0.399271 0.280669 0.431063 
104 0.259767 0.202392 0.331709 0.475231 0.234959 
105 0.136946 0.127394 0.136938 0.136222 0.14049 

teapot 
103 3.55052 24.4236 5.28716 3.58575 4.63836 
104 1.36052 2.67153 0.962619 1.01024 0.920303 
105 0.460942 0.438209 0.434956 0.412762 0.422177 

Table 2: Mean square deviation from analytical solution 

Samples Sequence 
N Lin. Congr. 1 lnversive II Halton 1 Faure 1 Sobol 

empty cube 

103 0.00589147 0.00485275 0.00514532 0.00398542 0.00500996 
104 0.00171686 0.00181801 0.00147316 0.00128062 0.00184561 
105 0.0004 78878 0.000538219 0.000402798 0.000395118 0.00152823 

living room 

103 0.0056218 0.00591197 0.00478811 0.00455163 0.00582923 
104 0.00325591 0.00320881 0.00322973 0.00330551 0.00322495 
105 0.0028332 0.00282448 0.00282852 0.00282892 0.00284094 

office 

103 0.00861589 0.00845805 0.00825801 0.0070116 0.00775931 
104 0.00672887 0.00668762 0.00670869 0.00680193 0.00695615 
10s 0.00661765 0.00654544 0.00655064 0.00657714 0.00685 

teapot 
103 0.00624067 0.0116751 0.00809856 0.00610271 0.00580429 
104 0.00183252 0.00199039 0.00156816 0.00158062 0.00159681 
10s 0.000581887 0.000552315 0.000543979 0.000565605 0.000613286 

Table 3: Weighted mean square deviation from analytical solution 
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Figure 1: Images of the living room, the o:ffice and the teapot 
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