
Interner Bericht

A Formal Syntax and a Formal Semantics
f or Open Es teile

J. Thees, R. Gotzhein

lnternal Report No. 292/97

Fachbereich Informatik

Universität Kaiserslautern · Postfach 3049 · D-67653 Kaiserslautern

A Formal Syntax and a Formal Semantics
for Open Estelle

J. Thees, R. Gotzhein

Internat Report No. 292/97

U niversity of Kaiserslautern

Department of Computer Sciences

P.O. 3049

D-67653 Kaiserslautern

Email: { thees, gotzhein }@informatik.uni-kl.de

A Formal Syntax and a Formal Semantics for Open Estelle 1

J. Thees, R. Gotzhein

University of Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany

Email: { thees, gotzhein} @informatik.uni-kl.de

Abstract

Estelle is an internationally standardized formal description technique (FDT) designed for the specification of dis­
tributed systems, in particular communication protocols. An Estelle specification describes a system of communi­
cating components (module instances). The specified system is closed in a topological sense, i.e. it has no ability
to interact with some environment. Because of this restriction, open systems can only be specified together with
and incorporated with an environment.

To overcome this restriction, we introduce a compatible extension of Estel le, called "Open Estelle". lt allows the
specification of (topologically) open systems, i.e. systems that have the ability to communicate with any environ­
ment through a well-defined external interface. We define aformal syntax and aformal semantics for Open Estelle,
both based on and extending the syntax and semantics of Estelle. The extension is compatible syntactically and
semantically, i.e. Estelle is a subset of Open Es teile. In particular, the formal semantics of Open Estelle reduces to
the Estelle semantics in the special case of a closed system. Furthermore, we present a tool for the textual integra­
tion of open systems into environments specified in Open Estelle, and a compiler for the automatic generation of
implementations directly from Open Estelle specifications.

1 Introduction

Estelle [IS089, DeBu89] is aformal description technique (FDT), internationally standardized
since 1989. lt has been designed for the description of distributed, communicating, concurrent
systems, in particular communication protocols. An Estelle specification describes a dynamical­
ly modifiable hierarchical system of indeterministic components called module instances. Eve­
ry module instance has a well-defined external interface, through which it may interact with
other module instances of the same system. However, systems formally specified in Estelle are
closed in a topological sense, i.e. they have no abilities for external communication. Because of
this restriction, (topologically) open systems can be described formally only together with and
embedded into a concrete environment. This means that the environment has to be known in
advance, and that it must already be determined when the open system is specified.

In [LaFiVe96, GoRoTh96], pragmatic approaches to the specification of systems with the abil­
ity to interact with pre-existing real-world environments are proposed. These approaches are
based on the use of primitive functions and procedures or pragmatic compiler modifications.
According to the Estelle standard, these specifications do not possess a formal semantics2. Also,
the incorporation of systems specified in such a manner into a formal context is not supported
by these approaches.

1. This work has been supported by the Deutsche Forsch4ngsgemeinschaft (DFG) as part of project Go 503/4-1 .
2. Primitive functions and procedures (and also the specification containg them) have no semantic meaning,

unless a "rigorous, implementation independent (e.g. mathematical) definition of the relevant block is suppliecl
by the specifier" (Clause 8.2.4.3 of [IS089]). Such a clefinition may, however, be difticult to obtain for com­
munication with some environment realized, for instance, via primitive functions.

The ability to formally describe open systems independently of any environment, and to specify
their incorporation with different concrete environments, would have the following benefits:

• The expressiveness and the abstraction Level of Estelle would be enhanced. For instance,
protocol machines could be formally described and analysed independently of concrete
user modules or network modules. Their formal semantics would take every possible
environment behaviour into account, and would not have to be restricted to the concrete
descriptions of users or networks as in case of Standard Estelle3 specifications.

• Another important application would be the decomposition of /arge systems into a hierar­
chical set of syntactically independent components, which can then be developed and
analysed separately. This would improve the practical development of !arge systems with
Estelle, as it would allow a clean separation between individual components and their
interaction in the global system. Also, the reuse of components would be supported,
because their description could be independent of any concrete environment.

• The formal description of an open system could also serve as a basis to generate an
implementation with the ability to communicate with pre-existing environments. Differ­
ent from the practical approaches mentioned before, the Estelle specification on which
the implementation is based would have a formal .semantics.

In this paper, we introduce a syntactic and semantic extension of Estelle called "Open Estel/e".
lt allows the specification of (topologically) open systems, i.e. systems that have the ability to
interact with any environment through a well-defined external interface, and their incorporation
with different environments. Since the external interface of an open system is given as a sepa­
rate description, a (compatible) environment can be specified just by means of a reference to
this interface description.

In Section 2, we introduce the language elements of Open Estelle. The definition of the Open
Estelle syntax can be found in Appendix A. In Section 3, we introduce a formal semantics for
Open Estelle based on the Standard Estelle semantics. Section 4 addresses implementation is­
sues, including tool support for Open Estelle, and a case study with the "Xpress Transport Pro­
tocol" (XTP). Finally, Section 5 gives a summary and an outlook.

2 The Syntax of Open Estelle

Open Estelle is a compatible extension of Estelle that allows the formal specification of open
systems with a well-defined external interface. These open systems can then be incorporated
into different contexts, such as further Open Estelle specifications. The description of an open

define
open system

EXTERNALINTERFACE
of open system

INTERNAL DESCRIPTION
of open system

~ textual unit

11111 • • · i mported-hy

ENVIRONMENT
incorporates open system

Figure 1: Independent Descriptions for Open System and Environment

3. By Standard Estelle, we refer to the Estelle language defined in [15089], whereas the proposed extension is
called Open Estelle.

2

system consists of the external interface and the internal description, which are textually sepa­
rated4 (see Figure 1) . Both are syntactically independent of any possible environment using the
open system. Furthermore, Open Estelle environments incorporating an open system only refer
to its external interface. This supports the separation of concerns between open systems and
their possible environments.

A basic design decision of Open Estelle concerns the representation of an open system. Stand­
ard Estelle already includes an abstraction to describe encapsulated systems with well-defined
external interfaces and their aggregation into more complex systems: modules. Module instanc­
es5 could in principle supply a suitable representation of open systems in Estelle. A module
header formally describes the external interface of the module without regard to its internal de­
scription. A module body describes the module behaviour. However, in Standard Estelle, a
module can only be defined and used inside a specification. Furthermore, being a fragment of a
specification, it has no formal semantics of its own.

In the following, we will introduce the syntactical extensions of Estelle for the description of
the external interface of open systems (Section 2.1), the internal description of open systems
(Section 2.2), and the incorporation of open systems with different environments (Section 2.3).
These extensions are based on the syntactical concept of modules . A formal definition of the
syntax of Open Estelle can be found in Appendix A.

2.1 Interface Description of Open Systems

The declaration (and thus the external interface) of an open system is given in an INTERFACE­
DEFINITION residing in a separate textual unit6 (see Appendix A. l). An INTERFACE-DEFINl­
TION is a container for the declaration (not definition) of a set of open systems and for all def­
initions that are necessary to describe their type and thus their external interface (i.e. module
headers, channels, types and constants).

INTERFACE binaryService;

TYPE
tOperand = RECORD x 1, x2: REAL; END;
tResult = REAL;

CHANNEL binaryServiceChannel(user, provider)
BY user: request(x : tüperand);
BY provider: respond(y : tResult) ;

MODULE binaryOperatorHeader ACTIVITY;
IP toUser: binaryServiceChannel(provider) CO MM ON QUEUE;
END;

BODY binaryüperator FOR binaryOperatorHeader;
EXTERN AL;

END. { end interface "binaryService" }

{ this declares the open system j
{ "binaryService::binaryOperator" }

Figure 2: Example for an Interface Definition

The INTERFACE-DEFINITION is one of the two new start non-terminals of the Open Estelle syn­
tax. Interfaces are uniquely defined, independently of any importing environment (see
Section 2.3). This is important for a formal description of the exported definitions. An interface
starts with the new keyword "INTER FACE", followed by its name. The declaration of an open

4. The textual separation between external interface and internal description is similar to Modula-2 [Wir85] .
5. A module describes an open system , whereas every instance of a module is an open system .
6. Since the Estelle standard does not state a representation for a specification text , we use the term ··rextual unit' '

for self-contained syntactical objects (e.g. a specification).

3

system inside of an interface is syntactically represented by a MODULE-BODY-DECLARATION,

which is a MODULE-BODY-DEFINITION containing the keyword "EXTERNAL" (see Figure 2).
This declaration refers to a module header that describes the external interface, but it gives no
internal description of the module body.

Analogous to Standard Estelle, the appearance of the keyword "EXTERNAL" inside a MODULE­
BODY-DECLARATION of an INTERFACE-DEFINITiON leads to a syntactically correct, but incom­
plete description. But in contrast to a SPECIFICATION or a BEHAVIOUR-DEFINITION, where only
a textual modification can remove this incompleteness, the attachment 7 of an appropriate BE­
HA VIOUR-DEFINITION (see Section 2.2) leads to a complete description of the declared open
systems.

The reader should note that the interface definition itself describes no behaviour (no transitions)
and no state (no variables or control states). Consequently, it is only a container for a set of def­
initions that may be imported by other Estelle components (see Section 2.3). lt is even possible
for an interface definition to import another interface definition. This allows two (otherwise in­
dependent) interface definitions to share common definitions such as types, constants and chan­
nels (see Figure 5) and therefore allows a clean separation of concerns between open systems
that refer to common definitions.

2.2 Internal Description of Open Systems

The internal description of an open system is given by a MODULE-BODY-DEFINITION inside of
a "BEHAVIOUR-DEFINITION" residing in a separate textual unit (see Appendix A.2). As suggest­
ed by the term "BEHAVIOUR-DEFINITION'', from an abstract point of view the internal descrip­
tion of an open system only determines the behaviour of the open system, because the
syntactical interface is already determined by the interface definition.

The BEHAVIOUR-DEFINITION is the second new start non-terminal of the Open Estelle syntax.
lt begins with the new keyword "BEHAVIOUR", followed by its name and a reference to its in­
terface (see Figure 3). The definitions of its interface are imported implicitly (see Section 2.3).

BEHAVIOUR binaryAdder FOR binaryService;

BODY binaryOperator FOR binaryService::binaryOperatorHeader;
{ this defines the open system "binaryService::binaryOperator„ j

TRANS
WHEN toUser.request(x: tOperand)
BEG IN

OUTPUT toUser.respond(x.x 1 + x.x2);
END; { end of transition-block j

END; { end of module-body "binaryOperator;" j

END. {end of interface "binaryAdder" j

Figure 3: Example for a Behaviour-Definition (see Figure 2)

A BEHAVIOUR-DEFINITION is a container for a set of open system definitions: for every MOD­

ULE-BODY-DECLARATION of its interface, it contains exactly one matching8 MODULE-BODY­
DEFINITION, and vice versa. The module body defining the open system can make use of all
(Open) Estelle constructs for module bodies in its internal description, for example, it can be

7. The attachment of a BEHAVIOUR-DEFINITION to an INTERFACE-DEFINITION is a matter of the interpreting con­
text, since this operation involves different textual units (e.g. UNIX text-tiles).

8. They have the same name and refer to the same header-definition.

4

substructured into child modules and it can even import and use other open systems. This allows
a very flexible internal structuring of open systems.

2.3 Incorporation of Open Systems into Open Estelle Environments

To be able to incorporate9 an open system into an environment specified in Open Estelle, the
interface that declares this open system has tobe imported into this environment. The import of
an interface is described syntactically by an IMPORT-STATEMENT (see Appendix A.3) inside ei­
ther a specification, a module-body, an interface, or a behaviour-definition (we will refer to each
of them as importing environment). An IMPORT-STATEMENT consists of the new keyword "IM­
PORT", followed by a list of identifiers (see Figure 4), which uniquely identify the imported in­
terfaces with the respective names. IO

The import of an interface defines a qualified visibility in the importing environment for all def­
initions of the interface. This includes (apart from constants , types, channels and module head­
ers) also the open systems declared inside the interface. These definitions can be referred to by
means of their qualified name, which consists of their unqualified name (given in their defini­
tion), preceded by the name of their defining interface and the new symbol "::". For example
the identifier "binaryService::binaryOperator" refers to the definition of "binaryOperator" in­
side the interface "binaryService". The reader should note that since the interface identifier
uniquely identifies an interface, and since the unqualified name is unique for this interface, eve­
ry qualified identifier is globally unique.

The open system itself is originated when a new instance of its describing module-definition is
created by an appropriate INIT-statement (see Figure 4). lt is possible to dynamically create
several open systems (i.e. module instances) from the same open system description (i.e. mod­
ule). In general, all mechanisms that Standard Estelle offers for the handling of instances of lo­
cally defined child-modules can also be used with respect to an open system, including
communication with the open system or its termination.

SPECIFICA TION test;

IMPORT binaryService; { imports definition of interface "binaryService"}

MODVAR mv: binaryService::binaryOperatorHeader;

INITIALIZE
BEG IN

{ create open system by instantiating module "binaryService::binaryOperato, ": }
INIT mv WITH binaryService::binaryOperator;

{ the open system can now be handled like a regular module-instance }
END;

{ ... }

END. {end of specification "test"}

Figure 4: Example for the incorporation of an open system (see Figure 2)

Importing an interface is not only useful to get access to the open systems defined inside of it.
Since the import of an interface makes all of its definitions visible to the importing environment,
interfaces are also useful for the global definition of constants, types, channels and headers,

9. By "incorporate", we refer to the embedding of the open system (i.e., the instance) into the instance of an
environment. This should be distinguished from a textual embedding of the description of the open system into
the description of an Open Estelle environment.

10. The_ unique mapping of an interface-identifier to an interface is a matter of the interpreting context, since this
operation involves different textual units (e.g. UNIX text-files).

s

which can be used in different specifications, behaviour definitions , or even interfaces. This as­
pect is particularly important for the separation of concerns of independent interfaces with com­
mon definitions; e.g. in Figure 5 the separated interfaces intC and intS declare open systems with
compatible external interaction points. This is possible because both of them import interface
intA, which contains the appropriate channel-definition. This it allows to specify a system of in­
terfaces that exactly models the type dependencies of the global system.

INTERFACE intA;

C HANNEL eh:
ex pli cit e e
ii/_c_c1_ien_1>_ (se_rv_er_) _ ____. ~

INTERFACE intC;
IMPORT intA;

1 c 1

INTERFACE intS ;
IMPORT intA;

1 s 1
• 1

: ~eh (client)
impli eit • ___ •
import •• •---• ~ / •.

eh (server) 1

'-.•·_ _____ ___. ______ ___. ··~

fo ~

BEHA VIOUR behC FOR intC; SPECIFICA TION spec;
IMPORT intC, intS;
r---, r---,
1 C 1 eh 1

: ~ (client) (server) ~
s•

1
1

L---~ L---~

BEHA VIOUR behS FOR intS ;

Figure 5: Multiple interfaces with common definitions

2.4 Module Attribution

The module attribution rules given in Clauses 5.2. l and 7.3.6.2 of [IS089] are not directly suit­
able for the application in Open Estelle, since they only relate to the textual nesting of modules.
Therefore, we introduce extended module attribution rules (see Appendix A.4), which imply the
same attribution scheme for the dynarnic module instance tree as the original. mies. They allow
to specify both, open systems that contain one or more subsystems 11 (which can be incorporated
into unattributed environments) and open systems that can be part of other subsystems. In par­
ticular, it is possible to specify open systems that can be incorporated into arbitrarily attributed
importing environments.

3 Semantics of Open Estelle

Estelle qualifies as a formal description technique, meaning that it has both a formal syntax and
a formal semantics. The proposed language extension should therefore cover both aspects to
preserve the formality of Estelle. In order to define the meaning of Open Estelle specifications
formally, we have devised a semantics that allows to model interaction between an open system
and an environment. More precisely, the semantics captures all potential behaviour of an open
system in all possible environments; this potential behaviour is reduced when the open system
is incorporated with a particular environment.

In the following, we will describe this semantics in some detail. We will argue why despite the
different nature of Open Estelle it is feasible to define its semantics in terms of computations as

11. With the term "subsystem" we refer to instances of system modules.

6

in the Standard Estelle semantics. This has the advantage that the language extension is fully
compatible with Standard Estelle, and that it will be straightforward to argue why the incorpo­
ration discussed above is complete and sound.

3.1 Formal definition of the Open Estelle semantics

According to the Estelle Standard [IS089], the semantics of a Standard Estelle specification SP
is formally given by the set of its computations. Computations are sequences <sit0,sit 1 , > of
so-called global situations, where sit0 is initial, and for all j>O, sitj is a possible next global sit­
uation of sitj-l with respect to the next-state relation. Roughly speaking, a global situation com­
prises the local states of all module instances (state of input queues , values of local variables,
module structure, connection structure) and sets of transitions selected for firing . A next global
situation results from either firing a previously selected transition, or selecting a set of transi­
tions according to certain rules. Thus, an Estelle specification defines a Transition system (S, Ö),
where Sand ö are related to the set of global situations and the next-state relation, respectively.
Concurrency is modeled by interleaving.

We will now generalize this semantics to capture the meaning of Open Estelle specifications.
In particular, the formal semantics of Open Estelle will reduce to the Estelle semantics in the
special case of a closed system, namely systems without external interaction points and without
exported variables.

To start with, let us consider the definition of the next global situations and computations as gi v-
en in the Estelle standard: ·

Definition 1 (next global situations, computation; Clause 5.3.4, (18089]):

Given a global situation, sit = (gidsp; A 1, ..• ,An), the set of next global situations is described
as follows :

(a) For every i = l , ... ,n: if Ai = 0, then for every AS(gidsp/Si) E AS * (gidsp/Si),

(gidsp; A 1, •.• ,AS(gidsp/Si), ... ,An) is a next global situation of sit.

(b) For every i = l, ... ,n: if Ai :f. 0, then for every t E Ai,

(t(gidsp); A 1, ... ,Ai\{t}, ... ,An) is a next global situation of sit.

NOTE - There are as many next global situations of the situation sit as there are possible choices of next
transition t (and its results) in case (b), and different empty sets Ai in sit, for the case (a). In adclition. in case
(a), all possible choices ofthe set AS resulting from nondeterminism of each component process in the system
rooted at Si must be taken into account.

NOTE-[...]

A sequence of global situations of SP, sito,sit 1 , ••• ,sitj···· is called a computation of SP if and
only if sit0 is initial, and for every j > 0, sitj is one of the next global situations of sitj- l as
described by (a) or (b) above.

For each subsystem represented by a system module, either a new set of fireable transitions is
selected, or an already selected transition is executed. If a transition t of module instance P is
fired, the outputs oft are transmitted to the destination queues as part of the global effects oft,
as defined by transmissionp(gid' sp), where gid' SPE [t]p(gidsp) (see Clause 9.5.4, [IS089]) . If,
for a given output, no destination queue is defined, then the interaction is discarded. Note that
all destination queues are represented in gid' SP• therefore, all global effects oft can be applied
directly . Furthermore, exported variables may be modified as part of the local effects oft.

7

In order to generalize this definition to Open Estelle specifications, we have to incorporate the
interaction of the specified system with its environment in some way. More specifically, we
have to incorporate receptions from, transmissions to, and modifications of local variables by
the environment. Recall that these interactions occur through external interaction points and ex­
ported variables (see Appendix A. l). However, as the environment is not determined, we have
to consider all possible environments, which amounts to taking all possible receptions, trans­
missions, and assignments to exported variables into account 12. We will first deal with recep­
tions from the environment and assignments to exported variables by extending Definition 1.
Then, we will address transmissions to the environment.

All interactions with the environment occur through external interaction points and exported
variables. As these interaction points and the exported variables are typed, the set of interactions
that may be received from the environment by module instance P through an external interaction
point ip (receivep(ip), see Clauses 9.3. land 9.4.3, [IS089]), as weil as the set of values that may
be assigned to an exported variable e 13, are determined. To take all environments into account,
we model all possible receptions and assignments by extending the set of next global situations
as defined below. Furthermore, we consider global situations w.r.t. an arbitrary module instance
P, not just the specification SP.

Definition 2 (next global situations, potential computation; Open Es teile):

Given a global situation, sitp = (gidp; A 1 , ... ,An), of a module instance P, the set ofnext glo­
bal situations is described as follows:

(a) For every i = l , ... ,n: if Ai= 0, then for every AS(gidp/Si) E AS* (gidp/Si):

(gidp; A 1, ••• ,AS(gidp/Si), ... ,An) is a next global situation of sitp.

(b) For every i = l, ... ,n: if Ai i' 0, then for every t E Ai:

(t(gidp); A 1, •.. ,Ai\{ t }, ... ,An) is a next global situation of sitp.

(c) For every gidp' E env_mod+(gidp): (gidp'; A 1, ... ,An) is a next global situation of sitp.

env_mod is defined as follows 14:

(cl) For every ip E EIPp: for every <m,v 1, ... ,vk> E receivep(ip):

receivedp(gidp, <m,v 1, ... ,vk>) E env_mod(gidp).

(c2) For every e E EV-idM, where PE INST(M,B,E), and e is of type T:

for every v E E(T): assignp(gidp, e, v) E env _mod(gidp).

NOTE - sitp = (gidp; A 1, ..• ,An) is the global situation of module instance P, where gidp is defined as usual.
and each Ai is a set of transitions of the component instances rooted at (a) P, if Pis attributed. or (ß) Si . if P
is not attributed, and Si are system modules. This generalizes the definition of global situations to arbitrary
module instances. If P = SP, the definition of sitp is identical to that of sit in the Estelle standard.

NOTE - There are as many next global situations of the situation sitp as there are possible choices of (a)
different empty sets Ai in sitp and possible choices of the set AS resulting from nondeterminism of each com-

12. Note that the effects of a "terminate" or "release" statement referring to the open system have no impact on the
set of computations. In this paper, for reasons of simplicity, we do not consider the effects of "'attach" and
"detach" statements of the environment involving (directly or indirectly) external interaction points of open
systems. Also, for the same reasons, we do not consider the effects of connecting two external interaction
points of the same open system.

13. We assume that the type of e is well-defined, i.e. its declaration does not include type-identifiers associatecl
with the " ... " construct.

14. env_mod+ is the transitive closure of env_mod.

8

ponent process in the system rooted at Si, (b) next transitions t (and their results), (c) inputs from the environ­
ment and assignments to exported variables of P by the environment.

NOTE - For closed systems (i.e. module instances that have no external interaction points and no exported
variables) Clause (c) of the definition above has no effects. Consequently , the "next global situations" relation
given above reduces to the one of Definition 1.

NOTE - EIPp is the set of external interaction points of instance P (Clause 9.4.3, [IS089)). If P = SP, then
EIPp is empty, and no inputs will be received from the environment. EV-idM is the set of expo11ed variables
of Pas declared in its module header M (see Clause 9.4.1 , [IS089)). If P = SP, then no exported variables are
defined. If EIPp and EV-idM are both empty, Definition 2 is equivalent to Definition 1 of the Estelle standard.

NOTE - receivep(ip) is the subset of Interactions (Clause 9.3.1, [IS089)) that the instance P can receive
through interaction point ip (Clause 9.4.3 , [IS089]) . receivedp(gidp) is obtained trom gidp by replacing
s'.ie(ip') by append(<ip',ip,m,v 1, •• „ vk>, s'.ie(ip')), where downattach(ip) = ip', ip' in EIPp·. and s' is the
local state of P' (see Clause 9.5.4, [IS089)). This includes the special case that ip is not attached, i.e. down­
attach(ip) = ip.

NOTE - assignp(gidp,e, v) is a new gid of P where the difference with gidp is expressed by
s.Loc(alloc8 (e)) := v, where s is the local state of P (see Clause 9.5.4, [IS089]).

A sequence of global situations of P, <sit0,sit1 „.„sitj,„.> is called a potential computation
of P if and only if sit0 is initial 15

, and for every j > 0, sitj is one of the next global situations
of sitj-I as described by (a), (b), or (c) above.

Compared to the Standard Estelle semantics, there are two important differences. The first dif­
ference concerns the definition of global situations sitp for arbitrary module instances P, i.e. not
only for the distinguished module instance SP as in Definition l. In order to model the execution
of an open system, we generalize the notion of global situation by combining gidp with sets of
transitions selected for execution.

The second difference concerns the reception of interactions from the environment and the as­
signments to exported variables of module instance P. This is described by the transitive closure
of a function env_mod in (c). Interactions can be received through and only through the external
interaction points of module instance P, as expressed in (c 1). Note that env_mod ranges over all
ip E EIPp and all <m,v 1„.„vk> E receivep(ip). Thus, all possible environments are taken into
account. lf an external interaction point of P is attached, then any reception is appended to the
destination queue at the end of the attach chain. Assignments to exported variables of module
instance P are expressed by (c2). Note that env_mod ranges over all e E EV-idM and all
v E E(T), where e is of type T. Thus, again, all possible environments are taken into account.

Since the behaviour that is described by the definition of the next global situation may in general
only occur when the open system is composed with some environment, we use the term poten­
tial computation of P to denote a sequence of global situations satisfying the aforementioned
condition. The reason is that in our definition, the behaviour of the environments as captured by
(c) does not yet exist. Once the environment is completely determined, the set of potential cmn­
putations is reduced to a set of computations in the sense of [IS089]. This is, for instance, the
case if we consider a closed system. Here, the next global situations are completely described
by (a) and (b), which gives evidence that the semantics of Open Estelle is indeed compatible
with the semantics of Standard Estelle.

Having dealt with receptions from the environment and assignments to exported variables, we
will now address transmissions to the environment. In the Standard Estelle semantics, all out-

15. The initial global situations of an open system take into account all possible actual module parameters and all
possible modifications by the environment according to (c) above, which may take place during the execution
of a transition executing the init-statement of the open system.

9

puts of a transition t of P are collected in the local state component s.out as the result of its local
effects defined by [t]p(s) (see Clause 9.6.6.5, [IS089]). The function transmissionp then defines
the global effects by appending, in the same order, the elements of the sequence s.out to the des­
tination queues (Clause 9.5.4, [IS089]). If for some output at interaction point ip, there is no
destination queue, i.e. linked(ip,gidsp) is false, then that output is discarded (see Clauses 9.5.3
and 9.5.4, [IS089]).

The treatment of transmissions in Open Estelle directly follows the Standard Estelle semantics.
If the destination queue of an output belongs to the open system, the meaning of a transmission
is just the same. However, if the destination queue is outside the open system, i.e. an output is
made at some external interaction point of the root module P, or at some interaction point that
is attached to it, then the output leaves the open system 16. This means that the effects of the out­
put on a possible environment are not visible in the open system, and therefore not represented
in its state. Transmissions to the environment can therefore be modeled by discarding the cor­
responding outputs. As this is already handled by the definitions in [IS089] (see Clauses 9.5.3
an 9.5.4), the definitions of the Standard Estelle semantics can be used 17 .

3.2 Completeness and Soundness of the Open Estelle Semantics

In this section, we provide arguments why we consider the Open Estelle semantics defined in
Section 3.1 to be complete and sound. In Figure 6, open systems Pa and Pb are shown, where
Pb is incorporated into Pa. This means that Pa, being open itself, partially determines the envi­
ronment of Pb. Completeness of the Open Estelle semantics means that the potential computa­
tions of Pa, when "projected onto" Pb, are a subset of the potential computations of Pb. In other
words, the meaning of the open system Pb is reduced when it is incorporated into some envi­
ronment. Soundness means that only potential computations are defined for Pb that are possible
in some environment.

- - -
Pa

D D
Figure 6: Open systems Pa and Pb

The proof of this claim is by construction and induction. First we show how we project potential
computations of Pa onto Pb.

To start with, we define the projection of global situations of Pa onto Pb. Let sitpa = (gidpa;
A 1 , •• • ,An). Let P 1 , •.• ,P n be the module instances associated with.A 1 , •.• ,An, respectively . Then the
projection of silpa on Pb, denoted as 1tpb(sitpa) = (gidpb; A 1 ', ••• ,Am') , is defined as follows:

• gidpb is the subtree of gidpa with root module instance Pb

• if there exists i E { 1, ... ,n} such that Pb is a descendant of Pi or Pb = Pi,

then m = 1 and A 1' = { t E Ai 1 t is transition of Pb}

16. As already noted above, we do not consider the effects of connecting two external interaction points of the
same open system.

17. Tobe precise, the function s sentp. receivedp. and transmiss ionp have tobe applied to gidp„ where P' is the root
module instance of the open system, instead of gidsp (see Clause 9.5.4, [IS089]).

10

• if for every i E { l , ... ,n}, Pb is no descendant of Pi and Pb ::t Pi,

then there exists a maximal (possibly empty) set of subsystems { P 1 ', ... ,Pm'}

c {P1 , ... ,P n} of Pb, and a strict monotonic function f: { l , ... ,m} ~ { I , ... ,n} such that

for every j E { l , ... ,m}: P/= PfU), with A 1 ', ... ,Am' being the associated sets of transitions.

The projection of global situations of Pa onto Pb is extended to potential computations by ap­
plying it to each global situation ofthe computation in which Pb is part of Pa, and by eliminating
all steps without modification of 7t:pb(sitpa), i.e. "stuttering steps".

The projection of potential computations of Pa onto Pb can be understood as the semantics of
the open system Pb when incorporated into the environment Pa. To show why the semantics de­
fined in Section 3.1 is complete, we argue that the projections of potential computations of Pa
onto Pb are potential computations of Pb. The proof is by structural induction, based on Defi­
nition 2 (see Figure 7). For each case (a) through (c), it is straightforward to show that for each
sitpa and next global situation sitpa' according to Definition 2, sitpb' = 7t:pb(sitpa') is a next global
situation of sitpb = 7t:pb(sitpa) according to Definition 2, or sitpb = sitpb' (i.e. a stuttering step).

next global situation . ,

l~--------T~
or

sitpb'
next global situation . ,

sitpb - -: - - - - ~ Sltpb

Figure 7: Proof sketch for completeness of the semantics

To show that the semantics is so und, we argue that for each potential computation <sit0,sit 1„ .. >
of an open system Pb, there exists an environment Pa incorporating Pb and a computation of Pa
whose projection onto Pb is <sit0,sit1 , ... >. The proof is by construction of an environment that
can indeterministically send any possible interaction through the external interaction points of
the open system and assign any possible value to the exported variables of the open system.

4 Implementation Issues

Estelle not only allows the formal specification of systems, but can also serve as a basis for their
automated implementation. Several tools for the automatic implementation of Estelle specifica­
tions are currently available. Consequently, the automatic creation of implementations directly
from specifications is also an important objective of the extension of Estelle, especially since it
is just the openness of systems described with Open Estelle that allows to establish a well-de­
fined relationship with their implementations: open systems formally specified with Open Es­
telle can be implemented with the ability to interact with real-world systems (such as operating
systems, communication networks or applications) through their well-defined external interfoce
and with a well-defined semantics. This opens the possibility for a direct practical incorporation
of formally specified open systems with real-world environments.

4.1 Tool Support

To create a platform for practical experiments, we have developed a tool set for the processing
of Open Estelle sources. The front end of this tool set is a compiler that translates Open Estelle
sources (i.e. interfaces, specifications, and behaviour-definitions) into a binary interrnediate

11

form, which can be processed by the other tools. This front end was developed out of the exist­
ing Estelle compiler front end PET ("Portable Estelle Translator", [SiSt93]}.

Further, we have developed a completely new optirnizing code generator for Estelle and Open
Estelle, which allows to create C++-code for open systems and importing environments inde­
pendently of one another. lt is possible to compile these components separately and to delay the
"fusion" of open systems and their environments to the moment of linking the created machine­
object-files into an executable. The compiled open systems can be used also by hand-crafted
environments and therefore can be used incorporated and communicating with a real-world en­
vironment.

[
BEHAVIOUR XTPFOR PM;

INTERFACE PM;

/ ...__:_~-=-~_: _ _, ~ .-S-PE_C_IF-IC-A-Tl-ON-tes_t. _ ___,

IMPORT PM;

SPECIFICATION test_XTP.

Figure 8: Embedding of an open system into a compatible environment

Another tool for the processing of open systems allows the textual embedding of a set of open
systems into an Open Estelle environment that incorporates them. This method finally leads to
an equivalent closed Standard Estelle specification, which includes the formerly open systems
in form of local module bodies (see Figure 8). This tool allows the application of existing formal
methods for Standard Estelle to systems consisting of a set of Open Estelle descriptions.

4.2 Case Study

As a case study for the practical use of Open Estelle and of the tools presented so far, we have
split an existing, relatively !arge Estelle specification (more than 7500 lines of specification
text) of the Xpress Transport Protocol (XTP, [XTP95], see Figure 9) into a set of open systems
specified in Open Estelle. We have incorporated thc XTP protocol machines (XTP _PM) with
different Open Estelle and real-world environments, and with different client and network im­
plementations without having to re-compile the generated machine object file.

USER_A; USER_B:

XTP_PM ; XTP_PM;

Network

Figure 9: An application structure for XTP

12

The case study has demonstrated the benefits of Open Estelle for the specification of large sys­
tems: one single compilation of the relatively complex protocol machines can serve all imple­
mentations of Estelle or real-world environments that incorporate it. A further structuring of the
XTP protocol machine itself into smaller open systems additionally supported the maintenance
and development of the protocol machine, because it simplified the individual compilation
units, shortened the turn-around times after local modifications of components of the protocol
machine and clarified the type dependences between the components. In particular, it allowed
a clean separation between private definitions of a module and definitions which are exported
to the former child modules.

5 Summary and Outlook

In this paper, we have introduced an extension of Estelle, called "Open Estelle". lt allows the
specification of (topologically) open systems, i.e . systems with the ability to communicate with
any environment through a well-defined external interface. We have defined a fonnal syn tax
and aformal semantics for Open Estelle. The extension is compatible with Estelle both syntac­
tically and semantically, i.e. Estelle is a subset of Open Estelle. In particular, the formal seman­
tics of Open Estelle reduces to the Estelle semantics in the special case of a closed system.
Furthermore, we have developed a set of tools supporting Open Estelle, including a new code
generator that allows to create efficient implementations of open systems, which can be incor­
porated with different Open Estelle and hand-crafted environments. We have demonstrated the
use of Open Estelle and of our tools by means of a case study with the X press Transport Proto­
col.

There are still some aspects of Open Estelle that need further consideration. An important issue
that is directly related to the Estelle semantics is the validation of correctness, based on an im­
plements-relation. We expect that the Open Estelle semantics will give rise to an abstract se­
mantics in terms of input/output-behaviour, which may serve as a basis for a correctness notion.
We plan to investigate this issue in more detail.

Another issue is the automatic generation of efficient implementations of formally specified
open systems and their integration into pre-existing real-world environments. We are currently
extending the specification of the XTP protocol machines in order to be able to communicate
directly even with existing hand-crafted XTP implementations (such as SandiaXTP, [SNL96]),
by means of the binary packet format of the XTP protocol.

Acknowledgements

The case study discussed in Section 4.2 was based on an Estelle specification of XTP 4.0 that
was kindly made available by Stanislaw Budkowski (INT, France) and Octavian Catrina (PU
Bucharest, Romania).

References

[GoBo95] Gotzhein, R. , Bochmann, G.v .: Specialization in Estelle. In : S. T. Vuong, S. T. Chanson (Eds.).
Protocol Specification. Testing, and Verification XIV, Chapman & Hall , 1995, 21-36

[DeBu89] Dembinski , P., Budkowski, S.: Specification Language Estelle, in : M . Diaz et al. (eds.), The Formal
Description Technique, Estelle, North-Holland. 1989, pp. 35-75

[GoRoTh96] Gotzhein, R„ Rößler, F. , Thees, J .: Towards "Open Estelle" , in : 6. Cl!ITC Workshop "Formol
Description Techniquesfor Distributed Systems" , Erlangen-Nürnberg, Germany. May 1996

[IS089] ISOffC97/SC2 l : Estelle - A Formal Description Technique Based 011 an Extended State Transition
Model, ISOffC97/SC21 , IS 9074, 1989

13

[LaFiVe96]

[RiCl89]

[SNL96]

[SiSt93]

[Wir85]

[XTP95]

Lallet, E., Fischer, S., Verdier, J.-F.: A new approach for distributing Estelle specijications, in:
Formal Description Techniques VIII, Chapman & Hall. 1996

Richard, J. L., Claes, T.: A Generator for C-Code for Estelle, in: M. Diaz et al (eds.), The Formal
Description Technique Estelle, North-Holland, 1989, pp. 397-420

Sandia National Laboratories: SandiaXTP Reference Manual, Rev. 1.4, Sandia National
Laboratories, USA, 1996

Sijelmassi, R., Strausser, B.: The PET and DINGO tools for deriving distributed implementations
from Estelle, Computer Networks and ISDN Systems 25, 1993, pp. 841-851

Wirth, N. : Programming in Modula-2, Springer, Stuttgart, 1985

XTP Forum, Xpress Transport Protocol Specification, XTP Rev. 4.0, XTP Forum , Santa Barbara,
USA, 1995

14

Appendix A: Language Elements of Open Estelle

This appendix defines the language elements of Open Estelle based on and extending the Stand­
ard Estelle language definition given in [IS089]. Since Open Estelle is a proper extension of
Standard Estelle, only new productions and extensions of existing productions are given. In the
latter case, the productions and constraints given in this appendix take precedence over the
Standard Estelle productions.

Besides the start symbol SPECIFICATION of the Standard Estelle grammar, the Open Estelle
grammar has two additional start symbols: INTERFACE-DEFINITION (Appendix A. l) and BE­

HAVIOUR-DEFINITION (Appendix A.2). Accordingly there are three distinct 18 types of textual
units 19 containing a terminal string produced from one of the three start symbols: Specification­
textual-units (in case of SPECIFICATION), interface-textual-units (in case of INTERFACE-DEFl­
NITION) and behaviour-textual-units (in case of BEHAVIOUR-DEFINITION).

In Clauses 7.1.2.1, 7.1.2.2, 7.1.2.9, and 7.1.2.10 of [IS089], the occurrences of " SPECIFICA­
TION" shall be replaced by "SPECIFICATION or INTERFACE-DEFINITION or BEHAVIOUR-DEFl­
NITION". In Clauses 7.1.2.1, 7.1.2.3, and 7.1.2.9 of [IS089], the occurrences of " BODY­
DEFINITION" shall be replaced by "BODY-DEFINITION or INTERFACE-DECLARATION-PART or
BEHAVIOUR-DECLARATION-PART". In Clause 7.1 .2 of [IS089] all occurrences of " IDENTIFIER"
shall be replaced by "IDENTIFIER or QUALIFIED-IDENTIFIER''.

NOTE - All identifiers contained by a SPECIFICATION, INTERFACE-DEFINITION or BEHAVIOUR-DEFINITION are
(1) required constants, types, procedures, or functions of Standard Estelle (see ,Clause 7.1.2.10 of [IS089]) or
(2) have their defining-point inside the containing text (see Clause 7.1.2.3 of [IS089]) or
(3) have their defining-point inside an imported interface (see Appendix A.3) .

A.1 Interface Definition

A.1.1 Syntax

INTERFACE-DEFINITION = "INTERFACE" IDENTIFIER ";"
[DEFAUL T-OPTIONS]
[IMPORT-OPTIONS]
INTERFACE-DECLARATION-PART
"END" ".".

INTERFACE-DECLARATION-PART = { INTERFACE-DECLARATIONS} .

INTERFACE-DECLARATIONS =

MODULE-BODY-DECLARATION =

A.1.2 Constraints

CONSTANT-DEFINITION-PART
1 TYPE-DEFINITION-PART
1 CHANNEL-DEFINITION
1 MODULE-HEADER-DEFINITION
1 MODULE-BODY-DECLARATION .

"BODY" IDENTIFIER "FOR" HEADER-IDENTIFIER ";"
"EXTERNAL" ";" .

With the exception of module attribution rules20 (Clause 7 .3.6.2 of [IS089]), all constraints and
interpretation rules for SPECIFICATION (Clause 7.2 of [IS089]) shall also be valid for INTER­
FACE-DEFINITION, the ones for DECLARATIONS (Clause 7.3 of [IS089]) shall also be valid for

18. The first keyword of a textual unit ("SPECIFICATION" , " INTERFACE" or " BEHAVIOUR") uniquely identifies its

type .
19. Since the Estelle standard does not state a representation for a specitication text, we use the term "textua/ unir''

for self-contained syntactical objects (e.g. a specification).
20. Module attribution is handled in Appendix A.4.

15

INTERFACE-DECLARATIONS, and the ones for MODULE-BODY-DEFINITION (Clause 7.3.7 of
[IS089]) shall also be valid for MODULE-BODY-DECLARATION. Applying scope rules of
Clause 7, Clause 8, and Annex C of [IS089] the INTERFACE-DEFINITION shall be handled like
a SPECIFICATION.

NOTE- Syntactically a MODULE-BODY-DECLARATION is a specialized MODULE-BODY-DEFINITION.

The IDENTIFIER of the INTER FACE-DEFINITION defines the interface name. It is a matter of the
interpreting context to uniquely map any interface name (INTERFACE-IDENTIFIER) to a syntac­
tically valid INTERFACE-DEFINITION that has the given name, or to the unique token "l.". The
interface name shall have no further significance within the INTERFACE-DEFINITION.

NOTE-A UNIX environment could use a file-naming convention and a search-path to implement this mapping .

A.1.3 Informal Semantics

An INTERFACE-DEFINITION is a container for the declaration of a set of open systems together
with all necessary underlying definitions21 as described above. It is one of the two additional
start symbols of the Open Estelle grammar and does not appear on the right-hand side of any
production. An INTERFACE-DEFINITION is intended to be represented inside a separate textual
unit (interface-textual-unit).

NOTE - An INTERFACE-DEFINITION can import other INTERFACE-DEFINITIONs and apply their definitions.

Every MODULE-BODY-DECLARATION contained in an INTERFACE-DEFINITION declares an
open system. In doing so, it defines the external interface of the open system by referring to a
MODULE-HEADER-DEFINITION, which describes a set of typed interaction-points and exported
variables.

The definition of an open system is given in a BEHAVIOUR-DEFINITION inside a separate textual
unit (see Appendix A.2). The pair of a BEHAVIOUR-DEFINITION and its referred INTERFACE­

DEFINITION completely defines the declared set of open systems.

NOTE - An INTERFACE-DEFINITION may be referred by any number of BEHAVIOUR-DEFINITIONs.

NOTE- Analogous to Standard Estelle the appearance of the keyword " EXTERNAL" inside a MODULE-BODY-DEC­

LARATION of an INTERFACE-DEFINITION leads to an syntactically correct, but incomplete description (see clauses
7.3.7.3 and 9 of [IS089]). But in Opposition to a SPECIFICATION or a BEHAVIOUR-DEFINITION, where only a textual

modification can abolish this incompleteness, the attachment of an appropriate BEHAVIOUR-DEFINITION (see Ap­

pendix A.2) leads to a complete description of the declared open systems.

NOTE - The definitions of constants, types, channels, and module-headers are independent of any BEH.A.VIOUR­

DEFINITION that refers the INTERFACE-DEFINITION. Therefore an INTERFACE-DEFINITION without any MODULE­

BODY-DECLARATIONs is a complete description by itself.

A.2 Behaviour Definition

A.2.1 Syntax

BEHAVIOUR-DEFINITION = "BEHAVIOUR" IDENTIFIER "FOR" INTERFACE-IDENTIFIER ";"
[DEFAUL T-OPTIONS]
[TIME-OPTIONS]
[IMPORT-OPTIONS]
BEHAVIOUR-DECLARATION-PART
"END"".".

BEHAVIOUR-DECLARATION-PART = { BEHAVIOUR-DECLARATIONS} .

BEHAVIOUR-DECLARATIONS =

INTERFACE-IDENTIFIER =
MODULE-BODY-DEFINITION .

IDENTIFIER .

21. An interface can gain access to the definitions and declarations given in other interfaces by importing these

interfaces (see Appendix A.3).

16

A.2.2 Constraints

With the exception of module attribution rules22 (Clause 7.3.6.2 of [IS089]), all constraints and
interpretation rules for SPECIFICATION (Clause 7.2 of [IS089]) shall also be valid for BEHAV­

IOUR-DEFINITION, and the ones for DECLARATIONS (Clause 7.3 of [IS089]) shall also be valid
for BEHAVIOUR-DECLARATIONS. Applying scope rules of Clause 7, Clause 8, and Annex C of
[IS089], the BEHAVIOUR-DEFINITION shall be handled like a SPECIFICATION.

The IDENTIFIER of the BEHAVIOUR-DEFINITION shall be the name of the BEHAVIOUR-DEFINl­
TION, which shall have no significance within the BEHAVIOUR-DEFlNITION.

The INTERFACE-IDENTIFIER of the BEHAVIOUR-DEFINITION shall be mapped by the interpret­
ing context to a valid INTERFACE-DEFINITION with this name (see also Appendix A.1.2). This
referred INTERFACE-DEFINITION is implicitly imported as if its name appeared in the IMPORT­
OPTIONS (see Section A.3).

NOTE - The name of the BEHAVIOUR-DEFINITION and the name of the INTERFACE-DEFINITION it refers to may be
identical. This is especially useful if there is only one BEHAVIOUR-DEFINITION for an INTERFACE-DEFINITION.

A BEHAVIOUR-DEFINITION has to directly contain exactly one matching MODULE-BODY-DEFl­

NITION for each MODULE-BODY-DECLARATION within the referred INTERFACE-DEFINITION,
1

i.e. they have the same name and refer to the same MODULE-HEADER-DEFINITION.

NOTE - Fora given BEHAVIOUR-DEFINITION this leads to a 1: 1 relationship between the open system dejinitions
in this BEHAVIOUR-DEFINITION and the open system declarations in its referred INTERFACE-DEFINITION.

A.2.3 Informal Semantics

A BEHAVIOUR-DEFINITION is a container for the definition of a set of open systems. lt is one of
the two additional start symbols of the Open Estelle grammar and does not appear on the right­
hand side of any production. A BEHAVIOUR-DEFINITION is intended to be represented inside a
separate textual unit (behaviour-textual-unit).

A BEHAVIOUR-DEFINITION refers to an INTERFACE-DEFINITION, which declares a set of open
systems. For each of these open system declarations, the BEHAVIOUR-DEFINITION contains ex­
actly one matching MODULE-BODY-DEFINITION, which defines the behaviour and internal struc­
ture of the previously declared open system.

NOTE - MODULE-BODY-DEFINITIONS inside a BEHAVIOUR-DEFINITION may contain the keyword " EXTERNAL".

Analogous to Standard Estelle such a BEHAVIOUR-DEFINITION is syntactically correct but incomplere (see clauses
7.3 .7.3 and 9 of [IS089]) and therefore has no formal semantics.

Declaration and definition of the open system have the same name and refer to the same MOD­

ULE-HEADER-DEFINITION. Consequently the open system definition has the same external in­
terface as the matching open system declaration. A MODULE-BODY-DEFINITION containing a
BODY-DEFINITION supplements a behaviour to the open system, which formerly was only de­
scribed in terms of its external syntactical interface.

lt is possible to define different open system definitions for the same open system declaration
by defining several BEHAVIOUR-DEFINITIONS (in separate textual units), each of them referring
to the same INTERFACE-DEFINITION (which declares the open system). Since an importing en­
vironment (see Appendix A.3) only imports an INTERFACE-DEFINITION, the attachment of a
matching BEHAVIOUR-DEFINITION to the importing environment is a matter of the interpreting
context.

22. Module attribution is handled in Appendix A.4.

17

NOTE - This 1 :n relationship between the declaration of an open system and its several (behaviour) definitions

allows some kind of polymorphism at the application of open systems.

NOTE-The formal representation of a completed system of open system definitions and importing environments
could be a set of Open Estelle textual units that is (1) closed in respect to imported of INTERFACE-DEFINITIONS and
(2) contains for every (incomplete) INTERFACE-DEFINITIONS exactly one matching BEHAVIOUR-DEFINITION.

NOTE - An Estelle Compiler under UNIX could use a script-file or command-line parameters to denote the BE­
HAVIOUR-DEFINITIONS to be linked. By default the BEHAVIOUR-DEFINITION with the same name as the imported

INTERFACE-DEFINITION could be uniquely located23 and linked (see Appendices A.1.2 and A.2.2).

A.3 Import of Interfaces

A.3.1 Syntax

IMPORT-OPTIONS=
BODY-DEFINITION =

"IMPORT" !NTERFACE-IDENTIFIER { "," INTERFACE-IDENTIFIER} ";".
[IMPORT-OPTIONS]
DECLARATION-PART
INITIALIZATION-PART
TRANSITION-DECLARATION-PART .

CONSTANT-IDENTIFIER = IDENTIFIER 1 QUALIFIED-IDENTIFIER.

TYPE-IDENTIFIER = IDENTIFIER 1 QUALIFIED-IDENTIFIER .
CHANNEL-IDENTIFIER = IDENTIFIER 1 QUALIFIED-IDENTIFIER .

HEADER-!DENTIFIER = IDENTIFIER 1 QUALIFIED-IDENTIFIER .
BODY-IDENTIFIER = IDENTIFIER 1 QUALIFIED-IDENTIFIER.
QUALIFIED-IDENTIFIER = INTERFACE-IDENTIFIER "::" IDENTIFIER.

INTEAFACE-IDENTIFIER = IDENTIFIER .

A.3.2 Constraints

Any INTERFACE-IDENTIFIER of the IMPORT-OPTIONS shall be mapped by the interpreting con­
text to a valid INTERFACE-DEFINITION with this name (see also Appendix A.1.2). All of these

INTERFACE-DEFINITIONs are imported into the closest containing SPECIFICATION, MODULE­
BODY-DEFINITION, INTERFACE-DEF!NITION or BEHAVIOUR-DEFINITION. (We will refer to
these as the "importing environments").

The import of an INTERFACE-DEFINITION defines a qualified visibility in the importing environ­

ment for all IDENTIFIERs that have a defining-point whos~ region is the imported INTERFACE­
DEFINITION.

To define a qualijted visibility for an IDENTIFIER means that applying the scope rules of Clause
7, Clause 8, and Annex C of [1S089] the QUALIFIED-IDENTIFIER for this IDENTIF!ER is handled
like an identifier that has a defining-point whose region is the importing environment. Applying
compatibility rules (e.g. type- or assignment-compatibility), a reference to an imported QUALl­
FIED-IDENTIFIER refers to its native definition (inside a INTERFACE-DEFINITION).

NOTE - The import of items from INTERFACE-DEFINITIONs into importing environments defines the imports-re­
/ation over the set of valid Open Este!le textual units.

NOTE - The imports-relation is not transitive: If INTERFACE-DEFINITION t 1 is the native defining point of IDEN­
TIFIER n, INTERFACE-DEFINITION 12 imports INTERFACE-DEFINITION 11, and an different importing environment E

imports 12 but not 11, then n is qualified visible in /2, but not in E.

NOTE - A necessary condition for the syntactical correctness of an importing environment is the syntactical cor­
rectness of all imported INTERFACE-DEFINITIONs. The foundation of this requirement forbids any direct or indirect
recursion of imports between INTERFACE-DEFINITIONs, i .e. the transitive closure of the imports-relation slia!I be
irretlexive.

23 . A UNIX environment could use a file-naming convention and a search-path to implement this mapping.

18

OUALIFIED-IDENTIFIERs are only valid for applied occurrences of imported identifiers (see
Clause 7.1.2.8 of [IS089]). For an IDENTIFIER that has a defining-point whose region is an IN­
TERFACE-DEFINITION, the following shall be valid: (1) the INTERFACE-IDENTIFIER of the
OUALIFIED-IDENTIFIER shall be the name of the INTERFACE-DEFINITION and (2) the IDENTIFl­
ER of the QUALIFIED-IDENTIFIER shall be the native IDENTIFIER.

NOTE- The names of SPECIFICATIONs, INTERFACE-DEFINITIONs and BEHAVIOUR-DEFINITIONs have no defining­
point in the sense of clause 7, clause 8, and annex C of [IS089].

NOTE - A QUALIFIED-IDENTIFIER globally identifies at most one unique item, because every INTERFACE-IDENTl­
FIER is uniquely mapped to at most one valid INTERFACE-DEFINITION (see Appendix A . 1.2) and every IDENTIFIER

that has a native defining-point whose region is the INTERFACE-DEFINITION, identifies a unique item inside the IN­
TERFACE-DEFINITION (see Clause 7.1.2 of [IS089]).

A.3.3 Informal Semantics

The import of an INTERFACE-DEFINITION gains the importing environment access to its defini­
tions and declarations. This includes the MODULE-BODY-DECLARATIONs contained in the IN­
TERFACE-DEFINITION, each of them declaring an open system., These can be handled like
normal incompletely defined MODULE-BODY-DEFINITIONs in Standard Estelle, i.e. several in­
stances of them can be created with INIT-STATEMENTS and can be further handled like usual
module instances.

In contrast to Standard Estelle, an importing environment incorporating an imported open sys­
tem declaration (which syntactically is an incompletely defined MODULE-BODY-DEFINITION)
can be completed without any textual modifications, if for every imported INTERFACE-DEFINl­
TION an appropriate BEHAVIOUR-DEFINITION is attached. In this case the instantiation of the
open system (declared in an INTERFACE-DEFINITION) leads to the instantiation of the MODULE­
BODY-DEFINITION given inside the appropriate BEHAVIOUR-DEFINITION.

NOTE - An open system definitionformally describes an open system. The open system itself is an i11sta11 ce of
this description (see also Clause 7 .2.4 of [IS089]). Consequently an importing environment may create several
open systems of an open system definition by creating several module instances.

NOTE- lt is possible to import the same INTERFACE-DEFINITION into several BODY-DEFINITIONS of an importing
environment simultaneously. Consequently several instances of the same open system can be part of the module
instance tree of an specification instance at independent positions .

A.4 Module Attribution Rules

The following module attribution and nesting rules shall replace the rules given in Clauses 5.2. l
and 7.3.6.2 of [IS089]:

1. Each active module shall be attributed.
2. A module24 that is not attributed or attributed "SYSTEMACTIVITY" or "SYSTEMPROCESS"

shall be a SPECIFICATION or be directly contained in an INTERFACE-DEFINITION, a BEHAV­
IOUR-DEFINITION or a not attributed module.

3. A module that is attributed "ACTIVITY" shall be directly contained inside an INTERFACE­
DEFINITION, a BEHAVIOUR-DEFINITION or an attributed module.

4. A module that is attributed "PROCESS" shall be directly contained inside an INTERFACE­
DEFINITION, a BEHAVIOUR-DEFINITION or a module that is attributed "PROCESS" or "SYS­

TEMPROCESS".
5. Within an importing environment that is a not attributed module, any imported MODULE­

BODY-DECLARATION that is attributed "PROCESS" or "ACTIVITY" is handled like it was

24. With the term " module" we refer to a SPECIFICATION or a MODULE-BODY-DEFINITION.

19

attributed "SYSTEMPROCESS" (in case of "PROCESS") or "SYSTEMACTIVITY" (in case of
"ACTIVITY").

6. If the BODY~IDENTIFIER of an INIT-STATEMENT denotes an imported MODULE-BODY-DEC­
LARATION, this MODULE-BODY-DECLARATION has to be attributed in such a manner that
the module closest containing the INIT-STATEMENT could contain a child module with this
attribution (according to the preceding attribution rules).

NOTE - All rules can be validated statically.

NOTE-This rules relax the restrictions to module attribution given in Clauses 5.2.1 and 7.3.6.2 of [1S089]: They
do not limit the possible attributions of MODULE-HEADER-DEFINITIONS but directly limit the possible attributions
of nested modules and the possible instantiation of imported modules. The resulting restrictions to the attribution
of the static module nesting (1-4) are identical to the ones in [IS089].

NOTE - The module attribution rules (1-6) lead to the same restrictions to the attribution of the dynamic 11wdu/e­
instance tree like the rules given in Clauses 5.2. l and 7.3.6.2 of [IS089] .

NOTE - There are no restrictions to the attribution of MODULE-BODY-DECLARATIONs or MODULE-BODY-DEFINl­
TIONs that are directly contained in an INTERFACE-DEFINITION or a BEHAVIOUR-DEFINITION. Moreover there are no
restrictions to the attribution of MODULE-HEADER-DEFINITIONS or MODULE-BODY-DECLARATIONs imported into an
arbitrarily attributed module.

NOTE - Only the attribution of those imported MODULE-BODY-DECLARATIONs that are refered by an INIT-STATE­
MENT in the importing environment are restricted by module attribution rules. This allows the definition of inter­
face-definitions that contain arbitrarily heterogeneous attributed MODULE-BODY-DECLARATIONs, which can be
imported into any importing environment. The rules only restrict which of the imported MODULE-BODY-DECLARA­
TIONs can be instantiated.

NOTE-Because of (5), an open system that is attributed "ACTIVITY" can be imported and applicated (i .e. instan­
tiated) by any (arbitrarily attributed) module.

20

