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Abstract 

The convergence of an iterative procedure for approximate solution 
of an equation vA = µ is studied where Ais a Markov operator, 11 and 
µ are probability measures. The iterative procedure is based on Bayes 
formula. The convergence is studied with the help of the coupling 
method. 

1 Introduction 

Let A = A( x, dy) be a transition probability measure from some measurable 
space ( E, E) to another measurable space ( E', E'). Assume that A( x, ·) is a 
probability measure for any x E E and f A( x, dy )I(y E f) is measurable for 
any r E E'. Consider the equation 

vA= µ, (1) 

where µ is a given element of the space V(E') of all probability measures 
on E', v is unknown element of V(E) and 

(vA)(f) = j j v(dx)A(x,dy)I(y E f). 

•the author is grateful to Department of Mathematics of Kaiserslautern University 
which partially supported this investigation 
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lt is an empirical observation that the following procedure based on 
Bayes formula converges to the exact solution v. (proved earlier for finite E 
and E' ): 

Procedure 
1) Let vo E V(E). 
2) Let µo = voA. 
3) Let 

Ao(dx , f) = j vo(dx)A(x,dy)l(y E f), r E E', 

A• (d I ) = Ao(dx, dy) 
0 X y µo(dy) . 

4) Let 
v1 = µAo . 

5) By ind uction, let 

An+i(dx,dy) = Vn+i(dx)A(x,dy), 

A (d d ) _ An+i(dx,dy). 
n+l X, Y - (d ) , 

µn+l Y 

2 Main result 

We'd like to investigate conditions under which Vn --+ v. in some 
sense. In fact, we'd obtain the convergence in variance. 

Our main (and unique) assumption is the following: 
Assumption. There exists such such a measure >.(dy) E V(E') 

that 

_ 1 . A(x,dy) A(x,dy) ( ) 
0 < C = mf (d ) ~ sup (d ) = C < oo. 2 

x ,y µ Y x ,y µ Y 

2 



Theorem 1 . Let a solution v. of (1) exists. Then under the Assumption 
for any "initial data" vo E V(E) the convergence in variance holds: 

var(vn - v.)-+ 0. 

Moreover, there exist such constants C,).. > 0 that 

var(vn - v.) ~ C exp(-8n), 

uniformly in initial data v0 . 

3 Proof 

(3) 

n ~ 0, (4) 

We use the coupling method or the method of unique probabil
ity space, see Nummelin (1984), Veretennikov (1991). When one 
use this method it is preferable to consider processes instead of 
measures. So we consider the sequences (Xn) and (Yn) with 

n~O 

(here Cis a distribution). Random values with given distributions 
may be constructed, for example, with the help of Kolmogorov's 
theorem. We may consider all Xn and Yn on the unique probability 
space, say, (fl', F', P'). At the same time we consider the stationary 
Markov sequences (X~= X*) and (Y; = Y*) with distibutions 

C(X;) = v., n~O 

on anot her proba bility space ( fl", F", P"). 
Now we shall try to construct such new sequence (Xn) on some 

extension (fl,F,P) = (fl',F',P') X (fl",F",P") with the following 
properties: 

(1) L ( Xn) = L (Xn), 

(2) Xn =X~ with the maximal. possible probability. 
(2) is really the idea of the coupling method and in all known 

to the author cases it is based on the following simple "folklore" 
fact: 

Lemma 1 . Let ~ and 'T/ be two random vectors on some probability space. 
Then there exist such extension of the probability space and such random 
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value <; on this extension that 

and 

P(<; = TJ) = j min(l,d.C(~)/d.C(17))d.C(TJ). 
Under the Assumption the right-hand side µin (1) 

has a bounded derivative f with respect to >.: 
f = dµ / d>... Moreover, 

c-1 ~ J ~ c. 
Note that for any µn this is also true: dµn ~ d>.., and 

(5) 

(6) 

Thus, it follows from the Procedure (see (5)) that distributions of 
X~ and Xn for n ~ 1 are equivalent and, moreover, 

(7) 

So we can apply our lemma to construct a new process Xn we 
spoken earlier: 

A) if Xn =X~ then Xn+l = Xn+2 = ... = x·. 
B) if Xn f:. X~ then we go on this construction and apply our 

lemma at the next step n + 1. 
By virtue of (7) we have 

P(Xn =X~)~ c-1 > o (8) 

on each step of our construction. Denote L := inf( n ~ 0 : Xn = X~). 
Then (8) implies the inequality 

P(L > n) ~ (1- c-1r. (9) 

Thus, 

var(.C(Xn)-.C(X*)) ~ 2P(L > n):::; 2(1-c-1r. (10) 

The first obvious inequality in (10) is known as the main inequality 
of the coupling method. Theorem is proved. 

The author is thanks Prof. Dr. H. von Weizsäcker who at
tracted his attension to the problem. 
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On exponential mixing for stationary processes 
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Abstract 

The rate of rnixing for stationary sequences is studied for some 
"ratio-mixing" coefficient under conditions of weak dependance of the 
"previous path" . 

1 Introduction 

In Veretennikov (1988), (1991), (1992), Gulinskii and Veretennikov (1992) 
the rate of mixing fqr Markov and stationary processes is studied. In this 
pa.per we go on the investigation of this problem for sta.tionary processes. 
Now we study more strong mixing coefficient in compare with Veretennikov 
(1992). 

Ea.rlier a.nd in recent yea.rs results on the rate of mixing for various 
processes were obta.ined ma.inly for Ga.ussia.n stationa.ry processes, see Kol
mogorov a.nd Roza.nov (1960), Ibra.gimov (1961, 1962), and for Markov pro
cesses, see Doob (1953), Da.vydov (1973), Veretennikov (1988, 1991). Va.ri
ous exa.mples and properties of mixing for stationary processes were esta.b
lished by Bra.dley {1980), Berbee and Bra.dley (1984) et a.l. In this pa.per 
we extend the a.pproa.ch from Veretennikov (1988, 1991) to nonmarkov and 
nonga.ussian ca.se. 

*this investigation was partially supported by Department of Mathematics of Kaiser
slautern University 
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2 Main results 

We consider the stationary process (Xn, -oo < n < oo) with values in the 
torus {0,1} and regular transition probability densities 

p(x'.:00 ;xn+1) = P(Xn+1 E dxn+I 1 X~00 = x'.:00 )/dxn+1 

which do not depend on n. Here again x'.:1:. 00 = (xn,Xn-i. ... ),Xi E [O, 1]. We 
study here the following mixing coefficient: 

B(BIFo) 
,,P(s) = ess(P) sup 1 p (B) - 11, 

(BEF~,) 

where P?_s = cr(Xi , i ~ s). Let us state assumptions on the density p: 

Assumption 1 . For any x~OO' z~OO' y 

Assumption 2 . There exists such q E (0, 1/2) that 

lp(x~oo; y) - ll < qi+1 
p(z~; y) -

if 
Xo = ZQ, ... , X-i+1 = Z-i+l ... 

Theorem 1 If assumptions 1 + 2 are satisfied with some q E (0, 1/2) 
then there exist such C, >. > 0 that 

cp(s)::; Cexp(->.s). 

Let 

Let us state another assumptions for the following theorem. 

Assumption 3 . There exists such q < c112 - c that 

lp(x~oo; y) - ll < qi 
p(z~; y) -

if 
Xo = Zo, ... , X-i+l = Z-i+l ... 
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Theorem 2 If assumptions 1 + 3 holds then there exist such C, .A > 0 
that 

'ljJ (s)::; C exp(-.As). 

Comment. Assumption 3 is natural in the following sense. lt means that 
the dependence of the density from the "far" coordinates is exponentially 
weak. Assumption 2 with a small q is even stronger: it means, moreover, 
that dependence from any coordinates of the previous path is weak. 

3 Proof of theorem 2 

I. Let (Xn) and (Yn) be two independent copies of the same stationary 
process. Denote by (f!, F, P) the direct product of correspondent probability 
spaces. Fix some x~00 = (xo,X-i, ... ),y'.:00 = (yo,Y-1, ... ). To prove the 
statement of the theorem it is suffi.cient to show that for any f E ß 1 X ß2 X ... 

P (X~ E f i X~00 = x~00 ) 
1 p (Y 00 r I yo = 0 ) - 1 1::; C exp (:-.An) 

n E -oo Y-oo 
(1) 

with some C,.A > 0 which do not depend on x~oo,Y'.:oo,r. Let r = rn X 

r n+l X ••• ' r i E 8 1 • Firstly let US show that for any r 1 E 8 1 

II. Now assume r = r n E 8 1 . We use the coupling method although 
there is no Markov process here. Nevertheless, we may try to construct such 
a new process (Yn) on the extension of the probability space (f!, F, P) that 

(:Yn) is equal to (Yn) in distribution and (fn) is equal to Yn pointwise with 

the maximal possible probability. (This is actually the main idea of the 
coupling method). lt follows from assumptions that for any X~00 and Y~00 

fo1 

min (P ( X~00 ; y) , p (Y~00 ; y)) dy ~ 1 - c > 0. 

Hence, as in the coupling method we may construct such a new random 
value Y1 that 

(here [, is a law) and 
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= fo1 

min (P (x~00 ; Y) ,p (Y.~00 ; Y)) dy 
;::: 1 - c > o. 

(see Nummelin (1984)). Here Pis already a new extension of "old" proba
bility measure, but we do not change the notation P. The value l\ is thus 
constructed. Now, Y2, ... , Yn, ... are built in the same way by induction 
with the properties 

and 

= fo1 

min ((X~ 00 ; y) ,p (Y~00 ; y)) dy 2: 1 - c > 0. 

IV. lt follows that P (Ym = Xm) 2'.: c > 0. Moreover, Lipshitz condition 

on p implies that if Yn-1 = Xn-1 then 

P (Yn = Xn J f'n-1 = Xn-1) 

= E (fo1 

min (p(X~ 00 ; y) ,p (Y~00 ; Y)) dy 1 Yn-1 = Xn-1) 2: 1 - q/(1 - q). 

If ynn_-k1 = x:~! then the estimate is better: 

P (-Yn = Xn 1 ynn~k1 = x:~!) (3) 

= E (fo1

.min (p(X~00 ;y) ,p(Y~00 ;y)) dy 1 ynn~k1 = x:~!) 
;::: 1 - qk / (1 - q). 

V. Consider the sequence (ai, ... ,an): O'.k = I(Xk = Yk) ,1 ~ k ~ n. 
By virtue of assumptions for any sequence (a1 , ... , an-1) the probability 
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rnay be estirnated as follows. Let the sequence ( a 1, ... , an-l) has the form 

a1 = ... = ak1 = 1,ak1+1 = ... = ak1+m1 = 0, 

ak1 +m1 +1 = ··· = ak1 +m1 +k2 = 1, 

Let r denote the nurnber of series of zeros between 1 and n. Then by virtue 
of assurnptions we have 

P(aki+l = 01 a1 = ... = ak1 = 1) ~ qk1, 

P(ak1+m1+k2+1=01 ak1+m1+l = ··· = ak1+m1+k2 = 1) ~ qk2,···, 

and, rnoreover, 

P(ak1+2 = ··· = ak1+m1 = 0) ~ cm 1
-

1
, 

p ( ak1 +m1 +k2+2 = ... = ak1 +m1 +k2+m2 = 0) ~ <;m 2
-

1
' ... 

P( 0) < k (n-k-r) a1 = al, ... ,an-1 = lln-1,an = _ q c . 

So 

n-1 
P(a = 0) < '\""""' Ck qkc(n-k-r) = 

n - L....,, n-1 
k=O 

= c-r(q + cr-1. 

Since r ~ n/2 then 

P(an = 0) ~ (q + c)- 1(c- 112 (q + c)t 

and assurnption q + c < c112 irnplies the estirnate 

P(an = 0) ~ C exp(-.Xn) (C,.X > 0). 
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N ow, i t follows from ( 4) that 

n-1 

P( IT ai = 0) ~ C exp(-.\n) 
i=[n/2) 

with some new C, .\ > 0. Denote TI~[~/2) ai = a(n - 1). 
VI. We have 

= P(Xn E fnlX~00 = x)-P(f'n E fn!Y~00 = y) 

= E[I(Xn Ern) - I(Yn Er n)IX~00 = x, Y~00 = y] 

= E[I(Xn Ern) - I(Yn Er n)I(a(n - 1) = OIX~00 = x, Y~00 = y] 

= E[I(Xn E f n) - I(Yn E f n)I(a(n - 1) = llX~00 = x, Y~00 = y] 

= A1 + A2. 

VII. (5) and assumption 1 imply the bound 

- . 0 Ai ~ C exp(-.\n)E[I(Yn E f)IY_ 00 = y; F[n/2J] 

~ Cexp(-.\n)E[I(Yn E f)IY~00 = y] 

(with new C > O!). 
VIII. 

A2 = E[I(a(n - 1) = l)E[I(Xn E f) 

-I(Yn E f))IY~00 = y; X~00 = x; Fn-1]] 

= E[I(a(n - 1) = l)E[I(Xn E f) 

-I(Yn E f))ia(n-1) = l;Y~00 = y;X~00 = x;Fn-1]]. 

lt follows from assumptions that 

- 0 0 ] E[I(Xn E f)-J(Yn E f))ia(n -1) = l;Y_= = y;X_
00 

= x;Fn-1 

(5) 

(6) 

~ (1 +C exp(-.\n/2))E[I(Yn E f))ia(n-1) = l; Y~00 = y; X~00 = x; Fn-1]. 

Thus, 

P(Xn E f nlX~ 00 = x) C ( , ) 
-------..,0:---- ~ 1 + exp -An . 
P(Yn E f nlY-oo = y) 
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IX. We have for f = f n X f n+l X · · • 

P(X;:o E flX~00 = x) 
P(Yn00 E flY~oo = y) 

P(Xn E f nlX~00 = x) 
= 1 o X P(Yn E f n Y_ 00 = y) 

P(Xn+1 E r n+1 IX~00 = x; Xn E r n) 
P(Yn+i Er n+1IY~00 = y; Yn Er - n) 

Similarly to (7) we obtain estimates 

and so on. So it follows from (8) that 

P(X;:o E flX~00 = x) 00 

P(Yoo flYo = ) ~ Il(l+Cexp(-Ak)) 
n E -oo Y k=n 

~ 1 + C exp( -An) 

with some new C > 0. Theorem 2 is proved. 
The proof of theorem 1 is similar. 
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