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Abstract

Location problems with ) (in general conflicting) criteria are considered. After re-
viewing previous results of the authors dealing with lexicographic and Pareto location
the main focus of the paper is on max-ordering locations. In these location problems
the worst of the single objectives is minimized. After discussing some general results
(including reductions to single criterion problems and the relation to lexicographic
and Pareto locations) three solution techniques are introduced and exemplified using
one location problem class, each: The direct approach, the decision space approach
and the objective space approach. In the resulting solution algorithms emphasis is
on the representation of the underlying geometric idea without fully exploring the
computational complexity issue. A further specialization of max-ordering locations
is obtained by introducing lexicographic max-ordering locations, which can be found
efficiently. The paper is concluded by some ideas about future research topics related
to max-ordering location problems.
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1 Multicriteria Location Problems

In this paper we study location problems which are subject to ¢) - possibly conflicting -
objective functions f1,..., f?. More precisely, any feasible location z (denoted z € F
in the following) is assigned a vector f(z) = (f'(z),..., f%(z)) in IR?. We will assume
throughout that the single objectives are of the

M
median type f(z) := Z wl d(Exy,, )
m=1
or of the
center type  fi(x) := mj\éi(wgld(Exm,x)

where w? (m = 1,...,M; ¢ =1,...,Q) are, by default, non-negative weights, Fz,, are
existing facilities and d(Fx,,,z) is a given distance function.

Location problems of this type have only been studied recently in their full generality (e.g.
[HN93] and [HN96]) while only special cases with specific choices of f?,g=1,...,Q were
considered previously ([Pla95]).

In order to find a “best” location z* € F, i.e.

f(") = min f(z)

we need to be able to compare vectors in IR®. In this section we will briefly review
some results for the lexicographic and component-wise ordering which will be helpful in
dealing with max-ordering location problems discussed in detail in Section 2. Section 3
will then describe three solution strategies for solving max-ordering location problems, each

exemplified in a specific problem class. The paper is concluded by summarizing the results
and a discussion of related ongoing research.

If we compare vectors by the lexicographic ordering i.e.

J(2) <iex f(y) & [P(2) < fP(y) for p = min{q : f*(z) # f'(y)},

the lexicographic location problem lexmin,ex f(x) can be solved by iteratively finding the
set F? of all optimal locations of the single objective location problem with respect to
objective f7 and feasibility set

Fq_l L f lfq =1
| argmin {f7Nz):z e F ifl<qg<Q

For planar location problems (i.e. F C IR? Ez,, € IR*>,m = 1,..., M) such problems can
be solved by using the theory of restricted location problems.

e If there exists an optimal location z? € argmin{ f?(z) : € IR*} such that z? € F7!,
then F? := argmin{ f!(z) : # € IR*} N Fe~L,
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Figure 1.1: Lex location Opt; , defined as the best location for f? in F*.

e Otherwise find a level z and a level set
Li(z):={z € R*: fi(z) < z}
such that LL(z)N Fi=' = () and z is minimal with this property.

Obviously, the second part of this procedure is just a reformulation of the restricted location
problem, but it is very useful to implement a geometric approach replacing the search
methods already sketched in Francis and White ([FW74]) by polynomial time algorithms
([HN95], [Nic95]).

As an example we consider in Figure 1.1 1/P/ o /I;/2 —3",.,. Following the classification
of [Ham92], [Ham95]), [HN96] and [HN94] this is the problem of finding 1 new facility in
the plane, with no special constraints, with respect to the rectilinear distance d( Kx,,, ) =
L(Ftn,x) = |am, — 21|+ |am, — T2|, and 2 median type objective functions.

For network location problems (i.e. F = set of points in a graph, Ez,, = nodes of the
graph, m = 1,..., M, d = shortest path distance) the problem reduces to finding in a given
finite set of vectors the subset of those which are lexicographically minimal. Obviously,
this is trivial if the sequence 1,..., Q) of the objective functions is fixed. This can, however,
also be done in polynomial time if lexicographically minimal vectors are sought for all

permutations 7(1),...,7(Q) ([HNL96]).

The latter observation becomes important as starting point to find all Pareto locations, i.e.
minimizers of f(z) = (f'(z),..., f9(z)) with respect to the component-wise ordering. A
Pareto location does not allow for another location y € F such that f(y) <comp f(2), i.e.

Jy) < fi(zx) Yg=1,...,Q

and
fP(y) < fP(x) for at least onep € {1,...,Q}.
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(an z-dominating location).
Pareto locations can be characterized using level sets, which were already introduced above,
and level curves defined by

Li(z):={z € R*: fi(z) = 2}

Theorem 1.1. Let x € F be a feasible location and let z? := f'(z) VYg=1,...,0Q.
Then, x is a Pareto location if and only if

Q Q
Ol LL(z7) = Ol LL(2%). (1.1)

The proof follows immediately by the definitions of Pareto locations, level sets and level
curves. In the context of location problems it was first stated in [HN96]. Its usage in
general multicriteria problems and its relation to other characterizations of Pareto solutions

is described in [EHK*97].

If Opt... 1s the set of all lexicographic locations where we allow any change in the sorting
of the objective functions i.e. f — f7 = (f’r(l), . .,f’r(Q)), and if Optp,, is the set of all
Pareto locations we get

Proposition 1.2.
Optler g OptPar

Notice that one can easily find examples, where this inequality is strict.

For a large class of location problems, the set Optp,,. is obtained by “connecting” the
locations in Opt;, with each other. As example for this approach we consider the location
problem of finding

e 1 new facility,
e in the plane,
e with no special constraints

e with respect to the polyhedral gauge distance defined by convex polyhedra P,,, con-
taining Kz, in its interior, respectively, and

d(Exm,x) = Ypot(Ftp,z) :=min{ A >0:2 - FE, € AP,, m=1,....M

and

e Pareto location objective composed of 2 median single objective functions f' and f2.



oV

Figure 1.2: Six existing facilities with corresponding polyhedra FP,,.

Figure 1.3: The grid graph generated by P,,.
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Figure 1.4: Lexicographic locations with connecting edges and cells constituting the set of
Pareto locations.

(In short, using the above mentioned classification scheme, 1/P/ ® /v,,1/2 — > p,..)
[Nic95] showed that the lexicographic locations can be computed in polynomial time. The
Pareto locations are obtained by connecting these lexicographic locations by edges and
cells of a grid graph which is defined by the half lines passing through Fx,, and each of
the extreme points of P,,,m =1,..., M (see Figure 1.2 - 1.4).
The algorithm to find the correct edges and cells is based on Theorem 1.1 and the fact
that the level curves are closed polygons which are linear in each cell of the grid graph.

2 Max-Ordering Location Problems

In this paper the main focus will be on max-ordering (MO) location problems which are
optimal locations with respect to the max-ordering defined by

f(z) <mo fly) & max{f'(x),..., f2(2)} < max{f'(y),.... [ (y)}
The problem minpo f(z) which minimizes the worst of the objective values is used in
conservative planning and robust optimization [KY97]. In location theory it has not been
investigated in any depth so far. In general optimization it is also known as min-max op-

timization (e.g. [Du95] and references therein) or as max-linear optimization ((CHMM?93],
[HR94]) problem. We will use the notion of maz-ordering location problem introduced in
[Ham95] and [HN96] since the former two notions are ambiguous in the context of location
problems. Obviously we can reformulate MO location problems as follows:



min a0 f(z)

zeF
& minmax{f'(z),..., [%(z)}
& minz

such that f(z) <z Vg=1,...,Q z€F

& minz
Q
such that 7N () LL(z) #0

9=1

(2.1)

Similar to Theorem 1.1 we can therefore characterize MO locations by their level sets.

Theorem 2.1. zp;0 is the optimal objective value of a MO problem if and only if zp0 is

the smallest value such that 0

F () Li(zmo) # 0. (2.2)

9=1

In this case, the set (2.2) is Optyo, the set of all MO locations.

Reformulation (2.1) of the MO location problem indicates a close relation between MO
location problems and single objective center problems.

Theorem 2.2.  a) single objective center problems are special cases of MO problems
with () = M objective functions.

b) If in a given MO problem all single objectives are of the center type, then the MO
location problem is equivalent to a single objective center problem.

¢) Optyo N Optpa, # 0

Proof:

a) Consider in (2.1) the special case

Q = M
fi(z) = wyd(Ex,, )

which is equivalent to the classical single-criterion center problem

mi}lmax{wld(Efcl, z),...,wyd(Ez,,m)}.
re



b) If all single objectives are of the center type, i.e.

fi(z) = mj\éxwfnd(Eaim,:zi) Yg=1,...,0,

m=1

then

m%qu(:r;) = m%xm]\gxwgld(Exm,x)
g=1 g=1 m=1

= mj\éx <m%x wfn) d(Exm,x)

m=1 g=1

= mj\gxwmd(E;r;m,x).
m=1

c¢) Suppose x € Optyo and = ¢ Optp,.. Then there exists some y € Optp,. which
dominates z, i.e.

ffy) < f=z) Vg=1,...,Q
and fP(y) < fP(x)forsomepe {1,...,Q}

But then
max{f'(y),..., [?(y)} < max{f'(z),..., [%(=)}
such that y € Optp,, N Optaro.

O

Independent of any special structure the MO location problem may often be very simple
to solve. This is, for instance, the case if one of the objective functions is decisively worse
than the others.

Theorem 2.3. Let Opt? be the set of optimal locations for the single objective loc-
ation problem minger f?(x) and let z? be the corresponding optimal objective value,
g=1,...,Q. If there exists some x? € Opt? such that forallp=1,...,0

fP(z?) < 2 (2.3)

then x? is an MO location with objective value f(z?) = z¢ = zp0.

Proof: Obviously
fi(z?) =22 < zmo < m%lep(:z:q). (2.4)
p:

The assumption of Theorem 2.3 implies that both inequalities above can be reversed such
that we obtain fi(z?) = 27 = zpmo0. a

If inequality (2.3) does not hold for all p = 1,..., Q) we can nevertheless use inequality
(2.4) to obtain



Q

Q  ru Q g
I?Zale (27) < zymo < r;n{lz(}'g(l)%tqrgaff () (2.5)

providing lower and upper bounds for the optimal MO objective value zp;0.
Both bounds may be further improved by considering convex combinations

Q
= 2_:1 A fi(2)

of the objective functions f', ..., f%, where

Q
)\EA::{)\:Equl,/\QZZO}.

g=1
Since
Q
"c):Z)\q-fq (Zz\)maqu (z)
g=1
holds for any location = we obtain for any MO location zp0

mmf(/\ ) < f(Azmo)

z€F

< m%gfq(il?Mo) = ZMmo0
q:

Hence

1;12&(1;161}_1]6()\ z) < zmo (2.6)

which improves the lower bound of (2.5).

The set of Pareto locations, Optp,, is often large and a decision has to be made, which
of the Pareto locations to choose. On the other hand MO locations, which are preferable
from the point of view of conservative planning, are not always Pareto locations. One
possibility to solve this dilemma is making use of part ¢) of Theorem 2.2, which states
that there are always solutions which are both MO and Pareto locations. For () > 2 the
idea of max-ordering can be iterated, i.e. among all MO solutions one is chosen, which
minimizes the second largest objective value and so on. Let z be a location and f(z) the
corresponding objective value vector. Let sort(f(z)) be a permutation of the components
of f(z) in nondecreasing order, i.e.

sort(f(z))' > ... > sort(f(z))%.

Location z is said to be lexicographic maz-ordering (lex-MO) optimal, or a lex-MO location,
if
sort(f(z)) <ier sort(f(y)) Vy e F.



The set of lex-MO locations is denoted by Optj..—po. Clearly, sort(f(z))! = zp0 for a
lex-MO location. Furthermore, suppose a lex-MO location x is dominated, then the sorted
objective value vector would certainly be not lexicographically minimal. Thus we have (see

also [Ehr97]):

Proposition 2.4.
Optlex—MO C (Optpar N OptMO) (27)

The sorted objective value vector is the same for all lex-MO locations. Furthermore, lex-
MO solutions can be axiomatically characterized by three properties which are appealing
from a decision making point of view, see e.g. [Ehr97]. Lex-MO locations have already
been investigated in the discrete case in [Ogr97]. We consider lex-MO location problems
in the plane and on networks.

3 Solution strategies for MO location problems

In this section three strategies for solving MO location problems are presented and exem-
plified with a specific location problem, respectively.

3.1 Direct Approach: 1/P/ e /12/Q — “no

In some cases it is possible to solve MO problems directly by just using the definition or
reformulation (2.1). As an example we discuss 1/P/ o [I3/Q — Y310, i.e. the problem of
finding all max-ordering locations in the plane, where each of the () objective functions is
of the median type with squared Euclidean distances between existing and new facilities.
Since each of the objective functions is of the form

7(@) = 3w, ((amy = 2" + (am, = 22)°)

we obtain by differentiation or by finding the smallest z such that L<(z) = L=(z) # () that
! = (af,73)

with .
zl = 2 WinGmy
is the unique optimal location of min g2 f9(z) (see [FJW92], [LMWSS], or [Ham95]).

The same literature also features proofs that the level curves LL(z) are circles C(z?,r(z))

k=12 (3.1)

centered at z? with radius

ri(z) = \/ﬁz — const(q) (3.2)
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Consequently, the results of Section 1 imply that
Optier = {2',..., 2%}

since in the first iteration of the solution algorithm F™) = {2V} will always contain
exactly one element, such that the following iterations become redundant. Moreover

Optpa, = conv{z!,... z%}

is the convex hull of the single-criterion optima, since criterion (1.1) can be satisfied for
circles LL(z?) and disks LL(z?) exactly in points x € conv{z',...,2%}. In order to solve

the MO problem 1/P/ o /I2/Q — S0 we use (3.2) to rewrite

M
fi(z)=2 = w?- (rq(z))2 + const(q) with w’ = Y~ w?,
m=1
= w! - [3(2%, z) + const(q).
Hence the reformulation (2.1) of the MO problem implies
Theorem 3.1. The MO location problem 1/P/ e /12/Q — > a0 is equivalent to the single

objective center problem

. Q 2
;2]113{% max (waz(:z:q, z)+ const(q)) (3.3)

with respect to “existing” facilities x? and weighted squared Euclidean plus constant dis-
tance functions.

In order to compute Optrro we can adapt the Elzinga/Hearn algorithm [EH72] or use the
following algorithm which relies on Theorem 2.1

Algorithm 3.1. (Solving 1/P/ e /13/Q — Y x0)

Input: Ez,, = (¢, dm,) E R*m=1,..., M
wim=1,....M; gq=1,...,0Q

Output: Optyo

1. Compute z? = (z{, z3) with (3.1)

2. If criterion (2.2) holds, output Oplyo = {z?}

3. For all triples {q1,q2, 3} C{1,...,Q} compute the unique intersection point
Ty am0s = qul (z)N Lq;(z) N Lq; (2)

with minimal z until f9(24,,4,.40,) <2z Yq=1,...,Q. Output in the latter case
Q

Optyo = qu qu(z) = {0205 }-

Note that the validity of Algorithm 3.1 follows directly from Helly’s Theorem, [Hel23].
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3.2 Decision Space Approach: 1/P/ ® /7,5//2 — Y(1ea—)Mm0

In the decision space approach we apply the following strategy: We use the level curve/level
set characterization of Pareto locations (Theorem 1.1) to determine Optp,, and use the
fact that it is sufficient to search in Optp,, for some MO location (Theorem 2.2(c)) to find
some x € Optyro efficiently.

The approach is exemplified in the problem 1/ P/ e /~,,/2—3 310 considered already at the
end of Section 1 in its Pareto version. As we have seen there, Optp,, 1s a chain connecting
the two sets of lexicographically optimal locations by edges and cells of the grid graph (see
Figure 3.1).

For this purpose consider the two sets Opt, , and Opl,, of lexicographic locations with
respect to permutations 7(1) = 2 and «(1) = 1, respectively. The following three cases
may occur:

Case 1 fl(l'l,?) > f2($1,2) Va9 € OPth-
Then

max [*(z) > ['(z) 2 ['(21,) = max [*(21) Vo € R?

and
OptPar N OptMO(f17 f2) = Optl,Z .

Case 2 f*(x2:) > ['(x2,) Yz € Oply ;.
By symmetry we obtain as in Case 1

OptPar N OptMO(flv f2) = Opt?,l :
Case 3 Vr==z15 € OptL2 and y =y € Optl1
fH(z) < f(z) and f2(y) < f'(y) (3.4)

Consider any path through Oplp,, connecting two endpoints z; 2 € Opt, , and x5, €
Opt,; and consisting of edges of the grid graph (see Figure 3.1).

If p(t) is a parametrization of the path with p(0) = z,4 and p(1) = 21, f*(p(t))
increases while f?(p(t)) decreases. Therefore (3.4) implies the existence of a node
zpo of the grid graph such that f'(xa0) = f*(zmo) or of two adjacent nodes z and
y such that (3.4) holds. In the latter case x70 is the unique point in the line segment
[z,y] with fY(zam0) = f*(zm0). Notice that xp0 is easy to compute since f*(p(t))
and f*(p(t)) are linear on [z,y] (see Figure 3.1). In both cases zp0 € Opt 0, and
the whole set Optaro is obtained by Theorem 2.1.

Since the objective functions S"M_ w,d(z,z,) and maxM_, w,d(z,z,) are strictly
quasiconvex and continuous if w,, > 0 for all m = 1... M, we can apply a theorem

from [Beh77] and get the following result.
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Figure 3.1: An example for zp;0 on the Pareto chain.

a,...

Theorem 3.2. Ifwl > 0Vm =1,...,M; g =1,...Q then there exists an index ¢* €
,Q} such that f7 (x) = zp0 for all z € Optaro.

Theorem 3.2 immediately implies a generic algorithm to solve lex-MO location problems
in the plane.

Algorithm 3.2. (Solving 1/P/ e /e /Q — > i.._nio)
Input: Ez,, = (Gm,,0m,) ER*m=1,.... M

qun ZO,m:L...,M, VIS Q::{la"'aQ}7F:IRQ
Output: Optie.—no

1. Find Optyro with respect to F and Q, i.e. find all solutions of

1 q
mp /)

2. Identify an index ¢* according to Theorem 3.2.

3. Let F := Optpyo and Q = Q\ {¢*}.

4. I Q@ =0 or |Optryo| =1 then STOP else goto 1.

13



The determination of an index ¢* has to be adapted to the problem at hand. Let us
consider, for instance, 1/P/ ® [Y,01/Q — Y 1ex_mo- The set of MO locations can be found
as described above. Furthermore, it is known that the plane can be partitioned into cells,
where the objective functions are linear, see [Nic95]. If the cell partition of Optaso is known
we can exploit linearity of the objective functions to easily check which of the objectives
is constant on Optaro.

The generic algorithm actually exhibits one important property of lex-MO locations: If the
value of one objective function is known for an optimal solution (f? (x) = zar0 in this case)
then only the remaining ones have to be considered for optimization where f7"(z) = zp0 is
used as an additional constraint. This property is called reduction propertyin [Ehr97]. The
same reference also shows that, together with the fact that lex-MO solutions are always
MO solutions, the reduction property is characteristic for lex-MO optimization problems.

3.3 Objective Space Approach: 1/G/ e /d(G,V)/2 — Ym0

In one way, this approach is similar to the one in subsection 3.2: First the set of Pareto
locations is computed, albeit in this instance of a location problem without using level
curves and level sets. But then the space of objective values is investigated to determine a
MO location za0.

The network location problem which is used as an example to show the approach is defined
as follows: G is an undirected graph with node set V and edge set €. The nodes are
identified with the existing facilities and @ = 2 sets of non-negative weights w! , w?
1 M = |V| are given. The edges have lengths [(¢). The new facility « can be any point
in the graph, i.e. either z = v € V is a node or z = (e, 1) lies on the interior of an edge

e = [vi,v;] € E with distance

m =

PECIEIEI

d(z,v) = min{d(v,v;) +t-I(e), (1 —t)l(e) + d(vj,v)} (3.5)

to node v € V (see Figure 3.2). Here d(v,v;) is the usual shortest path distance between
nodes v; and v.
In order to compute Optp,, we follow the solution strategy developed in [HNL96].

1. Find for all edges e = [v;,v;] the set Optp,.(€) of local Pareto locations, i.e. points
in e which are not dominated by any other point in e.

2. Eliminate all local Pareto locations which are not globally Pareto, i.e. € Optp,,(€)
is dominated by some ' € Optp,.(e') with €/;e € € e # €.

Part 1 of the solution strategy is implemented by analyzing the functions f'(z) and f*(z)
where x = (e, t) is parameterized using ¢ € [0, 1]. Due to (3.5)

qud;t: Vm)

14



Figure 3.2: Distance between point z = (e,t) on edge e = [v;,v;] and node v € V.

® @
vi=(e,0) n 12 vi=(e,1)

Figure 3.3: Example of local Pareto locations: {v;,v;} and {(e,¢) : t' < ¢ < ¢*}.
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f2(x) = 72

-
v

fi(x) = Z!

Figure 3.4: Example of the point set Z representing the vector values of local Pareto points
of 5 edges and its lower envelope (in bold).

is piecewise linear and concave such that the local Pareto locations are easily identified
(see Figure 3.3)

The objective values (z', 2?) associated with the set of local Pareto locations are represented
in the objective space where the interior part {(e,t) : t* < ¢ < t*} (provided it exists)
corresponds to a piecewise linear concave function. Hence we can implement Part 2 of the
solution strategy by computing the lower envelope of the points

Z = {(21, 2*) ¢ z' = fY(z) and z* = f*(x) and z interior local Pareto point
or
' > fl(z) and 2° = f*(x) and = € V locally Pareto}

Using Hershberger’s algorithm (see [Her89]) this can be done very efficiently in time
bounded by O(|V||€]log |V||E]). The set Optp,,. of (global) Pareto locations is then the
set of points in G mapped into the lower envelope (where only the left-most point of each
horizontal piece of the envelope is used).

According to Theorem 2.2(c) it suffices to find in Optp,, a location  with smallest MO
value max{f'(z), f*(z)}. This problem is easy to solve since the mapping of Pareto loc-
ations into Z is known: We just find the point in the set Z (excluding the redundant
horizontal pieces) which is closest(with respect to the Tchebycheff distance) to the origin
(2',2?) = (0,0) (see Figure 3.5).

A generalization of this approach can be used to solve the same problem with () single

objectives, i.e. 1/G/ ® [d(V,G)/Q — S ar0- The solution strategy of finding Optp,,(€) is

16



v

Figure 3.5: Value (2!, 2%) of point zay0 € Optp,, with minimal value [|(z', 2%)|| s-

the same as in the case of () = 2. The elimination of dominated local Pareto locations is
done using 2-variable linear programs (see [HNL96]) applying Megido’s algorithm [Meg82].
Finding Optaso is then equivalent to solving a distance problem in IR? with respect to the
Tchebycheff distance.

The same problem can be solved by a second objective space approach, which is the first
step in a procedure to solve the lex-MO location problem 1/G/ e /d(V,G)/Q — Y 1.._mo
described below. Note that the objective functions f? are not quasiconvex here, so Theorem
3.2 cannot be applied and an index ¢* such that f? (z) = zp0 for all z € Optaro need
not exist. In general the set of MO locations may be composed of () subsets with f?(z) =
zymo, f2(2) # 2m0,7 # Q. An approach as presented in the planar case would then lead
to an exponential algorithm considering all permutations « of (1, ..., Q). However, we will
show that the problem can be solved efficiently by an objective space approach.

As described in Section 3.3 the objective functions are concave on each edge of the network.
In fact, they are piecewise linear with at most |V | breakpoints corresponding to bottleneck
points, see [HNL96]. Therefore, on each edge, the objective functions can be determined
in O(QIV|log V).

Note that, due to (2.7), only edges possibly containing Pareto points have to be considered
in the following. We first solve the max-ordering location problem.

Approach 1:
We compute the upper envelope of the objectives f? on the edge [v;,v;], see Figure 3.6.
This can be done in O(Q|V|log(max |V|,Q)) time, because there are at most Q|V| line

17



f f3

f2
o

f, ) t, f, f
Vi Xlex-MO([Viavj]) Vj

Figure 3.6: Objective functions on an edge [v;,v;], upper envelope, and candidate
zao([vi, v;]) for a lex-MO location.

segments, see [Her89].

Lemma 3.3. On each edge there is at most one candidate for a lex-MO solution, which
is at a breakpoint of the upper envelope.

Proof: The lemma follows from concavity and piecewise linearity of the objectives. O

The (unique) minimizer of the upper envelope can now be found in O(|V|Q) time. Fi-
nally, the at most |£] candidates on the edges and the nodes have to be compared,
i.e. their objective value vectors sorted and lexicographically compared. This requires

O(Qlog Q€] + |V])). In total this approach requires O(|€|Q log(max{|V|,@})) element-

ary operations.

Approach 2:

Since there exist at most |V| breakpoints of the objectives on each edge (the breakpoints
can only occur at bottleneck points, and these are independent of the specific weights), we
can subdivide this edge into smaller intervals and solve min, max, f¢(z) on each of these
intervals, where all objectives are linear. This is equivalent to solving
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: > f(et) q=1,...,Q
€ [ty 1]

where 0 = t; < ... <i{x =1 and K < |V|. These linear programs in two variables can
be solved in time linear in the number of constraints, i.e. O(Q), see [Meg82]. Finding the
smallest of the optimal solutions is not worse than O(|V|) and the comparison of all the can-
didates is the same as in Approach 1. Hence we have a total of O(max{Q|V|,|€|Qlog@})
for this algorithm.

4 Conclusions and Further Research

In this paper basic results for lexicographic and Pareto location problems were reviewed.
Max-ordering location problems were introduced and some general results were proved.
Three solution strategies, the direct approach, the decision space approach, and the ob-
jective space approach where shown to find the set Optyro of MO locations efficiently.
An area of multicriteria location theory which is immediately motivated by this paper is
one where vector-valued locations are subject to an additional norm. That is, we look for
a location x such that

I(F (), -, £ ()]

is minimized. MO problems are special cases of this, more general, model where the
norm is the Tchebycheff norm. The objective space approach of Section 3.3 can obviously
immediately be carried over to this more general approach. General results for these types
of location problem are under research.

Another topic is the determination of other location problems which have the reduction
property. Asin lex-MO location problems in the planar case this property may be exploited
to design efficient algorithms.
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