
Interner Bericht

Efficient 3-D Visualization of Hybrid Medical
Data Sets

Rolf H. van Lengen

Jörg Meyer

Universität Kaiserslautern

257/94

Fachbereich Informatik

Universität Kaiserslautern · Postfach 3049 · D-67653 Kaiserslautern

Efficient 3-D Visualization of Hybrid Medical
Data Sets

Herausgeber:
Leiter:

Rolf H. van Lengen

Jörg Meyer

Universität Kaiserslautern

257/94

Universität Kaiserslautern
AG Computergraphik

Postfach 30 49
67653 Kaiserslautern

Oktober 1994

AG Graphische Datenverarbeitung und Computergeometrie
Professor Dr. H. Hagen

Efficient 3-D Visualization of Hybrid Medical Data Sets

Rolf H. van Lengen and Jörg Meyer
University of Kaiserslautern

Department of Computer Science
P. 0. Box 3049

D-67653 Kaiserslautern
Germany

Abstract

Visualization of Zarge data sets, especially on small machines, requires advanced techniques
in image processing and image generation. Our hybrid raytracer is capable of rendering vol
umetric and geometric data simultaneously, without loss of accuracy due to data conversion.
Compound data sets, consisting of several types of data, are called "hybrid data sets".
There is only one rendering pipeline to obtain loss-less and efficient visualization of hybrid
data. Algorithms apply to both types of data. Optical material properties are stored in the
same data base for both volumetric and geometric objects, and anti-aliasing methods appeal
to both data types.
Stereoscopic display routines have been added to obtain true three-dimensional visualization
on various media, and animation features allow generation of recordable 3-D sequences.

Keywords: Scientific Visualization, Medical Imaging, Volumetrie Data, Geometrie Data,
Hybrid Data, Volume Rendering, Surface Rendering, Hybrid Rendering, BSP-Trees, Stereo
scopic Visualization.

1 Introduction

Progress in scientific visualization and in medical imaging allows more complex views of
interior characteristics and hidden structures of objects than any other technique before.
Modern tomography, such as CT, MRI (Magnetic Resonance Imaging), and ultrasonic scans,
deliver large data sets with high accuracy. Advanced technologies are used to explore and
evaluate such complex data sets without loss of detail.

Applications in cancer recognition, radiological therapy planning, surgical operation plan
ning, minimal invasive surgery (MIS), etc. require precise visualization techniques to locate

1

desired elements in a data set. Using computer tomography, it is possible to scan a human
body slice-by-slice to obtain an overview of interior structures (figure 1).

Figure 1: Slice from MR! scan

If all slices are put together again and arranged in a regular grid, we can build up a volumetric
data set, which consists of an array of 2-D slices. Regarding the nodes carrying a data value,
we have a three-dimensional arrangement of volume elements (voxels}. Figure 2 emphasizes
the reconstruction of a volume from an array of slices.

Figure 2: Reconstruction from array of slices

Based on the data delivered by the scanning device the volumetric data set consists of voxels
with a scalar value attached to each vertex. To obtain a more differentiated visualization, it is

2

necessary to classify this raw data into different materials, which can be visualized separately.
Optical properties can be assigned to each material to simulate transparent skin or hone for
example. This process is called classification.

Therefore we need a segmentation of the data set into several classes of materials. This
can be clone using edge detection algorithms and thresholding techniques. Since there is no
uniform corrcsponclency between scalar values, e. g. obtained from a CT scan, and materials,
classification to some extent must be clone interactively, but segmentation may be assistecl
by computer gra.phics methods.

To cnable ima.ge processing on small machines not capable of storing the whole volumetric
data set in system memory, we have developed a technique to render these data sets in several
stages. A volumetric data set is subdivided in one direction into blocks of voxels. Each block
consists of two neighboring slices that make up a two-dimensional array of voxels (figure 3, [6]).

Volumetrie
Data Set

Slice Block

Figure 3: Volumetrie data set

To snpport a. grcater variety of objects, we added geometric objects to the scene. These
objccts can consist of triangles, polygons, spheres, or, more commonly, CSG objects. The
progrnm provicles an extendable interface for adding new object classes. Geometry can be
used to create additional objects, or to remove some parts of the scene (e. g. volumetric
data). An object can be defined as a cutting object that only allows specific materials in it's
interior. If the object is completely transparent, we can create an invisible cutting object.
Thus we have implemented a universal method for cutting operations on volumetric data.

Similar to volumetric data, we use a subdivision technique to partition geometric data into
sevcra.l buckets. If volumetric data is present in the scene, we use the same dimensions from
the block structure to define the bucket size for geometric objects. Subdivision is especially
useful whcn running a clistributed version of the program on several machines. Each machine
only requires those parts of the scene that appear in a specific part of the image. The size of
imagc portions depencls on each machine's computing power.

\.\Te use ra.y-casting techniques to render the scene [7]. In contrast to parallel projection
methocls [12], which require a complete resampling of the whole scene if the camera position
changes, a lot of preparation can be done in a pre-processing stage. Results, such as eval
uation of system parameters, hierarchical subdivision, shadow maps, etc., can be reused for
each frame of an animation sequence. Besides, resampling always implies loss of detail and
climinuition of image quality.

To rcn<lcr volumctric clata as weil as geometric objects, we need a method for hybrid
rendc·riny of both data. types. Existing methods often fail in preserving image quality due to

3

necessity of data conversion. The method presented in this paper works on an unaltered set
of original data and avoids conversion of raw data.

2 Hybrid Data Sets

Different rendering methods have been established and widely studied in the last decades
([12], [13], [14]). The most researched techniques are volume rendering and surface rendering.
Both methods are limited to a specific type of data, either volumetric or geometric data [17].

Volwne
Rendering

Surf ace
Rendering

2-D
IMAGE

Hybrid
Rendering

Figure 4: Rendering methods (alternatives)

If hybrid visualization [15] is required, it is necessary either to convert geometric data into a
volumetric representation using scan conversion algorithms (6.gure 5), or to extract surfaces
from volumetric data to change them into geometric objects (6.gure 6). Several kinds of
algorithms for surface extraction have been published, such as edge detection (iso-contouring),
iso-surfacing, and "Marching Cubes", which depends on thresholding [11].

All these methods require a conversion from one data type into the other, causing a loss
of accuracy [10]. While positioning geometric data into a volumetric grid (6.gure 5), the
algorithm applies a discrete scan conversion to the original object. This results in a loss of
details due to discrete sampling, and requires approximations, if data does not fit exactly
into the regular volumetric grid.

On the other hand, if volumetric data is tobe converted into a geometric representation
(figure 6), a surface reconstruction algorithm must be used to create geometric information,
causing problems if there is no real surface information inherent in the data set, or if weak
contrasts disable thresholding methods from fi.nding a valid surface [4].

Therefore we introduce a new approach to render volumetric and geometric data simulta
neously using the same visualization techniques. The method applies to partial data sets and
does not require to keep the whole data set in system memory. Simultaneous visualization of
different kinds of data sets is called Hybrid Rendering. The main idea is to leave both data
sets in their original representation during all preprocessing stages, apply the same projection
and transformation algorithms to both data sets, and render them simultaneously.

For each pixel, a ray is cast into the scene, scanning volumetric data as well as geometric
data. We use a hierarchical subdivision algorithm to accelerate the scanning procedure,

4

Volumetrie Data

Figure 5: Volumetrie representation

•
Geometrie Data

Volumetiie Data

Figure 6: Geometrie representation

introducing a BSP-tree structure for hybrid data sets (see chapter 3.5). Volume data is
sampled at equidistant sampling positions along the ray, and geometric data is inserted at
the intersections of geometric surfaces and the ray. A list of sampling positions for volumetric
and geometric data is created and sorted in ascending order (figure 7).

At ea.ch sample position, we read a material label, which is assigned to both volumetric
a.nd geornetric da.ta.. Different interpolation methods, which can be selected using interpreter
commands, a.re used to determine the best volume label closest to the sampling position.
Since we ha.vc a. common representation now, we apply the same visualization techniques to
both volumetric a.nd geometric data.

Our hybrid renderer evaluates the corresponding optical properties at each sampled posi
tion from a. da.ta ba.se and applies one of several shading models to calculate pixel intensities.
The sa.me data. ba.nk is used for both types of raw data, and the same optical properties can
be a.ssignccl to volumetric a.nd geometric data. The combination of both data types is called
hybrid 1fotn.

5

'Volumetrie"
Data

'Geometrie"
Data

.....,. ____ iintersections

with ray

series of
parameter values

Figure 7: Hybrid rendering: combination of volumetric and geometric data

3 Hierarchy of the Scanning Procedure

The hybrid raytracer is controlled by an interpreter that allows us to modify various param
eters and to initiate the visualization procedure. lt enables us to define data structures to
store points, vectors, counters, etc., and it supports control structures similar to high-level
programming languages (e. g. 'C~ in order to create conditional statements or loops for
animation sequences.

Most of the commands control parameters for the rendering stage, such as camera posi
tion, light sources, optical parameters for material properties, shading models, and shadow
calculation. There are other commands to determine the output image format, size and
quality. The image can be shown on a flat display or as a stereoscopic view. Different dis
play technologies for mono and stereo animations are supported. Finally, we added some
commands to control memory management, which is especially important for the distributed
version of the hybrid raytracer. All parameters are preset to default values and can be
modified any time using easy-to-handle interpreter instructions.

3.1 Visualization Procedure

When all parameters are set as desired, the visualization procedure is called as an initial stage
of the procedural hierarchy. First, this procedure checks if any parameter has changed since
the last visualization and updates all system variables, if necessary. Sometimes, if the scene
changes completely, complex recalculations must be executed, but most of the time values
from prior stages can be used.

A z-buffer is used to store color values, transparencies, and other values which must be
preserved for subsequent passes. After the relocation procedure, which is used for the dis
tributed version only, and after initialising some local variables, which is done by a procedure
that globally checks all modules for initialization services (similar to the GlobaLUpdate and
GlobaLStartup procedure), we can prepare the z-buffer by marking all irrelevant pixels that
need not be calculated due to selected scanning modes (e. g. interleaved scanning with in
terpolation), or because they are covered by a non-transparent logo insert. This feature has
been included in order to speed up the visualization procedure.

In the precalculation stage we create shadow maps for fast and efficient shadow generation.
A preview window can be opened, if desired, to monitor the progress of visualization, and then

6

Visualization (calculates an image [STAND_ALONE only] or

part of the image [SLAVE only])

Global_ Update (updates all system variables)

Global_Relocate (relocate function start addresses)

Global_Startup (global startup procedure)

Z_Buffer _Irrelevant (mark irrelevant pixels in z-buffer)

Shadow _ Calculation (create shadow maps)

Open_Window (open preview window for online visualization)

~Mi~
no

Scan_Data * (scanning procedure) Z_Buffer _Terminated (nothing to

process, check if all pixels ready)

Write_lmage (write image to file [STAND_ALONE only]) or

Send_lmage (send part of the image back to master [SLAVE only])

Global_Cleanup (global cleanup procedure)

* for more details see chapter 3.2

Figure 8: Visualization procedure

we start the scanning procedure (see chapter 3.2). If data is available, the image is calculated
and written to a file. In the distributed version only apart of the image is calculated by each
slave process and must be sent back to the master process to rebuild the whole image. A
global cleanup procedure follows the rendering stage to free unused system resources. Figure
8 shows a flow chart for the main visualization procedure.

3.2 Scanning Procedure

The scanning procedure first determines the appropriate scan direction, which depends on
camera position and viewing direction. Since volumetric data is arranged in slices, blocks of
data must be loaded in the appropriate order (left-to-right, center-to-left and center-to-right,
or right-to-left).

For example if the camera is positioned left to the data set, the scanning procedure first
needs the left-most slice to be loaded into system memory, and then continually reloads
subsequent blocks of data. lt is necessary to keep at most four slices of raw data in system
memory to permit interpolation between neighboring voxel fields. When new data is loaded,
all slices are shifted one position to the left in a buffer that contains four slices at each time.
Remaining slices on the left are removed from system memory and replaced by new ones on
the right. Figure 9 shows the structure of the scanning procedure.

7

Scan_Data (scan hybrid data)

Hybrid_Box (calculate bounding box for hybrid data)

Loading_Direction (determine scan direction, depends on camera

position relative to bounding box of hybrid data)

while

Block_and_Bucket_Management•• (scan blocks, depending on scan direction)

Z_Buffer _Terminated (check if all pixels ready)

! ready (any pixels left ?)

•• for more details see chapter 3.3

Figure 9: Scanning procedure

3.3 Block and Bucket Management

Hybrid rendering requires handling of two different data types, i. e. volumetric and geometric
data. As mentioned before, volume data is arranged in blocks, and similarly geometric data
is arranged in buckets. A management routine is necessary to coordinate the different areas
in object space.

This routine initially determines the positions where volumetric and geometric data com
mences and then enters a loop over the whole hybrid data set. If data of one of both types
is present, the appropriate block or bucket is loaded into a system buffer and scanned using
the hybrid scanning routine. Figure 10 illustrates block and bucket management.

Block_and_Bucket_,Management (scan blocks, depending on scan direction)

lnit_Position (calculate start position for volumetric and geometric data)

do

First_Block (get first block[s] of volumetric data, if necessary #)

Sort_Geometry (sort geometric data, depending on scan direction, if necessary #)

First_Bucket (get first bucket, if necessary #)

Hybrid_scanning ••• (scan region of hybrid data)

Next_Block (get next block, if necessary ##)

Next_Bucket (get next bucket, if necessary ##)

while (! last_block_or_bucket) (any blocks or buckets left ?)

data valid and start position reached
data valid and region not empty
••• for more details see chapter 3.4

Figure 10: Block and bucket management

8

3.4 Hybrid Scanning

A region of hybrid data contains areas of volumetric and geometric data respectively, which
may be congruent, disjunct, or overlapping. A block of volumetric data or a bucket of
geometric data is projected onto the screen, and the bounding box of the convex hull is used
to determine the scanning region. Two different 2-D polygons are calculated to cover these
regions.

The polygon scanning routine scans these polygons for volumetric and geometric data.
Before scanning, data is divided into subregions using a BSP-tree structure (BSP: binary
spaced partion) to avoid time-consuming search processes and scanning of empty regions.
With this method, hybrid data is prepared for more efficient scanning. The BSP-tree subdi
vision method is described in more detail in the next paragraph.

If there is only one type of data (volumetric or geometric data), the polygon scanning
routine has to scan a single polygon only. If there is hybrid data, the scanning area is
subdivided into regions of volumetric and geometric data respectively as well as a hybrid
region, where both types overlap. To ensure fast and correct scanning, the polygon edges are
generated using a modified Bresenham algorithm. U p to 9 regions are scanned line by line,
following the polygon edges (figure 11).

G

V: volumetric data

G: geometric data

V V E

convex hull V H G

----.\·· ••••• „.„„„„

E G

H: hybrid region

E: empty region

Figure 11: Scanning regions

G

Figure 12 shows the hybrid scanning procedure. When all regions are scanned using the
BSP-tree partitioning method, the BSP-tree can be erased from system memory and the
next block or bucket is loaded.

3.5 BSP-Tree: A Subdivision Algorithm for Hybrid Data

The BSP-tree subdivision algorithm recursively partitions a hybrid data set into regions of
lower complexity. lt alternatively subdivides the data set in horizontal and vertical direction
and reduces the number of data elements in each specific region [9].

The subdivision process is arranged as a binary tree. The root contains a description of
the whole data set of a specific area, i. e. the current bucket for geometric data, and the
block boundary indices for volumetric data. The left successor denotes the upper or left half
of the data set, and the right successor describes the lower or right part.

9

Hybrid_Scanning (scan hybrid data)

Create_ Vol_Polygon (calculate 2-D polygon for volumetric data, if necessary ##)

Create_Geo_Polygon (calculate 2-D polygon for geometric data, if necessary ##)

Merge_3D_Box (calculate 3-D bounding box of hybrid data)

Create_BSP _Tree **** (create BSP-tree of hybrid data)

Polygon_Scanning (scan polygons for volumetric and geometric data)

Delete_BSP _Tree (remove BSP-tree)

data valid and region not empty
**** for more details see chapter 3.5

Figure 12: Hybrid scanning

Starting from the root, data is subdivided recursively. To simplify matters, we choose the
center of a rectangular area for intersection, but it is also possible to use an adaptive method,
depending on the amount of data remaining in the two subfields. Advanced partitioning
methods are currently under development. Since we have binary classified materials for
volumetric data it is possible to determine whether a voxel is filled with relevant data, which
has been selected for visualization, or if it is empty. Two slices that make up a block are
projected on one of the side walls of the block using a binary 'or' function. Each region
is checked whether it contains data or if it is empty. Non-empty regions are subdivided
recursively until one region is empty. Processing both regions, the procedure enters a recursive
loop to build up a tree . Recursion terminates if a pre-defined depth is exceeded or a minimum
size of a subregion is reached (figure 14) .

lt is possible to use the same subdivision algorithm for geometric data. A list of all
geometric objects of the current bucket is attach.ed to the root. All these objects are checked
if they come under the left or the right part, or both. When both successors are complete and
two new lists are generated, the previous list may be deleted to save memory, and recursion
continues with the next level.

Figure 13 shows the structure of the BSP-tree subdivision algorithm. The object from
the root list is contained in region A as well as in region B. The next recursive step shows
that after further subdivision region 3 is empty.

When scanning regions of hybrid data using the Hybrid Scanning routine, a ray must
be calculated from the camera position through each pixel of the scan region (see previous
chapter). Different anti-aliasing methods have been implemented, such as jittered ray-casting
(monte-carlo method), adaptive oversampling and a discrete subsampling method ([4], [8]).
Each ray is checked if it intersects the three-dimensional bounding box of a selected portion of
hybrid data. Then the scene is traced to determine the pixel color and transparency. A pixel
is terminated if all blocks and buckets are scanned, or if a transparency limit is exceeded.

The trace routine uses the precalculated BSP-tree structure to scan a selected part of
the scene for hybrid data. For each part of the ray which is defined by the intersection of
the ray with the data block the trace routine recursively descends the BSP-tree in front-to
back order until it reaches a leaf containing an area of volumetric data and an object list.
A two-dimensional DDA algorithm is used for traversing the voxel structure, starting from

10

······· ·····:

·-·-····· ·····················'

D
~--""""'"--~ root

B

r······················ ·······1·············or···························1

~ . ~L_ 'Lfü ; :~!1.
2 ; ; 3 ~ - -· · ·· · ·· · ····· 4

Figure 13: BSP-tree: subdivision algorithm

the first intersection between ray and block, and finishing at the projection of the second
intersection onto the opposite side wall of the block. This is possible, because we have a
block with a dimension of only one voxel in loading direction.

For geometrically defined objects, a list of all objects is created and sorted by camera
distance in ascending order. To speed up the visualization procedure the pre-sort algorithm
makes sure that those elements are tested first for intersection which appear to be nearer to
the camera and therefore are more likely to be seen from the current camera position and not
hidden by other non-transparent objects. A memory management routine avoids repeated
removal and reallocation of list elements by overwriting existing data and allocating new
elements only if necessary.

Spectral light intensity, transparency and texture values as well as shadows are evaluated
for each intersection point between ray and geometrically defined object. Similarly for volu
metric data the voxel area is sampled at equidistant positions along the ray. For hybrid data
an interleaved scanning mode is activated regarding both intersections of geometry and the
ray as well as equidistant sampling positions along the ray. Interleaved scanning depends on
the order of appearance of intersections and scan positions.

Resulting values are combined with the existing z-buffer entry of the current pixel and
stored for the next block to render. If all blocks and buckets are rendered or if a pixel
terminates due to insignificant remaining transparency, z-buffer information is reduced to a
color value in order to save memory. Also a memory management routine for large z-buffers
on tiny machines has been implemented. If system memory is insufficient to keep the whole
image, some pixels are marked tobe left over for a second pass before a z-buffer entry is fully
allocated. This enables us to process large images even on very small machines.

11

·····1 ••••••••• 1.~ •••• „~.
•r.t••·····..,·· r1•1JIH'i•B••1t:•
Hlli.lri1iililt3!\'1• • •(111
Jlllllllil l lll1

l •••••••!'llt111t!••••1
••••••m~•m••. ,J
l•r.1•••••m••~•1 •••••••••ii:41

11··········11 •••••••••• 111111111111

Figure 14: BSP-tree: 2-D projection of hybrid data

4 Stereoscopic Visualization of Hybrid Data Sets

One of the most important aims of our work was the extraction of as many features as possible
from the the original data sets. To achieve this, we implemented different kinds of algorithms
to improve image quality, i. e. several segmentation and classification methods, interpolation
in data space, parameters for optical properties that can be assigned to different materials to
control their manner of representation in the image, and some animation tools. This helps
to explore concealed structures of a data set hidden by exterior layers [5].

Another important feature contained in a data set is depth information. Therefore we
added 3-D visualization techniques to our system. Many people concerned with computer
graphics consider raytraced images to be 3-D, though it is only a projection from a three
dimensional data set to a 2-D screen. We would call this 2~-D . But real 3-D information
can only be obtained if one delivers two separate images, one for each eye. This is called
Stereoscopic Visualization.

Depth persistance depends on various factors. The brain plays an important role during
the interpretation of two images projected onto the retina. In 1838 Wheatstone demonstrated
that the mind fuses two planar images into one three-dimensional image. He separated this
ability of the brain from other impressions and stated that there is a unique depth sense,
called stereopsis.

There are a lot of other determinants that make up a realistic three-dimensional image.
They can be separated from stereopsis, and are called extrastereoscopic or monocular depth
cues. These cues include perspective, relative size, interposition, depth cuing (graduated
reduction in brightness in proportion to the distance from the viewer), and motion parallax [1].
All these features have been implemented, some of them, e. g. perspective and interposition,
are included in the raytracing approach, since this method implies solving the hidden surface
problem.

Some others are not well suited to medical imaging applications, e. g. aerial perspective
(diminution in visibility of distant objects caused by intervening bluish haze, because of
the scattering of red light by the atmosphere), depth of focus (not implemented since it
only reduces separation of fine details), etc. Additional monocular depth cues like textural

12

gradients (reduction of textural resolution in proportion to distance) and some algorithms to
calculate shadows in an effective way are currently under development.

left camera horizontal
. disparation ··„... „ •• „„„„ •• „. „ „ ••••• „ „ .„ „. „ ••• ·.·.~

...

camera separation

<J
right camera image plane object

Figure 15: Horizontal dispamtion

To produce a stereoscopic image we have to calculate a pair of images from two slightly dif
ferent positions (figure 15). Two cameras should be located with a certain offset in horizontal
direction, which is called horizontal parallax (figure 16). If the object is located exactly in
the image plane, we have zero parallax (figure 16a). If the object is in CRT space, there is
no crossing between two rays in front of the screen, and we call this positive parallax (figure
16b). Diverging rays (figure 16c) should not be used to avoid viewer's distress. A negative
parallax value means that the object is positioned between viewer and screen (viewer space,
figure l 6d).

(a) (b) (c) (d)

Figure 16: Horizontal parallax

Both ca.meras should point to the same direction, which is called center of focus. Each image
should be presentecl only to the eye that it is calculated for. This will be discussed in more
detail latcr.

First wc clefine onr viewing system. Let us assume that all objects are given in a world
coorclina.te systcm. In this case it is defined by the structure of the volumetric data set,
which is a.rranged in a regular three-dimensional grid. The resolution in each of the three
orthogonal directions is not necessarily the same, so we scale our basis vectors:

(1)

whcrc C.iv, e'.iw denote unity vectors of our volumetric and world coordinate system respec-

13

tively. .\ is the distance between two neighbouring points along a scan axis.

3

Bw = LJ{eiw}
i=l

(2)

describes a basis for the world coordinate system. Geometrie data is defined in the same
coordinate system and can be adapted using affine transformations during data acquisition.
Different types of geometry may be positioned separately by means of easy-to-handle inter
preter commands during rendering stage. Thus we have defined a common world coordinate
system for hybrid data sets.

To display data on the screen, we have to perform a projection from 3-D object space into
2-D screen space. This can be described as a basis transformation from Bw into Bs, where
Bs denotes a basis for the screen coordinate system. So we are looking for a transformation

<pws:R3
--+ R 3

, <pws(Pw) = Ps; Pw,PsER3 (3)

that puts any point Pw (in world coordinates) into Ps (in screen coordinates).
Bs is a left-handed orthogonal coordinate system with x- and y-axis in the screen plane

(with the x-axis pointing to the right) and with the origin located in the center of the screen.
Points with positive z values are defined to be in CRT space, points in negative z range are
signified as existing in viewer's space. This is important for our stereo coordinate system
that will be introduced later.

<pws is derived in several stages. To achieve coincidence between Bw and Bs we have to
perform three rotations, one for each axis. Thus we need a common center of rotation, which
can be obtained by moving all points in opposite direction to the camera, using the camera
as center of rotation. This is described as matrix T1.

The next step is to append three rotations Rx , Ry, Rz, where Rz can be utilized to rotate
the image on the screen by adding a camera rotation angle. Rz can also be used to align
volumetric data sets, which is necessary because of different scanning directions. Usually this
is compensated using a camera rotation, but the rotation angle has to be recalculated for
each new camera position. In particular this is important for animations and for stereoscopic
images where we have more than one camera position. To achieve a common alignment we
define a vector tobe the "up" direction of a data set. If this is impossible due to the case that
this is the viewing direction, we use a vector for the "right" direction for correct alignment.

In the last stage we have to move all points at a distance f towards the camera along the
z-axis, where f denotes the focal length, which is the distance between the camera and the
origin of the screen coordinate system. This is described as matrix T2 . Thus we have

Mws = T2 o Rz o Ry o Rx o T1

as a transformation matrix for <pws with

Ps = <pws(Pw) = Mws · Pw

A basis for the screen coordinate system is given as:

3

Bs = LJ{cpws(eiw)}
i=l

(4)

(5)

(6)

We have only used bijective transformations, so the combination (4) also refers to a bijective
transformation, and therefore the inverse transformation exists, too:

-1 R3 R3 'Pws = <psw: --+ , <psw(Ps) = Pw; Pw, PsER3 (7)

14

This is the transformation from screen coordinates into world coordinates.
Now we calculate the positions for the stereo camera. To obtain stereo vision two cameras

have tobe located according to the natural distance between the two eyes. Since we have only
world and screen coordinates we introduce a new coordinate system, called stereo coordinate
system, to describe all 'hardware-dependant' or 'exterior' measures that can not be expressed
in world coordinates. In this metric system we define the distance between the eyes, the
viewing distance (between viewer's eyes and screen surface), and the screen size. Also we can
set the position of the object in depth relative to the screen surface. All these values may be
given in centimetres, inches, or any other unit. Additionally we need the screen size in pixels
for reference.

To define a stereo coordinate system for animations it is necessary to keep the start
position and direction of the camera fixed in order to maintain a constant impression of depth.
These values together with an angle that describes the viewing area can be kept constant
throughout the animation. They are used as a reference for further camera movements.

After dcfining the stereo coordinate system using an interpreter command we calculate
a new stereo tmnsf ormation to replace the standard camera transformation. The stereo
transformation provides two projection matrices, one for each eye. lt is derived from the
camera transformation in several stages, which are described later.

First, we have to determine the two positions of the stereo camera. They are derived from
a horizontal shift of the mono camera in horizontal direction, symmetrically to the original
position. A translation to the left and to the right (x-direction of the viewing system) is
necessary a.ccording to the natural separation of the eyes. We use the screen coordinate
system to perform this translation, because it has the same alignment as the stereo coordinate
system. So the mono camera position and direction have to be transformed from world into
screcn c.:oordiuatcs first.

left
Jeft camera L

<J
right camera R

right

... ;:. z

X

image plane

Figure 17: Stereo coordinate system

Both cameras ha.ve to be moved to the left and to the right respectively with a certain offset
(figure 17). Therefore the distance between the eyes, which is given in stereo coordinates,
has to be converted into screen coordinates.

ff.
screen_width[pixels] eye_distance[units]

o setx = ·
screeruvidth[units] 2

(8)

The a.vcragc distance of the eyes is 2.5 inch (6.4 cm), and usually the viewing distance is
approx. 30 inch (76 cm). We only need the screen width in units of the stereo coordinate

15

system and in pixels. The height is irrelevant due to the fact that we only consider horizontal
parallax.

The object distance determines the position of the object in relation to the screen surface
at the beginning of the animation. This value is also defined in stereo coordinates. Thus we
have the following conditions:

• objecLdistance > 0:

The object is behind the screen. M is more apart from the origin; if the viewing angle
is constant the object appears to be smaller.

• objecLdistance = 0:

The object is located in the screen plane. Since the objects of the scene usually have
three dimensions, this condition is valid only for some points on a plane orthogonal
to the z-axis of our screen coordinate system. So we use the point that describes the
viewing direction as a reference point . lt is recommendable to choose the center of the
hybrid data set as a reference point to make sure that some parts of the scene are in
front of the screen, and some parts are behind.

• objecLdistance < 0:

The object is in front of the screen {viewer space). M is nearer to the origin; if the
viewing angle is constant the object appears !arger on the screen.

In the last case the follwing condition must be true:

(-obj ecLdi stance) < viewing_distance (9)

We discovered that it is advisable to restrict the object distance according to the equation:

1
b . d ' I viewing_distance

o JecL istance <
3

(10)

Otherwise, horizontal disparity could exceed the range in which the brain fuses two images.
This happens due to a breakdown of the accomodation/convergence relationship. Other
sources recommend to use an object distance within -25% and +60% of the viewing distance
[2]. But these values strongly depend on experience and physical constitution of the viewer.

The object distance has to be converted from stereo coordinates into screen coordinates.
The camera offset results from

obj ecLdistance[units]
vi ewing_di stance[units]

ff. t!. _ objecLdistance [units] . (D _ M)
==* o se z - . . d . [.] z z viewing_ i stance umts

(11)

where D denotes the point that describes the viewing direction. Mz is the z-coordinate of
the camera.

During an animation sequence the distance between M and D or the viewing angle can
be modified. This causes a magnification or reduction of the objects that are displayed on
the screen. In this case the stereo projection has to be readjusted to prevent the object from
remaining at a fixed distance from the screen. If not, the object would stay in a stationary
position and only changes size.

16

As a solution we could change the object distance using the interpreter command, but it
would be hard to coordinate this with the camera movement. An improved method to adapt
the object distance automatically is to associate the offset along the z-axis with the camera
movement. Therefore we scale the depth offset:

(12)

where t 1 refers to the relation between the current camera position and the start condition:

llD-Mll2
t1 = -----

llDo - Moll2
(13)

D, M denote the point of the viewing direction and the camera position; Do, Mo refer to the
start condition, which is valid at the beginning of an animation sequence. Do, Mo can be
described as a reference for further camera movements.

Additionally, if the viewing angle changes, the focal length has to be adapted, too. The
appropriate factor is:

(14)

The values for Do, Mo, and bo remain constant during an animation sequence and can be
initially defined using the interpreter command that controls the stereo coordinate system.

Now, for the position of the stereo camera we have:

(

-offsetx)
L=M+ 0 ,

-offsetz (

offsetx)
R=M+ 0

-offsetz
(15)

Finally, we recalculate the matrices for the transformation from world into screen coordinates
and vice versa. To transform a point from the world coordinate system to the screen coordi
nate system we use the mono camera transformation matrix first. Then we move this point
to the previously calculated distance offsetz in z direction. The corresponding matrix is:

(

1 0 0 0)
81 - 0 1 0 0

- 0 0 1 offsetz
0 0 0 1

(16)

The translation in x direction depends on the distance of the point which has to be trans
formed from the origin of the screen coordinate system. This is equivalent to a shear trans
formation (figure 18).

Thus we have the following matrices:

(

1 0

82 = 0 1
L Ü Ü

0 0

-offset„
f
0
1
0

Altogether we get the following matrices for our stereo transformation:

17

(17)

(18)

_.,..

(' focal length

left

-offset,

offset,

right

P=(x,y,z)

offset
~ PL =(x-f ·z,y,z)

offset
P, =(x+f ·z,y,z)

Figure 18: Stereo projection: shear tmnsformation

Simila.r t.o cqua.tion 4, we can also calculate the inverse transformation Lsw and Rsw re
spcctivdy. These uew stereo camera positions and transformations are stored for further
refcrcucc in order to switch between left, right, and mono camera intermediately.

We have define<l a new stereo coordinate system which makes calculation of stereo perspec
tives indcpendant from the size of objects in the scene. Visualization of molecular structures
for example requires other parameters than objects of the real world. lt is not very useful
to usc the natural distance of the human eyes as a basis for a calculation to obtain a stereo
ima.ge. The virtual eyes have to be positioned in the scene so that they have dimensions in
the samc ra.nge as the objects in the scene. The same is true for astrophysical visualizations,
whcrc thcrc a.rc rnuch !arger dimensions. Our systems allows us to calculate stereo perspec
tives with 110 respcct of the world coordinates defined in the scene. We only use parameters
dcrived from hardware geometry and viewing habits ([18], [19]).

5 Results

Different display methods have been implemented for stereoscopic visualization. A standard
method for 3-D reproduction is the combination of two slides into one anaglyph image.
Both fielcls a.re converted to gray scale images following CIE1 recommenclations, and then
supcrimposecl as colorccl frames, one in red, and the other one in green. Special glasses with
tinted pla.st.ic lcnscs in red aml grecn must be worn to view these images.

Auotlicr mcthod t.o create a.na.glyph ima.ges is to lea.ve out the conversion to gray, a.nd
dircctly split thc two fields into colors. For example if the red channel is used from the
left imagc, combined with blue and green from the right ima.ge, as a result there will be
a full-color image in those portions of the stereo image that are similar in both fields, and
ana.glyphic colors a.t the object borders. This does not disturb stereo impression too much,
and the brain is able to recognize a three-dimensional color image. The object should have
the sa.me brightness in both color extracts, otherwise it would disappear in one of the two
fields.

Two rncthods for bla.ck-and-white reproduction have been implemented, too: wide-eyed
stereo a.nd crnss-cyed stereo. With a little practice it is possible to view both of them without
spccial glasscs. Dcpcnding on the image type, the eyes must be crossed in front or behind
the inrnge plane. Although the fix point is not in the image plane, the eyes must be focussed

1Commision Internationale L'Eclairage

18

on the paper. For a small percentage of people this is hard to achieve due to the accomoda
tion/convergence breakdown, but with the help of optical devices it is much easier to view
a wicle-eyc stereogram. Figure 19 shows a historic model of a stereoscope which was used to
view stereo slides (paintings and photographs).

Figure 19: Stereoscope

A stereoscope uses lenses or mirrors to align the center of focus to tbe image plane, so that the
eyes can watch two separate fields from a short distance. In 1849 David Brewster introduced
a lenticula.r stereoscope [3]. Figures 20 and 22 show tbe principles of wide-eye and cross
eye stcreograms. The examples (figures 21 and 23) show a human head with removed skull
cranium. A geometric object has been used to define the intersection.

left eye

<::J

<::J
righl t:ye image plane

Figure 20: Wide-eyed stereo (principle)

All the methods mcntioned above are well suited for printing, but we also developed some
teclmiq11cs for electronic media, such as shutter glasses, and our hybrid raytracer allows video
recording of stereoscopic animation sequences.

Slrnttcr tcchnology requires a pair of LC (liquid crystal) glasses that can be controlled
electronica.lly. Both fi.elds are displayed alternatively on the screen, and if one image is
displaycd, the shutter glasses open a window synchronously only for the corresponding eye,
while the other eye is darkened. If the frequency is high enough (60 - 120 Hz), a flicker-free
three-dimensional image can be seen.

The sa.me tcchnology not only applies to still frames, but also to animations. Special

19

Figure 21: Wide-eyed stereo image

lefl eye

<1
rigbt image

left image

<1
righteye image plane

Figure 22: Cross-eyed stereo {principle)

efforts have been made to develop a hardware-independant interface for storage of animation
sequences on video disks or tape and for replay on every CRT or projection screen. This is one
of the best techologies for three-dimensional displays known so far, since it allows full-color
reproduction of animated 3-D sequences.

Fina.lly, another method for three-dimensional reproduction has been tested: autostere
ogra.ms [16]. Although it is not so well suited for medical imaging applications, it allows to
display depth information in a single frame without any special viewing devices. To create
an autostereogram, both fi.elds are rendered separately and projected onto the image plane.
Pixels originated from the same object point obtain the same color or intensity, so that the
brain is forced to fuse these points. The color of the pixel is irrelevant, it only must be the
same for corresponding pixels. A random dot pattern or a colored texture may be used as
a reference for assigning pixel values. If more than one object point is projected onto the
same pixcls, all pixels obtain the same color. Since we only consider horizontal disparity, the
texture map width should be equivalent to the distance of two pixels, if a background point

20

Figure 23: Cross-eyed stere.o image

is projected onto the image plane (equation 19, figure 24).

o o+v o
-=--~d=--·e
d e o+v

(19)

d: distance between projected points e: distance between eyes
left eye v: viewing distance
<:::] :~ o: object distance

<l'l!ßI~
righteye image plane background

Figure 24: A utostereogram (principle)

Figurc 25 shows a random dot stereogram of a human head. The depth information is taken
imrncdia.tely from the z-buffer. If you have no experience in free-viewing autostereograms, put
your nose on the paper, focus behind the image, and then move your had slightly backwards,
until you see sharp contours of the object.

21

Figure 25: A utostereogram of a human head

References:

[1] Lipton, Lenny: The Crystal Eyes Handbook; StereoGraphics Corporation, San Rafael, CA,
1991

[2] Williams, Steven P.; Parrish, Russel V.: "New Computational Cont rol Techniques and
Increased Understanding for Stereo 3-D Displays"; Proc. SPIE Vol. 1256; Stereoscopic
Displays and Applications, Washington, 1990

[3] Considine, Douglas M.: "Stereoscope"; The Academic Encyclopedia {Electronic Version);
Grolier , Inc.; Danbury, CT., 1992

[4] Meyer, Jörg: "Hybrider Raytracer mit Anti-Aliasing"; University of Kaiserslautern, Ger
many, 1993

[5] Meyer, Jörg: "Dreidimensionale Visualisierung und Animation hybrider Datensätze -
Algorithmen und Displaytechnologien"; master thesis; University of Kaiserslautern, Germany,
September 1994

[6] Lengen, Rolf H. van: "The Volume Priority Z-Buffer"; Focus on Scientific Visualization;
Hagen, H. ; Müller, H.; Nielson, G. M. (publ.), Springer Verlag, New York, October 1992

[7] Röhrig, Roger: "Theoretische und empirische Ansätze zur Visualisierung medizinischer
Datensätze"; master thesis; University of Kaiserslautern, Germany, Juni 1994

22

[8] Heinrich, Stefan; Keller, Alexander: "Quasi-Monte-Carlo Methods in Computer Graphics,
Part 1: The QMC-Buffer"; Technical Report; University of Kaiserslautern, Germany, 242/94

[9] Rodrian, Hans-Christian: "Schnelle Formfaktorberechnung zur Generierung realistischer
Schattenverläufe"; master thesis; University of Kaiserslautern, Germany, 1993

[10] Frühauf, Martin: "Combining Volume Rendering with Line and Surface Rendering";
Proc. Eurographics, 2nd European Computer Graphics Conference, North-Holland; Amster
dam, 1991

[11] Lorensen, William E.; Cline, Harvey E.: "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm"; ACM Computer Graphics Vol. 21; SIGGRAPH '87, Anaheim, July
1987

[12] Rhodes, Michael L.; Stover, Henry S.; Glenn Jr., William V.: "True Three-Dimensional
(3-D) Display of Computer Data: Medical Applications"; Proc SPIE Vol. 318; Picture
Archieving & Communication Systems (PACS) for Medical Applications, Washington, 1982

[13] Wright, John R.; Hsieh, Julia C. L.: "A Voxel-Based, Forward Projection Algorithm for
Rendering Surface and Volumetrie Data"; Proceedings Visualization '92, Boston, Massachus
setts; IEEE Computer Society Press, Los Alamitos, CA, October 1992

[14] Wixson, Steve: "Volume Visualization on a Stereoscopic Display"; Proc. SPIE Vol.
1256; Stereoscopic Displays and Applications, Washington, 1990

[15] Levoy, Marc: "A Hybrid Ray Tracer for Rendering Polygon and Volume Data"; IEEE
Computer Graphics and Applications 10 (3 }; 1990

[16] Tyler, Chistopher W.; Clarke, Maureen B.: "The Autostereogram"; Proc. SPIE Vol.
1256; Stereoscopic Displays and Applications, Washington, 1990

[17] Mosher Jr., C. E.; Johnson, E. R.: "Integration of Volume Rendering and Geometrie
Graphics"; Proceedings of the Chapel Hill Workshop on Volume Visualization; Chapel Hill,
HC, May 1989

[18] Hodges, Larry F.: "Basic Principles of Stereographic Software Development"; Proc. SPIE
Vol. 1457; Stereoscopic Displays and Applications II, Washington, 1991

[19] Wickens, Christopher D.: "Three-Dimensional Stereoscopic Display Implementation:
Guidelines Derived from Human Visual Capabilities"; Proc. SPIE Vol. 1256; Stereoscopic
Displays- and Applications, Washington, 1990

23

