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Abstract

Let P be a probability measure on the real line R such that each of the
product measures P®™ assigns the value 1/2 to every half space in R™ having
the origin as a boundary point. Then P is symmetric.

Example: A strictly stable law on R is symmetric iff it has median zero.

The treated symmetry problem is related to the problem of characterizing
the distribution of X7 by the distribution of (X9 + X1,..., X, + X1), with
Xi,...,X, being independent and identically distributed random variables.

1 Introduction and main result

1.1 Burdick’s problem. Let P be a probability measure on the real line R, let
n € N = {1,2,...}, and assume that the n—fold product measure P®" assigns the
value 1/2 to every half space in R™ having the origin as a boundary point. Does it
follow that P is symmetric?

To make this question precise, and reasonable also for discontinuous probability
measures, let H,, be the set of all "normalized signed indicator functions” of the said
half spaces: A function h on R™ belongs to H,, iff

(1) h(z) = sgn(ax) (x e R")

for some a € R™"\ {0}, where ax := ayz1+...+ apz, and sgn(t) ;== 1(t > 0) —1(t <
0). Let further Prob(R) denote the set of all probability measures on R and consider
the following properties a P € Prob(R) might have:

(S) P is symmetric with respect to sign change,
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(By) P®"(h) =0 for every h € H,.
We obviously have the implications
(2) (B1) <= (Bs) < ... <= (9).

It is obvious as well that condition (B;), which roughly says that P has median zero,
is to weak to imply (S). So one may ask whether any of the conditions (B,) with
n > 2 is strong enough to imply (S).

This problem was apparantly first considered as well as partially solved by
Burdick (1972). He showed that condition (By) does imply (S) in the presence
of the two auxiliary conditions

(AC) P is absolutely continuous with respect to Lebesgue measure,
(FM) [r\{o; 2° dP(x) < oo for some € € R\ {0},

and he asked whether the fractional moment condition (FM) can be omitted. Feuerver-
ger & Steele (1985) gave a negative answer.

In the present paper, we answer Burdick’s question in the negative also with the
stronger condition (B,,) (for any fized n > 3 ) in place of (By). We also show that
the condition (AC) can be omitted in Burdick’s theorem. And, to obtain a version
of Burdick’s theorem not containing any technical assumptions like (FM), we prove
the claim indicated in the abstract of this paper. To sum up:

1.2 Theorem.
a) The conditions (B,,) for n € N jointly imply (S).
b) The conditions (By) and (FM) jointly imply (S).
c¢) For each n € N, (B,,) does not imply (S).

1.3 Organization of this paper. Section 7?7 below contains supplementary in-
formation concerning the assumptions of Theorem ?? [in 7?7 to ??], an application
to stable laws [in ?7?], and a discussion of the relation of Burdick’s problem with the
problem of charaterizing distributions via certain linear statistics [in 77?].

Section ?7? contains proofs of Theorem 7?7 and of the claims in Subsection 77.
The main work is contained in Proposition 7?7 and its proof.

2 Remarks and complements

2.1 ”Counterexamples”. Three results complementing part c¢) of Theorem ?? in
showing that certain variants of the conditions (B,,) are not sufficient for deducing
(S) are contained in Example 2 of Freedman & Diaconis (1982), in Kochar (1992),
and in Propositions 1 and 2 of Mattner (1997).



L. Mattner: On Burdick’s symmetry problem. June 26, 1997. 3

2.2 Sufficient conditions for the validity of (FM). Condition (FM) is always
true when P has a Lebesgue density bounded near zero, or when P is a lattice
distribution. [Take ¢ = —1/2.] Hence, for such P, condition (By) implies (S). [In
the first—mentioned case, this follows already from Burdick’s paper, which could be
overlooked due to the way he formulated condition (FM).]

2.3 Possible weakenings of (FM). It is possible to replcace condition (FM) in
part b) of Theorem ?? by similar but weaker conditions, for example by

(FM,) Jio,000 T dP(z) < 00 for some € € R\ {0}.

[Our proof of the theorem given below uses only this weaker assumption.] However,
as then follows from the validity of part b) of the theorem with (FM, ) in place of
(FM), these two conditions are actually equivalent in the presence of condition (Bs).
[Reason: If P satisfies (S), then [j_., o(—2)° dP(z) = [jg oo 2° dP(2).]

On the other hand, finiteness of all logarithmic moments, that is the condition
Jryqoy (log [z])" dP(z) < oo for every n € N, is not a sufficient substitute for (FM).
This claim, proved at the end of Section 77, answers a question of Feuerverger and
Steele (1985).

2.4 An application to stable laws. Let P € Prob(R) be strictly stable [in the
sense of Feller (1971), page 170, or Zolotarev (1986), page 6], and let P have median
zero. By the continuity of stable laws, the latter assumption is equivalent to (B;).
By strict stability, this implies (B,,) for every n € N. Hence part a) of Theorem ?7
yields symmetry of P.

CONCLUSION: A strictly stable law 1s symmetric iff it has median zero.

This can also be proved computationally, by referring to formula (2.2.30) of
Zolotarev (1986). See Shkolnik (1993) for the related problem of approximating the
median of an arbitrary stable law.

2.5 The relation with the characterization of parent distributions by the
distribution of lower dimensional linear statistics. Let X = (Xi,...,X,)
denote the identity function on R", let, for n > 2,

S(n) = (X2+X1,..-,Xn+X1)7

and consider for any pair (i, v) of sub—probability measures [nonnegative measures
with total mass at most one] on R the condition that the distributions of S with
respect to the product measures u®" and v®" are identical:

(CH) Sm) O y®n = g O y®n,
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Let further ¢ and 1 denote the Fourier transforms of p and v. [See Subsection 77
below for more precise definitions of the notation used here.] Then condition (C;)
is easily seen to be equivalent to the functional equation

(C) @(Thot t) Tt o(te) = WSzt ) T=t 0(ts) (b1, tar) € RPTY).

Now a look at Proposition 7?7, where the same functional equation occurs under the

~

label (B,,), reveals:

OBSERVATION. Let P € Prob(R) and let (1, v) be related to P as in (?7), (77)
and (??) of Proposition ??. Then, for every n > 2, (B,,) is equivalent to (C;).

This result does not appear to be obvious from the outset, and I do not know
how to prove it without using Fourier transforms. It would be obvious, if (B,)
were obviously equivalent to the symmetry of P and if also (C}) were obviously
equivalent to u = v, since symmetry of P is obviously equivalent to u = v, but part
c) of Theorem 7?7 shows that the first hypothetical equivalence [and thus, by the
observation, the second as well] is not true.

We finally note that a condition similar to (C;), namely the condition (C;)
which results if every plus sign in the definition of S™ is changed to a minus sign,
has been studied several times in the literature. [See Brown (1940) and the review
in Bondesson (1983) for the case n > 3, Carnal & Dozzi (1989) and LeSanovsky &
Rataj (1991) for the peculiar case n = 2, Sasvari & Wolf (1986) for related work,
and the references contained in these papers.] Similarly as above, (C;) is seen to
be equivalent to the functional equation (??) below. Hence the proof of Proposition
7?7 shows that (B,,) implies (C;;). This implication is, however, much less surprising
than the equivalence of (B,) and (C;}). Indeed, to prove the said implication, the
introduction of the Fourier transforms ¢ and 1) is an unnecessary detour.

3 Proofs

3.1 Notation. Let 6 € Prob(R) denote the Dirac measure located at zero. We
write f O p for the image measure of a measure p under a function f (distribution of
f with respect to p), and use standard notation for reflections, i = (z — —z) O p,
and convolutions, p*xv = ((z,y) — z+y) Ou® v, of measures p, v on R. As in the
preceding formula, an expression like f O ® v is to be read as f O (u ® v), not as
(fOp)@v.

The Fourier transform of a bounded measure i on R is defined to be the function
R >t [exp(itz) du(x).

3.2 Proposition. Let P € Prob(R). Decompose P as

(3) P = L+4+c¢+R
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with ¢ = P({0}), L = lj_ao 0P, R = 1y9,00[P. Let ¢ and ¢ be the Fourier transforms
of the tmage measures ji,v deﬁned by

(4) p = (]—00,0[3z—log—z)0L,

(5) v = log OR.

Then (S) is equivalent to the identity
(S) v=1,

while (By) is equivalent to
(B1) #(0) =1(0)
and, for each n € N with n > 2, (B,,) is equivalent to the functional equation

(Ba) @(Tilt te) THiZt w(te) = O(ThTi t) TS 9(t) (B, tar) € RTY).

Proof. Let P € Prob(R).

IDEAS. The simple key ideas of this proof are contained in step 5 [division and
application of the Radon—Cramér—Wold theorem], in step 7 [the mutual singularity
argument| and in step 8 [possibilty of subsuming several functional equations under
the one in (B,)].

Step 6 and the induction arguments in steps 3 and 4 handle a complication
caused by the possibility of ¢ = P({0}) being nonzero. Unfortunately, this makes
the proof look more complicated than it essentially is.

STEP 1. The equivalence of (S) and (S) obviously follows from the uniqueness
theorem for Fourier transforms.

STEP 2. The condition (B;) is equivalent to u(R) = v(R), hence equivalent to
(B1).

STEP 3. To prove the equivalence of the conditions (B,) and (B,) for anyn > 2,
we may assume that P satisfies (B,_1) and (B,_1).

PrOOF. Use mathematical induction and the obvious implications (B,) =
(Bp-1) and (B,,) = (B,-1)-

STEP 4. Let n € N with n > 2, let P satisfy (B,_1), let X = (X1,...,X,,) be
the identity function on R™, and put

with the usual conventions concerning zero denominators.
Then (By,) is equivalent to the condition
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(Brn-1) ZMO(R~-L)® (L+R)®™ D = 0.
ProOOF. For n € N with n > 2, let us consider the further conditions
(Bno) ZWO(R-L)® PP =0
and, more generally, for m € {0,...,n — 1},
(Bo.m) ZMO(R-L)® (L+ R)®™ @ Per-1-m) = (

with the convention that the factors (L+R)®°, occuring iff m = 0, and P®°, occuring
iff m =n — 1, are to be ignored. Let us finally also consider the condition

(B1o) (R—L)(R) = 0.

By step 5 below, (B,) and (B,,) are equivalent, while in step 6 below, (B n,—1) is
shown to be equivalent to (B,, ,,,), for every m € {1,...,n — 1}, assuming the truth of
(Bn—1,m—1)- This latter assumption imposes no restriction when proving the present
claim: For n =2, (B,_1,,—1) can only be (B (), which is equivalent to (B;), hence
true by hypothesis. For n > 2, we may by mathematical induction assume the
equivalence and thus, by the hypothesis (B,, 1), the truth of all conditions (B, 1),
(Bn—l,O)a RN (Bn—l,n—Z)-
Thus steps 5 and 6 below complete the proof of the present claim.

STEP 5. (B,) is equivalent to (B, ).
PROOF. Fort € R and (oy,...,q,_1) € R*7,

P (sgn(3 ap X — 1X1)) = —L® PP D(sgn(3 apk 1)
k=2 s X1
+ed @ PE™—1) (sgn(z arXy))
k=2
®(n—1) = Xk
+R@ P V(sgn(Y_ap 0 — 1)  [by(??)]
k=2 X1
i X
= (R-L)® por-1) (Sgn(z akyk — 1)) by (Bn_1)]-
k=2 1

To see that the above calculation implies the claim, use the fact that the family
of functions {sgn(- —¢):t € R} is a determining class for signed measures on R,
and the Radon—Cramér-Wold theorem on the determination of measures by one—
dimensional marginals.

STEP 6. Ifm € {1,...,n—1} and if (Bp_1m—1) is true, then (B, 1) and
(Bn.m) are equivalent.
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PrROOF. If n =2, then m =1 and
6) zPO(R-L)@P = ZPO(R-L)®(R+L)+ZP0O(R—-L)®cs.
The last summand in (??) is ¢- (R — L)(R) - 0, which is the zero measure by (B1).
Hence (??) shows that (Bsg) and (By1) are equivalent.

Now let n > 2. Then

ZMWO(R-L)® (L+ R)®m g pe-m)
(7) — ZMWO(R-L)@(L+R)®™ @ PEr=m
+ ZWOR-L)® (L+R)®™Veceper1m,

Now the last summand in (??) is zero because its image under the permutation
(21, oy Zn—1) = (215 -« s Zm—1y Zm+1, - - - Zn—1, Zm) 1S the measure

(z"VO(R-L)®(L+R)®™ D @Pr1"m) @,

and this is zero by assumption (B,_1,,-1). Hence (?7) shows that (B, ,—1) and
(Bp,m) are equivalent.
STEP 7. To continue, put for e € {—1,1}

R (e=1)
and
_ =000 (e=-1)
L { 0,00  (e=1).
Then
8) Z,O0R-L)@L+R*™H = Y segn(e(1)- 2,0 ® Us i

ee{-1,1}"

Observe that the measure Z, O @j_; U« is supported by the set

Xz:2ls(k)-a(1)-

Hence any two terms in the sum on the right hand side of (??) with different indices
g', ¢ are mutually singular unless €'(k) # (k) holds for every k € {1,...,n}.

It follows that condition (B, ,_;) is equivalent to a system of 2"~! equations, of
which n are stated below, and the remaining ones do follow from the stated ones by
permutational symmetry considerations:

(9) Z,0L%" = Z,0R®"
(10) Z, 08" YoR = z,0R*" VgL

(11) Z,0L® R®(n=1)  _ Z,OR® 1,8(n-1)
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In terms of ¢ and ), the above system of equations is equivalent to the validity
of the following system for every (t1,...,t,_1) € R"%:

(12) ¢<§tk)7§[¢<tk) - zz(lim;ﬁwk)
(13) @(L’i@)ﬂh)ﬁﬂt@ - w@tk)w(tl);ﬁw(tk)
(14) @(:2:: tk):r:[w(tk) - &(Zi tk):r:[go(tk).

STEP 8. The validity of the system of functional equations (??7)—(??) is equivalent
to condition (By).
PROOF. Assume that at least one of the two conditions is true. This implies the

identity
(Ba) ¢ =1

[Condition (B,) implies (B;) by considering ¢ € R™! with ¢, = 0 for k > 2.
Similarly, (??) and (?7?) first imply

(15) pp=yy and @Y =1y

If t € R and ¢(t)¥(t) = 0, then the first equation in (??) immediately yields
©%(t) = ¥?(t). For the remaining ¢, devide left hand sides and right hand sides,
respectively, of the two equations in (77).]

Now (B,) implies in particular that each of the n + 1 equations (??)-(??) and
(B,) is true whenever the following condition is not true:

n

n—1 n—1 —1
(16) (Xt (X t) IT ete)v(ts) # 0.
k=1 k=1 k=1
So assume (?7?). Then, using (By), each of the equations (??)-(??) and (B,) is
seen to be equivalent to the following: The number of the true equations among
o(tr) = =P(t1), ..., @(tn1) = =P(tn_1), @(Xhzy te) = —(XRI) k) is even.
Thus both of the two conditions (??)—(??) and (B,) are true. u
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3.3 Proof of Theorem ??. We may assume the validity of the conditions (B,)
for n =1 and n = 2, which read

(B1) #(0) =(0),
(By) ¢* =42
If ©(0) =0, then ¥(0) = 0 and, using P > 0, ¢ = 0 and ¢ = 0. Since this trivially

yields (S), we may assume ¢(0) > 0 in what follows.
Use continuity of ¢ to choose a § > 0 with

(17) @ > 0 (tel=4,9]).
By continuity again, (B;) and (By) yield

(18) pt) = o)  (te[=44).

a) Assume now that (B,) is true for every n € N. Let 7' € R. Choose n € N

and ¢t € [—4,0] with T = (n — 1)¢, and apply (B,,) to the vector (¢,...,¢) € R" 1.
This yields

p(T)e" (1) = »(T)" ().

By (??) and (?7?), o(T) = ¢(T). Thus (S), hence (S).

b) Now assume (FM,). [As promised in ??, only this weakening of condition
(FM) will be used.] In terms of p and v, this reads

(19) / e du(z) < 0.

for some € € R\ {0}. Applying Theorem 3 of Marcinkiewicz (1938), we see that (S)
follows from (??), (??), and nonnegativity of p and v.

REMARK. For additional information, apparantly not to be found elsewhere, on

~

the relation between the conditions (?7) and (S), see Hsu (1954).

c) Let n € N. Let ¢ be a characteristic function with support contained in
[-1,1]. For t € R, put

olt) = 5 (wolt) + 30t =) + 3ot + 7))
9(0) = 5 () = 5e0(t =) = seult+m))

Then ¢ and 1 are Fourier transforms of two different nonnegative measures p and
v. [If vy = fig, then 2¢(0) = 1 and 2p(t) = [ €"*(1 + cosnx) dug(x). Thus 2¢ is the
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Fourier transform of the probability measure with py—density x — 1 + cosnz. For
1, replace cos by — cos.|

Now define L and R by (??) and (??), and finally define P € Prob(R) by (??)
with ¢ = 0. By construction, P does not satisfy (S).

To check that P satisfies (B,), and hence (B,), observe first that P satisfies
(By). Hence we may restrict attention to those t € R" ! satisfying (??) and hence

(X tk,t1, ..oy th1) € S™, where
S = ]-n-1,-n+1U]-11Uln—-1,n+1].

A simple case checking shows that the condition (3 tg,t1,...,t, 1) € S™ implies
that

1(§tk e S\] - 1,1[)+nf1(tk e S\]- 1,1])

is an even number. Since @(t) = 1(t) for t €] — 1,1[, the equation in (B,) follows.
]

3.4 Proof of the claim in Remark ?? concerning logarithmic moments.
It is well known that compactly supported characteristic functions exist which are
infinitely often differentiable. [Take the convolution square of any real symmetric
compactly supported and infinitely often differentiable function, and normalize it to
have the value one at zero.] If the ¢, in part c¢) of the above proof is accordingly
chosen, then the resulting asymmetric P has logarithmic moments of all orders. =
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