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Abstract

To present the decision maker’s (DM) preferences in multicriteria
decision problems as a partially ordered set is an effective method
to catch the DM’s purpose and avoid misleading results. Since our
paper is focused on minimal path problems, we regard the ordered
set of edges (E,<). Minimal paths are defined in respect to power-
ordered sets which provides an essential tool to solve such problems.
An algorithm to detect minimal paths on a multicriteria minimal path
problem is presented.
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1 Introduction

Weighted graphs play an important role in most combinatorial optimization
problems. For a longest path on an acyclic directed graph the weight of
an edge may symbolize the duration of time for a step in the schedule of a
project. For a shortest path in a network the weights may be distances be-
tween locations. In general the weights are values in some scales (km, hours)
which measure distances or time.

In a lot of decision problems the scaling causes many difficulties and some-
times one comes even to misleading results. If a decision maker presents his
choices and preferences then it is often better to describe the preferences in



form of a partially ordered set (see [3])than to measure them in a scale. For
instance a tourist may have difficulties to compare some points of interest in
a city and cannot give a complete ranking.

In the paper we assume throughout that a decision maker presents his pref-
erences in form of a partially ordered set. Hence we consider ordered graphs
G = (V; E) where the set (V; <) of vertices and/or the set (F; <) of edges
is partially ordered. In location problems one needs partially ordered sets
(V;<). As we will only consider path problems we confine us to (F£; <) and
call such a graph an ordered graph.

In the papers of Schweigert [5], [6] various methods have been developed to
solve such problems. The essential tool was the power-ordered set (P (F) ; <).
This concept is necessary for the theory to define minimal paths but our ap-
proach contains a decision procedure which works without this tools. Besides
an algorithm for generating all minimal paths we show that every shortest
path problem in graph-theoretical as well as every efficient path problem in
multicriteria optimization can be analyzed within our frame work.

2 Fundamental concepts

For the convenience of the reader we will explain most of our definitions with
the help of the following example.

G=(V.E) (£; <)

«Q o =~ T
O 8} ® =

(E; <) is presented by a Hasse diagram. For instance g¢,c¢ are minimal
elements in this order which are not comparable. For instance f is smaller

than b and h.



Definition 2.1 Let £ = (E; <) be finite ordered set. P(E) = (P (E);<,) is
called the power ordered set of E if P(FE) is the power set of E without the
emply sel and if the relation <p is defined on P (E) in the following way.
{a1, ...,an} <p {b1, ..., by} if and only if there exists an injective mapping 7 :
{a1,..;an} = {b1, ..., b} such that a; < x (a;) forv=1,...,n in (E;<) and
m > n.

Example 2.2 We consider the ordered set (F; <) with the Hassediagram

(P (F);<,) has the following Hassediagram

{0a1}
{al}

{08} {1

Lemma 2.3 The relation <,defined on P (E) is an order relation.

Proof. Obviously <, is reflexive. By the composition of maps it is easy to
see that <, 1s transitive.Let A <, B and B <, A. Then there exist injective
maps 7 : A — B and ¢ : B — A such that ¢ < 7 (a) < (7 (a)) - poris
increasing on a finite set and therefore the identity.

Remark 2.4 As supremas and infimas not always exists in (P (F);<,) the
power ordered set of E is usually no lattice.

Remark 2.5 The concept of a power ordered selt can also be defined for
infinite ordered sets. We call the subsets A, B € P (F) order-equipotent if
there exists an injective map 7 : A — B with a < x (a) and an injective map
©: B — A withb<p(b). In the following we write < instead of <,, .



3 Properties of minimal paths

All of the graph theoretical optimization problems like shortest paths, mini-
mal matchings and optimal travelling-salesman-tours can be formulated for
ordered graphs. We confine us to the problem of finding minimal paths on
ordered graphs. Let G = (V, F) be an acyclic directed graph with a source
s and a sink t. We present a directed path P by the set {ay,...,a;} of its
edges.

Definition 3.1 A directed path P = {ay,...,ar} of G from s to t is called a
minimal if there exists no path T = {by,....,b,,} , m < k from s to t such thal

{Gl, ...,Clk} > {bl, ceey bm} .

Remark 3.2 The principle of dynamic optimization is of course valid. A
minimal path P from s to t consists of minimal (a,b)-paths where a,b are
vertices of P.

Example 3.3 In the example above P = {a,d, g} and Q = {a,c,e, g} are
minimal paths. The path T = {a,c, f,h} is nol minimal because we have
a<a,d<f, g<h.

4 Efficient and minimal paths

In multicriteria optimization one considers several objective functions. For
instance we may consider for every edge e a vector (w; (e),w;(€)) where
the first component is the distance and the second component is the travel
time between the two vertices a, b of the edge e. In a region with mountains
the components need not to be in proportion. Let us consider the following
example If we have a path P = {ey, ..., e} from s to ¢ then the weigth w (P)

is defined as
k k
0 (P) = (o (P) s (P) = (o () o))
=1 =1
In our example the path P = {a,d, g} has the weight w(P) = (5,6).
The order relation in vector optimization is defined componentwise [4]. Let
Py, Py be two paths with w (Py) = (wq (P1),...,w, (P1)) and
w(P) = (w1 (Ps),...,wy(P,)). We have w(P;) < w(F,) if and only if
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w; (P1) < w; (P,) for every ¢ = 1,...,n and we have w(P) < w (FP,) if and
only if w(P;) < w(Pz) and there is some j € {1,...,n} with

Definition 4.1 A path P from s to t of the vector-weighted graph G is called
efficient if there exist no other path @) from s to t such that w(Q) < w (P)

(compare [7]p.213 or [7]).

The aim of this section is to show that to every such vector optimization
problem one can present an ordered graph such that every efficient path is a
minimal path on this ordered graph G'= (V, F).

We define the poset (F; <) of the edges of the graph G in the following way.
e < hif and only if w(e) < w (h).

For the graph G from above with vectors as weights we recognize that we get
the same poset as in our example in section 2.

Theorem 4.2 Let G be a vector-weighted acyclic directed graph with a source
s and a sink t. Let w(e) > 0 for every edge e € F. Let (F; <) be the poset
which is given by the vector-weights. Every efficient path from s to t is a
minimal path from s to t.

Proof. Let P = {ey,...,e,} be an efficient path from s to ¢{. Assume that

P is not minimal. Then there exists a path @ = {ay,...,ax} k¥ < m with

() < P. Then we have a; < br1),...,ar < by for an injective mapping

7w :{l,..,k} — {1,...,n} and furthermore there exist an index j € {1,..., k}
k m

with w (a;) < w (b,r(j)) or k < m. In every case we have 3w (a;) < > w (bs).
= s=1

=1
Hence we have w () < w (P) which is a contradiction to P is efficient.
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Remark 4.3 The hypothesis w (e) > 0 for e € E does not seriously restrict
our statement. We may always add a constant vector to every weight w (e)
of an edge without changing the problem essentially.

5 Comparisons in the power ordered set

We like to avoid the computation of the power ordered set (P (FE);<) of a
partially ordered set (F;<). Instead of this we need a procedure which de-
cides wether A < Bfor A, B € P(E)or A= {a,...,a,} and B = {by, ..., b, }.
It is necessary that n < m otherwise A < B will not hold.
We construct the following pairs with B; C B, 1= 1,...,n

(a1, B1) where By = {bi1,...,b1,} suchthat

: ay < biyy ..o ar < by,
(a;, B;) where B; = {by,...;b;} suchthat

: a; < biy e ay < by
(an, B,) where B, ={bu1,...,b,t}  suchthat
Gy S bnh--- G, S bn

For every 7 we select the largest subset B; of B which is possible. If B; = ()
for some 7 then A < B does not hold.

But if there exists sets F; with |E;| =1, E; C B; for every 1 = 1,...,n and
exNe; = P for k,1 € { 1,..,n}then we have A < B.

5.1 Algorithm for comparisons in the power ordered
set.
Input. A={ay,...,a,}, B={b,....0,}
Is A< B?
step 0 a) if m > n then A # B
b) Computation of the B;;2 = 1...,n ¢ Sort A, B B;,¢,...,n such
that
step1 a)fa. i<y;i,5=1,...,n holds: a; 2 a;
b) fa.i<y;i,5=1,...,n holds: | B; |>| B; |
( Analogous for the b;)



Step 1 (Initialization)

a)for:=1,...ndo
z; « 1 (elementindex of the set B;)
(the z;th element of B; is assigned to ¢;) od

b) [170<—0,
]{70(—0,
Bo[1]<—0,
eo — By 1],
[0,
L«

Step 2 if B; = ) then stop; A £ B fi

Step 3 a) iff.a. i,j € {1,...,n};t # j gilt e; # ¢; then stop; A < B fi

b)l «—min{j €{l,...,n} [T e{l,....,n} 1 e; = ¢}
L—{ie{l,...;n}|ei=e}

tmax — max(L)

DL fime)

index «— 0

c)foric I do
Cl) if xr; = kZ then
index « index + 1
L e LU { i }\ (1)
fi
if ZT; 7£ kZ then
if i =14,,,, then index « index -1 fi
fi
od

d)



if index > 1 then

L « L\ max(L); index « 0

for j = min(L) to max(L) do

d1) if index < 1 then

if z; <1 then

index «— index + 1

L« LU{max(L)}

else

k «— element{ k € {1,...,n } , k#j|exr= Bj[zj] }
if £ < 5 then index « index + 1 fi
if k£ ki

then

T < Tk + 1; € — Bk[{L‘k], €; — Bj[[lij]
else ifx; #k; — 1

then z; « z; 4 1; goto d2)

else j « k; goto d1)

fi

fi

else A £ B

fi od fi

goto a)

(This algorithm is used as a subprocedure in the following section.)

Example 5.1 If we take the partially ordered set (K, <) of section 2, the
algorithm stops for A = {a,d, g}, B={a,c, f,h} withe; =a, ea=f, e3=h
and the positive result A < B. For A = {a,d,g}, B = {a,c,e,h} il slops
with the result A < B does not hold”.

6 Generating all minimal path

In the following algorithm we use labels for every vertex of the graph. Every
label of a vertex ¢ is of the form

[(e#, ey el,) ) (]7 hk)]k



where (e, ...,e,) is the series of edges of a path from 1 to ¢. The preceding
vertex j of the veretex ¢ in this path is stored in the pointer (j, hz). hy
denotes the label of 5 which is used for this path. k is the index of the label.

The vertices may have temporary or permanent labels

6.1 Algorithm.
Step 0 Assign to the vertex 1 the temporary label [(—), (—, —)],

3

Step 1 If the set of all temporary labels is empty goto 3. Otherwise deter-
mine the labels with the least number z of the vertices. Among them
determine the label with the least index. Let this be the label of the

vertex ¢ with the index k. Put this as a permanent label.

Step 2 While there exists a vertex 7 € V with e, = (¢,5), e, € F, do

a) Assign to the vertex j the temporary label [(e,, ..., ey, €,), (J, hr)],

b) Eliminate all labels of the vertex j which presents a non minimal
path goto 1

Step 3 Stop. All permanent labels of the sink ¢ present a minimal path

from s to t.

In our example the algorithm stops with the permanent labels

(@.d,9). (4. [(0. ), (2. (). (L1). (. 21L)], )]

and

[(a, ¢, eq), (4, [(a, c,e), (3, [(G, c), (2, [(a), (L, [(=), (-, _)]1)]1)]2)]2)]

2

These are both efficient (in usual they are not).
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