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Abstract 

New algorithms for efficient trajectory splitting are presented. By derandomizing 
these techniques that are derived from randomized quasi-Monte Carlo integration, 
trajectory splitting for the quasi-Monte Carlo method becomes available. 
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1 Introduction and Summary 

Whenever high-dimensional integrals have to be evaluated numerically, the 
Monte Carlo method provides a simple estimate of the integral and the vari
ance of the estimate by using random numbers. The quasi-Monte Carlo method 
applies deterministic points that expose better uniformity properties than ran
dom numbers can obtain resulting in a much faster convergence on certain 
function dasses. Opposite to the Monte Carlo method there is no cheap way 
of computing the approximation error. However, by randomizing quasi-Monte 
Carlo methods a practically negligible fraction of convergence is sacrificed, 
but the cheap Monte Carlo error estimate becomes available again. In addi
tion theory is available for the large dass of square integrable functions instead 
of only the very restricted dass of functions of bounded variation in the sense 
of Hardy and Krause [Nie92]. 

We first briefly resume randomized replication techniques underlying random
ized quasi-Monte Carlo integration. Restricting replication to only some of the 
dimensions of an integrand allows one to efficiently realize trajectory splitting 
for randomized quasi-Monte Carlo and ( deterministic) quasi-Monte Carlo in
tegration. 
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2 Random Replicates 

Given a quadrature rule on the s-dimensional unit cube [O, l)s that consists of 
n E N deterministic points Pn := { u0 , ... , Un-d C [ü , 1) 8 with equal weights 
~, r independent, random mappings Ri : [O, 1)8 ---> [ü, 1) 8 are realized such 
that the expectation of the estimate 

1 r 1 n-1 J f(x)dx ~ Ir,nf := ~ L ~ L f (R(uj)) 
[0,1) • t=l J=Ü 

(1) 

is the integral value. The inner determiI;üstic average over j is supposed to 
reduce the variance by smoothing the integrand f. If the replicated points 

are independent and uniformly distributed on [O, 1 )s for fixed j , the variance 
of the approximation ( 1) very efficiently can be estimated by 

( )

2 1 r 1 n-1 

a
2
(Ir,nf) ~ ( - 1) L - L f(xi,j) - Ir,nf 

r r i=l n j=O . 

(2) 

Note that under the above condition of independence both estimates are un
biased for any deterministic point set Pn, however, large variance reduction is 
obtained if for fixed i the replicated points xi,j are of low discrepancy. Ran
domized quasi-Monte Carlo integration can be regarded as the tensor product 
of Monte Carlo and quasi-Monte Carlo integration and in fact itself is Monte 
Carlo integration. "Random quadrature formulae" already are mentioned in 
[Shr66]. Here we summarize the most important randomization algorithms R 
for quasi-Monte Carlo integration. Further details are found in the surveys of 
Owen [Owe98J and Lemieux and L'Ecuyer [LL02 , Ch. 5]. 

2.1 Cranley Patterson Rotations 

Cranley and Patterson [CP76] were the first to randomize so-called lattice 
points. However, their method can be applied for randomizing every point set 
in a very efficient way. A random replicate of the point U j = ( uj1 

, ... , ujs)) 
is obtained by just adding a random vector ~ E [ü, 1 )8 yielding the replicated 
components 

x(k) = u(k) + c (k) mod 1 
t,J J ':,i . 
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2.2 Random Scrambling 

Many low discrepancy point sets are constructed using radical inversion in an 
integer base b. A randomly scrambled component [Owe95] is represented by 

M-1 
(k) - """' (k) ( (k)( ")) b-l-1 

xi,j - L.,, ?Ti ,ao(j), .. .,a1-1(i) al J ' (3) 
l=O 

where u)k) = 1={'!01 a}k) (j)b-1- 1 and we partially omitted the superscript (k) 
of the coefficients a}k) (j) for clarity of presentation. The random permuta

tions ?T},~o(j) , ... ,a1_ 1(j) on {O, .. . , b - 1} are independently, uniformly realized, 

where the permutation of the l-th digit a}k) (j) is selected by the leading dig
its a~k) (j), ... , a}~1 (j) . Spaken visually this procedure corresponds to starting 
out with the unit interval, which is divided into b equally sized intervals that 
become randomly permuted and recursively repeating this procedure for the 
subintervals ad infinitum. The algorithm, however, becomes finite due to the 
finite precision of computation, i.e. using only M E N digits in base b. 

Each component of a (t , m, s)-net or a (t, s)-sequence (for details see e.g. 
[Nie92]) is constructed by a radical inversion in base b. Morohosi and Fushimi 
[MFOO] found that the randomization of these points by Cranley Patterson 
rotations yields a noticeable loss in convergence, since the quality parameter t 
can be affected [Tuf96]. In contrast the above scrambling procedure does not 
change the value of t. Efficient scrambling algorithms along with an imple
mentation are found in [FKül]. 

Halton and Hammersley points (for details see e.g. [Nie92]) including im
proved constructions as e.g. by Faure [Fau92] use s relatively prime bases bk 
for the components instead of only one base. In a straightforward way random 
scrambling is realized by independently applying the one dimensional scheme 
for component k in base bk. This implicitly generalizes the concept of b-adic 
elementary intervals [Nie92] to ( b1 , ... , b5 )-adic elementary intervals and al
ready has been investigated by Matousek [Mat98]. We briefly sketch some 
useful restrictions of random scrambling (see also [Mat98]). 

2.2.1 Random Digit-Scrambling 

The restriction of random scrambling 

M-1 
(k) - """' (k) ( (k) ( ')) b-l -1 

xi,j - L.,, ?Ti,l al J ' (4) 
l=O 
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where instead of the full permut~tion tree for each level l only one random 
permutation 1ri,l is used, still produces independent replicates of the points in 
Pn for use with (1) and (2). However , the implementation is much simpler, 
since only one path of permutations is used instead of the full permutation 
tree. 

2.2.2 Random Digital b-ary Shift 

lt is even possible to restrict the random permutations used in (4) to addition 
modulo b. Then the random replicate becomes 

M-1 
x(k_) = "'"' (a(k)(J.) + d(k) mod b) b-1- 1. 

t,J ~ l i,l (5) 
l=O 

The integer shifts d~~) can be found by representing a random number ~~k) =: 

L,{';!01 d~~)b-1 - 1 in base b. For an implementation the shifts directly can be ex
tracted from the finite state machine of the pseudo-random number generator 
thus avoiding floating point conversions. Halton [HW64] already remarked that 
any point can be used as starting point for the incremental Halton sequence 
generation. This is especially true for a random starting point ( E [ü , 1) 8 as 
analyzed by Wang and Hickernell [WHOO] (for applications in radiation trans
port see also [KelOO]) and corresponds to extracting the shifts by representing 
the components of (in base band subtracting the contribution of u 0 . The ex
plicit extraction becomes necessary whenever incremental algorithms for point 
generation are not available as for e.g. the improved Halton and Hammersley 
points by Faure [Fau92]. 

An extremely efficient vectorized algorithm [Fri98] is available in base b = 2, 
where the random digital b-ary shift reduces to bit-wise addition without carry. 
This just means XORing the components with an integer random number before 
floating point conversion. This method of scrambling then is as efficient as 
Cranley Patterson rotations and valid for the estimates (1) and (2) with any 
point set Pn· 

2.2.3 Random Linear Scrambling 

Another subset of random scrambling has been introduced by Hong and Hick
ernell [HHOl], which however does not fit into the above hierarchy of restric
tions. A random non-singular M x M lower triangular matrix Ti(k) = (t~~)m) 
with entries from { 0, ... , b - 1} is used in combination with a random digi'tal 
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b-ary shift di,I to scramble the points ui E Pn by 

M-l((M-1 ) ) x(k_) = ""' ""' t(k) a(k) (J.) + d(k) mod b b-1- 1 . 
i,J L L i,l ,m m . i,l 

l=O m=O 

The method efficiently can be implemented by once multiplying the matrices 
T;(k) with the generator matrices of a particular (t, m, s)-net or (t, s)-sequence. 

The special case of rt) being a diagonal matrix is called random linear digit
scrambling. 

3 High-Dimensional Samples by Replication 

So far randomized replications of low discrepancy points have been discussed. 
However, often low discrepancy points do not perform very well in high dimen
sions. Therefore Spanier [Spa95] used a hybrid scheme, where high dimensional 
samples where padded by low dimensional low discrepancy points completed 
by random samples. We generalize this idea. 

3.1 Padded Replications Sampling 

For the estimates (1) and (2) to work only the independence of the repli
cates of one point ui is required. Consequently padding independent random 
replicates of low dimensional low discrepancy point sets yields unbiased esti
mators for high-dimensional integrals. In order to illustrate the principle two 
low discrepancy point sets Pn C [O, 1) 51 and Qn C [ü, 1)82 of n points each are 
considered. Using the replicates xi,j of the points in Pn and Yi,j of the points 
in Qn, respectively, the s = s 1 + s2 dimensional integral 

1 r 1 n-1 

J f(x, y)dydx ~ - L:- L f(xi ,j, Yi ,j) 
r . 1 n . o 

[0,1)• t= J= 

is estimated in an unbiased way. Although the assembled samples are not 
of low discrepancy in general, their low dimensional low discrepancy proper
ties easily can be designed to perfectly match the structure of integrals from 
e.g. transport problems. The efficiency of this approach has been investigated 
profoundly in [KKOl]. Padded replications sampling can be combined with 
Latin supercube sampling [Owe98] in order to resolve correlations between 
the padded replicates. This is especially useful for replicates from Cranley 
Patterson rotations [KKOl]. 

5 



3. 2 Trajectory Splitting by Restricted Replication 

Some dimensions of an integrand may expose much more smoothness than 
other dimensions. In consequence an efficient algorithm should sample these 
dimensions much less than others. This is known as the technique of trajectory 
splitting from the domain of particle transport simulation. Instead of tracing 
only one trajectory a particle is split into n particles in an interesting region 
[Sob94]. This is achieved by sampling the smooth dimensions by only r random 
points xi E [ü, 1) 81 and padding r random replicates of a deterministic set 
Qn C [O, 1)82 of n points yielding 

1 r 1 n-1 j f(x, y)dydx ~-:;: L-:;;_ L f(xi, YiJ)· 
[0,l}s i=l J=Ü 

(6) 

Thus replication is restricted to the complicated dimensions of the integrand 
only. Compared to the uncorrelated trajectory splitting [Sob94] a variance re
duction is obtained by replicating a low discrepancy point set for trajectory 
splitting. This concept yields very efficient algorithms for volume rendering 
in software [PKKOO] as well as in hardware and for motion blur simulation 
[KHOl]. Many Monte Carlo algorithms from the field of computer graphics 
as e.g. the illumination by area light sources benefit from the variance re
duction by replacing jittered samples [CPC84] by random replicates of a low 
discrepancy point set. 

Abandoning the availability of an unbiased variance estimate (2), instead of 
the random independent points xi one random replicate of a low discrepancy 
point set Pn C [ü, 1)81 can be used to increase the speed of convergence. Using 
the deterministic point set Pn directly yields a consistent hybrid algorithm 
that follows the original padding idea of Spanier [Spa95]. 

3.3 Trajectory Splitting for Quasi-Monte Carlo Integration 

Spanier and Maize [SM94] began to transfer Monte Carlo techniques to the 
quasi-Monte Carlo method. By derandomizing the randomized quasi-Monte 
Carlo method (6) we contribute trajectory splitting for quasi-Monte Carlo 
integration. For the example of Cranley Patterson rotations a deterministic low 
discrepancy point set (xi, Yi)r=i C [ü, 1 )8 is selected as the global quadrature 

J 
1 r 1 n-1 

f(x, y)dydx ~ -:;: L-:;;, L f (xi, Yi + z1 mod [O, 1)82
), 

[0,l}s t=l J=Ü 

(7) 
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while the integrand is locally smoothed in the difficult dimensions using deter
ministic low discrepancy points (zj)j,:J c [O, 1) 82

. Care has tobe taken that 
the components (yi)i=I are not correlated with (zj )j,:J. This can be achieved 
by choosing e.g. Hammersley points for both point sets so that the bases of 
the components in the dimensions s2 are relatively prime. This is used by 
the professional renderer mental ray [KelOO] for radiance transport simula
tion in global illumination computations and obtains superior performance as 
compared to randomized algorithms. Instead of Cranley Patterson rotations, 
computing deterministic digital b-ary shifts (5) from the components of the 
points Yi preserves the structure of the (zj )j,:J if they are constructed by rad
ical inversion. For the remaining scrambling techniques the number of random 
parameters is too large to be efficiently determined by the r points Yi· 

4 Minimal Randomization 

Randomized quasi-Monte Carlo integration sacrifices some convergence of 
quasi-Monte Carlo in order to make a cheap error estimate available. The 
interesting question arises how little randomness is sufficient to make the es
timates (1) and (2) work but introducing only the least necessary amount of 
noise at the same time. In this context randomization explicitly is not targeted 
~o improve upon the discrepancy of some low discrepancy constructions; we 
therefore assume to have deterministic point sets at hand that already have 
optimal discrepancy. 

Although the summarized random replication techniques were designed to ex
ploit the structure of the underlying low discrepancy points, they nevertheless 
can be applied to any point set and still yield unbiased estimators, which how
ever can be of worse performance [MFOO]. This indicates that there exist more 
specific randomization schemes that only work for the dass of points they are 
designed for but require less randomness for replication. In this context Owen's 
postulate of uniformity [Owe95] is too general: lt is sufficient that every point 
in [ü, 1)8 can be sampled, however, it is not necessary that the replicates of 
one point Uj completely sample the s-dimensional unit cube. 

We illustrate this by using an example in s = 1, where the best discrepancy 
is obtained by equidistantly placed points. By random scrambling (3) these 
points degenerate to stratified sampling, i.e. the discrepancy becomes worse 
since the equidistant spacing is destroyed. Using much less randomness for 
the random digital b-ary shifts (5) the equidistant spacing is preserved. In 
consequence the digits beyond the first M digits of a digital net should not be 
chosen independently random, but one identical random shift -/tr should be 
used for all points in order not to destroy the discrepancy of low dimensional 
projections. 
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On the other hand random scrambling applied to a digital (0, M, 1)-net in 
base b only affects the digits beyond the M digits defined by the net , i.e. 
the random scrambling has no effect on the first M digits and such could be 
omitted. 

Similarly we can observe that instead of a Cranley Patterson rotation a random 
shift inside the basis cell of the lattice is sufficient for randomizing rank-
1 lattices. The reduced shift turns the quadrature into stratified correlated 
sampling, where the same samples are taken in the strata given by the lattice 
cells. In one dimension this observation coincides with the random digital b
ary shift of a net , i.e. a random shift of ~. While this subtle difference in 
randomization has no noticeable effect for random shifts, it makes a huge 
difference for structured shifts as used in e.g. (7), because opposite to the 
Cranley Patterson rotation the reduced shift preserves the structure in the 
strata. 
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