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· Introduction 

The concept of a free algebra plays an essential role in universal algebra and in com­

puter science. Manipulation of terms, calculations and the derivation of identities are 

performed in free algebras. Word problems, normal forms, system of reductions, 

uni:fication and finite bases of identities are topics in algebra and logic as well as in 

computer science. 

A very fruitful point of view is to consider structural properties of free algebras. A.I. 

Malcev initiated a thorough research of the congruences of free algebras. Henceforth 

congruence permutable, congruence distributive and congruence modular varieties are 

intensively studied. A lot of Malcev type theorems are connected to the congruence 

lattice of free algebras. 

Here we consider free algebras as semigroups of compositions of terms and more 

specific as clones of terms. The properties of these semigroups and clones are ade­

quately described by hyperidentities. Naturally a lot of theorems of "semigroup" or 

"clone" type can be derived. 

This topic of research is still in its beginning and therefore a lot öf concepts and re­

sults cannot be presented in a final and polished form. Furthermore a lot of problems 

and questions are open which are of importance for the further development of the 

theory of hyperidentities . 

Dla Magdy, Dagusi i Krzysia. 
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Preliminaries 

An identity is a pair of terms where the variables are bound by the all quantifier. Let 

us take the following medial identity as an example 

V u 't/ x 't/ y 't/ w (u·x)·(y·w) = (u·y)·(x·w) 

An identity can be considered as a notion in a first order language with equality. 

Let us look at the following hyperidentity 

't/ F 't/ u 't/ x 't/ y 't/ w F(F(u,x),F(y,w)) = F(F(u,x),F(y,w)) 

A hyperidentity can be considered as a notion in a second order language with equa­

lity. A second order language allows the quantification of predicate or operator vari­

ables . We consider the operator variables F in a very specific way. Primarily all our 

operator variables are restricted to functions of a given arity; in our example to bi­

nary functions. Secondly we bind the interpretation of F to term functions. Therefore 

such kind of operator variables are called hypervariables. As it is common use we will 

not write quantifiers in front of identities and hyperidentities . 

Let us consider the variety of distributive lattice. Then the list of all binary terms 

consists of 

e~(x,y) = x, e~(x,y) = y, x A y,x V y. 

Let us replace the binary hypervariable F in the above hyperidentity by a binary 

term leaving the variables unchanged. For x A y we get the identity 

(u A x) A (y A w) = (u A y) A (x A w) 

which holds for the variety of distributive lattices. In the other three cases we get the 

identities 

u = u, w =wand (u V x) V (y V w) = (u V y) V (x V w) 
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which also hold for distributive lattices. We say that the above hyperidentity holds in 

the variety D of distributive lattices as every binary term yields an identity which 

holds in D. Let us take another example: the variety of abelian groups (where we 

write the operation as an addition). Every binary term, for instance 

((x+y)+(x+x))+y can be written in a normal form ax + by, a,b E IN 0; in our case 

3x+2y. The above hyperidentity holds for the variety of abelian groups because it is 

transformed to the following identity interpreting F. 

a(au+bx) + b(ay+bw) = a(au+by) + b(ax+bw) 

The reader will recognize that we consider only a small fragment of a second order 

logic. Of course all these restrictions reduce the expressive power of a second order 

language. But nevertheless, by hyperidentities one can express more than by iden-

tities. 

Part 1. Hyperidentities 

§ 1. 1 Hyperteras 

The four sections §1.1 - §1.4 are due to [Graczynka-Schweigert] 
1 

Notations. Our nomenclature is basically the same as in [Grätzer 79]. We 

consider varieties of algebras of a given type. A type of algebras 7 is a sequence 

(no,ni, ... ,n"'I, ... ) of positive integers 'Y < 0(7), where 0(7) is an ordinal, called the order 

of 7. For every 'Y < 0( 7) we have a symbol f"'I for an n"'l-ary operation. Moreover, for 

every 'Y wi th n"'I > 0 the symbol F "1 is associated. F "1 is called an n"'l -ary 

hypervariable. 
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Definition 1.1.1. Let r be a given type. The n-ary hyperterms of type T are 

recursively defined by: 

(1) the variables xi,„ .,xn are n-ary hyperterms; 

(2) i/T1,„.,Tm are n-ary hyperterms and Fis an m-ary hypervariable of type r, 

then F
1

(Ti,„. ,Tm) is an n- ary hyperterm oftype T. 

H0 ( r) is the smallest set containing (1) which is closed under finite application of (2). 

H( r) = U(H0 ( r): n E IN) is called the set of all hyperterms of type T (where IN is the 

set of all positive integers}. 

A hyperidentity of type T is a pair of hyperterms (T i,T2), which is also denoted by 

T1 = T2. 

The free algebra in countably many variables of a variety V of type T is denoted by 

T(V) and its elements t are called terms . If V is generated by the algebra A we write 

T(A) instead ofT(V). 

Definition 1.1.2. Let (Ti,T2) be a hyperidentity of type Tand let V be a variety 

of typeµ . If every n
1
-ary hypervariable occurring in (Ti,T2) is replaced by an n

1
-ary 

term t
1 

E T(V) leaving the variables (x
1 

: i E N) unchanged in (Ti,T2} then the 

resulting identity (ti,t2) is called a transformation ofthe hyperidentity (Ti,T2). 

Fora more formal definition consider 1.7.19 

Example. Let F ( F(u,x), F(y,v)J = F ( F(u,y),F(x,v)J be a hyperidentity of 

type (2) . Let V be the variety of abelian groups (G: +, -, 0) of type (0,1,2). Then 

(u+x)+(y+v) = (u+y)+(x+v) is a transformation of the above hyperidentity. Let 

ax+by, a,b E ll be a binary term of T(V). Then 

a(au+bx) + b(ay+bv) = a(au+by) + b(ax+bv) 

is another example of a transformation of the above hyperidentity. 
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If E is a set of hyperidentities of type r, then the set of all transformations of E for a 

variety V of type r is denoted by I/E). 

Definition 1.1.3. A variety V oftype µ satisfies the hyperidentity (Ti,T2) of 

type T if the set Iv((Ti,T2)) of all transformations of (Ti,T2) is contained in the set of 

identities which hold for V. 

Example. The hyperidentity F [ F(u,x), F(y,v)J = F [ F(u,y),F(x,v)J is satis­

fied by the variety of abelian groups. 

Definition 1.1.4. Let ( t i, t 2) be an identity which holds for a variety V. If every 

n
1
-ary operation symbol f

1 
occurring in (ti,t2) is substituted by n

1
-ary hypervariable 

F 
1 

leaving the variables unchanged then the resulting hyperidentity (Ti, T 2) is called the 

transformation of(ti,t2). 

If E is a set of identities of the variety V of type µ, then Hµ(E) denotes the set of all 

transformations of identities in E. 

Example. Let V be a variety of lattices of type (2,2). Let E be the identity 

x = x V x. Then the transformation Hµ(c) which equals x = F(x,x) is the hyperiden­

tity which holds for the variety of lattices. On the other hand the identity E' which is 

of the form x V y = y V x is transformed to the hyperidentity Hµ(E') of 

the form F(x,y) = F(y,x) which does not hold for a nontrivial variety V of lattices. 



-9-

§ 1. 2 Coapleteness 

Definition 1.2.1. Following G. Birkhoff (comp. [Grätzer 79], [Taylor 79] ), 

we use the following rules of derivation for. hyperidentities of a given type r: 

(1) T 1 = T 1 for every hyperterm T 1 E H( r); 

(2) T 1 = T2 impliesT2 = T1i forhypertermsT1iT2 E H(t); 

{3) Ti= T2, T2 =Ta implies Tl= Ta for hyperterms Ti,T2,Ta EH( r); 

(4) Ti= Si for i = l, ... ,m
1

, implies F
1
(Ti, ... ,Tm

1
) = F

1
(Si, .. . ,Sm

1
) for hyperterms 

Ti,Si E H(r) and m
1
-ary hypervariables F

1
. 

(5) T(xi, ... ,xn) = S(xi, .. . ,xn) implies T(Ri, ... ,Rn) = S(Ri, ... ,Rn) for 

T,S,Ri, ... ,Rn E H(r). 

Remark 1.2.2. lf one considers H = U(H( r) : r E ~), where ~ is the set of 

all well ordered sequences then the above rules hold for hyperidentities in general. 

In the sequel we shall use also an analogous rule to (5), but for hypervariables. This 

was the main idea of [Belousov 65] ( comp. [ Aczel 71], [Taylor 81] ). 

First, we recursively define the notion of a substitution of a hypervariable by a hy-

perterm. 

Let T be a hyperterm of type r. Consider a hypervariable F 
11

, and a hyperterm R1 of 

type r, both of the arity m. We define the term T*, called the substitution of the 

hypervariable F 
11 

in the term T by the hyperterm Ri, as follows: 

( 1 O) lf T is a variable, then T* is equal to T; 

(20) . lfT has theform F1(Ti, ... ,Tm) then T* has theform: 

* * Rl(T 1, ... ,Tn) if 'Y = 'Y1i 

and 
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The rule (6) is called a hypersubstitution, and is defined in the following way: 

* * (6) Ti= T 2 implies Ti= T2 for any Ti,T2 E H(r) and any simultaneous hyper-

substitution of hypervariables in Ti and T2 by a hyperterm ofthe same arity. 

Example. Consider the hyperidentity Q(Q(x,y,z),y,z) = Q(x,y,z), and the hy­

perterm T(x,y,z) = F(G(x,y),z). By rule (6) we derive F(G(F(G(x,y),z),y),z) 

= F(G(x,y),z). The latter hyperidentity of type (2,2) is also called a hypercon­

sequence of type (2,2) from the former hyperidentity of type (3). 

Remark 1.2.3. Note that rule (6) commutes with all rules of derivation 

(1 )-(5) (i.e. if ~ is a set of identities closed under the rule (6) then all consequences of 

~ by the rules (1)-(6) are consequences of ~ by the rules (1)-(5)) . 

Given a variety V of type r, Id(V) denotes the set of all identities satisfied in V (see 

[Grätzer 79), p. 169, 170). E"(V) denotes the set of all hyperidentities of type r 

which are satisfied by the variety V. Furthermore E(V) denotes the set of all hyper­

identities of any type which hold for V. Obviously, E"(V) ~ E(V). Furthermore, if 

V i ~ V 2 then E"(V 2) ~ E"(V i). 

H
7
(E):= set of all transformation of identites in E to hyperidentitites of type r which 

may or may not hold in V. 

Proposition 1.2.4. Let V be a nontrivial variety of lattices of type (2,2) . Then 

E"(V) ~ E(V). 

Proof. In [Penner 81] it is proved that for any positive integer m there exists 

a hyperidentity (Ti,T2) which is satisfied in V but does not follow from hyperidenti-
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ties involving at rnost rn-ary hypervariables. For rn = 2 we have the staternent of 

1.2.4. 

Definition 1.2.5. The set C of all varieties V of typeµ which satisfy a set E of 

hyperidentities of type r is called a hypervariety C oftype {r,µ}. We say that E defines 

c. 

If r = µ then C is called a hypervariety of type r. 

Completeness Theorem. A set E of hyperidentities of type r can be represented 

in the form E
7
(K), for some variety K of type r, if and only if E is closed under rules 

{1}-(6). 

Proof. This theorem is a slight rnodification of G. Birkhoff's theorern (see 

[Birkhoff 35]) for sets of identities. The proof is sirnilar to that of [Grätzer 79], p. 

171. Obviously the set of hyperidentities of type T of variety K rnust be closed under 

rules (1)-{6). 

Take a set E of hyperidentities of type r, closed under rules (1)-(6). Consider the set 

Iv(E) of identities of types r for a fixed variety V of type r. Then the set Ei = Iv(E) is 

closed under the rules of inference (i)-(v) of [Grätzer 79], p. 170. Consider the 

variety K of type r, constructed as in [Grätzer 79], p. 171. Then Ei is the set of 

identities of K. Moreover E = H
7
(Ei) = E

7
(K), because of the assurnption that E is 

closed und er the rule ( 6) . 
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§ 1. 3 Solid varieties 

We say that a hyperidentity is satisfied by an algebra A, if it is satisfied in the va­

riety generated by A. 

An algebra A is solid if every identity satisfied in A is transformed into a hyperiden­

tity, which is satisfied in A. 

Definition 1.3.1. Let E be the set of all identities, which hold for the variety V 

of type r. V is called solid if E,(V) = H,(E). 

Theorem 1.3.2. Let E be the set of all identities of the variety V of type r. V is 

solid if and only if E = Iv(E,(V)). 

Proof. Note, that by definition we have: 

(1 O) E,(V) ~ H,(E); 

(20) Iv(E,(V)) ~ E. 

To prove the necessity, assume that Visa solid variety. Let € be an identity from E. 

By definition 1.3.1, the transforrnation H,(c) is a hyperidentity of type r, satisfied in 

V. We conclude that € E IvCH,(c)) ~ Iv(E,(V)) and thus IvCE,(V)) = E, by (20). 

For sufficiency, assurne that we have Iv(E,(V)) = E. By ( 1 O) we need only to prove 

the inclusion H,(Iv(E,(V)) ~ E,(V). To show this, take a l;lyperidentity E from the set 

E,(V) of all hyperidentities' of V. Then Iv(E) is contained in E. Now consider 

H,(Iv(E)). Any element of H,(Iv(E)) can be obtained as an elernent of the closure of 

the set {E} by rule (6), which is contained in the set E,(V) - closed under (6), by the 

completeness theorern. Thus we conclude that V is a solid variety. 

The above results also hold if we restrict us to bases of hyperidentities and identities. 
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Remark 1.3.3. The completeness theorem can be reformulated in the follow­

ing way: 

Let I: be a set of hyperidentities of type r. The following conditions are equivalent: 

(1) I: is dosed under the rules (1)-(6) . 

(2) }.; = H"(Id(K)) for some solid variety K of type r. 

Theorem 1.3.4. A variety V of type r is solid if and only if it is closed under 

the condition: 

(1.3.4) Let A be an algebra of V, of type r = (ni,n2, ... ,n
1

,„ .. : 'Y < 0( r)). If t
1 

is the realization of an n
1
-ary term operation of type r in A, then 

A = (A; t1,t2,„ .,t1 , . . . : 'Y < 0( r)) is an algebra ofV. 

Proof. Let V be a solid variety. Consider the algebra 

A = (A; ti,t2,„.,t
1

,„. : 'Y < 0( r)) . The identities of V are transformed into hyper­

identities of V and hence hold for the term functions t
1

. Especially they hold for A. 

Hence A E V. Let the condition (1.3.4) hold for V. Then the identities of V hold for 

all term functions of the suitable arity and hence are transformed into hyperidenti­

ties, i.e. V is a solid variety. 

§ 1. 4 Deri ved Algebras 

Notation 1.4.1. Let K be a dass of algebras of a given type r=n0,ni, ... ,n
1

, ... ). 

The algebra Bis called a derived algebra of A = (A; f0,fi,„ .,f
1

,„„) if there exists term 

operations t 0,ti,„.,t
1

, ... of type r such that B = (A; t 0,ti,.„,t
1

, ... ) . For a dass K of 

algebras of type r we denote by D(K) the dass of all derived . algebras of type r of K. 

We use the dosure operator Dto reformulate theorem 1.3.4. 
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Theorem. Let V be a class of algebras of a given type r. V is a solid variety if 

and only ifV is closed under homomorphic images H, subalgebras S, direct products P 

and derived algebras D, i.e. 

H(V) ~ V; S(V) ~V; P(V) ~ V; D(V) ~ V. 

Problem 1.4.2. Describe the semigroup generated by the operators H,S,P ,D. 

Compare [Pigozzi] 

Theorem 1.4.3. Let V be a class of algebras of given type r. V is a solid variety 

if and only ifV = HSPD(V). 

Proof. 

(a) DP(V) ~ PD(V) . For BE DP(V) we have B = (A; t 0,ti, ... ,t
1

,.„) with 

A = (A; f0,f1„ .. ,fy„.) and A = TIAi, Ai= (Ai; f0,fi, ... ,f
1

,„„). Consider 

Bi:= (Ai; to,ti, .„,t
1

,„.) then we have B = TIBi and hence BE PD(V). 

(b) DS(V) ~ SD(V). For B = (B; to,ti,„.,ty„) E DS(V) we have 

C = (B; fo,fi, ... ,f
1

,„„) is a subalgebra of some algebra A = (A; f0,fi,„.,f
1

,. „. ). 

As (B; to,ti,„.,t
1

,.„) is a subalgebra of (A; to,ti, .. . ,t
1

,.„) we have BE SD(V). 

(c) DH(V) ~ HD(V). Let B = (B; to,ti, .„,t
1

,.„ ) E DH(V). Then there is a 

homomorphic image f[A] = (f[A]; f0,fi,„.,fy.„) of an algebra A with 

f[A] = B. But (B; to,ti,„.,t
1

,„.) is also a homomorphic image of 

(A; to,ti,„.,t1 ,„„) because f[A] = B and f(t
1

(xi, ... ,xn)) = t"l(f(x 1), . . . ,f(xn)). 

Now we have DHSP(V) ~ HSPD(V). (Observe that for some V we have 

DS(V) ~ SD(V).) 

Remark. In the sense of [Schweigert 87a] a derived algebra B from the al­

gebra A has the property that T(B) is a surjective image of a clone homomorphism 



-15-

from the clone T(A) onto the clone T(B). Also weak endomorphisms [Goetz 66, 

Schweigert 85a] induce such clone homomorphisms. 

Example 1.4.4. The variety U of semigroups of type (2) defined by the fol-

lowing identities, is a solid variety. 

X o X= X 

X o (y o Z) = (X o y) o Z 

( U o X) o (y o V) = ( U o y) o (X o V). 

Proof. One can show that F 2 = {x,y,x o y,y o x,x o y o x,y o x o y} is the set 

of all binary terms of the variety U. Furthermore, for these terms the transformed 

identities: F(x,x) = x. F(x,F(y,z)) = F(F(x,y),z) and F(F(u,x), F(y,v)) 

= F(F(u,y), F(x,v)) hold as hyperidentities for U. 

Remark 1.4.5. The transformation of some identities for an algebra A always 

leads to hyperidentities which hold for A (for example x = x or :z:ox = x) . 

§1. 5 Veak isoaorphisas 

The notion of weak homomorphism and weak isomorphism has been introduced by 

Marczewski and Goetz ([Glazek, Michalski 77], [Schweigert 84]). For these defini­

tions we have to consider the clone T( A) of all term functions of an algebra A. 
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Definition 1.5.1. Let A = (A,0 1) and B = (B,02) be algebras not neces­

sarily of the same type and let h:A --+ B be a mapping. Let cp E T( A) and 'l/J E T{B) 

be o f the same arity n. Then cp and 'l/J are in the relation Rh, i. e. { cp, 'l/J) E Rh iff 

h( rp{xi, ... ,xn)) = 1/J{h(x1), ... ,h(xn)) . 

Definition 1.5.2. Let A = (A,0 1) and B = (B,02) be algebras not necessarily 

of the same type. The mapping h:A--+ B is called a weak homomorphism of A into 

Bi// 

(i) for every cp E T{A) there is a 'l/J E T(B) with (cp,'l/J) E Rh, 

(ii) for every a E T(B) there is a ß E T{A) with (ß,a) E Rh. 

Rema.rk 1.5.3. lt is easy to show that {i) and (ii) can be replaced by the 

weaker conditions (a) and (b). 

(a) for every w E 0 1 there is a 'l/J E T(B) with (w,'l/J) E Rh, 

(b) for every 'Tl E 02 there is a cp E T( A) with ( cp, 11) E Rh. 

If h:A--+ B is a homomorphism of the algebra A into the algebra B of the same 

type, then h is also a weak homomorphism, because we have h{wA(xi, ... ,xn)) 

= wB(h(x1), ... ,h(xn)) for every operation wA E 0 1 and the corresponding operation 

WB E 02. 

A weak homomorphism h:A --+ B is called a weak isomorphism if h is bijective. 

Definition 1.5.4. A weak homomorphism h:A--+ B is called a near iso-

morphism if h is the identity map. 

J 
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Example 1.5.5. Let B = [ {1,0};A,V,\0,1 J be the Boolean algebra on the set 

{0,1} . Let R = [{1,0};+,0,·,l] be the commutative ring on the set {0,1} where the 

addition is modulo 2. Then Band Rare near isomorphic. Especially we have: 

(a) 1) xVy = (x+y)+x·y 4) 0=0 

2) xAy = x·y 5) 1 = 1 

3) x' = x+l 

(b) 1) x+y = (x'Ay) V (yAx') 3) 0=0 

2) x·y = xAy 4) 1=1. 

Hence conditions ( a) and (b) of 1.5.3 are fulfilled. 

Lemma 1.5.6. Let A = (A,0 1) and B = (B,0 2) be algebras not necessarily of 

the same type. If h:A---+ B is a weak isomorphism then there is an isomorphism 

a:A---+ B for an algebra B* = (B,0 1) and a near isomorphism g:B---+ B from B* 

onto B such that h = go a. 

Proof. We define the operation wB* of B* by setting wB*(bi, ... ,bn) 

= h(wA(h-1(b1), ... ,h-1(bn))). Furthermore we define a(a) := h(a) for every a E A. 

Then a is bijective. Put bi = h(ai), i = 1, ... ,n. Then we have 

a(wA (ai, ... ,an)) = h( wA (ai, ... ,an)) = h(wA (h-1(b1), .. . ,h-1(bn)) 

= WB*(b1, ... ,bn) = WB*(h(a1), ... ,h(an)) = wB*(a(a1), ... ,a(an))). 

Hence a is an isomorphism. For the identity map g:B ---+ B and the corresponding 

relation Rg the following holds: 

(a) For wB* E 0 1 we have a term function 'l/J E T(B) with (wA,'l/J) E Rh such that 

Therefore 

hence 

and hence 

h( wA (ai, ... ,an)) = 'l/J(h(a1), ... ,h(an)). 

a(wA(ai, ... ,an)) = 'l/J(h(a1), .. . ,h(an)) 

wB*(a(a1), ... ,a(an)) = 'l/J(h(a1), ... ,h(an)), 

WB*= ,,µ, i.e. (wB*''l/J) E Rg. 
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(b) is proved similarly. 

Remark 1.5.7.. A weak isomorphism h:A ---1 B for the algebras A = (A,01) 

and B = (B,0 2) also defines a map 

li:T(A) ---1 T(B) by (li('f/J))(bi, ... ,bn) := h(1/J(h-t(b1), .. . ,h-t(bn))) . 

This map li is a clone isomorphism and li is compatible with the composition of term 

functions, permutation of variables and with fictitious variables. li also preserves the 

arity of term functions ( [Glazek, Michalski 77], [Schweigert 84] ). 

Notations 1.5.8. Let A = (A,0 1) and B = (A,0 2) be two algebras not neces­

sarily of the same type. Let A be near isomorphic to Band li:T(A) ---1 T(B) the cor­

responding map for the clones of term functions . If f = ( cp = 1/J) is an equation which 

holds for the algebra A then li( E) = (licp = li 1/J) is an equation which holds for the 

algebra B. li( f) is called the transformation of the equation ( cp = '1/J) by li. 

Example 1.5.9. Let B = ({o,l};A,V,\0,1] be the Boolean algebra and 

R= ({0,1};+,0,·,l] be the commutative ring on the set {0,1}. By 1.5.5 Bis near 

isomorphic to R. Some axioms for the Boolean algebra are transformed in the follow­

ing way. 

Bl: xA(yAz) = (xAy)Az 

li(Bl): x·(y·z) = (x·y)·z 

B2: xAy = yAx 

li(B2) : x ·y = y·x 

B3: xAx = x 

n(B3): X·X =X 

B4: xA(yVx) = x 
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li(B4): X· ((y+x)+(y·x)) =X 

B5: xA(yVz) = (xAy)V(xAz) 

li(B5) : x· ((y+z)+(y·z)) = ((x· y)+(x·z))+((x· y) · (x· z)) 

B6: xllx'- = 0 

li(B6): x· (x+l) = 0. 

Remark 1.5.10. If E is an equational basis for the equational theory of A then 

the transformation li(E) of E by h is not an equational basis for B besides in special 

cases. Therefore it is necessary to add some further equations to li(E) to get an 

equational basis for B. 

Notation 1.5.11. Let w be an n-place operation of the algebra B = (B,0 2) 

then 11-1( w) is a term function of the algebra A and hence may be presented by a term 

'l/J{xi, .. . ,xn) of the term algebra of A. li( 1/J) is a term function of B and can be 

presented by ;!. term cp(xi, ... ,xn)· Obviously the equation cp(xi, ... ,xn) = w{xi, .. . ,xn) 

holds for B. We denote this equation by_ 7ru:i and consider the set { 7ru:i 1 w E 0 2} of 

equations. 

Example 1.5.12. Consider the operation + and · of the ring R. Then we have 

71"+: [((x+l)·y)+(x·(y+l))J+ [((x+l)·y)·(x·(y+l))J = x+y 

7r: x·y = x·y (which can be dropped because of triviality). 

For the following result compare also [Felscher 66] p. 148 thm4. 

Theorem 1.5.13. Let E1 be an equational basis for the equational theory of the 

algebra A = (A,0 1) . If B = (A,02) is near isomorphic to A by h then 

E2 = li(E1) U { 7rl.I) 1 w E 0 2} is an equational basis for the equational theory ofB. 
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Proof. We show that any equation of <p(xi, .. . ,xn) = -itr{xi, ... ,xn) holding for B 

can be derived from ~2 . (h-1( cp))(x1, ... ,xn) = (h-1( 'lfi))(xi, ... ,xm) is an equation holding 

for A and hence can be derived by a sequence ( ui, ... ,01) of equations from ~i, the 

properties of the equality sign and the substitution [ Grätzer 79], p. 381. Trans­

forming this sequence by li we have (li( u1), ... ,li( <Tk)) a sequence of equations from 

li(~ 1) which proves the equality (h(h-1(cp)))(xi, .. . ,xn) = (h(h-1(1fi)))(x1, .. . ,xn) · By the 

equations from { ?rU) 1 w E 02} we have that 'P(x1, ... ,xn) = (h(h-1( cp)))(xi, .. . ,xn) and 

-itr{xi, ... ,xn) = (h(h-1( 'lfi)))(xi, ... ,xn)· 

Example 1.5.14. We like to show that x+y = y+x holds for R. A proof of 

this equation in B is the following: (B2' is the dual of B2) 

(x'Ay)V(xAy') = (xAy')V(x'Ay) = (y'Ax)V(x'Ay) = (y'Ax)V(yAx') . 
(B 2 '-) (B2) · (B2) 

By transformation we get the following 

Proof. 

x+y 7r + (((x+l) ·y)+(x· (y+l)))+(((x+l) ·y) · (x· (y+l))) 

= ((x· (y+ 1))+( (x+l) · y)+(((x· (y+ 1)) · ((x+l) · y)) 
li(B2') 

= ((y+ 1) ·x))+( (x+l) · y)+(((y+l) · x) · (x+l) · y)) 
li(B2) 

= ((y+ 1) · x)+((y· (x+ l))+(((y+l) · x) · (y· (x+l))) 
li(B2) 

= y+x 
7r + 

Theorem 1.5.15. Let A = (A,01) and B = (B,0 2) be of finite type and weakly 

isomorphic to one another. The equational theory of B is finitely based if and only if 

the equational theory of A is finitely based. 
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Proof. By lemma 1.5.6 we have that theorem 1.5.13 holds also in the case of a 

weak isomorphism. Furthermore if E1 is finite and the type of B is finite then li(E1) U 

{ 7rl.I) 1 w E 02} is a finite basis for the equational theory of B. 

Definition 1.5.16. A weak homomorphism h:A --1 B is called type-pre-

serving if the algebras A, B are of the same type. 

Notation 1.5.17. Let K be dass of algebras of type T. Let W(K) be the dass 

of all algebras which are images from algebras of K by type-preserving weak isomor­

phisms. 

Problem. Describe solid varieties with the class operators W. Can W replace 

the class operator D? 

Definition 1.5.18. A congruence relation (} of an algebra A is totally invariant 

if ( a, b) E (} implies (h( a) ,h(b)) E (} for every type-preserving weak endomorphism h o f 

A and every a,b E A. 

One observes that E ~ ld T is a solid theory if and only if E is a totally invariant 

congruence of F (X) [Schweigert 89]. 
T 

The closures with respect to the deduction rules (1) - (6) correspond to the properties 

of E as follows. 

Eis closed under (1) - (3) ~ Eis an equivalence relation on F (x) . 
T 

E is closed under ( 1) - ( 4) ~ E is a congruence relation 

Eis closed under (1) - (5) ~Eisa fully invariant conruence 

Eis closed under (1) - (6) ~Eisa totally invariant congruence. 
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§1.6 Types 

Let us consider two weakly isomorphic algebras A = (A, 0) and B = (A, 0). 

They have isomorphic clones T(A), T(B) on the set A. But these clones may.be ge-

nerated by different fundamental operations. The fundamental operations determine 

the identities. Therefore, the identities of A may appear very different from the 

identities of B. In this respect the type of a variety plays an essential role. 

Remark 1.6.1. Let V be a variety of type r. Let the type r be contained in the 

typeµ. Then the set H
7
(V) of hyperidentities of type r is contained in the set Hµ(V) 

of hyperidentities. of type µ. For the variety of semilattices SL one can present an 

increasing sequence of types 

µi ~ µ2 ~ ... ~ µi-1 ~ µi ~ ... 

such that there are hyperidentities in H .(SL) which cannot be implied by Hµi-i(SL) 
µl . 

[Penner 81]. 

Notation 1.6.2. Let Q = T be a hyperidentity of type µ. (*) Assume that we 

have hyperterms Ri, i l 1, of type r available such that any hypervariable of typeµ in 

Q = T can be hypersubstituted by hyperterms Ri of type r. The result of such a 

hypersubstitution (rule 6) is called hyperconsequence of type r from the hyperidentity 

Q = T of typeµ. 

Example. (Q = T): T(T(x,y,z),y,z) = T(x,y,z) is a hyperidentity of type 

(3). Consider R = F(G(x,y),z) a hyperterm of type (2,2). Then 

(M = N) : F(G(F(G(x,y),z),y),z) = F(G(x,y),z) 

is a hyperconsequence of type r from the hyperidentity Q = T of typeµ. 



-23-

Notation 1.6.3. If the assumption (*) holds we say that type r is compatible 

with typeµ. As the reader will observe this assumption it is usually fulfilled . 

Example. Consider the variety D of distributive lattices of type (2,2). Then 

the hyperidentity F(F(x,y),y,z) = F(x,y,z) is of type (3) and holds for all ternary 

terms of D. Obviously also every hyperconsequence M = N of type (2) holds in D. 

Theorem 1.6.4. Let V be a variety of type r and let r be compatible with the 

type µ. A hyperidentity P = Q of type µ holds for V i/ an only if every hyperconse­

quence M = N of type r holds for V. 

Proof. Let P = Q of type µ hold for V and let the hyperidentity M = N of 

type r be a hyperconsequence of P = Q. Then any hypersubstitution of the hyper­

variable yields an identity of type r which is also implied by P = Q and hence hold 

for V. M = N holds for V. Let every hyperconsequence of type r hold for V and let 

p = q be the result of hypersubstituting the hypervariables in P = Q by the appro­

priate terms . Transform p = q into a hyperidenty M = N of type r. Obviously 

M = N is hyperconsequence of P = Q and holds for V by hypothesis. Hence p = q is 

an identity for V. Hence P = Q is a hyperidentity for V. 

Remark. The above result shows that for variety of type, r it is sufficient to 

consider hyperidentities of type r. To consider a hyperidentity of other types for V 

may be useful as this hyperidentity may stand for an huge set of hyperconsequences 

of type r . Hence such a hyperidentity of type µ is a short notation for a set of hyper­

identities of type r. Again a hyperidentity of type r may be considered as a short 

notation for a possibly infinite set of identities of type r. This is one of the essential 

properties of hypetidentities. 
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Example. Consider the solid variety B of regular bands defined by 

xo(yoz) = (xoy)oz 

XOX =X 

(uox) o(yow) = (uoy)o(xow) 

B is of type (2). We add as an additional fundamental operation o with x o y = x 

and have B of type (2,2). This operation reflects the projection e~,e~(x,y) = x, and is 

contained in T(B) anyhow. Let B denote this variety of type (2,2) with T(B) = T(B) 

Statement. B is not solid. 

If B would be solid then F(x,y) = x would be a hyperidentity. Now e~(x,y) = y would 

imply x = y. B is an example of a variety which is equivalent to solid variety but is 

not solid itself. -on the other hand a reduct of a solid variety is solid. We call two 

varieties V, W equivalent if they can be generated by weakly isomorphic algebras. 

Problem 1.6.5. Let V be a variety. Under which conditions is V equivalent to a 

solid variety W? 

This problem can be considered as well from a syntactic point of view as from a 

semantic one. For the semantic point of view we have 

Theorem 1.6.6. If V is equivalent to a solid variety W then every subdirectly 

irreducible derived algebra A from V is weakly isomorphic to a subdirectly irreducible 

algebra C ofV. 

Proof. Let A = {A, ti,. „ ,tnj,. „ ) be a subdirectly irreducible derived algebra 

from V. A must be constructed from a algebra Ä of V. Then there is an algebra_ 

B = (Bi fi,„.,fnµ,„.) in W with a weak isomorphism h from Ä to B. We have ade-
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rived algebra B = (B,t~, ... , tnt'. „) where h describes the transformation of the 

operations into ti,„.,t ,„.,. We have that Bis weakly isomorphic to A. As W is solid nµ 
Bis a subdirectly irreducible algebra of W . Then there exist a subdirectly irreducible 

algebra C in V such Bis weakly isomorphic to C because W is equivalent to V. Hence 

A is weakly isomorphic to C. 

Definition 1.6.5. The solid envelope s(V) of a variety V is the smallest solid 

variety of the same type containing V. 

Another definition would be s(V) = HSPD(V). lt follows that s(V) is generated by 

the subdirectly irreducible derived algebras from V. From 1.6.4 we get 

Theorem 1.6.5. V of type 7 is equivalent to a solid variety W of some typeµ if 

and only ifV is equivalent to its solid envelope s(V) . 

§1. 7 Transforaations 

Definition 1.7.1. Let 7 be a given type and H( 7) be the set of all hyperterms of 

type 7. Let V be a variety of type µ and W(µ) be set of all terms of type µ. The 

mapping u:H( 7)---+ W(µ) is defined recursively 

u(xi) = Xi for every variable Xi 

u(F6(xi,„ .,xn) = t 6(xi,„.,xn) 

where to every n6-ary hypervariable F6 of type 7 an n6-ary term t 6 of type µ is 

assigned. u is then extended by the construction of hyperterms to H( 7). 

Example. Let F(F(x,y,z),y,z) be a hyperterm of type 3 and let t(x,y,z) 

= x A (y V z) be a term of type (2,2) of the variety of lattices. Then 
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a(F(F(x,y,z),y,z) = (x A (y V z)) A (y V z). 

If we consider the hyperidentity F(F(x,y,z),y,z) = F(x,y,z) then by a we get the 

identity 

(x A (y V z)) A (y V z) = x A (y V z) . 

Notation 1. 7.2. The mapping a in 1. 7 is called a ( r,µ)-transformation. 

Definition 1.7.3. A hyperidentity of type r holds in a variety of typeµ of every 

(r,µ)-transformation of the hyperidentity yields an identity which holds for V. (For 

r = µ compare Def. 1.1.2) 

Remark. For a given variety V we like to consider all hyperidentities of any 

type which hold for V. How has one to choose the hypervariables F6? A rough esti­

mate would be to have a fundamental hyperterm F6(xi, .. . ,xn6) for every term 

t 6(xi, ... ,xn6) for the variety. With this emde construction we may get a type which 

furthers us with all hyperidentities for V. An alternative is to consider a type which is 

the set of all ordered sequences. 

Definition 1. 7.4:. A type v is called a general type for a variety V if the set all 

hyperidentities for V is equivalent to the set of all hyperidentities of type v which holds 

forV. 

(Of course, two sets of hyperidentities are equivalent to one a~other if they can be 

derived by (1)-(6) from one another) . 

The general type can be used to present a completeness theorem which holds for hy­

peridenti ties of any type. In order to stress the semantic aspect one can use the 

following. 
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Notation 1.7.5. D /V) is the set of all algebras (A;(ti)id) of type v where ti 

are term operations of V of type v. D v(V) is called the derived variety of V of type v. 

One can say that a hyperidentity f of type v holds for V if and only if the set of 

transformations of f yields identities of D v(V). 

lt is up to the reader to reformulate and generalize some of the results from the 

section before. 



Part II Iterative hyperidentities 

§2.1 Iterative hyperidentities 

One can define operations on the set H( r) of all hyperterms of type r ( compare def. 

1.1.1) by the hypervariables F in the usual way. We call this algebra HT(X) of type r 

a hyperterm algebra generated by the variables x E X. 

As an example consider the hyperterm algebra HT(2) in 2 variables x,y and a binary 

hypervariable F for the variety of semilattices x,y 

F(x,y),F(y,x) (We have F(x,x) = x, F(y,y) = y) 

F(F(x,y),x), F(F(y,x)y) (We have F(F(x,y),y) = F(x,y), ... ). 

Here we use the hyperidentities as given in example 1.4.4. 

Some bit more formally we use the following 

Notations 2.1.l. Let V be a variety of type r. Let F be an n-ary hypervari­

able with respect to r. Then F(xi, ... ,xn) is called a fundamental hyperterm. The hy­

perterm algebra HT(V) is the set of all hyperterm for type r closed under the applica­

tion of all fundamental hyperterms as operations on the hyperterms. 

Let us denote the set of all fundamental hyperterms by FT(V). Obviously we have 

that for every map 

a: FT(V) -+ T(V) 

ß:(HT(V)-+ T(V) 

there exists an extension 

where ß is surjective. 
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Remark 2.1.2. If V is a solid variety then free algebra coincides with the 

hyperterm algebra of V. If V is not solid and if s(V) is the solid envelope of V then 

the free algebra of s(V) coincide with the hyperterm algebra of V. 

Problem 2.1.3. Determine the hyperterm algebra for the variety of your 

choice. 

Problem 2.1.4. Determine the hyperterm algebra in three generators x,y,z 

and the binary hypervariable F,G for the variety of modular lattices . 

Problem 2.1.5 If one can decide the equality of two hyperterms in a finite 

number of steps in the variety V, we say that the "hyperword problem" of V is sol­

vable. Let V be a variety with a solvable hyperword problem. Under which condition 

is the word problem of V solvable? 

Problem 2.1.6 Consider the reverse problem to 2.1.5. 

Example 2.1.7. Let :::::: D--1 be a symbol for an arbitary switching 

circuit realizing some Boolean function f: {0,1}2 ----1 {0,1} 

We have the hyperidentity F(F(F(x,y),y),y) = F(x,y) , which we will write in the 

short form 

F3(x,y) = F(x,y) 
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If we like to prove this in a syntactic way we have to list up all 16 Boolean terms 

x, y, x', y', x A y, x V y, x' A x, x V x', 

and check every term, for instance x A y 

( (X/\ y) f\ y) f\ y = X /\ y 

If we like to prove this in a semantic way one can proceed as follows. Consider the 

semigroup of polynomial functions of the algebra B = {0,1}; A, V,', 0, 1). This is the 

semigroup T 2 of all transformations on { 0, 1}. lt fulfills the semigroup identity 

(Transformations: 

We have 

popop = p or written in another way 

p3 = p 

f1(x) = x, f2(x) = 0, f3(x) = 1, f4(x) = x'. 

f3i(x) = fi(x), i =1,2,3,4.) 

In the following we will prove that any identity of the semigroup of polynomial func­

tions of an algebra A yields a set of hyperidentities for A. For instance for the 

Boolean algebra we would have 

F13(x) = F1(x) 

F23(x,y) = F2(x,y) 

F33(x,y,z) = F3(x,y,z) 

where Fi is a hypervariable of arity i, i = 1,2,3, .... 

§ 2.2 Iterations of functions 

Proposition 2.2.l. Let f:A --i A be a function, 1A1 = n. There exists a 

least number >.(f), (the index off} such that {>-< fl +t[A] = {>-< fJ [A]. 
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Proposition 2.2.2. Let f:A---+ A be a function, 1A1 = n. Then there exists a 

least number 7r(f) {the period off) such that f>-! fl +1\( fl =: f>-! fl . 

Proposition 2.2.l and Proposition 2.2.2 date back to Frobenius [Frobenius 1895]. 

Proposition 2.2.3. Let S be a semigroup of functions on A, 1A1 = n. Let 

f,g ES such that f>-!fl •1'!fl = f>-!fl and gA!gl ~!gl = gA!gl. Then we have 

hmax( .A(f),.A(g))+lcm( 7r(f), 7r(g)) = hmax{ .A(f),.A(g)} 

for every h E { f,g}. 

H ere lern ( 7r( f), 7r(g)) denotes the least common multiple o f the integers 7r( f), 7r(g). 

Definition 2.2.4. Let S be a semigroup of functions on A, 1A1 = n. 

As:= max {.A(f) 1 f ES} is called the index ofS. 

7rs: =km {7r(f) 1 f ES} is called the period ofS. 

We denote by F,G,H variables which stand for the functions f,g,h, ... in S. Obviously 

the functions in S fulfill the equation 

F.As+7rs = F.As. 

Definition 2.2.5. An equation Fr= Fs, r < s for the semigroup S is caUed 

irreducible if for every equation Fk = Fl , k < 1, which hold for S we have r 5 k and 

s 5 1. 

Obviously FAs+ns = FA8 is an irreducible equation for S. 
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Proposition 2.2.6. Let U be a subsemigroup of a semigroup S of functions on 

· A +7r A A +7r A A, 1A1 = n. For the equations F s s = F s and F u u = F u which are irre-

ducible for S respectively U we have that 

Au ~ As and 7ru divides 7rs . 

Proof by definition of the index and the period. 

Proposition 2.2.7. Let S be a semigroup of functions on A, 1A1 = n, let f E S 

such that 7r(f) = rt. Then there exists g E S with A(g) ~ A(f) and 7r(g) = t. 

Proof. We consider the cyclic group of perrnutations on Ar := f>.. < fJ [ A] 

which is generated by f/ Ar and we put g := fr. Now we have 

g>-< ri +t = frOd f) +tl = fr)d ri +rt = fr)d ri +1\( fl 

=f>..<fl+1'(fl+(r-1)>..(f) =f>..<fl+(r-O>..<rJ =fr>..<rJ =g>..<fl. 

Proposition 2.2.8. Let S be a semigroup of functions on A, 1A1 = n with the 

equation F>..s+ns = F>..s. For every prime power pm which divides 7rs there exists g E S 

such that g>..< gl +pm = g>..< gl. 

Proof. There exists a set {fi, ... ,fk} of functions such that 

7rs = lern{ 7r(fi) 1 i = 1, ... ,k }. Because of the definition of lern we have that pm divides 

7r{fj) for sorne j E {1, ... ,k}. Now we apply proposition 2.2. 7 to the function fj with 

7r{fj) = pm. s. 

Notation. -y(n) := rnax(lem(xi, ... ,xm)) denotes the maximurn of the least 

cornmon multiple of xi, ... ,xm of all partitions of n, n = x1+ ... +xm, rn = 1, ... ,n. For 

n = 1, ... ,301 the values of -y(n) can be found,in the table of [Nicolas], p. 187. 
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Theorem 2.2.9. Let f:A ---+ A, 1A1 = n. Then we have 

-y(f) ~ u(n--X(f)) . 

Proof. The order of the permutation f/ Ar where Ar:= P.< ri [A] is the least 

common multiple of the length xi, ... ,xm of m disjoint cycles representing the permuta­

tion [Hall 59]. On 1 Arl numbers every partition 1 Arl = x1+ ... +xm represents some 

permutation. The maximal order of these permutations is -y( 1Ar1 ) and hence we have 

1{n--X(f)) ~ '}\Ar)~ 7r(f). 

Corollary 2.2.10. -X(f) + 7r(f) ~ n-1 + 1{n--X(f)) . 

The above formula gives an useful estimate for the size of powers in a finite semi-

group of functions. Indeed we have -X(f) + 7r(f) "' 1{n--X(f)) for large numbers. 

The Transformation Semigroup of ~Finite set. 

For n ~ 1 let (n) be the set {0,1, ... ,n-1} . By Tn we shall denote the set of all trans­

formations of (n), 

Tn = {f I f:(n) ---+ (n) }. 

T n is a monoid with the composition pf transformations; its unit element is the iden-

tical transformation of (n). 

Let K{n) be the least common multiple of {1,2, ... ,n}. 

Theorem 2.2.11. Let k,l be two natural members, k > 1 > 0. Then fk = fl for 

all transformations f E Tn if and only ifl ~ n-1 and k = l(mod 11;(n)). 
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Proof. (Reis eher, Simovici) Let f be a fixed elemen t of T n. We shall consider 

the directed graph Gr = ( (n), Er) having (n) as set of vertices; the set of edges Er is 

given by Er= {(x,f(x)) 1 x E (n) }. Since the out-degree of each vertex x E (n) ~s 1, it 

is clear that Gf consists of oriented cycles to which trees may be attached by their 

roots. For instance the graph of the transformation f E T 8 given by the table 

fC X) 1 ~ 1 ~ 1 ; 1 ~ 1 ~ 1 ~ 1 ~ 1 i 
is presented here. Let b be the length of the longest attached branch. lf 1 ~ b, for any 

x f (n) b, fl(x) will be a vertex on a directed cycle. Therefore, if K(n) is the least 

common multiple of the cycle lengths we shall have fk(x) = fl(x), for all x f (n), if 

k = l(mod K). Varying the transformations we get the necessity of the statement. The 

proof of sufficiency is similar. 

3 

.. /\ .. 

§ 2.3 Monoids of polynomial functions. 

The following results are essentially from [Schweigert 79) 

Theorem 2.3.1. Let V be a variety generated by the algebras {Bi 1 i E I}. Let 

M(V) be the variety of monoids generated by {P 1(Bi) 1 i EI}. 

IfB is an algebra V then P1(B) is a monoid ofM(V). 
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Proof. Let A be an algebra of V and f:A -+ B be a surjective homorphism. 

Then f can be extended to surjective homorphism g:P 1(A)-+ P 1(B). [Lausch, 

Nöbauer (3.3.1)]. 

Let A = II Ai be a direct product then P 1(A) is isomorphic to a subdirect product of 
iEI 

P 1(Ai), i E 1 (Lausch, Nöbauer (3.4.1)). If Bis a subalgebra of A we consider the sub-

semigroup U of P 1(A)U ={'!/JE P 1(A) l 1fJ(x1) E B(x1]} where B(x1) is the polynomial 

algebra of B in the indeterminate x 1. Then U-+ P 1 (B) is a surjective semigroup 

homorphism. Therefore, P 1(B) is a isomorphic to a homomorphic image of a subsemi-

group of P 1(A) 

Under which condition on V does the reverse direction of the theorem 2.3.1. hold? 

Example 2.3.2. A lattice L is distributive if and only if P 1(L) is idempotent 

[Schweigert 75) . 

Example 2.3.3. Given the distributive lattice D = ( {0,1 }; A, V) we have the 

following equational base for P 1(D) 

p2 = p 

poqop=poq 

From these equations we can derive the following hyperidentities for the variety of 

distributive lattices . 

F(F(x1„.„xk),x2„ .. ,xk) = F(xi, .. „xk) 

F( G(F(x1„ .„xk) ,x2, ... ,x1) ,x2„ .„xk) = F( G(xi, ... ,x1),x2, ... ,xk) 

for every k,l E IN. If we consider hyperidentities of a fixed type (2.2) then we have 

k = 1 = 2. 
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Example 2.3.4. An equational base of the semigroup T2 of all transfor-

mations on the set {0,1} is given by 

x3 =X 

xyx2 = xy 

xy2 = yxyx 

Theorem 2.3.5. [Volkov] The semigroup T n of all transfo'rmation on an 

n-element set has no finite basis of identities for n ~ 3. 

Example 2.3.6. The semigroup Tn (n ~ 3) fulfills the identity 

xn - 1 y xn-2 = xn-1 y xn -2+K.( n) 

Theorem 2.3. 7. The following are equivalent for an algebra A. 

1) The monoid equation 

holds for P 1( A) 

2) The hyperidentity 

T ki T kn _ S hi S hm 1 o .. . o n - 1 o . . . o m 

holds for the variety HSP(A). 

Proof. Consider the monoid equation 

k1 kn _ h1 hm 
P1 o ... opn - Pn+l o . . . opn+m · 

lt follows that for every polynomial function Pi(x) which has some representation as a 

word Pi(x) = w(x,au, ... ,aik) aij E A, j = 1, ... ,k the above monoid equation holds. As 

the element aij can be selected arbitrarely from Aij we may substitute these elements 

formally by a variable Xij and the above monoid equations holds for every term func­

tion ti of any arity. Hence, we conclude that the hyperidentity 
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T~ 1 o ... o T~n = T~! 1o ... o T~~m 

holds for the variety HSP(A). Obviously also the reverse direction holds. 

Notation 2.3.8. A hyperidentity is called iterative if it is constructed by the 

iteration of hyperterms in a fixed variable Xi· Iterative hyperidentities are connected 

to semigroups. lt is not important in which variable Xi the iteration is executed but 

one cannot change the variable during the steps of iterations. 

Remark 2.3.9. The set of all iterative hyperidentities for a variety V of type 

r is closed under the rules (1), (2), (3), (6) and 

( 4') T = S implies F(xi, ... ,Xi-i,T,Xi+ti···ixm) = F(x11 •• ,Xi-i,S,Xi+li···,xm) for hyper­

terms T ,S f H( r) and an n-ary hypervariable F, i = l, ... ,m 

(5') T(x„ ... ,xn) = S(xi, ... ,xn) implies T(xn< t> , ... ,xn< n>) = S(xn< tl , ... ,xn< nl) for 

every permutation Il on {l, ... ,n}. 

A set ~ of iterative hyperidentities of type r is called a basis for the set of all iterative 

hyperidentities for a variety V if every iterative hyperidentity of type r of V can be 

derived by (1), (2), (3), ( 4'), (5'), (6) from 1: consider the example 2.3.3. 

§ 2. 4 Lattices and Abelian Groups 

We are considering the symmetric semigroup S of the 1-place functions on an n--ele­

ment set. The order of an element f E S is the least number k such that the elements 

of the cyclic subsemigroup {f,f2, ... ,fk} are different. We have fk+t = fm for some m 

with 0 < m ~ k and we put p = k+l-m. The least common multiple of two numbers 

u, v is denoted by lclll(u,v) and the maximum of two numbers u, v by max(u,v). 
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The following results are contained in [Schweigert 85). In this section we consider 

T(A) as the semigroup of term function of A with respect to composition in the first 

variable x1. 

Lemma 2.4.1. The semigroup equation cpg = cp5 holds for the semigroup 

T(N s) of all 1-place monotone functions of the lattice N 5. 

Proof. We consider the cases for all monotone functions f where the image of 

f consists of 1 Im f 1 = n eleinents. lf 1Imf1 = 1 we have f2 = f, if 1 Im f 1 = 2 we can 

have fg = f2, if 1 Im fl = 3 we have f4 = fg and if 1 Im f 1 = 5 we have again f2 = f. In 

the case 1 Im fl = 4 we consider two subcases. If Im f is a chain the:p. we can have 

f4 = f3. If Im f is not a chain then there are monotone functions f with fg = f. By Pro­

position 2.2.3 we have altogether that fg = f5. One notices that this also holds for con­

gruence preserving monotone functions. 

Lemma 2.4.2. The semigroup equation cpg = cp9 holds for the semigroup 

T(Mg) of all 1-place monotone functions of the lattice Mg. 

Proof. If 1 Im fl = 1 we have f2 = f, if ,Ilm fl = 2 we can have fg = f2, if 

1 Im f 1 = 3 we can have fg = f2 and if 1Imf1 = 5 we have the group of lattice auto­

morphism with f7 = f. In the case 1 Im fl = 4 there are functions with f4 = fg. Alto­

gether we have cpg = cp9 by Proposition 2.2.3. 

Theorem 2.4.3. The equation cpg = cp5 holds for the semigroup T(N 5) of the 

term functions of the lattice N 5. The clone equation cpg = cp9 holds for the semigroup 

T(Mg) of the term functions of the lattice Mg. 

/ 
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Proof. A function f:N 5 -+ N 5 is a polynomial function of N 5 if and only if f 

is congruence preserving and monotone [Wille]. Hence for the semigroup of 1-place 

polynomial function the equation r.p3 = r.p9 holds. By Lemma 4.1 in [Schweigert 83] 

this holds also for every term function of N 5 and hence for the clone of term functions 

of N 5• A function f:M3-+ Mais a polynomial function of Ma if and only if f is mono­

tone [Schweigert, 74]. Then by the same arguments the equation r.p3 = r.p9 holds for 

the variety T(M3) . 

Remark. Let T be a variety of semigroups with an equation r.pm = r.pm+k and 

S a subvariety of T with an equation r.pn = r.pn +s with n ~ m, s ~ k. By Proposition 

2.2.3 we conclude that s divides k. This consequence can be used to study varieties 

containing T(N 5) or T(M3). Especially neither T(N 5) generates a subvariety of 

HSP(T(Ma)) nor HSP(T(M3)) a subvariety of HSP(T(Ms)) . 

In [Schweigert 83] we have shown that a lattice L is distributive if and only if the 

variety T(L) of semigroups is idempotent, i.e. r.p2 = rp. 

Theorem 2.4.4. Let V be a non trivial variety such that in the variety 

HSP(T(V)) of semigroups the equation r.p2 = r.p holds. Then V is not congruence 

permutable. 

Proof. We assume that V is congruence permutable and consider the term 

p(x,y,z) with p(x,z,z) = p(z,z,x) = x. For r.p(x,y,z) = p(y,x,z) we have p(y,p(y,x,z),z) 

= p(y.,x,z) and therefore y = p(y,z,z) = p(y,p(y,z,z),z) = p(y,y,z)= z, a contra­

diction. 

Let K{k) denote the least common multiple of {1,„ .,k}. 
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Theorem · 2.4.5. Let V be an arithmetical variety such that cpn = cpm 

(m > n > 0) holds for the variety HSP(T(V) of semigroups. If A is a simple algebra of 

V then Ais finite, 1A1 5 n+l and K( 1A1) is a divisor ofm-n. 

Proof. A is local polynomially cornplete [Penner 81] and hence every per­

mutation 7r of the carrier set A is a local polynomial function. 7r cannot be of
1
order 

greater than m-n. Therefore A is finite and the order of 11" divides m-n. For 

A = { ai, ... ,ak} we consider the polynornial function 1/J defined by 1/J( ai) = ai-b 

i = 2, ... ,k and 1/J(a1) = a 1• We have ,,pk-1 = ,,Pk. Frorn this identity we have cpn = cpm 

only in the case n ~ k-1. 

Theorem 2.4.6. Let V be a congruence permutable variety such that cpn = cpm 

(m > n > 0) holds for the semigroup T(V). If A is a finite simple algebra and p is a 

prime number which divides 1 Al then p is a divisor of m-n. 

Proof. By a theorern of R . McKenzie A is either polynomially cornplete or 

affine [Pixley 77], p. 602. In the first case the theorem follows from 2.4.5, in ,the 

second case we know that Ais polynomially equivalent to a rnödule with p·x = 0. 

We consider the polynomial function 1/J(x) = x+l and have 'l/JP(x) = x, hence p 

divides m-n. 

Theorem 2.4.7. Jf G is a finite subdirectly irreducible abelian group then the 

equation ~ = cpn +pn < p-ll holds for T( G) with 1G1 = pn, p a prime number. 

Proof. Let 'l/J be a 1-place polynomial function of G. Then 'l/J is of the form 

m-1 m 
1/J(x) = atxk where G = (a) and 0 5 t, k 5 pn-1. We have ,,pm(x) = at< 1+k+··· +k J xk, . 
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Now we consider the following cases. lf k = 0 then 'lf{x) = at and we have 1fJ2 = 1/J. If 

k = 1 then 1fJm(x) = atmx. For m = pn+l we have (at)pn+1 = at and hence 1/JPn+1 = 1/J. 

lf k > 1 we consider two subcases. lf (k,p) = 1 then we have by Fermat 

k'PC pnl = 1 mod pn for the Euler function <p. We have also 

kipCpil)-1 
k-1 = l+k+· · · +k'PC pnl -1 = 0 mod pn. 

We conclude that 

tp(pil) -1) tp(pil) 
1/J'P< pnJ (x) = at< 1+k+" ' +k xk = at·ox = x. 

Hence we have 1/J't'< pnl +1 = 1/J. For the subcase k = ps·r with 1 ~ s < n we have 
m-1 m 1/JID(x) = at( 1+pSr+"'+(pSr) lx(pSr) . 

Here we have (psr)m = 0 mod pn for m ~ n-s. If we put m = n then we have 

1fJn = 1fJn+1. Altogether we have 1/J1 = 1fJ1+1, 1/J1 = 1fJ1+pn, 1/Jl = 1fJ1+ip< pnl and 1fJn = 1/Jll+l. 

By Proposition 2.2.3 it follows that 1fJn = 1/Jll+pnc p-o. 

Corollary 2.4.8. If G is a simple group of order p, p a prime number, then 
p2-p+1 

<p = <p holds forT(G). 

Theorem 2.4.9. Let V be a finitely generated variety of groups. Visa variety 

of abelian groups generated by simple groups if and only if <pil = <p holds for T(V) for 

some N E IN, n > 1. 

Proof. One direction is implied by Corollary 2.4.8. On the other hand if 

<pil = <p holds for T(V) then we have the equation [ x,y,„.,y] = [ x,y] because of the 

term function 'lf{x,y) = x-1y-txy = [x,y] . We show that every finite group of V is 

abelian. Let G be a minimal counter example. If G is simple then <pil = 'P holds only 

in the case that Gis abelian, otherwise G would be polynomially complete [Lausch, 

Nöbauer 73], p.41. lf N is a non trivial normal subgroup of G then by hypothesis 
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G/N and N are abelian and hence by [Hall 59], Cor. 9.2 .1 (p. 141), G is solvable. 

There are elements b E N and a E G such that [a,b] 'f e. Because G is solvable we 

have [a,b] E N ([Hall 59], Th. 9.2.l (p. 138)). As N is abelian it follows that 

e = [[a,b] ,b] = [a,b,b] = [a,b,„ .,b] = [a,b] a contradiction. We have still to show 

that V is generated by simple groups, but this follows from the proof of Theorem 

2.4.7. 

Theorem 2.4.10. Let (G;+) be a finite elementary abelian p-group and let 

End(G) be the endomorphism ring of G. The equation cpn = cp for some n E IN, n > 1 

holds for End(G) if and only if 1 GI = p. 

Proof. If 1G1 = p then every endomorphism 'l/J is of the form 'l/J(x) = kx, 

k = O,„.,p-1 as Gis a cyclic group and 'l/J(O) = 0. If k = 0, we have 'l/J2 = 'l/J and if 

k = 1, we have 'l/J2 = 'l/J. In all other cases 'l/J is an automorphism of order p, hence 

'l/JP+t = 'l/J. On the other hand assume that 'l/Jil = 'l/J holds and 1G1 = pn with n > 1. 

Consider G = (g1) + (g2) + „ .+ (gk) as a direct product of simple p-groups (gi) . 

The map f(g1) = g2 and f(gi) = e, i = 2, „. ,k can be extended to an endomorphism 

f:G --1 G. We have f3 = f2. Therefore an equation cpn = cp cannot hold for any n E IN, 

n > 1. 

In the following we use the notation of [Schweigert 79] . 

Theorem 2.4.11. Let (G;+) be a group of order p, p a prime number, and R 

be a subring o/End{G). Then the R-module Gis prepolynomially complete. 

Proof. The polynomial functions 'l/J:Gn --1 G are of the form 'l/J{xi,„. ,xn) 

= aix1+„.+anxn + an+i, where ai EG= {0,1 ,„.,p-1} . On the other hand every func-
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tion of this form is a polynomial function . We conclude that the clone P( G) of the 

polynomial functions of Gis the clone of all quasilinear functions on G = {0, ... ,p-1} . 

Hence P(G) is maximal and therefore G is prepolynomially complete as well as a 

group and a R-module. 

§ 2. 5. A cri terion of priaali ty 

Two semigroups A, B can be defined by different set Id A, ld B of semigroup identi­

ties if and only if A and B generate different varieties of semigroups. In this case one 

can find identities which hold for HSP(A) but not for HSP (B) and vice versa. We 

call these identities separating identities ( compare also 3.5). For an example consider 

(Schweigert 75]. 

The aim of this section is to find separating identities for the full transformation mo­

noid and their maximal submonoids. These identities yield hyperidentities by which 

we can characterize primal algebras. A lot of results of this section are due to 

(Denecke-Pöschel 1988 a, b.] 

Theorem 2.5.1. Let A be a finite set and let H be a proper subsemigroup of 

the full transformation semigroup HA on A. Then 

Var(H) ~ Var(H A). 

Proof. We give a sketch of the proof which in its main part is due to 

P .P.Palfy. We start with some known facts which can be proved by group theoretic 

methods. Let n = 1A1 and let H,S,P, resp., denote the operator of taking homorphic 

images, subgroups and direct products, respectively. 
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Fact 1. Let H be a semigroup, G a group (both finite). If G E Var(H), then 

G belongs to the variety generated by the subgroups (i.e. subsemigroups which are 

groups) of H. 

Fact 2. 

SnEHS(G2). Consequently, if SnEVar{GiliEI} (= HSP{GiliEI}), where 

Gi(i EI) are finite groups and I is finite, .then Sn E HS(Gi) for some i E 1. 

Fact 3. The subgroups Gof HA are of the following form 

G ~ { f E HA 1 Im f = Im e, ker f = ker e}, 

where e E HA is the identity element of the group G, in particular, e is idempotent 

(here andin the following e does not necessarily denote the identical function on A) . 

The mapping f Hf 1 m is an embedding of G into Slmf In particular we have 

1G1 ~ 1 Imfl! ~ n!. 

Now we can prove the theorem. Suppose His a proper subsemigroup of HA such that 

Var(H) = Var(HA). Without loss of generality we can assume that H is maximal in 

HA. Let {Gi 1 i EI} be the set of the subgroups of H. Since SA E Var(HA) = Var(H) 

we get from Fact 1 and Fact 2 that SA E HS(Gi) for some i E 1. Thus 

n! = ISAI ~ IGil and by Fact 3 (lGil ~ n!) we have ISAI = IGil· Consequently, 

SA = Gi, i.e. H contains SA. Since every f E HA with 1Imf1 = n together with SA gene­

rates all elements of HA, there is single maximal subsemigroup of HA containing SA, 

namely 

H =SAU {f E HA 1 IImfl ~ n-2} . . 

By 2.3, >.(f) ~ n-2 for all f EH. Thus, by 2.12a, H but not HA satisfies the hyperiden­

tity 'l/Jn-2(x) = 1Pn-2+x<n>(x), i.e. the semigroup identity xn -2 = xn-2+x<n>, in contra­

diction to Var(H) = Var(HA). 
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Before we proceed to the general case we will point out the methods. These methods 

were developed in [Reischer, Schweigert, Simovici] for the case A = {0,1,2}. 

Our starting point is the Slupecki criterion and Iablonskii 's list of the 18 maximal 

clones. Ultimately we wish to describe the maximal submonoids of unary operations 

by hyperidentities. For this it is enough to consider relations up to isomorphisms. 

Let (A;p 1) and (B;p2) be relational systems of the same type. A bijective map 

a:A -+ B is called an isom?rphism if 

Let Endp denote the set of unary operations preserving p. Let a be an isomorphism. 

Proposition 2.5.2. 

<Endp2,o>. 

The monoid <EndPl'o> is isomorphic to the monoid 

Proof. For f:A-+ A put / a)(x) = a(f( a-1(x) for all x E B. lt is almost imme­

diate that f-+ / a) is the required isomorphism. (This may be extended to 0 A and to 

clones preserving relations but we need only the particular form). 

Put in a form of Slupecki criterion: 

Theorem 2.5.3. Let A be a finite set and 1A1 > 2. The set X of operation on 

A is complete if and only if 

(i) X contains an essentially at least binary surjective operation and 

(ii) [X]< o = o< o (i.e. X generates all unary operations on AA.) 

Actually, Slupecki proved only sufficiency for f binary. There are several proofs 

and it has been generalized in several directions (the condition (ii) may be weakend 

to: [X]< 1l = M, where M may be the alternating group etc.). Four our purposes first 
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we replace [X)< 1l = 01 u by "[X)< 1l is not included in a maximal submonoid of 

<0< 1l ;o>", and then describe the maximal submonoids functionally. For the descrip­

tion of the maximal submonoids we use Iablonskii' 's list of maximal clones. lt is clear 

that the maximal submonoids are among the C < 1l where C is one of the 18 maximal 

clones. We eliminate 5 of them. The list is the following: 

Lemma 2.5.4. Let A = {O,l,2}. There are 13 maximal submonoids of 

<01 ll ,o>: 

1) The monoid { ax + b, a, b f A} o f linear functions 

2) The 3 monoids End {i,j} where 0 ~ i < j ~ 2 

3) The 3 monoids End ( 5) where ~ is a chain. ( = linear order) on A 

4) The 3 monoids End () is a non-trivial equivalence relation on A 

5) The 3 monoids Endpij where Pij = A2 {(i,j),(j,i)} (0 ~ i ~ j 5 2) 

(so called central relation). 

Proof. The monoids C< 1l with C maximal clone not on the list are: End{i} 

(i E A) and the monoid of seif-dual maps (i .e. maps satisfying f(x+l) = f(x)+l). The 

clone C of essentially unary or non-surjective operations has C < 1l = 0 l ll and so may 

be omitted. Let i f A then ff End{i} iff f(i) = i. lt is easy to see that ff Endpjk 

where {i,j,k} = A {indeed, if (a,b) f Pjk and a f b, we have a = i or b = i and so 

f{a) = i or f(b) = i, proving {f(a),f(b)) f Pjk hence End{i} ~ Endpjk) · Here Endpjk 

contains the constant j and so the inclusion is proper. Similarly, we prove that each 

seif-dual f is linear. Clearly f(l)+l = f(0)+2 hence f(x) = x+f{O) for all x f {0,1,2}, 

i.e. f is linear. The inclusion is again proper. We give a hyperidentity for all the above 

monoids. The monids of linear functions satisfies F2 = F. This can be verified directly 

(as for f(x) = ax + b we have f< n> (x) = anx+b(l+a+„.+an-t) where a7 = a and 

(l+a+„.+a6 = 1), and follows also from a more general result in [Schweigert 83) . 
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Note that a selfmap f of A does not satify f4 = f2 exactly if f(x) f {x+l, x+2}. Indeed 

if the diagraph of f is not a cyclic permutation, then it has at most a cycle of length 2. 

Suppose that it has a cycle of length 2, say {0,1 }. On the cycle clearly f4 and f2 agree. 

If f(2) / 2 then f2(2) f {0,1} and again f4(2) = f2(2) . If f has no cycle then f2(2) is a 

fixed point of f for each x f A and so f4 = f2. Now it suffices to verify that neither of 

x+l and x+2 belong to the monoids listed above in 2) - 5)(which is almost imme­

diate). Thus we are led to the following 

Theorem 2.5.5. Let 1A1 = 3 and let X be a set of operations on A. Then X 

is complete if and only if 

(i) X contains an essentially at least binary surjective operation and 

(ii} the fundament [X] c 1l satisfies neither F4 = F nor F4 = F2. 

Now we proceed to the general case. By e we denote the idenity map. 

Proposition 2.5.6. Let H $ HA be a subsemigroup such that the algebra 

<A;H> has a proper subalgebra with carrier B c A. Let 1 = max{.A(f) 1 ff H} and 

nB = max { 1 B j, 1 A \ B I}. Then 

Moreover 

HI= rpn-1= rpn-l+K.(n>,n= IAI. 

Proof. First consider the permutations f f H n SA. Since every such f preser­

ves the subset B (and consequently also A \B), the cycles of f have a length which be­

longs to {1 ,2, ... ,B} or {1,2, .. . ,IA\BI}. Thus f""(B) = e, consequently ft = ft+K.Cßl. 

Now let ff H\SA (i.e . .A(f) ~ 1). Then the permutation f = fjlm f>..Cfl on 1 =Im f>..<fl 

preserves the subsets B n 1 and (A \B) n 1. Thus 
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gK<n'l = e (n = max{IB n Il,IA\B) n II}), 

and we get 

f>. ( f) = gK ( n, ) ( f>. ( f) ) = p.. ( f) +K ( n I ) • 

Because of n' 5 nB we get f1 = f1+KC nßl by Lemma 2.1. Since 1 5 n-1, nB 5 n-1, again 

by 2.1. i t follows that also cpn-1 = ipn -1 +K( n -1) holds in H ( this however directly follows 

from 2.4(a), too). 

Proposition 2.5.7. Let H 5 HA be a subsemigroup such that the algebra (A;H) 

has a non-identical automorphism s ES A which consists of r cycles of length p ~ 2 

(n = IAI = pr. 15r5 n-1). Then 

Moreover 

H F ipn -2 = ipn -2 +K ( n ) . 

Proof. If f EH n SA then we have fKC nl = id consequently fr-1 = fr-1+KC nl. 1 

Now let f E H\S A' We will show that ,\(f) 5 r-1. At first we note that f maps every 

cycle of the permutation s onto a cycle of s. In fact, b = si(a) implies f(b) = f(si(a)) 

= si ( f( a)) f f( a) for 1 5 i 5 p-1. Since s has only r cycles ( of equal length p), we get 

Im fr-1 =Im fr. Consequently ,\(f) 5 r-1. By 2.4(a) and 2.1 we get fr-1 = fr-1+KC nl. 

Finally, since r-1 5 n-2, we get fr-2 = fr-2+KC nl for all ff H. 

Proposition 2.5.8. Let H be a semigroup o f HA ( n = 1 A 1 ) such that the alge­

bra (A;H) has a non-trivial congruence relation e. For B c A with 2 5 1B1 5 n-1 let 

eB be the equivalence relation with blocks (congruence classes) B,{c} (c E A\B) (i .e. B 

is the only non-trivial block). Then we have: 
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{1} If 0 is not of the form OB (B c A) then 

H F cpn -2 = cpn-2+K.( n J ; 

{2} If 0 = OB for some B c A, 2 ~ 1B1 ~ n-1. then 

H F cpn -1 = cpn -1 •K.! n -o' . 

Proof. (2): For f t: H\S A the indicated identity is fulfilled trivially. For 

ff H n SA' however, f preserves B since every permutation in H must map any block 

onto a block; thus H n SA satisfies the identity in (2). 

(1): For f t: H with >.(f) ~ n-2 (in particular for f t: H n SA) the identity in (1) is satis­

fied. If there were some function f t: H with >.(f) = n-1, then f should have the follow­

ing form . There is an a t: A such that a, f(a), . f2(a), ... , fn-1(a) = fn(a) are all the ele­

ments of A. Since f t: H preserves 0, every non-trivial block of 0 must be of the form 

{fi(a),fi•1(a), „. ,fn-1(a)} (i ! {l,2,„.,n-2). Consequently, 0 is of the form OB in contra­

diction to the assumption in case (1). 

We need the following result due to G. Rousseau. 

Theorem. A junction ff OA is Sheffer iffthe algebra (A;f) has no proper sub­

algebras, no non-identical automorphism and is simple. 

Theorem 2.5.9. (Denecke, Pöschel) The algebra (A;f) (ff 0 A) of prime 

power cardinality n is primal iff it satisfies none of the following hyperidentities: 

(i) 

(ii) 

cpn-1 = cpn-1+K.( n-1J 
1 

cpn-2 = cpn -2+K.( n J 
1 

(cp unary operation symbol) . lt is easy to see that n = 1A1 is a prime power iff 

a(n-1) i ~n). 
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Proof. If A = (A;f) is primal then HA= T(A). However, HA does not satisfy 

neither (i) nor (ii) (since K(n-1) :f: K(n)). Converesly, if Ais not primal, then, by 3.1, 

A has a proper subalgebra - and therefore satisfies (i) by 2.5 - or A has a non-trivial 

congruence - and therefore satisfies (i) or (ii) by 2. 7 - or A has a non-trivial auto­

morphism, say s. lf s consists of cycles of equal length, then, by 2.6, A satisfies (ii). 

Otherwise some power of s has fixed points. Since the fixed points of an auto­

morphism constitute a subalgebra of A, A satisfies (i) by 2.5. Consequently, if A is 

not primal then (i) or (ii) are satisfied. 

With computations of the same kind the following can be shown 

Theorem 2.5.10. An algebra A = (A;f) (ff 0 A, 1A1 ~ 2) is primal iff it does 

not satisfy the following unary hyperidentity: 

<p2cp11-2cp2C(ft1(x) = <p2cp11-2+K< nJ cp2cp11-1(x)·. 

Theorem 2.5.11. (Denecke,Pöschel) Let A = (A;f) be a finite algebra 

(1A1 ~ 2). Then A is primal iff it does not satisfy the binary hyperidentiy 

'1/Jil-2-2'1/JT '1/Jil2-~x2 ,x 1 ) = ~2-2+Kc n2J 'if;T ~-l(x 1,x2). 

where 

With the following concept these results can be seen from another point of view 

[Schweigert 89]. 

Definition 2.5.12. An equation Fr= Fs, r < s for the semigroup S is called 

irreducible if for every equation Fk = Fl, k < 1, which hold for S we have r ~ k and 

s ~ 1. 
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Notation 2.5.13. We call a hyperidentity of the form Fr = Fs, r < s for the 

algebra A = (A,O) irreducible if the equation Fr= Fs irreducible holds for the semi­

group T 1(A) of one-place term functions. In the following K(n) is the least common 

multiple of the numbers 1, ... ,n; K(n) = lcm{l, ... ,n}. 

Theorem 2.5.14. Let A = (A,O) be an algebra with an essentially at least bi­

nary surjective operation, 1A1 = n = pm, pm a prime power, A is primal if and only if 

(*) Fn-1 = Fn-l+K.( nl 

is an irreducible hyperidentity for A. 

Proof. (1) Let A be primal, A = {1, ... ,n} and g:A -1 A defined by 

g(x) = x-1 for x f 1 and g(l) = 1. Then we have .>i(g) = n-1 and hence 

.>i(T 1 (A)) = n-1. The permutation group on A has the exponent k(n) [Hall) p. 54 and 

hence ?r(T 1 (A)) K(n). We have that (*) is an irreducible hyperidentity. 

(2) Let (*) hold as an irreducible hyperidentity. Hence the hyperidentities 

(**) Fn-2+1dnl = Fn-2 and Fn - t+K.Cn -ll = Fn-1 

do not hold as K( n-1) < K( n) for n a prime power. By the above results of Denecke 

and Pöschel Ais primal. 

Remark. The results of Denecke and Pöschel are proved by Rosenberg's 

completeness theorem. One may ask whether one can find an elementary proof. 

lndeed this is the case for n = 2. 

Proposition 2.5.15. If (*) is irreducible then T 1(A) contains a cyclic permu­

tation of order pm. 
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Proof. Because of (2.2) we have function fi, ... ,fk such that K(n) = lern{ n{fi) 

i = l, ... ,k}. For the prime number n = pm we have a function f with 7r(f) = pm·s and 

hence by proposition 2.2.8 a function g with 7r(g) = pm. Now g is a permutation on 

Ag: = gA< gl [A) and therefore consists of disjunct cycles such that the lern of the 

length of these cycles is 7r(g) = pm. We conclude that g is a cyclic perrnutation on A 

consisting of a single cycle of length pm. 

Proof for the case n = 2. By the above proposition 2.5.15 all perrnutation of A, 

1 Al = 2, are in T 1(A) . Furthermore because of >.(T 1(A)) = 1 at least one constant 

function is in T 1(A) and hence both of them T 1(A) contain all one-place functions 

and A is prirnal. One should rnention that this also includes a proof for n = 2 of the 

result of Denecke and Pöschel as theorern 2.5.14 is equivalent to their results. 

§2.6 Algebraic aonoids 

Most results of this chapter are due to [Reiche!, Schweigert]. We consider the 

following 

Representation-Problem: Let M be a rnonoid and V be a variety. Is there 

an algebra A f V such that M is isornorphic to the monoid P 1(A) of 1-place poly­

nornial functions of A? 

Proposition 2.6.1. Every finite monoid is isomorphic to a submonoid of the 

monoid P 1(L) of the modular lattice Mn for some n, n ~ 3. 
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Proof. Consider Mn = {0,1,ai, .. . ,an} and the monoid K = {f 1 f:Mn-+ Mn, 

f( 0) _,f ( 1) = 1} of self-maps on the set a: Every such self-map i~ order-preserving and 

the monoid K is the symmetric monoid Sn. 

For n ~ 3 this lattice Mn is order-polynomialty complete [Schweigert 74] and hence 

Sn is isomorphic to a submonoid of P 1(Mn) · Every finite monoid is isomorphic to 

some submonoid of the symmetric monoid Sn for some n. 

The construction of proposition 2.6.1 is some bit crude. The monoid M may be a very 

small submonoid of P 1(Mn). In the following we present a construction which is 

rather tight. To prepare the proof of this result we need some constructions on 

graphs. 

Notation. End G denotes the monoid of endomorphisms of the graph G. 

End L is the monoid of order-endomorphisms of the lattices L. An order-endo­

morphism of L is a monotone function f:L-+ L. An order-endomorphism which pre­

serves 0 and 1 is called {0,1}-endomorphism of L. End{0,1} is the monoid of the 

{ 0, 1 }-endomorphism. 

Proposition 2.6.2. The monoid-End G of a simple graph G is isomorphic to 

the monoid End L of {1,0}-endomorphism of a lattice L constructed from G. 
{0,1} . 
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Proof. According to the above construction we define an embedding 

<p:G--+ L by cp{Pj) = Aj 

cp{ai) =Bi 

Let f f End G. Then we define a monotone function f' on L by 

f'(A.): = <p(f(P .)) 
J J 

f'(B. ): =cp{f(a. )) 
1 1 

f'(l): = 1, 

f'(O): = 0 

j = l, .. . ,p 

i = l, .. . ,q 

j = 1, ... ,p 

i = 1, ... ,q 

Obviously f' is monotone and preserves 0 and 1. On the other band for every 

{0,1}-endomorphism L we have an endomorphism of G and hence 

End G ~ End{O,l}L. 

Proposition 2.6.3. Every finite monoid is isomorphic to the monoid 

End{O,l}L of {0,1}-endomorphism of finite atomistic lattice L of height 2. 

Proof. According to [Hredlin Pultr] for every finite monoid M there exists a 

finite simple, undirected graph G such that the monoid End Gis isomorphic to M. 

Theorem 2.6.4. Every finite monoid is isomorphic to a submonoid of the 

monoid P i(L) of polynomial functions of finite atomistic lattice L of height 2. 

Proof. We consider the lattice L constructed above and add two special ele­

ments a,b to L such t~at for a,b the lower neighbor is 0 and the upper neighbor is 1. 

According to [Schweigert 74] L is an order polynomially complete lattice and hence 

every orderendomorphism is an unary polynomial function of L. Hence End{O,l}L is a 

submonoid of P 1(L). We consider the connected simple graph G presented in [Frucht 

50] with q vertices P i, ... ,P q and p edges ai, ... ,ap. To this graph G corresponds a 
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lattice L with p + q + 2 elernents 1 ,0 , Ai, ... ,Ap, Bi, ... ,Bq. The vertices are consid­

ered as the atorns Ai, .. . ,Ap of Land the edges are the upper neighbors Bi, ... ,Bq of the 

atorns. An elernent Bi is the join of at least two atorns narnely the vertices incident 

with this edge. We add a greatest elernent 1 and a least elernent 0 to have an 

atornistic lattice L of height 3. 

Definition 2.6.5. A monoid M is called algebraic if there exists an algebra A 

such that P 1( A) ~ M. A variety S o f monoids is algebraic if there exists a variety V 

such that S = HSP(T 1(V)). 

Example 2.6.6. 

algebraic. 

The variety W = {p2 = p; poq = p} of rnonoids is not 

Proof. Assurne that V is a variety with W = HSP(T 1(V)). Let A be a non­

trivial algebra frorn V. Then p 1(x) = x, p2(x) = a are two polynornial function of A. 

Obviously poq = p does not hold for p = p1 and q = p2. But if poq = p holds for 

T 1(V) it also holds for P 1(A) according to theorern 2.3.2. 

Problem 2.6. 7. Characterize the varieties of monoids which are algebraic. 

Problem 2.6.8. Given the variety V of your choice. Which are algebraic 

monoids for V? 
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§ 2. 7 The k-ary aonoids of tera operations 

For the algebra A the k-ary monoid Clonek(A) is defined in the following way. 

Clonek(A) consists of all maps F:Ak----+ Ak such that each component of Fis defined 

by some k-ary terms of the algebra A. 

· Especially Clonek(A) contains as components the distinguishe4 maps 

pf{xi,„.,xk) = Xj and hence the identity function E:Ak---+ Ak. Furthermore 

Clonek(A) is closed under composjtion. 

Clonek(A) is a submonoid of End Ak the monoid of all endomorphism. This section 

reports on results of Hyndman, McKenzie and Taylor on this topic. 

If A is finite, with 1A1 = n, then the monoid equation uN-l = uN-l+P holds in 

Clonek(A) where N = nk,and P = the least common multiple of all positive integers 

~ nk. 

In the following we search for equations of this form ( see [Hyndman, McKenzie, 

Taylor] and present values for some varieties. 

k=2 k=3 k=4 

sets N=l P=2 N=2 P=6 N=3 P=12 

semil a t ti ces N=2 P=2 N=5 P=6 N=lü P=12 

distributive N=2 P=2 N=5 P=6 N=lO P=60 
lattices 

modular N=2 P=2 N=5 P=6 ? 
1 at tices 

lattices N=2 P=2 CD CD 

'D.:rmodules N=2 P=6 N=3 P=4·3·7 N=3 P=4·3· 5· 7 

Sets N=3 P=12 N=5 P=60 N=7 P=8·3·5·7 

Boolean N=3 P=12 N=7 P=8·3·5· 7 N=15 P=24.32.5.7.11.13 
a lgebras 

lt is conceptually useful to have an alternative description of Clonek(A). 
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Lemma 2.7.1. For any algebra A and any k, the monoid Clonek{A) is dually 

isomorphic to the monoid End F v(k) of all endomorphisms of the free algebra F v(k) on 

k generators, for V = HSP A. 

Proof. If an element F of Clonek(A) is defined by the k-tuple of terms 

( q0, •. • ,qk-i), then there exists a unique endomorphism er of F v(k) that maps each free 

generator Xi to the term qi (considered as an element of the free algebra Fv(k)). We 

leave it to the reader to check that this is a bijective correspondence that reverses 

multiplication. 

In some of the subsequent sections, we will fix an algebra A and look for monoid 

equations w = w1 and positive integers k such that Clonek(A) satisfies w = w1
• Accor­

ding to the next corollary, we cannot - except in trivial cases - expect this relation 

to hold for fixed A, w and w1 as k -+ m. Here End k denotes the monoid of all 

self-maps of a k-element set. 

Corollary 2.7.2. lf A is any algebra of more than one element, and k ~ 1, 

then End k is dually isomorphic to a submonoid of Clonek(A). 

Corollary 2.7.3. Let the algebra A have more than one element. For any 

monoid equation w = w1 and any k >. 0, if Clonek(A) satisfies w = w>, then the dual 

of End k satisfies w = w1
• Thus, if Clonek(A) satisfies w = w1 for all k, then w = w'. 

Corollary 2.7.4. lf Ais an algebra of more than one element and Clonek(A) 

satisfies uM = uN, then N-M is a common multiple of all the positive integers ~ k. 
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Proof. Immediate from Corollary 2. 7.3 and the fact that End k contains per­

mutations of every order ~ k. 

Corollary 2.7.5. If Ais an algebra of more than one elernent and Clonek(A) 

satisfies uM = uN, then M = N, or N ~ k-1 and M ~ k-1. 

Proof. Immediate from Corollary 2. 7.3 and the fact that End k contains the 

function f such that f(O) = 1, f(l) = 2,„„f(k-2) = f(k-1) = k-1. 

Let L be a language. The terms of L are defined in the usual recursive manner as fol­

lows: 

(i) Each Vi (variable of L) is a term. 

(ii) lf a 0„.„a}(-1 are terms, then j Ff ak -l is a term for every i < k and every j ~ 0 

where j Ff is any k-ary operation symbol. 

In a context where j takes on only the value 0, we can simplify notation by writing Ff 

for oFf. 

[ w] f is now defined by recursion on the length of w as follows: 

(iii) [e]f = Vi. 

(iv) [ujwH = jFfEwn„.[wJt_1. 

Notice that, upon taking w to be e, [ujJf is defined by condition (iv) to be 

jFfvo.„Vk+ If, as in much of our paper, our monoid words w contain only the vari­

able u = uo, then [ w] f will contain only the operation symbols 0Ff = Ff. In this 

case, we can simplify the recursive definition, as follows: 

{v) [e]f = Vi. 

(vi) [uw]f = FfEwn„ . EwH_1. 

Lemma 2. 7 .6 is a generalization of the defining condition (iv), in the sense that if we 

take v = Uj in the lemma, we come back to condition (iv). In general, if ß is . a term 

whose variables are among v0,„„Vk-h and ao,„„O!k-l are any terms, then ß( a 0,„„0!k-t) 
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denotes the result of simultaneously substituting üi for Vi in ß (i = 1, ... ,k-1). The 

following two properties may be regarded as a definition of substitution (by recursion 

in the length of ß). 

(vii) Vi( ao, ... ,~-1) = üi (i < k). 

(viii) For any m-ary operation symbol F we have 

(Fßo ... ßm-1)( ao, ... ,~-1) = Fßo( ao, .. . ,~-1) ... ßm-1( ao, ... ,~-1). 

Lemma 2.6.6. For any monoid-theoretic terms v and w, 

[VW] f = [V] f [ [ W] ~, · · ·, [ W] ~ -1] · 

Proof. By induction on the length of v. If v is a single letter, then the proof 

may be left to the reader (it reduces to condition (iv), as we said above). Alterna-

tively, v = UjV', and we rriay calculate 

(2) 

(3) 

(4) 

(5) 

w[vw]f = [ujv'xJf = jFfEv'wg ... [v'wH_1 

= jFfEv'B( [wg,.„[wH-1] .. [v'H-1( [wg, .. ,[wH-1] 

= (jFH v'B··· [ v'H-1) ( [wg, .. . , [ w H-1 

= [ujv'Jf( [wg ... ,[w](1) 

= [v]f ( [wg, ... ,[wH-1] 

Here equation (2) holds by induction, equation (3) holds by condition (viii) in the de­

finition of substitution, equation (4) holds by condition (iv) of the recursive definition 

of [ w] f, and equation (5) holds by the given factorization of v. 

The next lemma concerns words w, w' in two letters f and g, and self-maps f and g 
of a set A. If w = h0h1h2 ... (with each hi either f or g), then w will denote the 

self-map llö · lli · li3 ... defined by composition of functions . (If w is the empty ward, 

then w denotes the identity function.) The lemma may be well known. 
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Lemma 2. 7. 7. Suppose that A is an infinite set, and that f, g:A --1 A are 

injective maps, with F = f(A) n g(A) a finite set. Then for any words wand w', ifw 

and w' have equal ranges, i.e., if w(A) = w'(A), then w = w'. Consequently, the maps 

f and g are free generators of a free monoid of self-maps of A. 

Let V be a variety and Fv(k) denotes the free V-algebra on k generators and Ck(V) 

the clone of Fv(k). 

Theorem 2.7.8. Suppose that V has only finitely many constant operations, 

and that F = F v(k) contains a subalgebra isomorphic to F = F v(2k). Then Ck(V) 

satisfies no nontrivial monoid equation. 

Proof. By Lemma 2.6.1., we may prove the theorem for the monoid End F 

instead of Ck(V). As we remarked above, it will suffice to find two functions f and g 

in this monoid that satisfy the conditions of Lemma 2.6. 7. Let B be a subalgebra of F 

that is isomorphic to Fv(2k). We let f map the k free generators of F bijectively to 

the first k free generators of B, and let g map the k free generators of f bijectively to 

the last k free generators of B. lt is clear that an element in the ranges of both f and 

g must be a constant; since there are only finitely many constants, and since f and g 

are clearly injective, we have satisfied the hypotheses of Lemma 14. Therefore End F 

contains a generic monoid. 

Let Ak denote the (for our purposes, unique) primal algebra of k elements. In the 

next theorem we will see that Clonek(Ak) and Clonek(Ak+i) do not satisfy the same 

equations (and hence that the varieties HSP Ak and HSPAk+t do not satisfy the same 

hyperidentities of the type [ w ~ w'] k). 
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Theorem 2.7.9. For each positive k, define N and P via N = kk and P = the 

least common multiple of all positive integers ~ kk . 

Then Clonek(Ak) satisfies uN-l =uuN-l+P, but Clonek(Ak+i) does not. 

Corollary 2.7.10. If A is a finite algebra of n elements, then Clonek(A) satis­

fies u~-1u 1u~-2 = u~-1u 1u~-2+P for N = kk, and P = the least common multiple of 

all positive integers ~ n. 

In [Taylor 81] is proved that the variety Sets [ m] can be separated from Sets [ m + 1] 

by a hyperidentity. We establish this same result with these methods. (V[m]) [k] is 

equivalent to V [ mk] for any variety V, and so this last monoid is isomorphic to 

C1(Sets[mk] ). We see that this monoid is dually isomorphic to the monoid of all 

self-maps of a set of mk elements. 

Theorem 2.7.11. Sets[m] satisfies the hyperidentity [uN-l = uN+P-l]k, 

where N = mk, and P = the least common multiple of all positive integers ~ mk. 

Theorem 2.6.12. lf A is a non-trivial vector space over a field K, and if 

k ~ 1, then 

the monoid ofkxk matrices over K. 

lt was proved that the order P of any kxk Boolean matrix T divides the least com­

mon multiple of the integers 2,3, „ .,k. lt was proved that the index N of T is 

~ (k-1)2+1. From these results, we have 
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Theorem 2.7.13. For any positive integer k, let P denote the least common 

multiple of all positive integers ~ k, and let N = (k-1)2+1. For the monoid Mk of 

Boolean matrices, we have 

At last we give results about some lattice varieties: 

Theorem 2. 7.14. The variety of modular lattices M satisfies the hyperidentity 

[u5 ~ u11] 3. 

Theorem 2.7.15. The variety of distributive lattices D satisfies the hyper-

zdentity [ u10 ~ u70] 4. 



Part III Hyperidentitities and clone equations 

§3.1 Clone of functions 

Most algebraic structures are connected to certain sets of functions. Bijective func­

tions give rise to the concept of permutation groups on A. If one abstracts from per­

mutation groups one gets the concept of an abstract group. From semigroups of func­

tions one proceeds to the concept of abstract semigroups. 

This conceptual development has not fully reached the sets of operations on set A. 

We consider the algebraic structure of sets of operations (i.e. function in several vari­

able on A) concerning composition and manipulation of variables and use the fol­

lowing definition of a clone ( closed set) of operations. 

Definition. Let H be a set of functions on A. The clone H = (H,*,(,r,Li,e) is 

an algebra of type (2,1,1,1,0) where the operations are defined in tlie.following way: 

(1) (f*g)(xi,.„,xm,Xm+i,.„,Xm+n-1) = f(g(xi, ... ,xm), Xm+li ···,Xm+n-1) for an n-ary funo­

tion f and an m-ary function g: 

(2) ( (f)(xi, ... ,xn) = f(x2, .. . ,xn,x1) for an n-ary function f, n > 1, ( (f)(x1) = f(x1) 

for any 1-ary function f: 

(3) ( rf) = (xi, ... ,xn) = f(x2,xi,x3, ... ,xn) for an n-ary function f, n > 1, ( rf)(x1) -

= f(x1); 

(4) (Lif)(xi, ... ,Xn-1) = f(xi,xi,x2 1 ••• 1Xn-t) for an n-ary function f, n > 1, 

(Lif)(x1) = f(x1); 

(5) e(xi,x2) = x1. 
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We like to !emark that any projection ei, ei (xi, ... ,xn) = Xi is generated and hence 

contained in any clone. The clone of all functions on the set A is denoted by 0 A. 

Definition 3.1.2. Let A = (A,n) be an algebra. The clone T(A) of the term 

functions of A is the subclone of 0 A is generated by the operations of A. The clone 

P{ A) of polynomial functions of A is the subclone of 0 A which is generated by the ope­

rations of A and the constant functions 

c~, a f A, n f IN, ca(xi, ... ,xn) = a . 

. There are several approaches to define "abstract" clones without relying on operati­

ons and give a presentation by equations. This includes I. G. Rosenberg, Malcev's 

preiterative algebra, Preprint Montreal 1976, I. G. Rosenberg, Malcev algebras for 

universal algebra term, Preprint Montreal 1989 and the work of Trkhimenko 1979. 

Furthermore a solution by W. Taylor is fulfilling all requirements within the frame 

work of categories. 

Additional remark. In some application, especially in other branches of 

mathematics, it is very useful to have the concept of a n-done. 

Definition 3.1.3. Let H be a set of n-place functions on set A. Then n-clone 

H = (H,o,(,r,ß,e) is an algebra oftype (2,1,1 ,1,0) where the operations are defined in 

the following way. 

{1) {fog)(xi, ... ,xn) = f{g(xi, ... ,xn),x2, ... ,xn) 

{2) { (f){xi, ... ,xn) = f{x2, ... ,xn,x1) 

{3) ( rf)(xi, ... ,xn) = f(x2,xi,x3, ... ,xn) 

( 4) (ßf)(xi, ... ,xn) = f(xi,xi,x2, ... ,Xn-1) 

(5) e(xi, ... ,xn) = X1 
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§3.2 Clone equations and hyperidentities 

In our approach to the notion of an "abstract" clone we introduce the "clone with 

arity" . 

Definition 3.2.l. Let H be a set of functions on A. The algebra 

H = (H;*;e,-r,Li,e,on (n f IN)) of type (2,1 ,1,1,0,1, ... ) is called a clone with arity where 

the operations ,e, -r,Li,e are defined as in 1.1 and the operations an are defined by 

6) (onf)(xi, .. . ,xn) = f(xi, ... ,xk) if f is a k-ary function with k ~ n and 

(onf)(xi, ... ,xn) = f(xi, ... ,x1x2, .. . ,xn) iff is a k-ary function with k > n. 

The def 3.2.1 is equivalent to the def 3.1.1 in the sense that every function (onf) can 

be generated by *,e,-r,e. lf f is a k-ary function with k ~ n we consider e~ * f which 

gives (e~ * f)(xi, ... ,Xm-k+1) = e~(f((xi, ... ,xk),xk+li· ··,Xm-k+1). For m = n+k-1 we have 

Dn = (e~ * f) . lf f is a k-ary function with k > n we apply Li(k-n) times and we get 

Dnf = (Lik-nf). 

Equations which hold for variety of clones are called clone equations. We denote the 

variables in these equations by X,Y,Z,Xi,X2,X3, .. . ,. We are considering the following 

example Li(o2X) = e. Obviously this clone equation holds for every term function of a 

lattice. 

This clone equation Li(o2X) = e yields the hyperidentity F(x,x) = x which holds for 

any lattice. On the other hand we get from the hyperidentity 

G(G(x,y,z),y,z) = G(x,y,z) 

the clone equation 

D3X * D3X = D3X. 
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3. 2. 2 Principle of clone equations . 

1) Every clone equation for a clone T(V) of terrn functions can be translated 

into a hyperidentity or a set of hyperidentities for V. 

2) Every hyperidentity for V can be translated into a clone equation arity 

operators Dn. 

There is an irnportant step between the observation that the unary functions on a set 

obey the laws of a sernigroup and the abstract notion of a sernigroup itself given by 

axiorns. This step cannot be done for clones in the sarne way. The infinte set of 

axiorns which are suggested in the following are presented only for a further discus­

sion of this problern. 

Axioms: 

Al ( X* Y)(( m+n-l ( m+n-}) _ X( Y(( m+n-1 m-n-1) m+n-1 m+n-1) Dn . Dm el , ... , em+n- - Dn Dm em , ... ,em ,em+l , ... ,em+l 

A2 (e(DnX))(eY, ... ,eR) = DnX(e~, ... ,eR,eY) E IN\{1} n,rn EIN 

A3 (r(DnX)(eY, ... ,eg) = DnX(e~ 1eY,e~ 1 ••• ,eg) n E IN\{1} 

A4 (b.(DnX))(ey-1, ... ,eR:l = DnX(e~,eY,e~, ... ,eR-1) n E IN\{1} 

A5 e(D1X) = r(D1X) = l1(D1X) = DlX 

A6 Dm(DnX)((e1, ... ,em) = DnX(e1, ... ,e~) n EIN for n ~ rn 

A7 Dm(DnX)((e1, ... ,e~) = DnX(e1, ... ,em,em, ... ,em) n,rn EIN for n > rn 

AS DnX(eY, ... ,eR) = DnX, n EIN 

A9 e~(DnX),en = DnX, n E IN. 

Remark 3.2.3. We have used a lot of abbreviations for these axioms. e~ for 

instance is generated frorn the nullary operation e contained in every clone. For the 

construction one uses the operation Dn and a perrnutation which effects the exchange 

· of the 1 st place with the i th place. Also the various kinds of cornposi tions like 
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DnX( e~ ,„. ,e~) are thought as an abbrevation. The description of this by the substitu­

tion *' the permutations e, Tand the other Operations is to lengthy. Of Course an axio­

matization of clones should fulfill similar requirements as abstract semigtoups do for 

semigroups of functions. 

Theorem 3.2.4. Let C = (C;*,e,r,Ll,e,o,n(n EIN)) be an algebra fulfilling the 

above set of axioms. C is isomorphic to a clone of functions if the following conditions 

hold: 

a} There is a least natural number n such that DnX = X for every X E C 

b} ej t e~ for all i,j E IN with i t j. 
J 

Proof. To construct a clone of functions we take as a carrier set 

A = {Z 1 Z E C}. To every XE C with a least natural number n for DnX = X we de­

fine a function f
1

: An-+ A by fx(Z 1,„.,Zn) = X(onZi, ... ,onZn). Furthermore we con­

sider F c = {f
1 

1 XE C} as a clone of function on the set A. The map a:C-+ F c is 

defined by a(X) = f
1 

and we have to show that a is a clone isomorphism. a is injec­

tive because for f
1

= fy we have 

X= X(e~,„.,e~) = f(e~,„.,e~) = fy(e~,„.,e~) = Y(e~,„.,e~). 

a is compatible with * if f
1 

* fy = fx*Y holds. If f
1 

is n-place and fy is m-place we 

have 

f * f ( m+n-1 ( m+n-l) X y e l , „ . , em +n -

- f (f (em+n-l em+n-l)em+n-l em+n-l) (FC is a clone of functions) - X y l , „ ·, m m + l , „ ·, m +n-

= 00X(omY(e~•n -i,„ . ,(e~•n- 1),(e~!~-1 ,„.,e~:H:l) (by definition) 

X * Y{ m+n-1 m+n-l) =On Dm e1 . ,„.,em+n-

_X* Y( m+n-1 m+n-1) - e1 ,„ .,em+n-

_ f ( m+n-1 m+n-1) - -X*Y e1 ,„.,em+n-

(by axiom scheme Al) 

(by hypothesis) 

(by defini tion) 
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We proved f * f = f * only for some special elements of A. But it is easy to see 
X Y X Y 

that it holds also for all the other elements if one uses composition and (Al). The 

other Operations like e, T 1 etc. we get in a similar way. 

Comment. lt is impossible to give an axiomatization of a clone with the 

property that the models of the axioms are precisely the clones isomorphic to concrete 

clones. The reason for this is that condition a) of the theorem 3.2 is not preserved 

under ultraproduct constructions. 

Rema.rk 3.2.5. Every subclone D of a clone of functions on a set is again a 

clone of functions . This holds because the elements of D as a subset of C are functions 

which are closed under the operations of a clone. 

Rema.rk 3.2.6. A countable power of a clone C of finitary functions gives 

rise to a clone which contains infinitary functions. For this consider 

cm= {(f1,f2,f3, ... ) 1 fi E C, i = 1,2,3, ... }. The sequence (el,e1,et ... ,) with 

ei(xi, ... ,xi) =xi, i = 1,2,3, ... can be considered as a function but of infinite arity. 

Rema.rk 3.2.7. Not every homorphic image of a clone of functions is again 

isomorphic to a clone of functions . Already A.I. Mal'cev has found the following clone 

M = { c,a,a2,aa, ... } where one defines ak * at = ak+1, c unit, ea1 = at, rat = at and 

ilal = al \i for k,1,n E N. This clone comes up when a clone of functions is factorized 

by the congruence relation K. We have (f,g) E Kif and only if the arity of f is equal to 

the arity of g. This equivalence relation is compatible with the Operations *' e, T, Ll 

and hence a congruence relation (in the sense of universal algebra). Whereas M is yet 

isomorphic to the clone of functions of the one element set, this is not the case for 
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H = { c} which is homorphic image of M, yet is not isomorphic to the clone of func­

tions of any set . 

Finally we like to pose the following problem and ask for an improvement of the so­

lution presented above. 

1) Problem 3.2.8 Describe a variety C which contains (properly) the clones of 

function as algebras. 

2) The variety C should be axiomatized by a few identities or schemes of 

identities. 

3) The part of identities of C which correspond to hyperidentities should be 

clearly presented. 

4) The subclass of algebras of C which correspond to clones of functions should 

be clearly presented. 

§3.3 Varieties generated by clones of polynoaial functions 

In the following we consider the clone P(A) of polynomial functions of an algebra A 

but the results also hold for the clone T(A) of term functions . 

Proposition 3.3.1. Let f:A--+ B be a surjective homomorphism from an 

algebra A onto an algebra B. Then there is a surjective clone homomorphism from 

P(A) to P(B) (or respectively from T(A) to T(B)). 

Proof. We define a :P(A)--+ P(B) recursively by a(c~) = c{<a> for every 

constant function C~, and a(ei c Al)= e~< ßl for every projection er, ey(x 1„ .. ,xn) =xi, 

on A. Every polynomial function cp E P(A) has a representation by a word. Obviously 
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we can extend the definition a to cp using this word. But a does not depend on the 

choice of this word and hence is weil defined. We also have that a is surjective be­

cause to every word of the polynomial algebra B [x1,.„,xn] there is a corresponding 

word of A[xi,„.,xn]. Clearly a preserves the operations of a clone. 

Proposition 3.3.2. Let A = TI Ai be the direct product of a family 
i E 1 

{Ai 1 i EI} of algebras of the variety V. Then P(A) is isomorphic to a subdirect prcr 

duct {P(Ai) 1 i EI}. 

Proof. We consider the projections prA--+ Ai which are surjective homo­

morphisms from A onto Ai. By proposition 3.2.1 we have that arP(A)--+ P(Ai) are 

surjective clone homomorphisms. We consider TI P(Ai) and the function 
i E 1 

y.P(A)--+ TI P(Ai) defined by Pi( 1( cp)) = ai( cp). We have that 1 is a clone homo-
i E 1 

morphism because of ~i· Let 1(cp) = 1(7/J) for some cp,7/J E Pn(A). If r.p(a 1„„,an) 

/ 'lf{ai,„.,an) for some ai,.„,an E A then Pj( r.p(ai,„.,an)) / Pj( 7/J(ai,„.,an)) for some 

j E 1. We have aj( cp) / aj( 7/J) and hence 1( cp) / 1( 7/J). lt is clear that 1(P(A)) is a 

subclone of TI (Ai). 
i E 1 

Proposition 3.3.3. Let B be a subalgebra of A. Then P(B) is isomorphic to a 

homomorphic image of a subclone of P(A). 

Proof. If B is a subalgebra of A we consider the clone of polynomial functions 

P = { cp I cp E P(A), r.p(xi,.„,xn) E B [xi,.„,xn]} where B{xi,„.,xn] denotes the polyno­

mial algebra of B. lt is clear that a:P--+ P.(B) defined by a(cp) = cp/B is a surjective 

clone homomorphism. On the other hand Pisa subclone of P(A). 
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All the above results also hold for the clones T(A) of term functions . 

Theorem 3.3.4. Let V be a variety and W = HSP(T(V)) the variety of clones 

generated by T(V) . If A is an algebra ofV then T(A) is in the variety ofW of clones. 

An example of applica.tion is 

Proposition 3.3.5. Let V be variety of lattices. V is the variety of distributive 

lattices if and only i/02x o D2x = 02x(F2(x,y) = F(x,y)) hold for the variety -

W = HSP(T(V)) of clones. 

§3. 4. Proj ection algebras 

Let A = (A,n,) be an algebra of type (ni, ... ,n6, ... ,). Then P = (A,{e\} i EI) with 

ei(xi, ... ,Xni) = x1. I = {ni, ... ,n6, .. . } is a derived algebra from A. If A has at least an _ 

n-ary operation with n ~ 2 then every projection is generated. 

Definition 3.4.1. P = (A; n) is called a projection algebra if every operation 

of P is a projection. 

If we have to test whether a given hyperidentity • holds for an algebra A we also 

have to test whether • holds for the projection algebras P. 

Let V be a variety then the trivial subvariety defined by x = y is a solid subvariety. 

We present here some results on the phenomena that there are a lot of varieties which 

have only trivial solid subvarieties [Denecke, Lau, Pöschel, Schweigert] 
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Proposition 3.4.2. Every congruence modular variety has only a trivial solid 

subvariety. (In particular, if it is not trivial then it is not solid). 

Proof. Let V be a non-trivial solid variety. Then V contains all projection 

algebras of the same type. The congruence lattice of a projection algebra 

P = (Aj, ei, i f I) is the lattice of all equivalence relations on A. For 1A1 ~ 4 this 

lattice is not modular anymore. 

Proposition 3.4.3. Let A be an algebra such that T(A) contains a constant 

function. Then HSP(A) has only a trivial solid subvariety. 

Proof. For t.his constant term function t(xi, ... ,xn) = a we would have 

d(x) = t(x, ... ,x) = a and hence d(x) = d(y) which is never satisfied in a non-trivial 

projection algebra. 

Instead of testing a hyperidentity by projection algebra one can take also a syntacti­

cal point of view. Every valid hyperidentity can be derived from hyperidentities of 

projection algebras. Hence we like to present a hyperidentity basis for projection alge­

bras. Misusing the language we call the variety of type T generated by the projection 

algebra of type T the variety of projection algebras of type T (compare 3.2 .-5 - 3.2.7) . 

Notation 3.4.4. For n ~ 1 let r (n) consist of n-ary hyperidentities 

F(x, ... ,x) = x 

F(F(x111 ••• ,X1n), ... ,F(xni, ... ,Xnn)) = F(xu, .. . ,Xnn) 

Theorem 3.4.5. For n ~ 1 r(n) is a basis for all hyperidentities of type (n) 

· for the variety of projections algebras of type (2). 
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Notation 3.4.6. 

M(n,m): 

F( G(x11, ... ,X1m), .. . ,G(xnli·· .,Xnm) = G(F(xu, ... ,Xn 1), ... ,F(x1m 1 ••• ,Xnm)) 

Theorem 3.4.7. r(n) U {M(n,n)} is a basis for all hyperidentities of type 

<n,n,n, ... ,> of the variety of projection algebras. 

Example. F(x,G(y,z)) = G(F(x,y),F(x,z)) is a valid hyperidentity (it holds 

for the variety of lattices ). Consider 

r(2) U {M(2,2)}F(x,G(y,z)) = F(G(x,x),G(y,z)) = G(F(x,y),F(y,z)). 

rl2) Ml2) 

Fact. If a hyperidentity holds from some variety then it can also be derived 

by the hyperidentities which hold for the variety of projections algebras. 

Theorem 3.4.8. Let r = U (n) U U {M(n,m)). Then r is a countably in-
n~l n~l 

n~l 

finite basis for the hyperidentities of any type for the variety of projection algebras. 

Theorem 3.4.9. The hyperidentity of any type for the variety of projection 

algebras are non-finitely based. 

For all these results we have omitted the proofs. Knoebel has shown that the variety 

RB of rectangular bands is generated by the projection algebras (A,eD and (A;e~). 

Therefore the variety RB of rectangular bands satisfies a hyperidentity S = T if and 

only if S = T can be derived from the hyperidentities of the variety of projection alge-
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bras of type (2). Obviously (RB) is the minimal (non-trivial) solid variety of type 

(2). 

In §3.5 we are presenting the results of S. Wismath on hyperidentities of the variety 

RB of regular bands. The above hyperidentity bases are given and the theorem that 

the hyperidentities of any type are not finitely based is proved. 

Remark 3.4.10 Let r = (no1: •• ,n6„„) be a type with no > 1, ... ,n6 > 1, ... 

There exists only one minimal solid variety of type r namely the variety of projec­

tions algebra of this type. These varieties are also described in the work of Plonka 

[66]. 

§3 .5 Hyperidentity bases for rectangular bands 

The results of this section are due to S. Wismath [Wismath 91] if not quoted other­

wise. 

We have already recognized that every hyperidentity S = T of variety V has also to 

hold for the variety of projection algebras of the same type. Knoebel has shown that 

the variety RB is generated by the dass of all projection algebras (A;ei) and (A;eD. 

Lemma 3.5.1 {Penner 84} The vari.ety RB of rectangular bands satisfi.es the 

hyperidentity S = T if and only if S = T can be derived from the hyperidentities of 

the variety of projection algebras of type (2). 

Besides the notations of section 3.4 we use the following: 
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Notations 3.5.2 

H(V) 

Hm(V) 

Hn(V) 

H(V)(n) 

H(V)(~) 

set of all hyperidentities of any type satisfied by the variety V. 

set of all hyperidentities in H(V) with at most m hypervariables. 

set of all hyperidentities in H(V) with at most n variables. 

set of all hyperidentities in H(V) with hypervariable of type (n,n,n, .. ,n) 

(lc-facfors ). 

set of all hyperidentities in H(V) with hypervariables of type (n,n,n .. . ) 

(infinetely many factors). 

Lemma 3.5.3. The variety RB of rectangular bands fulfill r(n). 

We have already seen that both hyperidentities hold for projection algebras. The se­

cond hyperidentity essentially says that variables in a type (n) hyperidentity for RB 

which are nabp (!!.ot ~ccessible QY Erojections) may be eliminated. This is perhaps 

more clearly seen in the equivalent set of n+l hyperidentities 

F(x, ... ,x) = x 

F(F( x 11, ... ,x 1n) ,x2, ... ,xn) = F( X 11,x2, ... ,xn) 

F(F(xi, ... 1Xn-1),F(xnli···iXnn)) = F(x11 ••• 1Xn-1JXnn) 

For the case (n) = (2) the associative hyperidentity F(x,F(y,z) = F(F(x,y),z) can be 

derived from r(2). 

Theorem 3.5.4 For n ~ 1, r(n) is a basis for all hyperidentities of type <n> 

of the variety RB of rectangular bands. 

lt will sometimes be useful to consider hyperterms concerning their formation tree. 



-76-

Example. ( G(x,y ),F(z,u,H(x,y) ),H( t,z)) 

\~1/.~ 
F/H 

Formation tree 

In particular, if x is a variable of a hyperterm, we record the sequence of hypervari-

ables and turnings in the path in the tree from the root to the variable x, in the string 

of x. In our example the second occurence of x is recorded as (F2,F3,Hl,x) . The 

height of a variable y is the number of not necessarily distinct hypervariables in its 

string. The height of a hyperterm is the maximum of the heights of its variables. The 

above hyperterm is of height 3. 

Proof. Let P = Q be any hyperidentity satisfied by RB. If P and Q both con-

sist only of a single variable Xi, then P = Q must be trivial. Thus we will assume that 

at least one of P or Q involves at least one occurrence of the hypervariable F. Now 

there is a unique hyperterm P*(Q*) of height 1, such that r(n) 1- P = P*(Q = Q*). 

For if P involves no occurrences of F, use the idempotent hyperidentity from r(n) to 

introduce one occurrence of F; if P involves more than one occurrence of F, use the 

two hyperidentities in r(n) to eliminate all but one occurrence of F. 

Since RB I= r (n), we have RB I= P* = Q*, and P* = Q* must model projections. 

But by definition all variables in P* = Q* are abp, so P* = Q* must be trivial . 

Therefore r(n) 1- P = Q, as required. 

We will prove that r(n) is a basis for hyperidentities of type (n,n) of RB by means 

of two lemmas. The first one deals with the Special case of hyperidentities in which all 

variables are abp, the second one shows how any hyperidentity may be reduced to one 

of this Special kind using r (!!). 
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Lemma 3.5.5. If P = Q is hyperidentity of type (n) for the variety of pr<r 

jection algebras and has all variables accessible by projection then 

{F(x, ... ,x) = x,M(n,n)} 1- P = Q. 

Proof. If P = Q has the form F(-) = x, then the condition that all variables 

are abp ensures that all variables in F(-) are x's, so that P = Q is a consequence of 

idempotence. Hence we my now assume that .P = Q has the form F( ) = G( ). Again 

by the abp condition, after the first occurrences of F at the root of P, there can be no 

further F's in P. Moreover, if F t G, we may assume that every branch in P contains 

exactly one occurrence of G, since more than one G would lead to variables nabp, 

while if a branch has no G's we can always inflate the final variable on the branch, x 

say, into G(x, ... ,x) using the idempotent hyperidentity. 

Using the observations, we proceed by induction on the height of P = Q. Any hyper­

identity of height 1 meeting these conditions must be trivial, so we begin with height 

2. Then P = Q would look like 

F(H1(x1), ... ,Hn(xn)) = G(K1(Y1), .. . ,Kn(Yn)), 

where Xi and Yi, 1 Si S n, represent n-tuples of variables. If F and G are the same 

hypervariables, we subsitute for F the n-ary projection terms, to obtain n new hyper­

identities Hi(xi) = Ki(xi) of height 1, which must then be trivial . Thus P = Q is tri­

vial in this case. If F t G, the observations above show that we must have Hi= G 

and Ki = F, for all 1 Si S n, that is, P = Q is actually M(n,n). 

Now consider P = Q of height k > 2. If Q also has the form F(-), we use the n pro­

jection terms to reduce to n hyperidentities of height k - 1 with the same properties. 

Then, P = Q is a consequence of these, so by induction, M(n,n) and F(x, ... ,x) = x 

yield P = Q. So we now suppose Q has the form G(-), where G t F. We give a proce­

dure for forming a new hyperterm P* from P. As above, every branch of P must con-
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tain exactly one occurrence of G. For each such branch, count the number of hyper­

variables other than G occurring on the path from F to G. Choose any such G where 

this number is maximal, say p. Now go back along the branch of this G to the pre­

vious hypervariable, say H. Each branch coming out of H must contain an occurrence 

of G, and by maximality of p these occurrences must also be at height p. So this part 

of P looks like H(G(-), ... ,G(-)), and we can use the medial identity to change it to 

G(H(-), ... ,H(-)). In this new identity, we repeat this process, first with any remain­

ing G's at height p, then with G's at lower height. Eventually we reach a new hyper­

term P* of the form G(-), such that M(n,n) 1- P = P*. Now then hyperidentity 

P* = Q still models projections and has all variables abp, and it has the form 

G( ) = G( ), so by earlier case it is a consequence of M(n,n) and idempotence. Thus 

M(n,n) and idempotence yield P = Q, as required. 

Lemma 3.5.6. For any hyperterm P there is a hyperterm P* with no vari­

able which are not accessible by projection ( napb) such that r (n) 1- P = P*. 

Proof. Obviously if P· has no variables nabp, we may take P* to be P. We 

show how the hyperidentities in r<~> must be used to eliminate any variable x nabp 

in P. For any such variable x, there is a hypervariable F and induces 1 :/: j(l ~ i,j ~ n) 

such that the path form the root of P to x involves first Fi, then Fj. 

lf the two occurences of F are adjacent, then apart of P looks like 

-F(-,F(-,R,-),-)-

where the second F occurs in the ith place of the first F, R is a hyperterm involving x 

w hich occurs in the jth place of the second F, and - indicates other hyperterms in P. 

We use the idempotent hyperidentity to in:flate so that all n entries in the first F 

have the form F(-), then use the other hyperidentity in r(n) to reduce to 

-F(-,.„,-,-,.„-), 
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there by eliminating the nabp variable x. 

If two occurrences of F are separated by one or more other operation symbols, say 

Gi, ... ,Gk,k;::::l, then P has the form 

-F(-, ... ,-,G1( ... Gk(-, ... F(-,R-)-) ... ) ... )- . 

Here we again use idempotence to inflate so that the last hypervariable before the se­

cond F has all entries of the form F(-}; then use M(n,n) to replace the part 

Gk(F(-), ... ,F(-R-), ... F(-)) by F(G(-},G(-), ... ,G( )). This moves the second occur-

rence of F one step closer to the first. By repeating this process we eventually reach a 

stage where the wo occurrencs of F are adjacent, when the method from above may 

be used to eliminate x. In this way all nabp variables in P may be eliminated, giving 

us P* as required. 

Thereom 3.5.7. r(n) forms a basis for the hyperidentities of type 

<n,n,n, .. . > for the variety RB of rectangular bands. 

Corollary 3.5.8. Let r =~-) r(n) U ~ _) {M(n,m)}. Then r is a countably 
n;::::l n ;::::1 

m;::::l 

infinite basis for the hyperidentities of any type for the variety RB. 

Theorem 3.5.9. The hyperidentities of any type of the variety RB are not 

finitely based. 

Proof. We will prove that for any two positive integers m and n, there is a 

hyperidentity H such that RB satisfies H, but H is not a consequence of 

Hm(RB} U Hn(RB}. Take k = max{m,n} + 1. Define H tobe the following hyperiden­

tity, with one k-ary operation symbol F: 

(F(xi,x21.„,xk),xi, ... 1x1) = F(F(xi,xi,x3, ... ,xk),xi, ... ,x1) (H}. 
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Since H models projections, it is clear .that RB I= H. Now define an algebra ~ = {A;f} 

as follows. Take 

the free rectangular band on the k generators a1,. „ ,ak. f is k-ary, given by 

f( ) _ { x1x2, if {xi, ... ,xk} = {ai, .. ,ak}} 
xi,.„,xk - x

1
, otherwise · 

Using f for the operation symbol in H leads to an identity which does not hold in ~, 

since the evaluation x1 = ai, 1 ~ i ~ k, in the identity leads to a1a2 = a1. 

Therefore A does not satisfy H. However, we claim that A does not satisfy all the 

hyperidentities in Hm(RB) U Hn(RB}. 

For if a hyperidentity involves at most n variables, or operation symbols all of arity 

$ m, since k > m,n follows that the only A-terms used in the hyperidentity amount 

to projections. So in this case A satisfies the hyperidentity iff RB does. 

Thus we see that H is a hyperidentity satisfied by RB, which is not a consequence of 

Hm(RB} U Hn(RB). Therefore H(RB} is not finitely based. 

Theorem 3.5.10. (Padmanabhan, Penner). Let SL be the variety of semi-lat­

tices. Then the following set H~ 2> of hyperidentities is a bases for all hyperidentities of 

type (2) for SL. 

H(2}: (1) F(x,F(y,z)) = F(F(x,y),z) 

(2) F(x,x} ={~ F(F(u,x},F(y,u}) = F(F(u,y),F(x,w)} 

Proof. By the above hyperidentities we can present every hyperterm 

T(xi,„.,xn) in a (normal) form F ... F(F(xa,X11 < 0 ),x11 < 2, ,„.,~< tJ ,xb)- Here we use the 

associativity (1) for F to put all hypervariables left hand, the comunativity (3) of th~ 

variables x11 < i J inside Xa and Xb and the idempotency (2) for eliminating ~ < i J if it 
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appears twice. Inside we can order 7r(l) < 7r(2) < ... < 7r(t)t ~ n-2. Let T(xi, ... ,xn) 

= S(xi, ... ,xm) be a hyperidentity of type (2) which holds for SL. Then both sides can 

be presented in (normal) forms 

F ... F(F(xa,xit( 0 , ... ,xit( n-2l ,xb) = F ... F(F(xc,Xµ< 1l ), ... ,xµ< m-2l ,xd). 

If we hypersubstitute F by the first projection we have xa =Xe (and respectively by 

the second Xb = xd)· Now we put xa = x11 < 0 and Xe= xµ< ll. In this way we show 

that both sides have to be formally equal. Hence every hyperidentity of type (2) is 

implied by H(2) . 

Problem 3.5.11. Give the example of a variety V of type (2) such that the 

hyperidentities of V of type (2) are not finitely based and V is generated by an algebra 

A = ( A;o) with A as small as possible. 

§3.6. Normal and regular hyperidenties 

Definition 3.6.l. An identity t 1 = t 2 is regular if the set of all variables occu~ 

ring p and q coincide. 

Example. x·y = y·x·y 

Notation. An identity is called to be "trivializing" if it is of the form x = y 

(where x, y are different variables) or Xk = t(xi, ... xn) where t is a term which is not a 

variable. 

Definition 3.6.2. An identity t 1 = t 2 is normal ift 1 = t2 is not trivializing. 



-82-

lt is now obvious how we have to define normal and regular hyperidentities. In this 

chapter we present beautiful results of Ewa Graczynska on this topic. 

Notations. 

E: = set of identities of type r 

Mod (E): = variety of type r defined by E 

= set of identities of a variety K 

= set of normal identities of K 

= set of regular identities of K 

= set of hyperidentities of K 

E(K): 

N(K): 

R(K): 

H(K): 

NR(K): = N(K) n R(K) 

One can consider N,R,H, as operators on classes of varieties. Let L(Mod(N(V)) be the 

lattice of all subvarieties of the variety Mod N(V). Then we have the following 

results: 

Theorem 3.6.3. IfV is not anormal variety (V f. Mod N(V)) then the opera­

tor N :L(V) --1 L(Mod N(V)) is an embedding of the lattice L(V) of the subvarieties of 

V into the lattice L(Mod(N(V)). 

Proposition 3.6.4. Let V and W be two varieties of type r with 

N(V) ~ E(W). IfW is not normal then W ~ V. 

Proof. We present here a proof, proposed by N. Newrly without using the 

representation theorem for algebras from Mod(N(V)). Let f be a not normal identity 

frorn E(W). lf f is a trivial identity of the form x = y, where x and y are different 

variables, then obviously W ~ V. Assurne, that f is of the form Xk = p(xi, ... ,xn), 
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where 1 ~ k ~ n and p is a proper term (i.e . not a variable). Consider the identity g of 

the form x = p(x,„.,x), for a variable x. Obviously g is a consequence of f. lf 

E(V) = N(V), then obviously W ~ V. Otherwise, let e be a not normal identity of V. 

Assume, that e us if the form x2 = q(xi, ... ,xm), with 1 ~ 2 ~ m. lf q is a variable, i.e. 

x = y is an identity of V, then V = W, because x = p(x,„.,x) = P(y, „. ,y) = y is a 

proof of x = y from N(V) u {g} ~ E(W). lf q is a proper term, take r = max(k,m). 

Then x1 = p(xi,„.,Xk-t x1,Xk+i, „. ,x
1

) = P(xi,„.,Xk-li q(xi,„.,x1 ) = q(xi,„ .,x1 ) is a proof 

of x, = q(xi,„ .,x
1

) from the set N(V) U {f}. This gives that e is an identity of E(W) 

and we conclude, that E(V) = E(N(V) U {e} ~ E(W), i.e. W ~V. 

Theorem 3.6.5. If V is not a normal variety then the lattice L(ModN(V)) is 

isomorphic to the direct product of the lattice L(V) and a two - element lattice. 

Proof. Denote by 2 = ({0,1},~), the two-element lattice with 0 < 1. Con­

sider the following mapping h:L(V)x2-+ L(Mod(N(V)) given by the rule 

h(K,O)) = K,h(K,1)) = Mod (N(K)), for K E L(V). Then for Ki,K2 E L(V) we 

obtain: 

h((Ki,O) n (K2,0)) = h(K1 n K2,0) =Kin K2 = h(Ki,O)) n h((K2,0)), 

h((Ki,1) n (K2,l)) = h(K1 n K2,1) = Mod(N(K1 n K2)) = h((Ki,1)) n ((K2,l)) 

by Theorem 2. Let us notice, that for Ki,K 2 E L(V) we obtain the following inequali­

ties in L(Mod(N(V)) : 

K1 n K2 ~ K1 n Mod(N(K2)) ~ Mod(N(K 1)) n Mod(N(K2)) = Mod(N(K1 n K2)), 

but K1 n K2 is not normal and Mod(N(Kt n K2)) covers Kt n K2 in the lattice 

L(Mod(N(V)), thus we get the equality: K1 n K2 = K1 n Mod(N(K2)), because the 

variety Kt n Mod(N(K2)) is not normal. 
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h((Ki,O)n(K2,1)) = h(K1nK2,0)) = K1nK2 

= K1nMod(N(K2)) = h((Ki,O))nh((K2,1)). 

Similarly we obtain that h is a join-homomorphism. 

To complete the proof we should show that h is onto L(Mod(N(V). Let 

K' E L(Mod(N(V)). By Proposition 3.6.4 we conclude, that there are only two possi­

bilities: 

(i) K'E L(V) or (ii) E(K') = N(K'). 

In the case (i) we obtain that K' = H((K',0)), where K' E L(V). 

In the second case, we consider the variety K = K' n V. Then K E L(V) and by 

Theorem 1, 

h((K,1)) = Mod(N(K)) = Mod(N(K' n V)) 

= Mod(N(K')) n Mod(N(V)) = Mod(N(K')) = Mod(E(K')) = K1
, 

thus we conclude that h is an isomorphism. 

Recall that a lattice 1 is the double of its sublattice 1 1if12 = L\11 is also a sublat­

tice of L and there exists an isomorphism f:1 1---+ 1 2 such that x~f(x) in the lattice 1. 

Remark. Theorem 3.8.5. says that the lattice 1(Mod(N(V)) is a double of 

the lattice 1(V), for a given not normal variety V. But the double of a lattice 1 1 need 

not to be isomorphic to the direct product of 1 1 and a two--€lement lattice, as it can 

be shown by the following diagram: 
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L 

The lattice L on the diagramm is the double of the lattice 1 1 but is not isomorphic to 

the direct product of L 1 and 2. 

Recall, that a variety V is called solid if E(V) = H(V), i.e. all identities of V are 

satisfied in V as hyperidentities. 

Example. Consider varieties of type (1) with one unary operation f(x). Take 

the variety V defined by the identity x = f(x). This variety is solid and not normal. 

Moreover, the variety Mod(N(V)) is also solid. Let us note the following: 

Theorem 3.6.6. Assume that V is a variety of unary type T (i.e. such that 

T(T) = 1 and V is solid. Then Mod (R(V)) is solid. 

Proof. Assume that V is solid variety of unary type T. Let p(x) and q(y) be 

two polynomial symbols of type T. If p(x) = q(x) is a hyperidentity of V, then 

p(x) = q(x) is a hyperidentity of Mod(R(V), because any hypersubstitution of a regu­

lar identity of unary type is regular. By the same argument, if p(x) = q(y) is a hyper­

identity of V, then p(x) = q(x) is a hyperidentity of Mod(R(V)). Thus 

R(V) = H(R(V)), i.e. Mod (R(V)) is solid. 
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Example. Consider the trivial variety T (i.e. defined by the identity x = y) 

of unary type with two unary operations fand g. Then T is solid, but Mod(N(T)) is 

not solid, because f(x) = g(x) is its hypersubstitution and is not normal, i.e. 

Mod(N(T)) is not solid. 

Generally, the normal (or regular) part of a solid variety need not to be solid. For 

example take trivial variety T in type (2). Then the identity 

f(f(x,y),z) = f(f(x,z),y) 

is a normal hyperidentity of T, but not a hyperidentity of Mod(n(T)), therefore 

Mod( n(T)) is not solid. The same example shows also that Mod (R(T)) may not be 

solid. 

We do not know if a similar theorem as theorem 3.6.6 can be proved for normal varie­

ties. However there are some similarities between normal parts of varieties and solid 

varieties. For example the fact that the variety Mod(N(V)) is a cover of not normal 

variety V, in the lattice L(Mod(N(V)) can be expressed for solid varieties in the fol­

lowing way. 

Theorem 3.6.7. Let V be a solid variety1 which is not normal. Let e be a 

hyperidentity ofV from H(V)\N(V). Then: E(N(H(V)) u {e}) = H(V). 

Proof. We present here a syntactic method, which is useful for the next 

theorem on the word problem. 

The inclusion ~ follows from the fact that consequences of hyperidentites of V are 

hyperidentities of V and e has the form Xk = r(xi, ... ,xn), 1 $ k $ N. lf r is a variable 

(different of Xk), then the inclusion obviously holds, lf r(xi, ... ,xn) is a proper term 
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(i.e. r is not a variable) then take a hyperidentity Xj = q(xi, ... ,xm) from the set 

(H(V)\N(H(V)). We can assume, that n = m (otherwise we treat r and q as terms on 

1 = max(n,m) variables). lf k = j and r(xi, ... ,xn) = q(xi, ... ,xn) is anormal hyperiden-

* tity of V then N(H(V)) U {e} f- Xk = q. If k -f j then let r (xi, ... ,xn) denotes the term 

r(xi, ... ,Xk-i,Xj,Xk+i, ... ,xn), obtained from r by substituting Xk by,xj. Then 

* * Xk = r f- Xj = r and Xj = r is a hperidentity of V. 

* * If q is not a variable, then r = q is a normal hyperidentity of V and thus e, Xj = r . 

* . p = q, Xj = q is a proof of Xj = q from the set N(H(V)) U {e}. Otherwise, i.e. if q is 

a variable y, different of Xj, then r(z, ... ,z) = z, r(z, ... ,z) = r(xi, ... ,xn) are hyperidenti­

ties of V, for any variable z different of Xk. Thus, r(xi, ... ,xn) = r(z, ... ,),r(z, ... ,z) = z, 

Xk = z, Xj = y is a proof of Xj = q from the required set. 

Remark. The theorem 4 can be reformulated for varieties V in the following 

way. Let V be a variety and e be a hyperidentity of V. Assume that e is not normal. 

Then H(V) = E(N(H(V)) u{ e} ), i.e. each hyperidentity of V can be deduced from all 

normal hyperidentities of V and any fixed not normal hyperidentity of V. 

We deal wjth axiomatic theories, i.e. varieties V of universal algebras, of a given type 

defined by a set ~ of axioms. We say that the word problem for the variety Mod(~) is 

solvable, if there is an effective procedure to decide for any identiy p = q of a given 

type, if it is a consequence of ~. 

Similarly for solid varities, defined by a set of hyperidentities. 

Because consequences of normal identities (hyperidentities) are normal, thus if the 

variety Mod(N(V) is not normal, then there exists an identity (hyperidentity) from ~ 

which is not normal. Therefore, immediately from the proof of theorem 2 of 

[Graczynska 84] we get: 
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Theorem 3.6.8. The word problem for a variety V is solvable iff the word 

problem for the variety Mod(N(V)) is solvable. 

Proof. Necessity is obvious. To prove the sufficiency, let e be a not normal 

identity from E(V), then either e is of the form x = y or an identity of the form 

x = r(x, ... ,x) is its consequence, where r is a proper term. Therefore V is trivial and 

* N(V) = N( r) or p(xi, ... ,xn) = q(xi, ... ,xn) belongs to E(V) if an only if p (xi, ... ,xn) 

* * = q (xi, ... ,xn) is an identity of N(V), where p (xi, ... ,xn) denotes the term obtained 

from p(xi, ... ,xn) by substituting Xj by r(xj, ... ,xj) for all 1 5 j 5 n and similarly for q. 

Similarly, we conclude: 

Theorem 3.6.9. The word problem for a solid variety V defined by a set I: of 

hyperidentities is solvable iff the word problem for the variety Mod(N(H(V)) is 

solvable. 

Remark. Generally, operators H and N (H and R) do not commute. For 

example take the trivial variety T in type (2) and the identity f(f(x,y),z) 

= f(f(x,z),y)). Then this identity is normal (regular) hyperidentity of T, but it is not 

a hyperidentity of Mod(N(T)) (Mod(T)), i.e. N(H(T)) in not included in 

H(MOD(N(T)) and R(H(T)) is not included in H(Mod(R(T))). 

Generally, only the opposite inclusion holds, namely: 

H(Mod(N(K))) ~ N(H(K)) and H(Mod(R(K)) ~ R(H(K)), for any variety K, because 

H(Mod(N(K)) ~ N(K) and H(Mod(N(K)) ~ H(K) by the definition of H(V), for a 

variety V. 
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Remark. Same properties of the operator Hon varieties were considered in 

[Grazynska, Schweigert] in connection with Problem 4 of W. Taylor [Taylor 79]. 

Theorem 3.6.9. Fora variety V, the following conditions are equivalent: 

(i) The word problem f or V is solvable 

(ii} The word problem for Mod(N(V)) is solvable, 

(iii} The word problem for Mod(R(V)) is solvable, 

(iv) The word problem for Mod(N(R(V) is solvable. 

§3. 7. On the Unif ication of hyperteras 

This chapter deals with the unification problems (For the notation see §3.8) The re­

sults are due to Ewa Gracynska. Before we proceed with our topic we like to mention 

the following. 

Fact. Let V be a variety of type r. Then the following are equivalent. 

(i) H(N(V)) = N(H(V)), (ii) Mod(N(V)) is solid. 

Proof. Let H(N(V)) = N(H(V)) . Take a normal identity p = q from N(V). 

Consider a substitution a(p) = a ( q). Then a(p) = a( q) belongs to 

H(N(V) = N(H(V)), i.e. it is a normal hyperidentity of V. Therefore p = q is a 

hyperidentity of Mod(N(V)) and we conclude, that Mod(N(V)) is solid. 

Assume now, that Mod(N(V) is a solid variety, i.e. H(N(V)) = N(V). But 

H(V) ~ E(V), therefore N(H(V)) ~ N(V) ~ H(N(V)): To show the converse, assume 

that p = q be anormal identity of V. By the assumption, we get that any hypersub-
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stitution of p = q is an identity of Mod(N(V). Thus p = q is a normal hyperidentity 

of V. Similarly for Hand R. 

Notations. 

P(r) 

P( r)/=> 

denotes the free algebra of type r, the algebra of all terms of type r. 

denotes the quotient algebra of P( r) by the equivalence relation 

( = equation) on terms of type r. 

Definition 3.7.1. (see {Siekmann}). Lets and t be two terms of a given type r. 

An identity s = t is unifiable in a given algebra A o f type r if and only if there exists a 

homorphism [: P( r)---+ A such that r(s) = r(t). 

Example. In a one-element algebra, any identity s = t is unifiable. 

Example. Take any algebra A = (A,(ft : t E T) and its one-element exten-

* * sion A , which is defined as follows: A =AU {1}, where 1 is a new element not be-

* * * longing to A and A = (A (ft : t E T)) with 

* ft(ai, ... ,an) = 1, if 1 E { ai, ... ,an} and 

* ft(ai, .. . ,an) = ft(ai, ... ,an), otherwise. 

* Then any identity s = t is u:r..ifiable in A . Namely 'Y can be defined as r(x) = 1, for 

* any variable x. Then 'Y( s) = r( t) = 1 in A . 

Definition 3. 7.2. The first unification problem (see {Siekmann}) . Take a 

variety V of type r and any two terms s and t of type r. The problem is to decide 

whether or not s = t is unifiable in the algebra P( r)/ = (i.e. if there is a substitution a, 

such that a(s) = a(t) is an identity ofE(V)). 
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Theorem 3. 7.3. Given two terms s and t and a variety V of type 7. Then 

(1.1} s and t are unifiable in V iffthey are unifiable in Mod(R(V)), 

(1.2} the first unification problem is solvable in V iff it is solvable in Mod(R(V)). 

Proof. Let a be a substitution, such that a(s) = a(t) is an identity of V. If x 

is a variable from Var(a(s))\Var(a(t)) (or Var(a(t))\Var(a(s))), then let ß(x) = y 

for any fixed variable y of Var(a(t)) Var(a(s))). Then for 'Y = ß o a we obtain that 

'Y(s) = 'Y(t) is an identity of R(V), i.e. s and t are unifiable in the variety Mod(R(V)) . 

Obviously this procedure gives a method, how to rewrite a decision algorithm for the 

first unification problem for E(V) to obtain an algorithm for R(V). The opposite 

implication is obvious. 

The same fact holds for normal identities of a given variety V. Not normal identities 
' 

are known under the name absorption law (see [Jezek, McNulty]). 

Theorem 3.7.4. Given two terms s and t of type 7. Then: 

{2.1} s and t are unifiable in V iff they are unfiable in the variety Mod(N(V)); 

(2.2} the first unification problem is solvable in V iff it is solvable in Mod(N(V)). 

Proof. The sufficiency in (2 .1) and (2.2) is obvious. We show the necessity. 

If E(V) = N(V) .then the theorem is obvious. Let x = p(x1, ... ,xn) be an absorption 
. . 

law satisfied in V. lf a is a substitution such that a(s) = a(t) is an absorption law in 

V, i.e. a(s) is a variable y and a(t) is not a variable or a(t) is a different variable z), 

then take the substitution ß with ß(w) = p(w) for any variable w, where p(w) is the 

term p(w, ... ,w). Let 'Y = ß o a. Then 'Y(s) = 'Y(t) is anormal identity of V. This gives 

a procedure how to rewrite a decision procedure for the first unification problem for 

E(V) to N(V). 
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Next theorem shows the role of operators N and R in the problem of description of 

some special theories ( called permutative by Siekmann or term finite by Jeiek and 

McNulty. 

Definition 3.7.5. Let E(V) be an equational theory of a variety V of type r. V 

is called term finite iff for any term p of type r the class [p)/ = v is finite (i.e. there is 

only a finite number of terms s such that s = t is an identity ofV ) . 

If the equational theory E(V) of a variety V is term finite, then we say that V is term 

finite. 

From now on we assume that type L is not emtpy, i.e. that T f. 0. 

Proposition 3.7.6. {Siekmann} Term finite theories are regular (i.e. if a 

variety V is term finite, then E(V) = R(V)) 

Proposition 3.7.7. {Je;ek, McNulty} Term finite theories are normal (i.e . if 

V is term finite, then E(V) = N(V)). 

Example. The variety S of semigroups is term finite. 

Example. Any variety with an idempotent law is not term finite . 

Theorem 3. 7.8. Let V be a term finite variety of type r. Then: 

(9.1) V is not of the form Mod(R(W) for any nonregular variety W of type r, 

{9.2) V is not of the form Mod(N(V) for any not normal variety W of type r. 
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Proof. Assume that W is a non-regular variety of type r and 

V= Mod(R(V)). By Lemma of [Plonka 69) one of the following conditions holds 

( where x and y denotes different variables): 

(i) an identity x = y belongs to E(V); 

(ii) type r is unary and an identity of the form p(x) = p(y) belongs to E(V) 

where p is a proper term; 

(iii) an identity of the form x = p(x,y) belongs to E(V), where p is a binary term 

and x,y E p(x,y); 

(iv) an identity of the form p(x,x) = p(x,y) belongs to E(V), for some binary 

term p, such that x,y E p(x,y). 

In case (i) takes a functional symbol F(xi, ... ,xn) of type r. Then x = F(x, ... ,x) 

= F(Fx, ... ,x),x ... ,x)) = ... constitute an infinite sequence of identities from E(V). 

In case (ii) we obtain infinite sequence p(x) = p(p(x)) = p(p(p(x))) = ... of identities 

satisfied in V. 

In case (iv) consider p(x,x) = p(x,p(x,x)) = p(x,p(x,p(x,x))) = .. .. 

Case (iii) is similar. This proves (3.1), by contradiction. 

To prove (3.2) assume that W is a variety of type r with an absorption law 

x = p(x, ... ,x). which inust exists, because there are functional symbols of type r. If 

V= Mod(N(W)), then 

p(x, ... ,x) = p(p(x, ... ,x),x, ... ,x)) = p(p(p(x, ... ,x),x, ... ,x),x, ... ,x) = .. . 

constitute an infinte sequence of identities of E(V), i.e. V is not a term finite variety, 

a contradiction. 

Remark. Note that if type r is empty, then the trivial variety T of type r is 

not term finite, but varieties Mod(R(T)) and Mod(N(T)) are term finite. 
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Corollary 3.7.10. The variety S of semigroups is not of the form Mod(R(W)) 

or Mod{N(W)) for any non-regular (or not normal) variety W of type (2). 

Remark. The conditions (3.1) and (3.2) are not sufficient to describe term 

finite theories, which can be visualized by an easy example of the variety of semi-

groups defined by the identity x2 = x4. 

-
In fact many of such examples can be produced, by taking any equation p = q with 

the property, that p is a proper subterm of q. 

The problem above is directly connected with practical questions appearing in com­

puter programming (for example the procedure presented above is similar to so called 

occur check in Prolog programming ([Closcin],p. 224). 

§ 3. 8 Boolean Clones 

Two algebras A, B of the same type can be defined by different sets Id A, Id B of 

identities if and only if A and B generate different varieties. In this case we say that 

A and B can be separated by identities. 

In the following we show that non-isomorphic clones on the two-element can be 

separated by hyperidentities. lndeeq every clone on {0,1} is subdirectly irreducible 

(see 4.4) and the non-isomorphic clones on {0,1} generate different varieties. 

lt is obvious that there are non-isomorphic clones on ~ = {0,1,„,n} n > 2 which 

generate the same variety and hence cannot be separated anymore by hyperidenties. 

(see 4.5) 
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Let A be a finite nonempty set and let 01 n J be the set of all n-ary functions 

CD 

f:An--+ A. We put OA = ~-) oin) and consider the algebra OA = (OA;*,e,r,ß,eV. 
n=l . 

The lattice of all subclones of the clone OA with A = {0,1} was investiga~ed by E.L. 

Post (see picture at the end of this paragraph). This lattice is atomic, dually atomic, 

countably infinite and every clone has a finite basis of generators. Clones which are 

symmetric in this picture are isomorphic. 

There were several attempts to simplify Post's proof from 1920. A very detailed proof 

of Post's theorem was worked out by Jablonskij, Gawrilov and Kudrjawzev in 1966 

[Jablonskij, Gawrilov, Kudrjawzev]. 

Other approaches using Mal'cev type theorems can be found in several papers espe­

cially by [McKenzie, McNulty, Taylor 87]. 

An elementary and short approach to the results of Post was presented by Lau in 

[Lau] which uses no theorems of universal algebra. 

We present a description in detail for every Boolean clone in the following table. 

These results are due to [Denecke, Mal'cev, Reschke]. 

clone description generating system { as example) 

C1 set of all Boolean functions { A, N}, A conjunction 

xAy := xy, N negation 

Ca { 0 }-preserving functions, {A,+} 

i.e. f(O, ... ,O) = 0 + addition mod 2 

C4 {O}-, and {1}-preserving {V, g1} 

functions, i.e. f(0, ... ,0)=0 V disjunction, 

and f(l, ... ,l) = 1 g1(x,y,z) = xA(y+z+l) 
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M1 monotone functions 

M3 monotone, { 0 }-preserving 

functions 

M4 monotone, {O}-, and {1}-

preserving functions 

D3 selfdual functions, i.e. 

f(xi, ... ,xn)=Nf(Nxi, ... ,Nxn) 

D1 selfdual, { 0 }-, and { 1 }-

preserving functions 

D2 selfdual, monotone functions 

L1 linear Boolean functions, i.e. 

f(xi, ... ,xn)=co+a1x1+ .. . +anxn, 

ai E {0,1} 

L3 linear, { 0 }-preserving 

. Boolean functions 

L4 linear, { 0 }-, and { 1 }-preserving 

Boolean functions 

Ls linear, self-dual functions 

{A, V, cJ, cn, cJ, c~ unary 

constant functions 

{A, V, cJ} 

{A, V} 

{ u2,x+y+z,N} 

u2(x,y,z) = xy Vxz Vyz 

{u2, x+y+z} 

{u2} 

{ +,N,cJ, cn 

{+,cn 

{x+y+z} 

{x+y+z,N} 

{A, cJ, cn 

{A, cJ,} 

{A} 

{A, cn 
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09 {N,cJ} 

Os clones consisting only of {id, cJ, cn 

essentially unary functions id = identity 

04 functions {N} 

Os {id, cJ} 

01 {id} 

Fm 
8 1-separating function of degree {Um, g4} 

m~2, i.e. each m-elementic sub- g4(x,y,) = x A Ny 

set of f-1(1) has a common i-th Um(Xi, ... ,Xm+l) = 

m+l 
component of the value 1 \/ X1 ... Xi-1Xi-I·· .Xm +1 

i =1 
Fm 

5 1-separating of degree m~2, {um,g3}, 

{ 0 }-preserving functions g3(x,y,z) = x(y V Nz) 

Fm 
7 1-separating of degree m~2, {Um, cJ,} 

monotone functions 

Fm 
6 1-separating of degree m~2, mo- {g2, U2} 

notone, { 0 }-preserving functions g2(x,y,z) = x(y V z) 

~ 1-separating functions, i.e. {g4} 

each subset of f-1(1) has a 

comm6n component of value 1 

~ 1-separating, { 0 }-preserving {g3} 

functions 

~ 1-separating, monotone functions {g2, cJ} 

~ 1-separating, monotone, {O}- {g2} 

preserving functions 
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Problem. Let C 1 and C2 be nonisomorphic Boolean clones defined on the 

same set A = {0,1}. Are the setsldC1 andldC2 ofits identities different? 

Case 1. We consider pairs of Boolean clones Ci,C2 with C1 ~ C2. If C1 ~ C2 

then there holds IdCi i IdC2. In this case problem 3.5.1 is the question whether 

IdC1 1- IdC2 or not. The answer is positive if there exists a separating hyperidentity -

with other words: a hyperidentity of C1 which is not a hyperidentity of C2. If 

C2 = 0 A and C1 is a dual atom in the lattice of all subclones of 0 A the~ a positive 

answer of problem 3.5.1 is given in [Denecke, Reichel 88]. The hyperidentity 

E: F(F(x,y),F(x,y)) = F(F(x,x),F(y,y)) holds in all dual atoms of the Post lattice but 

not in 0 A, because all binary Boolean functions beside the Sheffer functions fullfil E. 

Therefore every subclone of 0 A can be separated from 0 A by a hyperidentity, namely 

E. Now we want to find the separating hyperidentities also for the pairs (Ci,C2) with 

C2 / OA. Therefore we have the following definition: 

Definition 3.8.1. 

{C1,C2,Ci,C2 ~ 0 AJ with Ci ~ C2. Then 

(Ci,C2} ~ (Ci1C2} :~Ci~ C1 or c7 ~ C 1 with Ci ~ c7 
and C2 ~ C2 or C 2 ~ C 2 with C2 ~ C 2 . 

Then the following lemma holds: 

Lemma 3.8.2. If {C 1,C2} S {Ci,,C2} with the assumptions in definition 3.5.2 

and there exists a hyperidentity E which holds in 'C 1 and not in C2 then it follows that E 

holds in Ci but not in c2. 
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This implies that the Separation of clones c1,c2 with c1 -l- c2 by hyperidentities can 

be reduced to find separating hyperidentities only for the pairs of clones which are 

minimal with respect to the relation ~· If (Ci,C2) is such a minimal pair then C1 is a 

maximal subclone of C2. A positive result was achieved for this case in [Denecke 88]. 

From that it follows 

Theorem 3.8.3. Any two Boolean clones C1,C2 with C1 ~ C2 can be separated 

by hyperidentities, i.e. IdC1 i IdC2. 

Case 2. We consider pairs of Boolean clones which are incomparable with 

respect to, ~. 

We define a relation -< between pairs of incomparable clones in the following 
N 

manner: 

Definition 3.8.4. Let (Ci,C2) and (C1,C2) be two pairs of clones 

(Ci,C2,Ci,C2 ~ OA) with C1 { c2 and C2 { C1. Then 

(C1,C2) < (C' C') ·~ C c C' or C c C" with C' ~ C" 
N lJ 2 • 1 - 1 1 - 1 1 - 1 

and c; ~ C2 or C 2 ~ C 2 with C2 ~ C'2 . 

Then the following lemma holds: 

Lemma 3.8.5. If (Ci,C2) ~ (Ci, q) with the assumptions in definition 3.5.5 

and CJ. { C2 and C2 t Cl and there exists a hyperidentity E Which holds in Cl and not 

in c2 then it follows that E holds in C1 but not in C2. 
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This implies that the separation of clones Ci,C2 with Ci { C2 and C2 { Ci by hyper-

identities can be reduced to find separating hyperidentities only for the pairs of clones 

which are maximal with respect to the relation -<. ,.., 

Lemma 3.8.6. (Ci,C2) {Ci ( C2, C2 { Ci) is maximal with respect to < if ,.., 

and only if for all clones Ki, K2 with Ki 2 Ci and K2 ~ C2 we have Ki ~ K2 {or 

Ki ~ K2 with K2 ~ K2) or K2 ~ Ki (or K2 ~ K; with Ki ~ Ki) . 

In [Denecke, Mal\cev, Reschke] {lemma 4.5 and 4.6) is given one method to find all 

such maximal pairs of incomparable clones. Also in this paper one can find a sepa­

rating hyperidentity for every (with respect to -< ) maximal pairs of incomparable ,.., 

pairs of Boolean clones. That leads to 

Theorem 3.8.7. Let {Ci,C2) be a pair of Boolean clones with Ci { C2 and 

C2 { Ci for all C2 ~ C2 and all Ci~ Ci. Then Ci and C2 can be separated from each 

other by hyperidentities, i.e. there is a hyperidentity t: which holds in Ci and not in C2 

and a hyperidentity t:' which holds in C2 and not in Ci. This means that for the sets of 

identities of Ci and C2 we have IDC 1 { IdC2 and also IdC2 { IdCi. 
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The following table will give a review about all separating hyperidentities of all Boolean clones. 

clone . separating hyperidenti- hyperidentities which hold 

X ties which hold in maxi- in X and not in clones which 

M3 

mal clones of X and not 

in X itself 

Eo 

CHI(C4), CHI(M3), CHI(L3) 

CHI(Fn 

CHI(M4), CHI(D1), CHI(F~) 

CHI(M3), CHI(P5) 

CHI(M4), CHI(P5), ~HI(F~) 

CHI(F~) 

CHI(D1), CHI(L5) 

CHI(D2), CHI(L4) 

is an atom in the lattice 

off all Boolean clones 

are incomparable (w.r.to ~) with X 

C1 is comparable with all other Boolean clones 

E2 for 04,Li,L5,09,D3 

E5 for Os,P5,M1 

E2 for D3,Li,L5,09,D4 

E5 for Oe,Mi,M3,L3,P3,P5, F8,F~,F~,F7 (m~2) 

E5 for Pe,Os 

E3 for L4,04,C3,C4,Ds,Di,Li,L3,Ls,09 

Eto for ~,Frg,F5,F~ (m~2) 

c3 for C4,D3,Di,Li,L3,L4,L5,09,04 

Es for P5,0s 

E10 for Fg,F5,F~,~ (m~2) 

E3 for D3,Di,Li,L3,L4,L5,09,04 

E5 for P3,Ps,05,Ff,F~,F:,~ 

E5 for P5,0s 

Elo for F5, ~ (m~2) 

c1 for all other clones besides D2,L4,Ü4 

E2 for L5,04 

Et for all other clones besides C3,C4 

El for Li,L3,P5,P3,Pi,P5,0s,05, 

F8,F5,F~,F~,F~ ,F~,F~,~ (m~3) 

E3 for L4,L5,09,04 
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L2 CHI(L3), CHI(Ls), CHI(Og) E4 for D2,Pi,Ca,C4,M1,Ma,M4,Da,Di, 

P 5,P 3,P s,F8 ,F5 ,F7,Fß ,F~ ,F~ ,F~ ,F~ (m~2) 

L3 CHI(L4), CHI(05) E2 for D3, Ls, 09, 04 

E4 for C4, M3, M4, Di, D2, P3, Pi, 

Ps,F8,F~ 1F7,Fß,F~,F~,~'~ (m~2) 

E5 for Mti P5, Os 

L4 is an atom in the lattice E1 for Os,06 

of all Boolean clones E2 for 09,04 

E4 for Mi,M3,M4,D2,P5,P3,Pi,Ps, 

F8 ,F~ 1 F7,Fß,F~,F~ ,F~,~ (m~2) 

Ls CHI(L4), CHl(04) Et for L3,09,0s,05 

E4 for all other clones besides D3,L1 

P5 CHI(P3), CHI(Ps), CHI(Os) E3 for C3,C4,D3,Di,Li,L3,L4,L5,09,04 

E9 for D2,F~ 1M3,M41F8,F5,F7,F'ß,F~,~'~' (m~2) 

P3 CHI(P1), CHI(05) E3 for C4,D3,Di,L1,L3,L4,Ls,09,04 

€5 for Os 

E9 for M4,D2,F5,F'ß,F~,F~ (m~2) 

t:13 for Ps 

P1 is an atom in the lattice E3 for D3,Di,Li,L4,L5,09,04 

of all Boolean clones E5 for L3, Oe 

E5 for Os 

E9 for D2 

Ps CHI(P1), CHI(Oe) €3 for C4,D3,Di,Li,L3,L4,Ls,09,04 

E5 for Os 

E9 for M4,D2,F8,F5,F7,Fß,~,~'~,F~ (m~2) 

Eu for P3 
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Ü9 CHI(08), CHI(04) E12 for L4,L3,L5 

E4 for all other clones besides Li,0 6 

Os CHI(05) E3 for L31L4,L5,Ü4 

E4 for all clones besides Mi,P 6,09 

Ü4 is an atom in the lattice Et for L3,0s,Oa 

of all Boolean clones E12 for L4 

E4 for all other clones besides D3,Li,Ls,09 

Ü5 is an atom in the lattice E3 for L4,Ls,04 

of all Boolean clones E4 for C4,M4,D3,Di,D2,Pi,F~,F~,~,F~ (m~2) 

Fm s CHI(F~· • 1 ) E2 for LliLs,09,04,D3 

(m~3) CHI(F~), CHI(F~) E5 for Mi,P5,0s 

E1 for C4,M3,M4,DliL3,L4 

Es for D2, F~,F~,F~ (n<m) 

E13 for Ps 

Fm 
5 CHI(F~+ 1) E2 for D31L1,Ls,09,Ü4 

(m~3) . CHI(F~) Es for M31P3,0a 1 F:,F~,F~,F~ (k>m) 

E5 for Mi,Pa,Os 

E1 for M4,Di,L3,L4 

Es for D2,F~ (n<m), 

E13 for Ps 

Fm 
7 CHI(F~ +t) E2 for D31L1,Ls,09,04 

(m~3) CHI(F~) E3 for C4,Di,L3,L4 

Ea for P510 8 

E1 for M4 

Es for D2,F~ (k>m), F~ (n<m) 
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c10 for F~ 1~,~ 

c13 for P5 

Fm 
6 CHI(F~•1) c2 for D3,L1,L5,09,04 

(m~3) €3 for Di,L3,L4 

€5 for P3,05,F~ (k>m), F~ 

eo for Pa,Os 

es for D2,F~ (k>m) 

c10 for F~ (k>m),F~,F~ 

€3 for P5 

F2 
8 CHI(F·D €2 for D3,Li,L5,09,Ü4 

CHI(Fn €5 for Mi,Pa,Os 

CHI(Fn €7 for M41L4,C4,M3,Di,L3 

c13 for P5 

F2 5 CHI(FD c2 for D3,Li,L5,09,04 

CHI(FÜ €5 for M31L3,P3,P5,05 1F8 (m~3),F~ (m~2), ~,~ 

€5 for Mi,P5,0s 

€7 for M4,Di,L4 

F2 
7 CHI(FD €2 for D3,Li,Ls,09,Ü4 

CHI(Fn €3 for C4,Di,L3,L4 

€5 for P5,0s 

€7 for M4 

C:10 for F8 (m~3), F~ (m~2), ~, F~ 

C:13 for P5 

F2 
6 CHI(Fn C:2 for D3,Li,L5,09,04 

CHI(D2) €3 for Di,L4 

€5 for L3,P3,Ps,05,F8,F~ (m~3), F~,F~ 
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e5 for P5, Os 

eio for F~ (m~2), F~ 

~ CHI(~) e2 for D3,Li,L5,Ü9,Ü4 

CHI(~) e5 for Mi,P5,Üs 

e1 for C4,M3,M4,Di,L3,L4 

es for D2, F~,F~,F~ (m~2) 

e13 for P5 

~ CHI(~) e2 for D3,Li,L5,09,Ü4 

e5 for P3,Ü9,F~ 

e5 for Mi,P5,Üs 

e1 for M3,M4,Di,L3,L4 

es for D2,F~,F~ (m~2) 

e13 for P5 

~ CHI(~) e2 for D3,L1,L5,Ü9,Ü4 

CHI(P3) e3 for C4,Di,L3,L4 

e5 for P5,0s 

e1 for M4 

es for D2, F~ (m~2) 

e10 for F~ (m~2), F~ 

e13 for P5 

~ CHI(P 1) e2 for D3,Li,L5,Ü9,Ü4 

ea for Di,L3,L4 

e5 for Pa,05 

e5 for Pa,Os 

es for D2 

e13 for Ps 

(- table 2 -) 
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The clone 0 1 is separated from all other clones by the hyperidentity CHI(01). 

List of hyperidentities: 

c:o: F(F(x,y),F(x,y)) = F(F(x,x), F(y,y)) 

c: 1: F(x,x) = G(F(G(x,y),G(x,y)), F(G(y,x),G(y,x))) 

c:2: F(x,x) = F(F(x,x), F(x,x)) 

C:3: F(x,x,y) = F(F(x,x,y), F(x,x,x), F(y,y,y)) 

c:4: F(x,y,y) = F(x,y,F(z,z,F(z,z,y))) 

c:s: F(x) = x 

c:s: F(G(x)) = G(F(x)) 

t:1: G(F*,F*,F*) = G(F+,F+,F+) with 

F+ = F(F(x,x,y), F(y,x,x), F(x,y,x)) 

F* = F(F(x,x,G•), F(G+,x,x), F(x,G+,x)) 

G• = G(G(y,y,x), G(x,y,y), G(y,x,y)) 

c:a: G(TtiT1) = G(T2,T2) with 

T 1 := F(F(x,G+,y, ... ,y), F(y,x,G+,y, ... ,y), ...... ,F(y, ... ,y,x,G•), F(G+,y, ... ,y,x)), 

T2 := F(F(x,y, ... ,y), F(y,x,y, ... ,y), ... ,F(y, ... ,y,x,xy), F(xy,y, ... ,y,x)), 

G• := G(G(y,x),G(x,y)) 

where Gis binary and T 1,T2 are 4-ary in the case that c: 8 is a separating hyperidentity 

for FB and D2, i.e. c: 8 holds in F~ and not in D2, and TtiT2 are (m+l)ary otherwise. 

c: 9: F(F(x,y,x),F(x,x,y),F(y,x,x)) = F(F(x,F(y,y,y),F(y,y,y)),F(y,x,F(y,y,y)),F(x,x,x)) 

c: 10: F(F(x,y,x), F(y,y,y), F(y,y,y)) = F(F(x,~1x), F(x,y,y), F(y,y,y)) 

c:11: F(x,F(G(x,x),x)) = F(x,x) 

C:12: F(x,y,y) = F(F(F(x,x,x),F(x,x,x),F(x,x,y)), 

F(F(x,x,x),F(x,y,x),F(x,y,x)),F(F(x,x,x),F(x,y,y),F(x,y,y))) 

~13: H(H(H(x,y),x),G(y)) = H(H(H(x,x),x), G(y)) 



CHI(C3): 

CHI(C4): 

CHI(A1): 

CHI(A3): 

CHI(A4): 

CHI(D3): 

CHI(D1): 

CHI(D2): 

CHI(L1): 

CHI(La): 

CHI(Ls): 

CHI(P1): 

CHI(Pa): 

CHI(Ps): 

CHI(Ps): 

CHI(09): 

CHI( Os): 

CHI( Os): 
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G(F(x,y), F(x,x)) = F(G(G(x,x), G(x,x)), G(G(x,x), G(x,x))) 

G(x,y,z) = F(G(x,y,z), G(x,y,z), G(x,y,z)) 

F(x,y) = F(F(x,y), F(x,y)) 

F(G(x,y), G(x,y)) = G(F(x,F(x,x)), F(F(y,y),y)) 

F(x,y,z) = F(F(x, G(y,y,y), z),y,z) 

F(F(x,x,x),F(x,x,x),F(x,x,x)) 

= F(F(x,x,y),F(F(x,x,y),x,x),F(x,F(z,z,x),x)) 

F(x,x,x) = F(F(x,x,y),F(F(x,x,y),x,x),F(x,F(z,z,x),x)) 

F(F(x,z,x),y),F(z,x,F(x,x,y)),F(F(y,x,x),z,x)) = F(x,x,x) 

F(x,x) = F(F(F(x,y),y), F(y,F(y,x))) 

F(G(x,x), G(x,x)) 

= G(F(G(x,F(y,y)),G(x,F(x,y))),F(G(F(y,x),x),G(F(y,y),x))) 

F(x,x,G(G(x,y,y), G(y,x,y), G(y,y,x))) 

= G(x,G(y,G(z,x,y),G(y,z,y),G(z,G(z,z,y),G(y,z,x))) 

F(x,x,x) = F(x,F(y,F(z,x,y), F(y,z,z)), F(z,F(z,z,y), F(y,z,x))) 

F(F(x,y,x), F(x,x,y), F(y,x,x)) 

= F(F(x,G(y,y,y), G(y,y,y)), F(x,x,G(y,y,y)), F(x,x,x)) 

G(F(x,y,x),F(x,x,x),F(x,y,x))= F(G(x,x,x),G(G(y,x,x),x,x),G(x,x,x)), 

F(F(x,x),x) = F(x,F(G(x,x),x)) 

F(F(x,G(x,y)), F(G(y,x),x)) = F(x,F(G(y,y),x)) 

F(F(x,x), F(y,x)) = F(F(x,y), F(y,x)) 

F(x,x) = F(F(x,y), F(y,x)) 

G(F(x,x),F(x,x)) = F(G(x,x), G(G(x,y),x)) 

CHI(04): F(G(x,x,x),G(y,y,y),G(z,z,z)) 

= G(F(x,y ,z ),F(x,y ,z ),F(x,y,F(x,y,F( z,z,z )) ) ) 

CHI{01): F(x,x,x) = G(F(x,F(y,x,z), F(y,y,x)), 

= F(F(x,y,z),x,F(y,z,x)), F(F(x,y,z), F(y,x,z),x)) 



CHI(FD: 

CHI(Fn: 

CHI(FD: 

CHI(Fn: 

CHI(F!:): 

CHI(F~): 

CHI(F~): 

CHI(Fs): 

CHI(~): 
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F(F(x,x,G•),F(G+,x,x),F(x,G+,x)) = F(F(x,x,y),F(y,x,x),F(x,y,x) with 

G• := G(G(y,y,x), F(x,y,y), G(y,x,y)) 

G(F
19

,F
19

,F
19

) = F(Ft,F2,Fi) with 
ID . 

F := F(F(x,x,G•), F(G+,x,x), F(x,G+,x)) 

G• := G(G(y,y,x), G(x,y,y), G(y,x,y)) 

Ft := F(F(x,x,x), F(x,y,x), F(x,x,x)) 

F2 := F(F(x,x,x), F(x,x,x), F(x,x,y)) 

Fi := F(F(y,x,x), F(x,x,x), F{x,x,x)) 

G(F
19

,F
19

,F
19

) = G{F',F',F') with F' := F{Ft,F2,Fi) 

G(h1) = G'{h2) with 

h1 := F(F{x,y,x,y, ... ,y),F(y,x,x,y·, ... ,y),F(y,y,x,y, ... ,y), ... ,F(y, ... ,y,x)), 

h2 := F{F(x,y, ... ,y,x), F{y,x,y, ... ,y,x),F(y,y,x,y, ... ,y), ... ,F(y, ... ,y,x)) 

where Fis an (m+l)-ary operation symbol and G,G' are unary operation symbols 

H{T1) = H'{T2) with Ti,T2 and G• from Es, 

h1 = h2 

Es where T 1 and T2 are {m+l)-ary 

i = 5,6,7,8 {CHI{Fi) : m ~ 3} 



Part IV Clone congruences 

§4.1. The lattice of hypervarieties 

Proposition 4.1.1. The set of all hypervarieties of a given type r forms a lattice 

(..t'(r), 0- I/Vi,V2 are two hypervarieties oftype r defined by the closed sets of hyper-­

identities Ei,E2, respectively, then V i A V 2 is the hypervariety defined by the set 

[E1 U E2] 1 where [E] denotes the closure of a set E under the rules of inference 

{1}-(6} and V i V V 2 is the hypervariety defined by Ein E2. V i A V 2 = g.l.b. (V i,V 2) 

and V i V V 2 = l.u.b. (V i,V 2) in { ..i'( r), O. 

Proof. Notice that the set [Ei U E2] is closed under rule (6). Tlrus [E 1 U E2] is 

the smallest set, closed under (1)-(6) and containing the set Ei and E2. Thus, the 

g.l.b. {V i,V 2) exists in ( ..i'( r), 0 and equals V i A V 2, by the completeness theorem. 

Obviously the set Ein E2 is closed under (1)-(6). Thus Ein E2 is the greatest set, 

closed under {1)-(6) and contained in Ei and E2. Thus, by the completeness theorem, 

the l.u.b. (Vi,V2) exists in (..i'(r), 0 and equals V1 V V2. 

Theorem 4.1.2. The lattice ( $( r),A,V) of all hypervarieties of typ'e r is iso-

morphic to a sublattice of the lattice (L( r),A, V) of all varieties of type r. 
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Proof. We consider the map k: .t'( r) ~ L( r) which is defined for a hypervarie­

ty C of type r in the following way. If C = {V i : i E 1 then k(C) = U(V i: i E 1), i.e. 

k( C) is the dass of all algebras contained in the varieties of the hypervariety C. 

Because C is a hypervariety, k(C) is closed under H, S, P and hence is a variety. 

From C1 f C2 it is easy to see that k(C 1) f k(C2), i.e. k is monotone. Now let 

k(C 1) = k(C2) for hypervarieties Ci,C2 and let E1 be the set of hyperidentities of type 

r holding in C1 and E2, respectively for C2. Let (Ti,T2) be a hyperidentity of E1. As 

k(C 1) = k{C2), all algebras of k(C2) satisfy the hyperidentity (Ti,T2), i.e. E1 f E2. 

Similarly E2 f E1. We conclude that E1 = E2, and C1 = C2. Let A E k(C 1) A k(C2) 

and let Ei be the set of all hyperidentities holding for Ci, i = 1,2. Then 

H"(A) 2 [E1 U E2]. Furthermore, [E1 U E2] is the set of hyperidentities defining 

C1 A C2, by Proposition 4.1.1. Hence A E k(C 1 A C2). Since k is monotone, we con­

clude that k(C 1) A k(C2) = k(C 1 A C2). Now take A E (C 1 V G2). Thus the algebra A 

satisfies the hyperidentities of C1 V C2, i.e. H"(A) 2 E1 n E2, by Proposition 4.1.1. 

Because E1 n E2 is closed under rules (1)--(6), we conclude also by Proposition 4.1.1 

that A E k(C 1) V k(C 2). Since k is monotone, we have k(C 1 V C2) = k(C 1) V k(C 2), 

i.e. k is a lattice homomorphism. 

Remark 4.1.3. The lattice ( .t'( r),A,V) is a complete lattice. 

Proof. Similarly, as in the proof of Proposition 4.1.1 it is easy to see that for a 

family (V i : i E L) of hypervarieties of type r, defined by the sets Ei, i E 1 of hyper­

identities, respectively, the hypervarieties: /\(V i : i E I) and V(Vi : i E I) are defined 

by the sets of hyperidentities: U(Ei: i E I) and (\(Ei: i E I), respectively. 

· Let V be a variety of type r. Then h"(V) denotes the hypervariety of type r and h(V) 

the hypervariety which is generated by V, i.e. defined by all the hyperidentities of V. 

Obviously, we have: h(V) f h"(V) . 
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Proposition 4.1.4. The map h" : $( r) --1 L( r) defined by V --1 h"{V) is 

a surjective complete join-homomorphism. 

Proof. Let C be a hypervariety of type r, C = {V i : i E I} where V i are varie­

ties of type r for i E 1. Take V = V{V i : i E 1), the join of the family {V i : i E I} in 

the lattice L{ r). Then C is generated by V, i.e. h"{V) = C. He~ce h" is surjective. 

Obviously h" is a monotone map. 

To show that hiV{Vi: i E 1)) = V{h"{Vi) : i E 1), notice that the hypervariety C, 

generated by the join of the family {V i : i E 1) of varieties of type r, is defined by the 

set (l{E"(V i) : i E 1) of hyperidentities. But this is exactly the join of hypervarieties 

{h"{V i) : i E 1). 

Remark 4.1.5. According to the results of [Bergman] the map h is not 

one-to-one, in case of semigroups and groups considered as varieties of the same 

type. 

Proposition 4.1.6. V is a solid variety if and only if there exists a hypervariety 

C of the same type, such that k{C) =V. 

Proof. Let V be a solid variety, i.e. E-iCV) = H"{ld{V)). Take the set 

E = E"(V) of all hyperidentities of V and the hypervariety C = {V i : i E I} of the 

same type as V, defined by E, i.e. E"(V i) 2 E, for all i E 1. Thus V E C and 

k(C) = U(Vi: i E 1) and E"(k(C)) = (l(E"(Vi): i E 1) = E"(V), because V E C 

and E"(V i) 2 E for all i E 1. V is solid; thus E"(V) = H"(ld{V)). Also, 

ld{V i) 2 lv{E"(V i)) 2 lv(E"(V)) = ld(V) for i E 1. Thus V i ~ V, for all i E 1, i.e. 

ld{k(C)) = (l{ld(Vi) : i E 1) = ld(V), and thus k(C) =V. 
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Now let V= k(C) for some hypervariety C = {Vi: i EI}, such that E,(Vi) d E, for 

some set E of hyperidentities, which is closed under rules (1)-(6) by the completeness 

theorem. Thus a solid variety W, defined by IiE) belongs to C, i.e. Id(W) = Iv(E) . 

Thus V = k( C) = U (V i : iel) and Id(V) = (""\ (Id(V i) : iEI) = Iv(E), because 

for all i e 'I and W E {V i : i E I} and also 

E,(V) = (""\(E,(V i) : i E 1) = E i.e. Id(V) = Iv(E,(V), and thus V is a solid variety. 

Corollary 4.1.7. Let S( r) be the set of all solid varieties of type r. Then S( r) 

forms a (complete) sublattice of L(r) . 

The proof follows from remark 4.1.3, theorem 4.1.2 and proposition 4.1.6. 

§4. 2 Solid kernels and solid envelopes 

We have already considered solid envelopes in the first paragraph. Now we like to 

study this concept from the point of view of monotone Operators. 

Notation 4.2.1. Let E be the identities of the variety V of type r and H1 (E) 

the set of all transformations to hyperidentities. We define the solid kernel k(V) of 

the variety V as the subvariety of V which is given by Id(H (E)). 
. 1 

Example. Let D be the variety of distributive lattices. Then the solid kernel 

k(V) is the trivial variety because we have x = y from F(x,y) = F(y,x) by 

X f\ y = y f\ X . 

If V is solid we have k(V) =V. Let U ~V be varieties for U,V of some type r and let 
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denote E(U), E(V) denote the identities of U,V respectively. From U ~V we have 

E(V) ~ E(U), H
1

(E(V)) ~ H
1

(E(V)) and IdH
1

(E(V)) ~ Id H
1

(E(V)). Hence k(U)~k(V) . 

, 
Theorem 4.2.2. (Gracynska 89] Let L( r) be the lattice of varieties of type r 

and S( r) the lattice of solid varieties of type T. Then k: L( r) --+ S( r) is a meet-hom<r 

morphism. 

Proof. We have to show k(V 1nV2) = k(V 1) n k(V 2) for V i,V 2 E L( r). Obvi­

ously k is a monotone map and hence we have k(V 1 n V 2) ~ k(V 1) n k(V 2). For the 

other direction let f be a hyperidentity which holds for k(V 1) n k(V 2). The hyperiden­

tity of f is a hyperconsequence of H(V 1) as well as H(V 2) and hence also of 

H(V1 n V2). 

Remark. k(V) is the greatest solid variety contained in V. The theorem holds 

also for complete meets. 

We have already seen that for every variety V there exists a least solid variety s(V) 

which contains V. We call s(V) the solid envelope of V. 

Remark. Let V be a variety which is generated by a set K of subdirectly irre­

ducible algebras Ai, i f 1. Then s(V) is generated by D(K) the set of the derived 

algebras of V. 

We use the fact that s(V) = HSPD(V). 

Example. Let D be the varie~y of distributive lattices. Let D2 = ( {0,1 };A, v) be 

the tw~lement simple lattice. Then we have the following simple derived algebras: 



Ei= ({0,1},e~,e~), 

S3 = ( {O,l};e~,v), 

S5 = ( {0,1 };e~, v) 
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S1 = ( {O,l};e~ 1 A), 

S4 = ({o,1};v,en, 

S2 = ( {O,l};A,eD and 

Ss = ( {0,1}; A, A) 

Nevertheless, it will be usually difficult to find the subdirectly irreducible algebras of 

s(V) . 

Let u ~ V for varieties u,v of some type r. Then H
1

(V) ~ H
1

(U) for the sets of 

hyperidentities of type r which hold for Vor U respectively. Hence s(U) ~ (V). 

, 
Theorem 4.2.3. [Graczynka 89) Let L( r) be the lattice of varieties of type r 

and S( r) the lattice of solid varieties of type r. Then s: L( r) --+ S( r) is a join-homo-

morphism. 

Proof. We have to show that s(V 1 V V 2) = s(V 1) V s( (V 2) for every 

Vi,V2 E L(r). Obviously s is monotone and hence s(V1 V V2) ~ s(V1) V (V2). Let 

:E,:Ei,:E2 be the sets of hyperidentities of V 1 V V2, V 1 and V 2 respectively. We have 

:E ~ :E1 n E2 because of the rule (6) and conclude that s(V 1) V s(V 2) ~ s(V 1 V V 2). 

Remark. The theorem holds for complete joins. 

, 
Example [Gracynska). Consider the following varieties of semigroups . 

V 

Z,·<~>·Z, 
T 

T the trivial variety of semigroups 

Ze the var iety defined by xy = x 

Zr the var iety defined by xy = y 

V= Ze V Zr 
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V is the solid variety defined by xyz = xz and x2 = x. We have s(ZenZr) = s(T) = T 

but s(Ze) = s(Zr) = V and hence s(Ze n Zr) f. s(Ze) n s(Zr)· Furthermore we have 

k(Ze V Zr)= K(v) = but k(Ze) V k(Zr) =TV T = T. 

Problem 4.2.4 Let V be a given solid variety of type r 

a) Describe all varieties W of type r such that k(W) =V. 

b} Describe all varieties ofW of type r such that s(W) =V. 

The extreme cases where V is trivial or the variety of all algebras of type r deserve 

special interest. 

Problem 4.2.5. Let V be a given variety of type r. The variety W of type r is 

called a flexible complement of V if k(V) = k(W) and s(V) n W =V. Determine all 

maximal flexible complements. (As an example take D the variety of distributive 

lattices) 

§4.3. Clone congruences 

The results of this section are due to Schweigert ( compare [Schweigert 87a,89]) 

Definition 4.3.1. Let H = (H;*;e,r,ß,e) be a clone of functions on a set A. An 

equivalence relation ( is called a clone congruence of H if ( is compatible with the clone 

operations *,e,r,ß. 

E:xample. Consider a clone H of function on a set A. Then K = {(f,g) 1 ar f 

= ar g,f,g E H} is a clone congruence (ar f = m denotes the arity of the function 
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f:Am---+ A). Obviously K is an equivalence relation. Let (f,g) E K, h E H with 

ar f = arg = rn and ar h = n. Then (f*h,g*h) E K because ar f*h=n+rn-1 = ar g*h. 

Sirnilarly we have (h*f,h*g) E K. Now let (d,b) E K. For (f,g) E K we have (f*d,g*d) E K 

and we have proved the cornpatibility of K with *. 

Notation 4.3.2. The clone congruence K of H is called the arity congruence of 

H. On every clone of functions there are at least three clone congruences Ko, K, and Kt 

where Ko is the identity and Kt the all relation. 

Remark 4.~.3. If ( is a clone congruence of H with ( f. Kt then K.o ~ ( ~ K. 

Proof. We assurne that ( ~ K. Then there are functions f,gEH ar f = n>rn = ar 

g with (f,g) E (. Let f(xt„ .. xn) = f(xi, .. „xi,x2) g(xt„.„xm) = g(xt„ .. ,xt)· We have 

(f ,g) E ( and (eg*f,eg*g) E ( where eg(xi, ... ,xn) = Xn. We conclude that (egH,eg) E (. 

But frorn this it follows irnrnediately that any two given functions are in the clone 

congruence ( and ( = Kt· 

Fact. K is a maximal clone congruence. 

Notation. Every clone congru~nce ( ~ K is called a proper clone congruence. 

Notations. Let F(X) = (F(X),fl) denote the free algebra of the variety V. 

Con F(X) is the lattice of the fully invariant congruences of F(X). By the terrns of 

F(X) we define terrn functions on the set F(X). T(X) denotes the clone of all terrn 

functions on F(X) . ConT(X) is the lattice of all proper clone congruences of T(X) . 
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Theorem 4.3.4. Every proper clone congruence of the clone T(X) of term func­

tions corresponds to a fully invariant congruence of the free algebra F(X) . There is a 

lattice isomorphism h:ConT(X) -+ ConF(X). 

Proof. We define a rnap h: ConT(X)-+ ConF(X) in the following way. 

{t{xi,„.,xk),u{xi,„.,xk)) E ·Oti if and only if {t,u) E () for t(xi, ... ,xk) E F(X) 

u(x1, ... ,xk) E F(X) and the corresponding terrn functions t,u E T(X) . The equivalence 

relation On is cornpatible with any operation w E n of the free algebra F(X) because 

we have (w(ti, ... ,tn),w(u1,.„,un)) E () for (ti,Ui) E 0 i = 1,„.n. lf K is an endornorphisrn 

K: F(X) -+ F(X) with K(xi) = Si, i = 1, ... ,n then by the substitution property of a 

clone we have (t(si, .. . ,sn),u(si, ... ,su)) E (} and hence (K(t), K(u)) E fhi. Therefore Oti is 

fully invariant. On the other hand if ()h is a fully invariant of F(X) and 

(t(xi,„.,xk),s(xi, .. „xm)) E 0ti then by adding fictitions variables we get pairs (t,s) of 

terrn functions on the set A with ar t = ar s. The set 0 of these pairs is an equivalence 

relation on T(X) which is cornpatible with the substitution because Oti is a congruence 

of F(X). But () is also cornpatible with a perrnutation II of variables as K(xi) = xnc i l 

extends to an e endornorphisrn and Oti is fully invariant. The sarne argurnent holds for 

the identification of variables. Hence (} is a proper clone congruence of T(X). 

h: ConT(X) -+ ConF(X) with h( 0): = Oti is a lattice isornorphisrn. 

Corollary 4.3.5. There is a polarity ( dual-isornorphisrn) frorn the lattice 

ConT(X) of the proper clone congruence to the lattice L(V) of all subvarieties of the 

variety V. 
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Notations. O(X) denotes the set of all fundamental operations f6 of 

F(X) = (F(X),n) . By definition of T(X) they are contained in T(X). A term substitu­

tion ß is a map ß: O(X) -----+ T(X) such that ar f6 = ar ß(f{;). We write 

ß(fö)(xi, ... ,xn) = ß(fli(xi, ... ,xn) · 

As an example consider (ll;+) with ß(x+y) = ax+bx for some fixed a,b E ll. 

Proposition 4.3.6. The variety V is solid if and only if every term substitution 

B: O(X)--+ T(X) can be extended to a clone endomorphism 73: T(X)--+ T(X). 

Proof. If B is solid then we define 73(t) for t(xi, .. „xn) E F(X) by the term 

where every operation symbol is substituted by a term according to the map ß. If this 

map 73 is well defined then it will obviously be a clone endomorphism. Therefore let us 

consider the. equation t 1 = t2 in T(X) or t 1(xi, ... ,x0 ) = t 2(xi, ... ,x0 ) respectively. As V 

is solid any such term substitution provides a valid equation for V. Therefore we have 

73(t1) = 73(t2). 

We repeat the 

Definition. A congruence (} of A = (A,O) is called totally invariant if (a,b) E (} 

implies (h( a) ,h(b)) E (} for every type preserving weak endomorphism h o f A and every 

a,b E A. 

Remark. A totally invariant congruence is also fully invariant. 

Theorem 4.3.7. Every fully invariant proper clone congruence of the clone 

T(X) of term functions corresponds to a totally invariant congruence of the free 

algebra F(X) . There is a lattice homomorphism s:ConfT(X)--+ ContF(X). 
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Proof. Let 0 be a fully invariant proper clone congruence of T(X). We define 

(t(xi, ... ,xk),u(xi, ... ,xk)) E Os if and only if (t,u) E 0 for the corresponding term func­

tions t,u E T(X). We have already shown in 4.3.4 that Os is a fully invariant congru­

ence of F(X). Now let h:F(X)--+ F(X) be a type preserving weak endomorphism. Let 

h: T(X)--+ T(X) be defined by ii(t) = s iff h(t(xi, ... _,xk)) = s(xi, ... ,xk) · ii is compa­

tible with the substitution, i.e. h(u*v) = ii(u)*ii(v) because 

h( u( v(xi, ... ,xn),x2, ... ,xm +n-1)) = h( u(h( v(xi, ... ,xn),x2, ... ,m+n-1)) ). 

Obviously ii is comaptible with the other operatons e,r,!i of a clone. h is a clone end­

omorphism and we have (ii(t),ii(u)) E 0. Hence Os is totally invariant. 

On the other hand if Os is a totally invariant congruence of F(X) then from 4.3.4 it 

follows that 0 is a proper clone congruence. Let f :T(X)--+ T(X) be a clone endo­

morphism. Let f:F(X)--+ F(X) be defined by f(u(xi, ... ,xk)) = v(xi, ... ,xk) iff f(u) = v. 

f is type-preserving. Let w E 0 for F(X) = (F(X),O). Then 

f( w( u1(xi, ... ,Xk1), .. . ,un(xi, .. . ,Xkn)) = f( w )(f( u1(x1, ... ,Xk 1), ... ,f( Un(xi, ... ,Xkn)) 

by the substitution property of f. f is a weak endomorphism. Hence f(u),f(v)) E 0 

because (f(u(xi, ... ,xk),f(v(xi, ... ,xk)) E Os. 0 is a fully invariant proper clone con-

gruence. 

Proposition 4.3.8. Every totally invariant congruence of the free algebra F(X) 

corresponds to a solid subvariety of V. 

Proof. Let Os be a totally invariant congruence of F(X). Then Os is fully invari­

ant and corresponds to a subvariety U of V. Consider a term substitution 

ß:O(X)--+ Tu(X) where Tu(X) is the clone of all term functions is the variety U. 

Consider ß: Tu(X)--+ Tu(X) as in 4.3.6. Let t 10h Hence 

(t1(xi, ... ,xk),t2(xi, ... ,xk)) E Os and ß(t1) = ß(t2). ß is a well defined clone endomor­

phism of Tu(X) and U is solid. 
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Corollary 4.3.9. There is a polarity (dual isomorphism) from the lattice 

ContF(X) of all totally invariant congruence of F(X) to the lattice Ls(V) of the solid 

subvarieties of V. 

Remark. The kernel k(V) is the greatest solid subvariety of V and the trivial 

variety is the least solid subvariety of V. 

The meet of totally invariant congruences is again a totally invariant congruence. 

The all congruence is totally invariant. Hence there exist a least totally invariant con­

gruence 6 which is the identity relation of ConF(X)only in case that V is solid. 

Illustration 4.3.10 
L(V) (ON i=(x) (ON T(x) 

. / . , , 
(ON~ l&) I ' ...... . , . 1 

1 \ 
.. 
' 

„ 
J '-.... ' ' I \ . ·,:'-.-, 

LllV) ', ........... 
' ' 

. t lt4 

ConT(X): = lattice of the proper clone congruences of the clone T(X) 

ConF(X): = lattice of the fully invariant congrunces of the free algebra F(X) 

L{V): = lattice of all subvarities of the variety V 

ConrT{X): = lattice of the fully invariant proper clone congruences 

ContF{X): = lattice of the totally invariant congruences of the free algebra F{X) 

K: = arity congruence 

K6: = least fully invariant proper clone congruence 

6: = least totally invariant congruence of F{X) 
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§4. 4. Suhdirectly . irreducible clones 

Notations. Let PA= (P A;*,e,r,Ll,e) be a clone of all functions on the set A. A 

function f E P Ais called w-function if x1 = w or .. . Xn = w implies f((xi, ... ,xn) = w. 

Obviously the set of all w-functions of PA forms a subclone Hw. 

We define the relation Kw on PA by taking (f,g) E Ow iff either f = g or f,g are func­

tions of different arity which take the constant value w on A. lt is easy to check that 

Ow is a clone congruence of Hw. With this notation we present 

Theorem 4.4.1. [A. 1. Malcev 73) Let H be a subclone of PA such that H con­

tains properly the clone Hw. Then the only clone congruences of H are K.0 ,K,K.1. 

Corollary 4.4.2. Every primal algebra A = (A,O) has a subdirectly irredu­

cible clone T(A) of term functions. 

We restrict in the following our consideration to Boolean clones ( clones of function on 

set /\ = {0,1}) and define (f,g) E Kc if and only if ar f = ar g and there is an element 

c E {0,1} with f(xi, .. . ,xn) = g(xi, ... ,xn)+c. (f,g) E µ if and only if f = g or there is an 

element n EIN sucht that f,g E {c~,c~} with the constant functions c~(xi, ... ,xn) = 0 

and c~(xi, ... ,xn) = 1. 

Theorem 4.4.3. [Gorlov] The congruence lattices of all Boolean clones are of 

the following form 

f r f Fl 
K.c K.c µ1 K.o 
K.o µ1 "' o 

K.o all oth er Boolean 

Li, Ls,04 Og Os 
clones 
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Corollary 4.4.4. Every Boolean clone is subdirectly irreducible. 

Now we change the direction of this topic and consider algebras A with a subdirectly 

irreducible clone T(A). 

Definition 4.4.5. The algebra A = (A,O) is called 2-subdirectly irreducible if 

A is a subdirectly irreducible algebra and T(A) is a subdirectly irreducible clone. 

Example. Every algebra A = ( {0,1 },O) is 2-subdirectly irreducible. 

Problem 4.4.6. Is every solid variety gener0ited by its 2-subdirectly irreducible 

algebras? 

§4. 5 Clone-products of algebras 

Definition 4.5.1. The algebra A = A1 * A2 is called a direct clone-product of 

the algebras A1,A2 provided that there exist clone congruences (i,(2 o/T(A) such that 

(i) for every f E T( A) there is f E T( A) with f = {f I A'f } such that 
e/An Ai 

{f,f) E (i, i = 1,2 e/ An\Ai 

(ii) ( 1 /\ (2 = w where w is the identity relation 

(iii} ( 1 V ( 2 = ( 2 o ( 1 = K where K is the arity relation. 

e is the first projection e(xi,„ .,xn) = x 1 

Definition 4.5.2. If A is isomorphic to a subalgebra for a direct clone-product 

of Ai, A2 then A is called a subdirect clone - product of Ai,A2. 
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Theorem 4.5.3. Let Ai= (Ai,Oi) and A2 = (A2,f22) be algebras of not neces­

sarily the same type. Let Ai n A2 = 0 and A = (Ai U A2) · Let T{A) be the clone gene­

rated by the functions f such that f/ Ai E T(Ai), i = 1,2 and f(ai,„.,an) = ai for 

(ai,„.,an) ;_ A~ and (ai,„.,an) ;_ A~. Let n be a set of generators of T(A). Then 

A = (A,n) is a direct clone-product of Ai,A2 . 

. Proof. We define f Oig if and only if for the arity we have ar f = ar g and 

f/Ai = g/Ai, i = 1,2 and f(xi, ... ,xn) = g(xi,„.,xn) for (xi,„.,xn) ;_ A~ . 

By definition 8i is an equivalence relation contained in K. Also by definition the con­

dition (i) is fulfilled. Obviously Oi is a clone congruence relation (i.e. compatible with 

the clone operations ). 

From f 8i A 82 g it follows f(xi,„.,xn) = g(xi,„.,xn) for every (xi,„.,xn) E An. Hence we 

have 8i A 02 = w. 

Let f,gET(A) and (f,g)EK. Then we consider h:An--+A such that h/A~=f/A~, 

h/ A~ = g/ A~ and h(ai, „ .,an) = a1 else. Obviously we have f 01 h and h 02 g. Hence 

f Oi o 02 h and also Oi o 02 = 02 o Oi = K. 

Lemma 4.5.4. Let A = Ai* A2 be a subdirect clone product of Ai and A2. 

Then T(A) is a subdirect product ofT(Ai) ·and T(A2). 

(This follows from 4.5. l. {ii)). 

§4.6. Clone-unions of algebras 

The construction in 4.5 has a lot of beautiful properties which will fail for the method 

of clone-union. 
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Definition 4.6.l. Let A1 = (A,Oi) be algebras and let 0 = 0 1 U 0 2 and 

7 = 71 U 72. The algebra A is a clone-union of the algebras A1 and A2 if the following 

holds 

1) T(A1) n T(A2) = P 

2) Ais weakly isomorphic to (A,O) of type 7 

(P is the clone of projections on A). · 

Exampl~ 4.6.2. The distributive lattice D = ( {0,1 }A, v) is a clone-union of 

the semilattices D1 = ({O,l};A) and D2 = ({O,l};V) 

Example 4.6.3. The cyclic group C3 = (A;+) of order 3 where C = {0,1,2} is 

the clone-union of the quasi-groups Cix•y = (A;+ 1) and Cix•2y = (A;+ 2). The fun­

damental term function x+1Y of C~x+y is defined by x+1Y = 2x+y in terms of C3 and 

x+2Y = 2x+y respectively. 

This construction rnay have a lot of disadvantages but can also be consdidered as a 

tool to decompose algebras. lt is far from being unique in any sense. Nevertheless, let 

us state the following 

Problem 4.6.4. Can every finite abelian group be presented as a direct product 

of clone-unions of simple quasi-groups? 



Part V Hybrid logic 

§ 5.1 Hyperquasi-identities 

The approach to hyperidentities in § 1.1 and §1.2 is extended to quasi-identities and 

sentences in the following. 

We develope logics containing the hypersubstitution as an additional rule and prove 

completeness. Compared to §1.2 we have chosen a different way to these results. 

Proofs in logics with hypersubstitutions are transformed in proofs logics without 

hypersubstitutions and vice versa. This method clearly points out that a logic with 

hypersubstitution has more expressive power and the proofs are usually shorter. 

These logics with hypersubstitutions proceeds beyond first order (but they are only a 

fragment of the second order logic). One can strengthen the expressive power of these 

logics furthermore if operation symbols and hypervariables are admitted simultane­

ously in the language. 

All sentences, quasi-identities and identities are written without quantifiers but are 

considered as universally closed. We consider varieties of algebras of given type. A 

type of algebras r is a sequence (n 0,ni, „.,n,,„.) of positive integers, r < 0( r), where 

O{ r) is an ordinal, called the order of r. For every r < O{ r) we have a symbol f, for an 

n,-ary operation. Moreover, for every r the syrnbol F, is associated. F, is called an 

n, -ary hypervariable. 
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Definition 5.1.l. Let T be a given type. The n-ary hyperterms of type T are 

recursively defined by: 

{1} the variables xi, ... ,xn are n-ary hyperterms, 

(2) if Ti, ... ,Tm are n-ary hyperterms and F, is a m-ary hypervariable of type T, 

then F,(Ti, ... ,Tm) is n-ary hyperterm of type T. 

Hn( T) is the smallest set containing (1.) which is closed under finite application of (2). 

H( T) = u(Hn( T) : n t: IN) is called the set of all hyperterms of type T (where IN is the set 

of all positive integers). A hyperidentity of type T is a pair of hyperterms (Ti,T 2), 

which also denoted by T 1 = T2. The free algebra in countably many variables of a 

variety V of type T is denoted by T(V) and its elements t are called terms. A quasi­

identity is an implication of the form 

(to = so) A (t1 = S1) A ... A (tn-1= Sn-1)) ---i (tn= Sn)· 

Definition 5.1.2. A hyperquasi-identity is an implication of the form 

(To =So) A (T1 = S1) A ... A (Tn-1 = Sn-1)) ---i (Tn = Sn)· 

where Ti= Si are hyperidentities, i = !, ... ,n. 

Definition 5.1.3. A mapping u : {F i 1 i t: I} ---i T(V) which assigns to every 

Ili-ary hpervariable an ni-ary term is called hypersubstitution. Such a mapping u can 

be extended to a mapping er from the set of hyperterms into T(V) by defining recu~ 

sively u(x) = X for every variable X in T(V) and 

u(Fi(Ti, ... ,Tn)) = u(Fi)(u(T1), ... ,u(Tn)). 

In the following both maps u, a are denoted by u only and we call u(T) = u(S) a 

transformation of the hyperidentity T = S into an identity. Similarly we have trans­

formation u of hyperquasi-identities into quasi-identities. Z is the set of all these 
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transformations . For a hyperquasi-identity e the set 

Z( e) = { a( e) 1 a E Z} 

denotes all transformations of E. 

Example. Consider the following quasivariety V of type (2) 

(Kl) x o (y o z) = (x o y) o z 

(K2) X o X= X 

(K3) (u o x) o (y o w) = (u o y) o (x o w) 

(K4) (x o y = y ·a x) ____.. x = y. 

This quasivariety is not trivial as it contains for instance the algebra ( { O,l)};o) with 

x o y = y. The terms in two variables x,y of T(V) can be listed up: 

t3(x,y) = X o y, t4(x,y) = y o x, t 5(x,y) = x o y o x, 

t 6(x,y) = y o x o y. We consider the hyperquasi-identy 

(F(x,y) = F(y,x)) ____.. (x = y). 

lf we replace the hypervariable F by the term t 5 this transformation produces 

(x o y o x = y o x o y) ____.. (x = y). 

Definition 5.1.4. A quasivariety V of type r satisfies a hyperquasi-identity e if 

the set Z(e) of quasi-identities. holds for V. 

Example. (F(x,y) = F(y,x) ____.. x = y) holds for V. We would have to con­

sitler all terms listed up but confine us to t 5. Now x o y o x = y o x o y implies 

(x o y) o (y o x) = (x o y) o (x o y) by (K2) and (Kl) and furhtermore x = y by 

(K4) . 
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Definition 5.1.5. A mapping 

h : {fi 1 i E I}---+ {Fi 1 i E I} 

which assigns to every Ili-ary operation symbol fi an Ili-ary hypervariable Fi is called 

'a transformation of terms if the variables x,y,z„ .. are left unchanged. Of course we 

extend to the set-T(V) of all terms recursively. • 

The set of all these transformations is denoted by z-1. 

Example. The quasi-identity (x o y o x = y o x o y)---+ (x = y) is trans-

forrned to the hyperquasi-identity. 

(F(F(x,y),x) = F(F(y,x),y))---+ (x = y). 

This hyperquasi-identity holds for the above quasivariety V because it can be derived 

frorn h(Kl), h(K2), h(K3) and h(K4). 

Definition 5.1.6. A quasivariety V is called solid if every quasi-identity of V 

can be transformed to a hyperquasi-identity which hold for V. 

Notation. Let ~ be the set of identities which hold for V. lf V is solid the 

z-l(}j) ~ E where Eis the set of all hyperquasi-identities which hold for V. 

Examples. 1) The quasivariety V of type 2 with the axiorns K(l) - K( 4) is 

solid. 2) Every hyperquasivariety of a given type (i .e. a quasivariety defined by 

hyperquasi-identities ). 
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§ 5. 2. Preservation properties 

We quote the following results . 

• 
Theotem, 5.2.1. [Malcev 71] A class K of algebras of a type r is a quasivari~ 

ty if and only if K is closed under the formation S of subalgebras, 1 isomorphic images 

and PR. reduced products. 

SK ~ K, P R.K ~ K. 

{Here we put PR. := IP R.). 

Theorem 5.2.2 Let K be a class of algebras of type r. S PR K is the class of all 

models of the set of quasi-identities true in K. 

Notation. Let K be a dass of algebras of a given type r = (.n 0,ni, ... n'T, .. . ). The 

algebra Bis called a detived algebra of A = (A; f0,fi, ... ,f'T, ... ) if there exist term opera-

tions t 0,ti, ... ,t'T, ... of type r such that B = (A; t 0,ti, ... ,t'T, ... ). Fora dass K of algebras 

of type r we denote by D(K) the dass of all derived algebras of type r of K. 

Theorem 5.2.3. A class K of algebras of a type r is a solid quasivariety if and 

only if we have 

SK ~ K, PR. K ~ K, DK S K. 

Proof by the following lemma. 

Lemma 5.2.4. A quasivariety V of type r is solid if and only if it is closed 

under the condition: 

Let A be an algebra ofV, of type r = (n 1n2, .. ,n
1

, ... : r < 0( r)). 
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(*) If t, is the realization of an n"t-ary term Operation of type T in A then 

Ä = (A,(ti,t2, ... ,t"1,„ .: r < 0( r))) is an algebra ofV. 

Proof. Let V be a solid quasivariety. Cortsider the algebra 

Ä = {A,(ti,t2, ... ,t
1

, ... : r < O{r))). 

The quasi-identities of V are transformed into hyperquasi-identities of V and hence 

hold for the term functions t,. Especially they hold for Ä. Hence Ä f V. Let the con­

dition (*) hold for V. Then the quasi-identities of V hold for all term functions of the 

suitable arity and hence are transformed into hyperquasi-identities, i.e. V is a solid 

variety. 

Theorem 5.2.5. K of type r is a solid quasivariety if and only if 

K = S PR DK. 

Proof. We have to show DP R.K ~ P R.DK. For B f DP R.(K) we have 

B 0 = (A,to,t 1, .. • ,t"1, ... ) with A = (A,fo,fi, ... fy .. ) and A = TIAi, A = (A;f0,fi, .. . ,f"1 ... ). 

Consider Xi:= (Ai,to,ti, ... ,t"t ... ) then we have B = 11Bi and hence B f P R.D(K) . 

§ 5.3. Solid classes of •odels 

We are considering a dass of relational structures of given type r. The type of a 

structure is a sequence (n0,ni, ... ,n"11 ••• ) of positive integers, r < 0( r), where 0( r) is an 

ordinal. For every r < 0( r) we have a predicate symbol r
1 

for an n"t-ary relation. 

Moreover for every r the symbol R"t is associated. R"t is called a hyper predicate 

variable. 
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Definition 5.3.1. An atomic hyperformula is an expression of the form 

P(Ti, ... ,T0 ) where P is an n-place hyper predicate variable and Ti, ... ,Tn are hyper-

terms. 

DefüJition 5.3.2. The hyperformulas are built up from the atomic formulas by 

use of the connective symbols and the quantifier symbol (R A Q) , 'v'xiR. 

Definition 5.3.3. A hypersentence is a hyperformula where every variable and 

every hyperpredicate variable is bound. 

Example. VP VxVy {P{x,y))---+ P{y,x)). We only write: P(x,y)---+ P(x,y) 

dropping all quantifiers . 

Notations 5.3.4. Given a class K of models of type T and a hypersentence 

C(Ri, ... ,R0 ) of type T . Let u be a map of all hyperpredicate variables into the set of 

quantifier-free formulas. u transforms C(Ri, .. . ,Rn) into a first-order-formula 

u(C(R1, ... ,Rn)). Let Z be the set of all these transformations. The hypersentence 

C{Ri, ... ,Rn) holds in the class K if for all u f Z o-(C{Ri, .. . ,Rn)) is valid formula of 

first order for K. We write 

Fhyp C(R1„ .. ,R0 ). 

Similarly we define E of hypersentences and a hypersentence U. 

Notation 5.3.5. Let c(ri, ... ,rn) be a quantifierfree formula of first-order and 

let m be the maximum of the arities of the predicate symbols ri, ... ,rn. Then we define 

the derived relation r by 

or in the usual notation: 
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r(xi, ... ,xm) ~ c(r1, ... ,rn)(xi, ... ,xm). 

Let A = (A,p) be a relational system of a class K. A derived relational system 

A = (A,p) is a system where every relation in p is substituted by a derived relation of 

the same arity. 

D(K) denotes the dass of all derived relational systems of K. 

Definition 5.3.6. A class of models of type T is called solid if every sentence 

valid in K hold as hypersentence in K substituting the predicate symobls by hyperpredi­

cate symbols of the same arity. 

Notation. We denote these transformations by h, the set of th.ese transforma­

tions by z-1 and we al.so write z-t[E] of a set E of sentences. 

Example of a solid model of type (2,2): (A;p,q) axioms: 

(*) p(x,y), (**) q(x,y)--..:+ q(y,x). We show that (***) P(x,y)---+ P(y,x) is a hyper-

sentence. 

Proof. lf w(x,y): = p(x,y) then (***) holds by (*). All sentences can be built 

up by the connectives A, -1. 

a) We assume w(x,y) :: (k(x,y) A l(x,y)) and (***) holds for k(x,y). We have 

k(x,y)---+ k(y,x) 

and hence 

and finally 

l(x,y)---+ l(y,x) 

k(x,y) A l(x,y)---+ k(x,y) 

k(x,y) A l(x,y)---+ l(y,x) 
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k{x,y) /\ l(x,y) ---1 k(y,x) /\ l(y,x) 

w(x,y) ---1 w(y,x). 

b) We assume w (x,y) = (k{x,y) ---1 l(x,y)). By (***) we have 

k(x,y) 1-1 k(y,x) 
l . 

l(x,y) 1-1 l(y,x). 

lt follows k(y,x) ---1 l(y,x) and hence w(x,y) ---1 w(y,x) 

§ 5.4. Coapleteness for Hypersentences 

q.e.d. 

We follow the notation of [Enderton] and present the following axiom schemes for a 

logic of hypersentences. 

1. 

2. 

3. 

4a) 

b) 

Sa) 

Tautologies 

ßubstitution of variables: Vxo: ----+o:T 
p 

VPo:---10: C(Ri, ... ,Rn)· 

Vx( o: -+ ß) ----+ (Vxo: -+ Vxß) 

VP( o:-+ ß) ----+ (VP o: -+ Vxß) 

o:----+ Vxo: where x does not occur free in o:o: 

o:----+ VP o: where P does not occur free in o:. 

Rule of inference: Modus ponens ~-
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Definition 5.4.1. Let E be a set of hypersentences. The hypersentence can be 

derived from t if there is finite sequence ( a 0,„.,an) of hyperformulas such that an :: e 

and for each 0 $ i $ n either 

a) ai f t U A denotes the axiom schemes1 or 

b} for some j and k less thani frj is obtained by the modu8 ponens from frj and <lk· 

We write t 1-hyp e. 

Lemma 5.4.1. Let E be a set of hypersentences and e be a hypersentence 

El-h ' e iff U a'(E) 1- a(e) forevery a f Z. 
yp aEZ 

The proofs for lemma 5.4.1. and theorem 5.4.2. will be given in section 5.9 in a more 

general setting. 

Remark. For quasi-identities we consider the axioms and rules given in 

Selman [10]. The above lemma 4.1 and the theorem 4.2 hold also for quasi-identities 

after changing the notations. This also is the case for the following results of this 

section 4. 

Notation. Let us denote the substitution of every n
1
-ary predicate symbol by 

a n
1
-ary hyperpredicate symbol R

1 
by the bijective map h. lf t is a set of sentences 

then H(t) denotes the corresponding set of hypersentences. We formalize the 

Definition 5.4.3. Let E be the set of hypersentences and t the set of sentences 

which hold for the class K of models K is a solid class of models if H(t) ~ E: Obviously 

we have H(t) = E. 
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Theorem 5.4.4. K is solid and only if U a(E) ~ E. 
af.Z 

Proof. From U a(E) = E we conclude that h(E) ~ E and hence K is solid. On 
af.Z 

the other hand assume that we have h(E) ~ E. We conclude that E f-hyp h( f) for 

every sentence f of E. By Lemma 4.1 we have U a' (E) f- a(h( f)) for every a f Z. 
a' f.Z 

We choose a such that a(h( f)) = f and have U a' (E) f- f for every sentence f of E. 
a' f.Z 

As u a' (E) is closed under the axioms schemes and modus ponens of the predicate 
a' f.Z 

calculus we have U a(E) 2 E. 
af.Z 

§5.5 Hybrid teras 

Terms are built up with variables and operation symbols, hyperterms with variables 

and hypervariables. If one admits operation symbols and hypervariables simultane­

ously in a language then one gets hybrid terms. Therefore the concept of hybrid terms 

is a generalization of hyperterms. In our approach we restrict the hypervariables re­

spectively hyperpredicate variables to a fixed type. By this restriction a lot of prob­

lems become solvable, a fact which can also be concluded from Henkin's work on com­

.pleteness. Furthermore we restrict the operator variables which are called hypervari­

ables to terms. These hybrid logics have not the expressive power of a general second 

order logic. Nevertheless proofs may be shorter and axioms systems may become 

finite in a hybrid logic. 

We consider varieties of a given type. A type 7 of algebras is a sequence 
1 

(no,ni, ... ,ny .. ) of positive integers, 'Y < 0(7), where 0(7) is an ordinal, called the 

order of 7. For every 'Y < 0( 7) we have a symbol f
1 

for an n"l-ary operation. Moreover 



-137-

for every 'Y with n
1 

/: 0 the symbol F 
1 

is associated. F 
1 

is called an n
1
-ary hyper­

variable. 

Definition 5.5.11. Let r be a given type. The n-ary hybrid terms of type r are 

recursively defined by: 

{1) the variables x 1„ „,xn are n-ary hybrid terms 

{2) if Ti, .. „ Tm are n-ary hybrid terms and f is a m-ary operation symbol then 

f(Ti,„„Tm) is an n-ary hybrid term 

{3) if Ti„-„Tm are n-ary hybrid terms and F is a m-ary hypervariable then 

F(Ti,„„Tm) is an n-ary hybrid term. 

Bn( r) is the smallest set containing {1) which is closed under finite application of {2) 

and {3}. B( r) = U{Bn( r) 1 n E IN} is called the set of hybrid terms of type r. A 

hybrid identity of type r is a pair of hybrid term (Ti,T2) which is also denoted by 

T 1 = T 2· The free algebra i.n countably many variables o f a variety V o f type r is de­

noted by T(V) and its elements are called terms. If V is generated by the algebra A we 

write T(A) instead ofT(V). 

Definition 5.5.2. Let (T 1,T2) be a hybrid identity of type r and V a variety of 

type r. If every n
1

-ary hypervariable occurring (Ti,T 2) is replaced by an n
1

-ary term 

t
1 

E T(V) leaving the variables and operation symbols unchanged in (Ti, T 2) then the 

resulting identity ( t 1, t 2) is called a transformation of the hyperidentity (T 1, T 2) . 

Example. Let F(xAy,z) = F(x,z)AF(y,z) be a hybrid identity with a binary 

hypervariable F and a binary operation symbol. Let V be the variety of distributive 

lattices of type (2,2) . lf we replace F(x,y) by the term xVy we get the transformation 

(xAy)Vz = (xvz)A(yvz) . To get all four possible transformations F has ·to be replaced 

by the four terms x, y, xAy, xVy. 
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Example. F(x,F(y,z)) = F(F(x,y),z) is a hybrid identity which does not con­

tain any operations symbol. This hybrid identities are called hyperidentities . If E is a 

set of hybrid identities of type T then the set of all transformations of E for a variety 

V of type T is denoted by Iv(T1,T2) . 

Definition 5.5.3. A variety V oftype T satisfies the hybrid identity (Ti,T2) of 

type T if the set lv((Ti,T2)) of all transformations of Ti,T2 is contained in the set of 

identities which hold in V. 

Example. The hybrid identity F(xAy,z) = F(x,z)AF(y,z) holds for the varie­

ty of distributive lattices. 

Definition 5.5.4. Let (ti,t2) be an identity which holds for a variety V. If one 

substitutes some n
1 

-ary operation symbols f
1 

by n
1 

-ary hypervariables F 
1 

having the 

variables unchanged then the resulting hybrid identity (Ti, T 2) is called a transforma­

tion of (ti,t2). 

Example. Consider the identity (xAy)Vz) = (xVz)A(yVz) for the variety of 

distributive lattices V. If we substitute the operations symbol V by the binary hyper­

variable F we get the hybrid identity F(xAy,z) = F(x,z)AF(y,z). Of course one can get 

transformations like F(x,y) = F(y,x) from xVy = yVx which do not hold as hybrid 

identites for V. 

A transformation of ( t i, t 2) which contains a maximal num her of different hypervari­

ables is called general. For instance, F(G(x,y),z) = G(F(x,z),F(y,z)) is a general 

transformation from the law of distributivity. 

We use a slight generalization of the concept of hypersubstitution [6] p.308. 

Rule of hybrid substitution. 
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* * * * (6) The hybrid identity (Ti,T 2) irnplies the hybrid identity (T i,T 2) if (T i,T 2) is 

the result of any sirnultaneous substitution of hypervariables in Ti and T 2 by a 

hybrid terrn of the sarne arity. 

Together with the rules (1)-(5) which are reforrnulations frorn the classical equa­

tional logic the derivation of hybrid identities is defined. 

(1) Ti= Ti for every hybrid terrn Ti E B(r) 

(2) Ti= T2 irnplies T2 =Ti for hybrid terrns Ti,T2 E B( r) 

(3) Ti= T2, T2 = T3 irnplies Ti= T3 for hybrid terrns Ti,T2,T3 E B( r) 

(4) Ti= Si for i = 1, ... ,rn1 irnplies F1 (Ti, .. . ,Tm,) = F
1

(Si, ... ,Sm
1

) for hybrid 

terrns Ti, Si E B(r) and rn
1
-ary hypervariables F

1
. 

(5) T(xi, ... ,xn) = S(xi, ... ,xn) 

T,S,Ri, ... ,Rn E B( r) . 

irnplies T(Ri, ... ,Rn) = S(Ri, ... ,Rn) for 

Given a variety V of type r, E"(V) denotes the set of a hybrid identities of type T 

which are satisfied in V. 

The following is a slight modification of G. Birkhoff's theorem [2] . (Compare also 

[6]) . 

Completeness theorem. A set E of hybrid identities can be presented "in the 

form E"(K) for sorne variety k of type T if and only if E is closed under the rules 

(1)-(6). 
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§5.6. Basis of hybrididentities 

The hybrid equational logic has more expressive power than an equational logic. 

Hence one can expect that so'me varieties can be described by a shorter system of 

axioms. Let D be a set of hybrid identities of some variety V. We call D a hybrid 

basis of identities of V if every identity of V is implied by D. D is a basis of hybrid 

identities of V if every hybrid identity V is implied. (D is called a basis of hyperiden­

tities if every hyperidentity is implied.) 

Proposition 5.6.l. Let 

D = {x·(y·z) = (x·y)·z, xyzw = xzyw, yx2y = xy2x, y·G(x)·x2y = x·y·G(x)·y·x} 

be a set of hybrid identities involving an associative binary operation symbol and a 

unary hypervariable G. Then D cannot be presented by a finite basis of identities but by 

a finite hybrid basis of identities. 

Proof. We replace the hyperterms G(x) by xk, k EIN, and get an infinite set E 

of identities. By [Perkins] this infinite set E of identities has no finite basis of identi­

ties. 

Problem 5.6.2. Determine an algebra of minimal cardinality without a finite 

hybrid basis of identities. 

Remark 5.6.3. Let V be a variety which has no finite bases of hyperidentities . 

Then there exists no finite bases of hybrid identities . Because of the rules (1)-(6) of 

hybrid logic it is impossible to derive hyperidentities from other hybrid identities 

than hyperidentities. 
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Solid varieties [6] are varieties where every identity can be transformed into a hyper­

identity. The following results give a new description. 

Lemma 5.6.4. A variety V of type r is solid if and only if every transformation 

of any of the identities ofV holds as a hybrid identity ofV. 

Proof. Let (ti,t 2) be an identity of V and (Ti,T2) be a transformation into a 

* * hybrid identity. Let (T 1i T 2) be a transformation into a hyperidentity with a maximal 

number of different hypervariables. We replace the appropriate hyperterms in 

* * * * (T 'i,T 2 ) to get (Ti,T2) . As V is solid (T 1,T 2 ) holds for V and hence also (Ti,T 2). 

Corollary 5.6.5. Let }:; be a basis for the identities of V of type r . V is solid if 

and only if every transformation of}:; holds as a hybrid identity of V. 

§5. 7. Hybrid Teras of Distributive Lattices 

Notation 5.7.1. We consider the following set B of hybrid identities of type 

(2,2) using the binary operation symbols A,V and the binary hypervariables F,G. 

(Hl) F(x,F(y,z)) = F(F(x,y),z) 

(H2) F(x,x) = x 

(H3) F(F(u,x),F(y,w)) = F(F(u,y)F(x,w)) 

(H4) F(G{x,y),z) = G(F(x,z),F(y,z)) 

(H5) F(x,G(y,z)) = G(F(x,y),F(x,y)) 

(El) xAy = yAx, xVy = yAx 

(E2) xA(yVx) = x, xV(yAx) = x 
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Remark 5.7.2. An algebra L of type (2,2) is a distributive lattice if the hybrid 

identities Hl, H2, H4, H5, El, E2 hold. 

Proof. From Hl follows the associativity, from H2 the idempotency and from 

H4 arid H5 the distributivity of the lattice operations A and V (putting x := u, y := z, 

z := y =wand hypersubstituting Fand G by A and V respectively). 

Remark 5.7.3. The hyperidentity (H4) respectively (H5) implies 

(Ml) F(xAy,z) = F(x,z)AF(y,z) 

(if we hypersubstitute G by A). 

(Mi) F(xVy,z) = F(x,z)VF(y,z) 

(M3) F(x,yAz) = F(x,y)AF(x,z) 

(M4) F(x,yVz) = F(x,y)VF(x,z) 

Proposition 5.7.4. Every hybrid term T can be presented as a 4isjunction of 

fonjunctions of ßyperterms i.e. in dch-form. 

Proof. If T is a hyperterm then 3.5 holds. If T = Ti V T 2 and Ti,T2 are in 

dch-form then T is in dch-form. If T =Ti A T 2 then by the distributive law T can 

be presented in dch-forin. If T = F(Ti,T 2) we apply (Ml)-(M4) to get a dch-form. 

Example. Consider T = G(F(xAy,z),x). T can be transformed in the 

dch-form in the following way 

G(F(xAy,z),x) ~ G(F(x,z)AF(y,z),x) --+ G(F(x,z),x)AG(F(y,z),x) . 
(Ml) (Ml) 
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Notation. A hyperterrn T is called a F-hyperterrn respectively G-hyperterrn 

if T contains only hypervariables F or respectively G .· 

Proposition 5. 7.5. Every hyperterm T can be represented as a F-hyperterm 

substituted by G-hyperterms. 

Proof. One applies (H4) and (H5) 

Example. 

G(F(x,y),F(u,v)) --+ F(G(x,F(u,u),G(y,F(u,u)) --1 F(F(G(x,u),G(x,u),F(G(y,u), 
(H4) (H5) 

G(y,u))) ----i F(F(F(G(x,u),G(x,u)),G(y,u)),G(y,u)) 
(Hl) 

Remark 5.7.6. As F,G are associative one rnay write by abusing the notations 

F(xi, ... ,xn) := F(F ... (F(xi,x2),x3, ... ,xn) 

§5.8. Unification of Hybrid Terms of 2-groups 

In autornatic theorern proving the unification of forrnulas plays an irnportant role. A 

unifier of two forrnulas is a substitution such that the two forrnulas under this substi-

tution becorne equal. 

The problern of unification has already been studied for second and higher order 

logics. By a result of [Goldfarb] it is shown that unification is undecidable for the se­

cond order logic. Hybrid logic is a fragrnent of second order logic but it is an open 

question whether unification is decidable. lt is obv1ous . that specific exarnples in 
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hybrid logic can be handled by a transformation to first order iogic. If V is a variety 

where every n generated free algebra is finite then the unification of hybrid identities 

is decidable if and only if the unification of identities is decidable. 

There are only a few varieties where the unification problem is explicitly solved. We 

use an idea of Löwenheim to study the unification in the variety of 2-groups (groups 

of exponent 2). 

(Hl) F(x,F(y,z)) = F{F{x,y),z) 

(H2) F3(x,y) ::;: F(x,y) 

{H3) F{F(u,x),F(y,v)) = F(F(u,y),F(x,v)) 

(Ml) F(x+y, u+v) = F(x,u) + F(y,v) 

(M2) F(O,O) = 0 

{Al) x+x = 0 

{A2) x+y = y+x 

Here we define 

F3{x,y) := F(F{Fx,y),y),y). 

In a more general form w~ consider a hybrid term T(xi, ... ,xn) and use 

A tenp. for 2-groups can be written in the general form a1x1+ ... +anxn, a1 E {0,1}, 

i = 1, ... ,n. Obviously ai(x1+Y1)+ ... +an(xn+Yn) = aix1+ ... +anXn + aiy1+ ... +anYn· 

Similarly we have 

T(O, ... ,O) = 0. 

We denote T~(xi, ... ,xn) = T(xi, ... ,Xi-b T(xi, ... ,xn),x1+1, ... ,x0 ) and recursively 

THxi, ... ,xn) = T(xi, ... ,Xi-li Tf{xi, .. . ,xn),Xi+i, ... ,xn) . We have for i E {l, ... ,n} 

(H2) 'l'~(xi, ... ,xn) = T(xi, ... ,xn) 

a1X1+ · ·· +ai( a1x1+ .. · +ai( a1X1+ ... +anXn)+ ... +anXn)+ ... +anXn 

= aix1+ ... +(a1a1x1+ ... +a1a1x1 + a1x1 + a1anxn+ ... +a1anxn)+ .. . +anxn 

= aix1+ ... +a1x1+ .. . +anXn 
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In the following a hybrid substitution is a finite set {vtlT1, ... ,vnlTn} of pairs where 

vi, .. . ,vn are variables and hypervariables and Ti, ... ,Tn are hybrid terms such that if 

Vi is an n"'f-ary hypervariable then Ti is an ·n"'f-ary hybrid term. 

The result OT of applying a hybrid substitution 0 = {vdTi, ... ,vnlTn} to a hybrid 

term can be defined recursively in an obvious way. We hypersubstitute the hypervari­

ables and then substitute the variables. 

Example. Consider the hybrid equation F(x,y)+z = F(y,x) which does not 

hold as a hybrid identity for 2-groups. Consider () = {F 1 +, z 10}. The result of 

O(F(x,y)+z) is x+y and of OF(y,x) is y+x. 

Definition 5.8.1. A hybrid substitution 0 is unifier to a pair (Ti, T 2) of hybrid 

terms ifOT1 ~ OT2. 

Definition 5.8.2. A unifier () for a pair of hybrid terms is a most general 

unifier if and only if for each unifier u for the set there is a hybrid substitution >. such 

u = >.oO. 

To find a non-trivial unifier we use an approach similar to Löwenheim ( compare 

[11] ). Instead -0f considering the unification problem for the hybrid equation T = S 

we study the hybrid equation T+S = 0. These equations are equivalent because 

T = T+(S+S) and (T+S)+S = o+s = S. Hence we search for unifier of the hybrid 

equation T(xi, ... ,xn) = 0. 
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Lemma 5.8.3. Let T(xi, .. . ,xn) = 0 be a hybrid equation. Then there exist a 

non-trivial unifier 

() = {xi! X1 + T~(xi, ... ,xn), ... ,Xn 1 Xn + T~(xi, ... ,xn)} 

l>roof. We show that () is a unifier applying (Ml) and (H2). Let n be odd. 

T(x1 + Ti(xi, .. . ,xn), ... ,Xn + T~(xi, .. . ,xn)} 

= T(x1 + (:ic1+ .. . +x 1)+ Ti(xi, .. . ,xn), ... ,Xn + (xn+· .. +xn) + T~(xi, ... ,xn)) 
~..;' ~..;' 

( n-1 ) t i mes ( n-1 ) t i mes 

= T(xi, ... ,xn) + T(T~(x1, ... ,xn),x2, ... ,xn)+ ... +T(xi, ... ,xn-1, T~(xi, ... ,xn)) 

= T(xi, ... ,xn) + T{x1, ... ,Xn) + ... +T(xi, ... ,xn) = 0 
~ 

n times 

Let n be even. 

T(x1 + Ti(xi, ... ,xn), ... ,Xn + T~(xi, ... ,xn)) 

= T(x1+(x1+ ... +x1) + Ti(xi, ... ,xn), ..... ,Xn + (xn+ · .. +xn) + T~(xi, .. . ,xn)) 
~,./ ~,./ 

( n-2 ) t i mes ( h-2 ) t i mes 

= T(Ti(xi, ... ,xn),x2), ... ,xn)+ ... +T(xi, .. . ,Xn -li T~(xi, ... ,xn)) 

= T(x1, ... ,Xn) + . .. +T(xi, ... ,xn) = 0 
~ 

n times 

Let (J = {FI (JF, xilyi, ... ,xjyn} be a unifier and let uT(xi, ... , xn) be the result by 

hyper~ubstitutirlg F without changing the variables. 

Lemma 5.8.4. 

is a unifier for (J T(xi, ... ,xn) · 
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Proof. We have only to consider 

o'T( aT(yi,0, ... ,0), .. . ,o'T(O,.„ ,O,yn)) 

because of lemma 5.8.3. Interpretating o'f{xi, ... ,xn) by terms a 1x 1+. ~ .+anxn we have 

the result aia1y1+„.+ananYn = atY1+ ... +anYn = 0. 

Theorem 5.8.5. Every unifier a can be presented by a = a 0 0( a). 

Proof. We have to consider 
2 

Yi+aT (yi,„.,yn)+o'T{O,„.,O,Yi,0„.0) 

= Yi+o'Ti(Yli ·· ·1Yi-110,Yi+li···Yn)+o'T{O, ... ,o,yi,O ... o) = Yi 

§5.9. Hybrid Sentences 

We use hypervariables and hyperpredicate variables of a fixed type to define hybrid 

sentences in the usual recursive way. 

Definition 5.9.1. An atomic hybrid formula is an expression of the form 

where P is an n-place hyperpredicate variable and Ti,„ .,Tn are hybrid terms. 

The hybrid formulas are built up from the atomic formulas by the use of connective 

symbols and the quantifier symbol: {RAQ), {R --i Q), Vxi R. 

A hybrid sentence is a hybrid formula where every variable, every hypervariable and 

every hyperpredicate variable are bound. 

We follow the notation of [Enderton] and present the following axiom scheme for a 

hybrid logic. 
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1. Tautologies 

2. Substitution of variables Vxa--+ aT 
3. VPa --+ a~(Ri, ... ,Rn) 

4.a) Vx( a-+ ß)--+ (Vxa-+ Vxß) 

b} VP(a-+ ß)--+ (VPa-+ VPß) 

5.a) a--+ Vxa where x does not .occur free in a 

b) a --+ VP a where P does not occur free in a. 

. a a -+ b Rule of inference: Modus ponens 1 ß 

for a hybrid term T 1 for hyperpredicate variable P or respectively a hypervariable, for 

hybrid formula C(Ri, ... ,Rn) and hybrid formulas a,ß. 

Definition 5.9.2. Let E be a set of hybrid sentences. The hybrid sentence e can 

be derived from E if there is a finite sequence ( ao, .. . ,an) of hybrid formulas such that 

an = e and for each 0 ~ i ~ n either 

a) ai E E U A where A denotes the axiom schemes, or 

b) for some j and k less than i <li is obtained by the modus ponens from Ci.j and 

Ci.lt· We write E f-h e. 

Notations. Let a : {Fi 1 i E I}--+ T(L) assign to every ni-ary hypervariable 

Fi an Ili-ary term t of the language L. Such a map O:can be extended to a map u 
from the set of hybrid terms into T(V). We define furthermore 

~: {Pj 1 j E J} --+ {Pj(r . , ... ,r . ) j j E J} 
J1 Jn 

which assigns to every hyperpredicate variable an atomic formula of the same arity. 

Altogether we get a transformation u which assigns to every hybric formula a formula 

of first order. Z denotes the set of all these transformations u. 
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Lemma 5.9.3. Let E be a set of hybrid sentences and e a hybrid sentence 

E r-h e iff U a'{E) r- a( e) for every a E Z. 
a'Ez 

Proof. Let E r-h e and let (ei,„„en), en:: e, be a sequence of hybrid sentences 

where ei either follows from ej, ek, j,k Si, by modus ponens or is from the axiom 

scheme or from E. We choose a a E Z and transform ervery hybrid sentence ei to a 

sentence a(ei)· The sequence (a(e 1), •• „a(en)) need not tobe derivation in the predi­

cate calculus because axiom scheme 3, 4b, 5b get meaningless after applying a. Let us 

consider a step according axiom scheme 3 from the hybrid sentence eh(Ti,„.,Tn) to 

ek(Ti, ... ,Tn)· Then ek arises from eh by substituting hyper predicate variables P "f by 

atomic hybrid formulas T"f. For every ei, 1 Si S k we consider a transformation a' 
such that we have a sequence (a'{e 1),„„a'(ei)) with a'(ei) = a(ei) . We include this 

sequence before a( ei) and get i additional members. Proceeding in such a way we 

finally end with a possibly much longer sentence within the predicate calculus and 

have U a'(E) r- a(e) for a E Z. On the other hand if we have U a'(E) r- a(e) for 
O"'EZ . a'Ez 

every a E Z 'Ye consider a transformation h E z-1 such that a( e) is transformed to the 

hybrid sentence e and U a'{E) is transformed to a set E. By axiom scheme 3 it is 
a'Ez 

obvious that E r-h E and hence we have E r-h e. 

Theorem 5.9.4. E l=h e iff E r-h e. 

Proof. Let E l=h e and let K be the class of models which fulfill every hybrid 

sentence of E. Then K fulfills e by hypothesis and furthermore we conclude 

U a'(E) I= a( e) for every transformation a. By the completeness of the predicate 
a'Ez 
calculus we have U a'{E) r- a(e)for every transformation a abd by kenna 5.3 Er-he. 

a'Ez 
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For the reverse direction we use again lemma 5.3 and the correctness of the predicate 

calculus to get V a'(E) I= a(e). There is a transformation h such that h(a(e)) = e. 
a'Ez 

With the transformation we get a set E from V a'(E). lt is obvious that Eh E 
cr'Ez 

and hence E l=h e. 

Remark 5.9.5. One may use lemma 5.3 to show that the models of a set E of 

hybrid sentences are closed under ultraproducts. lt is clear that Craig's interpolation 

theorem hold~ for hypersentences. 

Additional remar'k:. One should feel free to interprete the hypervariables by 

Special sets of term functions. For instance in the case of Boolean algebras a binary 

hypervariable may stand only for monotone term functions generated by the opera­

tions join and meet. This will yield a different hybrid logic which may have its own 

merits. Therefore a manifold of hybrid logics concerning types and restrictions for 

interpretation are possible and may be of good use in applications (for instance in 

knowledge representation) . 
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