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Abstract

In this paper we consider generalizations of multifacility location problems in
which as an additional constraint the new facilities are not allowed to be located in
a prespecified region. We propose several different solution schemes for this non-
convex optimization problem. These include a linear programming type approach,
penalty approaches and barrier approaches. Moreover, structural results as well
as illustrative examples showing the difficulties of this problem are presented.
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Introduction

In continuous multifacility location problems one has usually given a set of fixed facilities
and is looking for locations of some new facilities. The quality of a set of new locations
is evaluated by an objective function in which the exchange intensity between the new
and the old facilities as well as between the new facilities is taken into account.

Many researchers have looked at this problem (see [28] for a recent survey and
references therein) and a lot of results have been derived up to now.

However, when dealing with continuous location models as approximations to real-
world problems, we have naturally the problem of taking geographically given settings
into account. We may, for example, not be able to choose a specific location for a new
facility because this location is in the middle of a lake, inside a protection area or because
there is already a building.

This paper deals with an extension of classical multifacility problems: restricted
multifacility problems, where forbidden regions in which no new facility can be placed
have to be respected. For structural results on restricted single facility location problems
as well as for efficient solution algorithms for specific distance measures (I1,/o, I3 and
polyhedral gauges) the reader is referred to [14, 16, 23] and references therein.

In contrast to the single facility case only very specific instances of restricted multi-
facility location problems have been investigated up to now. In [24] a solution procedure
for the two-facility case with a forbidden rectangle is discussed, while a linear program-
ming approach for the ¢;-case is given in [15]. The aim of this paper is to provide general
structural results as well as algorithms to find locally optimal solutions for a broad class
of restricted multifacility location problems. Since our focus is on the theory of possible
solution approaches, extensive numerical tests are beyond the scope of this paper and
will be discussed in a forthcoming, more practically oriented article.

The rest of the paper is organized as follows. First we give a formal definition of
the problem. Section 2 states fundamental properties of the problem and illustrates
its difficulties. The next section discusses several possible approaches how forbidden
regions can be included in optimization schemes and shows their drawbacks. Section 4
presents an alternative barrier approach which avoids a lot of these previously discussed
drawbacks. The paper ends with some possible extensions and conclusions.

1 Formulation of the Problem

In what follows, we will denote by int(S), cl(S) and bd(S) the interior, the closure and
the boundary of a given set S. Moreover, we will use the concept of gauges in the sense
of Minkowski [20, pp. 131-135] to measure distances between pairs of points in IR%. To
be more specific, a gauge v is defined by

vy(z) :=inf{A > 0| z € AB},

where B C IR is a convex compact set with 0 € int(B), called the unit ball of .
The distance between two points z,y € IR? can now be computed by vz —y). A
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gauge is nonnegative, zero only at the origin, positively homogeneous, subadditive and
in particular convex. Note that every norm is a gauge, but arbitrary gauges do not need
to be symmetric. Therefore, gauges open up lots of possibilities to model nonsymmetric
distances (see below).

Now let F' be a nonempty, finite set of nodes, ) # F C F x F and G := (F, F)
be a directed graph. The node set F' represents a set of facilities, while the edge set
E corresponds to interactions between these objects. If, for every facility f € F, a
location x; € IR? is known, one can calculate the total cost of these interactions by
building the sum over all distances between locations for which the corresponding nodes
are connected by an edge. Assume that the locations of some of the facilities are fixed
in advance. The problem is to find locations for the other facilities such that the total
cost of interactions is minimized. Moreover, it is quite natural to have different gauges
to measure distances between different pairs of facilities. This leads to the following
notation.

Let the node set I’ be partitioned into the nonempty sets A and V. For all a € A let
a fixed vector z, € IR? be given, called the known or old location of the corresponding
facility. The nodes v € V represent facilities for which the best location is still unknown.
For every edge e € F let there be given a weight w, # 0 and a gauge .. The cost of the
interaction between two nodes connected by an edge is measured by the corresponding
gauge, while the weight serves as a proportionality factor. As it has already been done in
the literature [27], we assume without loss of generality that G as well as the subgraph
induced by G with node set V' are connected. Otherwise, the problem decomposes
into several independent ones, one for each connectivity component. Other assumptions
which can be made without loss of generality can be found in [27, 7.

In this paper, we are mainly concerned with gauges 7, derived from an affine-linear
transformation and the subsequent use of an £,-norm. Gauges of this kind belong to the
class of skewed norms introduced by Plastria [26]. More formally, for every edge e € F
a matrix B, € IR¥? of full rank, a norm || - ||,, with p. € [1, 0] and a vector y, € IR?
with || B Tye|l,. <1 should be given. Here, || - ||,. denotes the dual norm to || - ||,, with
1/pe + 1/ge = 1. The gauge 7, is then defined by

Ye(z) = ”Bex”pe + y;rx-

Note that . is differentiable for all x # 0 as long as 1 < p, < oo. With gauges of this
type, it is easy to cover applications like ships moving in a current, planes flying in a
steady wind, or ground movement in an area with slopes [17].

The set of all families X = (z,)per with z, € IR? for all v € V will be denoted
by (IRd)V. This set, equipped with the usual addition and scalar multiplication, is a real
vectorspace. A location z, for a node v € V' is called new location of the corresponding
facility.

Now, let in addition to the vectors z, € IR? (a € A) a family (z,)yey € (IRY)Y be
given. For any edge e = (f, g) € E set =, := z; — x,.

As a last prerequisite before we state the problem, we have to describe how we model
forbidden regions in this paper. Let A € IR" x IR? be a matrix and b € IR” be a vector.



The forbidden region is then defined to be the set
R :={z € R*| Az < b}. (1)

Definition 1.1 (Multifacility Location Problem) The continuous minisum multi-
facility location problem with mixed gauges s the following optimization problem:
Find a minimum (i,)yev € (IRY)Y of the function

U: (R — R
(-TU)UEV — Zw67e(xe)7 (2)

eckE
with (2,)veyv € IR

Definition 1.2 (Restricted Multifacility Location Problem) The restricted con-
tinuous minisum multifacility location problem with mixed gauges is the following op-
timization problem:

Find a minimum (&,),ev € (IRY)Y of the function

U: (RY)Y — R

(-Tv)'uEV — we’)/e(xe)a
; (3)

subject to the constraints
Ty & R for allv e V.

By "minimum” we mean not only global optima, but also arbitrary local minima.
The set of feasible points for (3) is given by

F:=(R"\R) x (R*\ R) x --- x (R*\ R) = (R*\ R)". (4)
For z € IR define
z4 = max{z,0}.

If f is a real-valued function, we will use the notation f, to denote the function defined
by

In what follows, we will also make use of the index set [ := {1,... ,n}.

2 A Result about the Solution Set

The following result is a generalization of a theorem by Hamacher and Nickel [15], who
considered only the single-facility case. The theorem below connects the unrestricted
problem (2) with the restricted problem (3).
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Theorem 2.1 If there exists no solution of (2) which is also a solution of (3), then
for every solution (Z,)yev of (3) there exists at least one facility w € V' such that the
location &, € IR? belongs to the boundary of R.

Proof: If every solution of (2) is not a solution of (3), it follows that for every solution
X = (&y)vev € F of (3) we have X € bd(F). This means that there exists a sequence

X; = (#$)per )ien with X; € IRV \ F for all i € IN and lim;_o 2 = 2, forallv € V.
Therefore, for all 7 € IN there exists at least one v; € V such that xq(,? € R. Because

V is a finite set, we may choose an infinite subsequence ((xq(,ij))vev)j with w = v;,
fixed. Then we have z07) € R for all J € IN but lim;_,, 2 = %, ¢ R and therefore
Zy € bd(R). O

Remark 2.2 The theorem above also holds if the costfunction ¥ is an arbitrary function
and R C IR is an arbitrary set. Especially, it is allowed to use a finite union of forbidden
TegIONS.

The following example shows that one can not expect to find all optimal new facility
locations on the boundary of R.

oLy,
[ Yoy
R °
Te = Ty
oL,
oxb

Figure 1: Illustration for Example 1. Not all locations of the optimal solution are on the boundary
of R.

Example 1 (based on [25]) Let d = 2, A = {a,b,c} and V = {u,v,w}. The co-
ordinates of the given facilities are z, = (0,3)7, m, = (0,-3)" and z. = (3,0)".



All distances are measured with the Euclidean norm || - |lo. Let Wae) = Wep) = 2,
Ww,e) = Wuw) = Www) = 1 and all other weights be 0. The forbidden region is given by

R={ze€lR? |z, <2}.

The following table shows the optimal solutions for the unrestricted problem, the restric-
ted problem and the best solution such that every new location is on the boundary of the
forbidden region. All numbers are rounded to three decimal places.

‘ type of problem H Ty ‘ Ty ‘ Loy ‘ obj. wvalue ‘
unrestricted problem || (0,2)" 0,-2)" (1.732,0)" | 8.196
restricted problem (2,2)" (2,-2)" (3,0)" 13.416
best sol. on bd(R) || (2,1.845)" | (2,—1.845)" | (2,0)" 13.928

We can see that the optimal solution for the restricted problem does not have all
locations on the boundary of R (cf. Figure 1). It should be noted that this counterezample
works with all £,-norms.

The last example in this section shows that we have to expect an exponential number
of local or global optima.

Example 2 Consider the following multifacility location problem on the real line: let d =
L, A={a}, 2, =0, E=V XA, wya =1 forallv € V and define the forbidden region
by R =] —1,1[. With m = |V|, there are exactly 2™ different global optima, each one
corresponding to a vertex of the m-dimensional hypercube [ —1,1]™. Small pertubations
of x4 and R will lead to a problem with one global optimum and 2™ — 1 local optima, the
costfunction value of each of these differing from the optimal one by an arbitrary small
amount.

3 Getting Rid of the Forbidden Region

3.1 A Linear Programming Formulation

In this section we show how a solution method based on linear programming can be
derived if we restrict ourselves to polyhedral gauges as distance measures, as it is the
case with the classical ¢;- and f,-norms. Although the main goal of this paper is
to develop solution algorithms for the general situation, we have included this section
because the following approach is easy to implement.

In the case of polyhedral gauges we have a convex polyhedron B, as unit ball for a
gauge 7. (e € E). The polar of B, is denoted B? and the set of extreme points for BY
is denoted ext(BY). With this notation we can rewrite the unrestricted multifacility
location problem in the case where all w, > 0 as a linear program [29],

minimize Z WeZe (5)
eck
subject to 2] b0° < z, Ve € E, b° € ext(BY). (6)
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If we allow also w, < 0 we have a d. c. problem instead of a linear program. For
solution methods in this case see [18]. Now, denote the row vectors of the matrix A
in definition (1) by a; (i € I) and let © be the set of all |[V|-tuples over I. Further,
let ©(k) denote the k-th component of a |V|-tuple © € Q. Then for any feasible solution
(2y)vev of the restricted multifacility problem (3) there exists a © € € such that the
linear program (5)—(6) together with the constraints

mza@(v) > b@(v) VvelV. (7)
characterizes (z,)ycy. The following algorithm is now straightforward.

1. For all ©® € Q2 do

Solve the linear program (5)—(6) with the corresponding additional set of
constraints (7) for the actual ©.

2. Output: the best solution found in Step 1.

As one easily recognizes, the time complexity of this algorithm is only polynomial
if we fix the number of new facilities |V|. It should be noted that this approach is a
generalization of the algorithm presented in [15]. Of course one may use sophisticated
branch and bound procedures instead of a complete enumeration. However, this does
not effect the worst case complexity.

3.2 A Penalty Approach

We have Az < b if and only if max;c;(a; © — b;) < 0. For a given (z,).,er € (IRY)Y, it
follows that we have Az, < b for at least one v € V' if and only if

min max(a; z, — b;) < 0.

veV el
By defining
9i(x) := ((bi — a )4)? (iel)
and
h(z) = ng(x)
i€l
we get

a reqularized penalty function. Here, we have p(X) > 0 if and only if X ¢ F and
p(X) = 0if and only if X € F. It is also clear that p is continuously differentiable. The
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same approach can be used if the forbidden region R C IR? is defined as R := {z € IR |
r(z) < 0} with a differentiable function r : IR — IR.

Note that the objective function is not differentiable everywhere. This is a major
hindrance, but it can be overcome by using, for example, a hyperboloid approxima-
tion [11, 10, 1] with parameter § > 0. If we denote the approximation of the objective
function by s, we have ¥; € C* [4, 19]. Note that this approach increases the ill-
conditioning of the problem and slows down some optimization algorithms, such that
certain safeguards and acceleration techniques should be employed [7, 8, 9]. By defining

%uxr=wwm+%mxx

we arrive at a sequence of parametrized unrestricted optimization problems with a dif-
ferentiable objective function \Tl(s,u. A standard penalty approach then constructs a se-
quence of approximations to a local solution of (3). The approximation parameter 6 > 0
can also be changed in every iteration by choosing an appropriate sequence (Jx)xen With
0r > 0 for all £ € IN and lim;_,,, 6y = 0. This leads to an even better approximation of
the original problem.

However, it is well known that the unrestricted optimization problems derived above
tend to get increasingly ill-conditioned when the parameter pz approaches 0. Up to now,
this ill-conditioning can only be avoided under special assumptions [3]. Another pos-
sibility to overcome this hindrance consists in using notoriously robust (and notoriously
slow) methods like Simulated Annealing. Such a method can also be used to gener-
ate a good feasible starting point near a global optimum for a nonlinear optimization
method, which is able to find this optimum in a much more efficient way than the
heuristic method.

3.3 Approximating the Forbidden Region
By defining the function

pe(z) ==Y ((af 2 — b)) +e,

i€l
which is differentiable in IR? for all £ > 0, we can use the functions

(P'U,E((x'u)vEV) = Qe (Iv)

to describe outer approximations for the restrictions given by R. If 6 > 0 is the para-
meter used to control the hyperbolic approximation of ¥, we can opt for solving the
problem

minimize ~ W4(X) (8)
subject to  ,(X) <0 (veV).

Since (8) contains the two parameters ¢ > 0 and § > 0, we will denote this problem (Pj).
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We will now show that the approach of this subsection may run into numerical
difficulties when the parameter ¢ is reduced. For fixed § > 0 the point (X, (45),ev) =

() wev, (5))vev) is a Kuhn-Tucker point of (Ps,.), if the following conditions hold:

vxw( N+ v, XU):o VweV, (9)

VeV
(X)) <0 YweV, (10)
YO >0  VYweV, (11)
D y0u(XO) = 0. (12)
weV

It is easy to prove that

V. (2)) = O(Ve)
holds for those z; with gog(acz(j)) = 0. Now let (X)), have an accumulation point for
e \¢ 0. According to Theorem 2.1, the only interesting case to consider is the one in
which no unrestricted minimum is a solution to the restricted problem. Then (9) shows
that

y\VE 4= 0

holds for at least one w € V if ¢ \, 0. Therefore, at least one Lagrange multiplier tends
to infinity when working with ¢.. This is usually an indication for ill-posed problems.

Note that for a Kuhn-Tucker point (X©, (y&)ye1/) the family X(® is not necessarily
a local optimum of (P;.), since this problem is nonconvex. On the other hand, it is easily
seen that each feasible point in (P;.) satisfies the usual constraint qualification [5, p. 19].
This means that at each minimum the Kuhn-Tucker conditions mentioned above hold.

Another drawback of this approach will be discussed in the following example. Let X
be an accumulation point of a sequence of points (X (5))5, such that there exists no feas-
ible descent direction at X() in the problem (P;.). This is an important necessary
optimality condition. But it turns out that X is not necessarily a solution of the restric-
ted problem with objective function Wy.

Example 3 Let d =2, V = {v}, A= {a}, 2, := (0,0)7, wya := 1 and v,q := || - ||2-
The forbidden region should be the set R :=] — 1,1[x| — 1,0[. The optimum of (2) is
(0,0)T, while (3) has additionally another local optimum at (0,—1)T. The same is true
if U is approrimated by U5 for sufficiently small values of § > 0. In (Ps.) we have
local optima at (0,+/€)" and (0, —1 — /). Moreover, there ezists no feasible descent
direction at (1++/2,0)" and (=1 —/£,0)". But these two points do not converge to a
local optimum of W5 or ¥ for e 0.

Instead, we have only the following result.



Theorem 3.1 Let (¢x)ren be a sequence of real numbers with €, > 0 for all k € IN
and limg_ o e = 0. Let (Xg)gew be a corresponding sequence of solutions of (Psy,).
If we > 0 for all e € E it follows that at least one feasible accumulation point of
this sequence exists. Furthermore, in the case of arbitrary weights, if every Xy is a
global optimum to (Pse,), then every accumulation point of the sequence (Xi)kew @s in
argmin{¥,(X) | X € F}.

Proof: For ¢ > 0, every solution to (Ps.) is feasible to (3). Since ¥y is coercive for all
d > 0, the sequence (Xi)ren has at least one accumulation point X. It is also clear that
this point is feasible.

In the case of arbitrary weights, assume that every X is a global optimum to (P, ),

but that there exists a point X € F such that ;(X) < ¥s(X). We may also assume
without loss of generality that limy_,., Xy = X. Otherwise we use a subsequence with
this property. If we denote by Fj the set of feasible points of (Pj.,), there exists a
sequence (Xj)ren of points X, € Fp with limy_,o, X; = X. Then it follows that
U5(Xy) < Ws(Xy) for sufficiently large k, a contradiction. O

4 A Barrier Approach

By defining the function
2
p(z) =Y ((o]z = b)),
icl

which is differentiable on IR?, we have ¢(z) = 0 if and only if z € cl(R) and ¢(x) > 0 if
and only if = ¢ cl(R). Therefore, we can define the two barrier functions

Bu(@)oev) = 3 —

vEV QO(.IU)

and

By((y)ev) = = ) In(p(z))-

veEV

Now we may search for minima of the sequence of functions
T3, (X) 1= Us(X) + By (X),

replacing p by a sequence of parameters (ug)gen With pr > 0 for all £ € IN and
limy 0 pg = 0.

However, similar arguments as the ones presented in the last section show that we
may run into numerical difficulties when solving these problems.

To overcome the drawbacks of the previous approaches, we now propose a method
based on a special barrier function. First, we define

{e_l/t ct>0

aft) = 0 : t<0.
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Then o'(t) = (e7'/*)/t? for t > 0 and o/(0) = 0, which means that « is differentiable
on IR. Likewise, a®)(t) = a(t)py(t)/t2* with a polynomial p; for ¢ > 0, but a(*)(0) = 0.
Therefore, we have a € C*(IR). Moreover, it is «(IR) C [0,1[. By defining h;(x) :=
a; z — b; and B;(z) := (o hy)(x) for all i € I, we arrive at

_ >0 ifzé¢cl(R)
B Zﬁz(@ { =0 else.

i€l
Observe that v € C*®(IR?). Now we can use the barrier function

B( xv UEV Zln .Z‘v

veV
which is in C*(int(F)). Furthermore, we have for all feasible (z,),cy and w € V that

VEwB((xv)UEV) = —V(iw)VU(xw)

= 3 () V(o)

”(f” ) .

_ Zﬁ,

ze.] Z

where J,, := {i € I | a, 2, — b; > 0}. With
5, (X) o= W5(X) + puB(X)

we try to find a minimum of \115,”. For p ™\, 0 we know that every accumulation point of
a sequence of global minima of ‘ilg’u is a solution to (3), as it is also the case for penalty
functions. Results concerning local convergence under quite weak assumptions can be
found in [5, 30].

4.1 Searching for Minima I

When using Newton’s method on \IIM in order to compute a minimum, we need the
gradient V¥, , and the Hessian V?¥;, = V*U; + 4 V2B. With this matrix, a Newton
step amounts to solving

(V205 (XENAXE = —vF; ,(XR)

for AX®) and then defining X*+1 := X®) ;- AX*)
For all v,w € V we have

V2 B((xv)UEV) =0

Ty Ty
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if v # w and

V?zwwa((xv)veV)

1 T
= - Z W%‘ (V(ﬂiw)ﬂj(l"w)aj

Jj€Jw

—B;(74) (h?(a:w) Z fggi:; ap + 2v0(zy)h; (xw)aJT))

ﬂk(xw) T
h2( alc) (13)

i (Tw)

_ oo Bile) N ob (e VT — h2(x
- ZuQ(xw)h§($w)J<(W)(1 2hy(eu))ay = hilew)

J€Jw k€Jy

As the above calculation has shown, there will be no fill-in when using VQ‘i’(;,“ instead
of V?¥;, because the only changes occur in the blocks V2 . W;. But these blocks are
nonzero, anyway. As a result, Newton’s method used on restricted problems needs
in every step the same computational effort as Newton’s method used on unrestricted
problems, provided that the evaluation of the Hessian is not too time consuming. To
calculate this Hessian, we have to evaluate V?W; and B (and storing intermediate results
like v(z,), Bi(xy) and hi(z,) (v € V,i € I), which costs O(|V|nd) operations and the
same amount of storage space). Then the vectors a; (j € J,, w € V) are scaled according
to (13) with O(|V|nd) multiplications and divisions. The scaled vectors can be summed
up with the same amount of additions and the corresponding dyadic products can be
computed with |V|d?/2 multiplications. Adding the appropriate blocks to V2¥; costs
another |V[d?/2 additions. A subsequent Cholesky factorization on V?¥;, then needs
|V'|3d3 /6 operations. This factorization is the bottleneck of the computation as long as
n = o(|V[?d?). Tt should be noted that the factorization cost can be significantly reduced
by reordering the unknowns, i. e. applying a fill-in heuristic on V?W¥;. Moreover, only
one reordering is necessary for all Newton steps, and this reordering can be done on
the graph G. Of course, this is helpful only if the graph G of interactions between the
objects f € F is sufficiently sparse.

A truncated Newton Method [2, 22| is another solution approach for our nonlinear
optimization problem. By using a CG-method for solving the linear system, it is not
necessary to compute the dyadic products mentioned above. Instead, the particular
structure of the algorithm makes it possible to transform those products into |V| dot
products between vectors in IR and subsequent scalar multiplications of |V/| real numbers
with other d-dimensional vectors. The main computational burden then results from
matrix-vector multiplications with the matrix V2Ws((y)vev)-

It has to be noted that the Hessian V2‘i15,“ does not need to be positive definite.
This represents a difficulty which can be overcome by various techniques. For example,
one can use the regularization technique of Levenberg and Marquardt (see, e. g. [6, 21,
13]) and a corresponding iterative procedure or the modified Cholesky-decomposition
proposed by Gill and Murray [12]. Especially the last one is appealing here, because the
sparsity structure of the linear system above remains the same for all iterations.
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One of the main drawbacks of this approach is that the Hessians get increasingly
ill-conditioned at minima of Ws, for p ™, 0. Therefore, we propose another method
based on the function ¥;, in the next subsection.

4.2 Searching for Minima II

Now we try to compute minima of \fl(;,u by using the necessary conditions of first order,
namely

Vmw\ijﬁ,u((xv)UEV) = Vo, Ys5((2v)vev) + Ve, B((Zy)vev) =0 Yw e V. (14)
To this end, we define the additional variables
L) . Bi(zw)
v V(xw)hg(xw)

for7 € I and w € V. Then we then have

Vi, B((xy)vev) Z z(J)aj

J€Jw

for all w € V. Hence, (14) is equivalent to the system

Voo Us(@o)vev) —p Y 20a; = 0 VYweV (15)
J€Jw
2D (@)W (20) — Bi(zw) = 0 YweV,iel (16)

This is a system with the |V|(d + n) unknowns z, and 2 (veV,iel).
With m := |V, we may assume without loss of generality that V' = {1,... ,m}.

This enables us to identify a family of locations X := (z,)yev € (IR?)Y with the point
(z],...,z )T in the vector space IR™. We index the d-dimensional subvectors z,, of X
by v € V. Likewise, we identify families Z := (zq(,f))(w,i)e‘/)( ; of real numbers with points

( (1) (n) 1)

2 T2 A5 S

in the vector space IR"™. Here, we index each component zq(j) of Z by (w,i) e V x I. If
we define the function

F . [Rmrdm __y |grmetdm (17)
by
2 B2 ()0 (@) — Bi(w) : L= (w,9) €V x I,
(Vi Us5) ((z0)vev) — uzjer Zz(g)aj : A=weV,

we have to find a solution to the system

F(Z,X) = F((2§))wevxr, (@s)vev) = 0. (18)

Fy(Z,X) :=

13



Note that we have only implicit restrictions on the variables X and Z.
For fixed p > 0, we will solve this system by Newton’s method. After choosing a
suitable starting vector Yy = (Zy, X), we have to solve the system

(F'(Ye))AYy = —=F(Yz), (19)

in each step k of this iterative procedure. Here, F'(Y}) is the Jacobian of F' at Y. After
this, we set Yy, := Y} + AY). The entries of the Jacobian are easy to compute:

1. £=weV:itis Fy(Z,X) € IR% Tt follows that
OF,

o —(Z2,X) = V2, Us((zy)vev) ER*xIR?  forallv eV,
F,

0 E(ZX) = 0eR? forallveV\{w}andiecl,

92"
F,

aaz(j (Z,X) = —pa; € R*  forall j € J,,
F,

9 E(ZX) = 0eRY foralligJ,.

92

2. £ = (w,i) € V x I: we have Fy(Z, X) € IR and

or. —(Z,X) = 2 (2h,~(xw) (Tw)a; + hE(zy) ) h%(xw)aj
]EJw
i Bi(xw) \ T i Bi(xw) T
¢ j€Jw 7
ifi € Jy,
I ,
g Z(Z X) = 20 (th(xw) (zw)a; + B () ) ifi ¢ Jy,
Tw JEJw
F
gxf(z X) = (0,...,0) forallveV\{w},
F
j—(f(Z,X) = h2(zw)v(zw) € R,
F
9 —(Z,X) = 0€R  forv#worj#i
825
As it is easily seen, for all feasible Y = (Z, X) the matrix F'(Y") has the structure

- (5)

with H = V?T4s(X) € R™ x IR™™ symmetric, positive definite and possibly sparse,
D = dlag(h%(ﬂfl)l/(ﬂil), s ,hi(ﬂ?l)l/(l'l), ce ,h?(.’l]m)l/(ﬂim), ce ,hi(xm)u(xm))
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a diagonal matrix in IR"™ x IR"™,
Ci = € IR™ x IR%™

block diagonal with blocks

Flu ! Flun) o)
F] = ((%(Y)) e (%(Y)) ) € R? x IR
w xw

(w e V) and

A, 0
C, = € R¥™ x [R™™
0 A,
block diagonal with blocks A, = —u(81404, ... ,0,.0,) € IR? X IR" (v € V), where
djw = 1 for j € J, and §;,, = 0 else. The matrix C, will be sparse if d < n. If
there exist a w € V and an 7 € I such that hZ(z,)v(z,) = 0, the matrix D is singular.

However, the corresponding row and column in system (19) only contain zeroes, because
we have i ¢ J,, (aFw )/024)(Y) = 0 and F,,;(Y) = 0. As a result, the system can be

reduced and Az{’ can be chosen arbitrary, e. g. Az = 0. We may therefore assume
without loss of generality that D! exists. The system (19)

(DQ)(AZ)__(H@Jj)
C; H AX | Fy(Z,X)
can now be solved in two stages by eliminating AZ,
AZ = -D Y (F(Z,X)+ CAX),
and solving the equation for the Schur complement,
(-CoD7'C+ HYAX = —F(Z,X)+ CoD7'F(Z, X). (20)

Note that Co D' C; € IR™™ x IR¥™ is a block diagonal matrix with blocks in IR? x IR?.
Since H has already the blocks V2 _ W on its diagonal, there will be no fill-in.

Unfortunately, the matrix in (20) is not symmetric. Therefore, it is natural to
employ Gaussian elimination. Since this takes twice as much time as the Cholesky
method for symmetric systems, it is not clear if the method proposed in this subsection
is competitive with the method from Subsection 4.1.
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5 Extensions and Conclusions

The approach decribed in Section 4 can also be used if every facility v € V' has its own
forbidden region R, C IR%. Another easy extension is the case of a forbidden ellipsoid,
paraboloid or hyperboloid. The interior of each of these sets can be represented as

R :={z € R* | q(z) > 0}

with a quadratic function ¢(z) := x"Mx +c'x +n. Here, M € IR™4 is a symmetric
matrix, ¢ € IR and € IR. A barrier function with an even simpler structure than the
ones described in Section 4 is now given by

B((zy)vev) == — Zln(q(xv)).

vEV

With \if(;’u := WUs + uB we see that

Voo, Usu(20)vev) = Ve, Us((@0)oer) — p (51”) (2Mz, +c).
Therefore,
V2o Usn(0)vev) = V2,2 Us((€0)vev)
if v # w and
V2 o0 Vou((€0)oev)
V2, Us((@)vev) — —— (2q(@0) M — (2M 2, + ) (2Mz,y +¢) 7).

(¢(zv))

As it is easily seen, the Hessian of this objective function shares many properties
with the Hessian from Subsection 4.1. In fact, all the remarks made there about using
Newton’s method and solving the corresponding linear system hold here, too.

Extensions like other types of forbidden regions or specific feasible regions for the
facilities v € V' can also be handled by this kind of approach, provided that the corres-
ponding barrier functions are at hand.

In this paper we have presented mainly improvement methods leading to a local
optimuimn. It is therefore useful for implementations to combine the presented procedures
with meta-heuristics like simulated annealing, tabu search or other local optima avoiding
schemes. The successful application of these procedures highly depends on intensive
numerical testing with various data instances. Such an elaborated discussion of the
numerical aspects is, in our opinion, far beyond the scope of this paper. Our aim was
to present a new problem, demonstrate its main difficulties and develop theoretical
properties and solution techniques. However, implementations are under research and
numerical tests will be contained in a forthcoming, more practical oriented paper.
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