
.-..
I ~ TECHNISCHE UNIVERSITÄT

• KAISERSLAUTERN

1 NTERN ER BERICHT

C. Webel, 1. Fliege

SOL Design Patterns and Components -

Watchdog and Heartbeat

Technical Report 335/04

FACHBEREICH
INFORMATIK

SDL Design Patterns and Components- Watchdog and Heartbeat

C. Webel1, 1. Fliege2

1Computer Science Department, University ofKaiserslautern, Kaiserslautern, Germany
webel@informatik.uni-kl.de

2Computer Science Department, University ofKaiserslautern, Kaiserslautern, Germany
fliege@informatik.uni-kl.de

Technical Report 335/04

Computer Science Department
University ofKaiserslautem

Postfach 3049
67653 Kaiserslautern

Germany

SDL Design Patterns and Components
Watchdog and Heartbeat

Christian Webei, Ingmar Fliege

Computer Science Department, University of Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

{webe!, fliege }@informatik.uni-kl.de

Abstract. We present a methodology to augment system safety step-by-step and illustrate the approach
by the definition of reusable solutions for the detection of fail-silent nodes - a watchdog and a heartbeat.
These solutions can be added to real-time system designs, to protect against certain types of system
failures. We use SDL as a system design language for the development of distributed systems, including
real-time systems.

1 Introduction

Safety-critical systems are required to exhibit extremely low rates of critical failures . A variety
of reliability measures such as hardware redundancy, time redundancy, software diversity, or re­
covery can be combined. Also, the functionality of a system may be reduced as a final conse­
quence of a failure by guiding the system to a fail-operational (e.g., aircraft) or fail-safe (e.g.,
train) state. We define SDL design patterns and micro protocols for the detection of fail-silent
nodes and to move the controlled system into afail-safe orfail-operational state. Therefore new
functionality must be added to realize those new requirements.
We have identified two different solutions. The first solution introduces the new functionality by
refining the given components using existing design patterns WATCHDOG and HEARTBEAT, the
second by adding available micro protocols to the system.
Both approaches support reusability and thus augment both design quality and productivity. One
important difference is the architectural impact. SDL micro protocols are self-contained compon­
ents that extend a system on the architectural level, without modifying the behaviour of context
components. SDL design patterns can be applied on architectural level, too, but may also modify
the behaviour of existing components, which requires detailed engineering knowledge. When ap­
plying patterns, the developer may also adapt functionalities and optimize certain system aspects.
In this report, we will introduce SDL design solutions to augment reliablity found in safety-cri­
tical systems in a systematical way, with the purpose ofreusing them in the incremental develop­
ment of safety-critical systems. We define two SDL design patterns and two micro protocols for

the detection of fail-silent nodes.

2 SDL design patterns for reliable systems

2.1. SDL design patterns

Design pattems [4] are a well-known approach for the reuse of design decisions. In [1], another
specialization of the design pattem concept for the development of distributed systems and
communication protocols, called SDL design patterns, has been introduced. SDL design pattems
combine the traditional advantages of design pattems - reduced development effort, quality
improvements, and orthogonal documentation - with the precision of a formal design language
for pattem definition and pattem application.

The SDL design pattem approach [6,8] consists of a pattem-based design process, a notation for
the description of generic SDL fragments called PA-SDL (fattem Annotated SDL), a template
and rules for the definition of SDL design pattems, and an SDL design pattern pool. The
approach has been applied successfully to the engineering and reengineering of several
distributed applications and communication protocols, including the SILICON case study [8], the
Internet Stream Protocol ST2+ [13], and a quality-of-service management and application
functionality for CAN (Controller Area Network) [5]. Applications in industry, e.g., in UMTS
Radio Network Controller call processing development, are in progress [10].

An SDL design pattern [4,6] is a reusable software artifact that represents a generic solution for
a recurring design problem with SDL [12] as design language. Over a period of more than 25
years, SDL (System Design Language) has matured from a simple graphical notation for
describing a set of asynchronously communicating finite state machines to a sophisticated
specification technique with graphical syntax, data type constructs, structuring mechanisms,
object-oriented features, support for reuse, companion notations, tool environments, and a formal
semantics. These language features and the availability of excellent commercial tool
environments are the primary reasons why SDL is one of the few FDTs that are widely used in
industry.

When SDL pattems are applied, they are selected from a pattem pool, adapted and composed into
an embedding context. The pattem pool can be seen as a repository of experience from previous
projects that has been analyzed and packaged. The SDL pattems we have identified so far can be
classified into five categories:

• Architecture patterns capture generic architectures and their refinements.

Example: CLIENTSERVER [10]. This pattem captures a client/server architecture of a
distributed system.

• Interaction patterns capture the interaction among peers, e.g., a set of application agents or
serv1ce users.

Example: SYNCHRONOUSINQUIRY [9]. This pattem introduces a confirmed interaction
between two peers. After a trigger from the embedding context, an agent sends an inquiry
and is blocked until receiving a response from the second agent.

• Contra/ patterns deal with the detection and handling of errors that may result from loss,
delay, or corruption of messages, or from agent failures.

Example: LossCONTROL [9]. This pattem provides a generic solution for the detection and
handling of message loss in the case of confirmed interactions, such as synchronous

2

inquiries. If a response does not arrive before the expiry of a timer, the message is repeated
(Positive Acknowledgement with Retransmission).

• Management patterns deal with local management issues, such as buffer creation or message
addressing1.

Example: BUFFERMANAGEMENT [11]. When a signal is passed between two local
processes, the signal parameters are stored into a buffer, and a buffer reference is sent. This
technique has an impact on implementation efficiency, it reduces memory consumption
and copying overhead. The pattem addresses the correct buff er management such that
memory leaks, for instance, are avoided.

• Interfacing patterns replace the interaction between peers by interaction through a basic
service provider. This may include segmentation and reassembly, lower layer connection
management, and routing.

<NAME>
Each pattem is identified by a pattem name, which serves as a handle to describe a design problem, its
solution and its consequences.

Version: The version of the pattem.

Intent: Provides a short informal description of the design prob lern and its solution.

Motivation: Example for the pattems usage without relying on the pattems definition.

Structure: Graphical representation of the involved (design) components and their relations (before
and after applying the pattem).

Message Scenario: Typical behaviour related to this pattem. Complements the structural aspects.

SDL Fragment: Syntactical part of the design solution in PA-SDL (Pattern Annotated SDL). This part
is adapted and composed when the pattem is applied. lt defined the context, in which the patter nis
applicable, the permitted adaptions, and the embedding into the context specification.

Syntactical Embedding Rules: The S.E.R. constrain the application of the pattem such that certain
desirable properties are added or preserved.

Example Application: Illustration ofthe pattems application.

Semantic Properties: Results from the correct application ofthe pattem.

Refinement: Remarks for further redefining an applied pattem in accordance with the pattems
instance.

Cooperative Usage: Usage together with other pattems.

Known Uses: Documentation ofthe use ofthe pattem.

Checklist: Used during a design review to prevent common errors. This list may be extended based on
problems occuring during usage of the pattem.

Figure 1: SDL Design Pattern Template

1. lt can be argued that these management pattems are rather low-level, as compared to the other examples. How­
ever, they have been discovered in an industrial cooperation, and capture realistic design decisions that lead to
the generation ofmore efficient code. Furthermore, application ofthese pattems signficantly reduces the number
of design errors [11].

3

Example: CODEX [2]. This pattem provides a generic solution for encoding service data
units (SDUs) and interface control infonnation into protocol data units, the exchange of
PDUs among specific protocol entities, and the decoding and forwarding of SDUs.

The definition of SDL design pattems supports their selection during the protocol design. As the
result of the object-oriented analysis of requirements, an analysis model consisting of a UML
object diagram and MSC message scenarios are built. Comparing the structure and the message
scenarios of SDL design pattems against this analysis model strongly supports the selection of
suitable pattems [9]. As the number of pattems in a typical pattem pool (see also [4]) is relatively
small (10-30 pattems2) , and with additional infonnation contained in the pattem pool, for
instance, on cooperative usage, this should be sufficient for a proper selection. The complete
template for a pattem' s description is shown in Figure 1.

2.2. The design pattern Watchdog

The Watchdog pattem realizes the safety functionality called watchdog and belongs to the cate­
gory of Interaction patterns. lt describes a behaviour, that extends a given system.

The MSC in Figure 2 shows an ex­
ample where the described design
problem arises, which is solved by
the suggested solution:

In an automatic safety device on
trains (dead man's control), an oper­
ator has to press a button periodically
within a prior well defined time in­
terval. When the operator desists
from pressing the button, the auto­
matic safety device assumes the op­
erator is dead and stops the train,
which leads the system to a fail-safe
state in order to prevent a catastro­
phe, e.g., a crash at an unmanned
crossmg.
Figure 3 shows the graphical repre­
sentation of the structural aspects of
the pattem' s solution. Note that
Watchdog either refines a compo­
nent from the context or is added as
a new component to the structure:

MSC AutomaticSafetyDevice

operator present

buttonPr~ed

alive

buttonPressed tim er

alive

operator not present timer

c.g.
- emergency cutout

emergency _ brake

Figure 2: MSC automatic safety device

• Trigger is a component of the context, which provides an alive signal periodically.

• Controller is a component where watchdog functionality is tobe added. The WATCHDOG
pattem can either refine a component of the system or augment the system with a new
component.

2. These figures result from practical experience. They differ substantially from the size oftypical component re­
positories with 1 OOs of elements. The relatively small number can be explained by the generic nature of patterns.
Also, as the definition of "good" patterns is a substantial investment, only those patterns that are frequently ap­
plied should be included in the pattern pool.

4

r

L

• Controlled System is the part of the system which is moved into a safe state, when life­
sign fails to arrive.

0 .. 1
r - - - - - „

l> Controller
L _J

A

- - - „ r--------,

Trigger triggering Watchdog controlling Contra lledSystem
- - - _J L _______ _J

Figure 3: Structure of the design solution - W ATCHDOG

The SDL-Description ofthe WATCHDOG pattern is shown in Figure 4. lt describes the syntactical
part ofthe suggested design solution, which is adapted and composed when the pattern is applied.
The extended finite state machine Watchdog that optionally refines Controller describes the
watchdog functionality. Tue timer watchdogT is set for a duration of hbiW when triggered by a
certain input from the context and restarted after a trigger (Figure 4 left). The trigger showing
that the system is still alive can be one or more inputs or continuous signals. Tue duration hbiW
is the timeout interval after which the system changes to afail-safe/fail-operational state. This is
done by sending one or more control signals to the controlled system (Figure 4 centre). Disabling
the watchdog is also possible (Figure 4 right).

r-------------------------------„
EFSM Watchdog [p-specializes Controller]

+

I>
A

r

*
\....

r ~ ... >-.,...
heartbeat < watchdogT

+

Timer watchdoqT;
DCL hbiWDuration := .„ ; /*heartbeat interval)*/

*
I>
c

I - - '

state
\.... - - ..J

r ~ ... >-.,...
resetTrigger <

L -

~ failSafeTrigger_n
reset (wa(ChdogD set (NOW+hbiW, watchdog

- - - \

1 nextState }
\... _ - -

B

- \

(nextState

\.... - - -

- - - \

1 nextState }
'- - - -

enable or set watchdog again 1 timeout optional : disable watchdog

L-------------------------------

Figure 4: SDL design pattern WATCHDOG: SDL Fragment

2.3. The design pattern Heartbeat

The watchdog functionality assumes a periodic trigger in order to prevent the watchdog from
sending control signals. If the system does not provide a periodic communication with an ade­
quate interval, the Heartbeat pattern can be applied. This augments the system behaviour with
the heartbeat that is periodically sent.

5

The following figure shows the graphical representation of the structural aspects ofthe pattems
solution. Note that Heartbeat either refines a component from the context or is added as a new
component to the structure:

• Controller is refined by Heartbeat and describes the system that has tobe observed.

• Watchdog is a component realizing watchdog functionality as described in Section 2.2.

0 .. 1
r-----,

1> Controller
L - - ..J

A

Heartbeat <111111 observing
r----,

Watchdog
L ____ ..J

Figure 5: Structure of the design solution - HEARTBEAT

Figure 6 shows the SDL-description ofthe HEARTBEAT pattem. The EFSM Heartbeat describes
the heartbeat functionality. After the initialization or an input signal (Figure 6, centre), the timer
heartbeatT is set to the duration of hbiA and after the timeout one or more heartbeat _ n signal is
generated and propagated. Therefore Controller is refined by adding transitions to start and stop
the heartbeat (optionally) and one to handle the heartbeatT by sending the heartbeat_n. The
heartbeat _ n has to be consumed by a corresponding component which realizes watchdog func­
tionality. This signal can also be an existing signal in the system that can be used for a heartbeat.

r-------------------------------,
EFSM Heartbeat [p-specializes Controller]

Timer hea@eatT;

' '
*

'- -'

h!iJ~.rf.Q.~g_tT

+

\i h~g_rtb~at n

A

set (NOW+hbiA, heg_rtfJeatD

- - - '
1)
\... - - -

generate heartbeat and set timer again

DCL hbiA Duration := .„ ; /*heartbeat interval*

*

I>
B

' '
state

'- -'

r-< ... ~- ...
enableHb <

L_

set (NOW+hbiA,
hegrtl2eam

- - - '
(nextState j
\... - - -

1 optional: enable heartbeat

*

I>
c

' '
state

'- -'

r-< ... ~- ...
disableHb <

L_

reset (heartbeatD

- - - '
(nextState j
\... - - -

optional: disable heartbeat

L-------------------------------

Figure 6: SDL design pattem HEARTBEAT

6

3 Micro Protocols f or reliable systems

3.1. SDL micro protocols

In [7] , the structuring unit micro protocol, i.e. a communication protocol with a single
(distributed) functionality and the required protocol collaboration, has been identified and
applied to SDL designs. A functionality (e.g. , flow control, loss control, QoS monitoring) is a
single aspect of intemal system behavior that may be distributed among a set of system agents,
with causality relationships between single events. In [3], a fine-grained development process,
together with a generic micro protocol framework, is presented. From a reuse viewpoint, micro
protocols classify as design components, which are selected from a library and composed.
Obviously, there are several ways to represent them in SDL, for instance, by specifying SDL
block types, SDL process types, SDL service types, or SDL procedures. Which one to use
depends on the composition of micro protocols, which in turn depends on the protocol that is to
be configured.
Micro protocol definitions are organized using SDL packages. An SDL package is a collection
oftype definitions, and is used here to encapsulate SDL types belonging to the same micro pro­
tocol. This way, a micro protocol library can be expressed as a set of SDL packages, i.e., ready­
to-use components. Also, common parts of a set of micro protocols may be extracted into a pack­
age that is imported by each micro protocol definition. Altematively, several related micro pro­
tocols may be grouped into one package.

3.2. The micro protocol Watchdog

The micro protocol Watch-
dog is encapsulated in one
single process type (Figure 7)
and may be specialized to
match the requirements of the
embedding context. A timer
watchdogT is used to monitor
receipt of an alive signal from
the context within a well-de­
fined interval. This safelnter­
val is initially defined, but
can be modified by redefin­
ing the virtual start transition.
When Watchdog does not re­
ceive an alive signal within
this given period, the timer
watchdogT triggers a transi­
tion to send a signal to the
context (controlled system).
Again, this signal must be
specified by redefining a vir­
tual transition. Optionally, a
signal may be send when the
watchdog assumes the ob-
served system to be dead and

proccss type Watchdog

••
1

alivc

r-------------
IOPTIONAL R.EFJNE GATE:
lcxtend gatc with Signal sigX L------------•

r-----------1::!.icorrcct
-___,...--~ „ ________ _

r--------------------· 10PTIONAL REFINE STATE:
...--~- ~___. __ 1addnewb'an.Sitiontodisablewatchdog

1-> inpul sigX -> TASK: rcset(watchdogl) [-> sigX]
1->ncxtstate disablcd

Timcr watchdogT;
DCL

safclntttval Duration;

1(1)

loPTioNÄL REFiNä - - -

oct(NOW +
safclntcrval , watcbdogl)

rREF"iNE: - - - - - - „

1 add output of fail-safe

~·!1:~: _____ _

1add outputorreanimatc

~$~~~-------
set(NOW +

safclnterval, watchdogl)

r-----------------· ,--...._....,.
1 RF.FINE GATE:
l extcnd gate with sigoal sigY [sigX,sigZ]

enablod

"------------------ --~

wdOut

Figure 7: Micro protocol Watchdog

7

an alive signal reappears.
In order to provide a periodic alive trigger, another micro protocol Heartbeat can be used.

3.3. The micro protocol Heartbeat

The micro protocol Heartbeat is used
to provide a system with a periodic
sending of an alive signal. This signal
is used to trigger the micro protocol
Watchdog showing that the observed
system is still alive.

The behaviour is encapsulated in one
single process type shown in Figure 8.
The predefined heartbeatlnterval in
which signals are sent should be adapt­
ed to fit the requirements of the watch­
dog observing this system. This is done
by refining the start transition.

process type Heartbeat
r-------. 1 ,,
1 ••
1 1

•optional redefine•/
virtual

/•optional
r heartbcatlnterval Duration := X •/

set(NOW +
heartbcatlnterval, heartbcatT)

bcating

g (alive]

TIMER heartbcatT;
DCL

heartbeatlnterval Duration := l ;

beating

alivc

set(NOW +
heartbeatlnterval, heartbcatT)

l~ti~~~--------------
• - - ~ redefine start transition

: to set needed heartbeat interval

Figure 8: Micro protocol Heartbeat

8

1(1)

WATCHDOG

WATCHDOG

Version 1.3

lntent:
The WATCHDOG pattem realizes a safety functionality generally known as watchdog. A watchdog
is a component or functionality monitoring the operation of a system by observing an a/ive-signal.
If this signalfails, a fail operational or fail safe state has to be reached.

Motivation:
Here are some examples where the described design problem arises, which can be solved by the
suggested solution.

• Automatie safety device (dead man's control):
An operator (e.g. a train conducter) has to activate periodically a button or switch in accor­
dance with a prior well- defined time interval.

MSC AutomaticSafetyDevice

butt an train

operator prese nt running

buttonPressed

alive

timer

buttonPressed

alive

timer
operator not present

fail operational/safe
e.g.
emergency cutout

emergency brake

9

WATCHDOG

• Application with safety aspects:
An application periodically sends an alive signal to a safety component to propagate its run­
ning state. lf this signal fails to appear, the safety component has to switch to afail-operational
or fail-safe state (e.g. switch off controlled system).

MSC Application with safety aspects

appication safety component

ready init

alive

timer

control data
control data

control data
control data

alive

timer

control data
control data

fail operational/safe

switch off

Structure:

controlled system

ready

e.g. switch off
controlled component

The following shows the graphical representation ofthe strutural aspects of the pattem's solution.
Note that Watchdog not necessarily has to refine a component from the context. lt is also possible
to newly add this component to the structure.

Trigger is a component from the context, which provides a peridocal alive signal. lt can be a but­
ton or a switch (environment) or any kind of system/component.
Controller is, where necessary, refined by Watchdog and can be, for example, some control sys­
tem where watchdog functionality should be added.

10

WATCHDOG

0 .. 1 r------,

1> Controller
L - - - - _J

A

r----, r--------,

Trigger triggering Watchdog controlling ControlledSystem
L ___ _J L _______ _J

Message Scenario:

The following shows a typical generic usage scenario between the components described above.

MSC Watchdog

EFSM
Tr' er

active

trigger

failure

SDL Fragment:

EFSM
Watchdo

intt

active

tim er

EFSM
ControlledS stem

active

failure

fail operational/safe

After being triggered, Watchdog resets its timer watchdogT to a given period and continues
working. After receiving a timeout, Watchdog has to ensure, that ControlledSystem reaches a safe
state (e.g. by sending one ore more control signals). If heartbeat becomes active again (after a
failure), Watchdog has to set its timer to a given period in order to resume controlling.

11

WATCHDOG

r-------------------------------1
EFSM Watchdog [p-specializes Controller] r · t hd T

1merwa coa ;

+

I>
A

*
'-- _J

r ~ ... >-.,,..
heartbeat <

set (NOW+hbiW, watchdog

- - - '
1 nextState }
'-- - - -

enable or set watchdog again

watchdogT

+

\' failSafeTrigger_n

B

- '
(nextState }
\..._ - - -

1 timeout

DCL hbiWDuration := „.; rheartbeat interval)*/

*
I>
c

state
_J

r ~ ... >-.,,..
resetTrigger <

L -

reset (watchcioaD

- - - '
1 nextState }
\..._ - - -

optional: disable watchdog

L-------------------------------

Figure 1: SDL design pattem WATCHDOG: SDL Fragment

Syntactical Embedding Rules:

In the following, we describe how to instantiate the considered SDL fragments.

• Watchdog:
- Variants:

- Resolve the trigger symbols - this could result in an input symbol, conditioned input,
continuous signal, or an input symbol followed by a condition symbol.

- If no component Controller is refined (thus Watchdog is added to the structure) all sym­
bols and states from the context have to be solved and added.

- Renaming:
- If refinement is provided, the state (set) state and the signals/variables resetTrigger,

fai!SafeTrigger _ n and heartbeat are set to the states/signals/variables of the embedding
context.

- If no refinement is provided, the state (set) state is to set to a new state, the signal/vari­
able heartbeat is set to a signal sent by the component Trigger and the signal/variable
resetTrigger is set to a new signal disabling the watchdog.

- The signals fai!SafeTrigger _ n are to set to suitable names of the embedding context
(ControlledSystem) to reach a fail-safe/operational state.

Example Application:
see: C. Webel: Development and Integration of QoS Micro Protocols for Controlling an Airship via
WLAN, Master Thesis, Computer Networks Group, University ofKaiserslautern, Kaiserslautern, Germany,
June 2004 (in german)

12

WATCHDOG

Semantic Properties:

Under the Assumption that ...

(A-1) The state (set) state of Watchdog will always eventually be reached.
Sufficient condition: state is the only state of Watchdog.

... the following Commitment holds:

(C-1)

(C-2)

Every time resetTrigger arises, the watchdog is disabled.

Every time a timeout arises, the timer watchdogT is not reset and suitable signals are sent
to ControlledSystem.

Refinement:

No Refinement needed.

Cooperative Usage:
HEARTBEAT-Pattem

Known Uses:
C. Webel: Development and Integration of QoS Micro Protocols for Controlling an Airship via WLAN,
Master Thesis, Computer Networks Group, University of Kaiserslautern, Kaiserslautern, Germany, June
2004 (in german)

Checklist

• Watchdog:
- After receiving a trigger, watchdogT is set.
- After receiving a timeout, watchdogT is not set.
- For every possible heartbeat a transition has tobe added.
- For every possible resetTrigger a transition has tobe added.

- watchdogT is set to a suitable value.
- fai/SafeTrigger _ n is always sent after a timeout.
- the signals fai/SafeTrigger _ n lead to a fail-safe/operational state of the controlled compo-

nent.

13

HEARTBEAT

HEARTBEAT

Version 1.0

Intent:

The HEARTBEAT pattem realizes a functionality generally known as heartbeat.

Motivation:
Here are some examples where the described
design problem arises, which can be solved
by the suggested solution.

• Watchdog:
A heartbeat is needed in order to send a
periodic heartbeat signal to provide the
watchdog and the system to switch to fail­
safe/fail-operational state.

Structure:

MSC Watchdog

working

heartbeatT

heartbeat

heartbeat

fail-silent

System

running

fail-safe

The following shows the graphical representation of the strutural aspects of the pattem's solution.
Note that Heartbeat not necessarily has to refine a component from the context. lt is also possible
to newly add this component to the structure.

Controller is a component from the context, which has to be monitored. Therefore this component
has to sent a periodic signal.
Watchdog is a watchdog component

0 .. 1 r------,

1> Controller
L_ _ _ _J

A

Heartbeat observing
r-----,

Watchdog
L ____ _J

14

H EARTBEAT

Message Scenario:

The following shows a typical generic usage scenario
between the components described above.

SDL Fragment:

MSC Watchdog

EFSM Heartbeat EFSM Watchdo

heartbeatT

heartbeat

watchdogT

heartbeat

fail-silent

After being triggered by signal enableHb, Heartbeat sets its timer to a given period. After receiv­
ing a timeout, one or more signals heartbeat _ n are sent. The generic trigger disableHb disables
the timer heartbeatT and thus the component heartbeat.

r-------------- --------------,
EFSM Heartbeat [p-specializes Controller]

Timer headbeatT;

r '

*
'-

•
+

\7 heartbeat n l>
A B

set (NOW+hbiA, heartbeatD

_ - - -

generate heartbeat and set timer again

L-- -- -------

Syntactical Embedding Rules:

DCL hbiA Duration := .„ ; /*heartbeat interval*

r

state
'-

r-< ... ~- ...
enableHb <

L_

set (NOW+hbiA,
heartbeam

- - - '
1 nextState)

_ - - -

optional: enable heartbeat

•

l>
c

r

state
'-

r-< ... ~- ...
disableHb <

L_

reset (headbeatD

- - - '
1 nextState

_ - - -

optional: disable heartbeat

In the following, we describe how to instantiate the considered SDL fragments.

• Heartbeat:
- Variants:

15

H EARTBEAT

- Resolve the trigger symbols - this could result in an input symbol, conditioned input,
continuous signal, or an input symbol followed by a condition symbol.

- If no component Controller is refined (thus Heartbeat is added to the structure) all sym­
bols and states from the context have to be solved and added.

- Renaming:
- If refinement is provided, the state (set) state and the signals/variables enableHb and dis-

bleHb are set to the states/signals/variables of the embedding context.
- If no refinement is provided, the state (set) state is to set to a new state, the signal/vari­

ables enableHb and disbableHb are set to new signals send by the component Controller
and the signal/variable heartebat is set to a new signal.

Example Application:

Semantic Properties:

Under the Assumption that ...

(A-1) The state (set) state of Heartebat will always eventually be reached.
Sufficient condition: state is the only state of Heartbeat .

.. . the following Commitment holds:

(C-1) Every time disableHb arises, heartbeatT is reset.

(C-2) Every time enableHb arises, heartbeatT is set to the default heartbeat interval.

(C-3) Every time a timeout arises, the timer heartbeatT is reset and a new heartebat signal is
sent to Watchdog.

Refinement:

No Refinement needed.

Cooperative U sage:
w ATCHDOG-Pattern

Known Uses:

Checklist

• Heartbeat:
- After receiving a timeout, heartbeatT is set and one or more heartbeat signals are generated.
- For every possible enableHb a transition has tobe added.

16

HEARTBEAT

- For every possible disableHb a transition has tobe added.
- heartbeatT is set to a suitable value.

17

References
[1] B. Geppert, R. Gotzhein, F. Rößler: Configuring Communication Protocols Using SDL Patterns, In

Cavalli, A., Sar,a, Q., eds.: SDL'97 - Time For Testing, Proceedings of the 8th SDL Forum,
Amsterdam, Elsevier (1997) pp. 523-538

[2] Computer Networks Group: The SDL Pattern Pool, Online document, University of Kaiserslautern,
Kaiserslautern, Germany, 2002 (available on request)

[3] I. Fliege, A. Geraldy, R. Gotzhein, P. Schaible: A Flexible Micro Protocol Framework, in: D.
Amyot, A. W. Williams (Eds.), SAM 2004: SDL and MSC, Fourth International Workshop, Ottawa,
Canada, June 2-4, 2004, Revised Papers, LNCS 3319, 2004, pp. 231-244

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object­
Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995

[5] B. Geppert, A. Kühlmeyer, F. Rößler, M. Schneider: SDL-Pattern based Development of a
Communication Subsystem for CAN, in : S. Budkowski, A. Cavalli, E. Najm (eds.), Formal
Description Techniques and Protocol Specification, Testing, adn Verification, Proceedings of
FORTE/PSTV'99, Kluwer Academic Publishers, Boston, 1998, pp. 197-212

[6] B. Geppert: The SDL-Pattern Approach - A Reuse-Driven SDL Methodology for Designing
Communication Software Systems, Ph.D. Thesis, University ofKaiserslautern, Germany, 2000

[7] R. Gotzhein, F. Khendek, P. Schaible: Micro Protocol Design: The SNMP Case Study, in: E. Sherratt
(Ed.), Telecommunications and beyond: The Broader Applicability of SDL and MSC, LNCS 2599,
Springer, 2003, pp. 61-73

[8] R. Gotzhein, C. Peper, P. Schaible, J. Thees: SILICON -System Developmentfor an Interactive Light
CONtrol, URL: http://vs.informatik.uni-kl.de/activities/silicon/, 2001

[9] R. Gotzhein: Consolidating and Applying the SDL-Pattern Approach: A Detailed Case Study,
Information and Software Technology, Elsevier Sciences (in print)

[10] R. Grammes, R. Gotzhein, C. Mahr, P. Schaible, H. Schleiffer: Industrial Application of the SDL­
Pattern Approach in UMTS Call Processing Development - Experience and Quantitative
Assessment, 1 lth SDL Forum (SDL'2003), Stuttgart, Germany, July 1-4, 2003 (accepted for
publication)

[11] R. Grammes: Evaluation and Application of the SDL Pattern Approach, Master Thesis, Computer
Networks Group, University ofKaiserslautern, Kaiserslautern, Germany, February 2003

[12] ITU-T Recommendation Z.100 (11199) - Specification and Description Language (SDL) ,
International Telecommunication Union (ITU), 2000

[13] F. Rößler, B. Geppert, P. Schaible: Re-Engineering of the Internet Stream Protoco/ ST2+ with
Formalized Design Patterns, Proceedings of the 5th International Conference on Software Reuse
(ICSR5), Victoria, Canada, 1998

18

