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1 Introduction 

Transition metals (TM) and TM containing compounds are inevitably linked with life. A 

large number of proteins contain a TM center as a cofactor. Most prominent representative 

of such metalloproteins are Vitamin B12 and Hemoglobin.[1] The latter one maintains the 

respirational process of vertebrates by the transportation of O2 via a Fe center.[2] The 

functionality of this metalloprotein is highly impacted by the electronic configuration of the 

Fe center.[3-4] TM complexes with structural similarities to the prosthetic groups may serve 

as model systems for the otherwise very complex proteins.[5] 

Besides their outermost importance in living creatures, TM enable modern everyday life as 

we know it by facilitating the production of fertilizers[6] or gasoline[7]. Most industrial 

processes depend on TM based catalysts like the Haber-Bosch process (Fe)[8] or the Fischer-

Tropsch process (Co, Fe, Ni,..)[9]. A fundamental/mechanistic understanding of such reactions 

is of great importance for the improvement of available catalysts or the design of new ones. 

Direct investigations of industrial processes is challenging due to their complexity. Therefore 

model systems are employed to elucidate the fundamental catalytic steps.[10] Size-selected 

TM clusters with 2 – 30 atoms may serve as model systems for heterogeneous catalysis.[11-12] 

They represent the transition from TM atoms to the bulk and exhibit remarkable size-

dependent properties[13-14] and exhibit a conceivable cluster-surface analogy[15-17]. They may 

render the possible structure sensitivity of catalytic reactions. [18] 

Mass spectrometry[19] in combination with ElectroSpray Ionization (ESI) sources[20] or Laser 

VAPorization (LVAP) cluster ion sources[21] serves for the generation and subsequent 

characterization of such model systems under isolated conditions. The possibility of gas 

phase investigations of reactions on TM clusters and TM compounds provide for the unique 

opportunity to gather fundamental insights into structures and reactivity omitting perturbing 

effects such as solvents or packing. Such studies bear the ability to unravel the fundamental 

interplay of model systems with biologically or catalytically relevant molecules. Numerous 

studies focused on the gas phase reactions of biomolecules[22] and TM clusters with e.g. 

hydrogen,[23-26], nitrogen,[27-28] ammonia,[26, 29-31], water,[26, 32-33] and carbon monoxide[34]. 

These studies provided for insight into the thermochemistry and bond energies. 

Furthermore such studies suggested various cluster structures as they utilized adsorbates as 
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chemical probes for their geometries.[29, 35-37] The unknown cluster structures were as well 

subject to numerous density functional theory (DFT) studies.[38-42] However, computations 

including adsorbates are rather scarce.[43-45] 

Furthermore, vibrational spectroscopy of isolated ions by either free electron lasers (FEL) 

or tunable table top lasers is commonly applied to obtain structural information.[46-47] The 

InfaRed (Multiple) Photon Dissociation (IR(M)-PD) technique has proven to be a valuable tool 

for the structural elucidation of biomolecules[48-49], TM complexes,[50-52] and bare TM 

clusters[53-55]. The investigations on TM atoms with adsorbates[56-58] and TM cluster 

adsorbate complexes[59-64] provide for fundamental insights into the coordination of the 

respective adsorbate and has the ability to reveal possible activations.  

The introduction of cryogenically cooled ion traps has created new opportunities as it 

allows for the generation of previously inaccessible reaction products.[65-66] In combination 

with IR spectroscopy it enables so-called tagging or messenger techniques.[67-68] These 

techniques allow for a one photon dissociation omitting any spectral artefacts caused by 

multi photon absorption.   

The research studies presented in this thesis combines the afore mentioned techniques. 

They include cryo IR-PD spectroscopy and cryo kinetics to isolated TM cluster and 

biomolecule adsorbate complexes in conjunction with DFT modelling to gain insight into 

their structure and reactivity. This thesis comprises of seven research studies of which each 

provides for an individual introduction, experimental, discussion and conclusion part. A 

general introduction to the utilized experimental and computational methods is given in 

chapter 2.  

The chapter 3 elucidates the N2 adsorption to size selected cationic Co clusters by cryo IR-

PD spectroscopy in combination with preliminary DFT modelling. It identifies cluster size 

dependent effects and a favored µ1 head-on adsorption of the N2 to the Co clusters. This 

study can be seen as a starting point for the subsequent studies. 

The chapters 4 – 6 focus on the adsorption of N2 to cationic Ni clusters. These studies 

characterize the cluster morphologies by kinetic, spectroscopic and computational 

investigations and allow for a classification of the probed Ni clusters into four classes of 

structure related surface adsorption behavior. 
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The chapter 7 provides for kinetic and spectroscopic investigations on N2 on cationic Fe 

clusters. It observes remarkable cluster size dependent features that in contrast to the Ni 

clusters do not allow for a structure related classification. Preliminary DFT modelling allows 

for a first interpretation of the unreactivity towards N2 of the Fe17
+ and one isomer of the 

Fe18
+ cluster. 

The chapter 8 investigates the coadsorption of N2 and H2 to a Ru8
+ cluster by cryo IR-PD 

spectroscopy and DFT modelling. It identifies remarkable effects of the reaction gas 

sequence on the migration possibility of the hydrides on the cluster. 

The chapter 9 characterizes various [Hemin]+ adducts by IR-PD spectroscopy in 

conjunction with DFT modelling. It reports the effect of different adsorbates (N2, CO, O2) on 

the biomolecule and it observes the transition from a non-classical to a classical CO complex. 
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2 Experimental and Computational Methods 

2.1 Ion Sources 

Ion sources are inevitably linked with mass spectrometry. The diversity of available ion 

sources provides for manifold possibilities for the characterization and analyzation of 

gaseous ions.[1-2] In the following chapters two selected ion sources are presented as they 

were used in the research studies of this thesis. 

2.1.1 Laser Vaporization (LVAP) Source 

The investigated metal clusters are produced by a home built Laser VAPorization (LVAP) 

cluster ion source. The LVAP cluster ion source was first described by Bondybey and 

English[3-4], and Smalley[5-6]. Our source mainly comprises a home built piezoelectric valve[7], 

an expansion / interaction block, and an expansion channel (Figure 2.1). 

 

 

Figure 2.1 Schematic drawing of a LVAP source: gas line (1), piezoelectric 

valve (2), expansion / interaction block (3), expansion channel (4), mesh (5). 
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The second harmonic of a Nd:YAG laser (Innolas, Spitlight 300; 20 Hz) is focused on a 

rotating metal foil (thickness: 0.1 – 0.5 mm) composed of the metal or alloy of interest. The 

resulting plasma consists of neutral atoms, cationic and anionic species. The plasma is 

captured by a short transversal He gas pulse generated by the home built piezoelectric valve. 

This valve operates with a backing pressure of 12 – 20 bar, an opening time of approximately 

40 µs, and a repetition rate of 20 Hz. The gas pulse expands into the source vacuum 

chamber, raising the chamber pressure from 2 x 10-7 mbar up to 2 x 10-4 mbar. The metal 

plasma is cooled within the supersonic expansion of the He gas and metal cluster ions are 

formed in the expansion channel. No further ionization step is needed. Clusters in the size 

range of 2 to 40 atoms are generated. The intensity maximum of the produced cluster 

distribution can be influenced by variation of the backing pressure, the valve opening time, 

the laser-valve-delay, and the applied source voltages. The charge state of the produced 

clusters can be selected by the polarity of the source voltages and of the subsequent ion 

optics. 

The cobalt foil was purchased from Alfa Aesar (purity: 99.95 %). The nickel , iron, and 

ruthenium foils were purchased as mono isotopic materials form Oak Ridge National 

Laboratory (58Ni purity: 99.61 %, 56Fe purity: 99.93 %, 102Ru: 99.38 %). 

2.1.2 ElectroSpray Ionization (ESI) Source 

ElectroSpray Ionization (ESI) is a method to gently transfer ions from solution into the gas 

phase. The basis for the development of ESI has been described by Zeleny in 1917[8] and was 

first realized by Dole in 1968[9]. In 2002 Fenn was awarded with the Nobel Prize for the 

combination of the ESI source with a quadrupole mass spectrometer and its application.[10-11] 

Since then ESI mass spectrometry has been proven to be a valuable tool with wide range 

applications. Inter alia, it enables the analysis of biomolecules[12], non-covalent 

complexes[13], catalytic intermediates[14-15] or transition metal complexes[16]. 

To start the ESI process (Figure 2.2) an analyte solution is pushed through an 

electroconductive capillary (ESI capillary) by a syringe pump. A strong electrostatic field is 

applied between the capillary and the orifice of the mass spectrometer. This leads to a 

charge separation within the solution and the formation of a Taylor Cone[17-18]. Charged 

droplets are released from the Taylor Cone when the coulomb repulsion exceeds the surface 
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tension of the solvent. The generated droplets shrink by solvent evaporation until they reach 

the Rayleigh limit[19] and undergo Coulomb explosions. This process is repeated until the 

droplets are in the nanometer size region[20]. The final release of the ions into the gas phase 

is discussed in three different models[21]: the ion evaporation model[22-23], the charge residue 

model[24-25], and the chain ejection model[26-27]. 

 

Figure 2.2[20] Schematic drawing of an ESI source visualizing the release of 

charged droplets during the ESI process. 

We use a commercially available Apollo II ESI source (Bruker, Figure 2.3). The sample 

solution (10-4 mol/l) is placed in a HamiltonTM gas tight syringe (0.5 ml). The sample solution 

is continuously injected into the electrospray needle through a peek capillary. The syringe 

pump provides for a constant flow rate of 120 µL/h. A nebulizer gas (N2, 3.0 L/min) facilitates 

the nebulization of the analyte solution and a heated dry gas (N2, 220 °C, 6.0 L/min) supports 

the solvent evaporation. The electrospray needle is grounded and a high voltage is applied 

to the spray shield in order to generate an electrostatic field. An additional electrostatic 

potential between the spray shield and the glass capillary focuses the ions into the capillary. 

This glass capillary is platinum coated at both ends which allows to apply an electrostatic 

gradient that guides the ions into the subsequent vacuum stage. After the glass capillary the 

ions are deflected into an ion funnel. A skimmer is located at the end of this first ion funnel. 

By adjusting the voltage of the skimmer in-source collision induced dissociation (in-source 

CID) can be performed. Then the ions enter the second ion funnel that leads to the source 
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hexapole. This hexapole can be used to accumulate the ions and generate ion packages 

before entering the next vacuum stage (cf. FRITZ). 

 

Figure 2.3[28] Schematic drawing of the Bruker Apollo II ESI source with the 

sample inlet (1), the nebulizer gas inlet (2), the electrospray needle (3), the spray 

shield (4), the heated dry gas (5), the glass capillary (6), and the capillary cap (7). 

2.2 Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR 

MS) 

The principles of cyclotron was first described by Lawrence in 1930.[29-31] On the basis of 

this effect the first ion cyclotron resonance (ICR) mass spectrometers were constructed in 

the early 1950.[32] The first Fourier Transform Ion Cyclotron (FT-ICR) mass spectrometers 

were introduced by Comisarow and Marshall.[33-34] The performances of these mass 

spectrometers were further increased with the combination with superconducting 

magnets.[35-36] 

In an ICR mass spectrometer the ions of interest are stored in an ion trap (ICR cell or 

Penning trap) that is located in a strong homogeneous magnetic field. The magnetic field 

forces the ions on a circular trajectory inside the ion trap. The radius of this motion is 

dictated by two opposing forces: the Lorentz and the Centrifugal force. 
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 �	
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��  Lorentz force 

���  Centrifugal force 

�  charge of the ion (� = � ∙ �) 

�  number of charges 

�  elementary charge 

���  velocity of the ion in the xy plane 

�  magnetic field 

�  ion mass 

�  radius of the ions orbit 

 

The velocity in the xy plane is substituted by the angular velocity and the cyclotron 

frequency can be inserted into the equation: 

 ��� = 
�	  2-3 

 �	 = ��
	 = ��
�   2-4 

 
	 = ��
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The cyclotron frequency is independent from the initial velocity in the xy plane and 

proportional to the mass to charge ration (m/z). 

An ICR cell consists of at least six plates (Figure 2.4). The front and the back trapping plate 

serve to trap the ions in the cell along the z-axis by an electrostatic field. This trapping results 

in an oscillatory motion along the z-axis - the trapping motion. The two excitation plates 

facing each other provide for the alternating electric field. By applying a frequency sweep to 

the excitation plates, the ions are accelerated and their orbits increase. The oscillating ions 

induce an image current in the two detection plates. The spectrum is recorded by measuring 

this image current. 
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Figure 2.4 Schematic Drawing of an ICR cell (Bruker Infinity CellTM[37]) with the 

front trapping plate (1), an excitation plate (2), a detection plate (3), and the 

back trapping plate (4). 

The ion movement inside the ICR cell consists of several components(Figure 2.5). Besides 

the already mentioned cyclotron motion and the trapping motion, the ions move along an 

electrostatic potential. This motion is called magnetron motion and is mass independent. All 

motions are superimposed. 

 

Figure 2.5[38] Ion motion within an ICR cell consisting of the magnetron 

motion  (dashed line), the magnetron motion plus the trapping motion (dotted 

line), and the overall motion including the cyclotron motion (solid line). 

The ICR cell can also be used as a mass selector. A specific m/z ratio can be isolated by 

applying a frequency sweep excluding the resonance frequency of the m/z ratio of interest. 

The other ions are ejected from the ICR cell as they are excited on much higher and unstable 
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orbits than for detection. By applying this high excitation only to one specific resonance 

frequency, the respective m/z ratio can be ejected from the ICR cell.  

FRITZ 

The experimental setup FRITZ (Fouriertransform Reactive Investigation Test Zoo) is a 

modified FT-ICR mass spectrometer (Bruker, Apex Ultra) that is equipped with two different 

ion sources and two cryogenically cooled ion traps (Figure 2.6). 

 

Figure 2.6 Schematic drawing of the FRITZ setup with the ESI source (1) that is 

located opposing the LVAP source but is shown here on the magnetic field axis 

for clarity, the LVAP source (2), the quadrupole ion beam bender (3), the 

quadrupole mass filter (4), the cryogenically cooled hexapole ion trap (5), the 

cryogenically cooled ICR cell (6), and the two two-stage closed cycle He 

cryostats (7). 

The ions are generated by either the LVAP source or the commercially available Apollo II 

ESI source. Both ion sources are coupled to the mass spectrometer by home built gate valves 

to ensure the possibility of individual operation of the source vacuum systems. Home built 

ion optics guide the ions to a home built electrostatic quadrupole ion beam bender. This ion 

beam bender bends the ion beam by 90° onto the magnetic field axis. The beam is guided 
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into a quadrupole mass filter by another stack of home built ion optics. This mass filter 

provides for the possibility of a first mass selection. After the mass filter the ions enter the 

cryogenically cooled hexapole ion trap. This ion trap is connected to the second stage of a 

4 K two-stage closed cycle He cryostat (Sumitomo SRDK-101E with a HC-4E compressing 

unit). The temperature of both cooling stages is monitored with two temperature sensors 

(LakeShore, CernoxTM CX-1060-CO-HT-P-1.4M) that are calibrated from 1.4 to 420 K. The 

temperature can be adjusted by heating resistors (Cartridge Heater, Janis Research, 

R = 50 Ω) that are controlled by a temperature controller (LakeShore, Model 336). There are 

two gas lines attached to the hexapole ion trap for the injection of buffer and/or reaction 

gas. The gases can be introduced by either pulsed or leak valves. After a variable storage 

time (0 – 30 s), the ions are transferred to the ICR cell. This ICR cell is located in the high field 

region of a superconducting solenoid (B = 7 T) within the ultra high vacuum region of this 

setup. The ICR cell is connected to the second stage of a 10 K two-stage closed cycle He 

cryostat (Sumitomo SRDK-408S2 with a W-71D compressing unit) and shielded by two 

actively cooled and three passively cooled shielding tubes. The temperature is monitored by 

three temperature sensors (LakeShore,CernoxTM CX-1050-CO-HT-P) calibrated from 4 to 

325 K that are located directly on the second stage of the cold head, on a shield connected 

to first stage, and on the backside of the ICR cell. Again the temperature can be adjusted and 

is controlled by a temperature controller (LakeShore, Model 340). There is again the 

possibility to introduce gas either pulsed or continuously into the ICR cell. Furthermore the 

ions can be irradiated with an IR laser in this cell. Thus, the ICR cell serves as reaction cell, 

mass selector and mass analyzer altogether. 
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Figure 2.7 Scheme of the ion sources and optics leading to the hexapole ion trap: 

ESI source (1), LVAP source (2), ion optics (3) and (5), quadrupole ion beam 

bender (4), quadrupole mass filter (6), and hexapole ion trap (7). 

2.3 Isothermal Cryo Kinetics 

Isothermal Cryo Kinetics are recorded by storing specific mass selected ions in the 

hexapole at a well-defined temperature and a well-defined amount of reaction gas. After 

storing the ions for variable reaction times in the hexapole, mass spectra are recorded. 

Reaction products appear as additional masses in the respective mass spectrum in 

dependence of the reaction time, while the intensity of the parent ions decrease. 

Relative Rate Constants 

The relative rate constants are determined by fitting the normalized reaction time 

dependent intensities of the parent and product ions derived from the mass spectra. The fits 

to pseudo-first-order-kinetics are performed with the evofit program.[39] Fitting the 
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experimental kinetics allows for the quantitative determination of the relative rate constants 

like in the case of the stepwise N2 adsorption: 

 [� !"�)�$% +"�		
				(! ,�)				*+++++,
(-! ,�./)0+++++1	[� !"�)�%/$% 2-6 

Absolute Rate Constants 

The average dipole orientation theory (ADO)[40-41] describes the collision rate of polar 

molecules and is an extension of the classical Langevin collision rate[42]. The ADO theory 

provides for the theoretical limit of the absolute rate: 

 (234 = �
�56√8 9√: + ;μ3= �

�(�>?  2-7 

 μ  reduced mass 

 α  polarizability 

 μA  dipole moment 

 B  parameter between 0 and 1, expressed by polarizability volume and μA 

 

This theory is often used to calculate the reaction rates of charged clusters with small 

molecules but it underestimates the reaction rates.[43-44] Therefore two other models were 

introduced by Kummerlöwe and Beyer – the hard sphere average dipole orientation model 

(HAS) and the surface charge capture model (SCC).[45] 

The absolute rate constants C!D,E)FGH  can be derived from the relative rate constants C!D,E) 
and the absolute collision gas number density IJK!L): 
 (! ,�)MNO = (! ,�)

P"�!>)  2-8 

The collision gas number is calculated from the pressure in the chamber QRSTT	U and an 

effective geometry factor BFVV: 

 P"� = ;MWWW;X66	Y
(�>X66	Y   2-9 

The geometry factor we estimated the geometry factor by the virtue of numerous kinetic 

studies to be 1.8 ± 0.4 at 26 K with a net uncertainty of ± 50 %. The absolute reaction 
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efficiency Z is calculated from the absolute rate constant and collision rate. It can be seen as 

reaction probability after a collision or as sticking probability as know from surface science. 

 [ = (MNO
(;\]]  2-10 

2.4 InfraRed (Multiple) Photon Dissociation (IR-(M)PD) 

Infrared (IR) (absorption) spectroscopy is a valuable tool to provide for 

vibrational/structural information and reactivity of various substances. The application of IR 

spectroscopy to isolated gaseous ions would enable investigations omitting any solvent or 

crystal effects. However, direct measurements of light absorption are not possible due to 

the low particle density in the ion traps. Therefore, more elaborated schemes are needed to 

obtain the IR spectra of gaseous ions. The InfraRed (Multiple) Photon Dissociation (IR-(M)PD) 

spectroscopy is an action spectroscopy approach record the vibrational spectra.[46] Here the 

isolated gaseous ion is irradiated with tunable IR laser radiation. If the laser radiation 

frequency is in resonance with a vibrational transition of the ion, a photon is absorbed. The 

absorbed energy is rapidly distributed into other molecular vibrational degrees of freedom 

by internal vibrational redistribution (IVR).[47] The original adsorbing mode is now able to 

adsorb another IR photon. This process is repeated until enough energy is available in the 

ion to break a weak bond[46] (Figure 2.8). 

 

Figure 2.8[48] Schematic representation of the IR-MPD process. A resonant IR 

photon is adsorbed by the ion and the energy is redistributed by IVR. This 

process is repeated until the dissociation threshold is reached and the ion 

fragmentizes. 
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The resulting fragments can be detected by mass spectrometry and the IR-(M)PD 

spectrum is obtained by plotting the fragmentation efficiency (frag. eff.) vs. the laser 

frequency. 

 

M^. `

.= ∑ bc

c
∑ bc

c %∑ bcWc

	  2-11 

de�f  intensity of the fragment ions 

deV  intensity of the parent ions 

 

Note that if multiple photons are required to dissociate the ion, the fragmentation 

efficiency is not linearly correlated to laser intensity and the adsorption cross section of the 

respective ion. Therefore IR-MPD spectra may differ in intensity to solid state spectra or 

calculated linear adsorption spectra. 

For the cleavage of covalent bonds multiple IR photons are required as one IR photon in 

the region from 800 cm-1 to 4000 cm-1 does not provide the sufficient energy (10 –

 50 kJ/mol).[49-50] To enable a single photon dissociation messenger or tagging techniques can 

be applied.[51] In this techniques a weakly bound unreactive atom or molecule (He, Ar, H2, 

N2,…) is attached to the species of interest. Low temperatures are needed for the 

attachment that can be achieved by the use of supersonic expansion jets or cryogenically 

cooled ion traps.[51-53] 

Optical Parametric Oscillator / Amplifier (OPO / OPA) IR Laser System 

For the recording of IR-(M)PD spectra over a wide frequency range an intense tunable light 

source is needed. Optical Parametric Osciallator[54] (OPO) / Optical Parametric Amplifier[55] 

(OPA) laser systems provide for such radiation. Our OPO / OPA laser system (LaserVision) 

(Figure 2.9) is pumped by a pulsed injection seeded Nd:YAG (Continuum Powerlite DLS 8000) 

that provides for intense laser radiation at 1064 nm, a pulse length of about 7 ns, and a pulse 

energy in the range of 530 – 600 mJ/pulse. 
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Figure 2.9 Scheme of the beam path in the OPO / OPA laser system (LaserVision). 

This fundamental beam is divided by a beam splitter into two beams with one third and 

two thirds of the original intensity. Two thirds of the intensity are directed to the OPA stage 

and the one third is frequency doubled (second harmonic generation, SHG) to 532 nm by a 

potassium titanyl phosphate crystal (KTP). The residual fundamental beam is dumped and 

the 532 nm beam is guided into to the OPO resonator. This resonator consists of two KTP 

crystals that split the 532 nm into the signal 1 and the idler 1 waves. The signal wave has a 

higher frequency than the idler wave, per definition. The frequency can be tuned by varying 

the angle between the KTP crystals and the incident 532 nm beam. Note that the photon 

energy of 532 nm is identical to the sum of the photon energy of the signal and idler due to 

energy conservation. The signal 1 radiation is dumped by a silicon filter and the idler 1 

radiation is guided into the OPA stage. The OPA stage consists of four potassium titanyl 

arsenate (KTA) crystals. Within this stage the remaining two thirds of the fundamental beam 

is combined with the idler 1 beam. This process yields signal 2 and idler 2 radiation in which 

the signal 2 beam corresponds to the amplified idler 1. Now either the signal 2 beam is 

dumped and the idler 2 is guided towards the mass spectrometer, or both beams are mixed 

in an additional difference frequency generation (DFM) stage. This stage consists of a silver 

gallium diselenide (AgGaSe2) crystal[56] and a zinc selenide (ZnSe) filter to dump the residual 

signal 2 and idler 2 radiation. 
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Figure 2.10 Scheme of the nonlinear optical processes and frequency 

conversions within the OPO / OPA laser system, yielding the respective IR 

photons. 

The idler 2 wave provides for radiation in the region from 4700 – 2400 cm-1 that is suitable 

to probe OH, NH or CH stretching modes. The signal 2 wave may also be used to observe low 

lying electronic transition. The DFM crystal generates radiation in the region from 2400 –

 800 cm-1 that enables the measurement of CO stretching modes, CH bending modes or the 

stretching mode of adsorbed N2. 

Overall this OPO / OPA laser systems provides for intense tunable IR radiation in the 

region from 7400 to 800 cm-1, a pulse energy between 0.1 – 20 mJ/pulse and a spectral 

resolution of approximately 0.9 cm-1. The laser system is calibrated with a wave meter 

(Bristol Instruments, 821B-NIR) and the beam profile of the fundamental beam is constantly 

monitored with a beam profiler camera (DataRay Inc., WinCamD). 

2.5 Density Functional Theory (DFT) 

To provide for a more detailed interpretation of experimental results a comparison with 

calculations is indispensable. Density Functional Theory (DFT) is a widely used approach for 

the calculations of molecular properties, like structures or IR frequencies.[57-59] 

The basis for DFT is that all information required for the determination of the energy of a 

molecule is given by its electron density I!�g). This was first described by Thomas and 

Fermi.[60-61] Hohenberg and Kohn proved the correctness of this statement by their 1st 

theorem[62] and showed that the variational principle could be applied by their 2nd theorem. 

The energy minimization by application of the variational principle was described by Kohn 

and Sham[63], which defined the energy as function of the electron density as follows: 

 



2. Experimental and Computational Methods   

 

23 
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LT!I)  kinetic energy 

op��!�g)  effective potential 

q!�g)   Coulomb potential 

rs�!I)	  exchange correlation energy 

 

The corresponding Kohn-Sham wavefunction is a single Slater determinant and is 

constructed from a set of orbitals that are the lowest energy solution to: 

 t− ℏK
wE∇w + op��!�g)yΦe!�) = {eΦe!�)  2-13 

Φe!�)  Kohn-Sham orbital i 

{e   orbital energy  

 

The electron density of the system can now be described as: 

 P!
kg) = ∑ |}c!
)|�"c  2-14 

 

The most crucial part in DFT is the approximation of the exchange correlation energy 

rs�!I)	. It includes all unknown factors and has a significant contribution. The exchange 

correlation energy is subject to the used functionals. The local density approximation 

(LDA)[58] or the generalized gradient approximation (GGA) are common approaches to 

estimate the exchange correlation energy. The use of hybrid functionals has proven to 

provide for accurate results of many systems.[64-65] 

For the geometry optimization of the calculated system the potential energy surface has 

to be scanned for so called stationary points. Such stationary points occur if the first 

derivative equals zero, which happens at energetic minima (minimum structures) or 

energetic saddle points (transition states). To discriminate between these, the second 

derivative has to be inspected. If all values are positive a minimum structure is reached and 

if one value is negative a transition state. As this method only finds minimum structures with 

geometries similar to the starting geometry, several calculations with different starting 
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structures have to be performed. The global minimum can be found by comparing the 

calculated energies of the different structures. The comparison of calculated properties, like 

the linear absorption spectra, with experiments structural assignments can be made. 

All calculations presented here were performed using the Gaussian 09 program 

package[66]. The used functional and basis sets will be addressed in each chapter separately. 

The calculations were gratefully performed on the computing clusters of the Theoretical 

Chemistry department under the supervision of Prof. C. van Wüllen. 
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4.3  Supplementary Information 

Table of Content: 

Energy differences including zero-point-energy corrections for several [Ni9(N2)1]+ isomers 

Table S1. Relative stabilities including zero-point-correction (in kJ/mol) for the computed 

tricapped octahedral Ni9+ cluster core upon the first N2 adsorption for decet spin states at 

several adsorption positions. 

Detailed information on all observed reaction steps of the N2 adsorption/desorption 

Table S2. Pseudo-first-order rate constants for the N2 adsorption/desorption on Ni9+ clusters 

(k(9,m) and k-(9,m+1)), related absolute rate constants (k!9,m)abs and k − !9,m + 1)abs) 

calculated collision rates (kL and kSCC). 

Table S3. Pseudo-first-order rate constants for the N2 adsorption/desorption on Ni13
+ 

clusters (k(13,m) and k-(13,m+1)), related absolute rate constants (k!13,m)abs and k − !13,m +1)abs) and calculated collision rates (kL and kSCC). 

Spectrum of the (9,13) species in an extended frequency range 

Figure S1. IR-MPD spectrum of the (9,13) species in an extended frequency range of 

1010 - 2340 cm-1. Note, that this spectrum has been recorded with increased laser power. 

Computed geometries and relative energies for multiple local minimum structures for the 

naked Ni9
+ cluster and relative stabilities for icosahedral Ni13

+ clusters considering several 

spin states. 

Figure S2: Computed geometries for Ni9+ and their relative stabilities. Note, that the stated 

values are given for the favoured spin multiplicity, respectively. 

Table S4. Relative stabilities for computed icosahedral Ni13
+ with variation of the spin 

multiplicity, 2S + 1 = 10-18. 

Possible adsorption positions on the tricapped octahedral Ni9+ cluster core and relative 

stabilities with variation of the spin multiplicity 

Figure S3: Tricapped octahedron with numbered adsorption positions. Note, that each 

number reflects the Ni-Ni coordination, respectively. 
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Table S5. Relative stabilities for the computed tricapped octahedral Ni9+ cluster core upon 

the first N2 adsorption with variation of the spin multiplicity and adsorption position. 

Comparison of the experimental IR-PD spectrum of (9,2) and calculated IR absorption 

spectra for the assumed tricapped octahedral and bicapped pentagonal bipyramidal Ni9
+ 

motifs 

Figure S4. IR-PD spectrum of (9,2) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 2S + 1 = 10). The calculated spectra are 

scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 

Comparison of the experimental IR-PD spectra of (9,m) (m = 3,4,6,7, and 10-13) and 

calculated IR absorption spectra for the assumed tricapped octahedral and bicapped 

pentagonal bipyramidal Ni9
+ motifs 

Figure S5. IR-PD spectrum of (9,3) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 2S + 1 = 10). The calculated spectra are 

scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 

Figure S6. IR-PD spectrum of (9,4) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 2S + 1 = 10). The calculated spectra are 

scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 

Figure S7. IR-PD spectrum of (9,6) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 2S + 1 = 10). The calculated spectra are 

scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 

Figure S8. IR-PD spectrum of (9,7) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 2S + 1 = 10). The calculated spectra are 

scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 
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Figure S9. IR-PD spectrum of (9,10) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms and in spin multiplicities (black; PBE0/ECP(Ni), cc-pVTZ(N)). The 

calculated spectra are scaled by 0.93 and simulated using the gaussian profile of 

fwhm = 5 cm-1. 

Figure S10. IR-PD spectrum of (9,11) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the 

adsorbing Ni atoms and in spin multiplicities (black; PBE0/ECP(Ni), cc-pVTZ(N)). The 

calculated spectra are scaled by 0.93 and simulated using the gaussian profile of 

fwhm = 5 cm-1. 

Figure S11. IR-PD spectrum of (9,12) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with variation in the sole 

vacant Ni atom and in spin multiplicities (black; PBE0/ECP(Ni), cc-pVTZ(N)). The calculated 

spectra are scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 

Figure S12. IR-PD spectrum of (9,13) (blue) and the calculated IR absorption spectra for the 

tricapped octahedral and bicapped pentagonal bipyramidal motifs with maximum N2 

adsorption as shown in Fig. 5 (black; PBE0/ECP(Ni), cc-pVTZ(N)). The calculated spectra are 

scaled by 0.93 and simulated using the gaussian profile of fwhm = 5 cm-1. 

Calculated IR absorption spectra including the Grimme correction for dispersion with the 

original D3 damping function (GD3) 

Figure S13. Calculated IR absorption spectra for the tricapped octahedral motif (top lanes) in 

comparison with calculated IR absorption spectra including the Grimme correction for 

dispersion with the original D3 damping function (bottom lanes) for (9,8) for the octet spin 

state (left) and the decet spin state (right). The calculated spectra are scaled by 0.93 and 

simulated using the gaussian profile of fwhm = 5 cm-1. 

Figure S14. Calculated IR absorption spectra for the tricapped octahedral motif (top lanes) in 

comparison with calculated IR absorption spectra including the Grimme correction for 

dispersion with the original D3 damping function (bottom lanes) for (9,9) for the octet spin 

state (left) and the decet spin state (right). The calculated spectra are scaled by 0.93 and 

simulated using the gaussian profile of fwhm = 5 cm-1. 
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Energy differences including zero-point-energy corrections for several [Ni9(N2)1]+ isomers 

Table S1. Relative stabilities including zero-point-correction (in kJ/mol) for the computed 

tricapped octahedral Ni9+ cluster core upon the first N2 adsorption for decet spin states at 

several adsorption positions. 

position ∆��T	U ∆��T	U��� ∆��STT	U ∆��STT	U ∆��STT	U 

3,1 4.5 5.5 9.5 9.5 0 

3,2 0 0 0 0 0.8 

4 15.9 16.1 18.3 18.3 13.7 

5 10.8 10.8 12.8 12.8 9.2 
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Detailed information on all observed reaction steps of the N2 adsorption/desorption 

Table S2. Pseudo-first-order rate constants for the N2 adsorption/desorption on Ni9+ clusters 

(k(9,m) and k-(9,m+1)), related absolute rate constants (k!9,m)abs and k − !9,m + 1)abs) 

calculated collision rates (kL and kSCC). 

m 
k(9,m) 

s-1 

k-(9,m+1) 

s-1 

C!�,E)FGH 	
10-10 cm3 s-1 

k�!�,�%�)��� 	
10-13 cm3 s-1 

kL 

10-10 cm3 s-1 

kSCC 

10-10 cm3 s-1 

0 3.6(3) <0.001 6.37 <1.77 6.05 12.66 

1 4.2(3) <0.001 7.43 <1.77 6.04 12.78 

2 3.9(3) <0.001 6.90 <1.77 6.03 12.91 

3 3.9(3) <0.001 6.90 <1.77 6.02 13.02 

4 3.6(4) <0.001 6.37 <1.77 6.02 13.13 

5 3.5(4) <0.001 6.19 <1.77 6.01 13.24 

6 3.1(3) <0.001 5.48 <1.77 6.01 13.36 

7 2.4(2) <0.001 4.25 <1.77 6.00 13.46 

8 1.5(2) <0.001 2.65 <1.77 6.00 13.57 

9 2.1(2) <0.001 3.72 <1.77 5.99 13.68 

10 3.8(4) <0.001 6.72 <1.77 5.99 13.78 

11 1.1(1) <0.001 1.94 <1.77 5.99 13.88 

12 0.7(1) 0.07(1) 1.24 123 5.98 13.98 

 

 

Table S3. Pseudo-first-order rate constants for the N2 adsorption/desorption on Ni13
+ 

clusters (k(13,m) and k-(13,m+1)), related absolute rate constants (k!13,m)abs and k − !13,m +1)abs) and calculated collision rates (kL and kSCC). 

m k(13,m) 

s-1 

k-(13,m+1) 

s-1 

k!�S,�)��� 	
10-10 cm3 s-1 

k�!�S,�%�)��� 	
10-13 cm3 s-1 

kL 

10-10 cm3 s-1 

kSCC 

10-10 cm3 s-1 

0 4.2(2) <0.001 7.43 <1.77 6.00 13.60 

1 4.2(2) <0.001 7.43 <1.77 5.99 13.71 

2 4.2(2) <0.001 7.43 <1.77 5.99 13.81 

3 4.4(2) <0.001 7.78 <1.77 5.99 13.91 

4 4.4(2) <0.001 7.78 <1.77 5.98 14.01 

5 4.5(2) <0.001 7.96 <1.77 5.98 14.11 

6 4.6(3) <0.001 8.14 <1.77 5.98 14.20 

7 4.6(3) <0.001 8.14 <1.77 5.97 14.30 

8 4.6(3) <0.001 8.14 <1.77 5.97 14.39 

9 4.3(2) <0.001 7.61 <1.77 5.97 14.48 

10 4.2(2) <0.001 7.43 <1.77 5.97 14.57 

11 4.4(2) <0.001 7.78 <1.77 5.96 14.66 
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Spectrum of the (9,13) species in an extended frequency range 

 

Figure S1. IR-MPD spectrum of the (9,13) species in an extended frequency range 

of 1010 - 2340 cm-1. Note, that this spectrum has been recorded with increased 

laser power. 
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Computed geometries and relative energies for multiple local minimum structures for the 

naked Ni9
+ cluster and relative stabilities for icosahedral Ni13

+ clusters considering several 

spin states. 

 

Figure S2: Computed geometries for Ni9+ and their relative stabilities. Note, that 

the stated values are given for the favoured spin multiplicity, respectively. 

 

Table S4. Relative stabilities for computed icosahedral Ni13
+ with variation of the spin 

multiplicity, 2S + 1 = 10-18. 

2S+1 rel. energy / kJ/mol 

10 56 

12 50 

14 31 

16 0 

18 89 
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Possible adsorption positions on the tricapped octahedral Ni9+ cluster core and relative 

stabilities with variation of the spin multiplicity 

 

Figure S3: Tricapped octahedron with numbered adsorption positions. Note, that 

each number reflects the Ni-Ni coordination, respectively. 

Table S5. Relative stabilities for the computed tricapped octahedral Ni9+ cluster core upon 

the first N2 adsorption with variation of the spin multiplicity and adsorption position. 

position 2S+1 rel. energy / kJ/mol 

3,1 6 23 

 8 67 

 10 5 

 12 103 

 14 168 

3,2 6 75 

 8 82 

 10 0 

 12 97 

 14 139 

4 6 22 

 8 74 

 10 16 

 12 94 

 14 205 

5 6 22 

 8 17 

 10 10 

 14 154 

6 6 24 

 8 57 

 10 15 

 12 74 

 14 189 

7 6 138 

 8 33 

 10 22 

 12 111 

 14 187 
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Comparison of the experimental IR-PD spectrum of (9,2) and calculated IR absorption 

spectra for the assumed tricapped octahedral and bicapped pentagonal bipyramidal Ni9
+ 

motifs 

 

Figure S4. IR-PD spectrum of (9,2) (blue) and the calculated IR absorption spectra 

for the tricapped octahedral and bicapped pentagonal bipyramidal motifs with 

variation in the adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 

2S + 1 = 10). The calculated spectra are scaled by 0.93 and simulated using the 

gaussian profile of fwhm = 5 cm-1. 
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Comparison of the experimental IR-PD spectra of (9,m) (m = 3,4,6,7, and 10-13) and 

calculated IR absorption spectra for the assumed tricapped octahedral and bicapped 

pentagonal bipyramidal Ni9
+ motifs 

 

Figure S5. IR-PD spectrum of (9,3) (blue) and the calculated IR absorption spectra 

for the tricapped octahedral and bicapped pentagonal bipyramidal motifs with 

variation in the adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 

2S + 1 = 10). The calculated spectra are scaled by 0.93 and simulated using the 

gaussian profile of fwhm = 5 cm-1. 
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Figure S6. IR-PD spectrum of (9,4) (blue) and the calculated IR absorption spectra 

for the tricapped octahedral and bicapped pentagonal bipyramidal motifs with 

variation in the adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 

2S + 1 = 10). The calculated spectra are scaled by 0.93 and simulated using the 

gaussian profile of fwhm = 5 cm-1. 
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Figure S7. IR-PD spectrum of (9,6) (blue) and the calculated IR absorption spectra 

for the tricapped octahedral and bicapped pentagonal bipyramidal motifs with 

variation in the adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 

2S + 1 = 10). The calculated spectra are scaled by 0.93 and simulated using the 

gaussian profile of fwhm = 5 cm-1. 
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Figure S8. IR-PD spectrum of (9,7) (blue) and the calculated IR absorption spectra 

for the tricapped octahedral and bicapped pentagonal bipyramidal motifs with 

variation in the adsorbing Ni atoms (black; PBE0/ECP(Ni), cc-pVTZ(N), 

2S + 1 = 10). The calculated spectra are scaled by 0.93 and simulated using the 

gaussian profile of fwhm = 5 cm-1. 
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Figure S9. IR-PD spectrum of (9,10) (blue) and the calculated IR absorption 

spectra for the tricapped octahedral and bicapped pentagonal bipyramidal 

motifs with variation in the adsorbing Ni atoms and in spin multiplicities (black; 

PBE0/ECP(Ni), cc-pVTZ(N)). The calculated spectra are scaled by 0.93 and 

simulated using the gaussian profile of fwhm = 5 cm-1. 
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Figure S10. IR-PD spectrum of (9,11) (blue) and the calculated IR absorption 

spectra for the tricapped octahedral and bicapped pentagonal bipyramidal 

motifs with variation in the adsorbing Ni atoms and in spin multiplicities (black; 

PBE0/ECP(Ni), cc-pVTZ(N)). The calculated spectra are scaled by 0.93 and 

simulated using the gaussian profile of fwhm = 5 cm-1. 



 4. Cryo Kinetics and Spectroscopy of Cationic Nickel Clusters: Rough and Smooth Surfaces 

 

66 

 

 

Figure S11. IR-PD spectrum of (9,12) (blue) and the calculated IR absorption 

spectra for the tricapped octahedral and bicapped pentagonal bipyramidal 

motifs with variation in the sole vacant Ni atom and in spin multiplicities (black; 

PBE0/ECP(Ni), cc-pVTZ(N)). The calculated spectra are scaled by 0.93 and 

simulated using the gaussian profile of fwhm = 5 cm-1. 
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Figure S12. IR-PD spectrum of (9,13) (blue) and the calculated IR absorption 

spectra for the tricapped octahedral and bicapped pentagonal bipyramidal 

motifs with maximum N2 adsorption as shown in Fig. 5 (black; PBE0/ECP(Ni), cc-

pVTZ(N)). The calculated spectra are scaled by 0.93 and simulated using the 

gaussian profile of fwhm = 5 cm-1. 
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Calculated IR absorption spectra including the Grimme correction for dispersion with the 

original D3 damping function (GD3) 

 

Figure S13. Calculated IR absorption spectra for the tricapped octahedral motif 

(top lanes) in comparison with calculated IR absorption spectra including the 

Grimme correction for dispersion with the original D3 damping function (bottom 

lanes) for (9,8) for the octet spin state (left) and the decet spin state (right). The 

calculated spectra are scaled by 0.93 and simulated using the gaussian profile of 

fwhm = 5 cm-1. 
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Figure S14. Calculated IR absorption spectra for the tricapped octahedral motif 

(top lanes) in comparison with calculated IR absorption spectra including the 

Grimme correction for dispersion with the original D3 damping function (bottom 

lanes) for (9,9) for the octet spin state (left) and the decet spin state (right). The 

calculated spectra are scaled by 0.93 and simulated using the gaussian profile of 

fwhm = 5 cm-1. 
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5.1 Preamble 

The experiments were performed by the experimental team consisting of J. Mohrbach, and 

myself. The data evaluation was done by J. Mohrbach and myself. The initial manuscript was 

written by J. Mohrbach and revised by G. Niedner-Schatteburg and myself. 

This manuscript has been accepted for publication in The Journal of Chemical Physics as part 

1 of 2 of a back to back submission (for part 2 see chapter 6). 
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5.2 Abstract 

We present the stepwise N2 adsorption kinetics of size selected Nin+ (n =5-20) clusters at 

26 K as obtained by a hybrid tandem ion trap instrument. Pseudo-first-order kinetic fits 

confirm consecutive adsorption steps without evidence of cluster isomers and up to 

adsorption limits, which scale with cluster size. The reaction rates for the initial N2 

adsorption increase smoothly with cluster size and similar to hard sphere cluster modelling. 

The isothermal kinetics allow for the tentative elucidation of cluster surface morphologies 

and for their classification into highly symmetrical clusters with all smooth surfaces, small 

clusters with rough surfaces, and large clusters with partially rough and smooth surface 

areas. The parallel characterization of the vibrational spectroscopy of some cluster 

adsorbate complexes supports and refines the achieved conclusions and is published back to 

back to this contribution. These two studies elucidate the adsorbate to cluster interaction, 

and they confirm and specify the sometimes considerable structural fluxionality of finite and 

curved metal surfaces in high detail. This work precedes further studies along the present 

lines of thought. 
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5.3 Introduction 

Structure and adsorption dynamics of transition metal (TM) clusters have been subject of 

considerable research by experiments and computations alike. Such research is very 

involved. Reactivity studies of naked metal clusters provide a powerful approach towards 

cluster structure determination. The adsorption of weakly bound molecules to clusters is 

influenced by the coordination of the surface atoms, which in turn puts boundaries on 

conceivable overall cluster structures. In the context of CO adsorption on some transition 

metal clusters and of related carbonyl complexes it showed that adsorbates may well serve 

to titrate available surface sites up to saturation for the elucidation of underlying structural 

motifs.[1-5] Beyond mere adsorption to clusters and nanostructures, it is worthwhile to 

study and understand the relation of this and other diatomic molecules such as e.g. NO, N2, 

and H2 to corresponding bulk surfaces in general, driven by perspectives and challenges in 

heterogeneous catalysis.[6-8] 

In particular the N2 adsorption to Fe surfaces has been elucidated by angle resolved LEED 

studies in conjunction with potential surface modelling, pointing to α-N2 and Z-N2 motifs[9] 

which resemble η2 side-on and η1 end-on coordination of N2 to multiple and single metal 

centers, respectively. Early adsorption studies of CO on Nin- (n=3-10) clusters determined 

saturation limits,[10] and the results from those cluster reactions with N2, O2, CO2 and N2O 

were interpreted in terms of cluster structures by empirical many-body potential and by 

subsequent mol. dynamics (MD) simulations.[11] Collision induced dissoociation (CID) 

studies of Nin+ (n=2-18) determined bond strengths and cohesion energies.[12] Butadiene 

dehydrogenation by Nin+ (n≤10) was found to be less efficient than by Pdn
+ or Ptn

+.[13] 

Kinetic studies of nickel cluster reactions with NO2 revealed complex reaction 

mechanisms.[14] Hot kinetics of C60 adsorption to Nin (n=2-72) revealed a size dependence 

consistent with C60 adsorption on essentially spherical Nin clusters without any evidence for 

C60 decomposition.[15] Methanol undergoes chemisorption, demethanation, and carbide 

formation by Nin+ (n=3-11), which was found to change dramatically with cluster size,[16] 

and the total reactivity to anti-correlate to the HOMO-LUMO gap.[17]  Exposure of isolated 

Nin+ (n=3-11) cluster cations to benzene revealed vivid acetylene formation.[16] Multistep 

reactions of Nin+ (n=2-29) with O2 revealed a selective formation of the nickel suboxides 

Ni13O8
+ and Ni16O10

+.[18] Structural, magnetic and adsorption properties of Nin (n=2-
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16, 21, 55) by DFT calculations with the Perdew-Burke-Ernzerhof (PBE) functional elucidated 

the most stable isomers and their CH4 adsorption into ”on top” sites to be understood in 

terms of the electronic stability and localization of the frontier MO’s.[19] Chemical probe 

experiments helped to elucidate structural motifs of Nin and Con clusters (n = 50-200), using 

ammonia and water as chemical probe molecules.[20, 21] The uptake of molecular nitrogen 

to small Nin clusters (n = 3-28, 49-71) helped to propose structures for bare clusters as well 

as for fully nitrogenated clusters.[22-24] 

We have performed kinetic studies of hydrocarbon activation on charged TM clusters,[25] 

and we have introduced X-ray studies by cryo ion trapping for the investigation of spin and 

orbital contributions to the magnetic moments of TM clusters.[26, 27] Our tandem cryo ion 

trap instrument[28] enabled us to focus on the vibrational spectroscopy of N2 adsorbates on 

size selected TM clusters under isothermal cryo conditions, first results on [Con(N2)1]+ 

(n = 8 – 17) clusters, and on [Nin(N2)m]+ (n = 9, 13; m = 0 - 13) clusters being published.[29, 

30] 

This study aims to elucidate N2 adsorption onto cationic nickel clusters [Nin(N2)m]+ (n = 5-

20) by kinetics investigation, and it obtains strong support of its findings through our 

adjoined infrared cryo spectroscopic study[31], which we will reference in the following as 

[SD], while we refer to the present kinetic study as [JM]. We aim to gain insight into the 

metal-adsorbate bonding and to unravel structure-reactivity relationships. 

5.4 Experimental and Computational Methods 

A customized Fourier Transform-Ion Cyclotron Resonance (FT-ICR) mass spectrometer 

(Apex Ultra Bruker Daltonics) served to perform the cluster production, isolation, N2 

condensation and mass analysis. A detailed description has been given before.[30] In brief: 

The nickel clusters were generated using a home-built laser vaporization cluster ion source 

as described before.[32, 33] Nickel atoms are evaporated from a rotating 0.4 mm thick 

isotopically enriched Ni foil (99,61%, Oak Ridge National Laboratories) by the second 

harmonic of a pulsed Nd:YAG laser (Innolas Spitlight 300, 20 Hz). The hot plasma is captured 

by a He gas pulse (40 µs, 15 bar) created by a homebuilt piezoelectric valve[34] and 

expanded into vacuum (10-7 mbar). The mass selected clusters are injected into a cryogenic 

hexapole ion trap. The ion trap is cooled to 26 K by a closed cycle He cryostat. Buffer and 
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reaction gas are introduced continuously. Sufficient nitrogen attachment is achieved by 

increasing the pressure in the ion trap from 1 x 10-7 mbar up to 4.5 x 10-7 mbar. Additional 

He is introduced to accomplish an efficient trapping and cooling of the ions (~ 5 x 10-6 mbar). 

After storing the mass-selected ions for a variable time (0-30 s), the manipulated ions of the 

form [Nin(N2)m]+ = (n,m) are guided by electrostatic lenses into the FT-ICR cell of the so-called 

‘‘infinity’’ type.[35] The ICR cell is held at temperatures below 10 K with a closed cycle He 

cryostat to prevent heating of the clusters by black body radiation prior to ion detection.  

The ICR cell serves for the detection of the formed [Nin(N2)m]+ = (n,m) cluster adsorbate 

complexes. The kinetic curves of cationic nickel clusters and their nitrogen adducts originate 

from reaction delay scans and subsequent evaluation of the recorded mass spectra. Fits to 

pseudo-first-order-kinetics occur through the “evofit” program.[36] Our thus determined 

rate constants for the (n,m) species (recorded at various pressures p(N2) = 1.1 -

 3.5 x 10-7 mbar) are normalized to the experimental conditions for the (13,m) species 

(recorded at p(N2) = 1.3 x 10-7 mbar). Fitting the experimental kinetics implies the 

quantitative determination of relative rate constants for N2 adsorption k(n,m) for each step 

m → m+1, and for N2 desorption k-(n,m+1) for each step m+1 → m alike: 

[��D!�w)E$% + 	�w					 			�!�,�)					*+++++,
�-!�,�.�)0+++++1					[��D!�w)E%�$% 

The relative rate constants k(n,m) determine the absolute rate constants C!D,E)FGH , the 

absolute collision gas number densities IJw!L) serving as the conversion factor: 

	C!D,E)FGH = C!D,E)/IJw!L) 
We obtain approximate values for IJw!L) indirectly from the pressure in the surrounding 

chamber pc
(300 K) and an effective geometry factor capp: 

IJw!26	�) = BFVVQRSTT	UC�LSTT	U  

The geometry factor capp shows to bear a significant dependence on the temperature of 

the hexapole ion trap. By numerous kinetic studies of transition metal cluster cations with 

neutral reactants at cryogenic temperatures we evaluated this factor capp to 1.8 ± 0.4 at 26 K 

with a net uncertainty of ± 50%.  
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The classical Langevin collision rate of ions with neutrals[37] is conveniently extended 

towards polar molecules by the average dipole orientation theory (ADO).[38, 39] The ADO 

theory gives the theoretical limit of the absolute rate constants, the collision rate kADO, based 

on a classical trajectory of a linear dipole in the field of a point charge:  

C�A  = �2εT√μ	¡√¢ + BμA£ 2¤C�L¥ 

µ is the reduced mass (of the cluster adsorbate complex), α is the polarizability and μD is 

the dipole moment (in Debye). The parameter c lies between 0 and 1, and can be expressed 

by the polarizability volume α'and the molecular dipole moment μD – the latter vanishing in 

the present case of N2.[40] 

This ADO theory is frequently utilized to estimate the reaction rates of charged clusters 

with small molecules, knowingly underestimating the reaction rates for charged metal 

clusters significantly.[41, 42] Kummerlöwe and Beyer introduced two more models for the 

collision rates of ionic clusters with neutral molecules, the HSA model (hard sphere average 

dipole orientation) and the surface charge capture (SCC) model.[43] In both models, the 

cluster and the neutral reaction partner are treated as hard spheres, and the charge is 

treated as either fixed or mobile point charge. For the HSA collision rate kHSA, the charge is 

located fixed in the center of the cluster, while in the SCC model (kSCC), the mobile charge is 

drawn to the cluster surface by the attractive interaction with the neutral collision partner. 

5.5 Results and Discussion 

We investigated the stored [Nin(N2)m]+ = (n,m) clusters for their N2 adsorption in the 

cryogenic hexapole under isothermal conditions at 26 K. In general, we observe two 

different adsorption behaviors – reminiscent of the two show-cases Ni9+ and Ni13
+ that we 

have discussed before.[30] The mass spectra of all detected Nin+ clusters reveal a successive 

gain of 28 m/z, which does indicate the stepwise adsorption of molecular nitrogen in 

consecutive chains of individual adsorption processes (see Fig. S1 in the supplementary 

material). In all investigated cases (n = 5 – 20) stepwise N2 uptake reaches a strict adsorption 

limit mmax within t < 12 sec, and this does not increase further up to t < 30 sec. In some cases 

we observe the N2 adsorption limit preceded by one or more additional intermittent 
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adsorption limits, which do not suppress further adsorption but cause some retardation. In 

the other cases we observe a sole N2 adsorption limit without any intermittent adsorption 

limit or retardation. This behavior is representative for rough and smooth cluster surfaces, 

respectively. 

Adsorption limits at 26 Kelvin 

Visual inspection of recorded mass spectra suffices to identify adsorption limits (filled 

circles in Fig. 1) and intermittent adsorption limits (green stars in Fig. 1) as well.  

 

 

Figure 1 Recorded adsorption limits mmax (filled circles) and most intense 

intermittent adsorption limits mx (stars) of N2 adsorption to cationic nickel 

clusters Nin+, n = 5 – 20 in comparison to N2 uptake “plateaus” of neutral nickel 

clusters19-20 (black hexagons). Each mass-selected Nin+ cluster was stored for up 

to 30 s – saturation typically reached much before. Highly symmetrical clusters 

are marked in red, size ranges indicated in blue. 

They may serve as initial guidelines for some elucidation of cluster surface morphology 

that receive subsequent verification by our kinetic studies (chapter 3.2) and our IR 

spectroscopic studies (see [SD]). The mass spectra reveal stoichiometries which show, that 
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Nin+ clusters tend to adsorb N2 close to an equal atom-N2-ratio (n = m), which correlates with 

single N2 head-on adsorption to each cluster surface atom. In this regard, we identify two 

size ranges of small clusters (n < 13) and large clusters (n ≥ 13) as indicated in Fig. 1. Small 

clusters exceed the 1:1 ratio, likely by geminal adsorption to low coordinated surface atoms, 

yielding a 1:2 ratio for such fourfold or less coordinated Ni atoms - the n = 6 cluster being 

exceptional by smoothly adsorbing six N2 molecules up to a mere 1:1 ratio. Large clusters of 

the size 13 ≤ n ≤16 and n = 19 do not form pronounced intermittent adsorption limits either, 

indicative for smooth cluster surfaces. An intermittent adsorption limit close to the 

adsorption limit is observed for n = 17, 18 and 20 - likely due to one or two exposed surface 

atoms, e.g. capping atoms, which accept a second N2 adsorbate, but reluctantly. The clusters 

n = 6, 13, and 19 stick out by low and smooth N2 uptake without intermittent delay. Such 

double (geminal) occupation of low coordinated Ni surface sites was proposed before[44, 

45] for N2 adsorption on neutral Ni clusters at flow reactor conditions (according adsorption 

limits indicated as open hexagon symbols in Fig. 1). 

Kinetics of small Nickel clusters: Ni5+ – Ni12
+ 

We further investigated in more detail the stepwise N2 adsorption on Nin+ clusters by 

explicitly recording their reaction kinetics when trapped under isothermal cryo buffer gas 

conditions, and we performed pseudo-first-order kinetic fits to the experimental data by our 

genetic algorithm routine. The obtained fits confirm consecutive adsorption steps (Fig.s 2-5). 

All Nin+ clusters decay mono exponentially without any indication of a second component. 

This, and the overall superior quality of all fits, entitles us to fit each consecutive step by a 

single rate constant throughout. Some fits require significant backward reaction in cases of 

high N2 coverages, which indicates swift N2 desorption (see the supplementary information 

for details on the corresponding rate constants k(n,m)). 

Small nickel clusters Nin+ in the range of n = 5 – 12 exhibit a large variety with respect to 

the values of their stepwise rate constants k(n,m), their adsorption limits mmax, and their 

intermittent adsorption limits mx. These findings are characteristic for rough cluster 

morphologies. Such clusters provide a variety of unique surface atoms, likely by low Ni-Ni 

coordination. There is no significant backward reaction for the adsorption steps of n = 5 – 8. 

All clusters reveal a strict adsorption limit at m ≥ n (cf. Fig. 2).  
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In the case of (5,m) the recorded kinetic curves clearly reveal the intermittent adsorption 

limit at (5,5) and the adsorption limit at (5,10) (see Fig. 2, top left). A structure with only 

fourfold or less coordinated Ni atoms would explain the intermittent adsorption limit by 

single N2 adsorption on each Ni atom as well as the adsorption limit (of m = 2n) by the 

adsorption of a second N2 molecule, respectively. The trigonal bipyramid or a square 

pyramid– exclusively possessing three- and fourfold coordinated Ni atoms – would represent 

the most likely structures for Ni5+. 

Inspection of the detailed kinetic curves of (6,m) confirm the exceptional status of n = 6 as 

deduced from the adsorption limits (cf. Fig. 2 top right). The smooth N2 adsorption kinetics 

on (6,m) clusters is indicative for a highly symmetrical structure of six equally coordinated 

surface atoms. The Ni6+ cluster has most likely an octahedral structure. By merely adsorbing 

a single N2 molecule on each Ni atom, the cluster adsorbate complex would retain its 

symmetry. This finding is corroborated by our spectroscopic studies as documented in [SD]. 

 

Figure 2. Isothermal kinetics of the stepwise N2 adsorption by isolated Nin+ 

clusters (n = 5-8) within 26 Kelvin He buffer gas and 3.0 x 10-7 mbar of N2 (solid 

points). The pseudo-first-order kinetic fits (solid lines) reveal reaction chains of 

up to 12 consecutive steps. 
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In the case of (7,m) the kinetics confirm the intermittent adsorption limits at (7,7), and the 

adsorption limit at (7,10). Single binding to all Ni atoms and the adsorption of a second N2 

molecule by three Ni atoms would result in dominant (7,7) and (7,10) species. The capped 

octahedron would be the most likely structure for Ni7+, having a single threefold coordinated 

Ni capping atom. At this point we cannot exclude, however, a structural change of the 

cluster geometry upon N2 adsorptions substantiated by the spectroscopic studies of [SD]. 

In the case of (8,m) the pattern of recorded kinetic curves is much involved. Each step 

seems unique, and the extracted rate constants vary (cf. Fig. S3 bottom right and Table S1 in 

the supplementary material) such that k(8,4), k(8,7),and k(8,10) are somewhat smaller than 

others which nicely corresponds to the intermittent maxima of the corresponding kinetic 

curves (Fig. 2, bottom right). In this case, we thus observe several intermittent adsorption 

limits at (8,4), (8,7) and (8,10), and the adsorption limit at (8,12). A structure with four atoms 

of low coordination could cause a first intermittent limit at (8,4). Note, that this cluster is the 

smallest one to reveal an intermittent limit at m = n-1. This indicates the presence of a highly 

coordinated Ni atom which adsorbs N2 less swiftly than a low coordinated Ni site able to 

accept a second N2 adsorbate. Single binding to all Ni atoms but the highest coordinated Ni 

atom and the adsorption of a second N2 molecule by four Ni atoms would result in dominant 

(8,7) and (8,12) species. Reflecting all of these details we suggest likely structures of Ni8+: 

Either a bicapped octahedron (providing for two threefold, two fourfold, two fivefold and 

two sixfold coordinated Ni atoms) or a capped pentagonal bipyramid (providing for one 

threefold, three fourfold, three fivefold and one sixfold coordinated Ni atoms) or isomeric 

mixtures of both. Both structures would explain the intermittent limit at (8,4) by adsorption 

of one N2 to the three- and fourfold coordinated Ni atoms. Only the capped pentagonal 

bipyramid would explain the intermittent limit at (8,7) by adsorption of one N2 to all Ni 

atoms except the sixfold coordinated one, and only the capped octahedron woul explain the 

intermitent limt at (8,10) by adsorption of one N2 to every Ni atom except the highest 

coordinated one and a second N2 to the three- and fourfold coordinated ones. Therefore we 

do not make a final assignment based only on the kinetic data. Note that an octahedral 

structure is clearly supported by the kinetics of (6,6), and a monocapped octahedron 

structure in (7,10) by the spectroscopic data of [SD]. As the exceptional behavior of Ni13
+ 

suggests icosahedral motifs, a transition towards pentagonal motifs likely sets in at some 
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cluster size, which might well be the Ni8+ case. It is well possible that an adsorbate induced 

reorganization takes place upon N2 saturation – in any case turning a rough cluster surface 

into another rough one. 

The kinetics of clusters with more than eight Ni atoms (n = 9 – 12) require fits which 

include significant backward reactions for the last adsorption steps. This finding reveals the 

presence of one or more weakly bound N2 adsorbate upon saturation (cf. Fig. 3). 

 

Figure 3. Isothermal kinetics of the stepwise N2 adsorption by isolated Nin+ 

clusters (n = 9-12) within 26 Kelvin He buffer gas and 3.0 x 10-7 mbar of N2 

(n = 12: p(N2) = 3.2 x 10-7 mbar) (solid points). The pseudo-first-order kinetic fits 

(solid lines) reveal reaction chains of up to 14 consecutive steps.  

We have discussed the cases of rough surfaces of (9,m) and all smooth surfaces of (13,m) 

in extenso in a previous publication,[30] and we have observed an intermittent adsorption 

limit at (9,8) and the adsorption limit at (9,13). In conjunction with our spectroscopic 

investigation and DFT computations, we have concluded in a possible isomerization upon 

low N2 coverage, likely from a tricapped octahedron to a bicapped pentagonal bipyramid, 

and in geminal binding of N2 setting in at m = 9. In the case of smooth Ni13
+ we have 
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concluded in an icosahedral structure which coincides with all experimental findings and 

theory. 

In the cases of (10,m), (11,m) we observe dominant intermittent adsorption limits at 

m = n-1. This indicates once more the structural motif of one semi internal, highly 

coordinated Ni atom that is initially reluctant to accept an N2 adsorbate. Conceivable 

structures might base on the successive packing of additonal Ni capping atoms to a 

pentagonal bipyramid – a building scheme that would eventually lead to an icosahedral Ni13
+ 

cluster. Of course, the rough surface morphologies of the (10,m) and (11,m) species are less 

stable and susceptible to adsorbate induced relaxation, in particular upon an increasing N2 

coverage. The observed adsorption limits at (10,12) and (11,14) are well in line with such 

suggestions. For further insights refer to the spectroscopic findings in [SD]. 

The cases of the (12,m) species are somewhat special as compared to the previous ones. 

We find strong evidence for a smooth surface by the kinetic curves (Fig. 3, bottom right) and 

the obtained rate constants k(12,m) (Fig. S4 and Table S2 in the supplementary material) up to 

(12,11). This behaviour is reminiscent of the cases (6,m) in the present study and of (13,m) 

before. In a clear demarcation, however, (12,11) slowly reacts on by significantly slower 

stepwise uptake of further N2 adsorbates up to (12,14) which indicates mmax = 14. Note that 

the deviations between the experimental data and the kinetic fits of the final products most 

likely originate from the low ion intensities of (12,13) and (12,14). The saturation 

stoichiometry of n : m = 12 : 14 is significantly beyond a 1 : 1 ratio. This is only conceivable 

through a rough surface morphology that would provide for some – likely two - low 

coordinated Ni sites which serve to accept N2 adsorbates in a geminal fashion. In summary, 

we conclude in evidence for smooth surface up to (12,11) and in rough surface up to (12,14). 

This change of adsorption behaviour likely indicates an adsorbate induced Ni cluster core 

relaxation. It is most gratifying to find according evidence by our spectroscopic study, cf. 

[SD], where we discuss structral motifs explicitly. 

Micro kinetics of small nickel clusters 

Initial N2 collisions hit naked Ni cluster surfaces at arbitrary locations, and subsequent 

sticking occurs either at the same, or at some other location. Our N2 adsorption studies with 

small clusters (rough surfaces) likely imply reduced mobility and stable localization of N2 
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adsorbate on site or nearby. The more the surface fills by stepwise adsorption the more 

likely the next N2 collision hits occupied or unfavorable adsorption sites missing the next 

most favorable location. Initially trapped into a metastable situation the cluster adsorbate 

complex may relax either by N2 migration or by cluster core reorganization. Either case may 

evidence by spectroscopic fingerprints as subject of the accompanying paper, see [SD]. 

Kinetics of large Nickel clusters: Ni13
+ – Ni20

+ 

The N2 adsorption kinetics of Nin+ clusters of sizes 13 ≤ n ≤ 16 do not reveal pronounced 

intermittent adsorption limits (cf. Fig. 4). The Ni13
+ cluster is known to persist as a perfect 

icosahedron of a single interior Ni atom and 12 surface atoms of equal coordination to six 

nearest neighbors - irrespective of the level of N2 adsorbate load and without any 

observable structure relaxation. It possesses a smooth surface, coinciding with the finding of 

constant reaction rates up to the adsorption limit at (13,12). 

 

Figure 4. Isothermal kinetics of the stepwise N2 adsorption by isolated Nin+ 

clusters (n = 13-16) within 26 Kelvin He buffer gas and 1.3 x 10-7 mbar of N2 (solid 

points). The pseudo-first-order kinetic fits (solid lines) reveal a reaction chain of 

up to 16 consecutive steps.  
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In the case of (14,m) we observe smooth reaction kinetics up to an adsorption limit at 

(14,14) and without any intermittent retardation. Reminiscent of the highly symmetrical 

icosahedral (13,12) case, we find an explanation when assuming a capped icosahedron, 

where the capping Ni atom might accept two N2 adsorbates (geminal occupation). It is a 

noteworthy finding that the last, 14th N2 adsorbate attaches with equal rate as all previous 

ones.  

In the case of (15,m) we observe smooth stepwise N2 adsorption up to an adsorption limit 

at (15,16). All steps are equally fast up to (15,13) where a minor decline of rates sets in. This 

finding supports a bicapped icosahedron with two non-neighboring low coordinated capping 

Ni atoms. Such a structural conclusion is somewhat far reaching on its own. It is in line with 

the spectroscopic findings of [SD]. We might conceive at this point the alternative of a 

truncated octahedron, which is, however, ruled out by [SD].  

In the case of (16,m) we observe the adsorption limit at (16,16). All adsorption steps are 

equally fast with some minor decline to the end. Such largely smooth surface behavior 

would be in line with e.g. a tricapped icosahedral structure, where the three extra Ni atoms 

neighbour each other. 

Our studies of cluster adsorbate complexes n = 17 – 20 (Fig. 5) revealed large similarities 

to those of n = 13 – 16 (Fig. 4) and minor differences which is why we will present and 

discuss these clusters together. We identify five findings as follows: 

Finding F0: n = 13 and 19 reveal all even kinetics by all smooth surfaces of high symmetry 

It is only the (13,m) and (19,m) species which reveal exclusively steady kinetics up to 

saturation such that each adsorption step proceeds by the same rate constant km within our 

experimental uncertainties. Subtle details on the final reaction steps km and k-m, where 

m = mmax-1, are to find in the separate chapter on our micro kinetic model. It seems sound to 

conclude in icosahedral and bi-icosahedral structures with smooth surfaces of evenly high 

coordinated surface Ni atoms and void of any defects and low coordinated extra adsorption 

site Ni atoms. The found mmax = 12, 17 saturation values support this conclusion in terms of a 

pure Ni : N2 1 : 1 coordination. 
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Finding F1: n = 14, 15, 16, 17, 18, and 20 reveal initially even kinetics 

All other large clusters (n = 14, 15, 16, 17, 18, and 20) reveal stepwise N2 adsorption where 

the initial steps are equally fast. 

Finding F2: n = 14 – 17 reveal slower kinetics at pre-saturation 

A minor retardation of N2 adsorption sets in at two to three steps before saturation (cf. 

Fig.s S5, S6 and Tables S3, S4 in the supplementary material). This finding is also vaguely 

recognizable in the intensity maxima of consecutive adsorption products (n,m-3), (n,m-2), 

and (n,m-1), where m = mmax in the cases of n = 14, 15, 16 and m = mx where n = 17, 18, cf. 

Fig.s 4 and 5. 

Finding F3: n = 17, 18, 20 reveal intermittent limits 

Note, that it is among all large clusters only n = 17 and 18 which reveal intermittent 

adsorption limits in our 26 Kelvin kinetics up to 10 sec reaction delay. 

Finding F4: n = 18 and 20 have additional long time kinetics 

However, through further collisions on longer time scales or by increased pressure there 

are further slow N2 adsorption steps taking place which lead up to (18,18) and (20,18) (cf. 

Figs. S1 and S2 in the supplementary material). 

The findings F0 through F4 all together allow for further interpretation in terms of 

tentative structural conclusions: The clusters n = 13 and 19 provide for an all smooth surface 

(F0) which can be interpreted in terms of highly symmetric cluster core structures: 

icosahedron for n = 13 and bi-icosahedron for n = 19. All other large clusters show similar 

even kinetics in the first steps (F1) which indicates partly smooth cluster cores. The 

appearance of some retardation in the final steps (F2), intermittent limits (F3) and longtime 

kinetics (F4) point towards some low coordinated Ni surface atoms or a possible cluster core 

reorganization. Altogether we conclude that these cluster have rough and smooth surface 

areas which is in line with an icosahedral cluster growth from an icosahedron (n = 13) to a bi-

icosahedron (n = 19). This growth leaves one hemisphere of an icosahedron unaffected 

(smooth part) and provides for some low coordinated capping Ni atoms on the other part 

(single defects). Verification and further insights arise from the IR studies of adsorbate 
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complexes in conjunction with some DFT modelling as far as possible, which is subject of the 

accompanying [SD] publication. 

 

Figure 5. Isothermal kinetics of the stepwise N2 adsorption by isolated Nin+ 

clusters (n = 17-20) within 26 Kelvin He buffer gas and 1.1 x 10-7 mbar of N2 (solid 

points). The pseudo-first-order kinetic fits (solid lines) reveal reaction chains of 

up to 17 consecutive steps. Note, that Ni18
+ and Ni20

+ reveal long time kinetics up 

to mmax = 18, cf. Fig.s S1 and S2 in the supplementary material. 

Micro kinetics of highly symmetrical clusters and of large clusters  

In case of the highly symmetrical clusters (n = 6, 13 & 19) with all smooth surfaces and 

void of defects we conclude in initially high mobility of N2 adsorbates and in considerable 

probabilities for site hopping after first N2 cluster encounter. As the first shell of N2 

adsorbates starts to fill this turns into a pseudo-diffusion-like migration of the remaining 

adsorbate vacancies. Shell filling up to saturation certainly comes with significant adsorbate 

loss when looking at larger surfaces as in the case of n = 19 – as fitted by assumed back 

reactions (adsorbate evaporation, cf. Table S4 and Fig. S6 in the supplementary material). In 

cases of large clusters n > 13 (but n = 19) the found kinetics point to high N2 adsorbate 

mobility in conjunction with effective sticking largely as for the highly symmetrical clusters 
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n = 6, 13, and 19. Such stochastic, precursor mediated migration may eventually lead to N2 

stabilization at low coordinated Ni surface atoms which are inevitably present in large 

clusters other than the exceptional, highly symmetrical ones. Second solvation shell N2 

adsorption may act as precursor - albeit highly facile and largely back dissociating. Instead it 

seems likely that pairwise surface 1Ni : 1N2 adsorption morphology reorganizes in favor of 

geminal 1Ni : 2N2 stoichiometry at low coordinated Ni sites and as early as required. In no 

case we see as large stepwise variations as with the small clusters with rough surfaces. We 

thus tentatively assume large clusters of mainly smooth surfaces with some single surface 

defects. 

Absolute rate constants of the initial N2 adsorption 

So far we have presented and discussed relative pseudo-first-order rate constants. These 

convert to absolute rate constants C!D,E)FGH  as described (see exptl. part). In our previous study 

we have focused on the consecutive adsorption steps C!�,E)FGH  and C!�S,E)FGH  with N9
+ and Ni13

+. 

We found that ADO/Langevin would underestimate the true adsorption rate, implying a 

sticking probability larger unity. The SCC model would overestimates the adsorption rate 

implying a sticking probability much below unity. Neither of both cases seems likely.  

 

Figure 6. Experimental absolute rate constants C!D,T)FGH  of the initial N2 adsorption 

to naked Nin+ clusters (solid green dots), and modelled collision rate constants 

according to the ADO theory (black line), to the HSA model (dashed line), and to 

the SCC model (dot-dashed line). See text for details on the models. 
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In the present case, we consider the initial N2 adsorption step, C!D,T)FGH  as a function of 

cluster size n (green circles in Fig. 6), and in comparison to collision rate constants by models 

as above, and by the HSA model in addition. None of these models describes all of the 

recorded absolute values in a quantitative way. This renders it likely that the sticking 

probabilities of small clusters n < 9 fall below unity. This is conceivable in view of their finite 

size. Moreover, we find evidence for collision rates and the according adsorption rates 

beyond the ADO values for clusters n > 10, where the HSA seems to describe the recorded 

rates sufficiently. The sheer size of the large clusters thus enhances adsorption cross sections 

and rate constants. We find, however, no evidence for the surface charge localization effect 

by the SCC model through our present studies. The minor, particular variations of C!D,T)FGH  in 

cases of individual n values certainly relate to structures and shapes of these Nin+ clusters. 

The determined rate constants are rendered by the individual geometries of the Nin+ clusters 

which are not sufficiently described by the presented models. 

 

Table 1. Pseudo-first-order rate constants k(n,0), absolute rate constants C!D,T)FGH  for the initial 

N2 adsorption on Nin+ (n = 5-20) clusters (both by experiment), and modelled collision rate 

constants as obtained by ADO theory, by the HSA model and by the SCC model. 

n 
k(n,0) 

s-1 

C!D,T)FGH 	
10-10 cm3 s-1 

C!D,T)�A  	
10-10 cm3 s-1 

C!D,T)¦§� 	
10-10 cm3 s-1 

C!D,T)§�� 	
10-10 cm3 s-1 

5 2.4 4.32 6.17 7.63 11.53 

6 2.7 4.72 6.12 7.77 11.84 

7 3.1 5.43 6.09 7.91 12.13 

8 3.0 5.37 6.06 8.05 12.40 

9 3.6 6.37 6.05 8.18 12.66 

10 3.8 6.64 6.03 8.32 12.91 

11 4.2 7.34 6.02 8.45 13.15 

12 3.7 6.58 6.01 8.58 13.38 

13 4.2 7.43 6.00 8.71 13.60 

14 3.8 6.73 5.99 8.84 13.82 

15 4.0 7.12 5.98 8.96 14.02 

16 5.2 9.15 5.98 9.08 14.22 

17 5.1 8.93 5.97 9.20 14.42 

18 4.9 8.74 5.97 9.32 14.60 

19 5.1 8.97 5.96 9.43 14.79 

20 5.3 9.30 5.96 9.54 14.97 
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5.6 Conclusions 

We have investigated the stepwise N2 adsorption on size selected Nin+ (n = 5 – 20) clusters 

by recording their reaction kinetics at 26 K in a hexapole ion trap. We performed pseudo-

first-order kinetic fits, which confirm consecutive adsorption steps by single exponent decays 

exclusively. N2 desorption, if any, only occurs at high levels of N2 coverage. In all investigated 

cases the stepwise N2 uptake reaches a strict adsorption limit mmax, which does not increase 

further, and scales with cluster size. 

By the recorded N2 adsorption kinetics and their limits we are able to identify three classes 

of structure related surface adsorption behavior of cationic Ni clusters: The clusters Ni6+, 

Ni13
+, and Ni19

+ are highly symmetrical clusters with all smooth surfaces. They reveal all even 

reaction kinetics up to their adsorption limits, which is strong evidence for all equally 

coordinated Ni atoms. We conclude in most likely high symmetry structures such as 

octahedron (n = 6), icosahedron (n = 13), and bi-icosahedron (n = 19). The clusters Ni5+, and 

Ni7-12
+ are small clusters with rough surfaces. They possess a large variety of stepwise 

adsorption kinetics and limits which are characteristic for rough cluster morphologies with a 

variety of unique surface atoms. We likely see a transition from octahedral to isocsahedral 

cluster structures. The clusters Ni14-18
+, and Ni20

+ are large clusters with rough and smooth 

surface areas. They provide for initially even kinetics, for intermittent limits and for some 

retarded longtime kinetics which indicate partly smooth cluster surfaces with some low 

coordinated Ni surface atoms, in line with stepwise Ni cluster growth from icosahedron 

(n = 13) to bi-icosahedron (n = 19). 

We observe an overall increase in the absolute rate constants with cluster size in line with 

a hard sphere average dipole orientation model (HSA). The observed stoichiometries of 

intermittent and ultimate adsorbate shell closures at mx and mmax, respectively, are 

understood in terms of initial single adsorbate occupation of available binding sites, followed 

by further adsorption through solvent shell re-organization towards double (geminal) 

occupation of low coordinated Ni surface sites. We devise a micro kinetic model with some 

level of speculation. It would be beneficial to obtain a future verification of our envisaged Ni 

cluster surface morphology and adsorption dynamics by conceivable molecular dynamics 

simulations, and we find full support of our cryo kinetic interpretations by the adjoined cryo 

spectroscopic study [SD]. 
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5.9 Supplementary Material 

Table of Content: 

Figure S1. Temporal evolution of the mass spectra of mass-selected Ni6+, Ni18
+ clusters at 

26 K. 

Figure S2. Isothermal kinetics of the stepwise N2 adsorption by isolated Ni18
+ clusters at 

p(N2) = 1.1 x 10-7 mbar (top) and p(N2) = 3.2 x 10-7 mbar (bottom) within 26 Kelvin He buffer 

gas. The fits (shown as lines) assume pseudo-first-order kinetics in a reaction chain of up to 

18 consecutive steps. 

Figure S3. Observed rate constants of the (n,m) species n = 5-8 as a function of N2 coverage. 

Filled circles show the rate of adsorption and open circles indicate single N2 desorption. 

Table S1. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 5-8) clusters. 

Figure S4. Observed rate constants of the (n,m) species n = 9-12 as a function of N2 

coverage. Filled circles show the rate of adsorption and open circles indicate single N2 

desorption. 

Table S2. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 9-12) clusters. 

Figure S5. Observed rate constants of the (n,m) species n = 13-16 as a function of N2 

coverage. Filled circles show the rate of adsorption and open circles indicate single N2 

desorption. 

Table S3. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 13-16) clusters. 

Figure S6. Observed rate constants of the (n,m) species n = 17-20 as a function of N2 

coverage. Filled circles show the rate of adsorption and open circles indicate single N2 

desorption. 

Table S4. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 17-20) clusters.  
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Figure S1. Temporal evolution of the mass spectra of mass-selected Ni6+, Ni18
+ 

clusters at 26 K. 
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Figure S2. Isothermal kinetics of the stepwise N2 adsorption by isolated Ni18
+ 

clusters at p(N2) = 1.1 x 10-7 mbar (top) and p(N2) = 3.2 x 10-7 mbar (bottom) 

within 26 Kelvin He buffer gas. The fits (shown as lines) assume pseudo-first-

order kinetics in a reaction chain of up to 18 consecutive steps. 
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Figure S3. Observed rate constants of the (n,m) species n = 5-8 as a function of 

N2 coverage. Filled circles show the rate of adsorption and open circles indicate 

single N2 desorption. 
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Table S1. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 5-8) clusters. 

m 
k(5,m) 

s-1 

k-(5,m+1) 

s-1 

k(6,m) 

s-1 

k-(6,m+1) 

s-1 

k(7,m) 

s-1 

k-(7,m+1) 

s-1 

k(8,m) 

s-1 

k-(8,m+1) 

s-1 

0 2.4 <0.001 2.7 <0.001 3.1 <0.001 3.0 <0.001 

1 2.2 <0.001 2.6 <0.001 4.7 <0.001 2.7 <0.001 

2 2.5 <0.001 2.6 <0.001 5.5 <0.001 2.7 <0.001 

3 2.3 <0.001 2.7 <0.001 5.4 <0.001 2.8 <0.001 

4 2.0 <0.001 2.8 <0.001 4.7 <0.001 2.3 <0.001 

5 1.6 <0.001 3.0 <0.001 2.8 <0.001 3.2 <0.001 

6 2.5 <0.001 
  

2.2 <0.001 2.2 <0.001 

7 1.8 <0.001 
  

1.9 <0.001 1.7 <0.001 

8 1.3 <0.001 
  

3.1 <0.001 2.7 <0.001 

9 1.2 <0.001 
  

0.7 <0.001 2.8 <0.001 

10 
      

0.6 <0.001 

11 
      

2.3 <0.001 
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Figure S4. Observed rate constants of the (n,m) species n = 9-12 as a function of 

N2 coverage. Filled circles show the rate of adsorption and open circles indicate 

single N2 desorption. 
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Table S2. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 9-12) clusters. 

m 
k(9,m) 

s-1 

k-(9,m+1) 

s-1 

k(10,m) 

s-1 

k-(10,m+1) 

s-1 

k(11,m) 

s-1 

k-(11,m+1) 

s-1 

k(12,m) 

s-1 

k-(12,m+1) 

s-1 

0 3.6 <0.001 3.8 <0.001 4.2 <0.001 3.7 <0.001 

1 4.2 <0.001 4.0 <0.001 4.5 <0.001 4.0 <0.001 

2 3.9 <0.001 4.0 <0.001 4.6 <0.001 4.8 <0.001 

3 3.9 <0.001 4.1 <0.001 4.7 <0.001 4.2 <0.001 

4 3.6 <0.001 4.1 <0.001 4.5 <0.001 4.0 <0.001 

5 3.5 <0.001 3.9 <0.001 4.2 <0.001 4.1 <0.001 

6 3.1 <0.001 3.7 <0.001 4.0 <0.001 4.2 <0.001 

7 2.4 <0.001 3.2 <0.001 3.5 <0.001 4.0 <0.001 

8 1.5 <0.001 2.3 <0.001 2.9 <0.001 4.0 <0.001 

9 2.1 <0.001 0.9 <0.001 2.3 <0.001 4.0 <0.001 

10 3.8 <0.001 2.2 <0.001 1.3 <0.001 4.1 <0.001 

11 1.1 <0.001 1.3 <0.001 4.0 <0.001 0.1 0.15 

12 0.7 0.07 
  

0.6 0.41 0.5 3.62 

13 
    

1.3 0.21 1.9 1.38 
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Figure S5. Observed rate constants of the (n,m) species n = 13-16 as a function of 

N2 coverage. Filled circles show the rate of adsorption and open circles indicate 

single N2 desorption. 
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Table S3. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 13-16) clusters. 

m 
k(13,m) 

s-1 

k-(13,m+1) 

s-1 

k(14,m) 

s-1 

k-(14,m+1) 

s-1 

k(15,m) 

s-1 

k-(15,m+1) 

s-1 

k(16,m) 

s-1 

k-(16,m+1) 

s-1 

0 4.2 <0.001 3.8 <0.001 4.0 <0.001 5.2 <0.001 

1 4.2 <0.001 3.9 <0.001 4.4 <0.001 5.7 <0.001 

2 4.2 <0.001 4.0 <0.001 4.6 <0.001 5.4 <0.001 

3 4.4 <0.001 4.0 <0.001 4.6 <0.001 5.0 <0.001 

4 4.4 <0.001 3.9 <0.001 4.6 <0.001 4.9 <0.001 

5 4.5 <0.001 4.0 <0.001 4.4 <0.001 4.8 <0.001 

6 4.6 <0.001 4.0 <0.001 4.4 <0.001 4.6 <0.001 

7 4.6 <0.001 4.0 <0.001 4.2 <0.001 4.5 <0.001 

8 4.6 <0.001 3.9 <0.001 3.9 <0.001 4.3 <0.001 

9 4.3 <0.001 3.6 <0.001 3.8 <0.001 4.0 <0.001 

10 4.2 <0.001 3.4 <0.001 3.5 <0.001 3.6 <0.001 

11 4.4 <0.001 3.5 <0.001 3.4 <0.001 3.5 <0.001 

12 
  

4.0 <0.001 3.3 <0.001 3.3 <0.001 

13 
  

4.1 <0.001 3.8 <0.001 2.7 <0.001 

14 
    

4.8 <0.001 2.9 <0.001 

15 
    

4.7 <0.001 4.4 <0.001 
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Figure S6. Observed rate constants of the (n,m) species n = 17-20 as a function of 

N2 coverage. Filled circles show the rate of adsorption and open circles indicate 

single N2 desorption. 
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Table S4. Pseudo-first-order rate constants for the N2 adsorption/desorption k(n,m) / k-(n,m+1) 

on Nin+ (n = 17-20) clusters. 

m 
k(17,m) 

s-1 

k-(17,m+1) 

s-1 

k(18,m) 

s-1 

k-(18,m+1) 

s-1 

k(19,m) 

s-1 

k-(19,m+1) 

s-1 

k(20,m) 

s-1 

k-(20,m+1) 

s-1 

0 5.1 <0.001 4.9 <0.001 5.1 <0.001 5.3 <0.001 

1 5.2 <0.001 4.9 <0.001 5.1 <0.001 5.3 <0.001 

2 5.0 <0.001 4.9 <0.001 5.4 <0.001 5.6 <0.001 

3 4.5 <0.001 5.0 <0.001 5.2 <0.001 5.3 <0.001 

4 4.4 <0.001 5.1 <0.001 5.5 <0.001 5.2 <0.001 

5 4.5 <0.001 4.9 <0.001 5.3 <0.001 5.7 <0.001 

6 4.5 <0.001 5.1 <0.001 5.3 <0.001 5.3 <0.001 

7 4.5 <0.001 5.0 <0.001 5.5 <0.001 5.3 <0.001 

8 4.5 <0.001 5.2 <0.001 5.3 <0.001 5.1 <0.001 

9 4.5 <0.001 5.2 <0.001 5.1 <0.001 5.3 <0.001 

10 4.4 <0.001 5.4 <0.001 5.1 <0.001 5.7 <0.001 

11 4.5 <0.001 5.1 <0.001 5.5 <0.001 5.2 <0.001 

12 4.3 <0.001 5.4 <0.001 5.6 <0.001 5.3 <0.001 

13 4.2 <0.001 5.4 <0.001 5.5 <0.001 5.4 <0.001 

14 4.7 <0.001 5.3 <0.001 5.2 <0.001 5.7 <0.001 

15 5.3 <0.001 5.1 <0.001 5.3 <0.001 5.4 <0.001 

16 1.0 6.63 0.4 0.14 4.3 0.19 5.4 <0.001 

17 0.5 0.11 
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6.1 Preamble 

The experiments were performed by the experimental team consisting of J. Mohrbach, and 

myself. The data evaluation was done by J. Mohrbach and myself. The computations were 

done by myself. The initial manuscript was written by myself and revised with the help of G. 

Niedner-Schatteburg and J. Mohrbach. 

This manuscript has been accepted for publication in The Journal of Chemical Physics as part 

2 of 2 of a back to back submission (for part 1 see chapter 5). 
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6.2 Abstract 

We present the cryogenic (26 Kelvin) IR spectra of selected [Nin(N2)m]+ (n = 5 – 20, m = 1 –

 mmax), which reveal strongly n- and m-dependent features in the N2 stretching region, in 

conjunction with density functional theory (DFT) modelling of some of these findings. The 

observed spectral features allows to refine the kinetic classification (cf. accompanying paper) 

and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, 

Ni13
+, and Ni19

+, are highly symmetrical clusters with all smooth surface of equally 

coordinated Ni atoms, that entertain stepwise N2 adsorption up to stoichiometric N2 : 

Nisurface saturation. Class (2) of Ni12
+, and Ni18

+ are highly symmetrical clusters minus one. 

Their relaxed smooth surfaces reorganize by enhanced N2 uptake towards some low 

coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+, and Ni7+ through 

Ni11
+ are small clusters of rough surfaces with low coordinated Ni surface atoms, some 

reveal semi internal Ni atoms of high next neighbor coordination. Surface reorganization 

upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral 

based structures into pentagonal bipyramidal structures. Class (4) of Ni14
+ through Ni17

+, and 

Ni20
+ are large clusters with rough and smooth surface areas. They possess smooth 

icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the 

icosahedron with the other one largely unaffected. 
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6.3 Introduction 

In practice, much of heterogeneous catalysis is based on transition metals(TM) [1-4], and 

we are in desperate need for a better understanding at the level of participating elementary 

steps[2, 5]. Metal clusters are conceivable model system for heterogeneous catalysis [6-9]. 

Smaller than nanostructured catalysts, isolated clusters offer unique opportunities to study 

highly corrugated and highly curved surfaces, albeit at the expense of indirect access to their 

structural features. Elaborate studies of clusters may reveal their stabilities and instabilities 

alike. On the basis of such knowledge cluster studies provide insight into TM – adsorbate 

interactions which are complementary to TM bulk surface science studies, this analogy being 

recognized before and repeatedly. [10-13]  

N2 activation is crucial in ammonia synthesis, the corresponding Haber Bosch process 

being based on Fe, Ni, Ru, and other TMs .[14] Several surface science studies characterized 

the Fe N2 interactions [15-20] and angle resolved photoemission studies in conjunction with 

potential surface modelling, concluded in α-N2 and Z-N2 motifs[21] which resemble η2 side-

on and η1 end-on coordination of N2 to multiple and single metal centers. Some studies 

recognized the resemblance of such topics to the N2 interaction with the surfaces of Fe 

clusters.[22, 23] Numerous studies elucidated N2 adsorbates on other first row transition 

metal surfaces, undertaken by a variety of experimental and theoretical methods, such as in 

the case of N2 on Ni surfaces [24-27].  

Armentrout and coworkers elucidated the thermochemistry of several small molecules 

(D2, O2 and CH4) on Ni clusters, and they determined bond energies of adsorbates and 

products with considerable precision.[28-30] The dissociation of ions and mass detection of 

the resulting fragments helps in gathering structural information about molecules. In 

complement, the study of the vibrational modes of adsorbates on TM clusters and in TM 

coordination complexes as isolated ions by Infrared Multiple Photon Dissociation (IR-MPD) is 

prevalent.[31-34] The IR-MPD method has been extended by the introduction of tunable 

free electron lasers (FEL).[35-37] In this context IR spectroscopic studies of different 

adsorbates on Ni clusters are already published including the interaction of size selected Ni 

clusters with H2 and CO. [38, 39] The latter one proposed a charge dilution model for the 

observed redshifts of the adsorbed CO on metal clusters. This model is in line with earlier 

proposed models for metal adsorbate/ligand interactions: the Dewar-Chatt Duncanson 
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model for the coordination of alkenes with atomic metal centers [40] and the Blyholder 

model for the adsorption of CO on metal surfaces[41]. These findings may be helpful 

regarding N2 adsorbate complexes as CO is isoelectronic to N2. The fundamental interplay of 

N2 with atomic transition metal cations (V, Nb, Rh) have been studied by the Duncan group 

by utilizing table top IR lasers.[42-44]  

IR spectroscopy is inseparably linked to computational modelling of the investigated 

systems. Most theoretical studies focus on the modelling of the structures and energetics of 

bare Ni clusters [45-48]. Such studies are doubtlessly of high significance. The most 

rewarding modelling of cluster adsorbate complexes has received much less attention in the 

past, and there are merely a few studies on the modelling of Ni cluster adsorbate 

complexes[49, 50]. 

Two publications recently opened the research field of IR spectroscopy of N2 on transition 

metal cluster: N2 on neutral Ru clusters by Fielicke et al. [51], and N2 on cationic Co clusters 

under isothermal cryo conditions by ourselves[52]. 

There are merely a few experimental studies of N2 on size selected Ni clusters, however. 

Early studies investigated the N2 adsorption of neutral nickel clusters under flow reactor 

conditions by Parks et al, which have been published over two decades ago. They proposed 

several cluster structures.[53, 54] Yet there is no definite assignment. In this regard we must 

mention our recent publication on the [Nin(N2)m]+ (n = 9, 13; m = 1 – 13) systems, which 

elucidated the cluster surface morphologies in terms of rough and smooth surfaces.[55] 

Knowing the possibly relaxing cluster structures throughout their participation in catalytic 

cycles, and unravelling the structural effects onto their reactivity would be a great leap in 

understanding catalysis and might assist the design of new catalysts.  

This study aims to elucidate the vibrational spectroscopy of N2 adsorbates onto cationic 

nickel clusters [Nin(N2)m]+ (n = 5 – 20), and it obtains strong support of its findings through 

our preceding kinetic study[56], which we will reference in the following as [JM], while we 

refer to the present spectroscopic study as [SD]. 
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6.4 Experimental and Computational Methods 

The experiments were carried out in a customized Fourier Transform - Ion Cyclotron 

Resonance (FT-ICR) – mass spectrometer (Apex Ultra Bruker Daltonics). It served to perform 

the cluster production, isolation, N2 condensation, InfraRed (Multi) Photon Dissociation 

(IR(M)PD) spectroscopy and mass analysis. For a detailed description of the formation of the 

cluster adsorbate complexes refer to [JM].  

For the acquisition of the IR-PD spectra the FT-ICR cell is coupled to a tunable IR laser 

(spectral resolution: δn = 0.9 cm-1, pulse length: δt = 7 ns). This laser is a KTP/KTA optical 

parametric oscillator/amplifier (OPO/A, LaserVision) system pumped by a pulsed 10 Hz 

injection seeded Nd:YAG laser (PL8000, Continuum). The difference frequency (DF) between 

the OPA signal and idler waves is generated in a AgGaSe2 crystal. This generates IR radiation 

in the range of 1000 – 2400 cm-1. Each trapped and isolated package of ions is irradiated by 

7 – 10 laser pulses (0.1 – 1.5 mJ/pulse) to yield a sufficient amount of fragment ions. The IR 

spectra were recorded as ion chromatograms while continuously scanning the IR 

wavelength. The IR-PD signal was evaluated as ΣiFi/(ΣiFi+ΣiPi), where Fi and Pi indicate 

fragment and the parent ion signals, respectively. An experimental IR-PD spectrum arises 

from a plot of the fragmentation efficiency as a function of laser frequency. We employed 

the IR-PD spectroscopy in the 2140 – 2300 cm-1 range on the [Nin(N2)m]+ = (n,m) species 

(n = 5 – 20). In this range we expected the N2 stretching frequencies of the species. For all 

complexes the loss of one or two N2 was the only observed fragmentation channel. Note, 

that IR-PD spectra of (n,m) species with high m likely originate from single photon 

absorption, whereas those of low m likely originate from two or even multiple photon 

absorption – rendering the latter IRMPD spectra. 

Linear IR absorption spectra were calculated at the PBE0[57] level of theory using the 

cc-pVTZ  basis sets[58] (N), and the Stuttgart RSC 1997[59] effective core potential (Ni), 

respectively, as implemented in the Gaussian 09 program package[60]. SCF convergence is 

tedious and can be achieved only at the expense of relaxed SCF convergence criteria of 10-5 

(as compared to 10-8 in DFT calculations on light main group elements). The calculated 

spectra are scaled by 0.93 to account for prevailing anharmonicities and simulated using the 

Lorentz profile of fwhm = 5 cm-1. We regard our obtained results as starting points for future 
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and more elaborate treatments - as far as possible. In this regard, our current DFT results are 

“preliminary”.  

6.5 Results and Discussion 

Low N2 coverages 

 

Fig. 1 IR-PD spectra of (n,1) (solid lines) and (n,2) (orange shaded areas) species 

for n = 5 – 20. There are subtle differences in the IR-PD spectra induced by the 

adsorption of a second N2 molecule. Refer to the supplementary material for 

figures that show spectra of (n,1) and (n,2) separately. 

We employed our cryo IR-PD spectroscopy scheme in the 2140 – 2300 cm-1 range on the 

[Nin(N2)m]+ = (n,m) adsorbate cluster species (n = 5 – 20). In the cases of single and double N2 
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adsorption, (n,1) and (n,2), we found IR active bands in the region of 2210 cm-1 to 2280 cm-1 

(Fig. 1). 

First N2 adsorbate 

The recorded IR-PD bands of (n,1) and (n,2) fall into a region (above 2000 cm-1) which 

likely corresponds to a head on / end on adsorption of N2 on top of single Ni atoms of the 

cluster, as we have shown before in the cases of (9,m) and (13,m).[55] Most (n,1) species – 

those with a single N2 – reveal a single IR band in the N-N stretching region; with the 

exceptions of the  n = 10 and n = 18 species, both of which provide for spectra that reveal a 

weaker second band. Such additional bands are possible indicators for the presence either of 

spin states isomers, or of cluster structural isomers, or of N2 binding site isomers. We will 

discuss these possibilities in the light of further results below. 

Aside from these specific exceptions, there is a clear and dominating trend throughout the 

recorded IR spectra: The larger the clusters the larger the observed red shifts. At (5,1) we 

find a redshift of 65 cm-1 with respect to the IR inactive (yet well known) stretching 

frequency of free N2 (2330 cm-1), and in (20,1) we find a redshift of 107 cm-1. The increase is 

nonlinear in cluster size n, and it becomes constant beyond n = 14 (at ~ 2221 cm-1; cf. Figs. 1 

and 2). It follows a trend observed before in the case of CO adsorption on cationic Rhn
+ [61] 

and Nin+ [38] clusters. There is an exception at n = 7 which reveals less red shift than 

expected from the general trend (by about 11 cm-1). A similar exception was found in the IR 

spectra of CO on Ni7+ [61] without receiving particular attention. Elucidation of conceivable 

structures arises in the light of our preliminary DFT structure modelling. At this point we 

want to emphasize that a reduced red shift likely points towards low coordinated Ni surface 

atoms. They carry localized cationic charge that suffices to hamper efficient π back donation 

– thus reducing observable N2 bond weakening. 

Second N2 adsorbate 

IR spectra of the (n,2) species almost coincide with those of (n,1) - some subtle differences 

prevailing. Most remarkably the small (n,2) species, n ≤ 11, seem to provide for additional, 

partially resolved contributions which are often slightly to the red of the single (n,1) peaks 

and rarely to the blue (as in the sole case of n = 9). 
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It was expected that the adsorption of a second N2 adsorbate in the (n,2) species gives rise 

to additional spectral signatures. While the first N2 adsorbate likely finds the most favorable 

adsorption site on the surface of the Ni clusters, the second N2 may be forced to settle for 

another, possibly nonequivalent site. Either sort of sites originates from individual Ni atoms 

at the cluster surface. These Ni atoms may reside in various coordination environments that 

make up for a rough or smooth cluster surface as shown before[55]. It is likely the small 

clusters (n < 12) which provide for “rough” surfaces. 

Our previous study of (9,m) and (13,m) [55] had revealed another mechanism of spectral 

complexity: Adjacent N2 adsorbates may couple to symmetric or antisymmetric 

combinations of their stretching excitations. In the case of Ni clusters this leads to a largely 

constant splitting of ~ 12 cm-1. We observe such splittings in many IR spectra of (n,m); 

however, with m >> 2. In the case of (9,2) our DFT calculations had revealed that a splitting 

of comparable magnitude arose from N2 coordination to two Ni centers which were three- 

and fourfold coordinated within the Ni clusters, respectively. In all other cases, there is no 

indication for any such coupling. It is conceivable that first and second N2 adsorbates initially 

stick to surface sites without relaxing into spatial proximity. The other minor, only partially 

resolved structures likely resolve such pinning to nonequivalent sites. 

3.1.3 Charge dilution 

When inspecting the recorded N2 stretching bands for their values (Fig. 2) one finds a 

systematic increase of red shift with cluster size, running into a limiting value of about 

2220 cm-1 which comes close to the N2 stretching band position of N2 molecules adsorbed on 

Ni surfaces [24, 62]. While the bands of n = 14 – 17 and of n = 18 – 20 merely shift, those of 

n = 17 to n = 18 are less red shifted by about 5 cm-1 with respect to the aforementioned 

ones. The red side bands of (18,1) and (18,2) fall within the range of the surface values. The 

observed trend can be explained by a charge dilution model as proposed by Fielicke 

before.[61] This model takes into account the cluster size dependent effect of net charge on 

the π back donation. It was first applied to transition metal clusters with CO. This rather 

simple model is well suited to describe analogous effects in the isoelectronic N2 adsorption. 

We do observe indeed the same trend and magnitude (~ 50 cm-1) in the present N2 spectra 

as in the previous CO spectra. It is remarkable that we observe the same trend in the (n,2) 
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species, and it may be described by the same model, only minor differences prevailing with 

respect to the (n,1) cases. 

 

 

Fig. 2 N-N stretching frequencies of (n,1) (black dots) and (n,2) (orange 

diamonds) Ni cluster adsorbate complexes as function of cluster size n = 5 – 20. 

The dashed line is to guide the eye and corresponds to charge dilution model 

proposed before[65]. The shaded area indicates the range of the N-N stretching 

frequencies on various Ni surfaces.[24, 66] Note the slight increase in N2 

frequencies when n > 15. 

High N2 coverages 

It is imperative to check for spectral N2 features on Ni clusters at higher N2 coverages. We 

chose to apply our cryo IR-PD spectroscopy scheme to N2 loaded cluster complexes with 

(n,m) = (n,mx) - the intermittent adsorption limit - and (n,mmax) - the adsorption limit. Note, 

that these well-defined limits arose from our own kinetic studies. For a detailed explanation 

refer to [JM]. We obtained spectra of n = 5 – 20, for (n,mmax) and (n,mx) (Fig. 3). All of these 

spectra show IR active bands in the region between 2160 cm-1 and 2270 cm-1 which still 

corresponds to a head on adsorption of the N2. 

As expected the IR spectra for the adsorption limits provide for a significantly higher 

degree of complexity than those of the (n,1) and (n,2) species (cf. Fig. 3 right). This general 

statement holds true but for the exceptions of n = 6, 13, 19 – all of which are assumed to 
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provide for highly symmetric structures of all smooth surfaces (octahedron, icosahedron, 

and bi-icosahedron). 

Other than these three highly symmetrical clusters, there are two distinct size ranges, 

namely nsmall = 5 – 12 (without n = 6) and nlarge = 14 – 20 (without n = 19) as defined by 

kinetic findings in [JM]. For ease of reading, we label these size ranges as “small” and “large” 

clusters. While the small clusters provide for rough surfaces and suffer from a somewhat 

ambiguous definition of the intermittent size limit, the large clusters are found to provide for 

smooth surfaces and well defined intermittent size limits if any (cf. [JM]). It is gratifying to 

see that these kinetic findings find some correspondence in the recorded IR-PD spectra. Both 

classes of clusters reveal an enhanced spectral complexity upon saturation of N2 coverage at 

mmax – largely irrespective of their size. However, the small and large clusters proceed 

differently on their way towards mmax. 

Small clusters 

There is a constant redshift of the spectral window of observed features, cf. green boxes 

in Fig. S22, for all (nsmall,mx) with respect to the free N2 stretching (Δν ~ -105 cm-1). This is in 

noteworthy contrast to the clear increase of redshift with nsmall in the cases of (nsmall,1) and 

(nsmall,2) – indicative of a reduction of charge influence with nsmall as discussed above. 

Upon going from m = 1 to m = mx the spectral broadening is small/limited (ΔΔν ≤ 35 cm-1). 

Large spectral broadening, which is indicative of enhanced couplings, sets in only upon going 

from mx to mmax where it reaches considerable amounts (ΔΔν ≤ 85 cm-1). Note that large 

spectral width/broadening implies large variety of Ni coordination environments, and some 

N2 – N2 sym/asym coupling on top. 

The enhanced spectral broadening has three components: Enhanced couplings account 

for the major part of spectral complexity for all nsmall (ΔΔν ~ 55 cm-1). To the blue there are 

one or two distinct additional peaks (ν ~ 2260 – 2245 cm-1, marked with green circles) which 

we attribute to symmetrically coupled N2 stretching modes of pairs of N2 adsorbates on top 

of low coordinated Ni atoms, supported by our DFT results in the following. It is noticeable 

that we do not observe such green circle bands in the spectra of (nsmall,mx). This indicates a 

lack of double N2 occupation on low coordinated Ni sites up to the intermittent limits mx of 

small clusters nsmall. 
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(1) Δm=4 is the kinetic finding. Experimental limitations hampered spectroscopic data taking 

of (12,m>12). We include (12,12) instead, nicely documenting the adsorbate induced 

reorganization. 

Fig. 3 IR-PD spectra of [Nin(N2)]+ cluster adsorbate complexes n = 5 – 20 at the 

intermittent adsorption limits (n,mx) (green shaded areas, left) and at the 

adsorption limits (n,mmax) (blue shaded areas, right). The Δm numbers in 

between of both stacks indicate the difference of adsorption limit and 

intermittent adsorption limit, Δm = mmax - mx, color coded in red for highly 

symmetrical clusters, in green for small clusters, and in blue for large clusters. 

Highly symmetrical cluster spectra are highlighted with a yellow background. The 

(n,1) spectra of Fig. 1 are indicated by solid lines. In some cases there is no 

intermittent adsorption limit (Δm = 0), and we plot the adsorption limit instead 

(blue spectra on the left). In the case of (12,m) the complex at the adsorption 

limit (12,mmax) = (12,14) was too weak for interrogation. We chose to study the 

more intense (12,12) instead. The green and red circles are to highlight 

significant bands, which are discussed in the text. 
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There are red circle peaks only for nsmall = 9, 10, 11 which are those sizes that might 

provide for semi internal Ni atoms of highest coordination (7 to 9 nearest Ni neighbors) yet 

accessible for adsorbates from the outside.  

It is interesting to focus on the cases of (12,11) and (12,12) in particular. They seem to 

break the rules. (12,11) is narrow / single line and little redshift. Best conceivable 

explanation comes by structural assumption based on icosahedron minus on surface atom. 

All equivalent Ni surface atoms of the same or at least similar coordination numbers to next 

Ni neighbors. In remarkable contrast, there is significant red shift and spectral broadening in 

(12,12), together with some blue shifted bands. Indicative for an adsorbate induced surface 

reconstruction from smooth to rough yielding some low coordinated Ni surface atoms, 

which give rise to a “green circle” band in the blue. Note that we did not highlight the band 

at around 2195 cm-1 in the spectrum of (12,12) as a “red circle” band because we find it 

highly speculative to assign this band exclusively to a N2 coordinated to a highly coordinated, 

semi internal Ni atom. Furthermore the spectrum of (12,11) reveals a small feature in this 

region as well and DFT does not suggest the binding of N2 to a highly coordinated Ni atom 

(see 3.2.3). The adsorbates are possibly able to induce a Ni cluster reorganization and break 

the high symmetry of an unstable icosahedron-minus-one-structure. 

Large clusters 

There is a constant redshift of the spectral window of observed features, cf. green boxes 

in Fig. S22, for all (nlarge,mx) with respect to the free N2 stretching (Δν ~ -105 cm-1) and of the 

same value as for (nsmall,mx). Upon going from m = 1 to m = mx and to m = mmax the spectral 

broadening is considerable (ΔΔν ≤ 70 – 80 cm-1). It is only the case of (18,16) – similar to 

(12,11) – which has a single band, and it seems to reorganize towards spectral complexity – 

evidenced by a broad spectral window – upon full coverage at (18,18). (18,16) is equally 

exempt with respect to “green circle” bands, which occur in all other large clusters. Some 

redshift and significant spectral broadening appear upon m = 1 to m = mx.  It is surprising to 

see the exception of (18,16) where the redshift comes without broadening. The single band 

at (18,16) may indicate a smooth surface of equivalent coordination of surface atoms with 

two interior/bulk Ni atoms. The spectral broadening of (18,18) indicates significant 

reorganization. The “green circle” band points to low coordinated Ni surface atom, which 

might be only in the case of adsorbate induced reorganization. 
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IR spectra and DFT modelling per cluster size 

Putting everything together, we now look at the effect of N2 adsorption level m per Nin 

core size in more detail: 

[Ni5(N2)m]+ = (5,m): The IR-PD spectrum of the intermittent adsorption limit (5,mx) = (5,5) 

reveals two close lying bands which likely indicates two distinct adsorption sites (Fig. 3, top 

left). This would be in line with a cluster structure of a trigonal bipyramid: Three equatorial 

Ni atoms form a triangular ring, four next Ni neighbors each; two polar apex Ni atoms above 

and below the triangular plane are threefold coordinated each. All Ni atoms are in a low 

coordination environment, in particular as compared to close packed fcc Ni(111) surfaces 

where the next neighbor count is 9. The 1:1 adsorption of Ni : N2 onto these two classes of 

adsorption sites renders the occurrence of two vibrational bands likely. We expect – and we 

find – these two bands in close proximity with a small splitting of merely 12cm-1. Single N2 

adsorption to all of the three Ni atoms causes the band to the red; single adsorption to both 

polar Ni atoms causes the band to the blue. 

The IR-PD spectrum of the saturated species (5,mmax) = (5,10) shows a broader absorption 

pattern of five bands (Fig. 3, top right) which spread out over ~ 52 cm-1 – as compared to 

mere 22 cm-1 in the case of (5,5). The increased complexity can be attributed to the 

enhanced couplings of N2 adsorbates which share the same Ni adsorption site in the given 1 : 

2 adsorption stoichiometry. Note that such a double occupation of adsorption sites is 

unlikely – if not impossible – on a planar dense packed bulk surface, while conceivable in 

conjunction with a curved cluster surface.  

As of now we did not manage to reproduce the seemingly simple vibrational spectra of 

(5,5) and (5,10) by standard DFT methods (cf. Fig. S19 in the supplementary material). We 

speculate that prevailing symmetry reductions by Jahn-Teller and/or Renner-Teller effects 

would render dedicated treatments necessary.  

[Ni6(N2)m]+ = (6,m): This exceptional Ni cluster without an intermittent adsorption limit 

reveals an IR-PD spectrum of a single band in all three cases recorded: (6,1), (6,2), and 

(6,mmax) = (6,6). It is most noteworthy to point out that the width of the single band in (6,6) 

reduces by almost a factor of three with respect to that of (6,1) and (6,2): Δνfwhm(6,6) = 3.8 cm-

1 and Δνfwhm(6,1) = 10 cm-1. These findings can be explained by a high symmetry of the cluster 
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itself. An octahedral structure should adsorb six N2 onto six Ni atoms, one each. Retaining its 

symmetry upon adsorption the resulting IR spectrum should only show one single band. 

Seemingly, the 1:1 adsorption stoichiometry at saturation limit helps to stiffen the N2 

adsorption geometries and reduces angular tilts and/or conceivable adsorbate induced 

symmetry breaking. We have found and discussed similar effects in the cases of (13,m) 

before.[55] Here, we utilized DFT modelling to endorse our structural hypothesis on (6,1) 

and (6,6), see Fig. 4. 

Our DFT modelling of the (6,1) complex in a quartet state reveals an N2 stretching 

vibration at 2240 cm-1 in reasonable agreement with the recorded IR-PD band at 2255 cm-1. 

Other multiplicities would be less stable. 

 

Fig. 4 Experimental IR-PD spectra and DFT modelling of (6,1) and (6,6). Both 

calculated clusters have a quartet spin state and an octahedral cluster core. For 

the (6,6) cluster we enforced a C2h symmetry,  a much larger splitting occurring 

otherwise (cf. Fig. S20). The (6,1) cluster was optimized without restrictions. The 

blue lines are to emphasize the slight redshift from (6,1) to (6,6) – in experiment 

and calculations alike. 
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In the (6,6) case we find that the quartet state is more stable than a doublet or a sextet – 

no matter which geometry. Full geometry relaxation would yield N2 tilts off the Ni 

adsorption site symmetry axis (the “surface normal vector”) and a concomitant spread of N2 

vibrational frequencies of up to 40 cm-1 which would be ten times beyond the experimental 

width (cf. Fig S20 in the supplementary material). Given the very sharp experimental band, 

we assume a high symmetry of the Ni cluster core and of the N2 adsorption layer, and we 

have continued further modelling accordingly. Interestingly, we achieved converged DFT 

results only when enforcing a reduced C2h symmetry – thus allowing for some Jahn-Teller 

relaxation of the Ni core while enforcing strictly linear Ni - N2 on symmetry axis adsorption - 

and we failed when asking for full octahedral Oh symmetry. Under such symmetry 

restrictions we obtain a closely spaced bunch of N2 adsorbate stretching vibrations in (6,6) 

the center of which is slightly red shifted with respect to the according value in (6,1), Δν(6,6)-

(6,1),calc = -1.5 cm-1. This corresponds to the experimental value, Δν(6,6)-(6,1),IR-PD = -3.9 cm-1 (cf. 

Fig. 4 and blue lines, to guide the eye). 

[Ni7(N2)m]+ = (7,m): Three possible cluster structures have been proposed by Parks & Riley 

for the Ni7+ cluster: a pentagonal bipyramid, a capped octahedron and a four capped trigonal 

prism. They conclude the capped octahedron to be most likely, even though they could not 

rule out a structural rearrangement upon coordination of the first N2 adsorbate.[53] Our 

own search revealed that the calculated vibrational spectrum of a capped octahedral Ni7 

core with 10 N2 adsorbates reproduces the experimental IR-PD spectrum of (7,10) well and 

in most details (Fig. 5), while the calculated spectra of complexes with other Ni7 core 

structures do not. 

This substantiates the theory of a capped octahedral cluster structure of the high 

coordinated species. The DFT calculations predict IR intensities, which are in very good 

agreement with the experiment – except for the lowest N2 stretching frequency at 2196 cm-1 

that is significantly weaker in the IR-PD spectrum. Our modelling attributes this vibration to 

the N2 adsorbate on top of the highest coordinated nickel atom (cf. Fig. 5 red arrow). 

Nevertheless, we see a clear trend in the calculated IR spectrum of the (7,10) complex (cf. 

color code in Fig.5): The higher the coordination number of the Ni, the larger the redshift of 

the N2 vibration. Stretching vibrations of N2 adsorbates on the same Ni atom couple to 

symmetric and antisymmetric combinations, which typically split by ~ 10 cm-1.  
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Fig. 5 Experimental IR-PD spectrum and DFT modelling of (7,10). The computed 

structure is a capped octahedron with a spin state of 2S+1 = 8. Each Ni atom 

adsorbs a single N2, and the three least coordinated Ni atoms another second N2. 

The color-coding of the stick spectrum and of the vibrational double arrows 

relate these to each other. Note the vibrational splittings by symmetric and 

antisymmetric couplings of N2 vibrations at doubly occupied Ni sites (green and 

blue) or at adjacent equivalent Ni sites (orange and green). 

It is noteworthy to emphasize that the adsorbate layer of intermittent size, the (7,7) 

complex reveals a seemingly much simpler spectral pattern, but shifted with respect to the 

sole bands of the (7,1) complex. One may be tempted to speculate about a pentagonal 

bipyramid structure with a 1 : 1 adsorption scheme, all Ni sites similar, being four- or five-

fold coordinated. Certainly, there is no low coordinated Ni site, as there is no “green circle” 

band. Unfortunately, there are no reliable structure calculations available as of now. 

[Ni8(N2)m]+ = (8,m): The IR spectrum of the (8,mx) = (8,10) complex consists of one main 

band at 2216 cm-1 (Fig. 3, left row, spectrum in green) which is redshifted by 32 cm-1 with 

respect to (8,1), and accompanied by several weaker bands to the blue. The spectrum of the 

(8,mmax) = (8,12) complex reveals a broad vibrational pattern of at least six strong bands 

which partially overlap, and which has a strong similarity to the pattern of (7,10). One may 

speculate about a bicapped octahedron or a mono-capped pentagonal bipyramid, as 

suggested by our kinetic studies as well, see [JM]. Our DFT modelling has not led to a 

reasonable simulation of the observed vibrational spectrum yet. 

[Ni9(N2)m]+ = (9,m): We have studied and published these species before.[55] The 

adsorption limit at (9,13) and the intermittent adsorption limit (9,8) could be explained by 

both a tricapped octahedron and a bicapped pentagonal bipyramid. Utilizing DFT 
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calculations, we showed that there is a possible structural rearrangement upon adsorption 

of N2. Starting from a tricapped octahedron the cluster relaxes to a bicapped pentagonal 

bipyramid. In any case, the n = 9 cluster complexes have shown strong evidence for a single 

highly coordinated Ni atom, that might be regarded as “semi-internal” or embryonic on the 

way to internal or bulk. It is this highly coordinated Ni atom which seems to receive an N2 

adsorbate only upon saturation, namely at the (9,12) and (9,13) complexes. Here, we 

conclude that the most red shifted band at 2181 cm-1 (marked by red circle in Fig. 3) 

originates from such an N2 adsorbate on the semi-internal Ni site. 

[Ni10(N2)m]+ = (10,m): The spectrum of (10, mx) = (10,9) resembles that of (9,mx) = (9,8), 

and that of (10,mmax) = (10,12) resembles that of (9,mmax) = (9,13). This finding suggests 

structural similarities. The (10,mx) = (10,9) stoichiometry indicates a highly coordinated, 

semi-internal  Ni atom, further substantiated by the “red circle” fingerprinting band at 

2191 cm-1 – subtle structural balances modulating the very band position slightly. 

Appearance of a “green circle” band to the blue once more indicates the occurrence of 

double N2 occupation of a low coordinated Ni site. Taken altogether these spectral 

observations suggest a conceivable tricapped pentagonal bipyramid structure. 

[Ni11(N2)m]+ = (11,m): Once more spectral similarities to (9,m) and (10,m) suggest 

structural similarity. The (11,mx) = (11,10) stoichiometry indicates a highly coordinated, 

semi-internal  Ni atom, further substantiated by the “red circle” fingerprinting band at 

2179 cm-1 – once more shifted by some subtle structural balances. A “green circle” band 

indicates double N2 on a low coordinated Ni site.  We speculate on a conceivable tetra-

capped pentagonal bipyramid structure – which would be isomorph to an icosahedron 

missing two neighboring atoms. 

Our structural modelling by DFT suggests similar structures and reasonable spin states, 

2S+1=10. It manages to simulate all but one spectral features: The observed “red circle” 

band is missing by simulation (Fig. 6). This might be due to slight overbinding of the Ni apex 

atoms. If the low coordinated Ni apex atoms next to the semi-internal Ni site were a little 

more to the outside, the otherwise shielded central Ni atom might become accessible for N2 

adsorbates. DFT modelling of the intermittent adsorption limit (11,10) is still in progress (Fig. 

S21 in the supplementary material). A superposition of two different spin states is 

conceivable. 
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Fig. 6 Experimental IR-PD spectrum and DFT modelling of (11,14). The computed 

structure is an icosahedron missing two neighboring atoms with a spin state of 

2S+1=10. Every Ni atom adsorbs at least a single N2, except for the Ni atom in the 

center of the cluster which stays vacant. The four least coordinated Ni atoms 

accept an additional N2. The computed spectrum models the experimental 

measured spectrum closely, except for the experimental band at 2179 cm-1. 

[Ni12(N2)m]+ = (12,m): The spectrum of the (12,mx) = (12,11) species is dominated by a 

single band at 2222 cm-1 which suggests a smooth surface of the Ni core. A weak sideband at 

2196 cm-1 asks for some explanation. 

 

Fig. 7 Experimental IR-PD spectrum of (12,11) and DFT modelling by an 

icosahedral structure with one missing surface atom. Each Ni atom adsorbs a 

single N2, except for the semi internal Ni atom. There are several conceivable 

spin states. 

Our DFT modelling converges to an icosahedron minus one surface atom with a single N2 

occupation of each Ni site but the internal one. This structure stabilizes a spin state of 
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2S+1=10, and its spectrum matches the experimental spectrum quite well (Fig. 7) – except 

for the weak sideband, which we attribute to possible contributions from the 12tet spin 

state. 

The experimental IR-PD spectrum of the (12,mmax) = (12,12) complex reveals a broad and 

more complex pattern. It gives rise to a green circle band, which indicates double N2 

adsorption to a low coordinated Ni atom. This cluster complex does not possess the rather 

smooth structure of the (12,11) complex. We thus observe a presumable reorganization of 

the Ni cluster core by an increase of the N2 adsorption by one molecule, from 11 to 12. The 

Ni12
+ cluster most likely does not provide for the high stability of the highly symmetric Ni13

+ 

cluster. Thus, it is possible that adsorbates induce reorganization. A similar effect has been 

predicted for neutral Ni clusters before[45]: Highly symmetrical clusters of closed geometric 

shells (n = 13, 19) provide for large reorganization energies, while all others reveal low lying 

isomers close to the most stable minimum structure. The latter ones are subject of high 

probability for reorganization, e.g. upon adsorbate induced distortions. 

[Ni13(N2)m]+ = (13,m): The naked Ni13
+ cluster is assumed to be of icosahedral shape with 

an all smooth surface. Therefore, the experimental IR-PD spectrum of the (13,mmax) = (13,12) 

complex consists of a single band. For a detailed discussion see our recent publication.[55] 

[Ni14(N2)m]+ = (14,m): The IR-PD spectrum of (14,mmax) = (14,14) reveals two narrow bands 

at 2229 cm-1 and 2246 cm-1, and an asymmetric wide band at 2212 cm-1 with a tail to the red. 

Our DFT modelling suggests a capped icosahedron, the capping Ni atom doubly occupied and 

all other Ni sites singly. Despite all effort, we only achieved a fair agreement of the modelled 

vibrational spectrum with the experimental IR-PD spectrum (cf. Fig. 8). A weak band to the 

blue nicely models the “green circle” band of the IR-PD. All the other modelling deviates 

significantly from the experiment. In particular, the strong experimental doublet at 2212 and 

2229 cm-1 finds no correspondence in modelling – which in turn finds significant IR 

intensities below 2180 cm-1 void of correspondence in experiment. Obviously, DFT modelling 

reaches limits at this point – at least by our currently available methods. The found motifs of 

all but the green circle vibrations originate from various delocalized N2 stretching modes 

remote of the capping Ni site. It may be this coupling, which ceases to be modelled 

accurately as of now. The experiment reveals a clear 17 cm-1 splitting which comes close to 
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the previously observed symmetric to asymmetric combination mode differences by 

adjacent N2 adsorbates [55]. 

The N2 adsorption kinetics show no evidence for any reorganization and/or intermittent 

adsorption limits. We thus have no reason to speculate about those in the present case – 

similar to what follows. 

 

Fig. 8 Experimental IR-PD spectrum of (14,14) and DFT modelling by a capped 

icosahedral structure. Each Ni surface atom adsorbs a single N2, except for the 

capping Ni atom which accepts another second N2. There are several conceivable 

spin states.  

Of course, we have checked for various spin states in the course of our DFT modelling, and 

we found less stable 14tet and 16tet states, the IR spectra of which do not agree with 

experiment either.  While it was stated that standard DFT may underestimate spin magnetic 

moments [63] we find good agreement with our own previous determination of these by 

XMCD experiments on isolated cluster ions[64]. Finally, we have to consider the possibility of 

somewhat higher atomic moments – more unpaired d electrons – which might be in part 

antiferromagnetically coupled.  It would take high effort to model such electronics by broken 

symmetry calculations, and this is clearly beyond the scope of our present study. 

[Ni15(N2)m]+ = (15,m):  The spectrum of (15,mmax) = (15,16) is similar to that of (14,14) but 

for two changes: It provides for some additional bands. There are two “green circle” bands 

at 2247 cm-1 and 2235 cm-1, instead of merely one in (14,14). This indicates two low 

coordinated Ni sites which accept double occupation by N2 adsorbates each - conceivably an 
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icosahedral Ni core structure with two non-neighboring Ni capping atoms. Note, that 

thereby we rule out an otherwise conceivable truncated octahedron (cf. [JM]) which would 

be void of such low coordinated Ni atoms. Additional bands to the red make up for an 

increased spectral complexity. This might be explained by the superposition of multiple spin 

states and / or by the coexistence of multiple structural isomers, the latter arising from 

different positioning of the two capping Ni atom with respect to each other: adjacent or 

remote.  

In the cases of this and larger complexes, we refrained from pursuing DFT modelling on 

our own. This challenging task is left to others and it would find our full support – once 

pursued. 

[Ni16(N2)m]+ = (16,m) and [Ni17(N2)m]+ = (17,m):  The spectra of (16,mmax) = (16,16)  and 

(17,mmax) = (17,17) provide for a very large similarity. In both cases, there are two “green 

circle” bands around 2240 cm-1, which we assign to the symmetric stretching vibrations of a 

pair of two N2 adsorbates on top of low coordinated Ni capping atoms, much like in the 

(15,16) case discussed above. The central part of both spectra is dominated by a pair of 

strong bands close to what we found in (14,14) and in (15,16). Such close similarities suggest 

likely similar structural motifs. It is conceivable that the Ni cluster cores originate from a 

stepwise addition of single Ni atoms to the triangular faces of a Ni13 icosahedron. This would 

eventually lead to a bi-icosahedral shape at Ni19, and we will discuss this option latter. It is 

likely that the capping atoms preferentially accumulate on one side of the Ni13 core and in 

mutual proximity in order to gain cohesion energy. Such a stepwise adding up process 

maintains the previously smooth icosahedral surface on one side while creating defect like 

rough surface parts on the other side. It is this Janus head like situation of all clusters 

n = 14 – 17 which renders the resulting IR spectra similar. There is an ubiquitous symmetric 

to asymmetric N2 coupling splitting in all cases, and is accordingly seen in the spectra by the 

dominant 17 cm-1 splitting of the two strongest bands.  

[Ni18(N2)m]+ = (18,m): The spectrum of the (18,mx) = (18,16) species is dominated by a 

single band at 2209 cm-1 which suggests a smooth surface of the Ni core. A weak shoulder to 

the blue might correspond somehow to the weak additional band to the red of the sole 

dominant peak in (18,1). In any case this simple spectrum is in remarkable contrast to the 

spectral complexity of the n = 14 – 17 clusters. The more noteworthy it is that the n = 18 
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cluster turns into spectral complexity once there are two more N2 adsorbates, namely at 

(18,mmax) = (18,18). This behavior is reminiscent of the (12,11) and (12,12) cases where we 

concluded in structural reorganization upon N2 saturation. Dwelling on this analogy we 

postulate a rather smooth cluster structure at the intermittent adsorption limit (18,16) (e.g. 

a bi-icosahedron missing one apex atom) which would provide for all equivalent Ni sites for 

N2 adsorption but one semi internal, highly coordinated Ni atom that remains vacant in 

(18,16). As such a structure does not provide for the stability of a high symmetry cluster 

(n = 19, bi-icosahedron) further N2 adsorption might induce some structural reorganization. 

This inevitably leads to coordination loss of some Ni surface atoms and accordingly to 

surface roughening, or in other words to the emergence of some defect sites. The spectral 

consequence of such roughening is by now well known to us: The appearance of a “green 

circle” band would be inevitable and fingerprinting: Indeed, the IR-PD spectrum of (18,18) 

clearly reveals two of these in partial coalescence at ~ 2234 and 2238 cm-1. 

[Ni19(N2)m]+ = (19,m):  The spectrum of (19,mmax) = (19,17) is almost as simple as those of 

(6,6) and (13,12): All of these consist of a single strong band, which points towards high 

symmetry and all equivalent Ni surface sites. In the case of (19,17) it is straightforward to 

assume bi-icosahedral Ni19 core, the 17 Ni surface atoms of which are “titrated” by 17 N2 

adsorbates in 1:1 adsorption stoichiometry. Besides the main band of (19,17) at 2211 cm-1 a 

second glance reveals two very weak bands arise to the red, at 2196 cm-1 and at 2188 cm-

1(cf. Fig. S17 in the supplementary material).While we have no proof of any explanation we 

feel entitled to speculate about spin state isomers, which might stabilize by minute 

structural distortions. By our own DFT modelling of the small Ni clusters we would expect 

stretching vibrations of N2 adsorbates to such high spin isomers (also refer to [55]Fig. 9) 

shifting to the red by amounts on the order of the observed weak bands in (19,17). 

[Ni20(N2)m]+ = (20,m): The recorded IR-PD spectra of (20,mx) = (20,17) and 

(20,mmax) = (20,18) show high similarities. Both consist of three strong bands, and both 

species give rise to “green circle” bands. Only minor differences prevail: There is a somewhat 

broader shoulder to the red of the 2205 cm-1 band in (20,18), and its “green circle” band is 

somewhat more distinct. The general spectral pattern is reminiscent of (14,14). Dwelling 

once more on an analogy – here to (13,12) - all of the spectral features in (20,18) suggest a 

singly capped bi-icosahedral Ni20
+core structure where the low coordinated Ni capping atom 
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accepts a pair of N2 adsorbates (see green circle band in the spectrum). This capping atom 

most likely goes to the waist of bi-icosahedron and thereby slightly bends it off linearity. The 

disfavored Ni counterpart on the opposite site acquires a locally convex surface 

environment, ceasing to accept an N2 adsorbate. In total the number count of saturation 

comes to (20,18). 

6.6 Conclusions 

D The recorded IR-PD spectra of all (n,1) and (n,2) cluster adsorbate complexes show IR 

active bands by head-on bound N2 adsorbates which shift from ~ 2270 cm-1 at small (n,1) and 

(n,2) to ~ 2220 cm-1 at large ones. These redshifts (~ 50 cm-1) with increasing cluster size are 

in line with the established charge dilution model. 

The many recorded IR-PD spectra of intermittent (n,mx) and saturated (n,mmax) species – 

together with the few successfully modeled DFT spectra – allow to refine our initial 

separation by presumed structure and observed adsorption behavior (small, large, and 

highly symmetric) as stated on the basis of the recorded kinetic data [JM]. We now conclude 

that there are four classes of structure related surface adsorption behavior:  

Class (1) of highly symmetrical clusters with all smooth surfaces comprises Ni6+, Ni13
+, and 

Ni19
+, and their N2 adsorbate complexes up to saturated (n,mmax). These clusters of 

exceptional high symmetry (octahedron, icosahedron, bi-icosahedron) provide for simple IR-

PD spectra. Adsorption kinetics, IR-PD spectra, and DFT in line conclude in step wise and 

largely independent N2 adsorption up to a 1:1 stoichiometry of Nisurface : N2,adsorbate.  

Class (2) of some highly symmetrical clusters minus one Ni atom comprises Ni12
+, and 

Ni18
+, and their N2 adsorbate complexes up to saturated (n,mmax). These two clusters are 

short of one Ni atom relative to the all smooth surface class (1) species. The IR-PD spectra 

strongly suggest that the naked clusters, and those with few N2 adsorbates, have relaxed 

into some structure with a smooth surface and void of defects such as low coordinated Ni 

surface atoms. Upon enhanced N2 load they reorganize into partially rough surface 

structures which allow for N2 uptake beyond the 1 : 1 stoichiometry, in particular by 

providing low coordinated Ni surface atoms which stabilize by double N2 adsorption. 

Class (3) of small clusters with rough surfaces comprises Ni5+, and Ni7+ through Ni11
+, and 

their N2 adsorbate complexes up to saturated (nsmall,mmax). The IR-PD spectra suggest rough 
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surfaces with one or multiple low coordinated Ni surface atoms by “green circle” bands, and 

they fingerprint semi internal Ni atoms of high next neighbor coordination by “red circle” 

bands in the cases of nsmall = 9, 10, and 11. We conceive surface reorganization upon N2 

uptake, namely from rough to rough surface by Ni atom migration. Such migration might 

induce the transition from octahedral based structures to pentagonal bipyramidal 

structures, which are representative for icosahedral cluster growth.  

Class (4) of large clusters with rough and smooth surface areas comprises Ni14
+ through 

Ni17
+, and Ni20

+, and their N2 adsorbate complexes up to saturated (nlarge,mmax). We observe 

smooth surfaces with minor defects such as e.g. capping atom(s) on an icosahedral surface. 

From the IR-PD spectra we extract evidence for the Ni capping atoms to locate in proximity 

to each other – resulting from a stepwise cluster growth on one hemisphere of the initial 

icosahedron, leaving the other hemisphere largely unaffected. The N2 saturation 

stoichiometry thus runs up to mmax values beyond the Ni cluster surface atom count nsurface < 

ntotal – once more invoking double N2 occupation of low coordinated Ni surface atoms. 

We provide a graphical summary of this classification, based on Fig. 3, in the supplement 

(Fig. S22 in the supplementary material). 

This study and the accompanying kinetic study [JM] are understood as a basis for our 

subsequent studies on various other TM clusters (of Fe, Ru, and alike), and of some of their 

alloys. Such cluster adsorbate complexes shall help to elucidate crucial elementary steps in 

catalysis, and they shall benchmark current theoretical modelling and help in designing new 

approaches with predicting power. 
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Table of Content: 

Fig. S1 Mass spectrum of a cationic nickel cluster distribution 

Fig. S2 IR-PD spectra of [Nin(N2)1]+ (n,1) and [Nin(N2)2]+ (n,2) for n = 5 – 20. 

Fig. S3 IR-PD spectra of (5,m) 

Fig. S4 IR-PD spectra of (6,m) 

Fig. S5 IR-PD spectra of (7,m) 

Fig. S6 IR-PD spectra of (8,m) 

Fig. S7 IR-PD spectra of (9,m) 

Fig. S8 IR-PD spectra of (10,m) 

Fig. S9 IR-PD spectra of (11,m) 

Fig. S10 IR-PD spectra of (12,m) 

Fig. S11 IR-PD spectra of (13,m) 

Fig. S12 IR-PD spectra of (14,m) 

Fig. S13 IR-PD spectra of (15,m) 

Fig. S14 IR-PD spectra of (16,m) 

Fig. S15 IR-PD spectra of (17,m) 

Fig. S16 IR-PD spectra of (18,m) 

Fig. S17 IR-PD spectra of (19,m) 

Fig. S18 IR-PD spectra of (20,m) 

Fig. S19 IR-PD spectra of (5,10) in comparison with computed spectra of the different spin 

states. 

Fig. S20 IR-PD spectra of (6,6) in comparison with computed spectra of the different spin 

states. 

Fig. S21 IR-PD spectra of (11,10) in comparison with computed spectra of the different spin 

states. 

Fig. S22 IR-PD spectra of [Nin(N2)m]+ cluster adsorbate complexes n = 5 – 20 at the 

intermittent adsorption limits (n,mx) and at the adsorption limits (n,mmax). 
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Fig. S1 Mass spectrum of a cationic nickel cluster distribution from about Ni9+ 

(521 m/z) to about Ni25
+ (1448 m/z) with a maximum at Ni15

+ (869 m/z)..  

Ni15
+ 

Ni9+ 
Ni25

+ 
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Fig. S2 IR-PD spectra of [Nin(N2)1]+ (n,1) (left) and [Nin(N2)2]+ (n,2) (right) for 

n = 5 – 20. 
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Fig. S3 IR-PD spectra of (5,m) 

 

 

Fig. S4 IR-PD spectra of (6,m) 
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Fig. S5 IR-PD spectra of (7,m) 

 

 

Fig. S6 IR-PD spectra of (8,m) 
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Fig. S7 IR-PD spectra of (9,m) 

 

 

Fig. S8 IR-PD spectra of (10,m) 
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Fig. S9 IR-PD spectra of (11,m) 

 

 

Fig. S10 IR-PD spectra of (12,m) 
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Fig. S11 IR-PD spectra of (13,m) 

 

 

Fig. S12 IR-PD spectra of (14,m) 
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Fig. S13 IR-PD spectra of (15,m) 

 

 

Fig. S14 IR-PD spectra of (16,m) 

  

0.0

0.2

0.4

0.6

0.0

0.2

0.4

2150 2200 2250 2300

0.0

0.2

0.4

(15,1)

(15,2)

fr
a

g
. 

e
ff

.

(15,16)

energy / cm
-1

0.0

0.2

0.4

0.0

0.2

0.4

2150 2200 2250 2300

0.0

0.2

0.4

(16,1)

(16,2)

fr
a

g
. 

e
ff

.

(16,16)

energy / cm
-1



 6. Probing Cluster Surface Morphology by Cryo Spectroscopy of N2 on Cationic Nickel Clusters 

 

142 

 

 

Fig. S15 IR-PD spectra of (17,m) 

 

 

Fig. S16 IR-PD spectra of (18,m) 
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Fig. S17 IR-PD spectra of (19,m) 

 

 

Fig. S18 IR-PD spectra of (20,m) 
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Fig. S19 Experimental IR-PD spectra of (5,10) in comparison with computed 

spectra (PBE0/ECP(Ni); cc-pVTZ(N) level of theory, scaled with 0.93) of the 

different spin states. 

 

Fig. S20 Experimental IR-PD spectra of (6,6) in comparison with computed 

spectra (PBE0/ECP(Ni); cc-pVTZ(N) level of theory, scaled with 0.93) of the 

different spin states. The species marked with “*” have forced C2h symmetry. 
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Fig. S21 Experimental IR-PD spectra of (11,10) in comparison with computed 

spectra (PBE0/ECP(Ni); cc-pVTZ(N) level of theory, scaled with 0.93) of the 

different spin states. 
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Fig. S22 Experimental IR-PD spectra of [Nin(N2)]+ cluster adsorbate complexes 

n = 5 – 20 at the intermittent adsorption limits (n,mx) (green shaded areas, left) 

and at the adsorption limits (n,mmax) (blue shaded areas, right). Most findings of 

this publication are summarized in this graphic.
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7.1 Preamble 

The experiments were performed by the experimental team consisting of J. Mohrbach, and 

myself. The data evaluation was done by J. Mohrbach and myself. The computations were 

done by M. H. Prosenc. The kinetic part of the manuscript was written by J. Mohrbach and 

the spectroscopy part was written by myself. 
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7.2 Abstract 

The stepwise N2 adsorption on size selected Fen
+ (n = 8 – 20) clusters at 26 K is studied in a 

hybrid tandem ion trap instrument. Infrared photon dissociation (IR-PD) spectroscopy 

helped to identify N2 head-on adsorption in the first adsorption steps. We observed 

remarkable cluster size dependence of the adsorption limits. The exceptional Fe17
+ cluster 

does not show any reactivity towards N2 at all. We identified two isomers of the Fe18
+ cluster 

of which one is unreactive. Preliminary density function theory (DFT) calculations provide for 

a first explanation for the size dependent inertness towards N2. 

7.3 Introduction 

The ligation of transition metal (TM) clusters exhibits physical and chemical properties 

that are highly dependent on the geometrical cluster structure. Many studies of such metal-

ligand clusters are largely motivated by their potential applications in catalysis.[1-5] Early 

research on the chemical reactivity of transition metal clusters reveals a strong size effect.[6-

8] Iron clusters, in particular, show a strong variation in their reaction rates with small 

molecules as the cluster size increases. Several experimental and theoretical studies on the 

gas phase reactivity of Fen clusters with different ligands, such as the adsorption of 

hydrogen,[7, 9-11], ammonia,[7, 12-14] carbon[15], water,[7, 16-17] and benzene[18-20] have been 

carried out. Guided ion beam studies elucidated the gas phase thermochemistry of cationic 

Fe clusters with N2,[21] O2,[22] and CO[23]. These studies demonstrated the high reactivity 

exhibited especially for small iron clusters. Time-of-flight (TOF) mass spectra reveal an 

unusual sequence of magic numbers n = 7, 13, 15, 19 and 23 for Fen clusters,[24] which can be 

explained neither by electronic shell closure[25] nor by packing of hard spheres.[26] Because of 

the unique ferromagnetic properties of bulk iron, studies on the magnetic properties of 

small iron clusters have drawn considerable interests. Iron clusters are found to be magnetic 

with higher moments than those found in the bulk.[27-30] The intimate relationship between 

structure, magnetic properties and stability poses an uncommon challenge that motivated 

many theoretical studies of Fen clusters.[31-40] The Fe13
+ cluster has drawn special attention 

with its proposed antiferromagnetic coupling.[41-42] Still, important controversies remain 

unresolved among the reported results, including the ground-state atomic arrangements, 
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magnetic moments, noncollinear magnetism, and finally the stability spectrum of small Fe 

aggregates. 

The physisorption and chemisorption of N2 on metal surfaces have been studied 

extensively[43] due to their importance in many catalytic processes. For example, the rate-

determining step in the industrial synthesis of ammonia is the dissociation of N2, using iron 

as a catalyst.[44] The fixation of nitrogen by the nitrogenase enzyme is the equivalent process 

in biological systems.[45] The behavior of N2 reacting with iron clusters of different nuclearity 

is therefore particularly relevant to industrial and biological processes involving N-N bond 

breaking. Experimentally, it has been shown that N2 adsorption to Fe(111) surfaces takes 

place in α-N2 and Z-N2 motifs, elucidated by angle resolved LEED studies in conjunction with 

potential surface modelling.[46] This resembles η2 side-on and η1 end-on coordination of N2 

to multiple and single metal centers, respectively. Spectroscopic and kinetic studies of N2 

adsorbed on Fe(111) revealed that there are three characteristic α-, δ- and γ-states, which 

refer to side-on, and head-on adsorption to highly and to less coordinated metal surface 

atoms.[43, 47-48] Early density functional theory (DFT) calculations revealed strong preference 

for end-on coordination of N2 to single Fe centers with some evidence for rather exceptional 

η2 side-on coordination of at most two N2 to otherwise naked Fe atoms.[49-50] However, there 

are merely gas phase IR studies on the interaction of adsorbates with Fe clusters irrespective 

of their charge state. Such studies provide for the unique opportunity to gather structural 

information of size dependent reactions as demonstrated by the observation of hydride 

formation on Fe clusters[51] or the size dependent dissociation of water[52]. 

Our tandem cryo ion trap instrument allows for the study of adsorption and reaction 

kinetics of clusters under single collision conditions at temperature as low as 11 K and for 

Infrared Photon Dissociation (IR-PD) spectroscopy –initially focusing on the one and two 

color investigations of metal organic complexes.[53] We have started a systematic study of N2 

and H2 cryo adsorption on size selected Fe, Co, and Ni clusters, first results being 

published.[54-56] X-ray studies by cryo ion trapping help for the investigation of spin and 

orbital contributions to the magnetic moments of these TM clusters.[57-58]  

Here, we present detailed isothermal cryo kinetics and cryo IR spectroscopy of the N2 

adsorption onto cationic iron clusters Fen
+ (n = 8 - 20) in conjunction with DFT modelling. 
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This study aims to enable insight into the metal-adsorbate bonding and into the reactivity of 

individual Fe clusters towards N2 adsorption  

7.4 Experimental and Computational Methods 

A customized Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer 

(Apex Ultra Bruker Daltonics) served to perform the cluster production, isolation, N2 

condensation and mass analysis. The iron clusters were generated using a home-built laser 

vaporization cluster ion source as described before.[59-60] In brief, iron atoms are evaporated 

from a rotating 0.4 mm thick isotopically enriched 56Fe foil (99,93%, Oak Ridge National 

Laboratories) by the second harmonic of a pulsed Nd:YAG laser (Innolas Spitlight 300, 20 Hz). 

The hot plasma is captured by a He gas pulse (40 µs, 15 bar) created by a homebuilt 

piezoelectric valve.[61] The atoms and ions are cooled and aggregate to clusters in the 

subsequent jet expansion through a 50 mm long channel (Ø 2 mm) into vacuum (10-7 mbar). 

The clusters are skimmed, mass selected and injected into a cryogenic hexapole ion trap. The 

ion trap is cooled to 26 K by a closed cycle He cryostat. Buffer and reaction gas are 

introduced continuously. Sufficient nitrogen attachment is achieved by increasing the 

pressure in the ion trap from 1.1 x 10-7 mbar to 1.6 x 10-7 mbar. Additional He is introduced 

to increase the pressure up to 3.5 x 10-6 mbar to accomplish an efficient trapping and cooling 

of the ions. After storing the ions for a variable time (0-10 s), the manipulated ions of the 

form [Fen(N2)m]+ = (n,m) are guided by electrostatic lenses into the FT-ICR cell of the so-

called ‘‘infinity’’ type.[62] The ICR cell is held at temperatures below 10 K with a closed cycle 

He cryostat to prevent heating of the clusters by black body radiation. The ICR cell serves for 

the detection and isolation of the formed [Fen(N2)m]+ = (n,m) cluster adsorbate complexes. 

The kinetic curves of cationic iron clusters and their nitrogen adducts originate from 

reaction delay scans and subsequent evaluation of the recorded mass spectra. Each of these 

mass spectra originates from an average of 20 mass spectra for the fixed collision cell delay. 

Fits to pseudo-first-order-kinetics occur through the “evofit” program.[63] The relative rate 

constants k(n,m) determine the absolute rate constants C!D,E)FGH , the absolute collision gas 

number densities IJw!L) serving as the conversion factor: 

	C!D,E)FGH = C!D,E)/IJw!L) 
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We obtain approximate values for IJw!L) indirectly from the pressure in the surrounding 

chamber pc
(300 K) and an effective geometry factor capp: 

IJw!26	�) = BFVVQRSTT	UC�LSTT	U  

The geometry factor capp shows to bear a significant dependence on the temperature of 

the hexapole ion trap. By numerous kinetic studies of transition metal cluster cations with 

neutral reactants at cryogenic temperatures we evaluated this factor capp to 1.8 ± 0.4 at 26 K 

with a net uncertainty of ± 50%.  

The classical Langevin collision rate of ions with neutrals[64] is conveniently extended 

towards polar molecules by the average dipole orientation theory (ADO).[65-66] The ADO 

theory gives the theoretical limit of the absolute rate constants, the collision rate kADO, based 

on a classical trajectory of a linear dipole in the field of a point charge:  

C�A  = �2εT√μ	¡√¢ + BμA£ 2¤C�L¥ 

µ is the reduced mass (of the cluster adsorbate complex), α is the polarizability and μD is 

the dipole moment (in Debye). The parameter c lies between 0 and 1, and can be expressed 

by the polarizability volume α'and μD.[67] 

Kummerlöwe and Beyer introduced two models for calculating the collision rates of ionic 

clusters with neutral molecules, the HSA model (hard sphere average dipole orientation) and 

the surface charge capture (SCC) model.[68] In both models, the cluster and the neutral 

reaction partner are treated as hard spheres, and the charge is treated as point charge. For 

the HSA collision rate kHSA, the charge is located in the center of the cluster, while in the SCC 

model (kSCC), the charge is drawn to the cluster surface by the attractive interaction with the 

neutral collision partner.  

For the acquisition of the (IR-PD) spectra the FT-ICR cell is coupled to a tunable IR laser 

(δn = 0.9 cm-1, δt = 7 ns). This laser is a KTP/KTA optical parametric oscillator/amplifier 

(OPO/A, LaserVision) system pumped by a pulsed 10 Hz injection seeded Nd:YAG laser 

(PL8000, Continuum). The difference frequency (DF) between the OPA signal and idler waves 

is generated in a AgGaSe2 crystal. This generates IR radiation in the range of 1000 –
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 2400 cm-1. Each trapped and isolated package of ions is irradiated by 7 – 10 laser pulses 

(0.1 – 1.5 mJ/pulse) to yield a sufficient amount of fragment ions. The IR spectra were 

recorded as ion chromatograms while continuously scanning the IR wavelength. The IR-PD 

signal was evaluated as ΣiFi/(ΣiFi+ΣiPi), where Fi and Pi indicate fragment and the parent ion 

signals, respectively. An experimental IR-PD spectrum arises from a plot of the 

fragmentation efficiency as a function of laser frequency. We employed the IR-PD 

spectroscopy in the 2150 – 2340 cm-1 range on the [Fen(N2)m]+ species (n = 8 – 20). For all 

complexes the loss of N2 was the only observed fragmentation channel. 

All density functional theory calculations were performed using the Turbomole suit of 

programs [73-74]. For all atoms the def2-TZVP basis set was used [75]. For corrections of 

energies and gradients the PBE GGA functional has been employed [76]. Calculation of 

occupation numbers at a finite temperature located the lowest energy spin state.  

Geometries were optimized and checked for stationary points by second derivative 

calculations revealing no imaginary frequencies for minima. Jahn-Teller distortions were 

resolved by initially optimization of the geometry at the highest symmetry followed by 

frequency calculations and by subsequent IRC calculations from the saddle point to reveal 

the optimal distorted geometry which was then fully optimized and checked again for 

possible further distortions. 

 

7.5 Results and Discussion 

Molecular nitrogen adsorption on iron cluster cations: Trends and limits of adsorption 

We investigated the stored [Fen(N2)m]+ = (n,m) clusters for their N2 adsorption in the 

cryogenic hexapole under isothermal conditions at 26 K. The mass spectra of all detected 

Fen
+ clusters - except for Fe17

+ - reveal a successive gain of 28 m/z, which does indicate the 

stepwise adsorption of molecular nitrogen in consecutive chains of individual adsorption 

processes (cf. Fig. 1). 

In all investigated cases (n = 8 – 20) stepwise N2 uptake reaches a strict adsorption limit 

mmax within t < 12 s, and this does not increase further up to t < 30 s. In most cases we 
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observe the N2 adsorption limit preceded by one or more additional intermittent adsorption 

limits, which do not suppress further adsorption but cause some retardation.  

 

 

 

Fig. 1 Temporal evolution of the mass spectra of mass-selected Fe14
+ = (14,0) 

clusters up to 4 s (left) and of mass-selected Fe18
+ = (18,0) clusters up to 10 s 

(right), exposed to 1.6 x 10-7 mbar N2 within 26 K He buffer gas (3.5 x 10-6 mbar). 

The intermittent adsorption limits (blue stars in Fig. 2) and the adsorption limits (filled 

blue circles in Fig. 2) serve as guidelines for some elucidation of adsorbate bonding and 

cluster geometries. It shows, that the n:m stoichiometry is > 1 in all investigated cases 

n = 8 – 20, when reaching the respective N2 adsorption limit. Yet, there is a trend in N2 

adsorption limits towards a molar ratio of n:mmax = 1:1 for small clusters (n ≤ 12). The overall 

adsorption behavior cannot be explained by single N2 head-on adsorption to each cluster 

surface atom, as shown for Nin+ clusters.[55] For clusters with less than 18 Fe atoms the 

observed intermittent adsorption limits are close to the recorded adsorption limits. Note the 

pronounced dip in the adsorption limits for 13 ≤ n ≤16 and the absence of N2 adsorption to 
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the Fe17
+ clusters. Clusters with n > 17 exhibit an increase in reactivity towards N2 

adsorption. IR-PD experiments indicate µ1 head-on adsorption of the initial adsorbed N2 for 

all investigated (n,1) cluster adsorbate complexes.[14] 

 

Fig. 2 Recorded adsorption limits (filled circles) and intermittent limits (stars) of 

nitrogen adsorbed on a cationic iron clusters. The limits are displayed as a 

function of cluster size for n = 8 – 20. The blue symbols indicate that the N2 was 

adsorbed in the hexapole and the orange symbols indicate the adsorption in the 

ICR cell. 

Preliminary results of N2 adsorption kinetics recorded in the ICR cell yield (cf. Fig. 2, orange 

symbols) the same results as the kinetics recorded in the hexapole. We observe the same 

adsorption limits, the non-reactive Fe17
+, and a non-reactive isomer in the case of Fe18

+. 

Therefore the observed effects are confirmed by two individual experiments.  

Kinetics: 

We further investigated the stepwise N2 adsorption on Fen
+ clusters by recording their 

reaction kinetics in more detail, and we performed pseudo-first-order kinetic fits by our 

genetic algorithm routine. The obtained fits confirm consecutive adsorption steps (Fig.s 2-4). 
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All but one Fen
+ clusters decay mono exponentially without any indication of a second 

component. This, and the overall superior quality of all fits, entitles us to fit each consecutive 

step by a single rate constant. Some fits require significant backward reaction in cases of 

high N2 coverages, which indicates swift N2 desorption (see the supplementary information 

for details on the corresponding rate constants k(n,m) for all cluster kinetics). There is one 

exception: The N2 adsorption to Fe18
+ exhibits a biexponentially decay in the initial 

adsorption step.  

Fe8
+ – Fe11

+: 

Small iron clusters Fen
+ in the range of n = 8 – 11 exhibit little deviation in the observed 

adsorption limits and the intermittent adsorption limits. All clusters reveal a strict adsorption 

limit at n ≥ m. There are significant backward reactions for the last adsorption steps, 

suggesting one or more weakly bound N2 molecules when reaching cluster saturation (cf. 

Fig. 3).  

In the case of (8,m) we observe an intermittent adsorption limit at (8,4) and the 

adsorption limit at (8,6). The predicted most stable structures for Fe8 clusters correspond to 

a capped pentagonal bipyramid,[36-37, 69-70] or a bisdisphenoid structure.[36-40] The capped 

pentagonal bipyramid consists of one threefold, three fourfold, two fivefold, one sixfold and 

one sevenfold coordinated Fe atom. Assuming the same N2 adsorption ‘rules’ as stated for 

Nin+ clusters,[55] the adsorption limits should be observed at (8,7) and (8,12). In contrast, 

initial binding to the three- and fourfold coordinated Fe sites and additional adsorption to 

the fivefold atoms would result in limits at (8,4) and (8,6), as observed. The bisdisphenoid 

structure consists of four fourfold and four fivefold coordinated Fe atoms, which would 

result in limits at (8,8) and (8,12) or at (8,4) and (8,8), other than observed.  

In the cases of (9,m) and (10,m) we observe an intermittent adsorption limit at n = 6 and 

the adsorption limit at n = 7. The reported most stable structures for Fe9 and Fe10 clusters 

correspond to capped square antiprisms, capped pentagonal bipyramidal motifs, or capped 

trigonal bipyramidal motifs. These geometries are possible growth models leading to the 

icosahedral structure predicted for Fe13.[36-37, 69-70] The (11,m) cluster adsorbate complex 

exhibits an intermittent adsorption limit at (11,6) and the adsorption limit at (11,9), in 
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equilibrium with its precursor. The preferred structure for this cluster is found to be a tetra-

capped pentagonal bipyramid. 

Unfortunately, there is no universally applicable adsorption rule, which would explain the 

observed adsorption limits. Without further knowledge of the exact N2 adsorption site, no 

comprehensive structural interpretation can be drawn out of the adsorption limits alone. We 

tentatively assume µ1 head-on adsorption up to the adsorption limit, based on the shape of 

the kinetic curves in conjunction with those obtained for Nin+ clusters. In addition, IR-PD 

investigations of the (n,1) and (n,2) cluster adsorbate complexes point towards µ1 head-on 

N2 adsorption (see IR-PD part). 

 

Fig. 3 Isothermal kinetics of the stepwise N2 adsorption by isolated Fen
+ clusters 

(n = 8 – 11). The fits (shown as lines) assume pseudo-first-order kinetics in a 

reaction chain of up to 9 consecutive steps.  
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Fe12
+ – Fe15

+: 

In the range of n = 12 – 15 the N2 adsorption behavior to Fen
+ clusters changes 

dramatically (cf. Fig. 4). We observe a significant decrease in N2 adsorption with cluster size 

for n > 12. 

In the case of (12,m) we observe an intermittent adsorption limit at (12,7) and the 

adsorption limit at (12,11). In the cases of (13,m) and (14,m) we observe intermittent 

adsorption limits at m = 4 and the adsorption limit at m = 6. The (15,m) cluster adsorbate 

complex exhibits only five consecutive steps. The terminal four adsorbate species (m = 2 - 5) 

are in equilibrium in favor of m = 2. Note, that the intensities of the minor adsorption limits 

(m = 3 – 5) are close to our detection limit, resulting in a reduction of the fit quality. 

 

Fig. 4 Isothermal kinetics of the stepwise N2 adsorption by isolated Fen
+ clusters 

(n = 12 – 15). The fits (shown as lines) assume pseudo-first-order kinetics in a 

reaction chain of up to 11 consecutive steps.  
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Fe16
+ – Fe20

+: 

In the range of n = 16 – 20 a significant change in reactivity towards N2 adsorption is 

observed (cf. Fig. 4). Note, that in the case of Fe17
+ no N2 adsorption could be detected 

within the described experimental conditions.  

In the case of (16,m) we observe a sole adsorption limit at (16,3). Clusters of the sizes 

n = 18, 19 and 20 exhibit dominant intermittent adsorption limits. Note the observed 

irregularity in intensity with further N2 adsorption beyond these limits, which can still be 

fitted as consecutive reaction steps with mono-exponentially decays in good quality. This 

finding might indicate a change in e.g. adsorption site, likely from head-on to side-on 

coordination by tilting the adsorbed N2. 

 

Fig. 5 Isothermal kinetics of the stepwise N2 adsorption by isolated Fen
+ clusters 

(n = 16, 18 – 20). The fits (shown as lines) assume pseudo-first-order kinetics in a 

reaction chain of up to 17 consecutive steps.  
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In the case of (18,m) we assume the presence of a second isomer which does not adsorb 

N2 (~ 13 %, cf. Tab. 1) – presumably analogous to Fe17
+. A first explanation for the non-

reactivity of the Fe17
+ cluster and the non-reactivity of one Fe18

+ isomer can be found in the 

DFT part. We observe a distinct intermittent adsorption limit at (18,7) and the adsorption 

limit at (18,13). In the cases of (19,m) and (20,m) we observe a first intermittent adsorption 

limit at m = 2 followed by intermittent adsorption limits at (19,9) and (20,11). The respective 

adsorption limits are observed at (19,17) and (20,14).  

 

Table 1. Pseudo-first-order rate constants for the initial N2 adsorption to Fe18
+ in 

1.6 × 10−7 mbar of N2 and 26 K He buffer gas. 

 [Fe18(N2)m]+ 

 isomer I isomer II 

% 87 13 

k(18,0) / s-1 2.91 0.00 

 

Absolute rate constants of the initial N2 adsorption 

The absolute rate constants C!D,E)FGH  are obtained from the pseudo-first-order rate 

constants as a function of cluster size (Fig. 6, blue circles). Collision rate constants are 

calculated on the basis of classical ADO theory, as well as on the HSA and SCC models.  

We observe an overall increase in the absolute rate constants with cluster size towards 

collision rates predicted by ADO theory. The absolute rate constants for clusters up to n = 11 

increase rapidly. Clusters with n = 13 and 15 – 17 show a decrease in reactivity towards N2 

adsorption as compared to the stated increase with cluster size. Larger clusters with n ≥ 18 

reveal equal rates for the initial N2 adsorption (cf. Tab. 2). 

We reach limits when trying to interpret the subtle details of the current kinetic findings 

on their own, as they do not correlate with the cluster structure like in the case of Ni 

clusters[56]. Most noticeable, the seeming inertness of the Fe17
+ cluster bears elements of a 

miracle – that will be addressed later on.  
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Fig. 6 Absolute rate constant C!D,T)FGH  of the initial N2 adsorption to Fen
+ clusters by 

experiment (blue), according to classical average dipole orientation theory (black 

line), to the hard-sphere average dipole orientation model (dashed line), and to 

the surface charge capture model (dot-dashed line). 

Table 2. Relative and calculated absolute rate constants for the initial N2 adsorption to Fen
+ 

clusters in comparison to the calculated rate constants assuming classical ADO theory, the 

HSA model, and the SCC model. 

n 
k(n,0) 

s-1 

C!D,T)FGH 	
10-10 cm3 s-1 

C!D,T)�A  	
10-10 cm3 s-1 

C!D,T)¦§� 	
10-10 cm3 s-1 

C!D,T)§�� 	
10-10 cm3 s-1 

8 0.4 0.54 6.07 8.01 12.33 

9 1.1 1.55 6.05 8.14 12.58 

10 1.7 2.51 6.04 8.27 12.83 

11 3.8 5.50 6.02 8.40 13.06 

12 3.5 5.03 6.01 8.53 13.29 

13 2.0 2.82 6.00 8.65 13.50 

14 4.2 6.07 5.99 8.77 13.71 

15 2.5 3.61 5.99 8.89 13.91 

16 0.6 0.88 5.98 9.01 14.11 

17 <0.001 <0.002 5.98 9.13 14.30 

18 2.9 4.18 5.97 9.24 14.48 

19 3.4 4.88 5.97 9.35 14.66 

20 3.3 4.78 5.96 9.46 14.84 
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It is worth pointing out, however, that the drop in adsorption limit at n = 13 sets in at the 

very same cluster size that is confirmed for its antiferromagnetic coupling.[41, 58] Inevitably, 

N2 activation and nitride formation come to mind when dealing with the [Fe,N] system. 

While this is conceivable, in general such processes would not explain an almost complete 

absence of any adsorption in the case of n = 17. Reaction products would be detected by 

MS. However, there are none. Fission or loss of charge when storing the clusters in the traps 

is negligible (see Fig. S5 in the supplementary information for more details). 

 

IR-PD: 

 

Fig. 7 IR-PD spectra of [Fen(N2)1]+ (solid lines) and [Fen(N2)2]+ (blue shaded areas) 

for n = 8 – 20. Note that for n = 17 no nitrogen attachment was observed. 
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To gain further inside into the Fe/N2 systems, we applied our cryo IR-PD scheme to the 

[Fen(N2)1]+ (n,1) and the [Fen(N2)2]+ (n,2) for n = 8 – 20 species. We recorded the spectra in 

the region from 2150 to 2340 cm-1 (Fig. 7). Furthermore, we recorded the spectra of (13,6) 

and (18,2) over the complete range of our IR laser to ensure that we do not miss any spectral 

features. No further bands were observed in the region below 2150 cm-1 (cf. Fig. S6 and S7). 

All species show one or two IR active bands in the probed region. The species with n = 11, 

12, 16, and 18 exhibit a second band. The cluster with n = 14 shows a shoulder in the case of 

(14,1), that is no longer present in the (14,2) species. In general the bands are less redshifted 

with respect to the free N2 stretching frequency (2330 cm-1) compared to the nitrogen 

adsorption on cationic Co and Ni clusters [54-56]. 

Looking at the spectra in more detail, one can perceive several special features. Most 

conspicuous feature is the shift of the band from (13,1) to (13,2). The adsorption of a second 

N2 leads to a redshift of over 10 cm-1. Also noticeable are the missing spectra of (17,1) and 

(17,2), as under our experimental conditions no nitrogen attachment to the bare Fe17
+ 

cluster was observed, like already stated in the kinetics chapter. A first explanation of this 

inertness of Fe17
+ towards N2 will be given in the DFT chapter. The spectra of the (18,1) and 

(18,2) species are the only ones which provide for a second far redshifted band. This second 

band is located at about 2200 cm-1, representing an over 50 cm-1 bigger redshift compared 

to any other species presented here. Note that the Fe18
+ cluster also reveals a special 

behavior in the kinetic studies in the form of a non-reactive isomer. The “far” redshift in the 

IR-PD spectra could be an indication for a tilting of a nitrogen molecule. A tilting could 

enable a larger interaction between cluster and nitrogen which would result in a larger 

redshift. This could be a precursor for a nitrogen activation. The IR-PD spectrum of (19,1) 

reveals a broad absorption (FWHM > 50 cm-1) around 2270 cm-1. Upon the adsorption of a 

second N2 the narrows to FWHM = 13 cm-1. 

Nevertheless, we assign the observed spectral features to head-on bound N2 on the Fe 

clusters. Other species, as known from surface studies, would provide for spectral features 

far below 2000 cm-1.[47, 71] The appearance of a second band could origin from cluster core 

isomers, different adsorption sites or different spin states of the cluster. 
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However, no overall trends were observed like increasing redshift with cluster size which 

could correspond to the charge dilution model as it was observed in cationic Ni clusters (cf. 

Fig. 8, dashed line)[56]. Only the small clusters from n = 8 – 11 follow a similar trend. This 

simple model (charge dilution) cannot be applied for bigger clusters. Other effects prevail 

that are most likely from electronic origin and not mainly dominated by the cluster structure 

like in the case of cationic Ni clusters.[56] 

 

Fig. 8 N-N stretching frequency in [Fen(N2)1]+ (black dots) and [Fen(N2)2]+ (blue 

diamonds) for n = 7 – 20. The dashed line represents the trend of the N-N 

stretching frequency observed in cationic nickel clusters.[56] The green line is the 

stretching frequency of free N2. Also shown is the stretching frequency (black 

dotted line) with its FWHM (grey shaded area) of so called γ-N2 on clean iron 

surfaces revealed via vibrational EELS.[71] 

Looking at the species with two N2 adsorbed (n,2), nearly no change in peak position can 

be observed. This could hint at that the first and the second N2 are equivalently bound to the 

cluster. As already mentioned, the only exception is Fe13
+ which shows a significant shift of 

over 10 cm-1 upon adsorption of the second N2. Comparing the spectral data with those of 
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N2 on cationic Ni clusters (cf. Fig. 8), it is noticeable that Fe clusters reveal completely 

different behavior. No systematic overall trend can be observed. Furthermore the Fe clusters 

do not approach the value of N2 on Fe surfaces with cluster size as it was observed in the 

case of N2 on Ni cluster. 

 

Fig. 9 IR-PD spectra of [Fen(N2)m]+ (n,m) for m = 1, 2, 3 & 6. Note the jump of the 

band from m = 1 to m = 2 of over 10 cm-1. The color shaded areas are Gaussian 

profiles fitted to the spectra to illustrate the different peak positions. The spectra 

of the (13,3) species consists of a band (blue shaded area) with a shoulder (red 

shaded area) to lower energies. The main peak could correspond to the peak in 

the peak of (13,2) and the shoulder to the peak of (13,6). The spectra without 

the color shaded areas can be found in the supplement. 

The spectra of (13,m) reveal several special features (see Fig. 9). The most outstanding 

one is the jump from 2307 cm-1 (13,1) to 2294 cm-1 (13,2) of 13 cm-1. This cluster size is well 

known to provide for “special” features as already seen in XMCD and computational 
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studies.[41-42] Those studies show a significant drop of the magnetic moment at n = 13. 

Therefore a possible explanation of this jump would be an adsorbate induced change of the 

spin state. As of now DFT failed to describe the observed jump. Perhaps we have to take 

antiferromagnetic coupling into account in the form of broken symmetry calculations to 

render the observed effect.[72]  

We still observe a single band in the IR-PD spectrum of (13,2), which lead to the 

conclusion that the N2 are presumably equivalently bound. The cluster core has most likely 

an icosahedral structure[42] and the two N2 could be bound on two iron atoms facing each 

other. If you now assume a perfectly symmetric structure, this structure should show a 

symmetrically and an antisymmetrically coupled stretching vibration of the two N2. The 

symmetrically coupled vibration should have no IR intensity due to no change in the dipole 

moment during this vibration. This should result in one single IR active band in N-N 

stretching region. 

With the adsorption of one more N2, resulting in the (13,3) species, the IR-PD spectrum 

reveals that the main band at 2193 cm-1 does not change in position but a shoulder at lower 

energies (2282 cm-1) arises. This is indicative for an adsorption side which is no longer 

equivalent to the previous ones. This results in a second band/shoulder. The Fe13
+ cluster 

adsorbs up to 6 N2 under our experimental conditions. The IR-PD spectrum of the (13,6) 

shows only a single band at 2185 cm-1. This band is located in the same region as the 

observed shoulder of the (13,3). One may speculate about the fact, that each N2 blocks two 

Fe surface atoms. Yet there is no spectral evidence for a side-on adsorption of the N2 on the 

Fe cluster or even the formation of nitrides that would provide for further red shifts than the 

observed. 

 

DFT: 

For geometry optimization of Fe17
+ we first optimized the total symmetric Cluster Fe19

+ 

and withdrew two distal iron atoms from the hyperoctahedron edges. Further geometry 

optimization revealed the nearly C2v-symmetric cluster cation depicted in Fig. 10.  
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Fig. 10: Optimized structure of cluster Fe17
+. 

The calculated electronic ground state includes 53 unpaired electrons which distribute 

nearly evenly by three unpaired electrons on the d-shells on each Fe-atom and two electrons 

also nearly distributed on the inner s and p-shells with slight preference to the inner iron 

atom and tip atoms of the polyhedron. Thus, all localized orbitals pointing outwards from 

the cluster are single occupied.  

 

Fig. 11: Spin density calculated for the Fe17
+ Cluster. 
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Putative bonding of a N2 molecule to an iron atom would be significantly reduced in 

strength by 2 center 3 electron interaction i.e. coulomb repulsion between the N2-sigma 

orbital and the single occupied localized orbital on Fe (see Fig. 12). 

 

Figure 12: Interaction diagram of NLMOs (Natural Localized Molecular Orbitals) 

of Fe17
+(right) and N2 (left). The interaction of the two electrons from the 

nitrogen molecule with the single occupied orbital of the iron cluster leads to a 

splitting of the molecular orbital levels with an occupied bonding and a single 

occupied antibonding orbital. This leads to a weakening of the N2-Fe σ-bond. 

From the calculations on the Cluster Fe17
+ it can be deduced that a spherical half-filled 

shell results in weak bonding from iron clusters to a N2-molecule.  

To probe this hypothesis we performed calculations on the Fe18
+ cluster which appear to 

appear in at least two isomeric forms; one which reacts with N2 and one which does not.  

The Initial geometry for optimization of the Fe18
+ cluster was again taken from the 

optimized Fe19
+ cluster from which one edge Fe-atom has been withdrawn. Geometry 

optimization revealed a geometry depicted in Fig. 13. 

 

Fig. 13: Optimized geometry of the cluster Fe18
+  
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Calculation of the electronic ground state revealed 55 unpaired electrons and an electron 

distribution comparable to the cluster Fe17
+. The spin density is drawn in Fig. 14.  

 

 

Fig. 14: Spin density of a Fe18
+ cluster isomer  

Due to the outward polarized spin distribution a similar behavior towards N2-molecules 

can be assumed. Thus, the Fe18
+ cluster isomer deduced from the Fe19

+ cluster has similar 

reactive properties. However, for Fe18
+ different isomers can be taken into account.  

An isomer deduced form an icosahedron with nearly five-fold symmetry is depicted in 

Fig. 15. 

 

 

Fig. 15: Optimized geometry of the cluster Fe18
+ bearing a caped icosahedron. 

In contrast to former structures for Fe17
+ and one isomer of Fe18

+ we calculated for the 

structure depicted in Figure 18 with 55 unpaired electrons a LUMO+1 to be unoccupied 

(Fig. 16). Thus, a s-bond of N2 to the icosahedron based cluster Fe18
+ is feasible.   
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Fig. 16: LUMO+1 orbital of the cluster Fe18
+ bearing a caped icosahedron. 

In conclusion, the cluster Fe17
+ derived from the hyperoctahedron Fe19 was calculated to 

be less Lewis-acidic towards a dinitrogen molecule due to single occupied orbitals which 

causes coulomb repulsion with the nonbonding electron pair on nitrogen. Along this line, 

one isomer also derived from the hyperoctahedron exhibits the same electronic 

environment and thus, has less preferences for binding dinitrogen to one iron center. 

However, the isomer derived from an icosahedron exhibits on a central iron atom on one 

face of the cluster an unoccupied orbital which would facilitate dinitrogen bonding and thus, 

would be the main reason for the differences in reactivity. 

 

7.6 Conclusions 

We have investigated the stepwise N2 adsorption on size selected Fen
+ (n = 8 – 20) clusters 

by recording their reaction kinetics at 26 K in a hexapole ion trap. We performed pseudo-

first-order kinetic fits, which confirm consecutive adsorption steps by single exponentially 

decays and by a biexponential decay in the case of Fe18
+. There is little N2 adsorption to 

Fe13
+ - Fe16

+ and no N2 adsorption to Fe17
+ clusters. The adsorption limits which stay below a 

molar ratio of n:m = 1:1 in all investigated cases n = 8-20. As of now, we cannot provide for 

an overall applicable adsorption rules for the N2 adsorption on Fe clusters to explain the 

observed stoichiometries. These stoichiometries are not mainly dominated by the cluster 

structure itself like in the case of cationic Ni clusters. Other effects like the electronic 

configuration of the cluster prevail. 

We further recorded the IR-PD spectra of the [Fen(N2)1]+ (n,1) and [Fen(N2)2]+ (n,2) species 

in the N-N stretching region and observe single or double bands. These bands are less 
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redshifted with respect to the free N2 mode compared to N2 on cationic Co or Ni cluster and 

we assign them to the µ1 head-on adsorption of N2 on the cluster. We do not observe a 

systematic variation of the band positions following a charge dilution model like previously 

observed for Ni clusters. We further identified a further redshifted band in the spectra of 

(18,1) and (18,2) that we tentatively assign to a slightly tilted N2 on the cluster. This could be 

a precursor for the N2 activation. 

Preliminary DFT modelling provide for a first understanding of the miraculous unreactivity 

of Fe17
+ cluster towards N2. The calculations found an electronic configuration that should 

not show a high reactivity towards N2. Furthermore it identified two isomers for the Fe18
+ 

cluster one with a similar electronic configuration as the Fe17
+ cluster explaining the 

inertness and one reactive isomer. 
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7.9 Supplementary Material 

Tabel of Content: 

Figure S1 Observed rate constants of the (n,m) species n = 8-11 as a function of N2 coverage. 

Filled circles show the rate of adsorption and open circles indicate single N2 desorption. 

Table S1 Relative rate constants for the N2 adsorption k(n,m) to Fen
+ clusters (n = 8-11) and for 

the respective N2 desorption k-(n,m+1) from [Fen(N2)m]+ clusters. 

Figure S2 Observed rate constants of the (n,m) species n = 12-15 as a function of N2 

coverage. Filled circles show the rate of adsorption and open circles indicate single N2 

desorption. 

Table S2 Relative rate constants for the N2 adsorption k(n,m) to Fen
+ clusters (n = 12-15) and 

for the respective N2 desorption k-(n,m+1) from [Fen(N2)m]+ clusters. 

Figure S3 Observed rate constants of the (n,m) species n = 16, 18-20 as a function of N2 

coverage. Filled circles show the rate of adsorption and open circles indicate single N2 

desorption. 

Table S3 Relative rate constants for the N2 adsorption k(n,m) to Fen
+ clusters (n = 16, 18-12) 

and for the respective N2 desorption k-(n,m+1) from [Fen(N2)m]+ clusters. 

Figure S4 Relative rate constant k(n,0) of the initial N2 adsorption to Fen
+ clusters recorded at 

26 K (filled circles), and recorded at 25 K (open circles). Note, that the measurements at 25 K 

have been performed at a lower N2 pressure, which causes the offset in relative rate 

constants. 

Figure S5 Temporal intensity decrease of isolated Fen
+ (n = 17 - 19) clusters at 26 K in the 

presence of 1.6 x 10-7 mbar of N2. The grey shaded area indicates the loss of trapped ions. 

Figure S6 IR-PD spectra of [Fe13(N2)6]+ from 1000 cm-1 to 2400 cm-1. The grey line shows the 

powercurve of the IR laser in this spectral region. 

Figure S7 IR-PD spectra of [Fe18(N2)1]+ from 1000 cm-1 to 2400 cm-1. The grey line shows the 

powercurve of the IR laser in this spectral region. 

Figure S8 IR-PD spectra of [Fen(N2)m]+ for m = 1, 2, 3 & 6. Note the jump of the band from 

m = 1 to m = 2 of over 10 cm-1.  
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Figure S1. Observed rate constants of the (n,m) species n = 8-11 as a function of 

N2 coverage. Filled circles show the rate of adsorption and open circles indicate 

single N2 desorption. 
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Table S1. Relative rate constants for the N2 adsorption k(n,m) to Fen
+ clusters (n = 8-11) and 

for the respective N2 desorption k-(n,m+1) from [Fen(N2)m]+ clusters. 

m 
k(8,m) 

s-1 

k-(8,m+1) 

s-1 

k(9,m) 

s-1 

k-(9,m+1) 

s-1 

k(10,m) 

s-1 

k-(10,m+1) 

s-1 

k(11,m) 

s-1 

k-(11,m+1) 

s-1 

0 0.4 <0.001 1.1 <0.001 1.7 <0.001 3.8 <0.001 

1 0.5 <0.001 1.4 <0.001 2.1 <0.001 3.1 <0.001 

2 0.6 <0.001 1.3 <0.001 2.0 <0.001 2.8 <0.001 

3 0.4 <0.001 1.2 <0.001 1.5 <0.001 2.8 <0.001 

4 0.1 1.43 0.9 <0.001 1.8 <0.001 2.7 <0.001 

5 0.8 1.02 0.5 0.004 1.4 <0.001 2.4 <0.001 

6 

  

0.3 0.907 0.3 0.218 1.8 <0.001 

7 

      

2.0 <0.001 

8 

      

0.7 0.261 
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Figure S2. Observed rate constants of the (n,m) species n = 12-15 as a function of 

N2 coverage. Filled circles show the rate of adsorption and open circles indicate 

single N2 desorption. 
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Table S2. Relative rate constants for the N2 adsorption k(n,m) to Fen
+ clusters (n = 12-15) and 

for the respective N2 desorption k-(n,m+1) from [Fen(N2)m]+ clusters. 

m 
k(12,m) 

s-1 

k-(12,m+1) 

s-1 

k(13,m) 

s-1 

k-(13,m+1) 

s-1 

k(14,m) 

s-1 

k-(14,m+1) 

s-1 

k(15,m) 

s-1 

k-(15,m+1) 

s-1 

0 3.5 <0.001 2.0 <0.001 4.2 <0.001 2.5 <0.001 

1 3.7 <0.001 4.0 <0.001 4.5 <0.001 2.6 <0.001 

2 3.6 <0.001 3.4 <0.001 4.2 <0.001 0.0 <0.001 

3 3.5 <0.001 2.9 <0.001 3.5 <0.001 1.5 <0.001 

4 3.4 <0.001 2.0 <0.001 2.3 <0.001 0.6 <0.001 

5 3.2 <0.001 4.8 <0.001 3.9 <0.001 

  

6 2.8 <0.001 

      

7 0.8 <0.001 

      

8 3.8 <0.001 

      

9 1.2 <0.001 

      

10 1.1 0.186 
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Figure S3. Observed rate constants of the (n,m) species n = 16, 18-20 as a 

function of N2 coverage. Filled circles show the rate of adsorption and open 

circles indicate single N2 desorption. 
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Table S3. Relative rate constants for the N2 adsorption k(n,m) to Fen
+ clusters (n = 16, 18-12) 

and for the respective N2 desorption k-(n,m+1) from [Fen(N2)m]+ clusters. 

m 
k(16,m) 

s-1 

k-(16,m+1) 

s-1 

k(18,m) 

s-1 

k-(18,m+1) 

s-1 

k(19,m) 

s-1 

k-(19,m+1) 

s-1 

k(20,

m) 

s-1 

k-(20,m+1) 

s-1 

0 0.6 <0.001 2.9 <0.001 3.40 <0.001 3.31 <0.001 

1 2.6 <0.001 3.1 <0.001 2.39 <0.001 2.39 <0.001 

2 0.4 <0.001 2.8 <0.001 2.06 <0.001 2.17 <0.001 

3 

  

2.5 <0.001 3.23 <0.001 2.73 <0.001 

4 

  

2.2 <0.001 3.49 <0.001 3.20 <0.001 

5 

  

1.7 <0.001 2.81 <0.001 2.67 <0.001 

6 

  

1.1 <0.001 2.43 <0.001 2.47 <0.001 

7 

  

0.3 <0.001 1.93 <0.001 2.37 <0.001 

8 

  

1.7 <0.001 1.52 <0.001 2.50 <0.001 

9 

  

1.0 <0.001 1.31 <0.001 2.36 <0.001 

10 

  

1.4 <0.001 3.13 <0.001 2.52 <0.001 

11 

  

1.3 <0.001 3.71 2.019 0.34 <0.001 

12 

  

0.1 <0.001 3.23 0.702 1.66 <0.001 

13 

    

3.77 1.859 0.20 <0.001 

14 

    

5.00 0.196 

  

15 

    

3.76 0.012 

  

16 

    

6.28 0.001 
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Figure S4. Relative rate constant k(n,0) of the initial N2 adsorption to Fen
+ clusters 

recorded at 26 K (filled circles), and recorded at 25 K (open circles). Note, that 

the measurements at 25 K have been performed at a lower N2 pressure, which 

causes the offset in relative rate constants. 
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Figure S5. Temporal intensity decrease of isolated Fen
+ (n = 17 - 19) clusters at 

26 K in the presence of 1.6 x 10-7 mbar of N2. The grey shaded area indicates the 

loss of trapped ions. 
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Figure S6 IR-PD spectra of [Fe13(N2)6]+ from 1000 cm-1 to 2400 cm-1. The grey line 

shows the powercurve of the IR laser in this spectral region. Only a single 

absorption band at 2285 cm-1 can be observed. 
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Figure S7 IR-PD spectra of [Fe18(N2)1]+ from 1000 cm-1 to 2400 cm-1. The grey line 

shows the powercurve of the IR laser in this spectral region. Two absorption 

bands can be observed. 
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Figure S8 IR-PD spectra of [Fen(N2)m]+ for m = 1, 2, 3 & 6. Note the jump of the 

band from m = 1 to m = 2 of over 10 cm-1. 
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8.1 Preamble 

The experiments were performed by the experimental team consisting of M. P. Klein, A. 

Steiner, D. C. McDonald II, and myself. The data evaluation was done by myself. The 

computations were done by myself. The initial manuscript was written by myself and revised 

with the help of G. Niedner-Schatteburg, M. M. Kappes, and M. A. Duncan. 

This manuscript is prepared for a submission to Angewandte Chemie. 
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8.2 Abstract 

We present the cryo IR-PD spectra of [Ru8(H2)k]+, k = 1 – 8, of [Ru8(N2)m]+, m = 1 – 8, and of 

[Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species, which we record via application of tandem cryo 

ion trapping. The [Ru8(H2)k > 1]+ spectra reveal strong evidence for dissociative H2 adsorption, 

and the [Ru8(N2)m]+ spectra indicate N2 head-on adsorption. The spectra of [Ru8(H2)1(N2)4]+ 

and [Ru8(N2)4(H2)1]+ species reveal differences in the Ru-H stretching region, which we assign 

to distal and proximal H atom locations on the Ru8
+ cluster, their migration likely hindered by 

preloaded N2s, and unaffected by subsequent N2 adsorption. 
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8.3 Introduction 

Ru based catalysts make it possible to run the Haber-Bosch process under milder 

conditions than with widespread Fe based catalysts.[1] This is underlined by the industrial 

Kellogg Advanced Ammonia Process which uses supported Ru nanoparticles as catalyst and 

works at lower pressures and temperatures.[2] Ammonia synthesis on Ru catalysts is highly 

structure sensitive.[3] Highly reactive “B5 sites” (5 Ru atoms interact with N2) are thought to 

mediate the rate limiting step in ammonia synthesis – the N2 activation.[4] Studies on isolated 

clusters can provide valuable information to elucidate such structure-sensitive reactions. 

Yet, mass spectrometric investigations of reactions of Ru clusters with small molecules like 

H2 are very challenging due in part to the broad isotopic distribution of Ru. 

Various spectroscopic studies of the N2/Ru(001) surface-adsorbate system indicate that at 

low temperatures N2 absorbs in a head-on position.[5] High-resolution electron energy loss 

spectroscopy (HREELS) has identified the same type of adsorption on Ru(1010)[6]. 

Dissociative adsorption of N2 on Ru(0001) only sets in at higher surface temperatures.[7] In 

contrast H2 dissociatively chemisorbs on Ru(001) at temperatures as low as 50K.[8] The 

corresponding change in work function has been associated with two different adsorption 

states as also observed in thermal desorption studies.[9] HREELS measurements of hydride 

monolayers have allowed the determination of the Ru-H stretch and bend vibrations (around 

820 and 1137 cm-1).[10] More recently, fast quantum tunneling effects of H on Ru (0001) have 

been observed at low temperatures.[11] These may also play a role in the formation of NH on 

a Ru(001) surface.[12] 

The magnetic properties of isolated neutral Ru clusters in the size range between 10 and 

100 atoms have been investigated by cluster beam deflection experiments which showed no 

evidence for significant ferromagnetism.[13] Several computational studies predict that small 

Ru clusters favor cubic structures.[14] This prediction was further substantiated by far IR 

spectroscopy of small cationic Ru clusters which provided evidence for cubic structures.[15] 

Furthermore, trapped-ion electron diffraction (TIED) found a cubic motif for the Ru8
- 

cluster.[16] There are several reaction studies with Ru clusters, although these are 

complicated by the mentioned difficulties with the isotopic distribution. Mass spectrometry 

in conjunction with density functional calculations has revealed water activation by cationic 

Ru oxide clusters.[17] TIED experiments have shown that Ru19
- undergoes a structural 
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transition upon H2 adsorption.[18] H2 on neutral Ru clusters has also been the subject of 

extensive theoretical investigations.[19] IR spectroscopy has yielded fundamental insights into 

the binding of CO to cationic and anionic Ru[20] clusters as well as into the adsorption of N2 

on neutral Ru clusters[21]. Primarily head-on µ1 adsorption of CO and N2 have been inferred. 

To our knowledge, there have been no experiments aimed at elucidating the coadsorption 

of H2 and N2 on isolated Ru clusters (in order to explore precursor states leading to catalytic 

activation). Our tandem cryo trap instrument provides the unique opportunity to conduct 

these experiments as shown by our previous work on N2 on Co [22] and Ni clusters[23]. 

This study reports IR spectra of the [Ru8(H2)k]+ k = 1 – 8, [Ru8(N2)m]+ m = 1 – 8 and the 

coadsorbed [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species (differing in adsorption sequence) 

under isolated conditions. It elucidates the interplay of H2-N2 coadsorption in unprecedented 

detail. In particular it provides clear evidence for dissociative chemisorption of H2 and 

demonstrates that subsequent mobility of H atoms can be constrained by N2 adsorption. 

8.4 Experimental and Computational Methods 

We performed all experiments in a customized Fourier Transform - Ion Cyclotron 

Resonance (FT-ICR) – mass spectrometer (Apex Ultra Bruker Daltonics) – in particular the 

cluster production, isolation, N2/H2 adsorption, InfraRed - Photodissociation (IR-PD) 

spectroscopy and mass analysis. The metal cluster ions were generated from a monoisotopic 

102Ru (99.38%, Oak Ridge National Laboratories; Fig. S1) foil using a home-built laser 

vaporization source[24]. After mass selection the Ru clusters were stored in a cryogenic 

hexapole ion trap (17 K for H2 and 26 K for N2). Reaction gas (H2 or N2) was continuously 

introduced up to a pressure of 5.0 × 10-7 mbar to yield sufficient reaction products. Helium 

was used to increase the pressure up to 5.0 × 10-6 mbar to accomplish efficient trapping and 

cooling (cf. extended experimental description in the supplement). After a variable storage 

time (0 – 10 s), the ions were guided into the FT-ICR cell that was held at a temperature 

below 10 K for the spectroscopy of the [Ru8(H2)k]+ and [Ru8(N2)m]+ species. The cell was used 

for isolation and detection of the ions. For the coadsorption experiments the ICR cell served 

as second reaction cell that was heated to 19 K for reactions with H2 or to 49 K for N2 to 

avoid condensation. The pressure was increased from 2.0 × 10-9 mbar up to 1.0 × 10-8 mbar 

and the ions were stored up to 2 s. 
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For the acquisition of the IR-PD spectra the FT-ICR cell is coupled to a tunable IR laser that 

generates radiation in the range of 1000 – 2400 cm-1. Each trapped and isolated packet of 

ions is irradiated by 7 – 10 laser pulses (0.1 – 1.5 mJ/pulse). 

Linear (harmonic) IR absorption spectra were calculated at the PBE0[25] level of theory 

using the cc-pVTZ basis sets[26] (H, N), and the Stuttgart RSC 1997[27] effective core potential 

(Ru), respectively, as implemented in the Gaussian 09 program package[28] – appropriately 

gauged scaling factors correcting for the vibrational anharmonicities. 

8.5 Results and Discussion 

The IR-PD spectra for [Ru8(H2)k]+ k = 1 – 8 (Fig. 1, left) were recorded in the region from 

1700 to 2200 cm-1 and for [Ru8(N2)m]+ m = 1 – 8 (Fig. 1, right) from 2140 to 2300 cm-1. 

 

Fig. 1 IR-PD spectra of the [Ru8(H2)k]+ k = 1 – 8 (left) and the [Ru8(N2)m]+ m = 1 – 8 

(right) species. The lack of spectral features for [Ru8(H2)1]+ is likely caused by a 

low fragmentation efficiency. 

IR-PD spectra of [Ru8(H2)k]+ 

The spectra of the [Ru8(H2)k]+ species reveal no (in the case of k = 1), one (k = 2 – 6), and 

two bands (k = 7 and 8), all of which occur in the region of 1800 to 1880 cm-1, and with no 

further spectral features throughout the extended range of 750 to 2375 cm-1 (Fig. S2). The 

sole vibrational band in [Ru8(D2)6]+ (Fig. S3), which is isotopically shifted by 508 cm-1 to 
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1307 cm-1, helped us to assign the [Ru8(H2)k]+ spectral features to a Ru-H stretching mode – 

indicating dissociative chemisorption of H2. 

IR absorption leads to H2 elimination as the only fragmentation channel, except for k = 1 

which shows no fragmentation (possibly reflecting a higher kinetic barrier for recombination 

of distal hydrogens on opposing Ru atoms, cf. Fig. S14 and below). We find a slight blue shift 

of 8 cm-1 with increasing H2 coverage from k = 2 to k = 6 (1807 to 1815 cm-1). Exceeding the 

intermediate adsorption limit at k = 6 (for a kinetic reasoning of the term “intermediate 

adsorption limit”, also known as “intermittent adsorption limit”, refer to [23]), the spectra of 

k = 7 and 8 consist of two bands. The k = 7 species reveals a band at 1817 cm-1, still in line 

with the aforementioned slight blue shift, and a new spectral feature at 1840 cm-1. The 

spectrum of H2 saturated species at k = 8 consists of two bands, the main one at 1843 cm-1 

and a less intense side band at 1862 cm-1. Overall one may speculate about an adsorbate-

induced reorganization of the core upon exceeding the intermediate adsorption limit at 

k = 6. Other possible explanations would be spin state changes, or a structural reorganization 

of the adsorbate layer. 

IR-PD spectra of [Ru8(N2)m]+ 

The spectra of [Ru8(N2)m]+, m = 1 – 8, reveal features in the region between 2190 and 

2300 cm-1. N2 loss is the only fragmentation channel observed. All bands are redshifted with 

respect to the free N2 vibration (2330 cm-1 [29]) and fall in the range previously observed for 

head-on coordinated N2 on (other) cationic transition metal clusters[22-23, 30]. 

Note, that the feature observed for [Ru8(N2)m]+, m = 1, is about 80 cm-1 less red shifted 

compared to neutral [Ru8(N2)1], which has a band at 2201 cm-1 [22]. This less pronounced red 

shift can be attributed to charge effects. In the cationic cluster less electron density is 

available to be transferred into the antibonding orbitals of the N2. 

The spectra of the m = 1 – 4 species reveal a single band which shows a slight red shift 

with increasing N2 coverage (2280 cm-1 to 2276 cm-1) similar to the trend observed on 

Ru(001) surfaces. This has been tentatively rationalized in terms of two opposing coverage-

dependent contributions to the shift: dipole-dipole coupling and “chemical (repulsive) 

effects” associated with N2 surface bonding[5a, 31]. 
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In DFT simulations of [Ru8(N2)4]+, we have focused on a cubic Ru8
+ cluster core predicted to 

be the lowest energy form of the naked cluster in previous computational studies - as also 

supported by experiment.[14-16] We conclude, that the spin state is a quartet and that there is 

a diagonal N2 arrangement (close to C2v that Jahn-Teller relaxes into Cs symmetry by pairwise 

N2 twists). A force constant analysis reveals four almost degenerate N2 stretch modes, which 

convolute into a single, red-shaded band with a shape very similar to that recorded in the 

IR-PD measurement (cf. Fig. S7). 

The spectrum of the m = 5 species is the first to show two bands - at 2268 and 2289 cm-1. 

Beyond the intermediate adsorption limit at m = 5, the spectra are no longer well resolved. 

The spectrum of m = 6 consists of at least two bands at 2229 and 2258 cm-1 and in the cases 

of m = 7 and 8 only a broad adsorption between 2200 and 2290 cm-1 is observed. 

Again one may speculate about adsorbate induced reorganization when exceeding the 

intermediate adsorption limit at m = 5. In fact, the cluster core geometry may already be 

slightly distorted at the intermediate adsorption limit given that its vibrational pattern 

consists of at least two bands (in contrast to the spectra of the m = 1 – 4 species). 

Interestingly, in the case of H2 the intermediate limit is seen at k = 6 whereas for N2 it 

occurs at m = 5. If adsorbate induced reorganization is indeed responsible, it sets in with 

fewer N2 than H2 adsorbates, which may reflect the different steric requirements of H vs. N2. 

IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ 

Using our tandem cryo trapping technique we were able to produce H2-N2-coadsorbates 

by sequential addition in either order. We find that the IR-PD spectra of the “mixed” 

adsorbates can depend on this order. To demonstrate this, we have selected the two species 

[Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+, where the notation signifies the order of attachment: 

the [Ru8(H2)1(N2)4]+ species is assembled by first adsorbing a single H2 in the cryo hexapole 

trap followed by four N2 adsorbates in the cryo FT-ICR trap. Conversely, the [Ru8(N2)4(H2)1]+ 

species is formed by adding four N2 adsorbates in the cryo hexapole trap and one H2 

adsorbate in the subsequent cryo FT-ICR trap. 

At first sight, the IR-PD spectra of both species reveal similar Ru-H and N2 stretching 

features (Fig. 2) much like those seen with separate adsorbates; the supporting information 
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provides extended spectra (Fig. S4 and S5) – void of additional features – which document 

the excellent reproducibility of individual features over multiple measurements (Fig. S18). 

Upon closer inspection, the Ru-H bands differ in the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ 

spectra: the former reveals a resolved side peak 10 cm-1 to the blue from the main peak at 

1796 cm-1, which is not present in the latter. The latter has an asymmetric peak shape with 

some red shading, which is absent in the former. The dominant Ru-H stretch blue shifts by 6 

cm-1 from the former to the latter. 

 

Fig. 2 IR-PD spectra of [Ru8(H2)1(N2)4]+ (blue) and [Ru8(N2)4(H2)1]+ (orange) 

compared to the predictions of theory. The red lines serve to highlight the shifts 

induced by varying the sequence of N2/H2 addition. For a discussion of the 

predicted bands (including * features) refer to the text and the supplement. 

In the N2 stretch region both the [Ru8(H2)1(N2)4]+ and the [Ru8(N2)4(H2)1]+ species reveal a 

strong main peak at about 2290 cm-1 with a weak feature about 13 cm-1 to the blue; this is 

well resolved in the former and somewhat blurry in the latter. 
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We refer the reader to supporting information (Fig. S6) for a figure contrasting the spectra 

of the coadsorbed species with those of [Ru8(H2)k]+ and [Ru8(N2)m]+, respectively. 

DFT modelling of IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ 

We extended our DFT calculations to model H2-N2-coadsorption. In particular we checked 

relative energies and predicted IR allowed vibrational transitions for numerous plausible 

structural variants of [cubic Ru8, 4N2, 2H]+ (for structures and corresponding spectra see 

Fig. S7 – S14; for structural labels see Fig. 3). Note that the spin quenches from a quartet in 

the case of cubic Ru8
+/1 and [Ru8(N2)4]+/1(N2)4 to a doublet upon further addition of 2H. On 

the basis of energetics and spectral features we conclude that the two most likely structures 

of [cubic Ru8, 4N2, 2H]+ have doublet spin states (see insets to Fig. 2). We present their 

predicted IR absorption spectra in the lower traces of Fig. 2. 

The assigned calculated spectra show features which are quite similar to the experimental 

IR-PD spectra, except for the predicted * bands which occur significantly weaker in the 

experiment. This deviation is likely due to a lack of efficient internal vibrational redistribution 

(IVR) in these cases (cf. the supplement), which limits the dissociation yield. 

In the Ru-H band region we find a close resemblance of the IR absorption spectra 

predicted by DFT for isomers 4(N2)4 and 2(N2)4 with the IR-PD spectra recorded for the two 

distinct species [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+: DFT modelling reveals a shoulder to the 

blue of the RuH stretching band in 4(N2)2, and asymmetric red shading in case of 2(N2)4. The 

predicted blue shift of the RuH band of 4(N2)4 with respect to that of 2(N2)4 (about 2 cm-1) 

closely corresponds to the IR-PD bands of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+, which differ 

by a blue shift of about 6 cm-1. 

Based on all of the above findings we are confident to assign the 4(N2)4 structure to the 

[Ru8(H2)1(N2)4]+ species, and the 2(N2)4 structure to the [Ru8(N2)4(H2)1]+ species. Both have 

the same arrangement of N2 on the cubic Ru8
+ cluster as in 1(N2)4. They merely differ in their 

RuH positions: in the case of [Ru8(H2)1(N2)4]+/4(N2)4 the hydrogens are located on two 

opposing Ru atoms (distal “trans” HH arrangement) and in the case of [Ru8(N2)4(H2)1]+/2(N2)4 

on two neighboring Ru atoms (proximal “cis” HH arrangement). 

Our vibrational band assignments lead to the tentative conclusion that H atom migration 

is hindered on N2 preloaded Ru8
+ clusters, whereas on naked Ru8

+ H atoms can apparently 
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swiftly migrate to the most favorable Ru binding sites in a cooperative manner (see Fig. S14). 

These lie on two (space) diagonally opposing Ru atoms (distal “trans” HH arrangement). 

Once formed, this arrangement apparently persists upon subsequent N2 adsorption. When 

H2 adsorbs to an N2 preloaded Ru8
+ cluster (1(N2)4), it dissociates as well – but the adsorbed 

N2s likely hinder H migration. The H atoms are forced to stay on two neighboring Ru atoms 

(proximal “cis” HH arrangement). 

In order to further support the above interpretation, we calculated a range of possible 

reaction paths for H-migration on a cubic Ru8
+ cluster, thereby confirming the effect of 

coadsorbed N2 (Fig. 3). We predict facile H atom hopping among adjacent (unloaded) Ru 

atoms, whereas H migration across a face of the Ru8
+ cube is energetically precluded 

(Fig. S15). In the case of H2 adsorption on a naked Ru8
+ (blue reaction path in Fig. 3), the 

migration from two neighboring Ru-H (2) occurs via an intermediate with the Hs on two 

(face) diagonal Ru atoms (3) (and via two low lying Ru-H-Ru “on bridge” transition states (23‡ 

and 32‡)), ultimately to two opposing Ru-H (4) (distal “trans” HH arrangement), which 

convert without a barrier by stepwise N2 adsorption into 4(N2)4. 

 

Fig. 3 Predicted reaction paths for the formation of [Ru8(H2)1(N2)4]+/4(N2)4 and 

[Ru8(N2)4(H2)1]+/2(N2)4. 
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The H2 adsorption on a preloaded [Ru8(N2)4]+/1(N2)4 species (orange reaction path in 

Fig. 3) results in the 2(N2)4 species with the Hs on two neighboring Ru atoms (proximal “cis” 

HH arrangement). It is essentially impossible to reach the 4(N2)4 species by further hydrogen 

hopping, which would involve a high energy transition state where the H atom would be 

located on an N2 loaded Ru site (3(N2)4
‡). Thus, the 2(N2)4 species is the final product upon 

N2 preloading. 

8.6 Conclusions 

We have presented the cryo IR-PD spectra of [Ru8(H2)k]+ k = 1 – 8 and [Ru8(N2)m]+ m = 1 –

 8. We find dissociative chemisorption of H2 in all [Ru8(H2)k]+ with k > 1, and we postulate an 

adsorbate induced reorganization of the cluster core and/or the adsorbate layer after 

exceeding the intermediate adsorption limit at k = 6. In the case of [Ru8(N2)m]+ we identify a 

head-on adsorption of N2 and an intermediate adsorption limit at m = 5 beyond which a 

structural reorganization may occur. The cryo IR-PD spectra of the [Ru8(H2)1(N2)4]+ and 

[Ru8(N2)4(H2)1]+ species, where the listed order signifies the order of adsorption, show 

tantalizing differences - in particular in the Ru-H bands. We interpret this in terms of distal or 

proximal hydrogen locations on the Ru8
+ cluster as well as by differences in hydrogen 

migration kinetics. This is likely hindered by preloading with N2s but unaffected by 

subsequent N2 adsorption. We elucidate the interplay of low temperature H2-N2 

coadsorption in unprecedented detail. It will be important to extend such studies towards 

further adsorbate species such as HD and NH3, and towards photo activation and product 

identification. 
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8.9 Supporting Information 

Table of Content: 

Detailed Experimental and Computational Methods 

Fig. S1. Mass spectra recorded in the Ru8
+ cluster mass range using a Ru laser vaporization 

target with natural isotope ratio (top) and a monoisotopic 102Ru foil (bottom).  

Fig. S2 IR-PD spectra of the [Ru8(H2)6]+ and [Ru8(H2)8]+ species from 750 cm-1 to 2375 cm-1. 

Fig. S3 IR-PD spectrum of [Ru8(D2)6]+. 

Fig. S4 IR-PD spectra of the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species from 1700 cm-1 to 

2375 cm-1 including the laser power (gray). 

Fig. S5 IR-PD spectra of the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species from 2650 cm-1 to 

4200 cm-1 including the laser power (gray). 

Fig. S6 IR-PD spectra of [Ru8(H2)k]+ k = 1 – 8 (left) and [Ru8(N2)m]+ m = 1 – 8 (right). Both 

stacks include the spectra of the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species for comparison. 

Fig. S7. IR-PD spectrum of [Ru8(N2)4]+ in comparison with DFT predictions for various 

structural models based on a cubic Ru8
+ core with different N2 adsorption sites. 

Fig. S8. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms on two (face) 

diagonal Ru atoms in doublet spin states. 

Fig. S9. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms on two (face) 

diagonal Ru atoms in quartet spin states. 

Fig. S10. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms on two 

neighboring Ru atoms in doublet spin states. 

Fig. S11. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms on two 

neighboring Ru atoms in quartet spin states. 

Fig. S12. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms on two 

opposing Ru atoms (space diagonal/distal) in doublet spin states. 

Fig. S13. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms on two 

opposing Ru atoms in quartet spin states. 

Fig. S14. IR-PD spectrum of [Ru8(H2)1]+ in comparison with DFT calculations of different H 

adsorption sites on cubic Ru8
+ clusters in doublet and quartet spin states. 
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Fig. S15. Alternative calculated reaction paths for the formation of 4 from 2 (left) and for the 

formation of 4(N2)4 from 2(N2)4 (right). 

Fig. S16. IR-PD spectra of [Ru8(N2)4]+, [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations. 

Discussion of DFT Predicted Splittings and Intensities of N2 Stretching Bands in Comparison 

to the Experimental IR-PD Spectra 

Fig. S17. Calculated spectra of 4(N2)4 and 2(N2)4 and their respective structure. 

Table S1. Calculated IR frequencies and assignment of 4(N2)4. 

Table S2. Calculated IR frequencies and assignment of 2(N2)4. 

Fig. S18. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ recorded on two separate 

measurement days. 

Fig. S19. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations using a range of different density functionals. 

Fig. S20. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with DFT 

calculations using a range of different density functionals. 
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Detailed Experimental and Computational Methods 

All experiments were carried out in a customized Fourier Transform - Ion Cyclotron 

Resonance (FT-ICR) – mass spectrometer (Apex Ultra Bruker Daltonics). The specific 

apparatus configuration allowed for cluster production, isolation, N2/H2 adsorption, InfraRed 

(Multi) Photon Dissociation (IR(M)PD) spectroscopy and mass analysis. The metal cluster ions 

were generated using a home-built laser vaporization source as described previously.[1] For 

this ruthenium atoms are evaporated from a rotating 0.4 mm thick monoisotopic 102Ru 

(99.38%, Oak Ridge National Laboratories; Fig. S1) foil by the second harmonic of a pulsed 

Nd:YAG laser. The hot plasma is captured by a He gas pulse (40 µs, 15 bar) created by a 

home-built piezoelectric valve.[2] The atoms and ions are cooled and aggregate to clusters in 

the subsequent jet expansion through a 60 mm long channel (2 mm diameter) into vacuum 

(10-7 mbar) yielding a continuous cluster size distribution. The cluster beam is skimmed and 

steered using different electrostatic lenses and a 90 degrees ion beam bender. After this the 

bare metal cluster cations can be mass selected in a quadrupole mass filter. Subsequently 

the ions are injected into a cryogenic hexapole ion trap cooled to 17 K for reactions with H2 

and to 26 K for reactions with N2 by a closed cycle He cryostat. Buffer or reaction gas can be 

introduced either continuously or in pulses. For this work we used the continuous gas inlets. 

Sufficient amounts of reaction products were obtained by flowing enough H2 or N2 into the 

vacuum chamber to raise its base pressure 1.1 × 10-7 mbar up to 5.0 × 10-7 mbar. 

Additionally, He was added to improve trapping and cooling of ions thus increasing the total 

pressure up to 5.0 × 10-6 mbar. Due to the large mass differences between the buffer gas He 

and the adsorbate gases H2/ N2 and Ru8, only a minor part of the residual kinetic energy of 

Ru8 (acquired by prior electrostatic accelerations) transforms into the center of mass frame. 

In the case of H2 it is safe to state that an Ekin(Ru8) of up to 1 eV do not lead to raised 

effective temperatures beyond 30 K. In the case of N2 some hyperthermal collisions may 

initially occur. By virtue of the excess of Helium (more than 100:1) in the hexapole cell the 

kinetic  thermalization of Ru8 occurs within few milli seconds, whereas the observed 

reactions take place on a multiple second time scale. 

After storage of the ions for a variable time (0 – 10 s), the reaction products (with either 

N2 or H2 attached) were guided by electrostatic lenses into the FT-ICR cell which is of the so-

called “infinity” type.[3] This cell was held at a temperature below 10 K with a closed cycle He 
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cryostat for the spectroscopy of the [Ru8(H2)k]+ and the [Ru8(N2)m]+ species. The cell is 

normally used for isolation, laser irradiation and detection of the ions. For the coadsorption 

experiments the ICR cell also served as a second reaction cell. In this case the ICR cell was 

heated to 19 K for additional reactions with H2 or to 49 K for N2 to avoid condensation of the 

respective reaction gas. The pressure was correspondingly increased from 2.0 × 10-9 mbar 

(base pressure) up to 1.0 × 10-8 mbar and the ions were stored up to 2 s in the ICR cell. 

For the acquisition of IR-PD spectra the FT-ICR cell is coupled to a tunable IR laser 

(δn = 0.9 cm-1, δt = 7 ns). This laser is a KTP/KTA optical parametric oscillator/amplifier 

(OPO/A, LaserVision) system pumped by a pulsed 10 Hz injection seeded Nd:YAG laser 

(PL8000, Continuum). The difference frequency (DF) between the OPA signal and idler waves 

is generated in a AgGaSe2 crystal. This generates IR radiation in the range of 1000 –

 2400 cm-1. Each trapped and isolated package of ions is irradiated by 7 – 10 laser pulses 

(0.1 – 1.5 mJ/pulse) to yield a sufficient amount of fragment ions. The IR spectra were 

recorded by acquiring fragmentation mass spectra while continuously scanning the IR 

wavelength. The IR-PD signal was evaluated as ΣiFi/(ΣiFi+ΣiPi), where Fi and Pi indicate 

fragment and the parent ion signals, respectively. An experimental IR-PD spectrum is then 

obtained from a plot of the fragmentation efficiency as a function of laser frequency. 

Linear (harmonic) IR absorption spectra were calculated at the PBE0[4] level of theory 

using the cc-pVTZ basis sets[5] (H, N), and the Stuttgart RSC 1997[6] effective core potential 

(Ru), respectively, as implemented in the Gaussian 09 program package[7]. SCF convergence 

is tedious and can be achieved only at the expense of relaxed SCF convergence criteria of 

10-5 (as compared to 10-8 in DFT calculations on light main group elements). The calculated 

spectra were scaled for anharmonicities by 0.9656 above 2150 cm-1 (N2 stretching region, 

scaling factor obtained by scaling the matching calculated spectrum of [Ru8(N2)4]+ to the 

experiment) and by 0.923 below 2150 cm-1 (Ru-H stretching region, scaling factor obtained 

by scaling the band of the calculated energetic minimum of [Ru8(H2)1]+ to the experimental 

band of [Ru8(H2)2]+) and simulated using Lorentz profiles with fwhm = 5 cm-1 above 2150 cm-

1 and of fwhm = 3 cm-1 below 2150 cm-1. 
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Fig. S1 Mass spectra recorded in the Ru8
+ cluster mass range using a Ru laser 

vaporization target with natural isotope ratio (top) and a monoisotopic 102Ru foil 

(bottom). 
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Fig. S2 IR-PD spectra of the [Ru8(H2)6]+ and [Ru8(H2)8]+ species from 750 cm-1 to 

2375 cm-1. These extended range overview spectra verify that no further spectral 

features are present in this region. 

 

Fig. S3 IR-PD spectrum of [Ru8(D2)6]+. 
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Fig. S4 IR-PD spectra of the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species from 

1700 cm-1 to 2375 cm-1 including the laser power (gray). 

  

Fig. S5 IR-PD spectra of the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species from 

2650 cm-1 to 4200 cm-1 including the laser power (gray). 
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Fig. S6 IR-PD spectra of [Ru8(H2)k]+ k = 1 – 8 (left) and [Ru8(N2)m]+ m = 1 – 8 (right). 

Both stacks include the spectra of the [Ru8(H2)1(N2)4]+ (blue) and [Ru8(N2)4(H2)1]+ 

(orange) species for comparison. 

Comparison of the spectra of coadsorbed species with those of [Ru8(H2)k] (Fig. S6, left): 

Both coadsorbed species are in line with the blue shift observed with increasing l. Therefore, 

N2s has a minor influence on the overall position of the bands compared to the other 

[Ru8(H2)k]+ species. Yet, there are subtle differences between both coadsorbed species, 

which we have addressed in the main text. 

Comparison of the spectra of coadsorbed species with those of [Ru8(N2)m]+ (Fig. S6, right): 

Note that the overall number of coadsorbates is equal to the intermediate adsorption limit 

of Ru8
+ with N2 (m = mcoad + kcoad = 5). The vibrational pattern of both coadsorbed species 

show similarities to [Ru8(N2)5]+. Yet the pattern of both coadsorbed species is blue shifted. 

These findings could indicate that the adsorbed H2 has a similar (steric) effect to that of an 

additional N2 / i.e. adsorption requires a similar spatial reorganization of the other N2´s 

resulting in a similar pattern. Furthermore, the H2 alters the electronic properties of the 

cluster, causing a blue shift. The Ru-H bond needs electron density and therefore there is 

less electron density available on the cluster core. The less electron density available the less 
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can be shifted into the anti-bonding orbitals of the adsorbed N2s resulting in a less 

pronounced red shift with respect to the free N2 vibration. 

 

Fig. S7. IR-PD spectrum of [Ru8(N2)4]+ in comparison with DFT calculations of 

different N2 adsorption sites on a cubic Ru8
+ core Only the quartet spin states are 

shown as the doublet spin states converged to a quartet during geometry 

optimization. Calculations were performed at the PBE0 level of theory using cc-

pVTZ (N) and Stuttgart RSC 1997 effective core potential (Ru) basis sets. The 

calculated harmonic vibrations were scaled by 0.9656. 
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Fig. S8. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations of spectra for different N2 adsorption sites on a cubic Ru8
+ with 

the H atoms on two (face) diagonal Ru atoms in doublet spin states. Calculations 

were performed at the PBE0 level of theory using cc-pVTZ (N) and Stuttgart RSC 

1997 effective core potential (Ru) basis sets. The calculated harmonic vibrations 

were scaled by 0.9656 above 2150 cm-1 and by 0.923 below 2150 cm-1. 
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Fig. S9. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms 

on two (face) diagonal Ru atoms in quartet spin states. Calculations were 

performed at the PBE0 level of theory using cc-pVTZ (N) and Stuttgart RSC 1997 

effective core potential (Ru) basis sets. The calculated harmonic vibrations were 

scaled by 0.9656 above 2150 cm-1 and by 0.923 below 2150 cm-1. 
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Fig. S10. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms 

on two neighboring Ru atoms in doublet spin states. Calculations were 

performed at the PBE0 level of theory using cc-pVTZ (N) and Stuttgart RSC 1997 

effective core potential (Ru) basis sets. The calculated harmonic vibrations were 

scaled by 0.9656 above 2150 cm-1 and by 0.923 below 2150 cm-1. 
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Fig. S11. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms 

on two neighboring Ru atoms in quartet spin states. Calculations were 

performed at the PBE0 level of theory using cc-pVTZ (N) and Stuttgart RSC 1997 

effective core potential (Ru) basis sets. The calculated harmonic vibrations were 

scaled by 0.9656 above 2150 cm-1 and by 0.923 below 2150 cm-1. 
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Fig. S12. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms 

on two opposing Ru atoms (space diagonal/distal) in doublet spin states. 

Calculations were performed at the PBE0 level of theory using cc-pVTZ (N) and 

Stuttgart RSC 1997 effective core potential (Ru) basis sets. The calculated 

harmonic vibrations were scaled by 0.9656 above 2150 cm-1 and by 0.923 below 

2150 cm-1. 
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Fig. S13. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations of different N2 adsorption sites on a cubic Ru8
+ with the H atoms 

on two opposing Ru atoms (space diagonal/distal) in quartet spin states. 

Calculations were performed at the PBE0 level of theory using cc-pVTZ (N) and 

Stuttgart RSC 1997 effective core potential (Ru) basis sets. The calculated 

harmonic vibrations were scaled by 0.9656 above 2150 cm-1 and by 0.923 below 

2150 cm-1. 
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Fig. S14. IR-PD spectrum of [Ru8(H2)1]+ in comparison with DFT calculations of 

different H adsorption sites on cubic Ru8
+ cluster in doublet and quartet spin 

states. Calculations were performed at the PBE0 level of theory using cc-pVTZ (N) 

and Stuttgart RSC 1997 effective core potential (Ru) basis sets. The calculated 

harmonic vibrations were scaled by 0.923. 
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Fig. S15. Alternative calculated reaction paths for the formation of 4 from 2 (left) 

and for the formation of 4(N2)4 from 2(N2)4 (right). All displayed structures are 

either fully optimized local minimum structures or transition states with either 

none or exactly one imaginary frequency, respectively. 
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Fig. S16. IR-PD spectra of [Ru8(N2)4]+, [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in 

comparison with DFT calculations. Calculations were performed at the PBE0 level 

of theory using cc-pVTZ (N) and Stuttgart RSC 1997 effective core potential (Ru) 

basis sets. The calculated harmonic vibrations were scaled by 0.9656 above 

2150 cm-1 and by 0.923 below 2150 cm-1. 

  



 8. Cryo IR Spectroscopy of N2 and H2 on Ru8+: The Effect of N2 on the H-Migration 

 

222 

 

Discussion of DFT Predicted Splittings and Intensities of N2 Stretching Bands as Compared 

to the Experimental IR-PD Spectra: 

DFT predictions reveal four N2 stretching bands which originate from combined motions of 

the four N2 chromophores t1, t2, b1, and b2 as labeled in Fig. S17 and as assigned in Table S1 

and S2. Within the experimental band width of about 5 cm-1 the asymmetric/symmetric 

combination of the (t1,t2) couple is degenerate, and the according combination of the 

(b1,b2) couple as well. The experimental splitting of 13 cm-1 between (t1,t2) and (b1,b2) 

bands comes close to the splitting of 18 cm-1 predicted by DFT. 

 

Fig. S17. Calculated spectra of 4(N2)4 and 2(N2)4 and their respective structure. 

The structures include the naming of the adsorbed N2s. 
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Table S1. Calculated IR frequencies and assignment of the 4(N2)4. 

freq. 

unscaled 

/ cm-1 

freq. 

scaled / 

cm-1 

intensity 

/ 

km/mol 

assignment 

2376 2294 424 

(t1,t2) 

asymmetric 

combination 

2383 2301 305 

(t1,t2) 

symmetric 

combination 

2398 2316 355 

(b1,b2) 

asymmetric 

combination 

2401 2318 94 

(b1,b2) 

symmetric 

combination 

 

Table S2. Calculated IR frequencies and assignment of the 2(N2)4. 

freq. 

unscaled 

/ cm-1 

freq. 

scaled / 

cm-1 

intensity 

/ 

km/mol 

assignment 

2375 2294 429 

(t1,t2) 

asymmetric 

combination 

2383 2301 314 

(t1,t2) 

symmetric 

combination 

2401 2318 330 

(b1,b2) 

asymmetric 

combination 

2403 2320 96 

(b1,b2) 

symmetric 

combination 

 

As often discussed before[1] IR-PD intensities may deviate from DFT predicted IR 

absorption intensities particularly when vibrational state densities are sparse – leading to 

“dark bands” in IR-PD spectra . In the present case these state densities seem high at first 

glance. Note however, that given the mass mismatch of Ru and N2, distant N2 oscillators may 

be decoupled from motions of the Ru8 core, from the RuH oscillators, and possibly also from 

each other. The stability of all of the predicted N2 band positions against H-migration (2N2 
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versus 4N2 isomers) proves decoupling from the RuH oscillators. The 7 cm-1 splitting within 

the asymmetric/symmetric N2 stretching combinations of the (t1,t2)-pairs in both isomers 

strongly suggests the coupling of these N2 oscillators into global modes, while the negligible 

splitting of (b1,b2) bands (2 cm-1) suggests the decoupling of these N2 oscillators towards 

local modes. The differences in the coupling of (t1,t2) pairs versus (b1,b2) pairs likely 

originate from the small versus large tilt and/or the concomitant proximity versus distance 

amongst these N2 pairs, respectively. 

It is thus likely possible to excite the b1 and b2 chromophores independently, and their 

excitation may sustain long enough such that their vibrational ground states stay depleted 

and  another |0> � |1>  excitation of each chromophore cannot occur within the limited 

duration of the IR photon pulse (6 ns) in the experiment. In such a case only one IR 

absorption takes place – fragmentation likely not: the considerable heat of fragmentation 

ΔfragH(Ru-N2) of ~50 kJ/mol would require at least a two photon excitation and an effective 

coupling of excited oscillators to the heat bath of the entire complex, and thereby to the Ru-

N2 fragmentation coordinate. In effect, the * labelled strong IR absorption bands (by DFT) 

correspond to significantly diminished experimental IR-PD bands, this difference originating 

from a lack of efficient internal vibrational redistribution (IVR). 

A 2c-IR2PD scheme with two independent IR colors in the same spectral range in 

combination with cryo tandem ion trapping would allow us to better explore these intensity 

issues. The corresponding large scale instrumental modification is in progress. 

References: 

[1] a)T. Pankewitz, A. Lagutschenkov, G. Niedner-Schatteburg, S. S. Xantheas, Y. T. Lee, J. 

Chem. Phys. 2007, 126, 074307; b)Y. Nosenko, F. Menges, C. Riehn, G. 

Niedner-Schatteburg, V. E. Bondybey, Phys. Chem. Chem. Phys 2013, 15, 8171-8178. 
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Fig. S18. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ recorded on two 

separate measurement days. Note the reproducibility even of minor features. 
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Fig. S19. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations with different functionals (PBE0, PBE0 including the Grimme 

correction for dispersion (GD3), B3LYP, B3LYP including the Grimme correction 

for dispersion (GD3), PBEPBE, and BLYP). Calculations were performed using cc-

pVTZ (N) and Stuttgart RSC 1997 effective core potential (Ru) basis sets. The 

calculated harmonic vibrations were scaled by 0.9656 above 2150 cm-1 and by 

0.923 below 2150 cm-1. 

  



8. Cryo IR Spectroscopy of N2 and H2 on Ru8+: The Effect of N2 on the H-Migration   

 

227 

 

 

Fig. S20. IR-PD spectra of [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ in comparison with 

DFT calculations with different functionals (PBE0, PBE0 including the Grimme 

correction for dispersion (GD3), B3LYP, B3LYP including the Grimme correction 

for dispersion (GD3), PBEPBE, and BLYP). Calculations were performed using cc-

pVTZ (N) and Stuttgart RSC 1997 effective core potential (Ru) basis sets. The 

calculated harmonic vibrations were scaled by 0.9656 above 2150 cm-1 and by 

0.923 below 2150 cm-1. 
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9.1 Preamble 

The following chapter is a reprint of a publication in the journal “The Journal of Physical 

Chemistry A”. 

The experiments were performed by myself. The data evaluation was done by myself. The 

computations were done by myself. The initial manuscript was written by myself and revised 

with the help of G. Niedner-Schatteburg and J. Lang. 

 

 

Full Reference: 

Cryo IR Spectroscopy of [Hemin]+ Complexes in Isolation 

S. Dillinger, J. Lang, and G. Niedner-Schatteburg, The Journal of Physical Chemistry A, 2017, 

121, 38, 7191-7196. 

http://dx.doi.org/10.1021/acs.jpca.7b08604 
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9.3 Supporting Information 

Table of Content: 

Detailed Experimental and Computational Methods 

Figure S1. Schematic drawing of our tandem cryo trap FT-ICR MS. 

Scheme S1. Molecular structure of Hemin (FeIIIC34H32N4O4Cl) and [Hemin]+ 

([FeIIIC34H32N4O4]+). 

Figure S2. IR-PD spectrum of [Hemin(14N2)]+ in the region from 2800 to 3800 cm-1. 

Figure S3. Comparison of the gas phase IR-PD spectrum of [Hemin(14N2)]+ and a solid state IR 

spectrum of Hemin recorded via attenuated total reflection FTIR spectroscopy. 

Figure S4. IR-PD spectra of [Hemin(14N2)]+ recorded with different laser powers. 

Figure S5. Illustration of different possible adsorption sites for the reaction gases. 

Figure S6. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations of different 

adsorption sites (trans and cis) and spin states (doublet, quartet and sextet). 

Figure S7. IR-PD spectrum of [Hemin(CO)1]+ in comparison with DFT calculations of different 

adsorption sites (trans and cis) and spin states (doublet, quartet and sextet). 

Figure S8. IR-PD spectrum of [Hemin(O2)]+ in comparison with DFT calculations of different 

adsorption sites (trans and cis) and spin states (quartet and sextet). 

Table S1. Calculated IR frequencies and intensities of the 14N2 in [Hemin(14N2)]+. 

Figure S9. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations of the 

energetically most favored isomers (cis quartet and trans quartet). 

Figure S10. IR-PD spectra of the [Hemin]+ adsorbate complexes. 

Figure S11. Isosurfaces of the spin density of the [Hemin(O2)]+ cis quartet isomer with the 

[Hemin(14N2)]+ cis quartet and sextet.  

Figure S12. Isosurfaces of the spin density of the [Hemin(CO)2]+ doublet with a isovalue of 

the spin density of 0.02 (default) and an decreased value of 0.002 in comparison with the 

spin densities of the [Hemin(CO)1]+ doublet and [Hemin(14N2)]+ doublet, both default 

isovalues. 

Figure S13. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations with 

different basis sets (6-311++G** and 6-31+G*) of the cis quartet isomer. 

Figure S14. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations with 

different basis sets (cc-pVDZ and 6-31+G*) of the cis quartet isomer. 
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Figure S15. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations with 

different functionals (PBE0 and B3LYP) of the cis quartet isomer. 

Figure S16. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations of 

different isomers containing two, one or no hydrogen bonds (HBB). 

XYZ-Files of Geometry Optimized [Hemin]+ Complexes  
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Detailed Experimental and Computational Methods: 

We utilized a customized Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass 

spectrometer (Apex Ultra, Bruker Daltonics)1 for generation of the species of interest and 

the subsequent InfraRed Photon Dissociation (IR-PD) spectroscopy. This mass spectrometer 

is equipped with an Electrospray Ionization (ESI) source (Apollo 2, Bruker) and a home-built 

laser vaporization cluster ion source 2 3 (Figure S1). 

 

 

Figure S1. Schematic drawing of our tandem cryo trap FT-ICR MS. The ions can be 

generated via Electro Spray Ionization (ESI) or Laser VAPorization (LVAP). The 

ions enter the cryo hexapole after passing several ion optics and a quadrupole 

mass filter. The hexapole is held at a constant temperature between 11 and 

300 K. Reaction gas and buffer gas can be introduced in this ion trap. The 

manipulated ions are transferred into the cryo ICR cell after a variable reaction 

time. In the cryo ICR cell the ions are isolated, irradiated with an IR laser and 

detected. 

 

Hemin (FeC34H32N4O4Cl, Scheme S1 left) was purchased from Sigma Aldrich and used 

without further purification. Sample solutions of the Hemin complex in methanol at the 

concentration of 1 x 10-4 mol/l were continuously infused into the ESI source by a syringe 

pump at a flow rate of 2 µL min-1. The ion source was set to positive electrospray ionization 

mode. Nitrogen was used as drying gas with a flow rate of 3.0 L min-1 at 200°C. The solutions 

were electro-sprayed at a nebulizer flow of 1.5 L min-1 and the spray shield was held at 

3.6 kV. We detect the [Hemin]+ (FeC34H32N4O4, Scheme S1 right).  
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Scheme S1 Molecular structure of Hemin (FeIIIC34H32N4O4Cl, left) and [Hemin]+ 

([FeIIIC34H32N4O4]+) generated via electro spray ionization (right). 

 

We mass selected the [Hemin]+ by our quadrupole mass filter and guided it into the 

hexapole ion trap which was held at a constant temperature. The ion trap is cooled by a 

closed cycle Helium cryostat. Reaction gas (CO, 14N2, 15N2 and O2) was continuously 

introduced in the ion trap. The pressure of about 1.7 x 10-7 mbar is increased up to 5.0 x 10-

7 mbar to yield sufficient amounts of adsorbate complexes. The temperature was adjusted to 

the respective reaction gas (30 K for CO, 28 K for 14N2 and 15N2, 45 K for O2). The pressure is 

further increased up to 3.0 x 10-6 mbar to accomplish efficient trapping and cooling of the 

ions. Both gases were introduced continuously. The manipulated ions are guided by 

electrostatic lenses into the FT-ICR cell of the so-called ‘‘infinity’’ type.4 This cell is cooled to 

a temperature of about 10 K with a closed cycle Helium cryostat to prevent heating of the 

clusters by black body radiation. The ICR cell is used for trapping, isolation and detection of 

the ions. It is coupled to a tunable pulsed IR laser (∆ν© = 0.9 cm-1, ∆t = 7 ns. Note, that the 

modest mass difference between CO and N2 of about 0.01 amu can be accurately resolved 

with our experimental setup. 

The IR laser is a KTP/KTA optical parametric oscillator/amplifier (OPO/OPA, LaserVision) 

system pumped by a pulsed 10 Hz injection seeded Nd3+:YAG laser (Continuum, Powerlite 

DLS 8000). In this work we used the difference frequency (DF) between the OPA signal and 

idler waves generated in a AgGaSe2 crystal (0.1 – 1.2 mJ per pulse). We recorded IR-PD 

spectra in the range of 900 – 2400 cm-1. Each trapped and isolated package of ions is 

irradiated by 10 laser pulses to yield a sufficient amount of fragment ions. The IR-PD spectra 

were recorded as ion chromatograms while continuously scanning the IR frequency (typically 

< 0.2 cm-1/s). The IR-PD signal was evaluated as ΣFi/(ΣiFi + ΣPi), where Fi and Pi indicate the 
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fragment and the parent ion signals, respectively. An experimental IR-PD spectrum arises 

from a plot of the fragmentation efficiency as a function of laser frequency. 

Optimized minimum energy structures and linear IR absorption spectra were calculated at 

the B3LYP 5 6 level of theory using 6-31+G* basis sets (C, H, N, O)7, and Stuttgart RSC 19978 

effective core potential (Fe) basis sets, respectively, as implemented in the Gaussian 09 

program package.9 We included the Grimme correction for dispersion (GD3).10 Standard 

convergence criteria were applied. We checked several spin states (dublet, quartet, sextet). 

We checked different basis sets and a differnet functional which did not provide for a 

significant improvement/better agreements (cf. Figure S12 – S14). Full geometry 

optimization of all nuclear coordinates yields multiple local minimum structures. The lowest 

energy structure is assumed to represent the most stable isomer. We scaled the calculated 

harmonic vibrational frequencies by a factor of 0.97 and broadened using the lorentz profile 

(FWHM = 5 cm-1). 
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Figure S2. IR-PD spectrum of [Hemin(14N2)]+ in the region from 2800 to 3800 cm-1 

including the power curve of the laser.  

 

Figure S3. Comparison of the gas phase IR-PD spectrum of [Hemin(14N2)]+ and a 

solid state IR spectrum of Hemin recorded via attenuated total reflection IR 

spectroscopy. Note that the solid state spectrum is shifted by 40 cm-1 to align the 

most abundant bands. In general many similarities between both spectra are 

observed. Yet the gas phase spectrum shows much better resolved bands. The 

red circle is to highlight the band at about 1890 cm-1 which is present in the gas 

phase but not in solid state. 
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Figure S4. IR-PD spectra of [Hemin(14N2)]+ recorded with different laser powers.  

 

 

Figure S5. Illustration of different possible adsorption sites for the reaction 

gases. The molecules can attach either on the trans (red arrow) or on the cis 

(blue arrow) of the [Hemin]+. We will apply this nomenclature in the following 

calculated spectra. 
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Figure S6. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations 

of different adsorption sites (trans and cis, cf. Figure 4) and spin states (doublet, 

quartet and sextet). The black IR-PD spectrum was measured with attenuated 

laser power (cf. Figure S3). Calculations were performed at the B3LYP level of 

theory including the Grimme dispersion correction (GD3) using 6-31+G* (C, H, N, 

O) and Stuttgart RSC 1997 effective core potential (Fe) basis sets. The calculated 

harmonic vibrations were scaled by a factor of 0.97. 
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Figure S7. IR-PD spectrum of [Hemin(CO)1]+ in comparison with DFT calculations 

of different adsorption sites (trans and cis) and spin states (doublet, quartet and 

sextet). Calculations were performed at the B3LYP level of theory including the 

Grimme dispersion correction (GD3) using 6-31+G* (C, H, N, O) and Stuttgart RSC 

1997 effective core potential (Fe) basis sets. The calculated harmonic vibrations 

were scaled by a factor of 0.97. 
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Figure S8. IR-PD spectrum of [Hemin(O2)]+ in comparison with DFT calculations of 

different adsorption sites (trans and cis) and spin states (quartet and sextet). 

Calculations were performed at the B3LYP level of theory including the Grimme 

dispersion correction (GD3) using 6-31+G* (C, H, N, O) and Stuttgart RSC 1997 

effective core potential (Fe) basis sets. The calculated harmonic vibrations were 

scaled by a factor of 0.97. The calculated spectra with a doublet spin state are 

not shown as they converged to a quartet spin state during the optimization 

process. 
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Figure S9. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT calculations 

of the energetically most favored isomers (cis quartet and trans quartet). The 

black IR-PD spectrum was measured with attenuated laser power (cf. Figure S3). 

Both calculated spectra look almost identical. However, the cis isomer is 3 kJ/mol 

lower in energy. Calculations were performed at the B3LYP level of theory 

including the Grimme dispersion correction (GD3) using 6-31+G* (C, H, N, O) and 

Stuttgart RSC 1997 effective core potential (Fe) basis sets. The calculated 

harmonic vibrations were scaled by a factor of 0.97. The calculated spectra with 

a doublet spin state are not shown as they converged to a quartet spin state 

during the optimization process. 
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Table S1. Calculated IR frequencies and intensities of the 14N2 in [Hemin(14N2)]+. 

[Hemin(14N2)]
+ isomer 

IR frequency 

(unscaled)  

/ cm-1 

IR frequency 

(scaled by 0.97)  

/ cm-1 

IR 

intensity / 

km/mol 

cis quartet 2463.48 2389.57 2.3 

trans quartet 2462.78 2388.89 1.7 

cis doublet 2453.69 2380.08 0.9 

trans doublet 2449.93 2376.43 0.4 

cis sextet 2461.52 2387.68 0.9 

trans sextet 2460.41 2386.59 0.5 
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Figure S10. IR-PD spectra of the [Hemin]+ adsorbate complexes. The red line is to 

indicate the stretching frequency of free CO (2143 cm-1). The blue dotted line is 

to highlight the well resolved band which is not present in the solid state / is only 

visible in the gas phase (cf. Figure S3). 
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Figure S11. Isosurfaces of the spin density of the [Hemin(O2)]+ cis quartet isomer 

(top) with the [Hemin(14N2)]+ cis quartet (bottom left) and sextet. 

 

 

Figure S12. Isosurfaces of the spin density of the [Hemin(CO)2]+ doublet with a 

isovalue of the spin density of 0.02 (default) (top left) and an decreased value of 

0.002 (top right) in comparison with the spin densities of the [Hemin(CO)1]+ 

doublet (bottom left) and [Hemin(14N2)]+ doublet (bottom right), both default 

isovalues. 
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Figure S13. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT 

calculations with different basis sets of the cis quartet isomer. Calculations were 

performed at the B3LYP level of theory including the Grimme dispersion 

correction (GD3) using 6-311++G** and 6-31+G* (C, H, N, O) and Stuttgart RSC 

1997 effective core potential (Fe) basis sets. The calculated harmonic vibrations 

were scaled by a factor of 0.97. The increased basis set does not provide for 

great improvements in the calculated spectrum. 
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Figure S14. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT 

calculations with different basis sets of the cis quartet isomer. Calculations were 

performed at the B3LYP level of theory including the Grimme dispersion 

correction (GD3) using cc-pVDZ and 6-31+G* (C, H, N, O) and Stuttgart RSC 1997 

effective core potential (Fe) basis sets. The calculated harmonic vibrations were 

scaled by a factor of 0.97. The different basis set does not provide for 

improvements in the calculated spectrum. 
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Figure S15. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT 

calculations with different functionals of the cis quartet isomer. Calculations 

were performed at the PBE0 and B3LYP level of theory including the Grimme 

dispersion correction (GD3) using 6-31+G* (C, H, N, O) and Stuttgart RSC 1997 

effective core potential (Fe) basis sets. The calculated harmonic vibrations were 

scaled by a factor of 0.97. The different basis set does not provide for significant 

improvements in the calculated spectrum. 
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Figure S16. IR-PD spectrum of [Hemin(14N2)]+ in comparison with DFT 

calculations of different isomers containing two (top), one (middle) or no 

(bottom) hydrogen bonds (HBB). Calculations were performed at the B3LYP level 

of theory including the Grimme dispersion correction (GD3) using 6-31+G* (C, H, 

N, O) and Stuttgart RSC 1997 effective core potential (Fe) basis sets. The 

calculated harmonic vibrations were scaled by a factor of 0.97. The spectra of the 

isomers containing one or no HBB do not provide for a better agreement with 

the experiment and are higher in energy. 
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XYZ-Files of Geometry Optimized [Hemin]+ Complexes (B3LYP, 6-31+G*, GD3): 

[Hemin(CO)1]+ (2S+1=4) 

Fe           -0.86292          -0.07635           0.08023 

C             1.60435          -3.52014           0.50683 

C            -4.33032           2.37759          -0.42442 

C            -3.37827           3.36686          -0.25298 

C             2.56570          -2.54901           0.66417 

C             0.34908          -2.83936           0.35432 

C            -3.63982           1.12246          -0.30416 

C            -2.12301           2.69037          -0.01973 

C             1.88562          -1.27782           0.61730 

C            -0.85368          -3.49446           0.17402 

C            -4.25953          -0.10989          -0.40501 

C            -0.92242           3.33841           0.19656 

C             2.50208          -0.04576           0.75362 

C            -2.07575          -2.87044           0.00264 

C            -3.62094          -1.32633          -0.25913 

C             0.28504           2.70534           0.42412 

C             1.85254           1.17424           0.68246 

C            -3.31885          -3.57097          -0.16523 

C            -4.29285          -2.60383          -0.33971 

C             1.51393           3.41086           0.65453 

C             2.49417           2.45903           0.81535 

C             4.04197          -2.79968           0.77607 

C             3.95245           2.74559           1.02981 

C             4.68978           3.15779          -0.28249 

C             4.71566          -3.09334          -0.60291 

C             4.95002           1.91966          -1.10294 

C             4.93435          -1.79672          -1.33879 

C             1.78202          -5.00776           0.47094 

C            -3.49400          -5.05697          -0.10781 

C            -5.73230          -2.76936          -0.52666 

C            -6.32606          -3.79021          -1.16742 

C            -5.80282           2.54207          -0.64018 

C             1.65289           4.90258           0.68649 

C            -3.54700           4.81825          -0.25311 

H             5.63989           3.63556          -0.03087 

H             4.07249           3.85273          -0.85731 

H             4.47086           1.89683           1.48831 

H             4.04982           3.57309           1.74114 

H             5.69202          -3.55555          -0.44231 

H             4.08448          -3.76844          -1.18841 

H             4.56164          -1.96808           1.26402 

H             4.20840          -3.67173           1.41757 

H            -6.36549          -1.98825          -0.10841 
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H            -2.89396           5.37979           0.41358 

H             1.40511           5.34687          -0.28602 

H             2.67336           5.20526           0.93452 

H             0.98519           5.35195           1.43152 

H            -6.05796           2.54636          -1.70835 

H            -6.37616           1.73810          -0.16829 

H            -6.14694           3.49090          -0.21744 

H            -5.76258          -4.58563          -1.64600 

H            -7.40766          -3.84076          -1.25054 

H            -2.76662          -5.52827           0.56023 

H            -3.38083          -5.51750          -1.09842 

H            -4.49486          -5.30880           0.25652 

H             1.48986          -5.42141          -0.50265 

H             2.82209          -5.29262           0.64912 

H             1.16961          -5.50353           1.23404 

H             6.21876           0.49001          -1.25665 

H             3.98030          -0.34979          -2.14145 

H            -0.83401          -4.57708           0.16079 

H            -5.32106          -0.12109          -0.61479 

H            -0.92156           4.42108           0.18225 

H             3.57277          -0.03560           0.91444 

N             0.52186          -1.46254           0.41516 

N             0.48931           1.33257           0.44883 

N            -2.26129          -1.49340          -0.04457 

N            -2.28485           1.31463          -0.05733 

O             6.01054          -1.20682          -1.31916 

O             3.83528          -1.30927          -1.91249 

O             4.09890           1.39316          -1.82002 

O             6.15363           1.41023          -0.87748 

C            -4.42566           5.50239          -1.00454 

H            -5.08019           5.01732          -1.72275 

H            -4.49343           6.58406          -0.93562 

C            -0.31557          -0.06854          -2.20859 

O             0.04785          -0.07217          -3.27974 
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[Hemin(14N2)]+ (2S+1=4) 

Fe           -0.86244          -0.07579           0.09816 

C             1.60515          -3.52040           0.48686 

C            -4.31550           2.38063          -0.46671 

C            -3.36579           3.36883          -0.27642 

C             2.56844          -2.55012           0.63619 

C             0.34953          -2.83871           0.34420 

C            -3.62810           1.12512          -0.33920 

C            -2.11464           2.69129          -0.02799 

C             1.88882          -1.27873           0.59642 

C            -0.85368          -3.49359           0.17087 

C            -4.24857          -0.10569          -0.44662 

C            -0.91724           3.33858           0.20366 

C             2.50727          -0.04857           0.73457 

C            -2.07295          -2.86732          -0.00705 

C            -3.61278          -1.32159          -0.29051 

C             0.28868           2.70316           0.42907 

C             1.85694           1.17081           0.67205 

C            -3.31507          -3.56598          -0.18493 

C            -4.28533          -2.59801          -0.37462 

C             1.51822           3.40712           0.65873 

C             2.49925           2.45449           0.80865 

C             4.04542          -2.80177           0.73567 

C             3.95862           2.74002           1.01708 

C             4.68958           3.15903          -0.29664 

C             4.70876          -3.08997          -0.64950 

C             4.94739           1.92492          -1.12396 

C             4.92638          -1.78970          -1.37935 

C             1.78136          -5.00806           0.44763 

C            -3.49260          -5.05153          -0.12390 

C            -5.72259          -2.76218          -0.57870 

C            -6.30935          -3.78385          -1.22455 

C            -5.78404           2.54733          -0.70626 

C             1.65745           4.89862           0.69746 

C            -3.53374           4.82021          -0.27291 

H             5.64037           3.63641          -0.04682 

H             4.06918           3.85606          -0.86556 

H             4.47952           1.88916           1.46877 

H             4.05908           3.56398           1.73209 

H             5.68484          -3.55579          -0.49779 

H             4.07171          -3.76004          -1.23442 

H             4.56921          -1.97249           1.22319 

H             4.21606          -3.67654           1.37231 

H            -6.36004          -1.97952          -0.16996 

H            -2.88982           5.37844           0.40532 

H             1.40867           5.34731          -0.27279 

H             2.67831           5.19985           0.94561 
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H             0.99072           5.34471           1.44532 

H            -6.02035           2.56032          -1.77867 

H            -6.36595           1.74006          -0.25093 

H            -6.13505           3.49301          -0.28207 

H            -5.74071          -4.58070          -1.69461 

H            -7.38990          -3.83357          -1.32093 

H            -2.77604          -5.52030           0.55753 

H            -3.36436          -5.51644          -1.11062 

H            -4.49920          -5.30081           0.22596 

H             1.48361          -5.41974          -0.52511 

H             2.82220          -5.29392           0.61955 

H             1.17279          -5.50470           1.21322 

H             6.21384           0.49424          -1.28624 

H             3.97089          -0.33756          -2.17109 

H            -0.83580          -4.57621           0.16129 

H            -5.30730          -0.11605          -0.66973 

H            -0.91625           4.42124           0.19643 

H             3.57870          -0.03951           0.89015 

N             0.52318          -1.46148           0.40257 

N             0.49216           1.32968           0.44492 

N            -2.25491          -1.48931          -0.06051 

N            -2.27553           1.31499          -0.07365 

O             6.00358          -1.20145          -1.36000 

O             3.82599          -1.29801          -1.94610 

O             4.09525           1.40383          -1.84359 

O             6.15020           1.41224          -0.90138 

C            -4.40128           5.50827          -1.03364 

H            -5.04584           5.02704          -1.76331 

H            -4.46915           6.58969          -0.96085 

N             0.06050          -0.05051          -3.30524 

N            -0.30349          -0.05657          -2.26332 
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[Hemin(O2)]+ (2S+1=6) 

Fe           -0.90549          -0.09299           0.16265 

C             1.58021          -3.53448           0.37817 

C            -4.34126           2.36461          -0.46625 

C            -3.37756           3.35099          -0.34585 

C             2.54128          -2.56744           0.56053 

C             0.32231          -2.85302           0.26733 

C            -3.66372           1.11007          -0.29711 

C            -2.12972           2.67377          -0.08515 

C             1.85936          -1.29730           0.56042 

C            -0.88265          -3.50774           0.11449 

C            -4.29817          -0.11681          -0.33641 

C            -0.92970           3.31987           0.13134 

C             2.47525          -0.07156           0.73693 

C            -2.10838          -2.88034           0.00205 

C            -3.66023          -1.33172          -0.18906 

C             0.26672           2.68243           0.39360 

C             1.82420           1.14727           0.68494 

C            -3.35591          -3.57682          -0.13306 

C            -4.33525          -2.60668          -0.25750 

C             1.49459           3.38391           0.63447 

C             2.46794           2.42963           0.82142 

C             4.01741          -2.82152           0.66802 

C             3.92097           2.71379           1.07411 

C             4.69257           3.15847          -0.20686 

C             4.69837          -3.07754          -0.71456 

C             4.96798           1.94303          -1.05546 

C             4.93156          -1.75942          -1.40683 

C             1.75968          -5.01966           0.29247 

C            -3.52977          -5.06349          -0.09851 

C            -5.78025          -2.76774          -0.39720 

C            -6.39778          -3.78069          -1.02816 

C            -5.81302           2.53468          -0.68096 

C             1.64109           4.87497           0.65173 

C            -3.53209           4.80196          -0.41425 

H             5.63735           3.62511           0.08290 

H             4.09344           3.87125          -0.77889 

H             4.42958           1.85600           1.52654 

H             3.99729           3.52488           1.80701 

H             5.66991          -3.55219          -0.56142 

H             4.06654          -3.72850          -1.32611 

H             4.53518          -2.00412           1.18130 

H             4.18009          -3.71071           1.28659 

H            -6.39688          -1.98961           0.05037 

H            -2.86830           5.38917           0.21864 

H             1.43849           5.30589          -0.33723 

H             2.65185           5.17504           0.93945 
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H             0.94494           5.33894           1.36068 

H            -6.07384           2.49139          -1.74686 

H            -6.39195           1.75961          -0.16925 

H            -6.14470           3.50574          -0.30111 

H            -5.85316          -4.57192          -1.53451 

H            -7.48171          -3.82780          -1.07511 

H            -2.77429          -5.54927           0.52640 

H            -3.46123          -5.50224          -1.10296 

H            -4.51393          -5.32250           0.30436 

H             1.44909          -5.40277          -0.68777 

H             2.80340          -5.30766           0.44132 

H             1.16339          -5.54061           1.05165 

H             6.22977           0.50988          -1.22377 

H             3.98811          -0.28155          -2.16816 

H            -0.86243          -4.58960           0.07679 

H            -5.36473          -0.12600          -0.51822 

H            -0.91995           4.40160           0.09050 

H             3.54561          -0.06475           0.89955 

N             0.49247          -1.47577           0.36154 

N             0.46124           1.30700           0.44082 

N            -2.29258          -1.50021          -0.01636 

N            -2.30155           1.29657          -0.07345 

O             6.01341          -1.18067          -1.36501 

O             3.83737          -1.24566          -1.96373 

O             4.13350           1.44781          -1.81204 

O             6.16022           1.41549          -0.81105 

C            -4.40915           5.45742          -1.19278 

H            -5.07325           4.94479          -1.88247 

H            -4.46479           6.54184          -1.17706 

O             1.33225           0.61458          -2.68184 

O             0.24586           0.07955          -2.57802 
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[Hemin(CO)1]+ (2S+1=2) 

Fe           -0.88065          -0.07557           0.19580 

C             1.63237          -3.55673           0.51356 

C            -4.35124           2.41700          -0.40466 

C            -3.40684           3.40311          -0.24959 

C             2.58450          -2.59092           0.66933 

C             0.35978          -2.86247           0.35623 

C            -3.63983           1.15099          -0.27649 

C            -2.13160           2.71411          -0.01388 

C             1.88201          -1.30426           0.61480 

C            -0.84645          -3.48977           0.16545 

C            -4.26339          -0.11262          -0.37988 

C            -0.92360           3.33642           0.18626 

C             2.50425          -0.03848           0.74978 

C            -2.09996          -2.86357          -0.01981 

C            -3.64559          -1.33424          -0.26212 

C             0.31902           2.70053           0.40454 

C             1.88445           1.18578           0.66806 

C            -3.34784          -3.58864          -0.21809 

C            -4.32227          -2.63281          -0.38018 

C             1.56302           3.43013           0.62252 

C             2.53967           2.49080           0.78847 

C             4.06338          -2.82693           0.78808 

C             3.99919           2.77144           1.00323 

C             4.74932           3.16350          -0.30746 

C             4.75594          -3.10094          -0.58440 

C             4.99090           1.91664          -1.11971 

C             4.95636          -1.80192          -1.32151 

C             1.80246          -5.04380           0.46954 

C            -3.49565          -5.07863          -0.19150 

C            -5.75660          -2.79278          -0.59278 

C            -6.34139          -3.80075          -1.26311 

C            -5.82722           2.56027          -0.61213 

C             1.68389           4.92301           0.63262 

C            -3.56369           4.85367          -0.26823 

H             5.70576           3.62786          -0.05493 

H             4.14451           3.86466          -0.88808 

H             4.50844           1.92340           1.47439 

H             4.09903           3.60617           1.70582 

H             5.73937          -3.54603          -0.41891 

H             4.14137          -3.78638          -1.17593 

H             4.56894          -1.99427           1.29012 

H             4.23415          -3.70270           1.42343 

H            -6.39556          -2.01691          -0.17275 

H            -2.89669           5.41924           0.38150 

H             1.41575           5.35194          -0.34176 



9. Cryo IR Spectroscopy of [Hemin]+ Complexes in Isolation   

 

263 

 

H             2.70459           5.24106           0.86048 

H             1.02218           5.37559           1.38185 

H            -6.09887           2.49758          -1.67451 

H            -6.38829           1.78211          -0.08366 

H            -6.17350           3.52993          -0.24158 

H            -5.76954          -4.58533          -1.74961 

H            -7.42151          -3.84885          -1.36468 

H            -2.80162          -5.54327           0.51688 

H            -3.30878          -5.52583          -1.17717 

H            -4.51120          -5.35696           0.10684 

H             1.53392          -5.44581          -0.51595 

H             2.83598          -5.33635           0.67254 

H             1.16620          -5.54323           1.21049 

H             6.24943           0.48057          -1.29054 

H             3.97756          -0.35062          -2.09436 

H            -0.83653          -4.57345           0.14159 

H            -5.32740          -0.11178          -0.58306 

H            -0.91193           4.42001           0.16857 

H             3.57517          -0.04019           0.91564 

N             0.55713          -1.48813           0.42126 

N             0.52293           1.36639           0.43770 

N            -2.29148          -1.52319          -0.04392 

N            -2.31910           1.34344          -0.04380 

O             6.03660          -1.22008          -1.34886 

O             3.83574          -1.30568          -1.84424 

O             4.12272           1.38812          -1.81405 

O             6.19594           1.40227          -0.91322 

C            -4.44496           5.53512          -1.02034 

H            -5.10852           5.04455          -1.72645 

H            -4.50376           6.61811          -0.96576 

C            -1.19373          -0.08264           2.05123 

O            -1.38322          -0.08601           3.17479 

C            -0.56355          -0.06812          -1.66630 

O            -0.37328          -0.06477          -2.78885 
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[Hemin(CO)1]+ (2S+1=4) 

Fe           -0.88582          -0.07537           0.20650 

C             1.65449          -3.58510           0.52500 

C            -4.38455           2.44360          -0.40874 

C            -3.43478           3.43342          -0.25013 

C             2.61179          -2.61606           0.68333 

C             0.37900          -2.89408           0.37506 

C            -3.67817           1.17410          -0.28215 

C            -2.15833           2.74724          -0.01402 

C             1.91371          -1.32640           0.63782 

C            -0.84715          -3.50133           0.17140 

C            -4.28113          -0.11329          -0.38394 

C            -0.92829           3.34922           0.19217 

C             2.51760          -0.03632           0.76153 

C            -2.12379          -2.89605          -0.02436 

C            -3.68146          -1.35653          -0.27091 

C             0.33764           2.73408           0.41395 

C             1.91531           1.20924           0.68005 

C            -3.37268          -3.61756          -0.23201 

C            -4.35221          -2.65721          -0.39483 

C             1.58566           3.46054           0.62060 

C             2.56704           2.51724           0.78726 

C             4.09051          -2.85682           0.79436 

C             4.02735           2.80345           0.99014 

C             4.77082           3.17592          -0.33039 

C             4.77896          -3.11760          -0.58298 

C             5.01112           1.91612          -1.12229 

C             4.97957          -1.81094          -1.30606 

C             1.83228          -5.07159           0.47056 

C            -3.52820          -5.10721          -0.21523 

C            -5.78528          -2.82233          -0.61192 

C            -6.37378          -3.84472          -1.25690 

C            -5.85924           2.59735          -0.61994 

C             1.71461           4.95333           0.61959 

C            -3.59556           4.88363          -0.26643 

H             5.72772           3.64573          -0.08985 

H             4.16175           3.86635          -0.91929 

H             4.53909           1.96155           1.47001 

H             4.13216           3.64781           1.68036 

H             5.76231          -3.56549          -0.42450 

H             4.16185          -3.79585          -1.17999 

H             4.59809          -2.02843           1.30191 

H             4.26400          -3.73842           1.42086 

H            -6.42360          -2.03300          -0.21633 

H            -2.91138           5.44911           0.36554 

H             1.45480           5.37556          -0.36005 
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H             2.73505           5.26968           0.85136 

H             1.05022           5.41542           1.36059 

H            -6.12196           2.59742          -1.68642 

H            -6.42389           1.78897          -0.14350 

H            -6.21095           3.54364          -0.19662 

H            -5.80696          -4.64717          -1.71905 

H            -7.45382          -3.88761          -1.36148 

H            -2.79789          -5.58525           0.44589 

H            -3.40156          -5.54300          -1.21545 

H            -4.52716          -5.38449           0.13696 

H             1.58785          -5.46514          -0.52470 

H             2.86198          -5.36315           0.69387 

H             1.18177          -5.58105           1.19197 

H             6.26659           0.47365          -1.26777 

H             4.00494          -0.35631          -2.07897 

H            -0.83542          -4.58612           0.14178 

H            -5.34648          -0.11325          -0.58671 

H            -0.91622           4.43415           0.17555 

H             3.59068          -0.03696           0.92190 

N             0.59462          -1.52625           0.45344 

N             0.55946           1.40595           0.45820 

N            -2.33410          -1.56289          -0.04917 

N            -2.36432           1.38328          -0.05001 

O             6.05811          -1.22491          -1.31907 

O             3.86183          -1.31270          -1.83288 

O             4.14382           1.37920          -1.81181 

O             6.21333           1.40074          -0.90297 

C            -4.49520           5.56808          -0.99386 

H            -5.17976           5.08142          -1.68213 

H            -4.54909           6.65117          -0.93620 

C            -1.21488          -0.07733           2.06076 

O            -1.41439          -0.07739           3.18151 

C            -0.55227          -0.07293          -1.65282 

O            -0.35064          -0.07257          -2.77239 
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[Hemin(CO)1]+ (2S+1=6) 

Fe           -0.88705          -0.07111           0.20009 

C             1.63019          -3.54752           0.52980 

C            -4.36357           2.41134          -0.41572 

C            -3.40575           3.40632          -0.24511 

C             2.59484          -2.57400           0.69319 

C             0.36872          -2.86662           0.38075 

C            -3.67681           1.15179          -0.29211 

C            -2.14641           2.73040          -0.00588 

C             1.91582          -1.29584           0.65437 

C            -0.85281          -3.50348           0.17665 

C            -4.27705          -0.10336          -0.40044 

C            -0.92058           3.35854           0.20930 

C             2.51781          -0.04180           0.77930 

C            -2.09535          -2.89945          -0.02242 

C            -3.65347          -1.34392          -0.28285 

C             0.31070           2.74312           0.42736 

C             1.88878           1.20157           0.69265 

C            -3.33551          -3.59956          -0.23204 

C            -4.31655          -2.62822          -0.40456 

C             1.55158           3.44780           0.62586 

C             2.53485           2.49242           0.79108 

C             4.07038          -2.82955           0.79871 

C             3.99595           2.78225           0.97781 

C             4.71687           3.15935          -0.35443 

C             4.73846          -3.12411          -0.58297 

C             4.96751           1.89882          -1.14292 

C             4.95097          -1.82748          -1.32056 

C             1.81564          -5.03329           0.47497 

C            -3.51087          -5.08603          -0.21624 

C            -5.74841          -2.79634          -0.62404 

C            -6.34182          -3.83490          -1.23887 

C            -5.83326           2.58461          -0.63977 

C             1.70283           4.93827           0.62108 

C            -3.57301           4.85518          -0.25350 

H             5.66994           3.64365          -0.12755 

H             4.09196           3.83826          -0.94004 

H             4.51750           1.94172           1.44828 

H             4.10693           3.62636           1.66743 

H             5.71642          -3.58423          -0.42599 

H             4.10581          -3.80091          -1.16481 

H             4.59254          -1.99716           1.28302 

H             4.23923          -3.70188           1.43953 

H            -6.38486          -1.99179          -0.25860 

H            -2.86978           5.42055           0.35633 

H             1.45777           5.35837          -0.36303 
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H             2.72470           5.24216           0.86222 

H             1.03591           5.41131           1.35223 

H            -6.07054           2.68241          -1.70774 

H            -6.40752           1.73777          -0.25247 

H            -6.19363           3.49059          -0.14158 

H            -5.78266          -4.65785          -1.67262 

H            -7.42167          -3.87000          -1.34824 

H            -2.74771          -5.58054           0.39195 

H            -3.45297          -5.51095          -1.22741 

H            -4.49082          -5.35293           0.19312 

H             1.56289          -5.42876          -0.51737 

H             2.84835          -5.32046           0.68923 

H             1.17346          -5.54475           1.20236 

H             6.22970           0.46004          -1.26560 

H             3.99090          -0.38727          -2.13004 

H            -0.82979          -4.58692           0.15441 

H            -5.33924          -0.11242          -0.61164 

H            -0.91638           4.44220           0.19093 

H             3.59054          -0.03215           0.93491 

N             0.56105          -1.49817           0.45644 

N             0.53168           1.37917           0.47362 

N            -2.30487          -1.53076          -0.05501 

N            -2.32957           1.36361          -0.04533 

O             6.02531          -1.23336          -1.30063 

O             3.85072          -1.34653          -1.89553 

O             4.11083           1.35736          -1.84190 

O             6.17006           1.39032          -0.90962 

C            -4.49573           5.54350          -0.94872 

H            -5.20516           5.06425          -1.61603 

H            -4.54305           6.62658          -0.88546 

C            -1.30329          -0.09116           2.57553 

O            -1.47713          -0.10081           3.69417 

C            -0.35188          -0.06100          -2.14705 

O            -0.02249          -0.05952          -3.22968 
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10 Summary and Outlook 

This thesis presents research studies on the fundamental interplay of diatomic molecules 

with transition metal compounds under cryogenic conditions. The FRITZ setup offers a 

multitude of opportunities to study isolated ions: The ions can either be generated by an 

ElectroSpray Ionization (ESI) source or a Laser VAPorization (LVAP) cluster ion source. The 

setup facilitates kinetic investigations of the ions with different reaction gases under well-

defined isothermal conditions. Moreover it enables cryo InfraRed (Multiple) Photon 

Dissociation (IR-(M)PD) spectroscopy in combination with tunable OPO/OPA laser systems. 

In conjunction with density functional theory (DFT) modelling, the IR(M)-PD spectra allow for 

an assignment of geometric minimum structures. Furthermore DFT modelling helps to 

identify possible reaction pathways. Altogether the presented methods allow to gain 

fundamental insights into molecular structures and reactivity of the investigated systems. 

Cobalt: We recorded the IR-PD spectra of the N2 adsorption on Con
+ clusters in the size 

range of n = 8 – 17. The spectra exhibit remarkable cluster size dependent features and 

reveal a head-on µ1 coordination of the N2 molecules to the cluster. Preliminary DFT 

calculations suggest an icosahedral Co13
+ cluster, yet they fail to predict all observed spectral 

features. Therefore it is mandatory to spend effort on the theoretical modelling of these 

systems to gain further insights into the binding motifs of the N2 and of conceivable 

activation routes. 

Nickel: We elucidated the stepwise N2 adsorption on size selected Nin
+ (n = 5 – 20) clusters 

by recording their reaction kinetics and IR-PD spectra at 26 K. We found consecutive 

adsorption steps by single exponent decays. In all presented cases the stepwise N2 uptake 

reaches a strict adsorption limit mmax that scales with cluster size. The IR-PD spectra of all 

species reveal a head-on µ1 coordination of the N2. We investigated the cases of Ni9+ and 

Ni13
+ in more detail. They show remarkable differences in adsorption limits, kinetics and IR-

PD spectra. The N2 adsorption to the Ni9+ cluster occurs at individual rates with retardation 

at an additional adsorption limit. In contrast, the N2 adsorption to the Ni13
+ cluster takes 

place at all equal rates. A corresponding trend is observed in the IR-PD spectra: the IR-PD 

spectra of the [Ni13(N2)m]+ species reveal a single dominant band that does not shift upon 

increasing N2 adsorption. On the other hand the IR-PD spectra of [Ni9(N2)m]+ show significant 
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shifts of peak positions and splittings by increase of the N2 coverage. The experimental 

findings in conjunction with DFT calculations suggest a smooth icosahedral Ni13
+ cluster, 

where all surface atoms are equal. In the case of Ni9+ we found a rough cluster surface that 

possibly isomerizes upon N2 adsorption. 

By recording N2 adsorption kinetics of the other cationic Ni clusters and the IR-PD spectra 

of intermittent (n,mx) and saturated (n,mmax) species together with modeled DFT spectra we 

were able to identify four classes of structure related surface adsorption behavior. The 

isothermal cryo kinetics on their own allow for a pre-classification into three groups: The 

clusters Ni6+, Ni13
+, and Ni19

+ are highly symmetrical clusters with all smooth surfaces. We 

observe all even reaction kinetics that point towards all equally coordinated Ni atoms. The 

clusters Ni5+, and Ni7-12
+ are small clusters with rough surfaces. They show a large variety of 

stepwise adsorption kinetics that are characteristic for rough cluster morphologies. We likely 

see a transition from octahedral to icosahedral cluster structures. The clusters Ni14-18
+, and 

Ni20
+ are large clusters with rough and smooth surface areas. They show initially even 

kinetics, intermittent limits and some long time kinetics. These indicate partly smooth 

cluster surfaces with some low coordinated Ni surface atoms that can be explained by a 

stepwise Ni cluster growth from icosahedron to bi-icosahedron. 

In combination with the IR-PD spectroscopy and the DFT modelling, we were able to refine 

this pre-classification into the final four classes of structure related surface adsorption 

behavior: 

Class (1) of highly symmetrical clusters with all smooth surfaces comprises Ni6+, Ni13
+, and 

Ni19
+, and their N2 adsorbate complexes up to saturated (n,mmax). The IR-PD spectra of the 

adsorption limits of these clusters are rather simple hinting at an exceptional high symmetry 

(octahedron, icosahedron, bi-icosahedron). These clusters provide for a smooth cluster core 

surface of equally coordinated Ni surface atoms. 

Class (2) of some highly symmetrical clusters minus one Ni atom comprises Ni12
+, and 

Ni18
+, and their N2 adsorbate complexes up to saturated (n,mmax). The IR-PD spectra suggest 

that the naked clusters, and those with few N2 adsorbates, have relaxed into structures with 

a rather smooth surface. But upon increased N2 load they reorganize into partially rough 

surfaces. 
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Class (3) of small clusters with rough surfaces comprises Ni5+, and Ni7+ through Ni11
+, and 

their N2 adsorbate complexes up to saturated (nsmall,mmax). The IR-PD spectra hint at rough 

surfaces with one or multiple low coordinated Ni surface atoms. Surface reorganization upon 

N2 uptake, namely from rough to rough surface by Ni atom migration are conceivable.  

Class (4) of large clusters with rough and smooth surface areas comprises Ni14
+ through 

Ni17
+, and Ni20

+, and their N2 adsorbate complexes up to saturated (nlarge,mmax). The IR-PD 

spectra reveal evidence for smooth surfaces with minor defects such as capping Ni atoms on 

an icosahedral surface. We see evidence for a stepwise cluster growth on one hemisphere of 

the initial icosahedron, leaving the other hemisphere largely unaffected.  

Iron: We recorded the cryo N2 adsorption kinetics of size selected Fen
+ (n = 8 – 20) 

clusters. We found consecutive adsorption steps by single exponentially decays and by a 

biexponential decay in the case of Fe18
+. We see remarkable cluster size dependent 

adsorption limits that do not allow for a conclusive classification like in the case of the Ni 

clusters, as of now. We observe the complete unreactivity of Fe17
+ towards N2 under our 

experimental conditions. To gain further insight, we recorded the IR-PD spectra of the 

[Fen(N2)1]+ and [Fen(N2)2]+ species in the N-N stretching region and assigned the observed 

bands to the µ1 head-on adsorption of N2 on the cluster. We do not observe a systematic 

variation of the band positions following a simple charge dilution model as observed for N2 

Ni clusters. The spectra of [Fe18(N2)1]+ and [Fe18(N2)2]+ revealed a far redshifted band that we 

tentatively assign to a slightly tilted N2 on the cluster – a possible precursor for the N2 

activation. Preliminary DFT modelling provide for a first understanding of the miraculous 

unreactivity of Fe17
+ cluster towards N2. The calculations found an electronic configuration 

that should not show a high reactivity towards N2. Furthermore it identified two isomers for 

the Fe18
+ cluster one with a similar electronic configuration as the Fe 17

+ cluster explaining 

the inertness and one reactive isomer. 

Ruthenium: We presented the IR-PD spectra of the N2, H2, and the coadsorption to a Ru8
+ 

cluster. The spectra reveal the dissociation of H2 in all complexes of [Ru8(H2)l]+ with l > 1 and 

we postulate a adsorbate induced reorganization after exceeding the intermittent 

adsorption limit at l = 6. In the case of [Ru8(N2)m]+ we identified a head-on µ1 adsorption of 

the N2 adsorbates and an intermittent adsorption limit at m = 5. Again we speculate about a 

reorganization beyond this intermittent adsorption limit. We recorded the IR-PD spectra of 
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the [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species and observed spectral differences depending 

of the sequence of the reaction gases. DFT modelling helped to interpret this spectral 

differences in terms of the positioning of the hydrogen atoms on the cluster. The positions 

of the hydrogen atoms on the cluster depend on their migration possibility which is 

significantly hindered if the cluster is preloaded with N2 as confirmed by DFT modelling of 

migration pathways.  

Hemin: The well-resolved gas phase IR-PD spectra of [Hemin]+ complexes identified a 

negligible spectral effect of single adsorbed molecules. In conjunction with DFT modelling we 

identified that all single adsorbed species contain a Fe3+ in a quartet spin state. In the case of 

[Hemin(O2)]+ we found an overall sextet spin state as the O2 retains its triplet state upon 

adsorption. Furthermore the IR-PD spectra revealed multiple combination bands. A non-

classical ([Hemin(CO)1]+, blue shifted CO stretching mode) and a classical ([Hemin(CO)2]+, red 

shifted CO stretching mode) carbonyl complex was observed that is accompanied by a 

quartet and a quenched doublet spin state. 

These studies shall help to elucidate crucial elementary steps in catalysis and bio-relevant 

processes and can be seen as demonstration of the versatile applicability of the utilized 

methods. Further they shall benchmark current theoretical modelling and help in designing 

new approaches with predicting power. 

Subsequent studies shall further establish the presented coadsorption technique and 

expand it to other TM clusters or complexes. Furthermore experiments with a two laser 

scheme would be of great interest. Such experiment could provide for the opportunity to 

study activated processes of which the activation barrier could be overcome by a laser. 

. 
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11 Zusammenfassung und Ausblick 

Diese Arbeit präsentiert Forschungsstudien zum grundlegenden Zusammenspiel von 

zweiatomigen Molekülen mit Übergangsmetallverbindungen unter kryogenen Bedingungen. 

Das FRITZ-Setup bietet eine Vielzahl von Möglichkeiten, isolierte Ionen zu untersuchen: Die 

Ionen können entweder durch eine ElektroSpray-Ionisation (ESI) Quelle oder eine 

Laserverdampfungsquelle (LVAP) erzeugt werden. Der Aufbau ermöglicht kinetische 

Untersuchungen der Ionen mit unterschiedlichen Reaktionsgasen unter wohldefinierten 

isothermen Bedingungen. Darüber hinaus ermöglicht es die kryo InfraRote (Multi) Photonen 

Dissoziationsspektroskopie (IR-(M)PD) in Kombination mit durchstimmbaren OPO / OPA 

Lasersystemen. In Verbindung mit Dichtefunktionaltheorie (DFT) Berechnungen ermöglichen 

die IR(M)-PD-Spektren eine Zuordnung von Minimumstrukturen. Darüber hinaus hilft die 

DFT-Modellierung, mögliche Reaktionswege zu identifizieren. Insgesamt lassen sich mit Hilfe 

der vorgestellten Methoden grundlegende Einblicke in die molekulare Struktur und die 

Reaktivität der untersuchten Systeme gewinnen. 

Kobalt: Wir haben die IR-PD-Spektren der N2-Adsorption auf Con
+-Clustern im 

Größenbereich von n = 8 – 17 aufgezeichnet. Die Spektren zeigen bemerkenswerte 

Clustergrößenabhängigkeiten und zeigen eine head-on μ1-Koordination der N2-Moleküle an 

den Cluster. Vorläufige DFT-Berechnungen deuten auf einen ikosaedrischen Co13
+-Cluster 

hin, doch können sie nicht alle beobachteten Spektralmerkmale reproduzieren. Daher ist es 

zwingend erforderlich, die theoretische Modellierung dieser Systeme zu verbessern, um 

weitere Einblicke in die Bindungsmotive der N2 Moleküle und die möglichen 

Aktivierungswege zu gewinnen. 

Nickel: Wir haben die schrittweise N2-Adsorption auf ausgewählten Nin
+ (n = 5 – 20) 

Clustern durch Aufzeichnen ihrer Reaktionskinetiken und IR-PD-Spektren bei 26 K 

untersucht. Wir fanden aufeinanderfolgende Adsorptionsschritte durch einzelne 

exponentielle Zerfälle. In allen gezeigten Fällen erreicht die schrittweise N2-Aufnahme eine 

strenge Adsorptionsgrenze mmax, die mit der Clustergröße skaliert. Die IR-PD-Spektren aller 

Spezies zeigen eine head-on μ1-Koordination der N2 Moleküle. Wir untersuchten die Fälle 

von Ni9+ und Ni13
+ genauer und fanden bemerkenswerte Unterschiede in den 

Adsorptionsgrenzen, Kinetiken und IR-PD-Spektren. Die N2-Adsorption an den Ni9+-Cluster 
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erfolgt mit individuellen Geschwindigkeitskonstanten und zeigt eine zusätzliche 

Zwischenadsorptionsgrenze. Im Gegensatz dazu findet die N2-Adsorption an den Ni13
+-

Cluster mit gleichen Geschwindigkeitskonstanten statt. In den IR-PD-Spektren wird ein 

entsprechender Trend beobachtet: Die IR-PD-Spektren der [Ni13(N2)m]+ Spezies zeigen eine 

einzige dominante Bande, die sich mit zunehmender N2-Adsorption nicht verschiebt. Auf der 

anderen Seite zeigen die IR-PD-Spektren der [Ni9(N2)m]+ Spezies signifikante Verschiebungen 

der Bandenpositionen und Aufspaltungen durch Erhöhung der N2-Bedeckung. Die 

experimentellen Befunde in Verbindung mit DFT-Berechnungen deuten auf einen glatten 

ikosaedrischen Ni13
+-Cluster hin, bei dem alle Oberflächenatome gleich sind. Im Falle von 

Ni9+ fanden wir eine raue Clusteroberfläche, die möglicherweise bei N2-Adsorption 

isomerisiert. 

Durch die Aufzeichnung der N2-Adsorptionskinetiken der anderen kationischen Ni-Cluster 

und der IR-PD-Spektren von intermittierenden (n,mx) und gesättigten (n,mmax) Spezies 

zusammen mit DFT-Rechnungen konnten wir vier Klassen des strukturbezogenen 

Oberflächenadsorptionsverhaltens identifizieren. Die isothermen Kryokinetiken allein 

ermöglichen eine Vorklassifizierung in drei Gruppen: Die Cluster Ni6+, Ni13
+ und Ni19

+ sind 

hochsymmetrische Cluster mit glatten Oberflächen. Wir beobachten gleichmäßige 

Reaktionskinetiken, die auf gleich koordinierte Ni-Atome hinweisen Die Cluster Ni5+ und  

Ni7-12
+ sind kleine Cluster mit rauen Oberflächen. Sie zeigen Adsorptionsschritte mit 

unterschiedlichen Geschwindigkeitskonstanten, die für raue Clustermorphologien 

charakteristisch sind. Wir sehen wahrscheinlich einen Übergang von oktaedrischen zu 

ikosaedrischen Clusterstrukturen in diesem Größenbereich. Die Cluster Ni14-18
+ und Ni20

+ sind 

große Cluster mit rauen und glatten Oberflächenanteilen. Sie zeigen zunächst gleichmäßige 

Kinetiken, Zwischenadsorptionsgrenzen und manche Langzeitkinetiken. Diese Cluster zeigen 

teilweise glatte Clusteroberflächen mit einigen niedrigkoordinierten Ni-Oberflächenatomen, 

die durch ein schrittweises Ni-Clusterwachstum von einem Ikosaeder zu einem Bi-Ikosaeder 

erklärt werden können. 

In Kombination mit der IR-PD-Spektroskopie und der DFT-Modellierung konnten wir diese 

Vorklassifizierung in die vier Klassen des strukturbezogenen 

Oberflächenadsorptionsverhaltens verfeinern: 
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Klasse (1) hochsymmetrischer Cluster mit glatten Oberflächen besteht aus Ni6+, Ni13
+ und 

Ni19
+ und ihren N2-Adsorbatkomplexen bis zur Sättigung (n,mmax): Die IR-PD-Spektren der 

Adsorptionsgrenzen dieser Cluster sind einfach und weisen auf eine außergewöhnliche hohe 

Symmetrie (Oktaeder, Ikosaeder, Bi-Ikosaeder) hin. Diese Cluster besitzen eine glatte 

Clusteroberfläche mit gleich koordinierten Ni-Oberflächenatomen. 

Klasse (2) hochsymmetrischer Cluster abzüglich eines Ni-Atoms besteht aus Ni12
+ und Ni18

+ 

und deren N2-Adsorbatkomplexen bis zur Sättigung (n,mmax): Die IR-PD-Spektren deuten 

darauf hin, dass die nackten Cluster und diejenigen mit wenigen adsorbierten N2 Molekülen, 

ein Struktur mit einer ziemlich glatten Oberfläche besitzen. Bei erhöhter N2-Beladung 

reorganisieren sie sich in teilweise raue Oberflächen. 

Klasse (3) kleiner Cluster mit rauen Oberflächen besteht aus Ni5+ und Ni7+ bis Ni11
+ und 

deren N2-Adsorbatkomplexe bis zur Sättigung (nklein,mmax): Die IR-PD-Spektren deuten auf 

raue Oberflächen mit einem oder mehreren niedrig koordinierten Ni-Oberflächenatomen 

hin. Eine Oberflächenreorganisation mit steigender N2-Adsorption, nämlich von einer rauen 

zu einer anderen rauen Oberfläche, ist denkbar. 

Klasse (4) großer Cluster mit rauen und glatten Oberflächenanteilen besteht aus Ni14
+ bis 

Ni17
+ und Ni20

+ und deren N2-Adsorbatkomplexe bis zur Sättigung (ngroß,mmax): Die IR-PD-

Spektren zeigen Hinweise auf glatte Oberflächen mit geringfügigen Defekten wie 

überkappende Ni-Atome auf einer ikosaedrischen Oberfläche. Wir sehen Hinweise für ein 

schrittweises Clusterwachstum auf einer Halbkugel des anfänglichen Ikosaeders, wobei die 

andere Hemisphäre weitgehend unberührt bleibt. 

Eisen: Wir haben die Kryo-N2-Adsorptionskinetiken von größenselektierter Fen
+ (n = 8 –

 20) Cluster aufgezeichnet. Wir fanden aufeinanderfolgende Adsorptionsschritte durch 

einzelne exponentielle Zerfälle und durch einen biexponentiellen Zerfall im Falle von Fe18
+. 

Wir sehen bemerkenswerte clustergrößenabhängige Adsorptionsgrenzen, die eine 

abschließende Klassifizierung, wie es im Fall der Ni-Cluster möglich war, bis jetzt nicht 

zulassen. Wir beobachten die vollständige Unreaktivität von Fe17
+ gegenüber N2 unter 

unseren experimentellen Bedingungen. Um weitere Einblicke zu gewinnen, haben wir die IR-

PD-Spektren der [Fen(N2)1]+ und [Fen(N2)2]+ Spezies im N-N-Streckschwingungsbereich 

aufgezeichnet und konnten die beobachteten Banden der head-on μ1 Koordination von N2 



 11. Zusammenfassung und Ausblick 

 

276 

 

auf dem Cluster zuordnen. Die Bandenpositionen zeigen keine systematische Veränderung 

mit der Clustergröße, welche mit einem einfachen Model, wie dem charge dilution model, 

beschrieben werden können. Die Spektren von [Fe18(N2)1]+ und [Fe18(N2)2]+ zeigten eine weit 

rotverschobene Bande, die wir vorläufig einem leicht gekippten N2 auf dem Cluster 

zuordnen, was ein möglicher Vorläufer für eine N2-Aktivierung sein könnte. Vorläufige DFT-

Modellierung sorgt für ein erstes Verständnis der verwunderlichen Unreaktivität des 

Fe17
+-Clusters gegenüber N2. Die Berechnungen fanden eine elektronische Konfiguration 

welche keine zeigt hohe Reaktivität gegenüber N2 zeigt. Darüber hinaus identifizierten wir 

zwei Isomere für den Fe18
+-Cluster, eins mit einer ähnlichen elektronischen Konfiguration 

wie der Fe17
+-Cluster, der die Inertheit erklärt, und ein reaktives Isomer erklärt. 

Ruthenium: Wir präsentierten die IR-PD-Spektren der N2, H2 und der Koadsorption auf 

einem Ru8
+-Cluster. Die Spektren zeigen die Dissoziation von H2 in allen Komplexen von 

[Ru8(H2)l]+ mit l > 1 und wir postulieren eine adsorbatinduzierte Reorganisation nach 

Überschreiten der Zwischenadsorptionsgrenze bei l = 6. Im Fall von [Ru8(N2)m]+ 

identifizierten wir eine head-on μ1-Koordiantion der N2-Adsorbate auf dem Cluster und eine 

Zwischenadsorptionsgrenze bei m = 5. Dies könnte wieder auf eine Reorganisation jenseits 

dieser Zwischenadsorptionsgrenze hin deuten. Wir nahmen die IR-PD-Spektren der 

[Ru8(H2)1(N2)4]+ und [Ru8(N2)4(H2)1]+ Spezies auf und beobachteten Unterschiede in den 

Spektren in Abhängigkeit von der Sequenz der Reaktionsgase. DFT-Modellierung half diese 

Unterschiede über die Positionierung der Wasserstoffatome auf dem Cluster erklären. Die 

Positionen der Wasserstoffatome auf dem Cluster hängen von ihrer Migrationsmöglichkeit 

ab, die erheblich behindert wird, wenn der Cluster bereits mit N2 bedeckt ist. Dies wird auch 

durch DFT-Modellierungen von Migrationswegen bestätigt. 

Hemin: Die gutaufgelösten Gasphasen-IR-PD-Spektren von [Hemin]+-Komplexen zeigten 

einen vernachlässigbaren Effekt einzelner adsorbierter Moleküle. In Verbindung mit 

DFT-Modellierung haben wir festgestellt, dass alle einzelnen adsorbierten Spezies ein Fe3+ in 

einem Quartett-Spin-Zustand enthalten. Im Fall von [Hemin(O2)]+ fanden wir insgesamt 

einen Sextett-Spin-Zustand, da das O2 seinen Triplett-Zustand bei der Adsorption beibehält. 

Darüber hinaus zeigten die IR-PD-Spektren mehrere Kombinationsschwingungen. Ein 

nicht-klassischer ([Hemin(CO)1]+, blau verschobene CO-Streckschwingung) und ein 
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klassischer ([Hemin(CO)2]+, rotverschobene CO-Streckschwingung) Carbonylkomplex wurde 

beobachtet, welche in einem Quartett- bzw. einem Doublett-Spin-Zustand vorliegen. 

Diese Studien sollen dazu beitragen, entscheidende Elementarschritte in der Katalyse und 

bio-relevanten Prozessen aufzuklären und können als Beweis für die vielseitige 

Anwendbarkeit der eingesetzten Methoden angesehen werden. Darüber hinaus sollen sie 

helfen aktuelle theoretische Modelle zu testen und bei der Entwicklung neuer Ansätze 

helfen. 

Zukünftige Untersuchungen könnten die vorgestellt Koadsorptionstechnik weiter 

anwenden und auf andere TM-Cluster oder -Komplexe erweitern. Darüber hinaus wären 

Experimente mit zwei Laser von großem Interesse. Solche Experimente könnte die 

Möglichkeit bieten, aktivierte Prozesse zu untersuchen, deren Aktivierungsbarriere durch 

einen Laser überwunden werden kann. 
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12.1 Vibrational fingerprints of a tetranuclear cobalt carbonyl cluster within a 

cryo tandem ion trap 

Jennifer Mohrbacha, Johannes Langa, Sebastian Dillingera, Marc H. Prosenca,  

Pierre Braunsteinb and Gereon Niedner-Schatteburga 

a) Fachbereich Chemie und Forschungszentrum OPTIMAS 

Technische Universität Kaiserslautern 

67663 Kaiserslautern, Germany 

b) Laboratoire de Chimie de Coordination, Institut de Chimie, 

Université de Strasbourg, 

67081 Strasbourg, France 

 

12.1.1 Preamble 

The following chapter is a reprint of a publication in the “Journal of Molecular 

Spectroscopy”. 

The experiments were performed by the experimental team consisting of J. Mohrbach and 

myself. The data evaluation was done by J.Mohrbach and myself. J. Lang performed the 

computations. The initial manuscript was written by J. Mohrbach and was revised with the 

help of G. Niedner-Schatteburg, P. Braunstein, J. Lang and and myself. 

 

Full Reference: 

Vibrational fingerprints of a tetranuclear cobalt carbonyl cluster within a cryo tandem ion 

trap 

J. Mohrbach, J. Lang, S. Dillinger, M. H. Prosenc, P. Braunstein and G. Niedner-Schatteburg, 

Journal of Molecular Spectroscopy, 2017, 332, 103-108. 

http://dx.doi.org/10.1016/j.jms.2016.11.008 
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12.2 Vibrational Blue Shift of coordinated N2 in [Fe3O(OAc)6(N2)n]+: “Non 

Classical” Dinitrogen Complexes 

Johannes Lang, Jennifer Mohrbach, Sebastian Dillinger, Joachim M. Hewer,  

and Gereon Niedner-Schatteburg 

 

Fachbereich Chemie und Forschungszentrum OPTIMAS 

Technische Universität Kaiserslautern 

67663 Kaiserslautern 

 

12.2.1 Preamble 

The following chapter is a reprint of a publication in the journal “Chemical Communications”. 

The experiments were performed by the experimental team consisting of J. Mohrbach, J. 

Lang and myself. The data evaluation was done by J. Lang, J.Mohrbach and myself. J. Lang 

performed the computations. The initial manuscript was written by J. Lang and was revised 

with the help of G. Niedner-Schatteburg, J. Mohrbach and myself. 

 

Full Reference: 

Vibrational blue shift of coordinated N2 in [Fe3O(OAc)6(N2)n]+: “non-classical” dinitrogen 

complexes 

J. Lang, J. Mohrbach, S. Dillinger, J. M. Hewer, and G. Niedner-Schatteburg, Chemical 

Communications, 2017, 53, 420-423. 

http://dx.doi.org/10.1039/C6CC07481B 
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12.3 Infrared Spectroscopic Investigations of Structures and N2 Adsorption 

Induced Relaxations of Isolated Rhodium Clusters 

Matthias P. Klein, Amelie A. Ehrhard, Jennifer Mohrbach, Sebastian Dillinger, 

and Gereon Niedner-Schatteburg 

 

Fachbereich Chemie und Forschungszentrum OPTIMAS 

Technische Universität Kaiserslautern 

67663 Kaiserslautern 

 

12.3.1 Preamble 

The experiments were performed by an experimental team consisting of M. P. Klein, A. A. 

Ehrhard, J. Mohrbach, and myself. The data evaluation was done by M. P. Klein. The 

computations were done by M. P. Klein. The initial manuscript was written by M. P. Klein and 

revised with the help of G. Niedner-Schatteburg and myself. 

This manuscript has been accepted for publication in Topics in Catalysis. 
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Abstract 

This paper presents a combined IR photo dissociation (IR-PD) spectroscopic and DFT 

computational study of cold Rhodium cluster N2 adsorbate complexes, [Rhi(N2)m]+ = (i,m), in 

the ranges of i = 6, .., 15 and m = 1, .., 16. DFT modelling of naked Rhodium clusters Rhi
+, 

i = 6, 7, 9 reveals high spin states (10tet, 13tet, and 17tet) of octahedral structures (i = 6, 7), 

and a tricapped trigonal prism (i = 9). The IR spectra of single N2 adsorptions red shift in line 

with the established charge dilution model, and they reveal evidence for structural and/or 

spin isomers in cases of larger clusters (i,1), i ≥ 12. The IR spectra of cluster adsorbate 

complexes at or close to N2 saturation indicate strong vibrational couplings and likely 

isomorphism. Together, the IR-PD and DFT spectra of the [Rh7(N2)12]+ = (7,12) complex reveal 

spin quenching into a triplet state – as compared to the 13tet state of naked Rh7
+. This study 

is the starting point for systematic investigations of Rhodium cluster N2 adsorbates and of 

Rhodium Iron hetero cluster N2 adsorbates, which are work in progress. 

Introduction 

The study of the physical properties of isolated clusters and of their molecular adsorption 

kinetics, structures, and vibrational dynamics may enhance our understanding of elementary 

steps in the early parts of heterogeneous catalytic cycles which are most often based on 

transition metal compounds. Despite its high price, Rhodium catalysts find widespread 

applications in many industrial catalytic processes such as cyclopropanation [1,2], 

hydroformylation [3], and the manufacturing of acetic acid [4]. Nitrogen containing 

compounds form by Rhodium catalysis in processes such as hydrocyanation, 

hydroamination, and ammonia oxidation. Rhodium catalysts achieve deoxygenation [5,6] 

and hydrogenation [7] of nitrogen compounds. Rhodium finds wide spread practical use in 

car exhaust catalytic converters, where nitrogen oxides are reduced to N2 [8], and it finds 

some use in stationary power plant exhaust cleaning [9]. 

In many cases the active catalyst is nanostructured, and the initial adsorption steps from 

gas phase are rate limiting – whether recognized or overlooked. It is obviously beneficial to 

study fundamental processes such as molecular adsorption and desorption, and to 

characterize suitable model systems such as size selected Rhodium clusters, and their 

adsorbates and products. 
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There are numerous studies on Rh gas phase clusters and complexes. Isolated Rh(I) atoms 

hexacoordinate a first layer of Ar atoms [10]. Numerous diatomic molecules (D2, O2, CO, and 

NO) were found to stick readily to Rhodium clusters by room temperature single collisions – 

except for N2, which requires precooling of the clusters (by lq. N2) [11,12]. An early study 

found an anticorrelation between D2 and N2 reactivity and the Fermi energy of the neutral 

Rhn clusters [13]. 

CO: Mineva et al. found a strong effect of the spin state (and local electronics/NBOs) on 

vibrational frequencies of Rhx(CO)y, and a weaker effect of cluster size x [14]. CO proved 

instrumental to unravel size and charge dependencies in adsorption to Rh cluster cations 

and anions alike, convincingly concluding in a charge dilution model [15-19]. Subsequent 

studies identified CO on top and on bridge throughout all Rh clusters studied except for Rh4 

and Rh11 where CO on hollow site was observed instead [20]. For larger clusters, Tian et al. 

found a transition to layered structures in Rh clusters at n = 11 to 12 and three types of CO 

adsorption, not scalable with size: atop, bridge, and face [21]. Non hybrid DFT functional 

modelling of Rhi(CO)1
+/0/- complexes found trigonal prismatic and cubic structural motifs of 

the cluster core [22] and end on bridging µ2/µ3 adsorption motifs of CO on the charged 

clusters up to i = 6 and a end on µ1 motif for the larger clusters [23]. 

NOx: Biexponential kinetics of the initial adsorption step in the Rh6
+ + NO system 

suggested the co-existence of stable isomers [24] that quench upon collisional cooling, while 

the co-existing isomers of Rh11
+ and Rh12

+ persist [25,26]. DFT modelling elucidated the likely 

structures of the reactive [Rh6,NO]+ system [27] and of the [Rh3,4,6,13,NO]+/- systems [28] in 

detail. NO adsorption was found with Rhodium clusters of any size, while NO reduction takes 

clusters Rhn
+, n > 5 and elevated temperatures (T > 850 K) [29]. A series of studies identified 

nitrogen-bound NO and N2O on various Rhn
+ clusters and IR driven or collisional 

decomposition [30-34]. The Tantalum alloying of Rhodium clusters was found to control NO 

reduction [35]. Relativistic ZORA level calculations found the N2O reduction on Rh6
− and Rh6

+ 

sensitive to the cluster charge, rather than to its geometry [36]. The adsorption of a second 

NO was identified as rate limiting step in CO oxidation on Rh7
+ by DFT modelling [37], other 

calculations modelling NO reduction by CO on Rh4
+ [38]. 

Hydrocarbon reactions: Rhodium cluster Argon complexes modulate CH4 activation by the 

level of Ar coating [10,39]. Benzene adsorption and activation compete on Rhn
+ clusters for 
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n < 19, the larger ones becoming inert [40] and cluster charge having unexpectedly little 

effect on the dehydrogenation reactivity [41]. Partial dehydrogenation of small alkanes by 

Rhn
+, n < 30 indicated a bi-icosahedral shape of Rh19

+ [42], supported by lack of reactivity 

with ethane at n = 17 – 19, 21 [43]. Azidoacetonitrile (N3CH2CN) was found to readily 

releases N2 + H2 upon contact to Rhn
+ generating either interstitial carbides and nitrides, or 

yielding surface nitriles [44].  

Electronics and magnetism: Rhodium cluster geometries by model potentials and 

magnetism by tight binding have reached limits in simulating magnetic moments of Rhodium 

clusters [45]. A more recent relativistic modelling study spent high effort on an appropriate 

description of the electronics of such Rhn clusters in order to determine the magnetic 

moments by their spin and orbital contributions. It suffered, however, from little effort on 

the nuclear coordinates merely assuming fcc lattices of spherical shape without geometric 

relaxation [46]. DFT modelling of single and multiple charges was found to exert strong 

influence on the structure and magnetism of Rhodium clusters [47]. Choice of a large basis 

sets in DFT modelling was found crucial before in order to obtain converged predictions on 

structures of Rhn, n ≤ 6 [48]. Simultaneously performed magnetic and electric deflection 

measurements of Rhodium clusters (Rhn, 6 ≤ n ≤ 40) reveal ferromagnetism and 

ferroelectricity at low temperatures neither of which property exists in the bulk metal [49]. 

Nevertheless, our knowledge of the electronic and magnetic properties of small Rhodium 

clusters is still limited, and the different structural and spin isomers are very close in energy 

[50]. 

A significant advance on the structural elucidation of Rhn
+ clusters arose through free 

electron laser and Argon tagging enabled vibrational spectroscopy in conjunction with 

corresponding DFT modelling (PBE(1)/LanL2DZ) of the obtained spectra [51,26]. The 

following was found: octahedral structure motifs for the Rh6
+ and Rh8

+ cluster, a pentagonal 

bipyramidal structure for the Rh7
+ cluster, a trigonal prismatic structure for the Rh9

+ cluster, 

and icosahedral structural motif for larger clusters up to Rh12
+. This as well as another DFT 

study [52] left some room for improvement in terms of the usage of more advanced basis 

sets. These investigations are the first to demonstrate the importance of hybrid functionals 

for the investigation of Rhodium clusters.  
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Basin hopping DFT calculations predicted various properties of RhxSy
+/0/- (x = 1-9; y = 0,1) 

clusters and emphasized the importance of hybrid_GGA functionals (e.g. PBE0) while 

questioning the appropriate percentage of exact Hartree−Fock exchange, and concluding on 

ambiguities in current spin state determination [53]. 

Prior N2 vibrations: FT-IR studies of laser ablated Rh atoms in N2 doped Ar matrix revealed 

numerous bands in the 600 to 2200 cm-1 range which were attributed to Rh(N2)1-4 and other 

small RhxNy products [54]. Investigation of an isolated Rh(N2)4
+ complex by IRMPD 

spectroscopy obtained an N2 stretch at 2297 cm-1 band [55] which is much less red shifted 

than in the neutral complexes and close to the free N2 stretch at 2330 cm-1 [56]. This is likely 

due to less back bonding by cationic Rh. 

Our study: We present an IR spectroscopic study of Dinitrogen on cold Rhodium cluster 

adsorbate complexes with support by some DFT calculations in three cases, Rhi
+ 

(i = 6,7, and 9), and we chose the experimental and calculated IR spectra of the [Rh7(N2)12]+ 

cluster adsorbate complex for an analysis in more detail. Considering conceivable Rh cluster 

isomerization barriers on the order of N2 heats of adsorption we expect considerable 

structural relaxation in the cluster adsorbate complexes as of relevance in the context of 

catalytically active clusters and nanoparticles in operando. 

Experimental and Computational Methods 

The experiments were performed by a customized 7 Tesla Fourier Transform-Ion 

Cyclotron Resonance (FT-ICR)-mass spectrometer (Apex Ultra, Bruker Daltonics). We 

produced the cluster ions in a home-built laser vaporization source as described before [57-

59]. The second harmonic of a Nd:YAG laser is focused on a rotating Rhodium-target (99.8 %, 

Alfa Aesar, 0.1 mm thick). The resulting plasma is entrained in a helium gas pulse (40 µs, 10-

15 bar), which was generated by a homemade piezoelectric valve [60], synchronized to the 

evaporating laser at 20 Hz. The pressure of the laser vaporization chamber rises from 

roughly 3.5 × 10-7 to 1.6 × 10-4 mbar during He pulsing. The plasma contains atoms and ions 

and while they cool down, they aggregate to clusters in the subsequent jet expansion 

through a 50 mm long channel (2 mm diameter) into vacuum (3 × 10-7 mbar). The cluster 

beam is skimmed and the cluster ions are accelerated and guided through a 90° static 

quadrupole ion bender. The required cluster ions are selected by an RF quadruple mass filter 
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and stored into a cryogenic hexapole ion trap at 26 K which is held at 3.0 × 10-6 mbar He 

buffer gas pressure. We achieve Nitrogen attachment by constantly adding 3.0 – 3.8 × 10-

7 mbar N2. Then we use He to increase the pressure in the ion trap to roughly 4.0 × 10-

6 mbar. Within ion storage times of up to 2 sec all Rhodium clusters reach adsorbate 

saturation, and we randomly checked for much longer times no further attachment being 

observed. Subsequently, all stored ions are gently extracted with as little potential gradient 

as possible, accelerated, steered and decelerated into the ICR-cell by a high definition 

electrostatic ion lense setup [61,62]. Transfer and trapping efficiency is about 10%. The ICR-

cell of the infinity-type [63] is cooled to 10 K by a closed cycle He cryostat [64,65] in order to 

prevent activation of the clusters by black body radiation [66,67]. In order to record IR-PD 

spectra of [Rhi(N2)m]+ cluster adsorbate complexes by their sizes (i,m) we isolate the parent 

cluster ion of interest by RF exciting and removing all other ions from the cell. 

For the acquisition of the IR-PD spectra the FT-ICR cell is coupled to a tunable IR laser 

(δn = 0.9 cm-1, δt = 7 ns, Epuls = 0.4 – 1.3 mJ). This laser is a KTP/KTA optical parametric 

oscillator/amplifier (OPO/A, LaserVision) system which is pumped by a pulsed 10 Hz injection 

seeded Nd:YAG laser (PL8000, Continuum). The difference frequency (DF) between the OPA 

signal and idler waves is generated in an AgGaSe2 crystal. This generates IR radiation in the 

range of 1000 – 2400 cm-1. Each trapped and isolated package of ions is irradiated by 

multiple laser pulses (up to 7) in order to accumulate fragment ions. The IR-PD spectra were 

recorded as ion chromatograms while continuously scanning the IR wavelength. The IR-PD 

signal was evaluated as ΣiFi/(ΣiFi+ΣiPi), where Fi and Pi indicate fragment and the parent ion 

signals, respectively. An experimental IR-PD spectrum arises from a plot of the 

fragmentation efficiency as a function of laser frequency. We employed the IR-PD 

spectroscopy in the 2140 – 2310 cm-1 range on the [Rhi(N2)m]+ species (i = 6 – 15). In this 

range we expected the N2 stretching frequencies of the species. For all complexes the loss of 

the N2 was the only observed fragmentation channel. Note, that IR-PD spectra of (i,m) 

species with high m likely originate from single photon absorption, whereas those of low m 

likely originate from two or even multiple photon absorption – rendering the latter IRMPD 

spectra. 

Density functional modelling was performed by the Gaussian 09 package [68] and with the 

ECCE interface [69]. We chose the PBE0/ECP(Rh); cc-PVTZ(N) level of theory [70] as proven 
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suitable before [57,71,72]. We utilize Stuttgart RSC 1997 ECP(Rh) basis sets of double zeta 

quality throughout [73] which are of significantly higher quality than the often applied basis 

set LanL2DZ. We did not correct for dispersion effects which we expect small. We do not 

cover spin orbit coupling which might alter some of our findings. We achieved convergence 

of our calculation only at the expense of a relaxed convergence criterion of only 10-6, which 

his well understood in terms of the exceedingly high electronic state density of transition 

metal clusters [39]. We chose an anharmonic linear scaling factor of 0.9385 to match the 

calculated free N2 stretching frequency (2483 cm-1) to the Raman band of free N2 at 

2330 cm-1 [56]. We checked the results for spin contamination, and we observed a small rise 

of the S2 value merely in cases of the lowest multiplicities and negligible spin state mixing 

otherwise. We regard our theoretical approach as well gauged by considering our single N2 

adsorption enthalpies of about 50 kJ/mol (lower limit) in comparison to 56 kJ/mol on 

stepped Rh surfaces as obtained before [74,75]. 

Results and Discussion 

DFT modelling of naked Rhi
+ clusters (i = 6, 7, and 9) 

In order to lay ground for the characterization of N2 adsorption to the Rh clusters we set 

off with DFT modelling of the naked Rh clusters in the first place. We focused on Rhi
+ (i = 6,7, 

and 9) in order to identify most stable structures and competing isomers. In particular, we 

strived to elucidate the prevailing spin states and their interplay with nuclear geometries, 

and we have investigated Rh7
+ in depth. We checked the obtained minimum structures for 

imaginary vibrational frequencies and found all reported isomers to be true minimum 

structures. 

Rh6
+: In the case of the Rh6

+ cluster we started from the three suggested geometries of 

Harding et al.: a boat like structure (boat), a capped square prism (csp), and an octahedron 

(oct). We found it appropriate to consider a trigonal prism (tp) as well. Upon investigating 

these structures, we utilized an extended range of spin multiplicity 2S+1 = 2 – 18. We found 

the Rh6
+ clusters to isomerize significantly upon optimization, in remarkable contrast to the 

cases of Rh7
+ and Rh9

+ clusters, and we provide for a comprehensive overview over the 

found evolution of starting structures towards optimized structures in the supplementary 

material (Table S2). 
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Fig. 1 Total energies of four possible Rh6
+ cluster structures as a function of the 

spin multiplicity 2S+1 in relation to the obtained minimum (oct 10tet). In 
addition a capped square prism (csp), a trigonal prism (tp), and an octahedron 
(oct) were considered as starting geometries. The calculated minimum structures 
for each structural motif are shown as insets. Remarkably, the starting structures 
are subject to major isomerization. The calculated minimum structure is a 
distorted octahedron with a 10tet spin state. 

The 10tet spin state in octahedral geometry (oct) is the optimum of Rh6
+ at the level of our 

DFT calculation (Fig. 1). At all lower spin states down to the doublet the octet minimum 

structure persists with slight distortions. Increasing total spin beyond 10tet is possible at the 

expense of reorganization towards a boat like structure. The stability gain by turning two 

fourfold coordinated Rh atoms into fivefold coordinated ones overcompensates the loss by 

turning two other fourfold coordinated Rh atoms into threefold coordination. Note, that spin 

quenching from 10tet to 8tet affords 27 kJ/mol while an isomerization of octet into capped 

square pyramid (csp) amounts 78 kJ/mol. 

The dominance of octahedral cluster structures is in accordance with a previous study that 

assigned a distorted octahedron with a 10tet electronic state to their experimental spectra 

of a naked Rh6
+ cluster [51]. Our present investigation extends that work by covering spins 

and geometries beyond the predicted optimum. Note, that spin-orbit coupling effects in Rh 

are on the order of 18 kJ/mol and thus may mediate dynamic spin quenching. 

Rh7
+: We find a clearly limited variation of spin couplings, while there is a considerable 

flexibility in nuclear rearrangement: The meridonal square in octahedral geometry (coh) may 

open into a fivefold ring and convert into pentagonal bipyramid (pbp). In most stable 13tet 
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spin state this isomerization would take at least ~ 47 kJ/mol, with a possible barrier adding 

on top. Spin quenching of coh 13tet into 11tet would take only 12 kJ/mol and subsequent 

isomerizations to a pbp structure are facile. 

We optimized possible geometries and spin states of the Rh7
+ cluster, and we found most 

stable capped octahedron (coh) in 13tet and 11tet spin states which differ by ~ 12 kJ/mol 

(Fig. 2). Interestingly, the next stable pentagonal bipyramid structure is almost degenerate in 

11tet, 13tet and 15tet states, yet less stable than coh by at least 29 kJ/mol. The pbp 

structure thus allows for considerable spin variation, while the coh is in favour of a sole spin 

state. The capped trigonal prism (ctp) is slightly less stable than pbp and considerably less 

stable than coh. Not that all of this may change through spin orbit coupling effects and / or 

through antiferromagnetic couplings – both of which are much beyond our current DFT 

approach. 

 

 

Fig. 2 Total energies of Rh7
+ cluster structures as a function of the spin 

multiplicity 2S+1 relative to the most stable capped 13tet of an octahedron 
(coh). Other structural motifs are capped trigonal prisms (ctp) and pentagonal 
bipyramids (pbp) as depicted by the insets. 

Harding et al. assigned Rh7
+ a distorted pbp structure [51], and Hang et al. calculated most 

stable Rh7
o as a distorted pentagonal pyramid and a capped octahedron mere 3.8 kJ/mol less 

stable [52]. On the other hand, electric deflection studies support the dominance of a 

capped octahedral structure [76]. 
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We found it appropriate to gauge our computational findings in the case of Rh7
+ coh 13tet 

against other studies and species, and we took the Rh-Rh distances as elucidating indicators 

(see Table 1). Our found coh structure is distorted from C3v symmetry of a perfect capped 

octahedron, and the interatomic distances deviate. All of the next neighbor distances in Rh7
+ 

are considerably longer than in the dimer and somewhat shorter than the solid state values 

indicating a bond between the next neighbors. The calculated distances in the neutral pbp 

structure are in the same range. 

Table 1 Calculated atomic distances (in Å) for nearest neighbors for the coh Rh7
+ clusters in 

comparison with crystal structures, experimental data and calculations on a neutral 14tet 
pbp structure.  

 dimer Rh7 Rh7
+ bulk 

Calc. 2.21a 2.61a 2.446 -
 2.665tw 

 

 2.27b1 2.58b2   

  2.37-
2.60b3 

  

Exp. 2.3855c   2.69d 

a Ref. [77] VASP PW91 GGA / LDA; Rh7
+: neutral pbp 14tet 

b [78] TZVP, ECP28MWB ; b1: neutral dimer quintet b2: neutral pentagonal bipyramid, 14tet; 
b3: neutral capped trigonal prism, 12tet 
c [79] crystal structure of [Rh2(O2CCH3)4(H2O)2] 
d [80] distance of next neighbors in fcc crystal, lattice parameter a = 3.8032 Å 
tw this work: PBE0, coh 13tet cation 

Rh9
+: In order to model the Rh9

+ cluster we have chosen four structural archetypes for 

optimization: tricapped trigonal prism (tri), capped trigonal antiprismatic structure (trig-ap), 

double-capped pentagonal bipyramid (dc-pbp), and capped square antiprism (ac-top), and 

we checked for spin multiplicities 2S+1 = 9, .., 21 (Fig. 3). We find most stable a slightly 

distorted tricapped trigonal prism (tri, 17tet, D3h), and this motif stays most stable upon total 

spin variation from 13tet up to 19tet. A previous study concluded in a 15tet tricapped 

trigonal prism with likely contributions of a dc-pbp like structure to a recorded far IR 

spectrum [51]. Note, that the neutral Rh9 cluster seems to persist in a distorted tri structure 

type geometry in nearly degenerate 12tet and 16tet spin states [52]. 
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Fig. 3 Total energies of Rh9
+ cluster structures by their spin multiplicity 2S+1 

relative to the most stable 17tet of an tricapped trigonal prism (tri). Other 
structural motifs are trigonal antiprisms (trig-ap), double-capped pentagonal 
bipyramids (dc-pbp), and capped anticubes (ac-top) as depicted by the insets. 

IR-PD spectra of single N2 adsorbates on Rhodium cluster cations 

We have recorded IR-PD spectra of [Rhi(N2)m]+ cluster adsorbate complexes. Even upon 

single N2 adsorption we found a multitude of bands (Fig. 4) which are red shifted by 55 –

 120 cm-1 with respect to the free N2 stretching vibration at 2330 cm-1 [56]. For ease of 

reference we will utilize in the following the abbreviating nomenclature [Rhi(N2)m]+ = (i,m). 

The obtained band positions range from 2210 to 2275 cm-1 which is a range similar to the 

range of observed vibrations of N2 adsorbates on cobalt clusters [57] as well as to those of 

nickel and iron clusters [71,81,82]. As for these and Ruthenium clusters [57,71,83], we 

expect a µ1 binding motif of N2. There are some fluctuations of the exact band positions 

around the overall trend of red shift with cluster size. There are some additional strong 

bands (i = 9, 12, 13, 15) and some additional weak side bands (i = 8, 10 und 11) which are 

20 cm-1 to the red (marked by red circles). This is reminiscent of similar effects in the 

previously reported cobalt cluster spectra [57], all of which are non-scalable cluster size 

effects. 
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Fig. 4 IR-PD spectra of Rhodium cluster cation single N2 adsorbate complexes 
[Rhi(N2)1]+, i = 6 – 15 as recorded after 26 Kelvin He buffer gas cooling. The red 
line and the tilted blue box serve to guide the eye indicating the red shift with 
cluster size i. The red circles mark possible hot bands – or possible isomers (see 
text for further discussion).  

The spectra of (6,1), (7,1), (8,1) (10,1) and (11,1) are dominated by a single strong peak 

which we assign to the stretching vibration of an N2 adsorbate end on to the cluster surface. 

In these cases, we conclude in the absence of geometric isomers of the Rh cluster core, in 

the dominance of single spin isomers, and in the equivalence of all occupied N2 binding sites. 

The additional “red circle” bands might relate to hot bands, which would arise through de-

excitation of some soft Rh core vibrations – yet somewhat unlikely in view of the isothermal 

cryo conditions of our experiment. Other interpretations are conceivable, such as highly 

coordinated, semi-internal adsorption sites or even some low spin isomers. The latter come 
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into mind when relating the most stable Rh6
+ structures of Fig. 1 to the previously found 

convincing evidence of isomeric reactivity in NO attachment to Rh6
+ [24]. It is puzzling, 

however, that the present (6,1) IR-PD spectra of single N2 attachment do not reveal any 

evidence of geometric or electronic isomers. It takes further experiments and calculations to 

resolve this puzzle. 

In remarkable contrast the spectra of (9,1), (12,1), (13,1) (14,1) and (15,1) reveal two, 

three or multiple adsorption bands within the same range. This is clear indication for some 

kind of isomeric co-existence. Three types of isomers come to our minds: Within the cluster 

adsorbate complexes there might be structural isomers of the Rh cluster core. There might 

be coexisting complexes in different spin states. There might be adsorption site isomers. Yet 

conceivable, we do not find evidence for changes in coordination geometry (µ1, µ2 or µ3) 

which would likely lead to much larger jumps of band positions much beyond what we 

observe. Note, that there is in none of the recorded cases any change of spectral features by 

the applied laser power (cf. Fig. S2 in the supplement). 

The general red shift with respect to the free N2 vibration is conceivable in terms of the 

Blyholder model [84]. This model has been developed for the explanation of the IR spectra 

of CO adsorbed to metal surfaces and may be applied to the isoelectronic N2 molecule. The 

synergism of σ-donor und π-acceptor properties of N2, similar to the Dewar-Chatt-

Duncanson model [85,86], leads to a weakening of the N-N bond and a red shift of the N-N 

stretching frequency. 

There are previous studies on spectral shifts of CO adsorbates on Rhodium clusters which 

have been interpreted in terms of a charge dilution model [17]. We have utilized this model 

before in order to explain N2 red shifts when adsorbed to Cobalt and Nickel clusters [57,71]: 

An increasing dilution of the positive charge by cluster size leads to a higher electron density 

at each surface site and thus to an increase of the π backdonation into an antibonding π* 

adsorbate orbital which causes red shift of the stretching vibration. 

The structure of the Rh cluster core and the occurrence of non-equivalent adsorption sites 

influence the N2 vibrations. The Rh surface atoms differ by number and arrangement of next 

neighbors. Rough cluster surfaces originate from a multitude of different adsorption sites, 

smooth cluster surfaces from equivalent ones. The occurrence of internal, inaccessible non 
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surface atoms sets in at cluster sizes of 13 metal atoms in case of icosahedral Rh structures. 

Note, that in particular the Rhodium clusters are known for stiff bonds (little bond length 

variation) in favor of close packing and at the expense of structural ambiguity and co-existing 

isomers [87]. It thus seems likely that N2 adsorption may induce cluster surface 

reorganization to some extent. Our own calculations reveal a strong preference of N2 

adsorbates in an end on µ1 arrangement (on top). Any of our attempts with µ2 (bridge) 

starting geometries swiftly relaxed µ2->µ1. Any adsorption site thus coincides with a single 

Rh surface atom. 

In the light of all of the above we analyze each of the recorded (i,1) IR-PD spectra in the 

following: The recorded single band of the (6,1) spectrum reveals a single type of adsorption 

sites as e.g. by an Rh6
+ octahedron, in line with present and previous structure calculations 

[51]. The single N2 band in the (7,1) spectrum is less red shifted indicating less π back 

donation as e.g. by the low coordinated Rh capping atom in our calculated octahedron Rh7
+ 

structure, which has merely three next neighbors. This is in contrast to the previous 

pentagonal bipyramid Rh7
+ structure [51] which would not provide for such a low 

coordinated Rh site. It is conceivable that adsorbates induce structural relaxation. If indeed 

so, this would imply that π back donation of N2 makes the difference with respect to Ar 

which lacks this option/effect – polarizabilities of both being almost identical. Further 

computations might focus onto this issue. The single strong IR-PD band of (8,1) may 

originate from either of two conceivable Rh cluster core geometries: a bicapped octahedron 

or an almost as stable bicapped trigonal prism (+17 kJ/mol) [26,51] with likely swift 

isomerization into each other, possibly adsorption induced. Marked by a red circle in Fig. 4, 

this weak band to the red may originate from an N2 at a higher coordinated Rhodium site. It 

is the (9,1) cluster N2 adsorbate complex which reveals a triplet of IR-PD bands which comes 

as somewhat of a surprise. This work and previous computations [51] agree on Rh9
+ in a 

tricapped trigonal prism geometry [88]. As such structure comes with four- and fivefold 

coordinated Rh atoms, it provides for two adsorption sites and accordingly, it would explain 

two N2 vibrational bands. We take the observation of three N2 vibrational bands as likely 

evidence for an adsorption induced relaxation and symmetry reduction of the Rh9
+ cluster 

core in (9,1). In contrast to previous studies on the Rhi
+ i = 6 – 8 clusters [24,25] we do not 



 12. Appendix: Further Joint Publications 

 

310 
 

find any evidence for the existence of multiple isomers in the IR-PD spectra of the 

correspondent [Rhi(N2)m]+, i = 6 – 8, m = 1, Rhodium cluster single N2 adsorbate complexes. 

The single strong IR-PD band of (10,1) and (11,1) indicates a homogeneous cluster 

adsorbate ensemble void of N2 binding site isomers and void of Rh cluster core structural 

isomers. Due to the reduced red shift of the observed N2 vibrational bands we tentatively 

assign these bands to µ1 adsorbates on top of low coordinated adsorption sites some of 

which occur in all suggested structures of Rh10,11
-/o/+ clusters [51,52]. Initial N2 adsorption at 

higher coordinated sites stabilize into the above low coordinated sites via high adsorbate 

mobility on the surface of the Rh cluster cores. Once more marked by red circles in Fig. 4, 

these weak bands to the red may originate from N2 at higher coordinated Rhodium sites. 

The two widely split, strong IR-PD bands of (12,1) indicate a transition in the structure of 

the Rh cluster core and a loss of adsorbate mobility. Note, that the coexistence of cluster 

adsorbate isomers seems rather unlikely with regard to the considerable heat of N2 

adsorption (56 kJ/mol [74]) which is likely sufficient for annealing of the cluster structure. 

The predicted layered Rh12
+ structure would provide for two highly coordinated central Rh 

atoms and ten peripheral low coordinated Rh atoms. We tentatively assign the observed two 

bands to these adsorption sites, the higher coordinated Rh sites causing the larger red shifts 

in their N2 adsorbates. Harding et al. assigned a structure consisting of two centered 

pentagonal layers [51]. Thus, we can assume the existence of two different adsorption sites 

reflected in the IR-PD spectra of (12,1). 

The multitude of partially resolved IR bands of (13,1), (14,1), and (15,1) ask questions 

which hardly obtain answers without input from computations. These are not available as of 

now. We tentatively conclude in the occurrence of several adsorption sites and in reduced 

N2 adsorbate mobility. Further insights may arise from future modelling. 

IR-PD spectra of multiple N2 adsorbates on Rhodium cluster cations 

The Rhodium clusters Rhi
+ may adsorb N2 up to a maximum adsorption limit, which is 

clearly related to the actual cluster structure. It is conceivable, that the [Rhi(N2)m]+ 

reorganize upon stepwise adsorption of further N2 , and we find clear evidence in at least 

one case. 
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In the course of the present study, we recorded IR spectra of the [Rhi(N2)m]+ i = 6 – 11 

cluster adsorbate complexes at or close to N2 saturation (Fig. 5) in order to 

augment/complement the IR spectra of single N2 adsorption discussed before. 

All spectra of multiple N2 adsorptions reveal higher red shifts than those of single N2 

adsorptions. Note, that the Blyholder model would predict the opposite, a reduction of red 

shift upon N2 saturation: The more N2 molecules compete for the electrons of the cluster 

core, the less electron density is transferred into the π* orbital of each N2 molecule. Also, 

the Rh cluster size dependent charge dilution diminishes upon N2 saturation, while it is 

clearly in effect upon attachment of the first N2 adsorbate. 

 

Fig. 5 IR-PD spectra of single (black line) and multiple dinitrogen adsorption on 
Rhodium clusters at (blue) or close to (green) saturation. The blue areas 
represent N2 saturation (at 26 Kelvin), the green areas represent spectra of one 
N2 adsorbate less in cases of experimental constraints.  
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The second finding in all but one of the N2 saturated IR-PD spectra is a significant increase 

in spectral complexity by multitudes of bands spreading out across up to 110 cm-1, which is 

not observed upon single adsorptions. The sole exception of (9,9) is to be discussed in the 

following, where we will discuss the spectral features of each cluster adsorbate complex in 

detail. 

[Rh6(N2)11]+, [Rh7(N2)13]+: The IR-PD spectra reveal seven partially resolved bands in the 

range of 2194 – 2268 cm-1. This multitude of the bands likely indicates the presence of 

diverse adsorption sites, which is in noteworthy difference to the DFT predictions of naked 

Rh6
+ clusters, and to the IR-PD spectra of single N2 adsorption, (6,1) and (7,1), see Fig. 4. We 

take this as a strong indication for N2 adsorbate induced relaxation of the Rh cluster core 

geometries, in conjunction with possible spin state quenching. As evidenced before in the 

case of [Ni9(N2)2]+ there are symmetric and asymmetric coupling of stretching modes in 

adjacent N2 adsorbates with splittings on the order of 10 cm-1 [71]. We expect such 

couplings within saturated N2 layers on Rh cluster surfaces as well. It is hard to conceive, 

however, that these might make up for all of the observed spread of 70 cm-1. 

[Rh8(N2)12]+: With four bands in the range of 2210 - 2245 cm-1 the spectrum of the (8,12) 

cluster adsorbate complex reveals less bands than the spectrum of the smaller clusters, 

likely indicating a high symmetry of the cluster core with less diverse adsorption sites and 

less or weaker N2 – N2 couplings. Other than at i = 6, 7 there is an additional weak band at 

2279 cm-1 which we tentatively assign to a stretch – wag combination band. 

[Rh9(N2)9]+: Remarkably, N2 saturation arises at mere 1 : 1 stoichiometry in (9,9) while all 

other studied Rhi(N2)m
+ clusters saturate at significantly higher N2 loads close to a 1 : 2 ratio. 

In the (9,9) cluster adsorbate complex, [Rh9(N2)9]+, the small increase in red shift comes with 

a reduction of complexity: Three bands in (9,1) seem to collapse into a single intense band at 

2234 cm-1 in (9,9): While single N2 adsorption reduces symmetry, stoichiometric N2 

saturation seems to recover it. We have assigned a distorted tricapped trigonal prism to the 

Rh9 core geometry in (9,1), cf. above, and it may regain full D3h symmetry in (9,9). This 

implies two types of Rh surface atoms in slightly diverse coordination geometries. If this 

assumed structure actually prevailed, our spectra would tell that all of the Rh-N2 pairs are 

equivalent. Nevertheless, strong electronic Rh-Rh couplings would mediate a coupling 

between the Rh-N2 pairs. The weak IR-PD feature at 2217 cm-1 may arise from a hot band. 
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[Rh10(N2)15]+ and [Rh11(N2)16]+: Similar to the (6,11), (7,13), and the (8,12) cluster 

adsorbate complexes, the multiple adsorptions of N2 to the Rh10
+ and Rh11

+ clusters reveal a 

multitude of bands at 2175 - 2277 cm-1, lacking assignments as of now. In principle, they may 

arise from diverse adsorption sites, from co-existing cluster core or spin isomers, and from 

vibrational couplings of adjacent N2 oscillators, likely in conjunction with Rhi cluster core 

relaxation upon N2 adsorption and saturation. As in the spectrum of (8,12) the weak band of 

(10,15) at 2277 cm-1 may be a stretch-wag combination. 

Finally, we review together all of the discussed spectral features upon N2 saturation 

(Fig. 5) and upon single N2 attachment (Fig. 4). This allows to sort the [Rhi(N2)m]+ cluster 

adsorbate complexes into three classes: We label the i = 6 - 8, 10, 11 species as small 

complexes, and the i = 12 - 15 species as large complexes – the latter demarcation based on 

the spectral complexity of [Rhi(N2)1]+ i = 12 - 15 complexes (Fig. 4). The sole i = 9 complex 

makes up for its own class of smooth surface complexes, high symmetry complexes, 

exceptional complexes. 

Modelling of the vibrational spectrum of the [Rh7(N2)12]+ cluster adsorbate complex 

Up to here, we have presented spectra of single N2 adsorption and of N2 saturation. We 

chose the (7,m) complexes for DFT modelling, and we supported this by an additional IR-PD 

spectrum of (7,12) (Fig. 6). This spectrum reveals a band pattern similar to that of (7,13), 

with an extra most red shifted strong band at 2192 cm-1. These two findings allow for two 

interesting conclusions: (1) Spectral complexity does not require a completely saturated N2 

adsorption but sets in earlier. Future studies on IR-PD spectra of intermediate N2 adsorption 

levels shall elucidate this aspect further. (2) Even the addition of a single, 13th N2 does 

change spectral patterns considerably, indicating strong vibrational and electronic couplings. 

With these findings in mind, we spent effort to optimize (7,12) geometries, utilizing as 

starting geometries the three aforementioned Rh7
+ cluster core structures with spin 

multiplicities 2S + 1 = 1, .., 17 and checking for conceivable N2 adsorbate distributions. 

Calculating linear IR absorptions of converged (7,12) structures (Fig. 7 and supplement 

Fig. S6, Fig. S8, and Fig. S10) and folding with apparatus functions of 5 cm-1 yielded IR spectra 

to compare with the recorded IR-PD spectrum (Fig. 8, further spectra in supplement Fig. S7 

and Fig. S9)  
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Fig. 6 IR-PD spectra of the [Rh7(N2)m]+ cluster for m = 1, 12, and 13. With an 
increasing number of N2 adsorbates there is a spreading out of bands which shift 
to the red. 

 

Fig. 7 Two most stable structures of the (7,12) [Rh7(N2)12]+ cluster adsorbate 
complexes. Both cluster Rh7 cores are capped octahedral structures of similar 
shape; the [Rh7(N2)12]+ complexes distinguish by the orientations of two adjacent 
N2 adsorbates highlighted by red circles. 

The calculated spectra of the four lowest energy calculated structures (coh-a-3 and coh-b-

3, see supplement) show qualitative agreement to the measured IR-PD spectrum. All of 

these structures are capped octahedral with either a Rh7 core distortion or with some 

torsional polymorphism in the N2 adsorbate arrangements. All but two Rh atoms accept two 
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N2 adsorbates, the remaining two Rh atoms just one N2 each. The 12 N2 adsorbates have 

quenched the 13tet spin state of the naked Rh7
+ cluster into a mere triplet state of the (7,12) 

cluster adsorbate complex. 

 

Fig. 8 Experimental IR-PD spectrum of the [Rh7(N2)12]+ cluster and calculated 
linear absorption spectra of some isomers (scaled by 0.9385). The calculated 
spectra represent the six lowest energy structures and the line spectra were 
convoluted with a 5 cm-1 FWHM Gaussian. The three letters indicate the 
arrangement of the metal atoms in the calculated structures followed by a code 
for the arrangement of the N2 molecules and the spin multiplicity. Remarkably all 
structures have a singlet or triplet multiplicity. The first two calculated spectra 
satisfactorily resemble the experimental spectrum. The coh-a-3 structure started 
as a capped trigonal prism and self-optimized into a capped octahedron. The 
auxiliary axis (on top) indicates the red shift with respect to the IR inactive free 
N2 vibration. 
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Table 2 Calculated vibrational modes of the coh-a-3 cluster in triplet state. The N2 stretching 
frequencies are given unscaled and scaled by 0.9385. The Rh atom numbering is provided by 
Fig. S6 in the supplement. In the case of the stretching vibrations, the position of the 
oscillators on the cluster is given. The coh-b-3 cluster shows very similar bands.  

mode type / site 
frequency 

/ cm-1 

scaled 

frequency 

/ cm-1 

IR intensity 

/ km mol-1 

 N2 wagging modes    
1-23 wagging 36 - 91  0.0055 – 0.15 

     
 Rh skeleton modes    

24-39 cluster core vibrations 101 - 238  0.050 – 2.19 
     
 N2 bending modes    

40-75 N2 Bending 247 - 439  0.64 - 18 
     
 Single N2 stretching modes    

76 @ Rh2 2329 2186 375 
77 @ Rh6 2345 2201 115 

     
 Coupled N2 stretching modes    

78,79 
(asym. coupling @ Rh4) with (asym. 

@ Rh1) and (asym. @ Rh3) 
2360 2215 137, 75 

80 asym. @ Rh7 2366 2220 36 
81 asym. @ Rh5 2372 2226 138 

82 
(asym. coupling @ Rh4) with (asym. 

@ Rh1) and (asym. @ Rh3) 
2375 2229 259 

83 sym. @ Rh4 2379 2233 485 

84 
asym. coupling of (sym. @ Rh5) and 

(sym. @ Rh7) 
2384 2237 199 

85 sym. @ Rh3 2389 2242 597 

86 
sym. coupling of (sym. @ Rh5) and 

(sym. @ Rh7) 
2395 2248 483 

87 all N2 in phase 2402 2254 26 
 

Inspection of all the calculated vibrational mode characteristics reveals categories as listed 

in Table 2: N2 wagging modes (36 - 91 cm-1, unscaled), Rh cluster core modes (101 – 238 cm-

1), N2 bending modes (247 – 439 cm-1), and the N2 stretching modes (2186 – 2254 cm-1, 

scaled). A closer look on the calculated vibrational modes of the ctp-c-3 cluster supports our 

assumption that the band at 2267 cm-1 is an N2 stretch wag combination band. 

Based on our prior and present investigation of [Nin(N2)m]+ complexes [71,72] we expect 

strong couplings amongst geminal N2 adsorbates on the same Rh site or on neighboring Rh 
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sites, and no couplings amongst the two lone N2 adsorbates at the Rh2 and Rh6 sites. 

Indeed, we assign the two most red shifted bands to the uncoupled lone N2 molecules. 

These oscillators do not compete for electron density with another geminal N2 molecule and 

they thus achieve higher back donation into their antibonding π* orbitals, which leads to the 

observed larger red shifts. 

The strong N2 couplings render an assignment of the stretching bands difficult; yet, there 

are some recognizable characteristics (listed in Table 3). In particular, we identify symmetric 

and antisymmetric couplings of geminal and vicinal N2 oscillators. The single stiffest N2 

stretching mode is delocalized over all N2 oscillators and an all in phase motion (at 2254 cm-

1). By an according analysis, we obtain a similar picture of all the vibrational modes in the 

coh-b-3 cluster adsorbate complex. 

Summary and Conclusions 

We have presented the calculated minimum structures of Rhi
+ (i = 6, 7, and 9) clusters and 

[Rh7(N2)12]+ cluster adsorbate complexes, in conjunction with the recorded IR-PD spectra of 

[Rhi(N2)m]+ clusters adsorbate complexes (i,m) with a single N2 (i = 6 – 15, m = 1) and with 

multiple N2 adsorbates at or close to saturation (i = 6 – 11). In particular, we have compared 

recorded and calculated spectra of [Rh7(N2)12]+, and we assign capped octahedral structures 

of the Rh7 cores in all (7,m) species. We explain observed red shifts of the various N2 

stretching modes by electronic interactions between adsorbate molecules and cluster cores. 

For sure, high loads of N2 adsorbates close to saturation quench high spin states of naked 

clusters significantly towards much lower multiplicities. Earlier investigations confimed that 

assumed isomerization of the cluster cores as well as the spin quenching may be understood 

as a result of multiple non-reactive collisions [25]. Our cryogenic hexapole ion trap likely 

provides for effective thermalization, and we may see an enhancement of such effects. 

Experiments where reactions takes place in the ICR cell with a much lower pressure reveal a 

variety of isomers [24,25]. 

The present study is meant to provide first insights into N2 adsorbate localization at 

Rhodium cluster surfaces and to elucidate adsorbate induced cluster core relaxation, as 

evidenced in the case of (6,11) and (7,13). 
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While the current study is a first step in a larger framework, which is work in progress: It is 

subject of work in progress to systematically vary the number of N2 adsorbates, and to study 

the N2 stretch couplings and the concomitant stepwise spin quenching in the [Rhi(N2)m]+ 

complexes. Also, work in progress are: the N2 saturation studies of [Rhi(N2)m]+, i > 11, the 

calculation of N2 adsorbate tilting barriers amongst complex structures of Fig. 7 and their 

spin state dependencies, the N2 adsorption kinetics of pure Rh cations and of Fe Rh alloys, 

and the cryo spectroscopy of the latter. 

We emphasize the fundamental value of our above findings for the understanding of the 

dynamic metal surface adsorbate interplay as of relevance in heterogeneous catalysis with 

nano-structured surfaces, such as e.g. the annealing of pre-catalyst deposits on substrate 

surfaces. Able members of the DFT modelling community are invited to join and augment 

our own efforts. 
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